Science.gov

Sample records for stratospheric cloud formation

  1. Formation of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Koehler, Birgit G.; Mcneill, Laurie S.; Tolbert, Margaret A.

    1992-01-01

    Fourier transform infrared spectroscopy was used to examine the competitive growth of films representative of polar stratospheric clouds. These experiments show that either crystalline nitric acid trihydrate (beta-NAT) or amorphous films with H2O:HNO3 ratios close to 3:1 formed at temperatures 3-7 K warmer than the ice frost point under stratospheric pressure conditions. In addition, with higher HNO3 pressure, we observed nitric acid dihydrate (NAD) formation at temperatures warmer than ice formation. However, our experiments also show that NAD surfaces converted to beta-NAT upon exposure to stratospheric water pressures. Finally, we determined that the net uptake coefficient for HNO3 on beta-NAT is close to unity, whereas the net uptake coefficient for H2O is much less.

  2. Formation of Polar Stratospheric Clouds in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Aloyan, Artash; Yermakov, Alex; Arutyunyan, Vardan; Larin, Igor

    2014-05-01

    A new mathematical model of the global transport of gaseous species and aerosols in the atmosphere and the formation of polar stratospheric clouds (PSCs) in both hemispheres was constructed. PSCs play a significant role in ozone chemistry since heterogeneous reactions proceed on their particle surfaces and in the bulk, affecting the gas composition of the atmosphere, specifically, the content of chlorine and nitrogen compounds, which are actively involved in the destruction of ozone. Stratospheric clouds are generated by co-condensation of water vapor and nitric acid on sulfate particles and in some cases during the freezing of supercooled water as well as when nitric acid vapors are dissolved in sulfate aerosol particles [1]. These clouds differ in their chemical composition and microphysics [2]. In this study, we propose new kinetic equations describing the variability of species in the gas and condensed phases to simulate the formation of PSCs. Most models for the formation of PSCs use constant background values of sulfate aerosols in the lower stratosphere. This approach is too simplistic since sulfate aerosols in the stratosphere are characterized by considerably nonuniform spatial and temporal variations. Two PSC types are considered: Type 1 refers to the formation of nitric acid trihydrate (NAT) and Type 2 refers to the formation of particles composed of different proportions of H2SO4/HNO3/H2O. Their formation is coupled with the spatial problem of sulfate aerosol generation in the upper troposphere and lower stratosphere incorporating the chemical and kinetic transformation processes (photochemistry, nucleation, condensation/evaporation, and coagulation) and using a non-equilibrium particle-size distribution [3]. In this formulation, the system of equations is closed and allows an adequate description of the PSC dynamics in the stratosphere. Using the model developed, numerical experiments were performed to reproduce the spatial and temporal variability of

  3. The formation of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Steele, H. M.; Hamill, P.; Swissler, T. J.; Mccormick, M. P.

    1983-01-01

    Measurements of the stratospheric aerosol by SAM II during the northern and southern winters of 1979 showed a pronounced increase in extinction on occasions when the temperature fell to a low value (below 200 K). The correlation between extinction and temperature is evaluated on the basis of thermodynamic considerations. As the temperature falls, the hygroscopic aerosols absorb water vapor from the atmosphere, growing as they do so. The effect of the temperature on the size distribution and composition of the aerosol is determined, and the optical extinction at 1 micron wavelength is calculated using Mie scattering theory. The theoretical predictions of the change in extinction with temperature and humidity are compared with the SAM II results at 100 mb, and the water vapor mixing ratio and aerosol number density are inferred from these results. A best fit of the theoretical curves to the SAM II data gives a water vapor content of 5-6 ppmv, and a total particle number density of 6-7 particles/cu cm.

  4. Stratospheric water vapour and temperature variability and their effect on polar stratospheric cloud formation and existence in the Arctic

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Lossow, Stefan; Stiller, Gabriele; Weigel, Katja; Braesicke, Peter; Pitts, Michael C.; Murtagh, Donal

    2015-04-01

    Based on more than 10-years of satellite measurements from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS and SciSat/ACE-FTS we investigate water vapour (H2O) variability in the northern hemisphere polar regions. We find from the observations a connection between cold winters and enhanced water vapour mixing ratios in the lower polar stratosphere (475 to 525 K). We perform a sensitivity study along air parcel trajectories to test how an increase of stratospheric water vapour of 1 ppmv or a temperature decrease of 1 K affects the time period during which polar stratospheric clouds (PSCs) can be formed and exist. Air parcel trajectories were calculated 6-days backward in time. The trajectories were started at the time and locations where PSCs were observed by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations) during the Arctic winter 2010/2011. We test the sensitivity of PSCs formation and existence to changes in H2O and temperature based on PSC observations during this winter since it was one of the coldest Arctic winters in the last decade. The polar vortex persisted over a period of four months, thus leading to extensive PSC formation. During this winter PSCs were detected by CALIPSO on 42 days. In total, 738 trajectories were calculated and analysed. The resulting statistic derived from the air parcel trajectories shows a clear prolongation of the time period where PSCs can be formed and exist when the temperature in the stratosphere is decreased by 1 K and H2O is increased by 1 ppmv. We derive an increase in time where the stratospheric air is exposed to temperatures below Tice and TNAT, respectively, by ~6000 h. Thus, changes in stratospheric water vapour and temperature can prolong PSC formation and existence and thus have a significant influence on the chemistry of the polar stratosphere.

  5. Nitric acid in polar stratospheric clouds - Similar temperature of nitric acid condensation and cloud formation

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Hamill, Patrick; Goodman, Jindra K.; Mccormick, M. Patrick

    1990-01-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds (PSCs) both form below similar threshold temperatures. This supports the idea that the PSC particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is the inertial impaction of nitric acid aerosols using an Er-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a 'first appearance' temperature Tfa = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a 'first appearance' temperature Tfa = 198 K as found for the Antarctic samples.

  6. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  7. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2016-01-01

    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000 K. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in

  8. Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-09-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  9. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    NASA Technical Reports Server (NTRS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  10. Investigating Type I Polar Stratospheric Cloud Formation Mechanisms with POAM Satellite Observations

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Drdla, K.; Fromm, M.; Hoppel, K.; Browell, E.; Hamill, P.; Dempsey, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Type Ia PSCs are believed to be composed of nitric acid hydrate particles. Recent results from the SOLVE/THESEO 2000 campaign showed evidence that this type of PSC was composed of a small number of very large particles capable of sedimentary denitrification of regions of the stratosphere. It is unknown whether homogeneous or heterogeneous nucleation is responsible for the formation of these PSCs. Arctic winters are tending to be colder in response to global tropospheric warming. The degree to which this influences ozone depletion will depend on the freezing mechanism of nitric acid hydrate particles. If nucleation is homogeneous it implies that the freezing process is an inherent property of the particle, while heterogeneous freezing means that the extent of PSCs will depend in part on the number of nuclei available. The Polar Ozone and Aerosol Measurement (POAM)II and III satellites have been making observations of stratospheric aerosols and Polar Stratospheric Clouds (PSCs) since 1994. Recently, we have developed a technique that can discriminate between Type Ia and Ib PSCs using these observations. A statistical approach is employed to demonstrate the robustness of this approach and results are compared with lidar measurements. The technique is used to analyze observations from POAM II and II during Northern Hemisphere winters where significant PSC formation occurred with the objective of exploring Type I PSC formation mechanisms. The different PSCs identified using this method exhibit different growth curve as expressed as extinction versus temperature.

  11. Heterogeneous formation of polar stratospheric clouds-nucleation of nitric acid trihydrate (NAT) in the arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-05-01

    Satellite based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current theory, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid December 2009, a heterogeneous nucleation mechanism is required, occurring on the surface of dust or meteoritic particles. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along tens of thousands of trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarisation (CALIOP) observation points. Comparing the optical properties of the modelled NAT PSCs with these observations enables the thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory and is simple to implement in models. It is shown that the new method is capable of reproducing observed PSCs very well, despite the varied conditions experienced by air parcels travelling along the different trajectories.

  12. Heterogeneous formation of polar stratospheric clouds - Part 2: Nucleation of ice on synoptic scales

    NASA Astrophysics Data System (ADS)

    Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Hoyle, C. R.; Grooß, J.-U.; Dörnbrack, A.; Peter, T.

    2013-04-01

    This paper provides unprecedented evidence for the importance of heterogeneous nucleation, likely on solid particles of meteoritic origin, and of small-scale temperature fluctuations, for the formation of ice particles in the Arctic stratosphere. During January 2010, ice PSCs (Polar Stratospheric Clouds) were shown by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) to have occurred on a synoptic scale (~ 1000 km dimension). CALIPSO observations also showed widespread PSCs containing nitric acid trihydrate (NAT) particles in December 2009, prior to the occurrence of synoptic-scale regions of ice PSCs during mid-January 2010. We demonstrate by means of detailed microphysical modeling along air parcel trajectories that the formation of these PSCs is not readily reconciled with expectations from the conventional understanding of PSC nucleation mechanisms. The measurements are at odds with the previous laboratory-based understanding of PSC formation, which deemed direct heterogeneous nucleation of NAT and ice on preexisting solid particles unlikely. While a companion paper (Part 1) addresses the heterogeneous nucleation of NAT during December 2009, before the existence of ice PSCs, this paper shows that also the large-scale occurrence of stratospheric ice in January 2010 cannot be explained merely by homogeneous ice nucleation but requires the heterogeneous nucleation of ice, e.g. on meteoritic dust or preexisting NAT particles. The required efficiency of the ice nuclei is surprisingly high, namely comparable to that of known tropospheric ice nuclei such as mineral dust particles. To gain model agreement with the ice number densities inferred from observations, the presence of small-scale temperature fluctuations, with wavelengths unresolved by the numerical weather prediction models, is required. With the derived rate parameterization for heterogeneous ice nucleation we are able to explain and reproduce CALIPSO observations throughout the

  13. Heterogeneous formation of polar stratospheric clouds - Part 2: Nucleation of ice on synoptic scales

    NASA Astrophysics Data System (ADS)

    Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Hoyle, C. R.; Grooß, J.-U.; Dörnbrack, A.; Peter, T.

    2013-11-01

    This paper provides compelling evidence for the importance of heterogeneous nucleation, likely on solid particles of meteoritic origin, and of small-scale temperature fluctuations, for the formation of ice particles in the Arctic stratosphere. During January 2010, ice PSCs (polar stratospheric clouds) were shown by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) to have occurred on a synoptic scale (~1000 km dimension). CALIPSO observations also showed widespread PSCs containing NAT (nitric acid trihydrate) particles in December 2009, prior to the occurrence of synoptic-scale regions of ice PSCs during mid-January 2010. We demonstrate by means of detailed microphysical modeling along air parcel trajectories that the formation of these PSCs is not readily reconciled with expectations from the conventional understanding of PSC nucleation mechanisms. The measurements are at odds with the previous laboratory-based understanding of PSC formation, which deemed direct heterogeneous nucleation of NAT and ice on preexisting solid particles unlikely. While a companion paper (Part 1) addresses the heterogeneous nucleation of NAT during December 2009, before the existence of ice PSCs, this paper shows that also the large-scale occurrence of stratospheric ice in January 2010 cannot be explained merely by homogeneous ice nucleation but requires the heterogeneous nucleation of ice, e.g. on meteoritic dust or preexisting NAT particles. The required efficiency of the ice nuclei is surprisingly high, namely comparable to that of known tropospheric ice nuclei such as mineral dust particles. To gain model agreement with the ice number densities inferred from observations, the presence of small-scale temperature fluctuations, with wavelengths unresolved by the numerical weather prediction models, is required. With the derived rate parameterization for heterogeneous ice nucleation we are able to explain and reproduce CALIPSO observations throughout the

  14. A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Spang, Reinhold; Orr, Andrew; Alexander, M. Joan; Holt, Laura A.; Stein, Olaf

    2017-02-01

    Atmospheric gravity waves yield substantial small-scale temperature fluctuations that can trigger the formation of polar stratospheric clouds (PSCs). This paper introduces a new satellite record of gravity wave activity in the polar lower stratosphere to investigate this process. The record is comprised of observations of the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite from January 2003 to December 2012. Gravity wave activity is measured in terms of detrended and noise-corrected 15 µm brightness temperature variances, which are calculated from AIRS channels that are the most sensitive to temperature fluctuations at about 17-32 km of altitude. The analysis of temporal patterns in the data set revealed a strong seasonal cycle in wave activity with wintertime maxima at mid- and high latitudes. The analysis of spatial patterns indicated that orography as well as jet and storm sources are the main causes of the observed waves. Wave activity is closely correlated with 30 hPa zonal winds, which is attributed to the AIRS observational filter. We used the new data set to evaluate explicitly resolved temperature fluctuations due to gravity waves in the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. It was found that the analysis reproduces orographic and non-orographic wave patterns in the right places, but that wave amplitudes are typically underestimated by a factor of 2-3. Furthermore, in a first survey of joint AIRS and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite observations, nearly 50 gravity-wave-induced PSC formation events were identified. The survey shows that the new AIRS data set can help to better identify such events and more generally highlights the importance of the process for polar ozone chemistry.

  15. Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Pitts, M. C.; Voelger, P.; Achtert, P.; Kaphlanov, M.; Murtagh, D.; Fricke, K.-H.

    2011-04-01

    The sedimentation of HNO3 containing Polar Stratospheric Cloud (PSC) particles leads to a permanent removal of HNO3 and thus to a denitrification of the stratosphere, an effect which plays an important role in stratospheric ozone depletion. The polar vortex in the Arctic winter 2009/2010 was very cold and stable between end of December and end of January. Strong denitrification was observed in the Arctic in mid of January by the Odin Sub Millimetre Radiometer (Odin/SMR) which was the strongest denitrification that had been observed in the entire Odin/SMR measuring period (2001-2010). Lidar measurements of PSCs were performed in the area of Kiruna, Northern Sweden with the IRF (Institutet för Rymdfysik) lidar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kiruna during the entire period of observations. The formation of PSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulations are performed along air parcel trajectories calculated six days backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperature history of the trajectories and the box model simulations we find two PSC regions, one over Kiruna according to the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model simulations along backward trajectories together with the observations of Odin/SMR, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and the ground-based lidar we investigate how and by which type of PSC particles the denitrification that was observed during the Arctic winter 2009/2010 was caused. From our analysis we find that due to an unusually strong synoptic cooling event in mid January, ice particle formation on NAT may be a possible mechanism that caused denitrification during the Arctic winter 2009/2010.

  16. Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Pitts, M. C.; Voelger, P.; Achtert, P.; Kaphlanov, M.; Santee, M. L.; Manney, G. L.; Murtagh, D.; Fricke, K.-H.

    2011-08-01

    The sedimentation of HNO3 containing Polar Stratospheric Cloud (PSC) particles leads to a permanent removal of HNO3 and thus to a denitrification of the stratosphere, an effect which plays an important role in stratospheric ozone depletion. The polar vortex in the Arctic winter 2009/2010 was very cold and stable between end of December and end of January. Strong denitrification between 475 to 525 K was observed in the Arctic in mid of January by the Odin Sub Millimetre Radiometer (Odin/SMR). This was the strongest denitrification that had been observed in the entire Odin/SMR measuring period (2001-2010). Lidar measurements of PSCs were performed in the area of Kiruna, Northern Sweden with the IRF (Institutet för Rymdfysik) lidar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kiruna during the entire period of observations. The formation of PSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulations are performed along air parcel trajectories calculated six days backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperature history of the backward trajectories and the box model simulations we find two PSC regions, one over Kiruna according to the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model simulations along backward trajectories together with the observations of Odin/SMR, Aura/MLS (Microwave Limb Sounder), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and the ground-based lidar we investigate how and by which type of PSC particles the denitrification that was observed during the Arctic winter 2009/2010 was caused. From our analysis we find that due to an unusually strong synoptic cooling event in mid January, ice particle formation on NAT may be a possible formation mechanism during

  17. Freezing of sulfuric and nitric acid solutions: Implications for polar stratospheric cloud formation

    NASA Astrophysics Data System (ADS)

    Salcedo Gonzalez, Dara

    2000-12-01

    Polar Stratospheric Clouds (PSCs) play an important role in ozone chemistry during the polar winter. The magnitude of their effect depends on their phase, composition and formation mechanism, which are not fully understood yet. In order to understand how liquid PSCs freeze, two apparatus were designed to study the freezing behavior of small drops using a Fourier transform infrared (FTIR) spectrometer and an optical microscope. Sulfuric acid aqueous drops with composition of 10 to 50 wt % were studied with the FTIR apparatus. The surface on which the drops stand caused heterogeneous nucleation of ice, but not of the sulfuric acid hydrates. The more concentrated solutions (>40 wt %) supercooled to 130 K without freezing. Below 150 K these solutions formed an amorphous solid, which liquefied upon warming. Drops with composition of 40 to 64 wt % HNO3 were prepared and their phase transitions were detected with the optical microscope apparatus. Freezing temperatures of the drops were determined and homogeneous nucleation rates of nitric acid dihydrate (JNAD) and nitric acid trihydrate (JNAT) between 170 and 190 K were calculated. JNAT and JNAD depend predominantly on the saturation of the solid in the liquid solution: higher saturation ratios correspond to higher nucleation rates. Classical nucleation theory was used to parameterize this relation. Since the saturation ratios of NAD and NAT vary with temperature and composition in different ways, NAT or NAD can form preferentially under different conditions. Evidence was found that NAD catalyzes the nucleation of NAT below ~183 K. Mullite, cristobalite and alumina were tested as possible heterogeneous nuclei of volcanic origin for PSCs. They catalyze freezing of NAD and NAT at temperatures below 179 K, which are too low to be stratospherically important. The results suggest that the largest drops in a PSC will freeze homogeneously if the stratospheric temperature remains below the NAT condensation temperature for more

  18. Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-03-01

    Satellite based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarisation (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled the thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed PSCs very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  19. Solid-state photochemistry as a formation mechanism for Titan's stratospheric C4N2 ice clouds

    NASA Astrophysics Data System (ADS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-04-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 cm-1 ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  20. Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-01-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  1. A case of type I polar stratospheric cloud formation by heterogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Ferry, G. V.; Snetsinger, K. G.; Goodman, J.; Dye, J. E.; Baumgardner, D.; Gandrud, B. W.

    1992-01-01

    The NASA ER-2 aircraft flew on January 24, 1989, from Stavanger to Spitsbergen, Norway, at the 430-440 K potential temperature surface (19.2-19.8 km pressure altitude). Aerosols were sampled continuously by an optical particle counter (PMS-FSSP300) for concentration and size analyses, and during five 10-min intervals by four wire and one replicator impactor for concentration, size, composition, and phase analysis. During sampling, the air saturation of H2O with respect to ice changed from 20 to 100 percent, and of HNO3 with respect to nitric acid trihydrate (NAT) from subsaturation to supersaturation. Data from both instruments indicate a condensation of hydrochloric acid and, later, nitric acid on the background aerosol particles as the ambient temperature decreases along the flight track. This heterogeneous nucleation mechanism generates type I polar stratospheric cloud particles of 10-fold enhanced optical depth, which could play a role in stratospheric ozone depletion.

  2. A case study of formation and maintenance of a lower stratospheric cirrus cloud over the tropics

    NASA Astrophysics Data System (ADS)

    Sandhya, M.; Sridharan, S.; Indira Devi, M.; Niranjan, K.; Jayaraman, A.

    2015-05-01

    A rare occurrence of stratospheric cirrus at 18.6 km height persisting for about 5 days during 3-7 March 2014 is inferred from the ground-based Mie lidar observations over Gadanki (13.5° N, 79.2° E) and spaceborne observations. Due to the vertical transport by large updrafts on 3 March in the troposphere, triggered by a potential vorticity intrusion, the water vapour mixing ratio shows an increase around the height of 18.6 km. Relative humidity with respect to ice is ~ 150%, indicating that the cirrus cloud may be formed though homogeneous nucleation of sulfuric acid. The cirrus cloud persists due to the cold anomaly associated with the presence of a 4-day wave.

  3. Investigation of Polar Stratospheric Cloud Solid Particle Formation Mechanisms Using ILAS and AVHRR Observations in the Arctic

    NASA Technical Reports Server (NTRS)

    Irie, H.; Pagan, K. L.; Tabazadeh, A.; Legg, M. J.; Sugita, T.

    2004-01-01

    Satellite observations of denitrification and ice clouds in the Arctic lower stratosphere in February 1997 are used with Lagrangian microphysical box model calculations to evaluate nucleation mechanisms of solid polar stratospheric cloud (PSC) particles. The occurrences of ice clouds are not correlated in time and space with the locations of back trajectories of denitrified air masses, indicating that ice particle surfaces are not always a prerequisite for the formation of solid PSCs that lead to denitrification. In contrast, the model calculations incorporating a pseudoheterogeneous freezing process occurring at the vapor-liquid interface can quantitatively explain most of the observed denitrification when the nucleation activation free energy for nitric acid dihydrate formation is raised by only approx.10% relative to the current published values. Once nucleated, the conversion of nitric acid dihydrate to the stable trihydrate phase brings the computed levels of denitrification closer to the measurements. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and SblctureC: loud physics and chemistry; 0340 Atmospheric Composition and Structure: Middle atmosphere-composition and chemistry

  4. Polar Stratospheric Cloud formation and denitrification during the Arctic winter 2009/2010 and 2010/2011

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Pitts, Michael C.; Kirner, Oliver; Braesicke, Peter; Santee, Michelle L.; Manney, Gloria L.; Murtagh, Donal

    2015-04-01

    The sedimentation of HNO3 containing polar stratospheric cloud particles leads to a permanent removal of HNO3 from the stratosphere. The so-called denitrification is an effect that plays an important role in stratospheric ozone depletion. The Arctic winter 2009/2010 and 2010/2011 were both quite unique. The Arctic winter 2010/2011 was one of the coldest winters on record leading to the strongest depletion of ozone measured in the Arctic. Though the Arctic winter 2009/2010 was rather warm in the climatological sense it was distinguished by an exceptionally cold stratosphere from mid December 2009 to mid January 2010 leading to prolonged PSC formation and significant denitrification. Model simulations and space-borne observations are used to investigate PSC formation and denitrification during these two winters. Model simulations were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) and compared to observations by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Satellite (CALIPSO) and the Odin Sub-Millimetre Radiometer (Odin/SMR) as well as with observations from the Microwave Limb Sounder on Aura (Aura/MLS). While PSCs were present during the Arctic winter 2010/2011 over nearly four months, from mid December to end of March, they were not as persistent as the ones that occurred during the shorter (one month) cold period during the Arctic winter 2009/2010. Although the PSC season during the Arctic winter 2009/2010 was much shorter than in 2010/2011, denitrification during the Arctic winter 2009/2010 was similar in magnitude than during 2010/2011.

  5. Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Mayer, Erwin; Loerting, Thomas

    2010-03-01

    Polar stratospheric clouds (PSCs) are extremely efficient at catalysing the transformation of photostable chlorine reservoirs into photolabile species, which are actively involved in springtime ozone-depletion events. Why PSCs are such efficient catalysts, however, is not well understood. Here, we investigate the freezing behaviour of ternary HNO₃-H₂SO₄-H₂O droplets of micrometric size, which form type II PSC ice particles. We show that on freezing, a phase separation into pure ice and a residual solution coating occurs; this coating does not freeze but transforms into glass below ∼150 K. We find that the coating, which is thicker around young ice crystals, can still be approximately 30 nm around older ice crystals of diameter about 10 µm. These results affect our understanding of PSC microphysics and chemistry and suggest that chlorine-activation reactions are better studied on supercooled HNO₃-H₂SO₄-H₂O solutions rather than on a pure ice surface.

  6. Titan's Tropopause Temperatures from CIRS: Implications for Stratospheric Methane Cloud Formation

    NASA Astrophysics Data System (ADS)

    Anderson, C. M.; Samuelson, R.; Achterberg, R. K.; Barnes, J. W.; Flasar, F. M.

    2012-12-01

    Analysis of Cassini Composite Infrared Spectrometer (CIRS) far-IR spectra enable the construction of Titan's temperature profile in the altitude region containing the tropopause. Whereas the methane ν4 band at 1306 cm-1 (7.7 μm) is the primary opacity source for deducing thermal structure between 100 km and 500 km, N2-N2 collision-induced absorption between 70 and 140 cm-1 (143 μm and 71 μm) is utilized to determine temperatures at Titan's tropopause. Additional opacity due to aerosol and nitrile ices must also be taken into account in this part of the far-IR spectral region. The spectral characteristics of these particulate opacities have been deduced from CIRS limb data at 58°S, 15°S, 15°N, and 85°N. Empirically, the spectral shapes of these opacities appear to be independent of both latitude and altitude below 300 km (Anderson and Samuelson, 2011, Icarus 212, 762-778), justifying the extension of these spectral properties to all latitudes. We find that Titan's tropopause temperature is cooler than the HASI value of 70.5K by ~6K. This leads to the possibility that subsidence at high northern latitudes can cause methane condensation in the winter polar stratosphere. A search for methane clouds in this region is in progress.

  7. Titan's Tropopause Temperatures from CIRS: Implications for Stratospheric Methane Cloud Formation

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Achterberg, R. K.; Barnes, J. W.; Flasar, F. M.

    2012-01-01

    Analysis of Cassini Composite Infrared Spectrometer (CIRS) far-IR spectra enable the construction of Titan's temperature profile in the altitude region containing the tropopause. Whereas the methane V4 band at 1306/cm (7.7 microns) is the primary opacity source for deducing thermal structure between 100 km and 500 km, N2-N2 collision-induced absorption between 70 and 140/cm (143 microns and 71 microns) is utilized to determine temperatures at Titan's tropopause. Additional opacity due to aerosol and nitrile ices must also be taken into account in this part of the far-IR spectral region. The spectral characteristics of these particulate opacities have been deduced from CIRS limb data at 58degS, 15degS, 15degN, and 85degN. Empirically, the spectral shapes of these opacities appear to be independent of both latitude and altitude below 300 km (Anderson and Samuelson, 2011, Icarus 212, 762-778), justifying the extension of these spectral properties to all latitudes. We find that Titan's tropopause temperature is cooler than the HAS! value of 70.5K by approx. 6K. This leads to the possibility that subsidence at high northern latitudes can cause methane condensation in the winter polar stratosphere. A search for methane clouds in this region is in progress.

  8. Condensed Acids In Antartic Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; Fong, W.

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  9. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds.

    PubMed

    Zondlo, M A; Hudson, P K; Prenni, A J; Tolbert, M A

    2000-01-01

    Ice particles found within polar stratospheric clouds (PSCs) and upper tropospheric cirrus clouds can dramatically impact the chemistry and climate of the Earth's atmosphere. The formation of PSCs and the subsequent chemical reactions that occur on their surfaces are key components of the massive ozone hole observed each spring over Antarctica. Cirrus clouds also provide surfaces for heterogeneous reactions and significantly modify the Earth's climate by changing the visible and infrared radiation fluxes. Although the role of ice particles in climate and chemistry is well recognized, the exact mechanisms of cloud formation are still unknown, and thus it is difficult to predict how anthropogenic activities will change cloud abundances in the future. This article focuses on the nucleation, chemistry, and microphysical properties of ice particles composing PSCs and cirrus clouds. A general overview of the current state of research is presented along with some unresolved issues facing scientists in the future.

  10. Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS

    NASA Astrophysics Data System (ADS)

    Lambert, Alyn; Santee, Michelle L.; Livesey, Nathaniel J.

    2016-12-01

    We use satellite-borne measurements collected over the last decade (2006-2015) from the Aura Microwave Limb Sounder (MLS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to investigate the nitric acid distribution and the properties of polar stratospheric clouds (PSCs) in the early winter Antarctic vortex. Frequently, at the very start of the winter, we find that synoptic-scale depletion of HNO3 can be detected in the inner vortex before the first lidar detection of geophysically associated PSCs. The generation of "sub-visible" PSCs can be explained as arising from the development of a solid particle population with low number densities and large particle sizes. Assumed to be composed of nitric acid trihydrate (NAT), the sub-visible PSCs form at ambient temperatures well above the ice frost point, but also above the temperature at which supercooled ternary solution (STS) grows out of the background supercooled binary solution (SBS) distribution. The temperature regime of their formation, inferred from the simultaneous uptake of ambient HNO3 into NAT and their Lagrangian temperature histories, is at a depression of a few kelvin with respect to the NAT existence threshold, TNAT. Therefore, their nucleation requires a considerable supersaturation of HNO3 over NAT, and is consistent with a recently described heterogeneous nucleation process on solid foreign nuclei immersed in liquid aerosol. We make a detailed investigation of the comparative limits of detection of PSCs and the resulting sequestration of HNO3 imposed by lidar, mid-infrared, and microwave techniques. We find that the temperature history of air parcels, in addition to the local ambient temperature, is an important factor in the relative frequency of formation of liquid/solid PSCs. We conclude that the initiation of NAT nucleation and the subsequent development of large NAT particles capable of sedimentation and denitrification in the early winter do not emanate from an ice

  11. Large-scale variations in ozone and polar stratospheric clouds measured with airborne lidar during formation of the 1987 ozone hole over Antarctica

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Poole, Lamont R.; Mccormick, M. Patrick; Ismail, Syed; Butler, Carolyn F.; Kooi, Susan A.; Szedlmayer, Margaret M.; Jones, Rod; Krueger, Arlin J.; Tuck, Adrian

    1988-01-01

    A joint field experiment between NASA and NOAA was conducted during August to September 1987 to obtain in situ and remote measurements of key gases and aerosols from aircraft platforms during the formation of the ozone (O3) hole over Antarctica. The ER-2 (advanced U-2) and DC-8 aircraft from the NASA Ames Research Center were used in this field experiment. The NASA Langley Research Center's airborne differential absorption lidar (DIAL) system was operated from the DC-8 to obtain profiles of O3 and polar stratospheric clouds in the lower stratosphere during long-range flights over Antarctica from August 28 to September 29, 1987. The airborne DIAL system was configured to transmit simultaneously four laser wavelengths (301, 311, 622, and 1064 nm) above the DC-8 for DIAL measurements of O3 profiles between 11 to 20 km ASL (geometric altitude above sea level) and multiple wavelength aerosol backscatter measurements between 11 to 24 km ASL. A total of 13 DC-8 flights were made over Antarctica with 2 flights reaching the South Pole. Polar stratospheric clouds (PSC's) were detected in multiple thin layers in the 11 to 21 km ASL altitude range with each layer having a typical thickness of less than 1 km. Two types of PSC's were found based on aerosol backscattering ratios: predominantly water ice clouds (type 2) and clouds with scattering characteristics consistent with binary solid nitric acid/water clouds (type 1). Large-scale cross sections of O3 distributions were obtained. The data provides additional information about a potentially important transport mechanism that may influence the O3 budget inside the vortex. There is also some evidence that strong low pressure systems in the troposphere are associated with regions of lower stratospheric O3. This paper discusses the spatial and temporal variations of O3 inside and outside the polar vortex region during the development of the O3 hole and relates these data to other measurements obtained during this field experiment.

  12. Polar stratospheric clouds and ozone depletion

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  13. How do Polar Stratospheric Clouds Form?

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Gandrud, Bruce; Baumgardner, Darrel; Herman, Robert; Gore, Warren J. (Technical Monitor)

    2000-01-01

    SOLVE measurements have been compared with results from a microphysical model to understand the composition and formation of the polar stratospheric clouds (PSCs) observed during SOLVE. Evidence that the majority of the particles remain liquid throughout the winter will be presented. However, a small fraction of the particles do freeze, and the presence of these frozen particles can not be explained by current theories, in which the only freezing mechanism is homogeneous freezing to ice below the ice frost point. Alternative formation mechanisms, in particular homogeneous freezing above the ice frost point and heterogeneous freezing, have been explored using the microphysical model. Both nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) have been considered as possible compositions for the solid-phase nitric acid aerosols. Comparisons between the model results and the SOLVE measurements will be used to constrain the possible formation mechanisms. Other effects of these frozen particles will also be discussed, in particular denitrification.

  14. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability

  15. Cloud Formation

    NASA Astrophysics Data System (ADS)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  16. Proceedings of a Workshop on Polar Stratospheric Clouds: Their Role in Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Hamill, P. (Editor); Mcmaster, L. R. (Editor)

    1984-01-01

    The potential role of polar stratospheric clouds in atmospheric processes was assessed. The observations of polar stratospheric clouds with the Nimbus 7 SAM II satellite experiment were reviewed and a preliminary analysis of their formation, impact on other remote sensing experiments, and potential impact on climate were presented. The potential effect of polar stratospheric clouds on climate, radiation balance, atmospheric dynamics, stratospheric chemistry and water vapor budget, and cloud microphysics was assessed. Conclusions and recommendations, a synopsis of materials and complementary material to support those conclusions and recommendations are presented.

  17. Polar stratospheric clouds inferred from satellite data

    NASA Astrophysics Data System (ADS)

    Austin, J.; Jones, R. L.; Remsberg, E. E.; Tuck, A. F.

    1986-11-01

    Anomalously high radiances from the ozone channel of the Limb Infrared Monitor of the Stratosphere (LIMS) sounding instrument have been observed in the Northern Hemisphere winter lower stratosphere. Such events, thought to be due to polar stratospheric clouds (PSCs), are examined further by computing relative humidities using Stratospheric Sounding Unit temperatures and water vapor measurements from the LIMS Map Archive Tape analyses. Regions identified as PSCs are found to correspond closely to regions of high humidity. While instances of saturation were found, the average humidity at the centers of 39 PSCs was calculated to be 58 percent. Possible reasons for this apparent discrepancy are discussed. Applying a similar approach to the Southern Hemisphere, in 1979, virtually no PSCs are found in the vortex after September 10 at 20 km. This result has important implications for a number of proposed explanations for the Antarctic ozone hole.

  18. Optical studies of polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Enell, Carl-Fredrik; Gustavsson, Bjorn; Steen, Ake; Brandstrom, Urban; Rydesater, Peter; Johansson, P.; Wagner, T.; Friess, U.; Pfeilsticker, K.; Platt, Ulrich

    1999-12-01

    Polar Stratospheric Clouds (PSC) appear in the polar zones of the Earth in the winter. These clouds are known to cause enhanced chemical ozone destruction. Methods for optical remote-sensing of PSC in use or under development at the Swedish Institute of Space Physics are discussed with respect to their advantages and limitations. Especially multistatic imaging may become a valuable additional tool for PSC studies.

  19. Observational Evidence Against Mountain-Wave Generation of Ice Nuclei as a Prerequisite for the Formation of Three Solid Nitric Acid Polar Stratospheric Clouds Observed in the Arctic in Early December 1999

    NASA Technical Reports Server (NTRS)

    Pagan, Kathy L.; Tabazadeh, Azadeh; Drdla, Katja; Hervig, Mark E.; Eckermann, Stephen D.; Browell, Edward V.; Legg, Marion J.; Foschi, Patricia G.

    2004-01-01

    A number of recently published papers suggest that mountain-wave activity in the stratosphere, producing ice particles when temperatures drop below the ice frost point, may be the primary source of large NAT particles. In this paper we use measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by stratospheric mountain-wave activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid nitric acid (Type Ia or NAT) polar stratospheric clouds (PSCs). By using back trajectories and superimposing the position maps on the AVHRR cloud imagery products, we show that these observed NAT clouds could not have originated at locations of high-amplitude mountain-wave activity. We also show that mountain-wave PSC climatology data and Mountain Wave Forecast Model 2.0 (MWFM-2) raw hemispheric ray and grid box averaged hemispheric wave temperature amplitude hindcast data from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain waves cannot explain how at least three large scale NAT clouds were formed in the stratosphere in early December 1999.

  20. Composition of Polar Stratospheric Clouds from Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tolbert, M. A.; Anthony, S. E.; Disselkamp, R.; Toon, O. B.; Condon, Estelle P. (Technical Monitor)

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO3/H2O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H2SO4/HNO3/H2O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO3/H2O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric clouds formation.

  1. Polar stratospheric clouds inferred from satellite data

    NASA Astrophysics Data System (ADS)

    1986-11-01

    Anomalously high radiances from the ozone channel of the Limb Infra-red Monitor of the Statosphere (LIMS) sounding instrument have been observed in the Northern Hemisphere winter lower stratosphere. Such events, thought to be due to polar stratospheric clouds (PSCs) are examined further by computing relative humidities using Stratospheric Sounding Unit (SSU) temperatures and water vapor measurements from the LIMS Map Archive Tape (MAT) analyses. Regions identified as PSCs are found to correspond closely to regions of high humidity. While instances of saturation were found, the average humidity at the centers of 39 PSCs was calculated to be 58%. Possible reasons for this apparent discrepancy are discussed. Applying a similar approach to the Southern Hemisphere, in 1979, virtually no PSCs are found in the vortex after 10 September at 20 km. This result has important implications for a number of proposed explanations for the Antarctic ozone hole.

  2. Influence of Mountain Waves and NAT Nucleation Mechanisms on Polar Stratospheric Cloud Formation at Local and Synoptic Scales during the 1999-2000 Arctic Winter

    DTIC Science & Technology

    2005-03-07

    B., Dörnbrack, A., Leut - becher, M., Volkert, H., Renger, W., Bacmeister, J., and Peter, T.: Particle microphysics and chemistry in remotely...observed moun- tain polar stratospheric clouds, J. Geophys. Res., 103, 5785– 5796, 1998a. Carslaw, K. S., Wirth, M., Tsias, A., Luo, B., Dörnbrack, A., Leut

  3. Monitoring of the Polar Stratospheric Clouds formation and evolution in Antarctica in August 2007 during IPY with the MATCH method applied to lidar data

    NASA Astrophysics Data System (ADS)

    Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels

    2010-05-01

    The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving

  4. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  5. Optical backscatter characteristics of Arctic polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Schaffner, S. K.; Poole, L. R.; Mccormick, M. P.; Hunt, W. H.

    1990-01-01

    Airborne lidar measurements have been made of polar stratospheric clouds (PSCs) during the Airborne Arctic Stratospheric Expedition in January-February 1989. These show the existence of a systematic relationship between the backscatter depolarization ratio and the (aerosol + molecular)/molecular backscatter ratio. The data are consistent with a two population PSC particle model.

  6. Polar stratospheric cloud sightings by SAM II. [Stratospheric Aerosol Measurement onboard Nimbus 7

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Steele, H. M.; Hamill, P.; Swissler, T. J.

    1982-01-01

    The functions and data gained regarding stratospheric cloud sightings by the stratospheric aerosol measurement (SAM) II experiment on board the Numbus 7 spacecraft are reported. SAM II comprises a single channel sun photometer centered at 1.0 micron wavelength for measuring the solar intensity when the sun descends below an apparent 300 km altitude until the sun is occulted by clouds or the horizon. Readings are also made during sunrise in an opposite fashion. Transmission profiles are developed from the data and used to construct profiles of aerosol extinction with a 1 km resolution. Polar stratospheric clouds have been observed in more than 90% of the cases when the minimum temperature is 185 K or less, and 45% of the time when the temperature is 193 K or less. The clouds were more prevalent in the Antarctic winter than during the Arctic winter, and cloud height was lower than indicated by previous data.

  7. Spectroscopic Evidence Against Nitric Acid Trihydrate in Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Tolbert, Margaret A.

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSC's) play a key role in the photochemical mechanism thought to be responsible for ozone depletion in the Antarctic and Arctic. Reactions of PSC particles activate chlorine to forms that are capable of photochemical ozone destruction, and sequester nitrogen oxides (NOx) that would otherwise deactivate the chlorine. Although the heterogeneous chemistry is now well established, the composition of the clouds themselves is uncertain. It is commonly thought that they are composed of nitric acid trihydrate, although observations have left this question unresolved. Here we reanalyse infrared spectra of type 1 PSCs obtained in Antarctica in September 1987, using recently measured optical constants of the various compounds that might be present in PSCs. We find these PSCs were not composed of nitric acid trihydrate but instead had a more complex compositon, perhaps that of a ternary solution. Because cloud formation is sensitive to their composition, this finding will alter our understanding of the locations and conditions in which PSCs form. In addition, the extent of ozone loss depends on the ability of the PSCs to remove NOx permanently through sedimentation, The sedimentation rates depend on PSC particle size which in turn is controlled by the composition and formation mechanism.

  8. Spectroscopic Evidence Against Nitric Acid Trihydrate in Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Tolbert, Margaret A.

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSC's) play a key role in the photochemical mechanisms thought to be responsible for ozone depletion in the Antarctic and the Arctic. Reactions on PSC particles activate chlorine to forms that are capable of photochemical ozone destruction, and sequester nitrogen oxides (NOx) that would otherwise deactivate the chlorine. Although the heterogeneous chemistry is now well established, the composition of the clouds themselves is uncertain. It is commonly thought that they are composed of nitric acid trihydrate, although observations have left this question unresolved. Here we reanalyse infrared spectra of type I PCS's obtained in Antarctica in September 1987, using recently measured optical constraints of the various compounds that might be present in PSC's. We find that these PSC's were not composed of nitric acid trihydrate but instead had a more complex composition perhaps that of a ternary solution. Because cloud formation is sensitive to their composition, this finding will alter our understanding of the locations and conditions in which PSCs form. In addition, the extent of ozone loss depends on the ability of the PSC's to remove NOx permanently through sedimentation. The sedimentation rates depend on PSC particle size which in turn is controlled by the composition and formation mechanism.

  9. Quasi-Liquid Layer Formation on Ice under Stratospheric Conditions

    NASA Technical Reports Server (NTRS)

    McNeill, V. Faye; Loerting, Thomas; Trout, Bernhardt L.; Molina, Luisa T.; Molina, Mario J.

    2004-01-01

    Characterization of the interaction of hydrogen chloride (HCl) with ice is essential to understanding at a molecular level the processes responsible for ozone depletion involving polar stratospheric cloud (PSC) particles. To explain the catalytic role PSC particle surfaces play during chlorine activation, we proposed previously that HCl induces the formation of a disordered region on the ice surface, a quasi-liquid layer (QLL), at stratospheric conditions. The QLL is known to exist in pure ice crystals at temperatures near the melting point, but its existence at stratospheric temperatures (-85 C to -70 C) had not been reported yet. We studied the interaction of HCl with ice under stratospheric conditions using the complementary approach of a) ellipsometry to directly monitor the ice surface, using chemical ionization mass spectrometry (CIMS) to monitor the gas phase species present in the ellipsometry experiments, and b) flow-tube experiments with CIMS detection. Here we show that trace amounts of HCl induce QLL formation at stratospheric temperatures, and that the QLL enhances the chlorine-activation reaction of HCl with chlorine nitrate (ClONO2), and also enhances acetic acid (CH3COOH) adsorption.

  10. Effects of a polar stratosphere cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.; Jackman, Charles H.

    1994-01-01

    A parameterization of Type 1 and 2 polar stratospheric cloud (PSC) formation is presented which is appropriate for use in two-dimensional (2-D) photochemical models of the stratosphere. The calculations of PSC frequency of occurrence and surface area density uses climatological temperature probability distributions obtained from National Meteorological Center data to avoid using zonal mean temperatures, which are not good predictors of PSC behavior. The parameterization does not attempt to model the microphysics of PSCs. The parameterization predicts changes in PSC formation and heterogeneous processing due to perturbations of stratospheric trace constituents. It is therefore useful in assessing the potential effects of a fleet of stratospheric aircraft (high speed civil transports, or HSCTs) on stratospheric composition. the model calculated frequency of PSC occurrence agrees well with a climatology based on stratospheric aerosol measurement (SAM) 2 observations. PSCs are predicted to occur in the tropics. Their vertical range is narrow, however, and their impact on model O3 fields is small. When PSC and sulfate aerosol heterogeneous processes are included in the model calculations, the O3 change for 1980 - 1990 is in substantially better agreement with the total ozone mapping spectrometer (TOMS)-derived O3 trend than otherwise. The overall changes in model O3 response to standard HSCT perturbation scenarios produced by the parameterization are small and tend to decrease the model sensitivity to the HSCT perturbation. However, in the southern hemisphere spring a significant increase in O3 sensitivity to HSCT perturbations is found. At this location and time, increased PSC formation leads to increased levels of active chlorine, which produce the O3 decreases.

  11. Tropical stratospheric gravity wave activity and relationships to clouds

    NASA Astrophysics Data System (ADS)

    Alexander, M. Joan; Beres, Jadwiga H.; Pfister, Leonhard

    2000-09-01

    Wind measurements from NASA's ER-2 aircraft in the stratosphere are used to obtain information on the momentum flux carried by gravity waves with horizontal wavelengths between 5 and 150 km. Tropical data are compared with the cloud brightness temperature below the aircraft as an indicator of deep convective activity. A striking correlation between cold, high clouds and large gravity wave momentum flux is seen in data from the Stratosphere-Troposphere Exchange Project (STEP) tropical campaign during the monsoon season over northern Australia and Indonesia. There is an enhancement in the flux carried by waves propagating against the background wind in these observations. The same analysis was performed with data from more recent ER-2 flights over the tropical Pacific Ocean during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA), Stratospheric Tracers of Atmospheric Transport (STRAT), and Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) campaigns which took place in 1994, 1995-1996, and 1997, respectively. These data also show a correlation between gravity wave momentum flux and deep convective clouds, but the relationship is much weaker, and the magnitudes of the momentum flux over the deepest clouds are about 7 times smaller than those seen in the STEP data. The reasons for these differences remain uncertain, but possibilities include both real geophysical differences and differences associated with the flight paths during the 1987 versus later campaigns.

  12. The Discovery of Polar Stratospheric Clouds by SAM II

    NASA Astrophysics Data System (ADS)

    Poole, L. R.; McCormick, M. P.

    2005-12-01

    Until the advent of spaceborne observations, clouds were thought to occur very rarely in the extremely dry stratosphere. This view changed dramatically following the launch of the Stratospheric Aerosol Measurement (SAM) II instrument on the Nimbus 7 spacecraft in October 1978. SAM II was a single channel solar photometer designed to measure stratospheric aerosol extinction profiles at a wavelength of 1.0 micron at latitudes from 64-80 degrees in both hemispheres. An analysis of SAM II data from the Arctic for January 1979 revealed a number of profiles in which the extinction was 1-2 orders of magnitude larger than expected. Careful study showed that these large extinction values were not artifacts, but were indeed due to dramatic reductions in the amount of solar radiance reaching the instrument. Further analyses showed that these so-called polar stratospheric clouds (PSCs) were observed only when the local stratospheric temperature was very low (185-200 K). The interest in PSCs was primarily academic until the discovery of the Antarctic ozone hole in 1985, which was quickly followed by studies associating this ozone depletion with the release of active chlorine through heterogeneous chemical reactions catalyzed by PSC particles. A large body of research over the ensuing two decades has firmly established this link. In this paper, we will recount the serendipitous discovery of PSCs in SAM II data more than 25 years ago and highlight other advances in our understanding of PSCs that have stemmed from spaceborne observations.

  13. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Weigel, Ralf; Kandler, Konrad; Günther, Gebhard; Molleker, Sergej; Grooß, Jens-Uwe; Vogel, Bärbel; Weinbruch, Stephan; Borrmann, Stephan

    2016-07-01

    Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate / carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ˜ 5 µm) taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  14. Observations of Antarctic Polar Stratospheric Clouds by Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Fromm, Michael; Spinhirne, James

    2005-01-01

    Polar Stratospheric Clouds (PSCs) frequently occur in the polar regions during winter and are important because they play a role in the destruction of stratospheric ozone. During late September and early October 2003, GLAS frequently observed PSCs over western Antarctica. At the peak of this activity on September 29 and 30 we investigate the vertical structure and extent, horizontal coverage and backscatter characteristics of the PSCs using the GLAS data. The PSCs were found to cover an area approximately 10 to 15 % of the size of Antarctica in a region where enhanced PSC frequency has been noted by previous PSC climatology studies. The area of PSC formation was found to coincide with the coldest temperatures in the lower stratosphere. In addition, extensive cloudiness was seen within the troposphere below the PSCs indicating that tropospheric disturbances might have played a role in their formation.

  15. Mixed-phased particles in polar stratospheric ice clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, Anatoli; Molina, Mario J.; Loerting, Thomas

    2010-05-01

    Keywords: polar stratospheric clouds (PSCs), ozone depletion, differential scanning calorimeter. The rate of chlorine activation reactions, which lead to ozone depletion in the winter/spring polar stratosphere (Molina, 1994), depends on the phase state of the surface of polar stratospheric cloud (PSC) ice crystals (McNeil et al., 2006). PSCs are thought to consist of solid ice and NAT (nitric acid trihydrate, HNO3× 3H2O) particles and supercooled HNO3/H2SO4/H2O droplets. The corresponding PSCs are called Type II, Ia, and Ib PSCs, respectively (Zondlo et al., 1998). Type II PSCs are formed in the Antarctic region below the ice frost point of 189 K by homogeneous freezing of HNO3/H2SO4/H2O droplets (Chang et al., 1999) with the excess of HNO3. The PSC ice crystals are thought to be solid. However, the fate of H+, NO3-, SO42- ions during freezing was not investigated. Our differential scanning calorimetry (DSC) studies of freezing emulsified HNO3/H2SO4/H2O droplets of sizes and compositions representative of the polar stratosphere demonstrate that during the freezing of the droplets, H+, NO3-, SO42- are expelled from the ice lattice. The expelled ions form a residual solution around the formed ice crystals. The residual solution does not freeze but transforms to glassy state at ~150 K (Bogdan et al., 2010). By contrast to glass-formation in these nitric-acid rich ternary mixtures the residual solution freezes in the case of sulphuric-acid rich ternary mixtures (Bogdan and Molina, 2009). For example, we can consider the phase separation into ice and a residual solution during the freezing of 23/3 wt% HNO3/H2SO4/H2O droplets. On cooling, ice is formed at ~189 K. This is inferred from the fact that the corresponding melting peak at ~248 K exactly matches the melting point of ice in the phase diagram of HNO3/H2SO4/H2O containing 3 wt % H2SO4. After the ice has formed, the glass transition occurs at Tg ≈ 150 K. The appearance of the glass transition indicates that the

  16. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  17. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  18. Researchers Focus on Fire Clouds That Reach to the Stratosphere

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-08-01

    Volcanic eruptions are not the only violent events that can inject smoke-colored and cauliflower-textured clouds into the stratosphere. Pyrocumulonimbus (pyroCB) storms can, too. These recently discovered phenomena are storms caused or aided by fire; they have many characteristics similar to thunderstorms, including lightning, hail, and extreme vertical height through the troposphere and into the lower stratosphere. Common wisdom had held that “the only event that can explosively pollute the stratosphere is a volcanic eruption,” Michael Fromm, a meteorologist with the Naval Research Laboratory in Washington, D. C., said at a 9 August press briefing at the 2010 Meeting of the Americas in Foz do Iguaçu, Brazil. “Now we know that pyroCBs can do a version of this, thanks to the heat from fire.”

  19. The polar stratospheric cloud event of January 24. II - Photochemistry

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. S.; Solomon, S.; Poole, L. R.; Brune, W. H.

    1990-01-01

    During the 1988/89 Airborne Arctic Stratospheric Expedition (AASE), observations of the chemical composition, aerosol characteristics and atmospheric state were obtained from two aircraft, a NASA ER-2 and a DC-8. This paper presents a diagnosis of observations obtained using the ER-2 on January 24, 1989, using a Lagrangian coupled microphysical-photochemical model. The high chlorine monoxide mixing ratios observed from the ER-2 on the afternoon of January 24, 1989 are interpreted as a result of in situ heterogeneous release of reactive chlorine from the reservoirs HCl and CIONO2 on type-1 polar stratospheric cloud particles observed to be present at that time. This essential element in theories of polar ozone depletion has never before been observed directly in the stratosphere.

  20. Airborne lidar observations in the wintertime Arctic stratosphere - Polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Carter, A. F.; Higdon, N. S.; Butler, C. F.; Robinette, P. A.; Toon, O. B.; Schoeberl, M. R.

    1990-01-01

    Polar stratospheric cloud (PSC) distributions in the wintertime Arctic stratosphere and their optical characteristics were measured with a multiwavelength airborne lidar system as part of the 1989 Airborne Arctic Stratospheric Expedition. PSCs were observed on 10 flights between January 6 and February 2, 1989, into the polar vortex. The PSCs were found in the 14-27 km altitude range in regions where the temperatures were less than 195 K. Two types of aerosols with different optical characteristics (Types 1a and 1b) were observed in PSCs thought to be composed of nitric acid trihydrate. Water ice PSCs (Type 2) were observed to have high scattering ratios (greater than 10) and high aerosol depolarizations (greater than 10 percent) at temperatures less than 190 K.

  1. Reactions on sulphuric acid aerosol and on polar stratospheric clouds in the Antarctic stratosphere

    SciTech Connect

    Wolff, E.W.; Mulvaney, R.

    1991-06-01

    Heterogeneous chemistry producing active chlorine has been identified as crucial to Antarctic ozone depletion. Most attention has focused on reactions on solid polar stratospheric cloud (PSC) particles, although there is still no satisfactory understanding of the microchemical incorporation of HCl in PSCs. The alternative mechanism involving sulphuric acid aerosol as the reaction surface has been considered at lower latitudes, but its role in the special conditions of the polar stratosphere has been largely ignored. Recent data from the Antarctic stratosphere have suggested the HCl is present in sulphuric acid aerosol that remains liquid even at the lowest stratospheric temperatures. The available laboratory data show that cold, relatively dilute, sulphuric acid is particularly able to take up HCl that is available for reaction provided the aerosol remains liquid. Fast heterogeneous reaction rates compared to those at mid-latitudes will produce active chlorine rapidly. Since the aerosol is present with significant surface area throughout the lower stratosphere, it should be very effective for heterogeneous reaction once temperatures drop. These surfaces, rather than PSCs, could host the initial conversion of Cl to its active form over the Antarctic.

  2. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  3. Cirrus and Polar Stratospheric Cloud Studies using CLAES Data

    NASA Technical Reports Server (NTRS)

    Mergenthaler, John L.; Douglass, A. (Technical Monitor)

    2001-01-01

    We've concluded a 3 year (Period of Performance- January 21, 1998 to February 28, 2001) study of cirrus and polar stratospheric clouds using CLAES (Cryogenic Limb Array Etalon Spectrometer) data. We have described the progress of this study in monthly reports, UARS (Upper Atmosphere Research Satellite) science team meetings, American Geophysical Society Meetings, refereed publications and collaborative publications. Work undertaken includes the establishment of CLAES cloud detection criteria, the refinement of CLAES temperature retrieval techniques, compare the findings of CLAES with those of other instruments, and present findings to the larger community. This report describes the progress made in these areas.

  4. Dehydration of the Upper Troposphere and Lower Stratosphere by Subvisible Cirrus Clouds Near the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Pfister, Leonhard; Selkirk, Henry B.

    1996-01-01

    The extreme dryness of the lower stratosphere is believed to be caused by freeze-drying of air as it enters the stratosphere through the cold tropical tropopause. Previous investigations have been focused on dehydration occurring at the tops of deep convective cloud systems, However, recent observations of a ubiquitous stratiform cirrus cloud layer near the tropical tropopause suggest the possibility of dehydration as air is slowly lifted by large-scale motions, In this study, we have evaluated this possibility using a detailed ice cloud model. Simulations of ice cloud formation in the temperature minima of gravity waves (wave periods of 1 - 2 hours) indicate that large numbers of ice crystals will likely form due to the low temperatures and rapid cooling. As a result, the crystals do not grow larger than about 10 microns, fallspeeds are no greater than a few cm/s, and little or no precipitation or dehydration occurs. However, ice cloud's formed by large-scale vertical motions (with lifetimes of a day or more) should have,fever crystals and more time for crystal sedimentation to occur, resulting in water vapor depletions as large as 1 ppmv near the tropopause. We suggest that gradual lifting near the tropical tropopause, accompanied by formation of thin cirrus, may account for the dehydration.

  5. Arctic stratospheric sulphur injections: radiative forcings and cloud responses

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Gasparini, B.; Miriam, K.; Kravitz, B.; Rasch, P. J.

    2014-12-01

    Observations and climate projections show a high sensitivity of the Arctic climate to the increase in greenhouse gas emissions, known as the polar amplification. This study evaluates the options of counteracting the rising polar temperatures by stratospheric sulphur injections in the Northern Hemisphere high latitudes.10 Mt of sulphur dioxide are emitted in a point emission source setup centred at the 100 hPa pressure level over Svalbard island (80°N,15°E). We perform simulations with the general circulation models ECHAM5, ECHAM6, and GISS ModelE. We study pulsed emission simulations that differ among themselves by the injection starting date (March-September), injection length (1, 30, or 90 day emission period), and the vertical resolution of the model (for ECHAM6). We find injections in April to be the most efficient in terms of the shortwave radiative forcing at the top-of-the atmosphere over the Arctic region. The distribution of sulphate aerosol spreads out beyond the injection region, with a significant share reaching the Southern Hemisphere. Results from ModelE show high latitude injections could counteract the spring and summer temperature increase due to higher atmospheric CO2 concentrations. Preliminary results with a more realistic description of clouds in ECHAM-HAM reveal a complex pattern of responses, most notably: a decrease in Northern Hemisphere cirrus clouds strengthening the effect of stratospheric aerosols in ECHAM5 a decrease in low-level clouds over the Arctic increasing the incoming solar radiation and causing a net positive radiative balance cirrus clouds are resilient to stratospheric sulphur injections in the absence of sulphate warming

  6. Evolution of polar stratospheric clouds during the Antarctic winter

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V.

    1988-01-01

    The occurrence of Polar Stratospheric Clouds (PSCs), initially inferred from satellite measurements of solar extinction, have now also been noted by the recent scientific expeditions in the Antarctic. The presence of such clouds in the Antarctic has been postulated to play a significant role in the depletion of ozone during the transition from winter to spring. The mechanisms suggested involve both dynamical and chemical processes which, explicity or implicitly, are associated with the ice particles constituting the PSCs. It is, thus, both timely and necessary to investigate the evolution of these clouds and ascertain the nature and magnitude of their influences on the state of the Antarctic stratosphere. To achieve these objectives, a detailed microphysical model of the processes governing the growth and sublimation of ice particles in the polar stratosphere was developed, based on the investigations of Ramaswamy and Detwiler. The present studies focus on the physical processes that occur at temperatures below those required for the onset of ice deposition from the vapor phase. Once these low temperatures are attained, the deposition of water vapor onto nucleation particles becomes extremely significant. First, the factors governing the magnitude of growth and the growth rate of ice particles at various altitudes are examined. Second, the ice phase mechanisms are examined in the context of a column model with altitudes ranging from 100 to 5 mb pressure levels. The column microphysical model was used to perform simulations of the cloud evolution, using the observed daily temperatures. The effect due to the growth of the particles on the radiation fields are also investigated using a one dimensional radiative transfer model. Specifically, the perturbations in the longwave cooling and that in the shortwave heating for the late winter/early spring time period are analyzed.

  7. Stratosphere aerosol and cloud measurements at McMurdo Station Antarctica during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Harder, J. W.

    1988-01-01

    Measurements of stratospheric aerosols with balloonborne optical particle counters on 6 occasions at McMurdo Station (78 deg S) in the spring of 1986 indicated subsidence of the stratospheric sulfate layer during the time that the ozone hole was forming (Hofmann et al., 1988). Since dynamic models of ozone depletion involving upwelling in the spring polar vortex would suggest the opposite, we repeated the measurements with an increased frequency (about one sounding per week) in 1987. During 3 of the aerosol soundings in 1986, temperatures in the 15 to 20 km range were low enough (less than 80 C) for HNO3 to co-condense with water according to several theories of polar stratospheric cloud formation. However, particles were not observed with the characteristic size suggested by theory (approx. 0.5 microns). For this reason, it was proposed that polar stratospheric clouds may predominantly consist of large (approx. 5 to 50 microns) ice crystals at very low (approx. 10 sup 4- 10 sup 3 cm cubed) concentrations (Rosen et al., 1988). The particle counter employed would be relatively insensitive to these low concentrations. With the increased frequency of soundings in 1987, and adding additional size discrimination in the 1 to 2 micron region, this hypothesis could be verified if suitably low temperatures were encountered.

  8. Arctic polar stratospheric cloud observations by airborne lidar

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Poole, L. R.; Kent, G. S.; Hunt, W. H.; Osborn, M. T.

    1990-01-01

    Lidar observations obtained from January 24 to February 2, 1989, during the Airborne Arctic Stratospheric expedition (AASE) mission further support the existence of two distinct classes (Types 1 and 2) of polar stratospheric clouds (PSCs). Most of the Type 1 PSCs observed were formed by rapid adiabatic cooling and exhibited very low depolarization ratios and low-to-intermediate scattering ratios. Type 2 PSCs were observed in regions of lowest temperature and showed much larger depolarization and scattering ratios, as would be expected from larger ice crystals. PSCs with low scattering ratios but moderate depolarization ratios were observed near the center of the vortex on one flight. These may have been either sparse Type 2 PSCs or Type 1 PSCs formed by less rapid cooling.

  9. Satellite Observations of Arctic and Antarctic Polar Stratospheric Clouds and Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Lambert, A.; Santee, M. L.; Wu, D. L.

    2012-12-01

    We present an overview of polar stratospheric clouds (PSCs) and atmospheric composition during the 2008-2012 Arctic and Antarctic seasons using A-Train measurements of lidar backscatter and gas phase concentrations of HNO3, H2O, HCl and ClO. The processes of denitrification, dehydration and chlorine activation are investigated. PSC types are classified using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite which measures vertical profiles of aerosol and cloud backscatter at 532 nm (total and perpendicular polarization) and 1064 nm. Ambient temperature/pressure profiles and constituent gases are obtained from the Aura Microwave Limb Sounder (MLS). Since April 2008 these two instruments have flown in close formation in the A-Train, maintaining colocation across track to less than 10 km and with temporal sampling differences less than 30 seconds.

  10. Seasonal and Interannual Variability of Polar Stratospheric Cloud Optical Depth

    NASA Astrophysics Data System (ADS)

    Pitts, M. C.; Poole, L. R.; Thomason, L. W.; Damadeo, R. P.

    2013-12-01

    In addition to their important role in ozone depletion, polar stratospheric clouds (PSCs) may also impact stratospheric radiation and dynamics. Earlier studies indicated that PSCs could significantly affect radiative heating rates, but the magnitude and even the sign of the effect varied greatly from study to study, depending on many factors, e.g. PSC optical depth and underlying tropospheric cloud cover. A more recent study, which assumed nominal PSC conditions of 100% cloud fraction and visible optical depth of 0.01 for non-ice PSCs and 0.04 for ice PSCs, suggested that PSCs could produce significant perturbations to the radiative heating rates in the Antarctic stratosphere. A comprehensive evaluation of the radiative effects of PSCs requires more accurate knowledge of PSC characteristics over the entire polar region and throughout complete seasons. With the advent of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission in 2006, a more complete picture of PSC composition and occurrence is now emerging. The polarization-sensitive CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) lidar system onboard the CALIPSO spacecraft is acquiring, on average, over 300,000 backscatter profiles per day at latitudes poleward of 55° (including the polar night region up to 82°), providing a unique opportunity to examine the distribution of PSC optical depth on vortex-wide scales and over entire PSC seasons. In this paper, we describe an approach to calculate PSC optical depth from the CALIOP 532-nm attenuated backscatter measurements. We retrieve the PSC extinction profile downward from cloud top using a composition-dependent extinction-to-backscatter ratio and then integrate the extinction profile to derive PSC optical depth. We then examine this multi-year PSC optical depth record to determine the spatial and seasonal variability for the Arctic and Antarctic, respectively. Multi-year composites provide insight to the interannual

  11. Freezing temperatures of H2SO4/HNO3/H2O mixtures: Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Song, Naihui

    1994-01-01

    The freezing temperatures of H2SO4/HNO3/H2O mixtures were systematically documented. Nitric acid was found to affect freezing significantly. Measurements show that nitric acid can cause substantial supercooling over a broad composition range. However, some ternary compositions, like to those in polar stratospheric clouds (PSCs), have high freezing temperatures. The freezing of PSC particles could be controlled by the temperature and vapor pressure of both nitric acid and water in a non-linear way. Formation of polar stratospheric clouds may be forecasted on the basic of conditions of temperature and vapor contents of water and nitric acid.

  12. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.

  13. First temperature measurements within Polar Stratospheric Clouds with the Esrange lidar

    NASA Astrophysics Data System (ADS)

    Achtert, Peggy; Khaplanov, Mikhail; Khosrawi, Farahnaz; Gumbel, Jörg

    2013-04-01

    In the winter stratosphere polar stratospheric clouds (PSCs) provide the surface for heterogeneous reactions which transform stable chlorine and bromine species into their highly reactive ozone-destroying states. PSCs are classified into three types (PSC Ia: nitric acid di- or trihydrate crystals, NAD or NAT; PSC Ib: supercooled liquid ternary solutions, STS; PSC II: ice) according to their particle composition and to their physical phase. The formation of PSCs depends strongly on temperature. For a comprehensive understanding of such temperature-dependent processes in the lower stratosphere, lidar measurements using the rotational-Raman technique are most suitable. The rotational-Raman technique allows for temperature measurements without a priori assumptions of the state of the atmosphere. The technique is feasible in aerosol layers and clouds, such as PSCs. A rotational-Raman channel for temperature measurements in the upper troposphere and lower stratosphere was added to the Esrange lidar in late 2010. The Esrange lidar operates at Esrange (68°N, 21°E) near the Swedish city of Kiruna. By combining rotational-Raman measurements (4-35 km height) and the integration technique (30-80 km height), the Esrange lidar is now capable of measuring atmospheric temperature profiles from the upper troposphere up to the mesosphere. Such measurements could be used to validate current lidar-based PSC classification schemes and the current understanding of PSC formation. The new capability of the instrument furthermore enables the studies of other clouds layers, temperature variations and exchange processes in the upper troposphere/lower stratosphere. These studies will take advantage of the geographical location of Esrange where mountain wave activity in the lee of the Scandinavian mountain range gives rise to a wide range of PSC growth conditions. Although several lidars are operated at polar latitudes, there are few instruments that are capable of measuring temperature

  14. Clouds, hazes, and the stratospheric methane abundance in Neptune

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Hammel, Heidi B.

    1994-01-01

    Analysis of high-spatial-resolution (approximately 0.8 arcsec) methane band and continuum imagery of Neptune's relatively homogeneous Equatorial Region yields significant constraints on (1) the stratospheric gaseous methane mixing ratio (f(sub CH4, S)), (2) the column abundances and optical properties of stratospheric and tropospheric hydrocarbon hazes, and (3) the wavelength-dependent single-scattering albedo of the 3-bar opaque cloud. From the center-to-limb behavior of the 7270-A and 8900-A CH4 bands, the stratospheric methane mixing ratios is limited to f(sub CH4, S) less than 1.7 x 10(exp -3), with a nominal value of f(sub CH4, S) = 3.5 x 10(exp -4), one to two orders of magnitude less than pre-Voyager estimates, but in agreement with a number of recent ultraviolet and thermal infrared measurements, and largely in agreement with the tropopause mixing ratio implied by Voyager temperature measurements. Upper limits to the stratospheric haze mass column abundance and 6190-A and 8900-A haze opacities are 0.61 micrograms/sq cm and 0.075 and 0.042, respectively, with nominal values of 0.20 micrograms/sq cm and 0.025 and 0.014 for the 0.2 micrometers radius particles preferred by the recent Voyager PPS analysis of Pryor et al. (1992). The tropospheric CH4 haze opacities are comparable to that found in the stratosphere, i.e., upper limits of 0.104 and 0.065 at 6190 A and 8900 A, respectively, with nominal values of 0.085 and 0.058. This indicates a column abundance less than 11.0 micrograms/sq cm, corresponding to the methane gas content within a well-mixed 3% methane tropospheric layer only 0.1 cm thick near the 1.5-bar CH4 condensation level. Conservative scattering is ruled out for the opaque cloud near 3 bars marking the bottom of the visible atmosphere. Specifically, we find cloud single-scattering albedos of 0.915 +/- 0.006 at 6340 A, 0.775 +/- 0.012 at 7490 A, and 0.803 +/- 0.010 at 8260 A. Global models utilizing a complete global spectrum confirm the red

  15. On the temperature dependence of polar stratospheric clouds

    SciTech Connect

    Fiocco, G.; Cacciani, M.; Di Girolamo, P. ); Fua, D. CNR De Luisi, J. )

    1991-03-01

    Polar stratospheric clouds were frequently observed by lidar at the Amundsen-Scott South Pole Station during May-October 1988. The dependence of the backscattering cross section on the temperature can be referred to transitions of the HNO{sub 3}/H{sub 2}O system: it appears possible to distinguish the pure trihydrate from the mixed ice-trihydrate phase in the composition of the aerosol and, in some cases, to bracket the HNO{sub 3} and H{sub 2}O content of the ambient gas, and to provide indications on the size of the particles.

  16. Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world

    NASA Astrophysics Data System (ADS)

    Sloan, L. Cirbus; Pollard, D.

    The presence of water vapor clouds in the stratosphere produces warming in excess of tropospheric greenhouse warming, via radiative warming in the lower stratosphere. The stratospheric clouds form only in regions of very low temperature and so the warming produced by the clouds is concentrated in polar winter regions. Results from a paleoclimate modeling study that includes idealized, prescribed polar stratospheric clouds (PSCs) show that the clouds cause up to 20°C of warming at high latitude surfaces of the winter hemisphere, with greatest impact in oceanic regions where sea ice is reduced. The modeled temperature response suggests that PSCs may have been a significant climate forcing factor for past time intervals associated with high concentrations of atmospheric methane. The clouds and associated warming may help to explain long-standing discrepancies between model-produced paleotemperatures and geologic proxy temperature interpretations at high latitudes, a persistent problem in studies of ancient greenhouse climates.

  17. Continuous Lidar Monitoring of Polar Stratospheric Clouds at the South Pole

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D

    2009-01-01

    Polar stratospheric clouds (PSC) play a primary role in the formation of annual ozone holes over Antarctica during the austral sunrise. Meridional temperature gradients in the lower stratosphere and upper troposphere, caused by strong radiative cooling, induce a broad dynamic vortex centered near the South Pole that decouples and insulates the winter polar airmass. PSC nucleate and grow as vortex temperatures gradually fall below equilibrium saturation and frost points for ambient sulfate, nitrate, and water vapor concentrations (generally below 197 K). Cloud surfaces promote heterogeneous reactions that convert stable chlorine and bromine-based molecules into photochemically active ones. As spring nears, and the sun reappears and rises, photolysis decomposes these partitioned compounds into individual halogen atoms that react with and catalytically destroy thousands of ozone molecules before they are stochastically neutralized. Despite a generic understanding of the ozone hole paradigm, many key components of the system, such as cloud occurrence, phase, and composition; particle growth mechanisms; and denitrification of the lower stratosphere have yet to be fully resolved. Satellite-based observations have dramatically improved the ability to detect PSC and quantify seasonal polar chemical partitioning. However, coverage directly over the Antarctic plateau is limited by polar-orbiting tracks that rarely exceed 80 degrees S. In December 1999, a NASA Micropulse Lidar Network instrument (MPLNET) was first deployed to the NOAA Earth Systems Research Laboratory (ESRL) Atmospheric Research Observatory at the Amundsen-Scott South Pole Station for continuous cloud and aerosol profiling. MPLNET instruments are eye-safe, capable of full-time autonomous operation, and suitably rugged and compact to withstand long-term remote deployment. With only brief interruptions during the winters of 2001 and 2002, a nearly continuous data archive exists to the present.

  18. Particle formation by ion nucleation in the upper troposphere and lower stratosphere.

    PubMed

    Lee, S-H; Reeves, J M; Wilson, J C; Hunton, D E; Viggiano, A A; Miller, T M; Ballenthin, J O; Lait, L R

    2003-09-26

    Unexpectedly high concentrations of ultrafine particles were observed over a wide range of latitudes in the upper troposphere and lower stratosphere. Particle number concentrations and size distributions simulated by a numerical model of ion-induced nucleation, constrained by measured thermodynamic data and observed atmospheric key species, were consistent with the observations. These findings indicate that, at typical upper troposphere and lower stratosphere conditions, particles are formed by this nucleation process and grow to measurable sizes with sufficient sun exposure and low preexisting aerosol surface area. Ion-induced nucleation is thus a globally important source of aerosol particles, potentially affecting cloud formation and radiative transfer.

  19. Laboratory simulations of NAT formation approaching stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Marti, James; Mauersberger, Konrad

    1994-01-01

    Previous laboratory studies have established the stability conditions of nitric acid trihydrate (NAT), of which type 1 polar stratospheric cloud (PSC 1) particles are thought to be composed. However, NAT samples in lab studies were almost always formed under conditions very different from those of the stratosphere. In order to better understand the in situ growth of PSC 1 particle populations, samples of water and nitric acid were deposited under conditions of temperature and pressure which more closely approximate the polar stratosphere. The compositions of the solids, measured shortly after deposition, depended on the H2O:HNO3 ratio in the vapor from which the solids were condensed. Solids formed from vapor mixtures that approached stratospheric contained significantly less HNO3 than the 25 mol percent expected of NAT.

  20. Radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1992-01-01

    Results are presented of a study of the radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASE) in which daily 3D Type I nitric acid trihydrate (NAT) and Type II water ice polar stratospheric clouds (PSCs) were generated in the polar regions during AAOE and the AASE aircraft missions. Mission data on particular composition and size, together with NMC-analyzed temperatures, are used. For AAOE, both Type I and Type II clouds were formed for the time period August 23 to September 17, after which only Type I clouds formed. During AASE, while Type I clouds were formed for each day between January 3 and February 10, Type II clouds formed on only two days, January 24 and 31. Mie theory and a radiative transfer model are used to compute the radiative heating rates during the mission periods, for clear and cloudy lower sky cases. Only the Type II water ice clouds have a significant radiative effect, with the Type I NATO PSCs generating a net heating or cooling of 0.1 K/d or less.

  1. Influence of mountain waves and NAT nucleation mechanisms on Polar Stratospheric Cloud formation at local and synoptic scales during the 1999 2000 Arctic winter

    NASA Astrophysics Data System (ADS)

    Svendsen, S. H.; Larsen, N.; Knudsen, B.; Eckermann, S. D.; Browell, E. V.

    2004-08-01

    A scheme for introducing mountain wave-induced temperature pertubations in a microphysical PSC model has been developed. A data set of temperature fluctuations attributable to mountain waves as computed by the Mountain Wave Forecast Model (MWFM-2) has been used for the study. The PSC model has variable microphysics, enabling different nucleation mechanisms for nitric acid trihydrate, NAT, to be employed. In particular, the difference between the formation of NAT and ice particles in a scenario where NAT formation is not dependent on preexisting ice particles, allowing NAT to form at temperatures above the ice frost point, Tice, and a scenario, where NAT nucleation is dependent on preexisting ice particles, is examined. The performance of the microphysical model in the different microphysical scenarios and a number of temperature scenarios with and without the influence of mountain waves is tested through comparisons with lidar measurements of PSCs made from the NASA DC-8 on 23 and 25 January during the SOLVE/THESEO 2000 campaign in the 1999-2000 winter and the effect of mountain waves on local PSC production is evaluated in the different microphysical scenarios. Mountain wave-induced temperature fluctuations are introduced in vortex-covering model runs, extending the full 1999-2000 winter season, and the effect of mountain waves on large-scale PSC production is estimated in the different microphysical scenarios.

  2. Influence of mountain waves and NAT nucleation mechanisms on polar stratospheric cloud formation at local and synoptic scales during the 1999-2000 Arctic winter

    NASA Astrophysics Data System (ADS)

    Svendsen, S. H.; Larsen, N.; Knudsen, B.; Eckermann, S. D.; Browell, E. V.

    2005-03-01

    A scheme for introducing mountain wave-induced temperature pertubations in a microphysical PSC model has been developed. A data set of temperature fluctuations attributable to mountain waves as computed by the Mountain Wave Forecast Model (MWFM-2) has been used for the study. The PSC model has variable microphysics, enabling different nucleation mechanisms for nitric acid trihydrate, NAT, to be employed. In particular, the difference between the formation of NAT and ice particles in a scenario where NAT formation is not dependent on preexisting ice particles, allowing NAT to form at temperatures above the ice frost point, Tice, and a scenario, where NAT nucleation is dependent on preexisting ice particles, is examined. The performance of the microphysical model in the different microphysical scenarios and a number of temperature scenarios with and without the influence of mountain waves is tested through comparisons with lidar measurements of PSCs made from the NASA DC-8 on 23 and 25 January during the SOLVE/THESEO 2000 campaign in the 1999-2000 winter and the effect of mountain waves on local PSC production is evaluated in the different microphysical scenarios. Mountain waves are seen to have a pronounced effect on the amount of ice particles formed in the simulations. Quantitative comparisons of the amount of solids seen in the observations and the amount of solids produced in the simulations show the best correspondence when NAT formation is allowed to take place at temperatures above Tice. Mountain wave-induced temperature fluctuations are introduced in vortex-covering model runs, extending the full 1999-2000 winter season, and the effect of mountain waves on large-scale PSC production is estimated in the different microphysical scenarios. It is seen that regardless of the choice of microphysics ice particles only form as a consequence of mountain waves whereas NAT particles form readily as a consequence of the synoptic conditions alone if NAT nucleation above

  3. Cloud formation in substellar atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane

    2009-02-01

    Clouds seem like an every-day experience. But-do we know how clouds form on brown dwarfs and extra-solar planets? How do they look like? Can we see them? What are they composed of? Cloud formation is an old-fashioned but still outstanding problem for the Earth atmosphere, and it has turned into a challenge for the modelling of brown dwarf and exo-planetary atmospheres. Cloud formation imposes strong feedbacks on the atmospheric structure, not only due to the clouds own opacity, but also due to the depletion of the gas phase, possibly leaving behind a dynamic and still supersaturated atmosphere. I summarise the different approaches taken to model cloud formation in substellar atmospheres and workout their differences. Focusing on the phase-non-equilibrium approach to cloud formation, I demonstrate the inside we gain from detailed microphysical modelling on for instance the material composition and grain size distribution inside the cloud layer on a Brown Dwarf atmosphere. A comparison study on four different cloud approaches in Brown Dwarf atmosphere simulations demonstrates possible uncertainties in interpretation of observational data.

  4. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.

  5. Ultraviolet Mars Reveals Cloud Formation

    NASA Video Gallery

    Images from MAVEN's Imaging UltraViolet Spectrograph were used to make this movie of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in fal...

  6. Polar stratospheric clouds over Finland in the 2012/2013 Arctic winter measured by two Raman lidars

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Giannakaki, Eleni; Kivi, Rigel; Schrems, Otto; Immler, Franz; Komppula, Mika

    2013-04-01

    Already in December 2012, the Arctic stratospheric vortex reached temperatures sufficiently low for polar stratospheric cloud (PSC) formation over wide areas of Northern Europe and whole Finland. Within Finland, stratospheric aerosol lidar measurements have been and are performed with two Raman lidar systems, the PollyXT, owned by the Finnish Meteorological Institute (FMI) and situated well below the Arctic circle close to Kuopio (63 N, 27 E) and the MARL lidar owned by the Alfred-Wegener-Institute for Polar and Marine Research (AWI), and situated at the FMI Arctic Research Centre in Sodankylä (67 N, 26 E). The PollyXT has been designed as an autonomous tropospheric lidar system, but it has proven to be able to detect aerosol backscatter and depolarization at least as high up as 25 km. Measurements are ongoing as far as low clouds allow for stratospheric analysis with both lidars until the end of PSC season in February. For the winter 2012/2013, PSC occurrence frequency, types and characteristics will be determined. Comparative analysis with Calipso lidar profiles covering Finland will be performed. Preliminary results from December 17-24 show PSCs detected in Kuopio during seven days with the PollyXT lidar. The altitude of the clouds varied in the range of 17-25 km. In Sodankylä the measurements were running on one day during the period and PSCs were observed between altitudes 17-25 km. For the same time period (December 17-24, 2012) CALIPSO has observed stratospheric layers at all overpasses over Finland (9 tracks on five days). The clouds were observed between 18.5 and 26 km, with varying geometric and optical thickness.

  7. Modelling Liquid Particle Composition In Polar Stratospheric Clouds

    NASA Astrophysics Data System (ADS)

    Lowe, D.; MacKenzie, A. R.

    Polar Stratospheric Clouds (PSCs) are thought to be composed of solid ni- tric acid trihydrate (NAT) particles, water ice particles, or supercooled liquid HNO3/H2SO4/H2O particles under different conditions and depending on the ther- mal history of the air mass. The solid particles are believed to form by the freezing of the liquid particles, the rate of which depends on the composition and size of the liquid particles. Lagrangian-in-radius-space numerical schemes have been used be- fore to study particle composition across the PSC size spectrum, in simple box model runs and in domain-filling Lagrangian studies. However these models were not de- signed to be compatible with global chemistry and transport models (CTMs), which currently model PSCs by assuming equilibrium with the atmosphere.We report here on an adaptation of a continuous (Eulerian-in-radius) distribution scheme, modelling the evolution of liquid PSC particles in non-equilibrium conditions. It uses an effi- cient numerical scheme, designed to be compatible with CTMs. Results from the new scheme have been validated against analytical solutions, and corroborate the compo- sition gradients across the size distribution under rapid cooling conditions that were reported in earlier studies.

  8. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  9. Likely seeding of cirrus clouds by stratospheric Kasatochi volcanic aerosol particles near a mid-latitude tropopause fold

    NASA Astrophysics Data System (ADS)

    Campbell, James R.; Welton, Ellsworth J.; Krotkov, Nickolay A.; Yang, Kai; Stewart, Sebastian A.; Fromm, Michael D.

    2012-01-01

    Following the explosive 7-8 August 2008 Mt. Kasatochi volcanic eruption in southwestern Alaska, a segment of the dispersing stratospheric aerosol layer was profiled beginning 16 August in continuous ground-based lidar measurements over the Mid-Atlantic coast of the eastern United States. On 17-18 August, the layer was displaced downward into the upper troposphere through turbulent mixing near a tropopause fold. Cirrus clouds and ice crystal fallstreaks were subsequently observed, having formed within the entrained layer. The likely seeding of these clouds by Kasatochi aerosol particles is discussed. Cloud formation is hypothesized as resulting from either preferential homogenous freezing of relatively large sulfate-based solution droplets deliquesced after mixing into the moist upper troposphere or through heterogeneous droplet activation by volcanic ash. Satellite-borne spectrometer measurements illustrate the evolution of elevated Kasatochi SO 2 mass concentrations regionally and the spatial extent of the cirrus cloud band induced by likely particle seeding. Satellite-borne polarization lidar observations confirm ice crystal presence within the clouds. Geostationary satellite-based water vapor channel imagery depicts strong regional subsidence, symptomatic of tropopause folding, along a deepening trough in the sub-tropical westerlies. Regional radiosonde profiling confirms both the position of the fold and depth of upper-tropospheric subsidence. These data represent the first unambiguous observations of likely cloud seeding by stratospheric volcanic aerosol particles after mixing back into the upper troposphere.

  10. Microphysical Modelling of Polar Stratospheric Clouds During the 1999-2000 Winter

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Schoeberl, Mark; Rosenfield, Joan; Gore, Warren J. (Technical Monitor)

    2000-01-01

    The evolution of the 1999-2000 Arctic winter has been examined using a microphysical/photochemical model run along diabatic trajectories. A large number of trajectories have been generated, filling the vortex throughout the region of polar stratospheric cloud (PSC) formation, and extending from November until the vortex breakup, in order to provide representative sampling of the evolution of PSCs and their effect on stratospheric chemistry. The 1999-2000 winter was particularly cold, allowing extensive PSC formation. Many trajectories have ten-day periods continuously below the Type I PSC threshold; significant periods of Type II PSCs are also indicated. The model has been used to test the extent and severity of denitrification and dehydration predicted using a range of different microphysical schemes. Scenarios in which freezing only occurs below the ice frost point (causing explicit coupling of denitrification and dehydration) have been tested, as well as scenarios with partial freezing at warmer temperatures (in which denitrification can occur independently of dehydration). The sensitivity to parameters such as aerosol freezing rates and heterogeneous freezing have been explored. Several scenarios cause sufficient denitrification to affect chlorine partitioning, and in turn, model-predicted ozone depletion, demonstrating that an improved understanding of the microphysics responsible for denitrification is necessary for understanding ozone loss rates.

  11. A Climatology of Polar Stratospheric Cloud Types by MIPAS-Envisat

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Griessbach, Sabine; Orr, Andrew; Höpfner, Michael; Müller, Rolf

    2015-04-01

    For Chemistry Climate Models (CCM) it is still a challenging task to properly represent the evolution of the polar vortices over the entire winter season. The models usually do not include comprehensive microphysical modules to evolve the formation of different types of polar stratospheric clouds (PSC) over the winter. Consequently, predictions on the development and recovery of the future ozone hole have relatively large uncertainties. A climatological record of hemispheric measurement of PSC types could help to better validate and improve the PSC schemes in CCMs. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument onboard the ESA Envisat satellite operated from July 2002 to April 2012. The infra-red limb emission measurements compile a unique dataset of day and night measurements of polar stratospheric clouds up to the poles. From the spectral measurements in the 4.15-14.6 microns range it is possible to select a number of atmospheric window regions and spectral signatures to classify PSC cloud types like nitric acid hydrates, sulfuric ternary solution droplets, and ice particles. The cloud detection sensitivity is similar to space borne lidars, but MIPAS adds complementary information due to its different measurement technique (limb instead of nadir) and wavelength region. Here we will describe a new classification method for PSCs based on the combination of multiple brightness temperature differences (BTD) and colour ratios. Probability density functions (PDF) of the MIPAS measurements in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions enable the definition of regions attributed to specific or mixed types clouds. Applying a naive bias classifier for independent criteria to all defined classes in four 2D PDF distributions, it is possible to assign the most likely PSC type to any measured cloud spectrum. Statistical Monte Carlo test have been applied to quantify

  12. Formation of Bidisperse Particle Clouds

    NASA Astrophysics Data System (ADS)

    Er, Jenn Wei; Zhao, Bing; Law, Adrian W. K.; Adams, E. Eric

    2014-11-01

    When a group of dense particles is released instantaneously into water, their motion has been conceptualized as a circulating particle thermal (Ruggerber 2000). However, Wen and Nacamuli (1996) observed the formation of particle clumps characterized by a narrow, fast moving core shedding particles into wakes. They observed the clump formation even for particles in the non-cohesive range as long as the source Rayleigh number was large (Ra > 1E3) or equivalently the source cloud number (Nc) was small (Nc < 3.2E2). This physical phenomenon has been investigated by Zhao et al. (2014) through physical experiments. They proposed the theoretical support for Nc dependence and categorized the formation processes into cloud formation, transitional regime and clump formation. Previous works focused mainly on the behavior of monodisperse particles. The present study further extends the experimental investigation to the formation process of bidisperse particles. Experiments are conducted in a glass tank with a water depth of 90 cm. Finite amounts of sediments with various weight proportions between coarser and finer particles are released from a cylindrical tube. The Nc being tested ranges from 6E-3 to 9.9E-2, which covers all the three formation regimes. The experimental results showed that the introduction of coarse particles promotes cloud formation and reduce the losses of finer particles into the wake. More quantitative descriptions of the effects of source conditions on the formation processes will be presented during the conference.

  13. Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Hu, Yongyun; Huang, Yi

    2016-06-01

    We investigate the climatic impact of stratospheric ozone recovery (SOR), with a focus on the surface temperature change in atmosphere-slab ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K) in a climate free of clouds and sea ice, it causes surface cooling (-0.06 K) in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest that clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.

  14. Nonorographic generation of Arctic polar stratospheric clouds during December 1999

    NASA Astrophysics Data System (ADS)

    Hitchman, Matthew H.; Buker, Marcus L.; Tripoli, Gregory J.; Browell, Edward V.; Grant, William B.; McGee, Thomas J.; Burris, John F.

    2003-03-01

    During December 1999, polar stratospheric clouds (PSCs) were observed in the absence of conditions conducive to generation by topographic gravity waves. The possibility is explored that PSCs can be generated by inertia gravity waves (IGW) radiating from breaking synoptic-scale Rossby waves on the polar front jet. The aerosol features on 7 and 12 December are selected for comparison with theory and with simulations using the University of Wisconsin Nonhydrostatic Modeling System (UWNMS). Consistent with Rossby adjustment theory, a common feature in the UWNMS simulations is radiation of IGW from the tropopause polar front jet, especially from sectors which are evolving rapidly in the Rossby wave breaking process. Packets of gravity wave energy radiate upward and poleward into the cold pool, while individual wave crests propagate poleward and downward, causing mesoscale variations in vertical motion and temperature. On 12 December the eastbound DC-8 lidar observations exhibited a fairly uniform field of six waves in aerosol enhancement in the 14-20 km layer, consistent with vertical displacement by a field of IGW propagating antiparallel to the flow, with characteristic horizontal and vertical wavelengths of ˜300 and ˜10 km. UWNMS simulations show emanation of a field of IGW upward and southwestward from a northward incursion of the polar front jet. The orientation and evolution of the aerosol features on 7 December are consistent with a single PSC induced by an IGW packet propagating from a breaking Rossby wave over western Russia toward the northeast into the coldest part of the base of the polar vortex, with characteristic period ˜9 hours, vertical wavelength ˜12 km, and horizontal wavelength ˜1000 km. Linear theory shows that for both of these cases, IGW energy propagates upward at ˜1 km/hour and horizontally at ˜100 km/hour, with characteristic trace speed ˜30 m/s. The spatial orientation of the PSC along IGW phase lines is contrasted with the nearly

  15. Freezing of polar stratospheric clouds in orographically induced strong warming events

    NASA Astrophysics Data System (ADS)

    Tsias, A.; Prenni, A. J.; Carslaw, K. S.; Onasch, T. P.; Luo, B. P.; Tolbert, M. A.; Peter, Th.

    1997-09-01

    Results from laboratory experiments and microphysical modeling are presented that suggest a potential freezing nucleation mechanism for polar stratospheric cloud (PSC) particles above the water ice frost point (Tice). The mechanism requires very high HNO3 concentrations of about 58 wt% in the droplets, and leads to the freezing of nitric acid dihydrate (NAD) in a highly selective manner in the smallest droplets of an ensemble. In the stratosphere such liquid compositions are predicted to occur in aerosol droplets which are warmed adiabatically with rates of about +150 K/h from below 190 K to 194 K. Such rapid temperature changes have been observed in mountain leewaves that occur frequently in the stratosphere, clearly demonstrating the need for a stratospheric gravity wave climatology.

  16. Physical chemistry of the H2SO4/HNO3/H2O system - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Zhang, R.; Wooldridge, P. J.; Mcmahon, J. R.; Kim, J. E.; Chang, H. Y.; Beyer, K. D.

    1993-01-01

    Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO3 hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H2SO4/H2O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO3 vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO3 and H2O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H2SO4 solutions and on solid H2SO4 hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.

  17. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  18. The 1980 eruptions of Mount St. Helens - Physical and chemical processes in the stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.; Keesee, R. G.

    1983-01-01

    The large and diverse set of observational data collected in the high-altitude plumes of the May 18, May 25, and June 13, 1980 eruptions is organized and analyzed with a view to discerning the processes at work. The data serve to guide and constrain detailed model simulations of the volcanic clouds. For this purpose, use is made of a comprehensive one-dimensional model of stratospheric sulfate aerosols, sulfur precursor gases, and volcanic ash and dust. The model takes into account gas-phase and condensed-phase (heterogeneous) chemistry in the clouds, aerosol nucleation and growth, and cloud expansion. Computational results are presented for the time histories of the gaseous species concentrations, aerosol size distributions, and ash burdens of the eruption clouds. Also investigated are the long-term buildup of stratospheric aerosols in the Northern Hemisphere and the persistent effects of injected chlorine and water vapor on stratospheric ozone. It is concluded that SO2, water vapor, and ash were probably the most important substances injected into the stratosphere by the Mount St. Helens volcano, both with respect to their widespread effects on composition and their effect on climate.

  19. Polar stratospheric clouds at the South Pole in 1990: Lidar observations and analysis

    SciTech Connect

    Collins, R.L.; Bowman, K.P.; Gardner, C.S. )

    1993-01-20

    In December 1989 a Rayleigh/sodium lidar (589 nm) was installed at the Amundsen-Scott South Pole station, and was used to measure stratospheric aerosol, temperature, and mesospheric sodium profiles through October 1990. Observations of stratospheric aerosol and temperature are presented in this paper. Polar stratospheric clouds (PSCs) were first observed in late May at about 20 km. As the lower stratosphere cooled further, PSCs were observed throughout the 12-27 km altitude region, and remained there from mid-June until late August. Observations in early September detected no PSCs above 21 km. An isolated cloud was observed in mid-October. Throughout the winter the clouds had small backscatter ratios (< 10). Observations made at two wavelengths in July show that the clouds are predominately composed of nitric acid trihydrate with associated Angstrom coefficients between 0.2 and 3.7. Comparison of the lidar data and balloon borne frost point measurements in late August indicate that the nitric acid mixing ratio was less than 1.5 ppbv. Observations over periods of several hours show downward motions in the cloud layers similar to the phase progressions of upwardly-propagating gravity waves. The vertical phase velocities of these features ([approx] 4 cm/s) are significantly faster than the expected settling velocities of the cloud particles. Both the backscatter ratio profiles and the radiosonde horizontal wind profiles show 1-4 km vertical structures. This suggests that the kilometer-scale vertical structure of the PSCs is maintained by low frequency gravity waves propagating through the cloud layers. 24 refs., 9 figs., 4 tabs.

  20. Influence of polar stratospheric clouds on the depletion of Antarctic ozone

    NASA Technical Reports Server (NTRS)

    Salawitch, Ross J.; Wofsy, Steven C.; Mcelroy, Michael B.

    1988-01-01

    Precipitation of nitrate in polar stratospheric clouds (PSCs) can provide a significant sink for Antarctic stratospheric odd nitrogen. It is argued that the depth of the Ozone Hole is sensitive to the occurrence of temperatures below about 196 K. An increase in the prevalence of temperatures below 196 K would enhance ozone loss by increasing the spatial extent and persistence of PSCs, and by decreasing the level of HNO3 that remains following PSC evaporation. Concentrations of halogen gases in the 1960s and earlier were insufficient to support major ozone loss, even if thermal conditions were favorable.

  1. Heterogeneous conversion of COF2 to HF in polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven C.; Yatteau, John H.; Salawitch, Ross J.; Mcelroy, Michael B.; Toon, Geoffrey C.

    1990-01-01

    It is argued that the reaction COF2 + H2O - 2HF + CO2 should proceed on surfaces of polar stratospheric clouds, based on laboratory evidence for this reaction in condensed phase and on analysis of column observations of HF during the Airborne Arctic Stratospheric Expedition. If the hypothesis is confirmed, observations of COF2 and HF could provide unambiguous indication of heterogeneous processing of polar air, and could help elucidate the influence of heterogeneous chemistry on concentrations of HCl, ClNO3, and chlorine oxide radicals.

  2. Extreme stratospheric springs and their consequences for the onset of polar mesospheric clouds

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Allen, Douglas R.; Randall, Cora E.; Harvey, V. Lynn; Hervig, Mark E.; Lumpe, Jerry; Thurairajah, Brentha; Bailey, Scott M.; Russell, James M.

    2015-09-01

    We use data from the Aeronomy of Ice in the Mesosphere (AIM) explorer and from the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) stratospheric analysis to explore the variability in the onset of the Northern Hemisphere (NH) Polar Mesospheric Cloud (PMC) season. Consistent with recently published results, we show that the early onset of the NH PMC season in 2013 was accompanied by a warm springtime stratosphere; conversely, we show that the late onset in 2008 coincides with a very cold springtime stratosphere. Similar stratospheric temperature anomalies for 1997 and 2011 also are connected either directly, through observed temperatures, or indirectly, through an early PMC onset, to conditions near the mesopause. These 4 years, 2008, 1997, 2011, and 2013 represent the extremes of stratospheric springtime temperatures seen in the MERRA analysis and correspond to analogous extrema in planetary wave activity. The three years with enhanced planetary wave activity (1997, 2011 and 2013) are shown to coincide with the recently identified stratospheric Frozen In Anticyclone (FrIAC) phenomenon. FrIACs in 1997 and 2013 are associated with early PMC onsets; however, the dramatic FrIAC of 2011 is not. This may be because the 2011 FrIAC occurred too early in the spring. The link between NH PMC onset and stratospheric FrIAC occurrences represents a new mode of coupling between the stratosphere and mesosphere. Since FrIACs appear to be more frequent in recent years, we speculate that as a result, PMCs may occur earlier as well. Finally we compare the zonal mean zonal winds and observed gravity wave activity for the FrIACs of 2011 and 2013. We find no evidence that gravity wave activity was favored in 2013 relative to 2011, thus suggesting that direct forcing by planetary waves was the key mechanism in accelerating the cooling and moistening of the NH mesopause region in May of 2013.

  3. Molecular cloud evolution and star formation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1985-01-01

    The present state of knowledge of the relationship between molecular clouds and young stars is reviewed. The determination of physical parameters from molecular line observations is summarized, and evidence for fragmentation of molecular clouds is discussed. Hierarchical fragmentation is reviewed, minimum fragment scales are derived, and the stability against fragmentation of both spherically and anisotropically collapsing clouds is discussed. Observational evidence for high-velocity flows in clouds is summarized, and the effects of winds from pre-main sequence stars on molecular gas are discussed. The triggering of cloud collapse by enhanced pressure is addressed, as is the formation of dense shells by spherical outflows and their subsequent breakup. A model for low-mass star formation is presented, and constraints on star formation from the initial mass function are examined. The properties of giant molecular clouds and massive star formation are described. The implications of magnetic fields for cloud evolution and star formation are addressed.

  4. More rapid polar ozone depletion through the reaction of HOCl with HCl on polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.

    1992-01-01

    The direct reaction of HOCl with HCl is shown here to play a critical part in polar ozone loss. Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere confirm that most of the available chlorine is in the form of ClO(x). But current photochemical models have difficulty converting HCl to ClO(x) rapidly enough in early spring to account fully for the observations. Here, a chemical model is used to show that the direct reaction of HOCl with HCl provides the missing mechanism. As alternative sources of nitrogen-containing oxidants have been converted in the late autumn to inactive HNO3 by known reactions on the sulfate layer aerosols, the reaction of HOCl with HCl on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HCl.

  5. Radiatively driven stratosphere-troposphere interactions near the tops of tropical cloud clusters

    NASA Technical Reports Server (NTRS)

    Churchill, Dean D.; Houze, Robert A., Jr.

    1990-01-01

    Results are presented of two numerical simulations of the mechanism involved in the dehydration of air, using the model of Churchill (1988) and Churchill and Houze (1990) which combines the water and ice physics parameterizations and IR and solar-radiation parameterization with a convective adjustment scheme in a kinematic nondynamic framework. One simulation, a cirrus cloud simulation, was to test the Danielsen (1982) hypothesis of a dehydration mechanism for the stratosphere; the other was to simulate the mesoscale updraft in order to test an alternative mechanism for 'freeze-drying' the air. The results show that the physical processes simulated in the mesoscale updraft differ from those in the thin-cirrus simulation. While in the thin-cirrus case, eddy fluxes occur in response to IR radiative destabilization, and, hence, no net transfer occurs between troposphere and stratosphere, the mesosphere updraft case has net upward mass transport into the lower stratosphere.

  6. Vapor pressures of solid hydrates of nitric acid - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Worsnop, Douglas R.; Fox, Lewis E.; Zahniser, Mark S.; Wofsy, Steven C.

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO3.H2O, HNO3.2H2O, HNO3.3H2O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO3.2H2O may be favored in polar stratospheric clouds over the slightly more stable HNO3.3H2O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO3.2H2O and HNO3.3H2O. Vapor transfer from HNO3.2H2O to HNO3.3H2O could be a key step in the sedimentation of HNO3, which plays an important role in the depletion of polar ozone.

  7. Characteristics of polar stratospheric clouds as observed by SAM II, SAGE, and lidar

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Hamill, P.; Farrukh, U. O.

    1985-01-01

    Satellite and lidar data sets developed over several years of observations are analyzed to detail the macroscopic and microphysical characteristics of polar stratospheric clouds (PSCs). Mappings were made of the sizes, locations, probabilities of occurrence and temperature dependence of the PSCs, and indicated that PSCs are correlated with an extended stratospheric cloud bank in the cold polar vortex region. The bank is bounded by a 188 K isotherm, and the probability of occurrence drops to 50 percent at the 193 K isotherm. Values of 6.3 particles/cu cm and radii averaging 0.0725 micron/particle are calculated, along with an estimated downward velocity of 0.01 m/sec.

  8. Aircraft deployment, and airborne arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Condon, Estelle; Tuck, Adrian; Hipskind, Steve; Toon, Brian; Wegener, Steve

    1990-01-01

    The Airborne Arctic Stratospheric Expedition had two primary objectives: to study the production and loss mechanisms of ozone in the north polar stratosphere and to study the effect on ozone distribution of the Arctic Polar Vortex and of the cold temperatures associated with the formation of Polar Stratospheric Clouds. Two specially instrumented NASA aircraft were flown over the Arctic region. Each aircraft flew to acquire data on the meteorological, chemical and cloud physical phenomena that occur in the polar stratosphere during winter. The chemical processes which occur in the polar stratosphere during winter were also observed and studied. The data acquired are being analyzed.

  9. Microphysical Simulations of Polar Stratospheric Clouds Compared with Calipso and MLS Observations

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Toon, O. B.; Kinnison, D. E.; Lambert, A.; Brakebusch, M.

    2014-12-01

    Polar stratospheric clouds (PSCs) form in the lower stratosphere during the polar night due to the cold temperature inside the polar vortex. PSCs are important to understand because they are responsible for the formation of the Antarctic ozone hole and the ozone depletion over the Arctic. In this work, we explore the formation and evolution of STS particles (Super-cooled Ternary Solution) and NAT (Nitric-acid Trihydrate) particles using the SD-WACCM/CARMA model. SD-WACCM/CARMA couples the Whole Atmosphere Community Climate Model using Specific Dynamics with the microphysics model (CARMA). The 2010-2011 Arctic winter has been simulated because the Arctic vortex remained cold enough for PSCs from December until the end of March (Manney et al., 2011). The unusual length of this cold period and the presence of PSCs caused strong ozone depletion. This model simulates the growth and evaporation of the STS particles instead of considering them as being in equilibrium as other models do (Carslaw et al., 1995). This work also explores the homogeneous nucleation of NAT particles and derives a scheme for NAT formation based on the observed denitrification during the winter 2010-2011. The simulated microphysical features (particle volumes, size distributions, etc.) of both STS (Supercooled Ternary Solutions) and NAT particles show a consistent comparison with historical observations. The modeled evolution of PSCs and gas phase ozone related chemicals inside the vortex such as HCl and ClONO2 are compared with the observations from MLS, MIPAS and CALIPSO over this winter. The denitrification history indicate the surface nucleation rate from Tabazadeh et al. (2002) removes too much HNO3 over the winter. With a small modification of the free energy term of the equation, the denitification and the PSC backscattering features are much closer to the observations. H2O, HCl, O3 and ClONO2 are very close to MLS and MIPAS observations inside the vortex. The model underestimates ozone

  10. Measurements of cloud condensation nuclei in the stratosphere around the plume of Mount St. Helens

    SciTech Connect

    Rogers, C.F.; Hudson, J.G.; Kocmond, W.C.

    1981-01-01

    Measurements of cloud condensation nuclei were made from small samples of stratospheric air taken from a U-2 aircraft at altitudes ranging from 13 to 19 kilometers. The measured concentrations of nuclei both in and outside the plume from the May and June 1980 eruptions of Mount St. Helens were higher than expected, ranging from about 100 to about 1000 per cubic centimeter active at 1 percent supersaturation.

  11. Measurements of cloud condensation nuclei in the stratosphere around the plume of mount st. Helens.

    PubMed

    Rogers, C F; Hudson, J G; Kocmond, W C

    1981-02-20

    Measurements of cloud condensation nuclei were made from small samples of stratospheric air taken from a U-2 aircraft at altitudes ranging from 13 to 19 kilometers. The measured concentrations of nuclei both in and outside the plume from the May and June 1980 eruptions of Mount St. Helens were higher than expected, ranging from about 100 to about 1000 per cubic centimeter active at 1 percent supersaturation.

  12. Laboratory measurements of polar stratospheric cloud rate parameters

    NASA Technical Reports Server (NTRS)

    Kenner, Rex D.; Plumb, Ian C.; Ryan, Keith R.

    1994-01-01

    It is now clear that heterogeneous reactions play an important role in controlling the concentration of ozone in the stratosphere. In this work, the loss of N2O5 on ice substrates has been studied in a flow reactor in an attempt to gain a more fundamental understanding of these reactions. The apparent reaction probability in this system was found to decrease as the substrate was exposed to N2O5. A model which corrected for the loss of surface sites was developed and although it appears to fit the data for a given experiment quite well, it is concluded that the loss of reactive sites is not the full explanation. In addition, the results of an experimental and modeling study suggest that reaction on the internal surface of the ice substrates is not a major loss mechanism for N2O5 in the current work.

  13. On the size and composition of particles in polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Kinne, Stefan; Toon, Owen B.; Toon, Goeff C.; Farmer, Crofton B.; Browell, Edward V.

    1988-01-01

    Attenuation measurements of the solar radiation between 1.5 and 15 micron wavelengths were performed with the airborne (DC-8) JPL MARK 4 interferometer during the 1987 Antarctic Expedition. The opacities not only provide information about the abundance of stratospheric gases but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption (windows). The optical depth of PSCs can be determined for each window once the background attenuation, due to air-molecules and aerosol has been filtered out with a simple extinction law. The ratio of optical thicknesses at different wavelengths reveals information about particle size and particle composition. Among the almost 700 measured spectra only a few PSC cases exist. PSC events are identified by sudden reductions in the spectrally integrated intensity value and are also verified with backscattering data from an upward directed lidar instrument, that was mounted on the DC-8. For the selected case on September 21st at 14.40 GMT, lidar data indicate an optically thin cloud at 18k and later an additional optically thick cloud at 15 km altitude. All results still suffer from: (1) often arbitrary definitions of a clear case, that often already may have contained PSC particles and (2) noise problems that restrict the calculations of optical depths to values larger than 0.001. Once these problems are handled, this instrument may become a valuable tool towards a better understanding of the role PSCs play in the Antarctic stratosphere.

  14. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltmans, S. J.

    1988-01-01

    The first balloon-borne frost point measurements over Antarctica were made during September and October, 1987 as part of the NOZE 2 effort at McMurdo. The results indicate water vapor mixing ratios on the order of 2 ppmv in the 15 to 20 km region which is somewhat smaller than the typical values currently being used significantly smaller than the typical values currently being used in polar stratospheric cloud (PSC) theories. The observed water vapor mixing ratio would correspond to saturated conditions for what is thought to be the lowest stratospheric temperatures encountered over the Antarctic. Through the use of available lidar observations there appears to be significant evidence that some PSCs form at temperatures higher than the local frost point (with respect to water) in the 10 to 20 km region thus supporting the nitric acid theory of PSC composition. Clouds near 15 km and below appear to form in regions saturated with respect to water and thus are probably mostly ice water clouds although they could contain relatively small amounts of other constituents. Photographic evidence suggests that the clouds forming above the frost point probably have an appearance quite different from the lower altitude iridescent, colored nacreous clouds.

  15. Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere

    NASA Astrophysics Data System (ADS)

    Cirisan, A.; Spichtinger, P.; Luo, B. P.; Weisenstein, D. K.; Wernli, H.; Lohmann, U.; Peter, T.

    2013-05-01

    In the absence of tangible progress in reducing greenhouse gas emissions, the implementation of solar radiation management has been suggested as measure to stop global warming. Here we investigate the impacts on northern midlatitude cirrus from continuous SO2emissions of 2-10 Mt/a in the tropical stratosphere. Transport of geoengineering aerosols into the troposphere was calculated along trajectories based on ERA Interim reanalyses using ozone concentrations to quantify the degree of mixing of stratospheric and tropospheric air termed "troposphericity". Modeled size distributions of the geoengineered H2SO4-H2O droplets have been fed into a cirrus box model with spectral microphysics. The geoengineering is predicted to cause changes in ice number density by up to 50%, depending on troposphericity and cooling rate. We estimate the resulting cloud radiative effects from a radiation transfer model. Complex interplay between the few large stratospheric and many small tropospheric H2SO4-H2O droplets gives rise to partly counteracting radiative effects: local increases in cloud radiative forcing up to +2 W/m2for low troposphericities and slow cooling rates, and decreases up to -7.5 W/m2for high troposphericities and fast cooling rates. The resulting mean impact on the northern midlatitudes by changes in cirrus is predicted to be low, namely <1% of the intended radiative forcing by the stratospheric aerosols. This suggests that stratospheric sulphate geoengineering is unlikely to have large microphysical effects on the mean cirrus radiative forcing. However, this study disregards feedbacks, such as temperature and humidity changes in the upper troposphere, which must be examined separately.

  16. An analysis of lidar observations of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Kinne, S.; Browell, E. V.; Jordan, J.

    1990-01-01

    Lidar observations by Browell et al. (1990) are interpreted using single scattering calculations for nonspherical particles and aerosol microphysical calculations. Many of the lidar observations are consistent with particles containing 10 ppbv of condensed nitric acid vapor and an equivalent mass of water. The lidar observations of these Type 1 clouds identify two subtypes, whose properties are deduced. Type 1b particles are spherical, or nearly spherical, and typically have radii near 0.5 micron; Type 1a particles are not spherical, and have a spherical volume equivalent radius exceeding 1.0 micron. Several factors may cause variations in the size of the particles. The most significant factors are the cooling rate and the degree to which the air parcels cool below the condensation point. Specific examples in which cooling rate and cooling point may have led to variations in particle size are found in the Browell et al. (1990) data set. Condensation of 1 ppmm of water or less is quantitatively sufficient to account for the magnitude of the lidar backscatter observed from water ice clouds. The ice particles are not spherical in shape. The sizes of particles in water ice clouds cannot be determined because they are much larger than the wavelength of the lidar.

  17. Lidar measurements of polar stratospheric clouds during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Browell, Edward V.

    1991-01-01

    The Airborne Arctic Stratospheric Expedition (AASE) was conducted during January to February 1989 from the Sola Air Station, Norway. As part of this expedition, the NASA Langley Research Center's multiwavelength airborne lidar system was flown on the NASA Ames Research Center's DC-8 aircraft to measure ozone (O3) and aerosol profiles in the region of the polar vortex. The lidar system simultaneously transmitted laser beams at 1064, 603, 311, and 301.5 nm to measure atmospheric scattering, polarization and O3 profiles. Long range flights were made between Stavanger, Norway, and the North Pole, and between 40 deg W and 20 deg E meridians. Eleven flights were made, each flight lasting an average of 10 hours covering about 8000 km. Atmospheric scattering ratios, aerosol polarizations, and aerosol scattering ratio wavelength dependences were derived from the lidar measurements to altitudes above 27 km. The details of the aerosol scattering properties of lidar observations in the IR, VIS, and UV regions are presented along with correlations with the national meteorological Center's temperature profiles.

  18. Star formation in Lynds dark clouds

    NASA Astrophysics Data System (ADS)

    Spuck, Tim; Rebull, Luisa

    2008-03-01

    Recent research on star formation in large molecular cloud complexes, such as the Cepheus Flare (Kun 1995), Orion, Perseus (Rebull et al. 2007), and Taurus molecular clouds, have included studies of a number of Lynds dark nebulae (LDN). Less attention has been given to isolated Lynds clouds. Both LDN 981 and LDN 425 are smaller, more isolated, dark molecular clouds that could contain regions of active star formation within them -- they both are associated with IRAS sources, and based on prior shallow surveys, they both have a YSO candidate in the neigborhood. Spitzer observations with IRAC and MIPS will allow us to see deep inside the cloud, deeper than any prior observations could see, and reveal any hidden star formation that is ongoing in these clouds. This project is part of the Spitzer Teachers Program.

  19. A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.

    1997-01-01

    The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.

  20. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Kinne, S.; Toon, O. B.; Toon, G. C.; Farmer, C. B.; Browell, E. V.; Mccormick, M. P.

    1989-01-01

    Results are presented on polar stratospheric cloud (PSC) observations, based on IR measurements of solar extinction, made by the airborne JPL Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987, together with the instrumentation and the theoretical aspects of data analysis. Thirty-three PSC cases were analyzed and categorized into two types, I and II, which were found to occur at different altitudes during September. Type I clouds, seen at altitudes above 15 km, contained particles with radii of about 0.5 micarons and nitric acid concentrations greater than 40 percent, while type II clouds, found usually below 15 km, contained particles with radii of 6 microns and larger, composed of water ice. In addition, particles of larger than the 15-micron-size detection limit were encounterd.

  1. Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR

    USGS Publications Warehouse

    Schneider, D.J.; Rose, William I.; Coke, L.R.; Bluth, G.J.S.; Sprod, I.E.; Krueger, A.J.

    1999-01-01

    This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chichón, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1–10 μm radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 × 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 × 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 μm to about 4 μm.

  2. Dual-polarization airborne lidar observations of polar stratospheric cloud evolution

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Mccormick, M. P.; Kent, G. S.; Hunt, W. H.; Osborn, M. T.

    1990-01-01

    Dual-polarization 0.532 micron lidar data show systematic polar stratospheric cloud (PSC) evolution along a portion of the Airborne Arctic Stratospheric Expedition DC-8 flight of January 31, 1989. This flight leg was roughly aligned with air parcel motion on isentropic surfaces from 400-500 K, where the local adiabatic cooling rate was about 20 K/day. Type 1 PSCs show low depolarization ratios and scattering ratios which approach intermediate limiting values as ambient temperature decreases. These data suggest that Type 1 particles formed by rapid cooling may be nearly spherical and are restricted in size by partitioning of a limited HNO3 vapor supply among many competing growth sites. Type 2 PSCs appear at temperatures below estimated local frost points with increases in depolarization and scattering typical of larger ice crystals.

  3. Lidar observations of polar stratospheric clouds at McMurdo, Antarctica, during NOZE-2

    NASA Technical Reports Server (NTRS)

    Morley, Bruce M.

    1988-01-01

    SRI International operated a dual wavelength (1.064 micrometer and .532 micrometer) aerosol lidar at McMurdo Station, Antarctica, as part of the National Ozone Expedition-2 (NOZE-2). The objective of the project was to map the vertical distributions of polar stratospheric clouds (PSCs), which are believed to play an important role in the destruction of ozone in the Antarctic spring. Altitude, thickness, homogeneity, and duration of PSC events as well as information on particle shape, size or number density will be very useful in determining the exact role of PSCs in ozone destructions, and when combined with measurements of other investigators, additional properties of PSCs can be estimated. The results are currently being analyzed in terms of PSC properties which are useful for modeling the stratospheric ozone depletion mechanism.

  4. Application of physical adsorption thermodynamics to heterogeneous chemistry on polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1991-01-01

    Laboratory isotherms for the binding of several nonheterogeneously active atmospheric gases and for HCl to water ice are translated into adsorptive equilibrium constants and surface enthalpies. Extrapolation to polar conditions through the Clausius Clapeyron relation yields coverage estimates below the percent level for N2, Ar, CO2, and CO, suggesting that the crystal faces of type II stratospheric cloud particles may be regarded as clean with respect to these species. For HCl, and perhaps HF and HNO3, estimates rise to several percent, and the adsorbed layer may offer acid or proton sources alternate to the bulk solid for heterogeneous reactions with stratospheric nitrates. Measurements are lacking for many key atmospheric molecules on water ice, and almost entirely for nitric acid trihydrate as substrate. Adsorptive equilibria enter into gas to particle mass flux descriptions, and the binding energy determines rates for desorption of, and encounter between, potential surface reactants.

  5. Theoretical Investigations of Clouds and Aerosols in the Stratosphere and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    2005-01-01

    support of the Atmospheric Chemistry Modeling and Data Analysis Program. We investigated a wide variety of issues involving ambient stratospheric aerosols, polar stratospheric clouds or heterogeneous chemistry, analysis of laboratory data, and particles in the upper troposphere. The papers resulting from these studies are listed below. In addition, I participated in the 1999-2000 SOLVE mission as one of the project scientists and in the 2002 CRYSTAL field mission as one of the project scientists. Several CU graduate students and research associates also participated in these mission, under support from the ACMAP program, and worked to interpret data. During the past few years my group has completed a number of projects under the

  6. Sulfuric Acid Monohydrate: Formation and Heterogeneous Chemistry in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1995-01-01

    We have investigated some thermodynamic properties (i.e., freezing/melting points) and heterogeneous chemistry of sulfuric acid monohydrate (SAM, H2SO4.H2O), using a fast flow reactor coupled to a quadrupole mass spectrometer. The freezing point observations of thin liquid sulfuric acid films show that for acid contents between 75 and 85 wt % the monohydrate crystallizes readily at temperatures between 220 and 240 K on a glass substrate. Once formed, SAM can be thermodynamically stable in the H2O partial pressure range of (1-4) x 10(exp -4) torr and in the temperature range of 220-240 K. For a constant H2O partial pressure, lowering the temperature causes SAM to melt when the temperature and water partial pressure conditions are out of its stability regime. The reaction probability measurements indicate that the hydrolysis of N2O5 is significantly suppressed owing to the formation of crystalline SAM: The reaction probability on water-rich SAM (with higher relative humidity, or RH) is of the order of 10(exp -3) at 210 K and decreases by more than an order of magnitude for the acid-rich form (with lower RH). The hydrolysis rate of ClONO2 on water-rich SAM is even smaller, of the order of 10(exp -4) at 195 K. These reported values on crystalline SAM are much smaller than those on liquid solutions. No enhancement of these reactions is observed in the presence of HCl vapor at the stratospheric concentrations. In addition, Brunauer, Emmett, and Teller analysis of gas adsorption isotherms and photomicrography have been performed to characterize the surface roughness and porosities of the SAM substrate. The results suggest the possible formation of SAM in some regions of the middle- or low-latitude stratosphere and, consequently, much slower heterogeneous reactions on the frozen aerosols.

  7. FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION

    SciTech Connect

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-10

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  8. Tropical tropopause water isotopes in a GCM: Sensitivity to cloud processes and stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.; Hoffmann, G.; Hu, Y.

    2004-05-01

    Water isotopes ratios (δ 18O, δ D) are very sensitive tracers of the history of the water in the atmosphere. For example, depletion of heavy isotopes in convective plumes can be extreme and thus isotope ratios can be used to discriminate between upwelled and in-situ condensation. We present results with state-of-the-art GCMs that include water isotopes in every aspect of the modelled water cycle, including the relatively sophisticated prognostic cloud water scheme. These models also have reasonable representations of the stratospheric circulation and so can be used to look at the processes involved in stratosphere-troposphere exchange. We demonstrate that the models show a similar range of variability near the tropical tropopause to that seen in recent data, and that the zonal mean values are less depleted than a simple Rayleigh distillation column would suggest. Importantly, we show that the isotopes can be sensitive to uncertain details of the cloud parameterizations and thus may help in improving and validating cloud schemes in models.

  9. Lidar observations of the El Chichon cloud in the stratosphere over Fukuoka

    NASA Technical Reports Server (NTRS)

    Fujiwara, M.; Shibata, T.; Hirono, M.

    1985-01-01

    A volcanic cloud in the stratosphere, originating from the March to April 1982 eruptions of El Chichon, has been observed for about 2.5 years at Fukuoka (33.5 degrees N, 130.4 degrees E) with two wavelengths of Nd-YAG lidar, 1.06 and 0.53 microns. Time and height variabilities of the cloud are described, using the 1.06 microns data, and some results of the two-wavelength measurements are presented. A sudden enormous increase in the total aerosol backscattering from the stratosphere (backscattering coefficient for 1.06 microns integrated over 13.5 to 28.5 km range) was followed by a decrease from late spring to summer with large fluctuations. The cloud initially appeared stratified into two layers: the upper one with fine structure and sharp edges in the easterly wind region and the lower dumpy one in the westerly wind region. Most of the aerosols were contained in the upper layer. The two layers merged into a broad, single-peaked layer as the easterly prevailed in the whole region in fall, when the total aerosol backscattering began to increase. The layer then decreased its peak height as it broadened. The difference in shape of both layers and the increase of total backscattering from fall can be interpreted by the difference in velocity of material transport in the easterly and the westerly wind region.

  10. Fragmentation of interstellar clouds and star formation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1982-01-01

    The principal issues are addressed: the fragmentation of molecular clouds into units of stellar mass and the impact of star formation on molecular clouds. The observational evidence for fragmentation is summarized, and the gravitational instability described of a uniform spherical cloud collapsing from rest. The implications are considered of a finite pressure for the minimum fragment mass that is attainable in opacity-limited fragmentation. The role of magnetic fields is discussed in resolving the angular momentum problem and in making the collapse anisotropic, with notable consequences for fragmentation theory. Interactions between fragments are described, with emphasis on the effect of protostellar winds on the ambient cloud matter and on inhibiting further star formation. Such interactions are likely to have profound consequences for regulating the rate of star formation and on the energetics and dynamics of molecular clouds.

  11. Influence of Tropospheric SO2 Emissions on Particle Formation and the Stratospheric Humidity

    NASA Technical Reports Server (NTRS)

    Notholt, J.; Luo, B. P.; Fueglistaler, S.; Weisenstein, D.; Rex, M.; Lawrence, M. G.; Bingemer, H.; Wohltmann, I.; Corti, T.; Warneke, T.; vonKuhlmann, R.; Peters, T.

    2005-01-01

    Stratospheric water vapor plays an important role in the chemistry and radiation budget of the stratosphere. Throughout the last decades stratospheric water vapor levels have increased and several processes have been suggested to contribute to this trend. Here we present a mechanism that would link increasing anthropogenic SO2 emissions in southern and eastern Asia with an increase in stratospheric water. Trajectory studies and model simulations suggest that the SO2 increase results in the formation of more sulfuric acid aerosol particles in the upper tropical troposphere. As a consequence, more ice crystals of smaller size are formed in the tropical tropopause, which are lifted into the stratosphere more readily. Our model calculations suggest that such a mechanism could increase the amount of water that entered the stratosphere in the condensed phase by up to 0.5 ppmv from 1950-2000.

  12. The impact of gravity waves and cloud nucleation threshold on stratospheric water and tropical tropospheric cloud fraction

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark; Dessler, Andrew; Ye, Hao; Wang, Tao; Avery, Melody; Jensen, Eric

    2016-08-01

    Using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and MERRA-2 reanalysis winds, temperatures, and anvil cloud ice, we explore the impact of varying the cloud nucleation threshold relative humidity (RH) and high-frequency gravity waves on stratospheric water vapor (H2O) and upper tropical tropopause cloud fraction (TCF). Our model results are compared to 2008/2009 winter TCF derived from Cloud-Aerosol Lidar with Orthogonal Polarization and H2O observations from the Microwave Limb Sounder (MLS). The RH threshold affects both model H2O and TCF, while high-frequency gravity waves mostly impact TCF. Adjusting the nucleation RH and the amplitude of high-frequency gravity waves allows us to tune the model to observations. Reasonable observational agreement is obtained with a nucleation threshold between 130% and 150% RH consistent with airborne observations. For the MERRA reanalysis, we lower the tropopause temperature by 0.5 K roughly consistent with GPS radio occultation measurements and include ~0.1 K high-frequency gravity wave temperature oscillations in order to match TCF and H2O observations. For MERRA-2 we do not need to adjust the tropopause temperature nor add gravity waves, because there are sufficient high-frequency temperature oscillations already present in the MERRA-2 reanalysis to reproduce the observed TCF.

  13. Star formation in the Magellanic clouds

    NASA Technical Reports Server (NTRS)

    Frogel, Jay A.

    1987-01-01

    Because of their proximity, the Magellanic Clouds provide the opportunity to conduct a detailed study of the history and current state of star formation in dwarf irregular galaxies. There is considerable evidence that star formation in the Clouds was and is proceeding in a manner different from that found in a typical well-ordered spiral galaxy. Star formation in both Clouds appears to have undergone a number of relatively intense bursts. There exist a number of similarities and differences in the current state of star formation in the Magellanic Clouds and the Milky Way. Examination of Infrared Astronomy Satellite (IRAS) sources with ground based telescopes allows identification of highly evolved massive stars with circumstellar shells as well as several types of compact emission line objects.

  14. Estimation of polar stratospheric cloud infrared extinction climatology using visible satellite observations

    NASA Technical Reports Server (NTRS)

    Pitts, Michael C.; Thomason, Larry W.

    1995-01-01

    Polar stratospheric clouds (PSC's) provide surfaces for heterogeneous processes which can dramatically alter the normal partitioning of odd nitrogen and chlorine families in the winter polar stratospheres, setting up conditions for significant ozone depletion as manifested in the springtime Antarctic ozone hole. The spatial and temporal distribution of PSC's is important for parameterizing PSC occurrence in multidimensional photochemical models whose use is essential for fully understanding observed Antarctic ozone losses as well as for accessing the possibility of a similar phemonenon occurring in the future in the Arctic. The Stratospheric Aerosol Measurement (SAM) 2 sensor, a single-channel (1mu m) photometer launched into a Sun-synchronous orbit aboard the Nimbus 7 satellite in October 1978, provided a unique database to establish the climatology of PSC's. Poole and Pitts (1994) used the record of high-latitude aerosol extinction obtained by SAM II from 1979-1989 to establish the climatology of PSC occurrences in the Arctic and Antarctic. Unfortunately, little information about PSC composition or type was detectable from the single-wavelength SAM II data.

  15. Star formation relations in nearby molecular clouds

    SciTech Connect

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  16. An experimental study of growth and phase change of polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hallett, John; Teets, Edward

    1992-01-01

    This report describes the progress made on understanding phase changes related to solutions which may comprise Polar Stratospheric Clouds. In particular, it is concerned with techniques for investigating specific classes of metastability and phase change which may be important not only in Polar Stratospheric Clouds but in all atmospheric aerosols in general. While the lower level atmospheric aerosol consists of mixtures of (NH4)(SO4)2, NH4HSO4, NaCl among others, there is evidence that aerosol at PSC levels is composed of acid aerosol, either injected from volcanic events (such as Pinatubo) or having diffused upward from the lower atmosphere. In particular, sulfuric acid and nitric acid are known to occur at PSC levels, and are suspected of catalyzing ozone destruction reactions by adsorption on surfaces of crystallized particles. The present study has centered on two approaches: (1) the extent of supercooling (with respect to ice) and supersaturation (with respect to hydrate) and the nature of crystal growth in acid solutions of specific molality; and (2) the nature of growth from the vapor of HNO3 - H2O crystals both on a substrate and on a pre-existing aerosol.

  17. Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideaki; Wohltmann, Ingo; Wegner, Tobias; Takeda, Masanori; Pitts, Michael C.; Poole, Lamont R.; Lehmann, Ralph; Santee, Michelle L.; Rex, Markus

    2016-03-01

    We examined observations of polar stratospheric clouds (PSCs) by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  18. Cloud Optimized Image Format and Compression

    NASA Astrophysics Data System (ADS)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  19. Effects of stratospheric aerosols and thin cirrus clouds on the atmospheric correction of ocean color imagery: simulations.

    PubMed

    Gordon, H R; Zhang, T; He, F; Ding, K

    1997-01-20

    Using simulations, we determine the influence of stratospheric aerosol and thin cirrus clouds on the performance of the proposed atmospheric correction algorithm for the moderate resolution imaging spectroradiometer (MODIS) data over the oceans. Further, we investigate the possibility of using the radiance exiting the top of the atmosphere in the 1.38-microm water vapor absorption band to remove their effects prior to application of the algorithm. The computations suggest that for moderate optical thicknesses in the stratosphere, i.e., tau(s) < or approximately 0.15, the stratospheric aerosol-cirrus cloud contamination does not seriously degrade the MODIS except for the combination of large (approximately 60 degrees) solar zenith angles and large (approximately 45 degrees) viewing angles, for which multiple-scattering effects can be expected to be particularly severe. The performance of a hierarchy of stratospheric aerosol/cirrus cloud removal procedures for employing the 1.38-microm water vapor absorption band to correct for stratospheric aerosol/cirrus clouds, ranging from simply subtracting the reflectance at 1.38 microm from that in the visible bands, to assuming that their optical properties are known and carrying out multiple-scattering computations of their effect by the use of the 1.38-microm reflectance-derived concentration, are studied for stratospheric aerosol optical thicknesses at 865 nm as large as 0.15 and for cirrus cloud optical thicknesses at 865 nm as large as 1.0. Typically, those procedures requiring the most knowledge concerning the aerosol optical properties (and also the most complex) performed the best; however, for tau(s) < or approximately 0.15, their performance is usually not significantly better than that found by applying the simplest correction procedure. A semiempirical algorithm is presented that permits accurate correction for thin cirrus clouds with tau(s) as large as unity when an accurate estimate of the cirrus cloud

  20. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    SciTech Connect

    Charnay, B.; Meadows, V.; Misra, A.; Arney, G.; Leconte, J.

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

  1. Characterization of Polar Stratospheric Clouds With Spaceborne Lidar: CALIPSO and the 2006 Antarctic Season

    NASA Technical Reports Server (NTRS)

    Pitts, Michael C.; Thomason, L. W.; Poole, Lamont R.; Winker, David M.

    2007-01-01

    The role of polar stratospheric clouds in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously unavailable. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, including tenuous clouds, with a very low rate of false positives and few missed clouds. We applied the algorithm to CALIPSO data acquired during the 2006 Antarctic winter season from 13 June through 31 October. The spatial and temporal distribution of CALIPSO PSC observations is illustrated with weekly maps of PSC occurrence. The evolution of the 2006 PSC season is depicted by time series of daily PSC frequency as a function of altitude. Comparisons with virtual solar occultation data indicate that CALIPSO provides a different view of the PSC season than attained with previous solar occultation satellites. Measurement-based time series of PSC areal coverage and vertically-integrated PSC volume are computed from the CALIPSO data. The observed area covered with PSCs is significantly smaller than would be inferred from a temperature-based proxy such as TNAT but is similar in magnitude to that inferred from TSTS. The potential of CALIPSO measurements for investigating PSC microphysics is illustrated using combinations of lidar backscatter coefficient and volume depolarization to infer composition for two CALIPSO PSC scenes.

  2. Optical effects of polar stratospheric clouds on the retrieval of TOMS total ozone

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahmad, Z.; Herman, J. R.

    1992-01-01

    Small areas of sharply reduced ozone density appear frequently in the maps produced from polar region total ozone mapping spectrometer (TOMS) data. These mini-holes are of the order of 1000 km in extent with a lifetime of a few days. On the basis of measurements from ground-based instruments, balloon-borne ozonesondes, and simultaneous measurements of aerosol and ozone concentrations during aircraft flights in the Arctic and Antarctic regions, the appearance of polar stratospheric clouds (PSCs) are frequently associated with false reductions in ozone derived from the TOMS albedo data. By combining radiative transfer calculations with the observed PSC and ozone data, it is shown that PSCs located near or above the ozone density maximum (with optical thickness greater than 0.1) can explain most of the differences between TOMS ozone data and ground or in situ ozone measurements. Several examples of real and false TOMS mini-hole phenomenon are investigated using data from the 1989 Airborne Arctic Stratospheric Expedition (AASE) and from balloon flights over Norway and Sweden.

  3. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  4. Fourier transform infrared studies of the interaction of HCl with model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Koehler, Birgit G.; Mcneill, Laurie S.; Middlebrook, Ann M.; Tolbert, Margaret A.

    1993-01-01

    Heterogeneous reactions involving hydrochloric acid adsorbed on the surfaces of polar stratospheric clouds (PSCs) are postulated to contribute to polar ozone loss. Using FTIR spectroscopy to probe the condensed phase, we have examined the interaction of HCl with ice and nitric acid trihydrate (NAT) films representative of types II and I PSCs, respectively. For HCl pressures in the range of 10 exp -7 to 10 exp -5 Torr, our FTIR studies show that a small amount of crystalline HCl-6H2O formed on or in ice at 155 K. However, for higher HCl pressures, we observed that the entire film of ice rapidly converted into an amorphous 4:1 H2O:HCl mixture. From HCl-uptake experiments with P(HCl) = 8 x 10 exp -7 Torr, we estimate roughly that the diffusion coefficient of HCl in ice is around 2 x 10 exp -12 sq cm/s at 158 K. For higher temperatures more closely approximating those found in the stratosphere, we were unable to detect bulk HCl uptake by ice. Indirect evidence suggests that HCl adsorption onto the surface of model PSC films inhibited the evaporation of both ice and NAT by 3-5 K.

  5. Analysis of the physical state of one Arctic polar stratospheric cloud based on observations

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Tabazadeh, A.; Turco, R. P.; Jacobson, M. Z.; Dye, J. E.; Twohy, C.; Baumgardner, D.

    1994-01-01

    During the Arctic Airborne Stratospheric Expedition (AASE) simultaneous measurements of aerosol size distribution and NO(y)(HN03 + NO + NO2 + 2(N205)) were made along ER-2 flight paths. The flow characteristics of the NO(y) instrument allow us to derive the condensed NO(y) amount (assumed to be HN03) present during polar stratospheric cloud (PSC) events. Analysis of the January 24th flight indicates that this condensed HN03 amount does not agree well with the aerosol volume if the observed PSCs are composed of solid nitric acid trihydrate (NAT), as is generally assumed. However, the composition agrees well with that predicted for liquid H2S04/HN03/H20 solution droplets using a new Aerosol Physical Chemistry Model (APCM). The agreement corresponds in detail to variations in temperature and humidity. The weight percentages of H2SO4, HN03, and H2O derived from the measurements all correspond to those predicted for ternary, liquid solutions.

  6. Optical imaging of cloud-to-stratosphere/mesosphere lightning over the Amazon Basin (CS/LAB)

    NASA Technical Reports Server (NTRS)

    Sentman, Davis D.; Wescott, Eugene M.

    1995-01-01

    The purpose of the CS/LAB project was to obtain images of cloud to stratosphere lightning discharges from aboard NASA's DC-8 Airborne Laboratory while flying in the vicinity of thunderstorms over the Amazon Basin. We devised a low light level imaging package as an add-on experiment to an airborne Laboratory deployment to South America during May-June, 1993. We were not successful in obtaining the desired images during the South American deployment. However, in a follow up flight over the American Midwest during the night of July 8-9, 1993 we recorded nineteen examples of the events over intense thunderstorms. From the observations were estimated absolute brightness, terminal altitudes, flash duration, horizontal extents, emission volumes, and frequencies relative to negative and positive ground strokes.

  7. Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Toohey, D. W.; Avallone, L. M.; Anderson, J. G.; Newman, P.; Lait, L.; Schoeberl, M. R.; Elkins, J. W.; Chan, K. R.

    1993-01-01

    Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses of up to 1 ppbv, which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 -/+ 4 kelvin. High ClO was always accompanied by loss of HCl mixing ratios equal to 1/2(ClO+ 2Cl2O2). These data indicate that the heterogeneous reaction HCl + ClONO2 - Cl2 + HNO3 on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO2, not HCl.

  8. Detection of Ice Polar Stratospheric Clouds from Assimilation of Atmospheric Infrared Sounder Data

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Benson, Craig; Liu, Hui-Chun; Pawson, Steven; Chang, Ping; Riishojgaard, Lars Peter

    2006-01-01

    A novel technique is presented for detection of ice polar stratospheric clouds (PSCs) that form at extremely low temperatures in the lower polar stratosphere during winter. Temperature is a major factor in determining abundance of PSCs, which in turn provide surfaces for heterogeneous chemical reactions leading to ozone loss and radiative cooling. The technique infers the presence of ice PSCs using radiances from the Atmospheric Infrared Sounder (AIRS) in the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. Brightness temperatures are computed from short-term GEOS-5 forecasts for several hundred AIRS channels, using a radiation transfer module. The differences between collocated AIRS observations and these computed values are the observed-minus-forecast (O-F) residuals in the assimilation system. Because the radiation model assumes clear-sky conditions, we hypothesize that these O-F residuals contain quantitative information about PSCs. This is confirmed using sparse data from the Polar Ozone and Aerosol Measurement (POAM) III occultation instrument. The analysis focuses on 0-F residuals for the 6.79pm AIRS moisture channel. At coincident locations, when POAM III detects ice clouds, the AIRS O-F residuals for this channel are lower than -2K. When no ice PSCs are evident in POAM III data, the AIRS 0-F residuals are larger. Given this relationship, the high spatial density of AIRS data is used to construct maps of regions where 0-F residuals are lower than -2K, as a proxy for ice PSCs. The spatial scales and spatio-temporal variations of these PSCs in the Antarctic and Arctic are discussed on the basis of these maps.

  9. Effects of Polar Stratospheric Clouds in the Nimbus 7 LIMS Version 6 Data Set

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis; Harvey, V. Lynn

    2016-01-01

    The historic Limb Infrared Monitor of the Stratosphere (LIMS) measurements of 1978-1979 from the Nimbus 7 satellite were re-processed with Version 6 (V6) algorithms and archived in 2002. The V6 data set employs updated radiance registration methods, improved spectroscopic line parameters, and a common vertical resolution for all retrieved parameters. Retrieved profiles are spaced about every 1.6 of latitude along orbits and include the additional parameter of geopotential height. Profiles of O3 are sensitive to perturbations from emissions of polar stratospheric clouds (PSCs). This work presents results of implementing a first-order screening for effects of PSCs using simple algorithms based on vertical gradients of the O3 mixing ratio. Their occurrences are compared with the co-located, retrieved temperatures and related to the temperature thresholds needed for saturation of H2O and/or HNO3 vapor onto PSC particles. Observed daily locations where the major PSC screening criteria are satisfied are validated against PSCs observed with the Stratospheric Aerosol Monitor (SAM) II experiment also on Nimbus 7. Remnants of emissions from PSCs are characterized for O3 and HNO3 following the screening. PSCs may also impart a warm bias in the co-located LIMS temperatures, but by no more than 1-2K at the altitudes of where effects of PSCs are a maximum in the ozone; thus, no PSC screening was applied to the V6 temperatures. Minimum temperatures vary between 187 and 194K and often occur 1 to 2 km above where PSC effects are first identified in the ozone (most often between about 21 and 28 hPa). Those temperature-pressure values are consistent with conditions for the existence of nitric acid trihydrate (NAT) mixtures and to a lesser extent of super-cooled ternary solution (STS) droplets. A local, temporary uptake of HNO3 vapor of order 1-3 ppbv is indicated during mid-January for the 550K surface. Seven-month time series of the distributions of LIMS O3 and HNO3 are shown based

  10. Effects of polar stratospheric clouds in the Nimbus 7 LIMS Version 6 data set

    NASA Astrophysics Data System (ADS)

    Remsberg, Ellis; Harvey, V. Lynn

    2016-07-01

    The historic Limb Infrared Monitor of the Stratosphere (LIMS) measurements of 1978-1979 from the Nimbus 7 satellite were re-processed with Version 6 (V6) algorithms and archived in 2002. The V6 data set employs updated radiance registration methods, improved spectroscopic line parameters, and a common vertical resolution for all retrieved parameters. Retrieved profiles are spaced about every 1.6° of latitude along orbits and include the additional parameter of geopotential height. Profiles of O3 are sensitive to perturbations from emissions of polar stratospheric clouds (PSCs). This work presents results of implementing a first-order screening for effects of PSCs using simple algorithms based on vertical gradients of the O3 mixing ratio. Their occurrences are compared with the co-located, retrieved temperatures and related to the temperature thresholds needed for saturation of H2O and/or HNO3 vapor onto PSC particles. Observed daily locations where the major PSC screening criteria are satisfied are validated against PSCs observed with the Stratospheric Aerosol Monitor (SAM) II experiment also on Nimbus 7. Remnants of emissions from PSCs are characterized for O3 and HNO3 following the screening. PSCs may also impart a warm bias in the co-located LIMS temperatures, but by no more than 1-2 K at the altitudes of where effects of PSCs are a maximum in the ozone; thus, no PSC screening was applied to the V6 temperatures. Minimum temperatures vary between 187 and 194 K and often occur 1 to 2 km above where PSC effects are first identified in the ozone (most often between about 21 and 28 hPa). Those temperature-pressure values are consistent with conditions for the existence of nitric acid trihydrate (NAT) mixtures and to a lesser extent of super-cooled ternary solution (STS) droplets. A local, temporary uptake of HNO3 vapor of order 1-3 ppbv is indicated during mid-January for the 550 K surface. Seven-month time series of the distributions of LIMS O3 and HNO3 are shown

  11. Formation of Molecular Clouds and Initial Conditions of Star Formation

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi

    2013-07-01

    Using three-dimensional magnetohydrodynamic simulations, including the effects of radiative cool- ing/heating, chemical reactions, self-gravity and thermal conduction, we investigate the formation of molecular clouds in the multi-phase interstellar medium. We consider the formation of molecular clouds due to accretion of HI clouds as suggested by recent observations. Our simulations show that the initial HI medium is piled up behind the shock waves induced by accretion flows. Since the accreting medium is highly inhomogeneous as a consequence of thermal instability, a newly formed molecular cloud becomes very turbulent owing to the development of the Richtmyer-Meshkov instability. The kinetic energy of the turbulence dominates the thermal, magnetic, and gravitational energies. However, the kinetic energy measured using CO-fraction-weighted density is comparable to the other energies, once the CO molecules are sufficiently formed as a result of UV shielding. This suggests that the true kinetic energy of turbulence in molecular clouds as a whole can be much larger than the kinetic energy of turbulence estimated by using line widths of molecular emission. We find that dense clumps in the molecular cloud show the following evolution: the typical plasma beta of the clumps is roughly constant; the size-ělocity dispersion relation follows Larson's law, irrespective of the density; and the clumps evolve into magnetically supercritical cores by clump-clump collisions. These statistical properties would represent the initial conditions of star formation.

  12. A multi-wavelength classification method for polar stratospheric cloud types using infrared limb spectra

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Höpfner, Michael; Griessbach, Sabine; Müller, Rolf; Pitts, Michael C.; Orr, Andrew M. W.; Riese, Martin

    2016-08-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on board the ESA Envisat satellite operated from July 2002 until April 2012. The infrared limb emission measurements represent a unique dataset of daytime and night-time observations of polar stratospheric clouds (PSCs) up to both poles. Cloud detection sensitivity is comparable to space-borne lidars, and it is possible to classify different cloud types from the spectral measurements in different atmospheric windows regions. Here we present a new infrared PSC classification scheme based on the combination of a well-established two-colour ratio method and multiple 2-D brightness temperature difference probability density functions. The method is a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption. The method has been tested in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions, geometries, and composition. The Bayesian classifier distinguishes between solid particles of ice and nitric acid trihydrate (NAT), as well as liquid droplets of super-cooled ternary solution (STS). The classification results are compared to coincident measurements from the space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument over the temporal overlap of both satellite missions (June 2006-March 2012). Both datasets show a good agreement for the specific PSC classes, although the viewing geometries and the vertical and horizontal resolution are quite different. Discrepancies are observed between the CALIOP and the MIPAS ice class. The Bayesian classifier for MIPAS identifies substantially more ice clouds in the Southern Hemisphere polar vortex than CALIOP. This disagreement is attributed in part to the difference in the sensitivity on mixed-type clouds. Ice seems to dominate the spectral behaviour in the limb infrared spectra and may cause an overestimation in ice occurrence

  13. Formation of giant molecular clouds in global spiral structures: The role of orbital dynamics and cloud-cloud collisions

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.; Stewart, G. R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes.

  14. Attenuation by clouds of UV radiation for low stratospheric ozone conditions

    NASA Astrophysics Data System (ADS)

    Orte, Facundo; Wolfram, Elian; Salvador, Jacobo; D'Elia, Raúl; Quiroga, Jonathan; Quel, Eduardo; Mizuno, Akira

    2017-02-01

    Stratospheric poor ozone air masses related to the polar ozone hole overpass subpolar regions in the Southern Hemisphere during spring and summer seasons, resulting in increases of surface Ultraviolet Index (UVI). The impact of these abnormal increases in the ultraviolet radiation could be overestimated if clouds are not taking into account. The aim of this work is to determine the percentage of cases in which cloudiness attenuates the high UV radiation that would reach the surface in low total ozone column situations and in clear sky hypothetical condition for Río Gallegos, Argentina. For this purpose, we analysed UVI data obtained from a multiband filter radiometer GUV-541 (Biospherical Inc.) installed in the Observatorio Atmosférico de la Patagonia Austral (OAPA-UNIDEF (MINDEF - CONICET)) (51 ° 33' S, 69 ° 19' W), Río Gallegos, since 2005. The database used covers the period 2005-2012 for spring seasons. Measured UVI values are compared with UVI calculated using a parametric UV model proposed by Madronich (2007), which is an approximation for the UVI for clear sky, unpolluted atmosphere and low surface albedo condition, using the total ozone column amount, obtained from the OMI database for our case, and the solar zenith angle. It is observed that ˜76% of the total low ozone amount cases, which would result in high and very high UVI categories for a hypothetical (modeled) clear sky condition, are attenuated by clouds, while 91% of hypothetical extremely high UVI category are also attenuated.

  15. A synopsis of CALIPSO Polar Stratospheric Cloud Observations from 2006-2014

    NASA Astrophysics Data System (ADS)

    Pitts, Michael C.; Poole, Lamont R.

    2014-10-01

    Polar stratospheric clouds (PSCs) are known to play key roles in the springtime chemical depletion of ozone at high latitudes. PSC particles provide sites for heterogeneous chemical reactions that transform stable chlorine and bromine reservoir species into highly reactive ozone-destructive forms. Furthermore, large nitric acid trihydrate (NAT) PSC particles can irreversibly redistribute odd nitrogen through gravitational sedimentation, which prolongs the ozone depletion process by slowing the reformation of the stable chlorine reservoirs. Spaceborne observations from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite are providing a rich new dataset for studying PSCs. CALIOP began data collection in mid-June 2006 and has since acquired, on average, over 300,000 backscatter profiles daily at latitudes between 55° and 82° in both hemispheres. PSCs are detected in the CALIOP backscatter profiles as enhancements above the background aerosol in either 532-nm scattering ratio (the ratio of total-to-molecular backscatter) or 532-nm perpendicular-polarized backscatter. CALIOP PSCs are separated into composition classes based on the ensemble 532- nm scattering ratio and 532-nm particulate depolarization ratio (which is sensitive to the presence of non-spherical, i.e. NAT and ice particles). In this paper, we provide an overview of the CALIOP PSC measurements and then examine the vertical and spatial distribution of PSCs in the Arctic and Antarctic on vortex-wide scales for entire PSC seasons over the more than eight-year data record.

  16. Dense cloud formation and star formation in a barred galaxy

    NASA Astrophysics Data System (ADS)

    Nimori, M.; Habe, A.; Sorai, K.; Watanabe, Y.; Hirota, A.; Namekata, D.

    2013-03-01

    We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star formation, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2MASS data from the barred spiral galaxy, M83. Since the environment for cloud formation and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud formation and the subsequent star formation. Our simulation uses for an initial 80 Myr isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than 104 M⊙ (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the identified clump's internal motion with the clump size is similar to that observed in the molecular clouds of our Galaxy. We find that the virial parameters for clumps in the bar region are larger than that in the spiral arm region. From our numerical results, we estimate star formation in the bar and spiral arm regions by applying the simple model of Krumholz & McKee (2005). The mean relation between star formation rate and gas surface density agrees well with the observed Kennicutt-Schmidt relation. The star formation efficiency in the bar region is ˜60 per cent of the spiral arm region. This trend is consistent with observations of barred galaxies.

  17. Long-term measurements of Polar Stratospheric Clouds with the Esrange lidar

    NASA Astrophysics Data System (ADS)

    Achtert, Peggy; Tesche, Matthias; Blum, Ulrich

    2014-05-01

    Polar Stratospheric Clouds (PSCs) play a key role for ozone depletion in the polar stratosphere whose magnitude depends on the type of PSC and its lifetime and extent. PSCs are classified into three types (PSC Ia: nitric acid di- or trihydrate crystals, NAD or NAT; PSC Ib: supercooled liquid ternary solutions, STS; PSC II: ice) according to their particle composition and to their physical phase. This study presents long-term statistics of PSC occurrence from measurements with the lidar system at the Esrange Space Centre (68°N, 21°E), northern Sweden. The study gives an overview of the occurrence frequency of different PSC types in connection to the prevailing meteorological conditions for the northern hemispheric winters from 1996/97 to 2013/14. During these 18 years, most of the measurements were conducted in January. The geographical location of Esrange in the lee of the Scandinavian mountain range allows for the observation of a wide range of PSC growth conditions due to mountain-wave activity. The Esrange lidar data set contains hourly mean values of the parallel and perpendicularly polarized backscatter ratio and the linear particle depolarization ratio - all measured at 532 nm. These parameters are used for PSC classification. The lowest occurrence frequency is found for PSCs of type II (6% for the entire period). This low occurrence rate is reasonable since PSCs of type II are formed at temperatures below the ice-frost point. Such temperatures are rarely reached in the Arctic polar vortex. Most of the observations between 1997 and 2014 showed low particle depolarization ratios and low backscatter ratios according to which observed PSCs were classified as type Ib (47%) or mixtures (33%). The remaining 13% of the observation were classified as type Ia PSCs (NAT particles).

  18. Retrieval of Polar Stratospheric Cloud Microphysical Properties From Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, Susanne; Reichardt, Jens; Yang, Ping; McGee, Thomas J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Knowledge of particle sizes and number densities of polar stratospheric clouds (PSCs) is highly important, because they are critical parameters for the modeling of the ozone chemistry of the stratosphere. In situ measurements of PSC particles are rare. the main instrument for the accumulation of PSC data are lidar systems. Therefore the derivation of some microphysical properties of PSCS from the optical parameters measured by lidars would be highly beneficial for ozone research. Inversion of lidar data obtained in the presence of PSCs formed from crystalline particles type 11 and the various nitric acid tri Ydrrate (NAT) types cannot be easily accomplished, because a suitable scattering theory for small faceted crystals has not been readily available tip to now. As a consequence, the T-matrix method is commonly used for the interpretation of these PSC lidar data. Here the assumption is made that the optical properties of an ensemble of spheroids resemble those of crystalline PSCs, and microphysical properties of the PSC are inferred from the optical signatures of the PSC at two or more wavelengths. The problem with the T-matrix approach is that the assumption of spheroidal instead of faceted particles can lead to dramatically wrong results: Usually cloud particle properties are deduced from analysis of lidar profiles of backscatter ratio and depolarization ratio. The particle contribution to the backscatter ratio is given by the product of the particle number density and the backscattering cross section. The latter is proportional to the value of the particle's scattering phase function at 180 degrees scattering angle. At 180 degrees however, the phase functions of rough, faceted crystals and of spheroids with same maximum dimension differ by a factor of 6. From this it follows that for a PSC consisting of faceted crystals, the particle number density is underestimated by roughly the same factor if spheroidal particles are unrealistically assumed. We are currently

  19. Jovian clouds and haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Baines, Kevin H.; Friedson, A. James; Banfield, Don; Ragent, Boris; Taylor, Fred W.

    Tropospheric clouds: thermochemical equilibrium theory and cloud microphysical theory, condensate cloud microphysics, tropospheric cloud and haze distribution - observations, results from the Galileo probe experiments, Galileo NIMS observations and results, Galileo SSE observations and results, recent analyses of ground-based and HST data; Tropospheric clouds and haze: optical and physical properties: partical composition, particle optical properties, size and shape, chromophores; Stratospheric haze: particle distribution, optical properties, size and shape, particle formation.

  20. Titan's Stratospheric Aerosols and Condensate Clouds as Observed with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    de Kok, Remco; Irwin, P. G.; Teanby, N. A.; Samuelson, R. E.; Nixon, C. A.; Jennings, D. E.; Fletcher, L.; Howett, C.; Calcutt, S. B.; Bowles, N. E.; Flasar, F. M.; Taylor, F. W.; Cassini/CIRS Team

    2006-09-01

    Four broad spectral features were identified in far-infrared limb spectra from the Cassini Composite Infrared Spectrometer (CIRS). The features are broader than the spectral resolution, which suggests that they are caused by particulates in Titan's stratosphere. We derive here the spectral properties and variations with altitude and latitude for these four features. Titan's main aerosol is called Haze 0 here. It is present at all wavenumbers in the far-infrared and is found to have a fractional scale height between 1.6-1.7 with a small increase in opacity in the north. A second feature around 140 cm-1 (Haze A) has similar spatial properties to Haze 0, but has a smaller fractional scale height of 1.2-1.3. Both Haze 0 and Haze A show an increase in abundance below 100 km, perhaps indicative of a scattering cloud. Two other features (Haze B around 220 cm-1 and Haze C around 190 cm-1) have a large maximum in their density profiles at 140 km and 90 km respectively. Haze B is much more abundant in the northern hemisphere compared to the southern hemisphere. Haze C also shows a large increase towards the north, but then disappears at 85oN. This work is supported by the Prins Bernhard Cultuurfond and Pieter Beijer Fonds.

  1. Heterogeneous chemistry on Antarctic polar stratospheric clouds - A microphysical estimate of the extent of chemical processing

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Turco, R. P.; Elliott, S.

    1993-01-01

    A detailed model of polar stratospheric clouds (PSCs), which includes nucleation, condensational growth. and sedimentation processes, has been applied to the study of heterogeneous chemical reactions. For the first time, the extent of chemical processing during a polar winter has been estimated for an idealized air parcel in the Antarctic vortex by calculating in detail the rates of heterogeneous reactions on PSC particles. The resulting active chlorine and NO(x) concentrations at first sunrise are analyzed with respect to their influence upon the Antarctic ozone hole using a photochemical model. It is found that the species present at sunrise are primarily influenced by the relative values of the heterogeneous reaction rate constants and the initial gas concentrations. However, the extent of chlorine activation is also influenced by whether N2O5 is removed by reaction with HCl or H2O. The reaction of N2O5 with HCl, which occurs rapidly on type 1 PSCs, activates the chlorine contained in the reservoir species HCl. Hence the presence and surface area of type 1 PSCs early in the winter are crucial in determining ozone depletion.

  2. Qualitative analysis of the e-cloud formation

    SciTech Connect

    Heifets, Samuel A

    2002-01-17

    The qualitative analysis of the electron cloud formation is presented. Two mechanisms of the cloud formation, generation of jets of primary photo-electrons and thermalization of electrons in the electron cloud, are analyzed and compared with simulations for the NLC damping ring.

  3. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  4. A Lidar and Backscatter Sonde Aerosol Measurement Campaign at Table Mountain During February-March 1997: Observations of Stratospheric Background Aerosols and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M.; Haner, D.; Kjome, N.; McDermid, I.; McGee, T.; Rosen, J.; Schafer, H. J.; Schrems, O.

    1999-01-01

    Altitude profiles of backscater ratio of the stratospheric background aerosol layer at altitudes between 15 and 25 km and high-altitude cirrus clouds at altitudes below 13 km are analyzed and discussed. Cirrus clouds were present on 16 of the 26 campaign nights.

  5. 21st Century Trends in Antarctic Temperature and Polar Stratospheric Cloud (PSC) Area in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Newman, P. A.

    2010-01-01

    This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.

  6. Gravity Waves in the Polar Stratosphere and Mesosphere and Their Relations with Ice Cloud Observed Sofie/AIM

    NASA Astrophysics Data System (ADS)

    Liu, X.; Yue, J.; Xu, J.; Wang, L.; Yuan, W.; Russell, J. M., III; Hervig, M. E.

    2014-12-01

    A six-years (2007-2013) temperature dataset from the Solar Occultation for Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite is used to extract gravity waves (GWs) in the polar stratosphere and mesosphere of both hemispheres. These data are continuous in the polar regions. The monthly mean GW potential energy (PE) increases exponentially with a scale height of ~13 km in the upper stratosphere and mesosphere. GWs are stronger in the winter than in the summer and exhibit strong annual variation. GWs are stronger in the southern polar region (SPR) than in the northern polar region (NPR) except in the summer months. This is likely because there are stronger and longer-lasting zonal wind jets in the SPR stratosphere, as revealed from Modern-Era Retrospective analysis for Research and Applications (MERRA) wind data. The longitudinal variations of PE in the winter polar stratosphere are consistent with the elevated regions. In the mesosphere, the longitudinal variations of PE do not vary with height significantly. The correlations between GW PE and the column ice water content (IWC, an indicator of the polar mesosphere cloud) exhibit longitudinal and annual variations.

  7. Effects of the El Chichon volcanic cloud in the stratosphere on the polarization of light from the sky.

    PubMed

    Coulson, K L

    1983-04-01

    A dense volcanic cloud from the El Chichon volcanic eruption has been observed in the stratosphere over Hawaii since it was first discovered at the Mauna Loa Observatory 9 Apr. 1982. Lidar observations have shown the cloud to have been dense and highly layered in its early stages, but as the cloud matured it became more homogeneous and the top portion underwent considerable enhancement. Measurements of the degree of polarization of skylight at the zenith and across the sky in the sun's vertical show that the polarization field is strongly modified by the effects of the cloud and that the modifications are of a different nature from those produced by high turbidity in the lower layers of the atmosphere. The degree of polarization at the zenith during twilight shows a secondary maximum at a solar depression D = 4.8-5 degrees, a secondary minimum at D = 4 degrees, a primary maximum at D = 1-2 degrees, and a rapid decrease to values generally <10% in the immediate sunrise period. The positions of the neutral points are strongly affected by the cloud, the Arago point being shifted from its normal position by as much as 15-20 degrees and the Babinet point being shifted even farther. Multiple Babinet points were observed on some occasions. The measurements indicate the polarization field to be modified more by the El Chichon cloud than it was by the clouds from previous eruptions which have occurred during this century.

  8. Detection of global tropospheric clouds and polar stratospheric clouds over Antarctica using thermal infrared spectral data observed by TANSO-FTS/GOSAT

    NASA Astrophysics Data System (ADS)

    Someya, Yu; Imasu, Ryoichi; Ota, Yoshifumi; Saitoh, Naoko

    2014-05-01

    Global tropospheric cloud distribution was derived from thermal infrared band data observed by Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse gases Observation SATellite (GOSAT). It is expected that this band has ability to detect optically thin clouds compared with Cloud and Aerosol Imager (CAI) which is the other sensor on GOSAT. In addition, polar stratospheric clouds (PSCs) which can be harder to detect than the tropospheric clouds because of high reflectivity or low temperature of the surface and their low optical thickness were also detected. We have modified CO2 slicing method which was developed as one of the cirrus cloud detection techniques using thermal infrared band data to detect thin clouds more stably. The pseudo spectral channels were defined as sets of several actual spectral channels between 700cm-1 and 750cm-1 which have weighting function peak height in a same height range for each 0.5km. These pseudo channels were optimized with simulation studies using a multi-scattering radiative transfer code, Polarized radiance System for Transfer of Atmospheric Radiation (Pstar) 3 for several temperature profile patterns prepared based on latitudes and temperature at 500hPa. GOSAT data was analyzed with the combination of these pseudo channels determined for each of observation points from these simulations and the results were compared with the observational results from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) / Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The comparisons about global cloud are based on the coincident observations in 2010. Monthly occurrences of Antarctic PSCs were compared for each grid area from June to September in 2010. As a result, the correlation coefficients in each month are 0.76, 0.71, 0.75, and 0.61 relatively. Though that is low value in September, it can be explained by decrease of occurrences.

  9. Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations.

    PubMed

    Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; Di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen

    2005-06-01

    A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

  10. Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations

    NASA Astrophysics Data System (ADS)

    Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen

    2005-06-01

    A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

  11. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  12. A Long Data Record (1979-2003) of Stratospheric Ozone Derived from TOMS Cloud Slicing: Comparison with SAGE and Implications for Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerry R.; Chandra, Sushil; Bhartia, Pawan K.

    2004-01-01

    It is generally recognized that Stratospheric Aerosols and Gas Experiment (SAGE) stratospheric ozone data have become a standard long-record reference field for comparison with other stratospheric ozone measurements. This study demonstrates that stratospheric column ozone (SCO) derived from total ozone mapping spectrometer (TOMS) Cloud Slicing may be used to supplement SAGE data as a stand-alone long- record reference field in the tropics extending to middle and high latitudes over the Pacific. Comparisons of SAGE I1 version 6.2 SCO and TOMS version 8 Cloud Slicing SCO for 1984-2003 exhibit remarkable agreement in monthly ensemble means to within 1-3 DU (1 - 1.5% of SCO) despite being independently-calibrated measurements. An important component of our study is to incorporate these column ozone measurements to investigate long-term trends for the period 1979-2003. Our study includes Solar Backscatter Ultraviolet (SBW) version 8 measurements of upper stratospheric column ozone (i.e., zero to 32 hPa column ozone) to characterize seasonal cycles and seasonal trends in this region, as well as the lower stratosphere and troposphere when combined with TOMS SCO and total column ozone. The trend analyses suggest that most ozone reduction in the atmosphere since 1979 in mid-to-high latitudes has occurred in the Lower stratosphere below approx. 25 km. The delineation of upper and lower stratospheric column ozone indicate that trends in the upper stratosphere during the latter half of the 1979-2003 period have reduced to near zero globally, while trends in the lower stratosphere have become larger by approx. 5 DU decade%om the tropics extending to mid-latitudes in both hemispheres. For TCO, the trend analyses suggest moderate increases over the 25-year time record in the extra-tropics of both hemispheres of around 4-6 DU (Northern Hemisphere) and 6-8 DU (Southern Hemisphere).

  13. Star formation triggered by cloud-cloud collisions

    NASA Astrophysics Data System (ADS)

    Balfour, S. K.; Whitworth, A. P.; Hubber, D. A.; Jaffa, S. E.

    2015-11-01

    We present the results of smoothed particle hydrodynamics simulations in which two clouds, each having mass MO = 500 M⊙ and radius RO = 2 pc, collide head-on at relative velocities of ΔvO = 2.4, 2.8, 3.2, 3.6 and 4.0 km s-1. There is a clear trend with increasing ΔvO. At low ΔvO, star formation starts later, and the shock-compressed layer breaks up into an array of predominantly radial filaments; stars condense out of these filaments and fall, together with residual gas, towards the centre of the layer, to form a single large-N cluster, which then evolves by competitive accretion, producing one or two very massive protostars and a diaspora of ejected (mainly low-mass) protostars; the pattern of filaments is reminiscent of the hub and spokes systems identified recently by observers. At high ΔvO, star formation occurs sooner and the shock-compressed layer breaks up into a network of filaments; the pattern of filaments here is more like a spider's web, with several small-N clusters forming independently of one another, in cores at the intersections of filaments, and since each core only spawns a small number of protostars, there are fewer ejections of protostars. As the relative velocity is increased, the mean protostellar mass increases, but the maximum protostellar mass and the width of the mass function both decrease. We use a Minimal Spanning Tree to analyse the spatial distributions of protostars formed at different relative velocities.

  14. A Unified Satellite-Observation Polar Stratospheric Cloud (PSC) Database for Long-Term Climate-Change Studies

    NASA Technical Reports Server (NTRS)

    Fromm, Michael; Pitts, Michael; Alfred, Jerome

    2000-01-01

    This report summarizes the project team's activity and accomplishments during the period 12 February, 1999 - 12 February, 2000. The primary objective of this project was to create and test a generic algorithm for detecting polar stratospheric clouds (PSC), an algorithm that would permit creation of a unified, long term PSC database from a variety of solar occultation instruments that measure aerosol extinction near 1000 nm The second objective was to make a database of PSC observations and certain relevant related datasets. In this report we describe the algorithm, the data we are making available, and user access options. The remainder of this document provides the details of the algorithm and the database offering.

  15. On the connection between stratospheric water vapour changes and widespread severe denitrification in the Arctic

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Jo; Lossow, Stefan; Stiller, Gabi; Murtagh, Donal

    2013-04-01

    Water vapour is one of the most important greenhouse gases and plays a key role in the chemistry of the upper troposphere and lower stratosphere (UT/LS). Any changes in atmospheric water vapour bring important implications for the global climate. Long-term ground-based and satellite measurements indicate an increase of stratospheric water vapour abundance by an average of 1 ppmv during the last 30 years (1980-2010). Increases in stratospheric water vapour cool the stratosphere but warm the troposphere. Both the cooling of the stratosphere and the increase in water vapour enhance the potential for the formation of polar stratospheric clouds. More than a decade ago it already was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapor could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud particles. In fact, during the two recent Arctic winter 2009/2010 and 2010/2011 the strongest denitrification in the recent decade was measured by Odin/SMR. In the latter winter denitrification lead also to severe ozone depletion with similar extensions as the Antarctic "ozone hole". In this study, the correlation between observed water vapour trends and the recent temperature evolution in the Arctic together with trace gas measurements and PSC observations are considered to investigate a possible connection between the increase in stratospheric water vapour and polar stratospheric cloud formation/denitrification.

  16. Magmatic gas source for the stratospheric SO[sub 2] cloud from the June 15, 1991, eruption of Mount Pinatubo

    SciTech Connect

    Westrich, H.R. ); Gerlach, T.M. )

    1992-10-01

    A water-rich magmatic gas phase escaped explosively from Mount Pinatubo on June 15, 1991, taking with it a load of crystalline and molten material sufficient to form pumice and tephra deposits with an estimated total dense-rock-equivalent volume of 3-5 km[sup 3], and carrying in it enough sulfur to form a 20 Mt SO[sub 2] cloud in the stratosphere. Application of the petrologic method for estimating sulfur degassing during the climatic event from the sulfur content of trapped glass inclusions and matrix glasses in the pumice deposits requires an unacceptably large volume of erupted magma to account for SO[sub 2] in the stratospheric cloud. The ubiquitous presence of primary vapor bubbles in glass inclusions and unaltered anhydrite phenocrysts in the pumice suggest that sulfur was present in a separate H[sub 2]O-rich gas phase of the Pinatubo magma before eruption. Thus, for this eruption, and perhaps others, the petrologic method for estimating sulfur degassing is prone to substantial underestimation of sulfur release and the potential climatic impact of past explosive eruptions.

  17. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER( box model for an idealized parcel in the lower stratosphere at 70 N during winter/spring with different assumed stratospheric coolings and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  18. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K Cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  19. Type I polar stratospheric cloud particles - Concentration, shape, size, light extinction

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Ferry, G. V.; Snetsinger, K. G.; Goodman, J.; Hamill, P.; Livingston, J. M.; Mccormick, M. P.

    1990-01-01

    Results from the flight on January 24, 1989 of the Airborne Arctic Stratospheric Experiment during which the ER-2 aircraft transitioned from unsaturated to ice saturated air at 20 km altitude are presented. Aerosol particles were sampled by wire impactors and examined for number density as a function of particle size by taking photomicrographs in a scanning electron microscope and visually sizing and counting the particles. Differences in the chemical, physical and optical properties of stratospheric aerosol between ice-saturated and nonsaturated air are described.

  20. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  1. Star Formation in High-Latitude Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Magnus McGehee, Peregrine

    2015-08-01

    Galactic star formation preferentially occurs within the dense molecular clouds that reside primarily near the disk mid-plane and are thus seen in projection against the Milky Way. A population of molecular clouds are seen at higher Galactic latitude although distance determinations are required in order to identify those that are actually in extraplanar environments.We review the known high-latitude star formation regions (MBM 12, LDN 1642, and HRK 81.4-77.8) and discuss the nature and environment of other high-latitude molecular clouds. Distances to each of these structures are deduced from optical reddening profiles derived from analysis of Sloan Digital Sky Survey photometry. In particular, we examine those molecular clouds found within the complex of intermediate and high velocity HI clouds that span the Northern 2nd Galactic Quadrant: the Draco clouds, the IVC pair at (l+b) = 135+51 and 135+54, and IREC 306.

  2. Simulation of the climate effects of a geoengineered stratospheric sulfate cloud with the NASA GEOSCCM

    NASA Astrophysics Data System (ADS)

    Oman, L.; Aquila, V.; Colarco, P. R.

    2012-12-01

    Suggested solar radiation management (SRM) methods to mitigate global warming include the injection of sulfur dioxide (SO2 ) in the stratosphere. We present the results from SRM simulation ensemble performed with the NASA GEOS-5 Chemistry Climate Model (GEOSCCM). We focus on the response of the stratosphere to a stratospheric SO2 injection. In particular, we investigate the changes of the stratospheric dynamics and composition, and the impact of an increased aerosol layer on ozone recovery. As prescribed for experiment G4 of the Geoengineering Model Intercomparison Project (GeoMIP), we inject 5 Tg/year of SO2 from 2020 to 2070. The location of the injection is the equator at 0° longitude between 16 km and 25 km altitude. After 2070, we interrupt the SO2 injection and simulate the readjustment until 2090. The emissions scenario is RCP4.5, which predicts a radiative forcing of about 4.5 W/m2 by 2100. This is considered a "medium-low" scenario in terms of radiative forcing. GEOSCCM does not include an interactive ocean model, therefore we use the sea surface temperatures forecasted by the Community Climate System Model Version 4 (CCSM4) for RCP4.5.

  3. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    SciTech Connect

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic and characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.

  4. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE PAGES

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  5. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    SciTech Connect

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.

  6. Do airborne microbes matter for atmospheric chemistry and cloud formation?

    PubMed

    Konstantinidis, Konstantinos T

    2014-06-01

    The role of airborne microbial cells in the chemistry of the atmosphere and cloud formation remains essentially speculative. Recent studies have indicated that microbes might be more important than previously anticipated for atmospheric processes. However, more work and direct communication between microbiologists and atmospheric scientists and modellers are necessary to better understand and model bioaerosol-cloud-precipitation-climate interactions.

  7. Comet Formation in Collapsing Pebble Clouds: Pebble Formation

    NASA Astrophysics Data System (ADS)

    Lorek, Sebastian; Lacerda, Pedro; Blum, Jürgen

    2016-10-01

    The formation of comets by gradual growth from (sub-)micron sized ice and dust monomers to km-sized bodies suffers from growth barriers (bouncing, fragmentation, drift). Growth stalls at sizes between mm and m, rendering it considerably difficult to form km-sized objects. However, the streaming instability and subsequent gravitational collapse of clouds of pebbles (particle agglomerates) provide an alternative. The pebbles require Stokes numbers between 0.01 and 3, which corresponds to sizes between mm and dm, unless the pebbles are very porous. Furthermore, the local solid/gas density ratio must be near unity and the local total mass in solids must be >2-3x higher than the minimum mass solar nebula value (1% of gas mass). The gravitational collapse of the pebble clouds then bypasses the growth barriers, forming km-sized bodies directly. The observed bulk properties of comets, e.g. porosity near 80%, are consistent with this scenario. Okuzumi et al. (2012) showed that including porosity comets can form directly via coagulation from sub-micron monomers. However, this relies on using 0.1 micron monomers and pure sticking collisions. Krijt et al. (2015) included erosion and found that highly porous pebbles around 109 g in mass can form and might trigger the streaming instability. Drazkowska & Dullemond (2014) showed that compact coagulation can lead to triggering the streaming instability. All those studies include only ice and a simplified collision model. However, a large fraction of a comet's mass is dust. Here, we develop a pebble formation model that includes sticking, bouncing, mass transfer/erosion, and fragmentation, as well as porosity. To take dust and ice into account, we extended the collision model for the treatment of mixed pebbles by linearly interpolating the threshold velocities and compression curves between the cases of pure dust and pure ice based on the fractional abundance of dust monomers. Our simulations show that pebble formation with the full

  8. Fourier transform infrared studies of model polar stratospheric cloud surfaces - Growth and evaporation of ice and nitric acid/ice

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Middlebrook, Ann M.

    1990-01-01

    Fourier-transform infrared surface studies are used to probe the microphysical properties of nitric acid trihydrate (NAT) and ice films representative of type I and II polar stratospheric clouds (PSC). Experiments indicate that, on initial exposure to 1.8 microtorr of HNO3, a layer of ice is quantitatively converted to NAT. However, conversion of ice to NAT does not proceed indefinitely, but rather the system reaches saturation. For longer exposures or higher HNO3 pressures, NAM becomes the dominant nitric acid containing species on the surface. Evaporation studies were performed to test the feasibility of a recent denitrification mechanism. The results indicate that ice coated with 0.20 micron of NAT evaporates at a temperature of about 4 C higher than uncoated ice.

  9. Lidar observations of Arctic polar stratospheric clouds, 1988 - Signature of small, solid particles above the frost point

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Osborn, M. T.; Hunt, W. H.

    1988-01-01

    The paper presents recent (January 1988) Arctic airborne lidar data which suggest that Type I polar stratospheric clouds (PSCs) are composed of small solid particles with radii on the order of 0.5 micron. PSCs were observed remotely in the 21-24 km altitude range north of Greenland during a round-trip flight from Andenes, Norway on January 29, 1988, aboard the NASA Wallops Flight Facility P-3 Orion aircraft. Synoptic analyses at the 30-mb level show local temperatures of 191-193 K, which are well above the estimated frost point temperature of 185 K; this suggests that the PSCs were probably of the binary HNO3-H2O (Type I) class.

  10. Global star formation in the L1630 molecular cloud

    NASA Technical Reports Server (NTRS)

    Lada, Elizabeth A.

    1992-01-01

    The first systematic and coordinated surveys for both dense gas and young stellar objects within a single molecular cloud, the L1630 molecular cloud are compared. It is found that (1) star formation in the L1630 molecular cloud occurs almost exclusively within the dense gas; (2) star formation does not occur uniformly throughout the dense gas and is strongly favored in a few very massive dense cores, where efficient conversion of molecular gas into stars has resulted in the production of rich stellar clusters; and (3) high gas densities and high gas mass may be necessary but not sufficient conditions for the formation of star clusters since two of the five most massive dense cores in the cloud have very low levels of star formation activity.

  11. Laboratory analyses of meteoric debris in the upper stratosphere from settling bolide dust clouds

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.; Della Corte, V.; Ferrari, M.; Rotundi, A.; Brunetto, R.

    2016-03-01

    Bolide and fireball fragmentation produce vast amounts of dust that will slowly fall through the stratosphere. DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval) was designed to intercept the nanometer to micrometer meteoric dust from these events for laboratory analyses while it is still in the upper stratosphere. This effort required extraordinary precautions to avoid particle contamination during collection and in the laboratory. Here we report dust from the upper stratosphere that was collected during two campaigns one in 2008 and another in 2011. We collected and characterized forty five uncontaminated meteoric dust particles. The collected particles are alumina, aluminosilica, plagioclase, fassaite, silica, CaCO3, CaO, extreme F-rich Csbnd Osbnd Ca particles, and oxocarbon particles. These particles are found in friable CI and CM carbonaceous chondrite, and unequilibrated ordinary chondrite meteoroids that are the most common source of bolides and fireballs. The oxocarbons have no meteorite counterparts. Some F-bearing CaCO3 particles changed shape when they interacted with the ambient laboratory atmosphere which might indicate their highly unequilibrated state as a result of fragmentation. Equilibrium considerations constrain the thermal regime experienced by the collected particles between ∼2000 °C and ∼1000 °C, as high as 3700 °C and as low as ∼650 °C after 9 s, followed by rapid quenching (μs) to below 1600 °C, but equilibrium conditions during these events is most unlikely. So far the observed thermal conditions in these events put the temperatures between ∼4300 °C and ∼430 °C for 5 s and high cooling rates. Such conditions are present in the immediate wake of meteors and fireballs.

  12. Formation of massive clouds and dwarf galaxies during tidal encounters

    NASA Technical Reports Server (NTRS)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  13. Environmental regulation of cloud and star formation in galactic bars

    NASA Astrophysics Data System (ADS)

    Renaud, F.; Bournaud, F.; Emsellem, E.; Agertz, O.; Athanassoula, E.; Combes, F.; Elmegreen, B.; Kraljic, K.; Motte, F.; Teyssier, R.

    2015-12-01

    The strong time-dependence of the dynamics of galactic bars yields a complex and rapidly evolving distribution of dense gas and star forming regions. Although bars mainly host regions void of any star formation activity, their extremities can gather the physical conditions for the formation of molecular complexes and mini-starbursts. Using a sub-parsec resolution hydrodynamical simulation of a Milky Way-like galaxy, we probe these conditions to explore how and where bar (hydro-)dynamics favours the formation or destruction of molecular clouds and stars. The interplay between the kpc-scale dynamics (gas flows, shear) and the parsec-scale (turbulence) is key to this problem. We find a strong dichotomy between the leading and trailing sides of the bar, in term of cloud fragmentation and in the age distribution of the young stars. After orbiting along the bar edge, these young structures slow down at the extremities of the bar, where orbital crowding increases the probability of cloud-cloud collision. We find that such events increase the Mach number of the cloud, leading to an enhanced star formation efficiency and finally the formation of massive stellar associations, in a fashion similar to galaxy-galaxy interactions. We highlight the role of bar dynamics in decoupling young stars from the clouds in which they form, and discuss the implications on the injection of feedback into the interstellar medium (ISM), in particular in the context of galaxy formation.

  14. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  15. Stratospheric denitrification due to polar aerosol formation: Implications for a future atmosphere with increased CO2

    NASA Astrophysics Data System (ADS)

    Pitari, Giovanni; Ricciardulli, Lucrezia

    The amount of stratospheric denitrification produced by NAT aerosol formation is studied with a photochemical two-dimensional model which includes the effects of zonal asymmetries of the temperature field. The model photochemistry is coupled with a microphysical code for aerosol formation and growth, so that the permanent loss of stratospheric nitric acid and water vapor may be taken into account. The model results for nitric acid relative to the atmospheric chemical composition of 1980 are compared with LIMS data. We show that the level of denitrification may rise substantially if the polar vortex cools down, as it could be the case in a future atmosphere richer in carbon dioxide. A three-dimensional model is used to calculate the temperature perturbation due to an increase of CO2 from 335 ppmv of 1980 (baseline) up to 500 ppmv (predicted for 2050). The photochemical model adopting these new temperatures predicts an average 20% HNO3 column decrease poleward of 45N with respect to baseline. One consequence is that the relative weight of the NOx catalytic cycle for O3 destruction decreases with respect to the present atmosphere.

  16. Environmental conditions regulate the impact of plants on cloud formation

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-02-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.

  17. Environmental conditions regulate the impact of plants on cloud formation

    PubMed Central

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-01-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253

  18. Formation of young massive clusters from turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Fujii, Michiko S.; Portegies Zwart, Simon

    2017-03-01

    We simulate the formation and evolution of young star clusters from turbulent molecular clouds using smoothed-particle hydrodynamics and direct N-body methods. We find that the shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with power-law slopes of β = -1.73. The superposition of mass functions turn out to have a power-law slope of < -2. The mass of the most massive cluster formed from a single molecular cloud with mass M g scales with 6.1 M 0.51 g. The molecular clouds that tend to form massive clusters are much denser than those typical found in the Milky Way. The velocity dispersion of such molecular clouds reaches 20km s-1 and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.

  19. Protostellar formation in rotation interstellar clouds. III. Nonaxisymmetric collapse

    SciTech Connect

    Boss, A.P.

    1980-05-01

    A full three spatial-dimension gravitational hydrodynamics code has been used to follow the collapse of isothermal rotating clouds subjected to various nonaxialy symmetric perturbations (NAP). An initially axially symmetric cloud collapsed to form a ring which then fragmented into a binary protostellar system. A low thermal energy cloud with a large bar-shaped NAP collapsed and fragmented directly into a binary; higher thermal energy clouds damp out such NAPs while higher rotational rotational energy clouds produce binaries with wider separations. Fragmentation into single and binary systems has been seen. The tidal effects of other nearby protostellar clouds are shown to have an important effect upon the collapse and should not be neglected. The three-dimensional calculations indicate that isothermal interstellar clouds may fragment (with or without passing through a transitory ring phase) into protostellar objects while still in the isothermal regime. The fragments obtained have masses and specific spin angular momenta roughly a 10th that of the original cloud. Interstellar clouds and their fragments may pass through successive collapse phases with fragmentation and reduction of spin angular momentum (by conversion to orbital angular momentum and preferential accretion of low angular momentum matter) terminating in the formation of pre--main-sequence stars with the observed pre--main-sequence rotation rates.

  20. Aircraft observations of biomass burning emissions in the lower stratosphere during the Deep Convective Clouds and Chemistry Experiment (DC3)

    NASA Astrophysics Data System (ADS)

    Knapp, D. J.; Montzka, D.; Campos, T. L.; Flocke, F. M.; Stechman, D.; Farris, C.; Rooney, M.; Pan, L.; Apel, E. C.; Hornbrook, R. S.; Riemer, D. D.; Chen, D.; Huey, L. G.; Brock, C. A.; Froyd, K. D.; Liao, J.; Murphy, D. M.; Ryerson, T. B.; Dibb, J. E.; Scheuer, E. M.; Diskin, G. S.; Sachse, G. W.; Gao, R.; Langridge, J. M.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Fromm, M. D.; Lindsey, D.; Weinheimer, A. J.

    2012-12-01

    During test flights for the Deep Convective Clouds and Chemistry Experiment conducted in May and June of 2012, clear indications of biomass burning (BB) were observed in the Lower Stratosphere (LS). Enhancements in CO, aerosols, and CH3CN substantiate the impact of BB effluents on the studied air mass. A large complex of fires southwest of Lake Baikal in Russia had been observed to flare up significantly on May 7, 2012, leading to a strong Aerosol Index signature. The aerosol plume was tracked using AURA Ozone Monitoring Instrument (OMI) and Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO) curtains from the Baikal area, over Northern Siberia, the Aleutian Islands, South Western Canada and ultimately to the DC3 flight study area on May 14, 2012. BB tracers were sampled from the NASA DC8 and the NSF GV aircraft over a lateral range of 600km and an altitude of approximately 11.7 km which is approximately 0.5 km to 1.0 km above the local cold point tropopause.

  1. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltsmans, S. J.

    1988-01-01

    Balloon-borne frost point measurements were performed over Antarctica during September-October 1987 as part of the NOZE II effort at McMurdo. The results show water mixing ratios on the order of 2 ppmv in the 20 km region, suggesting that models of the springtime Antarctic stratosphere should be based on approximately 2 ppmv water vapor. Evidence indicating that some PSCs form at temperatures higher than the frost point in the 15 to 20 km region is discussed. This supports the binary HNO3-H2O theory of PSC composition.

  2. The vapor pressures of supercooled NHO3/H2O solutions. [in polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Hanson, David R.

    1990-01-01

    A procedure utilizing the Gibbs-Duhem relation is used to extrapolate vapor pressures of supercooled HNO3 mixtures to 190 K. Values of A and B from the equation logP = A - B/T are presented for solutions between 0.20 and 0.25 mole fraction HNO3. In the stratosphere, if sufficient HNO3 vapor is present because it has not come into equilibrium with the nitric acid trihydrate, supercooled nitric acid solutions could condense at temperatures up to 1.5 + or - 0.8 K above the ice point.

  3. The Role of Affect in Attitude Formation toward New Technologies: The Case of Stratospheric Aerosol Injection.

    PubMed

    Merk, Christine; Pönitzsch, Gert

    2017-02-28

    This article analyzes determinants of technology acceptance and their interdependence. It highlights the role of affect in attitude formation toward new technologies and examines how it mediates the influence of stable psychological variables on the technology's acceptability. Based on theory and previous empirical evidence, we develop an analytical framework of attitude formation. We test this framework using survey data on attitudes toward stratospheric aerosol injection (SAI), a technology that could be used to counteract global warming. We show that affect is more important than risk and benefit perception in forming judgment about SAI. Negative and positive affect directly alter the perception of risks and benefits of SAI and its acceptability. Furthermore, affect is an important mediator between stable psychological variables-such as trust in governmental institutions, values, and attitudes-and acceptability. A person's affective response is thus guided by her general attitudes and values.

  4. Molecular Clouds, Star Formation and Galactic Structure.

    ERIC Educational Resources Information Center

    Scoville, Nick; Young, Judith S.

    1984-01-01

    Radio observations show that the gigantic clouds of molecules where stars are born are distributed in various ways in spiral galaxies, perhaps accounting for the variation in their optical appearance. Research studies and findings in this area are reported and discussed. (JN)

  5. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  6. Numerical models of Oort Cloud formation and comet delivery

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.

    I use a newly designed numerical algorithm to simulate the dynamics of the Oort Cloud. The processes I model are the formation of the cloud, the current delivery of comets to the planetary region, and long-period comet production during comet showers. Concerning the cloud's formation, I find that the Sun's birth environment dramatically affects the structure of the inner Oort Cloud as well as the amount of material trapped in this region. In addition, the structure of this reservoir is also sensitive to the Sun's orbital history in the Milky Way. This raises the possibility that constraining our inner Oort Cloud's properties can constrain the Sun's dynamical history. In this regard, I use my simulations of comet delivery to better understand what the population of comets passing through the planetary region can tell us about the inner Oort Cloud. I find that the inner Oort Cloud (rather than the scattered disk) dominates the production of planet-crossing TNOs with perihelia beyond 15 AU and semimajor axes greater than a few hundred AU. My results indicate that two objects representing this population (2000 00 67 and 2006 SQ 372 ) have already been detected, and the detection of many analogous objects can constrain the inner Oort Cloud. In addition, these simulations of comet delivery also demonstrate that, contrary to previous understanding, the inner Oort Cloud is a significant and perhaps the dominant source of known long-period comets. This result can be used to place the first observationally motivated upper limit on the inner Oort Cloud's population. Finally, with this maximum population value, I use my comet shower simulations to show that comet showers are unlikely to be responsible for more than one minor extinction event since the Cambrian Explosion.

  7. Connecting the density structure of molecular clouds with star formation

    NASA Astrophysics Data System (ADS)

    Kainulainen, Jouni

    In the current paradigm of turbulence-regulated interstellar medium (ISM), star formation rates of entire galaxies are intricately linked to the density structure of the individual molecular clouds. This density structure is essentially encapsulated in the probability distribution function of volume densities (ρ-PDF), which directly affects the star formation rates predicted by analytic models. Contrasting its fundamental role, the ρ-PDF function has remained virtually unconstrained by observations. I describe in this contribution the recent progress in attaining observational constraints for the column density PDFs (N-PDFs) of molecular clouds that function as a proxy of the ρ-PDFs. Specifically, observational works point towards a universal correlation between the shape of the N-PDFs and star formation activity in molecular clouds. The correlation is in place from the scales of a parsec up to the scales of entire galaxies, making it a fundamental, global link between the ISM structure and star formation.

  8. Thermal instabilities in diffuse molecular clouds - Formation of molecular cloud cores

    NASA Technical Reports Server (NTRS)

    Graziani, Frank R.; Black, David C.

    1987-01-01

    The stability of diffuse clouds to thermal instabilities is examined using the semiempirical cooling function derived by Tarafdar et al. (1985) for these clouds. It is found that diffuse clouds which obey such a cooling function are susceptible to thermal instability at densities n of less than about 70-80/cu cm. The growth rate for instability is large and the mass contained in unstable regions ranges from about 0.001 to 1 solar mass. It is suggested that such instabilities may trigger formation of molecular cloud cores of the type found in low-mass molecular clouds (e.g., TMC-2). Criteria for thermal instability in self-gravitating systems are also derived.

  9. Electric field measuring and display system. [for cloud formations

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.; Lovall, D. D. (Inventor)

    1974-01-01

    An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.

  10. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  11. Star Formation around Mid-Infrared Bubble N37: Evidence of Cloud-Cloud Collision

    NASA Astrophysics Data System (ADS)

    Baug, T.; Dewangan, L. K.; Ojha, D. K.; Ninan, J. P.

    2016-12-01

    We have performed a multi-wavelength analysis of a mid-infrared (MIR) bubble N37 and its surrounding environment. The selected 15‧ × 15‧ area around the bubble contains two molecular clouds (N37 cloud; {V}{lsr} ˜ 37-43 km s-1, and C25.29+0.31; {V}{lsr} ˜ 43-48 km s-1) along the line of sight. A total of seven OB stars are identified toward the bubble N37 using photometric criteria, and two of them are spectroscopically confirmed as O9V and B0V stars. The spectro-photometric distances of these two sources confirm their physical association with the bubble. The O9V star appears to be the primary ionizing source of the region, which is also in agreement with the desired Lyman continuum flux analysis estimated from the 20 cm data. The presence of the expanding H ii region is revealed in the N37 cloud, which could be responsible for the MIR bubble. Using the 13CO line data and photometric data, several cold molecular condensations as well as clusters of young stellar objects (YSOs) are identified in the N37 cloud, revealing ongoing star formation (SF) activities. However, the analysis of ages of YSOs and the dynamical age of the H ii region do not support the origin of SF due to the influence of OB stars. The position-velocity analysis of 13CO data reveals that two molecular clouds are interconnected by a bridge-like structure, favoring the onset of a cloud-cloud collision process. The SF activities (i.e., the formation of YSO clusters and OB stars) in the N37 cloud are possibly influenced by the cloud-cloud collision.

  12. A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Coe, H.; Held, G.

    2007-09-01

    Simulations of overshooting, tropical deep convection using a Cloud Resolving Model with bulk microphysics are presented in order to examine the effect on the water content of the TTL (Tropical Tropopause Layer) and lower stratosphere. This case study is a subproject of the HIBISCUS (Impact of tropical convection on the upper troposphere and lower stratosphere at global scale) campaign, which took place in Bauru, Brazil (22° S, 49° W), from the end of January to early March 2004. Comparisons between 2-D and 3-D simulations suggest that the use of 3-D dynamics is vital in order to capture the mixing between the overshoot and the stratospheric air, which caused evaporation of ice and resulted in an overall moistening of the lower stratosphere. In contrast, a dehydrating effect was predicted by the 2-D simulation due to the extra time, allowed by the lack of mixing, for the ice transported to the region to precipitate out of the overshoot air. Three different strengths of convection are simulated in 3-D by applying successively lower heating rates (used to initiate the convection) in the boundary layer. Moistening is produced in all cases, indicating that convective vigour is not a factor in whether moistening or dehydration is produced by clouds that penetrate the tropopause, since the weakest case only just did so. An estimate of the moistening effect of these clouds on an air parcel traversing a convective region is made based on the domain mean simulated moistening and the frequency of convective events observed by the IPMet (Instituto de Pesquisas Meteorológicas, Universidade Estadual Paulista) radar (S-band type at 2.8 Ghz) to have the same 10 dBZ echo top height as those simulated. These suggest a fairly significant mean moistening of 0.26, 0.13 and 0.05 ppmv in the strongest, medium and weakest cases, respectively, for heights between 16 and 17 km. Since the cold point and WMO (World Meteorological Organization) tropopause in this region lies at ~15.9 km

  13. Precipitation factors leading to arc cloud formation

    NASA Technical Reports Server (NTRS)

    Brundidge, Kenneth C.

    1987-01-01

    The combined efforts of three graduate students and the principal investigator are presented. Satellite observations and interpretation have become increasingly important in the areas of weather research and operational forecasting. One reason is that geostationary satellite imagery is the only meteorological observing tool that can follow the evolution of clouds from the synoptic scale down to the cumulas scale. Therefore, it can depict atmospheric activity which is up to two orders of magnitude smaller than can be resolved by conventional meteorological observations. This unique ability of the satellite provides the meteorologist a mechanism to infer weather events down to the mesoscale. This evolution is the subject of this report.

  14. Formation and spread of aircraft-induced holes in clouds.

    PubMed

    Heymsfield, Andrew J; Thompson, Gregory; Morrison, Hugh; Bansemer, Aaron; Rasmussen, Roy M; Minnis, Patrick; Wang, Zhien; Zhang, Damao

    2011-07-01

    Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced.

  15. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, L.; Backman, L.; Kivi, R.; Karpechko, A.

    2015-08-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry climate model simulation covering years 1990-2013 is compared to observations (satellite and frostpoint hygrometer soundings) and the sources of stratospheric water vapour are studied. According to observations and the simulations the water vapour concentration in the Arctic stratosphere started to increase after year 2006, but around 2011 the concentration started to decrease. Model calculations suggest that the increase in water vapour during 2006-2011 (at 56 hPa) is mostly explained by transport related processes, while the photochemically produced water vapour plays a relatively smaller role. The water vapour trend in the stratosphere may have contributed to increased ICE PSC occurrence. The increase of water vapour in the precense of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. The polar vortex was unusually cold in early 2010 and allowed large scale formation of the polar stratospheric clouds. The cold pool in the stratosphere over the Northern polar latitudes was large and stable and a large scale persistent dehydration was observed. Polar stratospheric ice clouds and dehydration were observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT atmospheric sounding campaign. The observed changes in water vapour were reproduced by the model. Both the observed and simulated decrease of the water vapour in the dehydration layer was up to 1.5 ppm.

  16. Numerical Simulations of Star Formation in Filamentary Dark Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Li, Pak Shing; Klein, Richard I.; McKee, Christopher

    2015-08-01

    Infrared Dark Clouds (IRDCs) are believed to be the precursors to star clusters and massive stars (e.g. Bergin & Tafalla 2007). The complex intertwined braid-like structure of IRDCs (e.g. André et al. 2014) poses a challenge to theorists to explain their dynamics and formation. We have performed large-scale adaptive mesh refinement, driven turbulence, MHD simulations to study the structure and formation of IRDCs. Filamentary structure emerges naturally from the simulations. Magnetic field lines pierce the dark cloud filament primarily in the direction normal to the filament axis. The column density profiles of the main features are well fit by the power law as observations have found (e.g. Hill et al. 2011, Arzoumanian et al. 2011). The dark cloud filaments in the simulation resemble the dark cloud SDC13 (Peretto et al. 2014) and the 3D information from the simulation can be used to explain the observed structure and dynamics of SDC13. We have carried out a detailed analysis of the magnetic field properties of the cloud clumps in our simulations (Li et al. 2015), finding good agreement with the Zeeman observations of Crutcher et al. (2010). We then added radiation, zoomed into the main IRDC filament, and continued one of the simulations to study the star formation inside IRDCs. By including radiation feedback and proto-stellar outflows, we obtain a proto-stellar mass function (PMF) for comparison with theoretical PMFs (McKee & Offner 2010) and the Chabrier IMF. In this presentation, we summarize what we have learned about the formation of filamentary IRDCs, their complex braided filamentary structure, the magnetic properties of cloud clumps inside the IRDC filaments, and star formation in the first half of a free fall time of the system.

  17. Changes in the character of Polar stratospheric clouds over Antarctica in 1992 due to the Pinatubo volcanic aerosol

    SciTech Connect

    Deshler, T.; Johnson, B.J.; Rozier, W.R. )

    1994-02-15

    Vertical profiles of aerosol concentration were measured on 8 occasions from McMurdo Station, Antarctica (78[degrees]S), between late August and early October 1992. Polar stratospheric clouds (PSCs) were observed on 6 of these soundings. The characteristics of PSCs, and ozone, were quite different above and below about 16 km. Above 16 km PSCs were variable in time, with particles > 1.0 [mu]m radius contributing significantly to the surface area, generally < 8 [mu]m[sup 2] cm[sup [minus]3]. Below 16 km PSCs were much more stable and were dominated by high concentrations of smaller particles, < 1.0 [mu]m, with surface areas of 20-30 [mu]m[sup 2] cm[sup [minus]3]. This lower layer coincided with the altitude of the primary Pinatubo volcanic aerosol as measured in mid September and October, and with the 4 km region of the atmosphere where ozone was virtually completed destroyed over Antarctica in 1992. 12 refs., 4 figs.

  18. Open-cell cloud formation over the Bahamas

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Stratospheric Cooling and Arctic Ozone Recovery. Appendix L

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriguez, Jose M.; Tabazadeh, Azadeh

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4 - 0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  20. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    NASA Technical Reports Server (NTRS)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-01-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  1. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  2. A comparison of Arctic lower stratospheric winter temperatures for 1988-89 with temperatures since 1964

    NASA Technical Reports Server (NTRS)

    Nagatani, Ronald M.; Miller, Alvin J.; Gelman, Melvyn E.; Newman, Paul A.

    1990-01-01

    Lower stratospheric temperatures during the Airborne Arctic Stratospheric Expedition are compared with temperatures available since January, 1964. January, 1989, was the coldest averaged January in the last 26 years at high latitude, lower stratospheric levels. There have been other months with temperatures almost as low as the level of January, 1989, and localized temperatures (e.g., minimum polar vortex temperatures) have been lower than that encountered in January 1989. February, 1989, was warmer than average and March, 1989, had some of the highest polar vortex temperatures in the last 26 years. Conditions were therefore not very favorable for Polar Stratospheric Cloud (PSC) formation into early spring.

  3. Convective Formation of Pileus Cloud Near the Tropopause

    NASA Technical Reports Server (NTRS)

    Garrett, Timothy J.; Dean-Day, Jonathan; Liu, Chuntao; Barnett, Brian K.; Mace, Gerald G.; Baumgardner, Darrel G.; Webster, Christopher R.; Bui, T. Paul; Read, William G.; Minnis, Patrick

    2005-01-01

    Pileus clouds form where humid, stably stratified air is mechanically displaced vertically ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. In-situ measurements from off the coast of Honduras during the July 2002 CRYSTALFACE experiment show an example of TTL cirrus associated with, and penetrated by, deep convection. The cirrus was enriched with total water compared to its surroundings, but composed of extremely small ice crystals with effective radii between 2 and 4 m. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus in this case originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that some combination was involved in which, first, convection forced pileus cloud to form from TTL air; second, it punctured the pileus layer, contributing larger ice crystals through interfacial mixing; third, the addition of condensate inhibited evaporation of the original pileus ice crystals in the warm phase of the ensuing gravity wave; fourth, through successive pulses, deep convection formed the observed layer of TTL cirrus. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.

  4. One-dimensional cloud fluid model for propagating star formation

    NASA Technical Reports Server (NTRS)

    Titus, Timothy N.; Struck-Marcell, Curtis

    1990-01-01

    The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.

  5. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Väisänen, Olli; Ruuskanen, Antti; Ylisirniö, Arttu; Miettinen, Pasi; Portin, Harri; Hao, Liqing; Leskinen, Ari; Komppula, Mika; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Virtanen, Annele

    2016-08-01

    The relationship between aerosol hygroscopicity and cloud droplet activation was studied at the Puijo measurement station in Kuopio, Finland, during the autumn 2014. The hygroscopic growth of 80, 120 and 150 nm particles was measured at 90 % relative humidity with a hygroscopic tandem differential mobility analyzer. Typically, the growth factor (GF) distributions appeared bimodal with clearly distinguishable peaks around 1.0-1.1 and 1.4-1.6. However, the relative contribution of the two modes appeared highly variable reflecting the probable presence of fresh anthropogenic particle emissions. The hygroscopicity-dependent activation properties were estimated in a case study comprising four separate cloud events with varying characteristics. At 120 and 150 nm, the activation efficiencies within the low- and high-GF modes varied between 0-34 and 57-83 %, respectively, indicating that the less hygroscopic particles remained mostly non-activated, whereas the more hygroscopic mode was predominantly scavenged into cloud droplets. By modifying the measured GF distributions, it was estimated how the cloud droplet concentrations would change if all the particles belonged to the more hygroscopic group. According to κ-Köhler simulations, the cloud droplet concentrations increased up to 70 % when the possible feedback effects on effective peak supersaturation (between 0.16 and 0.29 %) were assumed negligible. This is an indirect but clear illustration of the sensitivity of cloud formation to aerosol chemical composition.

  6. The Star Formation History of the Lupus Dark Clouds

    NASA Astrophysics Data System (ADS)

    Grocholski, A. J.; Hughes, J. D.

    1999-05-01

    In light of recent HIPPARCOS observations we have revised the distance to the Lupus dark cloud complex upwards. This, along with the adoption of newer pre-main sequence mass tracks and isochrones have led to a new mass function and age distribution. We use calculated masses and ages to discuss the progression of star formation through the Lupus clouds, with particular reference to Lupus 3, which is forming intermediate (3-5Mo) stars and a multitude of very low mass stars (<0.3 Mo).

  7. Rosette: Understanding Star Formation in Molecular Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2010-09-01

    We propose Chandra imaging of three embedded clusters in the Rosette Molecular Cloud (RMC) complex. With complementary existing Spitzer and FLAMINGOS infrared surveys, the Chandra observation is critical for us to: (1) create a complete census of the young stars in the cloud; (2) study the spatial distribution of the young stars in different evolutionary stages within the RMC and the disk frequency in the embedded clusters; (3) construct X-ray Luminosity Function (XLF) and Initial Mass Function (IMF) for the clusters to examine XLF/IMF variations; (4) elucidate star formation history in this complex.

  8. Surface areas and porosities of ices used to simulate stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Keyser, Leon F.; Leu, Ming-Taun

    1993-01-01

    Surface areas, bulk densities, and porosities of ices formed at 85 or 200 K are measured to study the morphology of the vapor-deposited ices that have been used to simulate ice clouds in the laboratory. Surface areas are measured from the Brunauer, Emmett, and Teller (BET) analysis of absorption isotherms obtained at 72.2 K. Bulk densities and porosities are determined photogrammetrically. Results show that water ice and HNO3-H2O ice films deposited from the vapor at temperatures below 200 K exhibit large BET surface areas and are highly porous. For the ices annealed at temperatures above 200 K, external surface areas calculated from the observed particle sizes agree reasonably well with the BET areas, which indicates that the annealed ices are composed of nonporous particles and that the porosity of these ices is due to interstices among the particles.

  9. Biomass Burning Aerosol Impact on Orographic Cloud Formation on Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Christopher, S. A.

    2014-12-01

    In addition to large scale climate change impacts, regional climate forcing due to land cover and land use change and biomass burning aerosols may also be relevant in understanding observed changes at Kilimanjaro. Analysis of satellite detected fires conducted for 2007 show substantial biomass burning in the vicinity of Kilimanjaro and maximum mid visible MODIS retrieved aerosol optical depth over Kilimanjaro during the month of July. For selected case days in 2007, numerical simulations were conducted using WRF Chem to assess the impact of biomass burning aerosols on orographic cloud formation on Kilimanjaro. Numerical modeling experiments with and without smoke emissions were conducted. Satellite derived smoke emissions are utilized in numerical model experiments considering biomass burning aerosol effects. Nested grid configuration was used in the experiments to establish a fine grid of 100 km x 100 km domain and 1 km grid spacing over the complex terrain of Kilimanjaro. For case days considered, numerical model simulations show substantial impact of biomass burning aerosols on orographic cloud formation. There is a net increase in cloud liquid water path with maximum increase in excess of 10%. Orographic precipitation also show increase in rainfall of up to 10% at higher elevations. Whereas there is average reduction in downwelling solar radiation 18 Wm-2 up to elevations of 5000m, impacts at the mountain peaks are minimal. Processes leading to the differences in cloud formation and results from numerical simulations are conducted for additional case study days during other seasons and will be discussed

  10. Observation of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, J.; McCormick, M. P.; Lei, L.

    2015-12-01

    We present the results of analyses performed on high-resolution remotely-sensed and in situ atmospheric measurements of the boundary layer and lower atmosphere centered over the northeast coast of the Hampton Roads body of water in southeast Virginia. This region is adjacent to the confluence of the Chesapeake Bay and the Atlantic Ocean where often times, low-level jets (LLJs) are found in the boundary layer during summer months. An East Hampton Roads Aerosol Flux (EHRAF) campaign, was conducted from the campus of Hampton University (HU) to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars, as well as rawindsondes over a one-week period in May 2014 . LLJs were observed from evening of 20 May to the morning of 21 May, and were found to lead to cloud formation. In this paper, the cloud formation caused by LLJs is analyzed using data that includes high-resolution profiles of: aerosol backscatter, turbulence structure, temperature, wind speed and direction, and water vapor. It is found that enhanced nighttime turbulence triggered by LLJs causes the aerosol and water vapor content of boundary layer to be lifted up forming a well-mixed region. We show that this region contains the cloud condensation nuclei that are very important for the formation of clouds.

  11. Protostellar formation in rotating interstellar clouds. IV. Nonisothermal collapse

    SciTech Connect

    Boss, A.P.

    1984-02-15

    Radiative transfer in the Eddington approximation is included in a multidimensional, self-gravitational, hydrodynamical computer code. Details of the numerical solution and thermodynamic relations are given. Comparison calculations with previous spherically symmetrical models of protostellar collapse are used to validate the basic approach and the artifices which allow the explicit hydrodynamics code to follow the accretion of gas onto a quasi-equilibrium core. A series of axisymmetric models is used to investigate the importance of rotation in collapsing clouds, as the initial amount of angular momentum is lowered, with an emphasis on the possible formation of rings. Rings readily form even in the nonisothermal regime except for very low initial angular momenta; even these clouds may experience ring formation prior to reaching stellar densities. The models imply that other effects (such as gravitational torques or turbulent viscosity) may be necessary to avoid binary formation and thus result in a presolar nebula consistent with the assumptions of either Safronov or Cameron.

  12. Protostellar formation in rotating interstellar clouds. IV Nonisothermal collapse

    NASA Technical Reports Server (NTRS)

    Boss, A. P.

    1984-01-01

    Radiative transfer in the Eddington approximation is included in a multidimensional, self-gravitational, hydrodynamical computer code. Details of the numerical solution and thermodynamic relations are given. Comparison calculations with previous spherically symmetrical models of protostellar collapse are used to validate the basic approach and the artifices which allow the explicit hydrodynamics code to follow the accretion of gas onto a quasi-equilibrium core. A series of axisymmetric models is used to investigate the importance of rotation in collapsing clouds, as the initial amount of angular momentum is lowered, with an emphasis on the possible formation of rings. Rings readily form even in the nonisothermal regime except for very low initial angular momenta; even these clouds may experience ring formation prior to reaching stellar densities. The models imply that other effects (such as gravitational torques or turbulent viscosity) may be necesary to avoid binary formation and thus result in a presolar nebula consistent with the assumptions of either Safronov or Cameron.

  13. Formation of Turbulent and Magnetized Molecular Clouds via Accretion Flows of H I Clouds

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2012-11-01

    Using three-dimensional magnetohydrodynamic simulations, including the effects of radiative cooling/heating, chemical reactions, and thermal conduction, we investigate the formation of molecular clouds in the multi-phase interstellar medium. As suggested by recent observations, we consider the formation of molecular clouds due to accretion of H I clouds. Our simulations show that the initial H I medium is piled up behind the shock waves induced by accretion flows. Since the initial medium is highly inhomogeneous as a consequence of thermal instability, a newly formed molecular cloud becomes very turbulent owing to the development of the Richtmyer-Meshkov instability. The kinetic energy of the turbulence dominates the thermal, magnetic, and gravitational energies throughout the entire 10 Myr evolution. However, the kinetic energy measured using CO-fraction-weighted densities is comparable to the other energies, once the CO molecules are sufficiently formed as a result of UV shielding. This suggests that the true kinetic energy of turbulence in molecular clouds as a whole can be much larger than the kinetic energy of turbulence estimated using line widths of molecular emission. We find that clumps in a molecular cloud show the following statistically homogeneous evolution: the typical plasma β of the clumps is roughly constant langβrang ~= 0.4; the size-velocity dispersion relation is Δv ~= 1.5 km s-1 (l/1 pc)0.5, irrespective of the density; the clumps evolve toward magnetically supercritical, gravitationally unstable cores; and the clumps seem to evolve into cores that satisfy the condition for fragmentation into binaries. These statistical properties may represent the initial conditions of star formation.

  14. Observations of cloud microphysics and ice formation during COPE

    NASA Astrophysics Data System (ADS)

    Taylor, J. W.; Choularton, T. W.; Blyth, A. M.; Liu, Z.; Bower, K. N.; Crosier, J.; Gallagher, M. W.; Williams, P. I.; Dorsey, J. R.; Flynn, M. J.; Bennett, L. J.; Huang, Y.; French, J.; Korolev, A.; Brown, P. R. A.

    2016-01-01

    We present microphysical observations of cumulus clouds measured over the southwest peninsula of the UK during the COnvective Precipitation Experiment (COPE) in August 2013, which are framed into a wider context using ground-based and airborne radar measurements. Two lines of cumulus clouds formed in the early afternoon along convergence lines aligned with the peninsula. The lines became longer and broader during the afternoon due to new cell formation and stratiform regions forming downwind of the convective cells. Ice concentrations up to 350 L-1, well in excess of the expected ice nuclei (IN) concentrations, were measured in the mature stratiform regions, suggesting that secondary ice production was active. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. In the initial cell, drizzle concentrations increased from ˜ 0.5 to ˜ 20 L-1 in around 20 min. Ice concentrations developed up to a few per litre, which is around the level expected of primary IN. The ice images were most consistent with freezing drizzle, rather than smaller cloud drops or interstitial IN forming the first ice. As new cells emerged in and around the cloud, ice concentrations up to 2 orders of magnitude higher than the predicted IN concentrations developed, and the cloud glaciated over a period of 12-15 min. Almost all of the first ice particles to be observed were frozen drops, while vapour-grown ice crystals were dominant in the latter stages. Our observations are consistent with the production of large numbers of small secondary ice crystals/fragments, by a mechanism such as Hallett-Mossop or droplets shattering upon freezing. Some of the small ice froze drizzle drops on contact, while others grew more slowly by vapour deposition. Graupel and columns were seen in cloud penetrations up to the -12 °C level, though many ice particles were mixed habit due to riming and growth by vapour deposition at multiple temperatures

  15. SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Dawson, J. R.; Dickey, John M.; McClure-Griffiths, N. M.; Wong, T.; Hughes, A.; Fukui, Y.; Kawamura, A.

    2013-01-20

    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

  16. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Abstract: Water vapor in the winter arctic stratospheric middleworld (that part of the stratosphere with potential temperatures lower than the tropical tropopause) is important for two reasons: (1) the arctic middleworld is a source of air for the upper troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. The relationship between ozone and CO from aircraft measurements taken during the early, middle and late part of the winter of 1999-2000 show that recent mixing with tropospheric air extends up to ozone values of about 350-450 ppbv. Above that level, the relationship suggests stratospheric air with minimal tropospheric influence. The transition is quite abrupt, particularly in early spring. Trajectory analyses are consistent with these relationships, with a significant drop-off in the percentage of trajectories with tropospheric PV values in their 10-day history as in-situ ozone increases above 400 ppbv. The water distribution is affected by these mixing characteristics, and by cloud formation. Significant cloud formation along trajectories occurs up to ozone values of about 400 ppbv during the early spring, with small, but nonzero probabilities extending to 550 ppbv. Cloud formation in the stratospheric middleworld is minimal during early and midwinter. Also important is the fact that, during early spring 30% of the trajectories near the tropopause (ozone values less than 200 ppbv) have minimum saturation mixing ratios less than 5 ppmv. Such parcels can mix out into the troposphere and could lead to very dry conditions in

  17. Real refractive indices of infrared-characterized nitric-acid/ice films: Implications for optical measurements of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Berland, Brian S.; George, Steven M.; Tolbert, Margaret A.; Toon, Owen B.

    1994-01-01

    The infrared spectra of nitric-acid/ice films representative of polar stratospheric clouds (PSCs) were collected with simultaneous optical interference measurements to determine the real refractive indices at lambda = 632 nm. Ice and amphorous nitric-acid/ice films were prepared by condensation of water and nitric acid vapors onto a wedged Al2O3 substrate. The real refractive indices of these films were determined from the optical interference of a reflected helium-neon laser during film growth. The indices of the amphorous films varied smoothly from n = 1.30 for ice to n = 1.49 for nitric acid, similar to observations in previous work. We were unable to obtain the refractive index of crystlline films during adsorption because of optical scattering caused by surface roughness. Therefore crystlline nitric acid hydrate films were prepared by annealing amphorous nitric-acid/ice films. Further heating caused desorption of the crystalline hydrate films. During desorption, the refractive indices for ice, NAM (nitric acid monohydrate), alpha- and beta-NAT (nitric acid trihydrate) films were measured using the optical interference technique. In agreement with earlier data, the real refractive indices for ice and NAM determined in desorption were n = 1.30 +/- 0.01 and n = 1.53 +/- 0.03, respectively. The real refractive indices for alpha- and beta-NAT were found to be n = 1.51 +/- 0.01 and n greater than or equal to 1.46, respectively. Our measurements also suggest that the shape of crystalline nitric acid particles may depend on whether they nucleate from the liquid or by vapor deposition. If confirmed by future studies, this observation may provide a means of distinguishing the nucleation mechanism of crystalline PSCs.

  18. Numerical Experiments on the Formation and Maintenance of Cirriform Clouds.

    NASA Astrophysics Data System (ADS)

    Starr, David O'connell

    The role and relative importance of the dynamic and diabatic processes influencing the formation and maintenance of ice phase stratiform clouds are investigated at the cloud scale. The primary focus is on fair weather cirrus. A two-dimensional, time dependent, Eulerian numerical model is developed. The grid interval is 100 m and the domain is a vertical plane of (TURN) 3 km depth and (TURN) 6 km horizontal extent. The influence of larger scale processes are incorporated via a specified basic state vertical velocity and the initially specified thermodynamic structure. In addition to energy transformations between potential and kinetic forms and advection by the resolved wind field, other important physical processes, which are incorporated into the model in a parametric fashion, are transports due to subgrid scale processes, phase changes of water, infrared and short-wave radiative processes and the relative fall velocity of cloud particles. The parameterizations are based upon observations and theoretical consideration. This model is unique in its applicability to ice phase stratiform clouds. Comparable parameterizations for liquid phase stratiform clouds are given. The model is described in detail in all aspects. The approach is one of examining the sensitivity of simulations to the specification of various computational and parametric model constants and functions. The characteristics of the model are fully examined and the model is calibrated by means of comparison to observations and theory such that realistic simulations are obtained. The influence of the ice water relative fall speed on the physical properties of the cloud layer and the consequent modulation of the other cloud processes is found to be quite dramatic. Radiative processes are also found to have a significant impact. In particular, significant differences in the organization of convective elements between daytime and nighttime cases are found. Differences between ice phase and liquid phase

  19. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  20. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  1. Rapid formation of molecular clouds from turbulent atomic gas

    NASA Astrophysics Data System (ADS)

    Glover, S. C. O.; Mac Low, M.-M.

    The characteristic lifetimes of molecular clouds remain uncertain and a topic of frequent debate, with arguments having recently been advanced both in support of short-lived clouds, with lifetimes of a few Myr or less (see e.g. Elmegreen 2000; Hartmann et al. 2001) and in support of much longer-lived clouds, with lifetimes of the order of 10 Myr or more (see e.g. Tassis & Mouschovias, 2004; Goldsmith & Li, 2005). An argument that has previously been advanced in favour of longer lived clouds is the apparent difficulty involved in converting sufficient atomic hydrogen to molecular hydrogen within the short timescale required by the rapid cloud formation scenario. However, previous estimates of the time required for this conversion to occur have not taken into account the effects of the supersonic turbulence which is inferred to be present in the atomic gas. In this contribution, we present results from a set of high resolution three-dimensional simulations of turbulence in gravitationally unstable atomic gas. These simulations were performed using a modified version of the ZEUS-MP hydrodynamical code (Norman 2000), and include a detailed treatment of the thermal balance of the gas and of the formation of molecular hydrogen. The effects of photodissociation of H2 by the Galactic UV field are also included, with a simple local approximation used to compute the effects of H2 self-shielding. The results of our simulations demonstrate that H2 formation occurs rapidly in turbulent atomic gas. Starting from purely atomic gas, large quantities of molecular gas can be produced on timescales of less than a Myr, given turbulent velocity dispersions and magnetic field strengths consistent with observations. Moreover, as our simulations underestimate the effectiveness of H2 self-shielding and dust absorption, we can be confident that the molecular fractions which we compute are strong lower limits on the true values. The formation of large quantities of molecular gas on the

  2. The Star Formation History of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Harris, Jason; Zaritsky, Dennis

    2009-11-01

    We present the first ever global, spatially resolved reconstruction of the star formation history (SFH) of the Large Magellanic Cloud (LMC), based on the application of our StarFISH analysis software to the multiband photometry of 20 million of its stars from the Magellanic Clouds Photometric Survey. The general outlines of our results are consistent with previously published results: following an initial burst of star formation, there was a quiescent epoch from approximately 12 to 5 Gyr ago. Star formation then resumed and has proceeded until the current time at an average rate of roughly 0.2 M sun yr-1, with temporal variations at the factor of 2 level. The re-ignition of star formation about 5 Gyr ago, in both the LMC and Small Magellanic Cloud (SMC), is suggestive of a dramatic event at that time in the Magellanic system. Among the global variations in the recent star formation rate are peaks at roughly 2 Gyr, 500 Myr, 100 Myr, and 12 Myr. The peaks at 500 Myr and 2 Gyr are nearly coincident with similar peaks in the SFH of the SMC, suggesting a joint history for these galaxies extending back at least several Gyr. The chemical enrichment history recovered from our StarFISH analysis is in broad agreement with that inferred from the LMC's star cluster population, although our constraints on the ancient chemical enrichment history are weak. We conclude from the concordance between the star formation and chemical enrichment histories of the field and cluster populations that the field and cluster star formation modes are tightly coupled.

  3. Clarifying the dominant sources and mechanisms of cirrus cloud formation.

    PubMed

    Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M

    2013-06-14

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.

  4. How chemistry influences cloud structure, star formation, and the IMF

    NASA Astrophysics Data System (ADS)

    Hocuk, S.; Cazaux, S.; Spaans, M.; Caselli, P.

    2016-03-01

    In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of grain surface chemistry (GSC) on star formation and its impact on the initial mass function (IMF). We follow a contracting translucent cloud in which we treat the gas-grain chemical interplay in detail, including the process of freeze-out. We perform 3D hydrodynamical simulations under three different conditions, a pure gas-phase model, a freeze-out model, and a complete chemistry model. The models display different thermal evolution during cloud collapse as also indicated in Hocuk, Cazaux & Spaans, but to a lesser degree because of a different dust temperature treatment, which is more accurate for cloud cores. The equation of state (EOS) of the gas becomes softer with CO freeze-out and the results show that at the onset of star formation, the cloud retains its evolution history such that the number of formed stars differ (by 7 per cent) between the three models. While the stellar mass distribution results in a different IMF when we consider pure freeze-out, with the complete treatment of the GSC, the divergence from a pure gas-phase model is minimal. We find that the impact of freeze-out is balanced by the non-thermal processes; chemical and photodesorption. We also find an average filament width of 0.12 pc (±0.03 pc), and speculate that this may be a result from the changes in the EOS caused by the gas-dust thermal coupling. We conclude that GSC plays a big role in the chemical composition of molecular clouds and that surface processes are needed to accurately interpret observations, however, that GSC does not have a significant impact as far as star formation and the IMF is concerned.

  5. Sulfuric Acid droplet formation and growth in the stratosphere after the 1982 eruption of el chichon.

    PubMed

    Hofmann, D J; Rosen, J M

    1983-10-21

    The eruption of El Chichón Volcano in March and April 1982 resulted in the nucleation of large numbers of new sulfuric acid droplets and an increase by nearly an order of magnitude in the size of the preexisting particles in the stratosphere. Nearly 10(7) metric tons of sulfuric acid remained in the stratosphere by the end of 1982, about 40 times as much as was deposited by Mount St. Helens in 1980.

  6. Freezing of stratospheric aerosol droplets

    NASA Astrophysics Data System (ADS)

    Luo, Beiping; Peter, Thomas; Crutzen, Paul

    Theoretical calculations are presented for homogeneous and heterogeneous freezing of sulfuric acid droplets under stratospheric conditions, based on classical nucleation theory. In contrast to previous results it is shown that a prominent candidate for freezing, sulfuric acid tetrahydrate (SAT ≡ H2SO4·4H2O), does not freeze homogeneously. The theoretical results limit the homogeneous freezing rate at 200 K to much less than 1 cm-3s-1, a value that may be estimated from bulk phase laboratory experiments. This suggests that the experimental value is likely to be a measure of heterogeneous, not homogeneous nucleation. Thus, under statospheric conditions, freezing of SAT can only occur in the presence of suitable nuclei; however, even for heterogeneous nucleation experimental results impose strong constraints. Since a nitric acid trihydrate (NAT) embryo probably needs a solid body for nucleation, these results put an important constraint on the theory of NAT formation in polar stratospheric clouds.

  7. Formation of Subgalactic Clouds under Ultraviolet Background Radiation

    NASA Astrophysics Data System (ADS)

    Kitayama, Tetsu; Ikeuchi, Satoru

    2000-02-01

    The effects of the ultraviolet (UV) background radiation on the formation of subgalactic clouds are studied by means of one-dimensional hydrodynamical simulations. The radiative transfer of the ionizing photons caused by the absorption by H I, He I, and He II, neglecting the emission, is explicitly taken into account. We find that the complete suppression of collapse occurs for the clouds with circular velocities typically in the range Vc~15-40 km s-1 and the 50% reduction in the cooled gas mass with Vc~20-55 km s-1. These values depend most sensitively on the collapse epoch of the cloud, the shape of the UV spectrum, and the evolution of the UV intensity. Compared with the optically thin case, previously investigated by Thoul & Weinberg in 1996, the absorption of the external UV photons by the intervening medium systematically lowers the above threshold values by ΔVc~5 km s-1. Whether the gas can contract or keeps expanding is roughly determined by the balance between the gravitational force and the thermal pressure gradient when it is maximally exposed to the external UV flux. Based on our simulation results, we discuss a number of implications on galaxy formation, cosmic star formation history, and the observations of quasar absorption lines. In the Appendix, we derive analytical formulae for the photoionization coefficients and heating rates, which incorporate the frequency/direction-dependent transfer of external photons.

  8. Dependence of debris cloud formation on projectile shape

    NASA Astrophysics Data System (ADS)

    Konrad, C. H.; Chhabildas, L. C.; Boslough, M. B.; Piekutowski, A. J.; Poormon, K. L.; Mullin, S. A.; Littlefield, D. L.

    1994-07-01

    A two-stage lights-gas gun has been used to impact thin zinc bumpers by zinc projectiles over the velocity range of 2.4 km/s to 6.7 km/s to determine the propagation characteristics of the impact generated debris. Constant-mass projectiles in the form of spheres, discs, cylinders, and rods were used in these studies. Radiographic techniques were employed to record the debris cloud generated upon impact and the dynamic formation of the resulting rupture in an aluminum backing plate resulting from the loading of the debris cloud. The characteristics of the debris cloud generated upon impact is found to depend on the projectile shape. The data indicate that the debris front velocity is independent of the shape of the projectile, whereas the debris lateral/radial velocity is strongly dependent on projectile geometry. Spherical impactors generate the most radially dispersed debris cloud while the normal plate impactors result in column-like debris. It has been observed that the debris generated by the impact of thin plates on a thin bumper shield is considerably more damaging to a backwall than the debris generated by an equivalent-mass sphere.

  9. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  10. H2 distribution during the formation of multiphase molecular clouds

    NASA Astrophysics Data System (ADS)

    Valdivia, Valeska; Hennebelle, Patrick; Gérin, Maryvonne; Lesaffre, Pierre

    2016-03-01

    Context. H2 is the simplest and the most abundant molecule in the interstellar medium (ISM), and its formation precedes the formation of other molecules. Aims: Understanding the dynamical influence of the environment and the interplay between the thermal processes related to the formation and destruction of H2 and the structure of the cloud is mandatory to understand correctly the observations of H2. Methods: We performed high-resolution magnetohydrodynamical colliding-flow simulations with the adaptive mesh refinement code RAMSES in which the physics of H2 has been included. We compared the simulation results with various observations of the H2 molecule, including the column densities of excited rotational levels. Results: As a result of a combination of thermal pressure, ram pressure, and gravity, the clouds produced at the converging point of HI streams are highly inhomogeneous. H2 molecules quickly form in relatively dense clumps and spread into the diffuse interclump gas. This in particular leads to the existence of significant abundances of H2 in the diffuse and warm gas that lies in between clumps. Simulations and observations show similar trends, especially for the HI-to-H2 transition (H2 fraction vs. total hydrogen column density). Moreover, the abundances of excited rotational levels, calculated at equilibrium in the simulations, turn out to be very similar to the observed abundances inferred from FUSE results. This is a direct consequence of the presence of the H2 enriched diffuse and warm gas. Conclusions: Our simulations, which self-consistently form molecular clouds out of the diffuse atomic gas, show that H2 rapidly forms in the dense clumps and, due to the complex structure of molecular clouds, quickly spreads at lower densities. Consequently, a significant fraction of warm H2 exists in the low-density gas. This warm H2 leads to column densities of excited rotational levels close to the observed ones and probably reveals the complex intermix between

  11. The Star Formation History of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Grebel, E. K.; Brandner, W.

    1997-05-01

    We present a movie of the star formation history of the Large Magellanic Cloud (LMC) based on its stellar content. We use the present-day spatial distribution of blue and red supergiants, Cepheids, clusters and associations, and RR Lyrae stars to study the age structure and to identify areas of pronounced star formation as a function of time and position. Age estimates for different stellar populations are based on theoretical isochrones, evolutionary models, and recent calibrations of SWB types of clusters. De-reddening of the individual stars and clusters results in a large-scale extinction map for the LMC. We discuss our results in terms of internal/external trigger mechanisms of star formation and different star formation modes.

  12. Filament formation in wind-cloud interactions - I. Spherical clouds in uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, W. E.; Parkin, E. R.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2016-01-01

    Filamentary structures are ubiquitous in the interstellar medium, yet their formation, internal structure, and longevity have not been studied in detail. We report the results from a comprehensive numerical study that investigates the characteristics, formation, and evolution of filaments arising from magnetohydrodynamic interactions between supersonic winds and dense clouds. Here, we improve on previous simulations by utilizing sharper density contrasts and higher numerical resolutions. By following multiple density tracers, we find that material in the envelopes of the clouds is removed and deposited downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these tails. Aspect ratios ≳12, subsonic velocity dispersions ˜0.1-0.3 of the wind sound speed, and magnetic field amplifications ˜100 are found to be characteristic of these filaments. We also report the effects of different magnetic field strengths and orientations. The magnetic field strength regulates vorticity production: sinuous filamentary towers arise in non-magnetic environments, while strong magnetic fields inhibit small-scale perturbations at boundary layers making tails less turbulent. Magnetic field components aligned with the direction of the flow favour the formation of pressure-confined flux ropes inside the tails, whilst transverse components tend to form current sheets. Softening the equation of state to nearly isothermal leads to suppression of dynamical instabilities and further collimation of the tail. Towards the final stages of the evolution, we find that small cloudlets and distorted filaments survive the break-up of the clouds and become entrained in the winds, reaching velocities ˜0.1 of the wind speed.

  13. THE FORMATION OF FILAMENTARY BUNDLES IN TURBULENT MOLECULAR CLOUDS

    SciTech Connect

    Moeckel, Nickolas; Burkert, Andreas E-mail: burkert@usm.uni-muenchen.de

    2015-07-01

    The classical picture of a star-forming filament is a near-equilibrium structure with its collapse dependent on its gravitational criticality. Recent observations have complicated this picture, revealing filaments to be a mess of apparently interacting subfilaments with transsonic internal velocity dispersions and mildly supersonic intra-subfilament dispersions. How structures like this form is unresolved. Here, we study the velocity structure of filamentary regions in a simulation of a turbulent molecular cloud. We present two main findings. First, the observed complex velocity features in filaments arise naturally in self-gravitating hydrodynamic simulations of turbulent clouds without the need for magnetic or other effects. Second, a region that is filamentary only in projection and is in fact made of spatially distinct features can display these same velocity characteristics. The fact that these disjoint structures can masquerade as coherent filaments in both projection and velocity diagnostics highlights the need to continue developing sophisticated filamentary analysis techniques for star formation observations.

  14. Water vapour variability and trends in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Kivi, Rigel; Backman, Leif; Karpechko, Alexey

    2014-05-01

    Water vapour in the upper troposphere-lower stratosphere (UTLS) is a radiatively and chemically important trace gas. Stratospheric water vapour also affects ozone chemistry through odd-hydrogen chemistry and formation of polar stratospheric clouds (PSC). Both transport and chemistry contribute to the extratropical lower stratospheric water vapour distribution and trends. The main sources of stratospheric water vapour are intrusion through the tropical tropopause and production from oxidation of methane. Accurate observations of UTLS water vapour are difficult to obtain due to the strong gradient in the water vapour profile over the tropopause. However, modelling the stratospheric water vapour distribution is challenging and accurate measurements are needed for model validation. Trends in Arctic water vapour will be analysed and explained in terms of contribution from different processes (transport and chemistry), using observations and chemistry transport model (CTM) simulations. Accurate water vapour soundings from Sodankylä will be used to study water vapour within the Arctic polar vortex, including process studies on formation of PSCs and dehydration. Water vapour profiles measured during the LAPBIAT atmospheric sounding campaign in Sodankylä in January 2010 indicated formation of ice clouds and dehydration. Effects on ozone chemistry will also be studied. Global middle atmospheric simulations have been performed with the FinROSE-ctm using ERA-Interim winds and temperatures. The FinROSE-ctm is a global middle atmosphere model that produces the distribution of 30 long-lived species and tracers and 14 short-lived species. The chemistry describes around 110 gas phase reactions, 37 photodissociation processes and the main heterogeneous reactions related to aerosols and polar stratospheric clouds.

  15. Dynamic mineral clouds on HD 189733b. I. 3D RHD with kinetic, non-equilibrium cloud formation

    NASA Astrophysics Data System (ADS)

    Lee, G.; Dobbs-Dixon, I.; Helling, Ch.; Bognar, K.; Woitke, P.

    2016-10-01

    Context. Observations of exoplanet atmospheres have revealed the presence of cloud particles in their atmospheres. 3D modelling of cloud formation in atmospheres of extrasolar planets coupled to the atmospheric dynamics has long been a challenge. Aims: We investigate the thermo-hydrodynamic properties of cloud formation processes in the atmospheres of hot Jupiter exoplanets. Methods: We simulate the dynamic atmosphere of HD 189733b with a 3D model that couples 3D radiative-hydrodynamics with a kinetic, microphysical mineral cloud formation module designed for RHD/GCM exoplanet atmosphere simulations. Our simulation includes the feedback effects of cloud advection and settling, gas phase element advection and depletion/replenishment and the radiative effects of cloud opacity. We model the cloud particles as a mix of mineral materials which change in size and composition as they travel through atmospheric thermo-chemical environments. All local cloud properties such as number density, grain size and material composition are time-dependently calculated. Gas phase element depletion as a result of cloud formation is included in the model. In situ effective medium theory and Mie theory is applied to calculate the wavelength dependent opacity of the cloud component. Results: We present a 3D cloud structure of a chemically complex, gaseous atmosphere of the hot Jupiter HD 189733b. Mean cloud particle sizes are typically sub-micron (0.01-0.5 μm) at pressures less than 1 bar with hotter equatorial regions containing the smallest grains. Denser cloud structures occur near terminator regions and deeper (~1 bar) atmospheric layers. Silicate materials such as MgSiO3[s] are found to be abundant at mid-high latitudes, while TiO2[s] and SiO2[s] dominate the equatorial regions. Elements involved in the cloud formation can be depleted by several orders of magnitude. Conclusions: The interplay between radiative-hydrodynamics and cloud kinetics leads to an inhomogeneous, wavelength

  16. Large scale and cloud scale dynamics and microphysics in the formation and evolution of a TTL cirrus : a case modelling study

    NASA Astrophysics Data System (ADS)

    Podglajen, Aurélien; Plougonven, Riwal; Hertzog, Albert; Legras, Bernard

    2015-04-01

    Cirrus clouds in the tropical tropopause layer (TTL) control dehydration of air masses entering the stratosphere and strongly contribute to the local radiative heating. In this study, we aim at understanding, through a real case simulation, the dynamics controlling the formation and life cycle of a cirrus cloud event in the TTL. We also aim at quantifying the chemical and radiative impacts of the clouds. To do this, we use the Weather Research and Forecast (WRF) model to simulate a large scale TTL cirrus event happening in January 2009 (27-29) over the Eastern Pacific, which has been extensively described through satellite observations (Taylor et al., 2011). Comparison of simulated and observed high clouds shows a fair agreement, and validates the reference simulation regarding cloud extension, location and life time. The simulation and Lagrangian trajectories within the simulation are then used to characterize the evolution of the cloud : displacement, Lagrangian life time and links with dynamics. The efficiency of dehydration by such clouds is also examined. Sensitivity tests were performed to evaluate the importance of different microphysics schemes and initial and boundary conditions to accurately simulate the cirrus. As expected, both were found to have strong impacts. In particular, there were substantial differences between simulations using different initial and boundary conditions from atmospheric analyses (NCEP CFSR and ECMWF). This illustrates the primordial role of accurate vapour and dynamics for realistic cirrus modelling, on top of the need for appropriate microphysics. Last, we examined the effects of cloud radiative heating. Long wave radiative heating in cirrus clouds has been invoked to induce a cloud scale circulation that would lengthen the cloud lifetime, and increase the size of its dehydration area (Dinh et al. 2010). To try to diagnose this, we have carried out simulations using different radiative schemes, including or suppressing the

  17. Star formation in the M17 SW giant molecular cloud

    NASA Technical Reports Server (NTRS)

    Jaffe, D. T.; Fazio, G. G.

    1982-01-01

    The first high-sensitivity, high-resolution far-IR survey of an entire molecular cloud complex is presented. The 20 km/s M17 SW complex, in addition to the three luminous M17 sources, contains 10 sources spread over 110 pc. The 10 lower luminosity sources divide into two groups: small blister sources powered by late O stars and compact sources powered by clusters of early B stars. No compact far-IR sources with luminosities between the detection limit and 10,000 solar luminosities were detected. Three possible formation mechanisms for the stars that power the far-IR sources in the M17 SW complex are examined. Sequential formation cannot explain the sources seen throughout the complex. Some type of stochastic formation mechanism or collapse induced by a spiral density wave could explain the observations.

  18. Factors Leading to the Formation of Arc Cloud Complexes.

    DTIC Science & Technology

    1985-12-01

    I. M2i .16 MICROCnWY O TEST CHART NATIONAL BUREAU 0F STANDARDS-1963-A ils. ... TEXAS A&M UNIVERSITY DEPARTMENT OF R AOL mMETEOROLOGY FACTORS LEADING...PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASKAFIT STUDENT AT: AREA & WORK UNIT NUMBERS Texas A&M Univ II. CONTROLLING...to an ACC. /0 FACTORS LEADING TO THE FORMATION OF ARC CLOUD COMPLEXES A Thesis by MARK JOHN WELSHINGER Submitted to the Graduate College of Texas A&M

  19. Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation

    NASA Astrophysics Data System (ADS)

    Brogniez, C.; Huret, N.; Eckermann, S.; RivièRe, E. D.; Pirre, M.; Herman, M.; Balois, J.-Y.; Verwaerde, C.; Larsen, N.; Knudsen, B.

    2003-03-01

    The balloonborne microRADIBAL instrument is a radiometer that measures the radiance and polarization of the sunlight scattered by the atmosphere, gas, and aerosols in a horizontal plane in the near-infrared range. It was launched from Esrange, Sweden, on 25 January 2000 in the framework of the Third European Stratospheric Experiment on Ozone (THESEO) 2000 campaign, and performed measurements in the vicinity of a large polar stratospheric cloud (PSC). The measurements provide diagrams of the radiance versus scattering angle at several altitudes. The aerosol signature, derived from the radiance measurements, has been modeled via Mie theory and the T-Matrix code. Three different size distributions of aerosols have been tested: monomodal and bimodal size distributions of spherical particles, and bimodal size distributions including a mode of spherical and a mode of nonspherical particles. The best agreement between the measured and modeled signatures is obtained considering a bimodal size distribution composed by a mode of medium spherical particles (median radius about 0.15 μm) and a second mode of larger nonspherical particles (median radius about 1.1 μm, aspect ratio about 0.6). Concentrations and surface densities of the PSC particles have been estimated. The existence of such particles has been tentatively explained using the Lagrangian Microphysical and Photochemical Lagrangian Stratospheric Model of Ozone (MiPLaSMO) model. On 25 January 2000 the polar stratospheric cloud detected by microRADIBAL is associated with a lee-wave event. Temperature perturbations due to lee-wave events were calculated using the National Research Laboratory Mountain Wave Forecast Model (MWFM) and have been included along trajectories. They are localized in a large region between the Norwegian mountains and Esrange. Their amplitude varies from 3 to 7 K. Detailed comparisons between measured and modeled surfaces and dimensional distributions of PSCs' particles are achieved. The two

  20. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  1. Mountain Wave-Induced Polar Stratospheric Cloud Forecasts for Aircraft Science Flights during SOLVE/THESEO 2000

    DTIC Science & Technology

    2005-08-08

    by the mountain wave models several days in advance, permitting coordinated quasi- Lagrangian flights that measured their composition and structure in...wave PSC forecasting campaigns, such as use of anelastic rather than Boussinesq linearized gridpoint models and a need to forecast stratospheric...prediction (NWP) models . NWP fields, once available, were postprocessed into specialized AAOE mission products, such as isentropic potential vorticity maps

  2. Comparisons of cirrus cloud formation and evolution lifetime between five field campaigns

    NASA Astrophysics Data System (ADS)

    Diao, M.; Zondlo, M. A.; DiGangi, J. P.; O'Brien, A.; Heymsfield, A.; Rogers, D. C.; Beaton, S. P.

    2013-12-01

    In order to understand the microphysical properties of cirrus clouds, it is important to understand the formation and evolution of the environments where ice crystals form and reside on the microscale (~100 m). Uncertainties remain in simulating/parameterizing the evolution of ice crystals, which require more analyses in the Lagrangian view. However, most in situ observations are in the Eulerian view and are restricted from examining the lifecycle of cirrus clouds. In this work, a new method of Diao et al. GRL (2013)* is used to separate out five phases of ice crystal evolution, using the horizontal spatial relationships between ice supersaturated regions (ISSRs) and ice crystal regions (ICRs). In-situ, aircraft-based observations from five flight campaigns are used to compare the evolution processes of ISSRs and ICRs, which include the National Science Foundation HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011 Arctic to Antarctic over the central Pacific Ocean), the Stratosphere Troposphere Analyses Regional Transport 2008 (START08) campaign (2008 North America), the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) campaign (2010 tropical western Atlantic), the Tropical Ocean Troposphere Exchange of Reactive Halogen Species and Oxygenated VOC (2012 Costa Rica), and the Deep Convection, Clouds, and Chemistry (DC3) campaign (2011 Interior North America). To understand the evolution of ICRs and ISSRs on the microscale, we compare the microphysical evolution processes inside ISSRs and ICRs in terms of relative humidity with respect to ice (RHi), ice crystal mean diameter (Dc) and ice crystal number density (Nc) at different meteorological and dynamical backgrounds during these five campaigns. Different phases of ice nucleation and evolution are contrasted to understand how cirrus clouds evolve from clear-sky ISS into fully developed clouds, and finally into sedimentation/evaporation phase. The results show that the ratios of

  3. Seasonal variations of stratospheric gravity waves in Antarctica and correlations to polar mesospheric cloud brightness in summer

    NASA Astrophysics Data System (ADS)

    Yamashita, C.; Chu, X.; Huang, W.; Nott, G. J.; Espy, P. J.

    2007-12-01

    Gravity waves (GWs) play an important role in the dynamics of global middle and upper atmosphere. However, quantitative characterization of GWs in the upper stratosphere is still rare in Antarctica. Here we present a study of stratospheric GW parameters and seasonal variations using the data obtained with the University of Illinois Fe Boltzmann/Rayleigh lidar at the South Pole (90°S) from December 1999 to January 2001 and at Rothera (67.5°S, 68.0°W) from December 2002 to March 2005. Through analyzing the Rayleigh lidar density data in 30-60 km, GW parameters are derived for the South Pole and Rothera, and the results are comparable. The annual mean GW vertical wavelength is 4.3 +/- 1.5 km, vertical phase speed is 0.33 +/- 0.15 m/s, and the period is 245 +/- 110 min. We characterize the stratospheric GW strength with the root- mean-square (RMS) relative density perturbation. The seasonal variation of GW strength is clear at Rothera, with the maximum in winter and the minimum in summer. No significant seasonal variations are observed at the South Pole. The data also show that the GW period is shorter in summer than in winter at Rothera. In addition, the stratospheric GW strength is negatively correlated with PMC brightness at Rothera but no significant correlation at the South Pole. Two important factors, i.e., the wind filtering effect and topographical GW source difference, are investigated in order to explain the GW seasonal variations. We then apply a GW ray-tracing model to analyze the GW source and propagation. The correlation between GW strength and PMC brightness also provides a clue of GW propagation from the stratosphere to the mesosphere.

  4. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  5. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  6. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  7. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  8. Global atmospheric particle formation from CERN CLOUD measurements.

    PubMed

    Dunne, Eimear M; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K; Pringle, Kirsty J; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L S; Riccobono, Francesco; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E; Wimmer, Daniela; Winkler, Paul M; Worsnop, Douglas R; Carslaw, Kenneth S

    2016-12-02

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

  9. Global atmospheric particle formation from CERN CLOUD measurements

    NASA Astrophysics Data System (ADS)

    Dunne, Eimear M.; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K.; Pringle, Kirsty J.; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M.; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J.; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L. S.; Riccobono, Francesco; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N.; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E.; Wimmer, Daniela; Winkler, Paul M.; Worsnop, Douglas R.; Carslaw, Kenneth S.

    2016-12-01

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

  10. Cirrus cloud formation and the role of heterogeneous ice nuclei

    NASA Astrophysics Data System (ADS)

    Froyd, Karl D.; Cziczo, Daniel J.; Hoose, Corinna; Jensen, Eric J.; Diao, Minghui; Zondlo, Mark A.; Smith, Jessica B.; Twohy, Cynthia H.; Murphy, Daniel M.

    2013-05-01

    Composition, size, and phase are key properties that define the ability of an aerosol particle to initiate ice in cirrus clouds. Properties of cirrus ice nuclei (IN) have not been well constrained due to a lack of systematic measurements in the upper troposphere. We have analyzed the size and composition of sublimated cirrus particles sampled from a high altitude research aircraft using both in situ and offline techniques. Mineral dust and metallic particles are the most enhanced residue types relative to background aerosol. Using a combination of cirrus residue composition, relative humidity, and cirrus particle concentration measurements, we infer that heterogeneous nucleation is a dominant cirrus formation mechanism for the mid-latitude, subtropical, and tropical regions under study. Other proposed heterogeneous IN including biomass burning particles, elemental carbon, and biological material were not abundant in cirrus residuals.

  11. Efficient Formation of Stratospheric Aerosol for Climate Engineering by Emission of Condensible Vapor from Aircraft

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia; Peter. Thomas; Keith, David W.

    2010-01-01

    Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO2 is limited because the slow conversion to H2SO4 tends to produce aerosol particles that are too large; SO2 injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO2 doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H2SO4, a condensable vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO2 injection. Relative to SO2 injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO2.

  12. Clouds in a Bottle: Qualitative and Quantiative Demonstrations for Cloud Formation in a Learning Environment

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.

    2015-12-01

    The NASA CloudSat mission has been revealing the inner secrets of clouds since 2006 using its one-of-a-kind spaceborne cloud radar. During its mission, the CloudSat Education Network, consisting of schools in Asia, Europe, and North America, have been collecting data on Clouds when CloudSat passes overhead. The education team has spent many hours researching and presenting different methods for making clouds for demonstrations in formal and informal settings. In this presentation, we will present several variations on methods for doing the cloud in a bottle demonstration, including strengths and weaknesses for each, and a brief overview of the science involved in the various demonstrations.

  13. FORMATION PUMPING OF MOLECULAR HYDROGEN IN DARK CLOUDS

    SciTech Connect

    Islam, Farahjabeen; Viti, Serena; Cecchi-Pestellini, Cesare; Casu, Silvia E-mail: sv@star.ucl.ac.u E-mail: scasu@ca.astro.i

    2010-12-10

    Many theoretical and laboratory studies predict H{sub 2} to be formed in highly excited rovibrational states. The consequent relaxation of excited levels via a cascade of infrared transitions might be observable in emission from suitable interstellar regions. In this work, we model H{sub 2} formation pumping in standard dense clouds, taking into account the H/H{sub 2} transition zone, through an accurate description of chemistry and radiative transfer. The model includes recent laboratory data on H{sub 2} formation, as well as the effects of the interstellar UV field, predicting the populations of gas-phase H{sub 2} molecules and their IR emission spectra. Calculations suggest that some vibrationally excited states of H{sub 2} might be detectable toward lines of sight where significant destruction of H{sub 2} occurs, such as X-ray sources, and provides a possible explanation as to why observational attempts resulted in no detections reported to date.

  14. EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION

    SciTech Connect

    Heitsch, Fabian; Hartmann, Lee W.; Stone, James M.

    2009-04-10

    We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formation of massive clouds but permit the buildup of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a 'selection effect' for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.

  15. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones

    SciTech Connect

    Danielsen, E.F. )

    1993-05-20

    The author describes evidence from three different cloud types observed in the Australian monsoon, continental-maritime convective, maritime convective, and tropical cyclones, which contribute to transport of tropospheric air masses into the lower stratosphere. Measurements were made from ER-2 aircraft flying out of Darwin, Australia, equipped to measure an array of different parameters, including water vapor, temperatures, pressures, radon, etc. Maritime environmental conditions do not produce as much bouyancy for ascending air masses near Darwin, as do continental-maritime conditions when intense solar heating over the arid continental center of Australia heat and drys air masses which flow over the moist surface marine layers and have bouyancy to allow deep penetration into the lower stratosphere. For the tropical cyclones, their large scale, slower ascending air seems to mix into the stratosphere by gravity wave generation, which produces turbulence enough to drive air mass mixing across the inversions which cap these features.

  16. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  17. A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2015-01-01

    The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February-March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1σ) of better than 0.17 parts per million (ppm, 10-6 mol mol-1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2σ) was 0.023-0.013 ppm, corresponding to approximately 2 μg m

  18. Star Formation and Cloud Dynamics in the Galactic Bar Region

    NASA Astrophysics Data System (ADS)

    Tolls, Volker

    The Inner Galaxy (IG) that is the Galactic Bar Region (GBR) and the Central Molecular Zone (CMZ) including the Galactic Center (GC) are, despite being the sites of dramatic processes and unique sources, still only incompletely understood. Detailed new datasets from the Herschel Space Observatory can be systematically combined with older archival material to enable a new and more complete analysis of the region, its large-scale dynamics, its unusual giant molecular clouds, and the likely influences of its bar and its supermassive black hole. Such a study is both timely and important: the region has affected the structure and evolution of the galaxy; its individual sources are opportunities to examine star formation (for example) under extreme conditions; the processes feeding the CMZ and, subsequently, its black hole are important; and not least, it is a nearby template for the inner regions of other galaxies. The Herschel Space Observatory has provided us with exciting new datasets including full FIR photometric maps and highand low-resolution far-infrared/submillimeter spectra of key sources and lines of the locations of dynamical importance. All these datasets are publicly available from the Herschel Science Archive. Our experienced team has already developed preliminary models, and we propose a thorough investigation to combine the Herschel datasets with Spitzer and WISE datasets. We will supplement them with ground-based observations in cases when it will improve the results. We will then analyze the data and use the results to refine the models and improve our understanding of this key region. Our specific goal is to characterize and model the 3 giant high-velocity molecular cloud clumps in the Galaxy Bar Region (GBR) in detail and to combine the conclusions to produce an improved model of the IG. We have seven tasks: (1) identify all smaller scale gas and dust cores using archival Herschel FIR photometric observations and obtain their physical characteristics

  19. Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.; Mac Low, Mordecai-Mark

    2007-04-01

    In this paper we present results from a large set of numerical simulations that demonstrate that H2 formation occurs rapidly in turbulent gas. Starting with purely atomic hydrogen, large quantities of molecular hydrogen can be produced on timescales of 1-2 Myr, given turbulent velocity dispersions and magnetic field strengths consistent with observations. Moreover, as our simulations underestimate the effectiveness of H2 self-shielding and dust absorption, we can be confident that the molecular fractions that we compute are strong lower limits on the true values. The formation of large quantities of molecular gas on the timescale required by rapid cloud formation models therefore appears to be entirely plausible. We also investigate the density and temperature distributions of gas in our model clouds. We show that the density probability distribution function is approximately lognormal, with a dispersion that agrees well with the prediction of Padoan and coworkers. The temperature distribution is similar to that of a polytrope, with an effective polytropic index γeff~=0.8, although at low gas densities, the scatter of the actual gas temperature around this mean value is considerable, and the polytropic approximation does not capture the full range of behavior of the gas.

  20. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2016-02-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene / NOx / light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  1. Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation?

    NASA Astrophysics Data System (ADS)

    Lucas, William E.; Bonnell, Ian A.; Forgan, Duncan H.

    2017-01-01

    We investigate how star formation efficiency can be significantly decreased by the removal of a molecular cloud's envelope by feedback from an external source. Feedback from star formation has difficulties halting the process in dense gas but can easily remove the less dense and warmer envelopes where star formation does not occur. However, the envelopes can play an important role keeping their host clouds bound by deepening the gravitational potential and providing a constraining pressure boundary. We use numerical simulations to show that removal of the cloud envelopes results in all cases in a fall in the star formation efficiency (SFE). At 1.38 free-fall times our 4 pc cloud simulation experienced a drop in the SFE from 16 to six percent, while our 5 pc cloud fell from 27 to 16 per cent. At the same time, our 3 pc cloud (the least bound) fell from an SFE of 5.67 per cent to zero when the envelope was lost. The star formation efficiency per free-fall time varied from zero to ≈0.25 according to α, defined to be the ratio of the kinetic plus thermal to gravitational energy, and irrespective of the absolute star forming mass available. Furthermore the fall in SFE associated with the loss of the envelope is found to even occur at later times. We conclude that the SFE will always fall should a star forming cloud lose its envelope due to stellar feedback, with less bound clouds suffering the greatest decrease.

  2. Evaluation of Antarctic polar stratospheric clouds data obtained by ground based lidars (at Dome C, McMurdo and Dumont D'Urville) and the satellite based CALIOP lidar system versus a subset of CCMVAL-2 chemistry-climate models.

    NASA Astrophysics Data System (ADS)

    Snels, Marcel; Fierli, Federico; de Muro, Mauro; Cagnazzo, Chiara; Cairo, Francesco; Di Liberto, Luca

    2016-04-01

    Polar stratospheric clouds play an important role in the ozone depletion process in polar regions and are thus strongly linked to climate changes. Long term observations are needed to monitor the presence of PSCs and to compare to climate models. The last decades PSCs in Antarctica have been observed by using the CALIOP lidar system on the CALIPSO satellite and by ground based lidars at Dumont D'Urville, McMurdo, Casey, and since 2014 at Dome C. We evaluate the Antarctic PSC observational databases of CALIPSO and the ground-based lidars of NDACC (Network for Detection of Atmospheric Composition Changes) located in McMurdo and Dumont D'Urville and Dome C stations and provide a process-oriented evaluation of PSC in a subset of CCMVAL-2 chemistry-climate models. Lidar observatories have a decadal coverage, albeit with discontinuities, spanning from 1992 to today hence offering a unique database. A clear issue is the representativeness of ground-based long-term data series of the Antarctic stratosphere conditions that may limit their value in climatological studies and model evaluation. The comparison with the CALIPSO observations with a global coverage is, hence, a key issue. In turn, models can have a biased representation of the stratospheric conditions and of the PSC microphysics leading to large discrepancies in PSC occurrence and composition. Point-to-point comparison is difficult due to sparseness of the database and to intrinsic differences in spatial distribution between models and observations. However, a statistical analysis of PSC observations shows a satisfactory agreement between ground-based and satellite borne-lidar. The differences may be attributed to averaging processes for data with a bad signal to noise ratio, which tends to smear out the values of the optical parameters. Data from some Chemistry Climate models (CCMs) having provided PSC surface areas on daily basis have been evaluated using the same diagnostic type that may be derived CALIPSO (i

  3. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.

    PubMed

    Abbatt, J P D; Benz, S; Cziczo, D J; Kanji, Z; Lohmann, U; Möhler, O

    2006-09-22

    Laboratory measurements support a cirrus cloud formation pathway involving heterogeneous ice nucleation by solid ammonium sulfate aerosols. Ice formation occurs at low ice-saturation ratios consistent with the formation of continental cirrus and an interhemispheric asymmetry observed for cloud onset. In a climate model, this mechanism provides a widespread source of ice nuclei and leads to fewer but larger ice crystals as compared with a homogeneous freezing scenario. This reduces both the cloud albedo and the longwave heating by cirrus. With the global ammonia budget dominated by agricultural practices, this pathway might further couple anthropogenic activity to the climate system.

  4. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report

    SciTech Connect

    Cziczo, Daniel

    2016-05-01

    The formation of clouds is an essential element in understanding the Earth’s radiative budget. Liquid water clouds form when the relative humidity exceeds saturation and condensedphase water nucleates on atmospheric particulate matter. The effect of aerosol properties such as size, morphology, and composition on cloud droplet formation has been studied theoretically as well as in the laboratory and field. Almost without exception these studies have been limited to parallel measurements of aerosol properties and cloud formation or collection of material after the cloud has formed, at which point nucleation information has been lost. Studies of this sort are adequate when a large fraction of the aerosol activates, but correlations and resulting model parameterizations are much more uncertain at lower supersaturations and activated fractions.

  5. Molecular clouds toward the super star cluster NGC 3603; possible evidence for a cloud-cloud collision in triggering the cluster formation

    SciTech Connect

    Fukui, Y.; Ohama, A.; Hanaoka, N.; Furukawa, N.; Torii, K.; Hasegawa, K.; Fukuda, T.; Soga, S.; Moribe, N.; Kuroda, Y.; Hayakawa, T.; Kuwahara, T.; Yamamoto, H.; Okuda, T.; Dawson, J. R.; Mizuno, N.; Kawamura, A.; Onishi, T.; Maezawa, H.; Mizuno, A.

    2014-01-01

    We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC 3603 in the transitions {sup 12}CO(J = 2-1, J = 1-0) and {sup 13}CO(J = 2-1, J = 1-0). We suggest that two molecular clouds at 13 km s{sup –1} and 28 km s{sup –1} are associated with NGC 3603 as evidenced by higher temperatures toward the H II region, as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ∼20 km s{sup –1}. We suggest that the two clouds collided with each other 1 Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster, which is as young as 1 Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along with Westerlund 2 where formation may have been triggered by a cloud-cloud collision.

  6. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  7. Clouds in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Anderson, Bruce; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Water vapor in the winter arctic tropopause region is important because, after the tropical tropopause region, the winter arctic tropopause has the coldest temperatures in the tropospheric northern hemisphere. This suggests the potential for cloud formation that can remove water vapor from a part of the atmosphere where radiatively active gases (such as water) exert a disproportionate influence on the earth's radiation budget. Previous work by the same authors has shown that this cloud formation extends into the stratosphere, with 20% of the parcels having ozone values of 300-350 ppbv experiencing ice saturation in any given 10 day period period during the late winter. In fact, temperatures are cold enough that 5-10% of the parcels experience saturation even if the water content is below the prevailing stratospheric value of 5 ppmv. This work describes a case study of clouds observed by aircraft near the winter arctic tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE). This provided a unique opportunity to examine dehydration processes in this region since in situ water, tracer, cloud particle, and meteorological data were all available simultaneously. During this period, temperatures were cold enough at the tropopause to produce saturation mixing ratios of 3-4 ppmv. Thus, clouds were actually observed within the stratosphere. Back trajectories indicate that the air in these clouds came from lower latitudes and altitudes. The study describes the nature of the clouds, the history of the air, and the possible implications for the upper tropospheric water budget.

  8. Suppression of Arctic Air Formation by Cloud Radiative Effects in a Two-Dimensional Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Li, H.

    2015-12-01

    To better understand equable paleoclimates, Arctic amplification of winter warming, and the high-latitude lapse-rate feedback, we investigate the process of Arctic air formation, wherein a high latitude maritime air mass is advected over land during polar night and strongly cooled from the surface up. We extend previous work done using a single-column model (Cronin and Tziperman, PNAS, in press) by performing two-dimensional idealized cloud-resolving simulations with the Weather Research and Forecasting (WRF) model. Quantitatively consistent with previous results, we find that as the initial atmospheric state is warmed, increases in low cloud amount reduce the average surface cooling over a 14-day period by roughly a degree for each degree of warming of the initial atmospheric state, with the feedback strength increasing with warming. This is primarily attributed to a monotonic increase in surface cloud radiative forcing of approximately 2 W m-2 for each degree that the initial atmospheric sounding is warmed. The use of a two-dimensional model as opposed to a single-column model shows that the lower-tropospheric cloud layer becomes more turbulent and dominated by cumulus clouds as the climate is warmed, yet the cloud fraction remains high owing to the continued prevalence of stratus and fog layers. These results are robust across a variety of cloud microphysics schemes and are not sensitive to the horizontal or vertical resolution of the model. We also explore the vertical structure and horizontal variability of the bulk horizontal flow, the sensitivity of the results to subsidence and atmospheric carbon dioxide concentration, and the contrasting roles of top-of-atmosphere and surface cloud radiative effects.

  9. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Backman, Leif; Kivi, Rigel; Karpechko, Alexey Yu.

    2016-04-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry transport model simulation covering the years 1990-2014 is compared to observations (satellite and frost point hygrometer soundings), and the sources of stratospheric water vapour are studied. In the simulations, the Arctic water vapour shows decadal variability with a magnitude of 0.8 ppm. Both observations and the simulations show an increase in the water vapour concentration in the Arctic stratosphere after the year 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes, while the photochemically produced water vapour plays a relatively smaller role. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ice polar stratospheric clouds (PSCs) in the Arctic vortex. We perform a case study of ice PSC formation focusing on January 2010 when the polar vortex was unusually cold and allowed large-scale formation of PSCs. At the same time a large-scale persistent dehydration was observed. Ice PSCs and dehydration observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT (Lapland Atmosphere-Biosphere facility) atmospheric measurement campaign were well reproduced by the model. In particular, both the observed and simulated decrease in water vapour in the dehydration layer was up to 1.5 ppm.

  10. Measurement of the effect of Amazon smoke on inhibition of cloud formation.

    PubMed

    Koren, Ilan; Kaufman, Yoram J; Remer, Lorraine A; Martins, Jose V

    2004-02-27

    Urban air pollution and smoke from fires have been modeled to reduce cloud formation by absorbing sunlight, thereby cooling the surface and heating the atmosphere. Satellite data over the Amazon region during the biomass burning season showed that scattered cumulus cloud cover was reduced from 38%in clean conditions to 0%for heavy smoke (optical depth of 1.3). This response to the smoke radiative effect reverses the regional smoke instantaneous forcing of climate from -28 watts per square meter in cloud-free conditions to +8 watts per square meter once the reduction of cloud cover is accounted for.

  11. Protostellar formation in rotating interstellar clouds. V - Nonisothermal collapse and fragmentation

    NASA Technical Reports Server (NTRS)

    Boss, Alan R.

    1986-01-01

    Numerical calculations are presented for rigorous models spanning a four-dimensional parameter space of initial conditions of the three-dimensional collapse of rotating protostellar clouds, encompassing radiative transfer in the Eddington approximation and detailed thermodynamical relations. It is found that protostellar formation may involve a few stages of hierarchical fragmentation terminated by increased thermal pressure in the nonisothermal regime, that high thermal energy clouds remain nearly axisymmetric during the first dynamic collapse phase, and that very slowly rotating clouds can fragment. The presolar nebula was probably formed from a cloud with very little initial rotation.

  12. Effects of the El Chichon volcanic cloud in the stratosphere on the intensity of light from the sky.

    PubMed

    Coulson, K L

    1983-08-01

    This is the second of two papers dealing with the effects of volcanic debris from the eruption of El Chichon on light from the sunlit sky. The polarization of skylight was considered in the first of the two, whereas this one is devoted to skylight intensity. It is shown here that the magnitude of the skylight intensity is modified very significantly from its clear sky value by the volcanic cloud, as is its change with solar depression angle during twilight and its distribution over the sky during the day. Emphasis is on measurements at a wavelength of 0.07 microm. Generally the volcanic cloud produces a diminution of zenith intensity during twilight with a considerable enhancement of intensity over the sky throughout the main part of the day. The solar aureole is not as sharp as it is in normally clear conditions, but the volcanic cloud causes a very diffuse type of aureole which covers a large portion of the sky. The preferential scattering of the longer wavelengths of sunlight, which is made evident by brilliant red and yellow colors in the sunrise period, causes a pronounced change of longwave/shortwave color ratios during twilight from their values in clear atmospheric conditions. The combination of intensity data shown here with polarization data in the previous paper should give a relatively complete picture of the effects of volcanic debris on solar radiation in the atmosphere and be useful in the verification of radiative transfer models of atmospheric turbidity.

  13. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    SciTech Connect

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.

    2015-03-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.

  14. Ice Formation and Growth in Orographically-Enhanced Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    David, Robert; Lowenthal, Douglas; Gannet Hallar, A.; McCubbin, Ian; Avallone, Linnea; Mace, Gerald; Wang, Zhien

    2015-04-01

    The formation and evolution of ice in mixed-phase clouds continues to be an active area of research due to the complex interactions between vapor, liquid and ice. Orographically-enhanced clouds are commonly mixed-phase during winter. An airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured temperature, and cloud droplet and ice crystal size distributions at SPL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes. Small ice crystal concentrations were routinely higher at the surface and a relationship between small ice crystal concentrations, large cloud droplet concentrations and temperature was observed, suggesting liquid-dependent ice nucleation near cloud base. Terrain flow effects on cloud microphysics and structure are considered.

  15. A stochastic formation of radiative transfer in clouds

    SciTech Connect

    Stephens, G.L.; Gabriel, P.M.

    1993-03-01

    The research carried out under this award dealt with issues involving deterministic radiative transfer, remote sensing, Stochastic radiative transfer, and parameterization of cloud optical properties. A number of different forms of radiative transfer models in one, two, and three dimensions were developed in an attempt to build an understanding of the radiative transfer in clouds with realistic spatial structure and to determine the key geometrical parameter that influence this transfer. The research conducted also seeks to assess the relative importance of these geometrical effects in contrast to microphysical effects of clouds. The main conclusion of the work is that geometry has a profound influence on all aspects of radiative transfer and the interpretation of this transfer. We demonstrate how this geometry can influence estimate of particle effective radius to the 30-50% level and also how geometry can significantly bias the remote sensing of cloud optical depth.

  16. Cloud formation of particles containing humic-like substances

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Sorjamaa, R.; Peräniemi, A.; Raatikainen, T.; Laaksonen, A.

    2006-05-01

    Humic like substances (HULIS) are a class of compounds that are suspected to have an effect on cloud droplet activation properties of atmospheric aerosols because they decrease the surface tension of aqueous solutions quite efficiently. Surface active organic compounds have a tendency of concentrating on the surfaces of liquid droplets. If the total amount of surface active compound is small enough, partitioning of the substance on the surface depletes it from the droplet interior, decreasing the Raoult effect and increasing the Kelvin effect. Thus, the surface partitioning causes an increase of the critical supersaturation (Köhler curve maximum), and the effect gets stronger with decreasing size of the cloud condensation nucleus. In this study, the effects of HULIS on the activation of cloud droplets was studied by cloud parcel model calculations. Model results indicate that if the surface partitioning is not taken into account, the number of activated droplets can be highly overestimated. The simulations were made using particles containing 10-80% mass fraction of HULIS, while the remaining fraction of the particle was ammonium sulfate. The calculations indicated that the surface tension effects of humic-like compounds on the cloud activation become significant only when the weight fraction of the organics is very high. In contrast, if the surface partitioning is not taken into account, already a small weight fraction of organics will lead to significant increase in number of cloud droplets.

  17. Seasonal and spatial variability of heterogeneous ice formation in stratiform clouds and its possible impact on precipitation formation

    NASA Astrophysics Data System (ADS)

    Seifert, P.; Ansmann, A.; Baars, H.; Buehl, J.; Kanitz, T.; Bohlmann, S.; Engelmann, R.; Kunz, C.

    2015-12-01

    Lidar observations of stratiform mid-level clouds were used to investigate the efficiency of heterogeneous ice nucleation as a function of cloud top temperature. The long-term lidar-based cloud datasets were collected in Germany (51°N,12°E), in southeastern China (22°N,112°E), Cape Verde (15°N,24°W), the Amazon Basin (1°N,60°W), South Africa (34°S,19°E), and southern Chile (53°S,71°W). They thus cover a variety of northern- and southern latitudinal belts from the midlatitudes to the tropics. Observations of the depolarization ratio were used to categorize the observed cloud layers into either ice-free (no depolarized signals observed) or ice-containing clouds (signals depolarized by scattering at ice crystals). Strong hemispheric and regional differences were observed in the heterogeneous ice formation efficiency at the different sites, especially in the high-temperature range between -20 and 0 °C. The fraction of ice containing clouds in this temperature range is highest at the northern-latitudinal sites of Germany and southeastern China. Over Leipzig, 50% of all clouds contain ice at -10 °C. In contrast, over southern Chile virtually no ice-containing clouds were observed between -20 and 0 °C. Seasonal differences in the ice-cloud fraction were found over Germany and the Amazon Basin. The observed regional, hemispheric and seasonal contrasts can be explained by differences in the aerosol concentration at cloud level above the different sites. Cloud vertical motion (observed with Doppler lidar), which also determine the microphysical cloud evolution, were found to be similar for all cloud layers. From combined observations of cloud radar and lidar at Leipzig it was in addition found that ice water contents of below approx. 10-6kg/m³ cannot be detected with lidar. Clouds classified as pure liquid from the lidar-only observations thus could contain ice water contents of below that threshold. Considering the hemispheric differences in heterogeneous

  18. Theory of Molecular Cloud Formation through Colliding Flows: Successes and Limits

    NASA Astrophysics Data System (ADS)

    Hennebelle, P.

    2013-10-01

    We discuss the recent efforts which have been made to understand the formation of molecular clouds through the accumulation of diffuse material, a scenario sometimes called “colliding flows”. We present a set of statistics which have been inferred from these simulations and which seem to agree reasonably with observations seemingly suggesting that this scenario could indeed be applied to understand molecular cloud formation. We also emphasize the limits of this highly idealized model.

  19. Embedded star clusters and the formation of the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Duncan, M. J.; Levison, H. F.

    2006-09-01

    Observations suggest most stars originate in clusters embedded in giant molecular clouds [Lada, C.J., Lada, E.A., 2003. Annu. Rev. Astron. Astrophys. 41, 57-115]. Our Solar System likely spent 1-5 Myrs in such regions just after it formed. Thus the Oort Cloud (OC) possibly retains evidence of the Sun's early dynamical history and of the stellar and tidal influence of the cluster. Indeed, the newly found objects (90377) Sedna and 2000 CR 105 may have been put on their present orbits by such processes [Morbidelli, A., Levison, H.F., 2004. Astron. J. 128, 2564-2576]. Results are presented here of numerical simulations of the orbital evolution of comets subject to the influence of the Sun, Jupiter and Saturn (with their current masses on orbits appropriate to the period before the Late Heavy Bombardment (LHB) [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]), passing stars and tidal force associated with the gas and stars of an embedded star cluster. The cluster was taken to be a Plummer model with 200-400 stars, with a range of initial central densities. The Sun's orbit was integrated in the cluster potential together with Jupiter and Saturn and the test particles. Stellar encounters were incorporated by directly integrating the effects of stars passing within a sphere centred on the Sun of radius equal to the Plummer radius for low-density clusters and half a Plummer radius for high-density clusters. The gravitational influence of the gas was modeled using the tidal force of the cluster potential. For a given solar orbit, the mean density, <ρ>, was computed by orbit-averaging the density of material encountered. This parameter proved to be a good measure for predicting the properties of the OC. On average 2-18% of our initial sample of comets end up in the OC after 1-3 Myr. A comet is defined to be part of the OC if it is bound and has q>35 AU. Our models show that the median distance of an object in the OC scales approximately as

  20. Aerosol Size Distributions Measured in the Upper Troposphere and Lower Stratosphere: Formation, Coagulation, Transport and Sedimentation of the Background Non-Volcanic Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, S.; Wilson, J. C.; Reeves, J. M.; Brock, C. A.; Jonsson, H. H.; Lowenstein, M.; Mahoney, M. J.; Herman, R. L.; Anderson, J. G.; Xueref, I.; Gerbig, C.; Andrews, A. E.; Hinsta, E.

    2002-12-01

    This study presents the particle size distribution of non-volcanic aerosols in the lower stratosphere and upper troposphere measured from 1995 to 2000 during five different high-altitude aircraft missions (STRAT, POLARIS, WAM, ACCENT, and SOLVE). The Focused Cavity Aerosol Spectrometer (FCAS), Condensation Nucleus Counter (CNC), and Nucleation-Mode Aerosol Sizing Spectrometer (N-MASS) were used to characterize the particle sizes in the diameter range from 4 to 2000 nm. Measurements were made at latitudes from 3.4S to 90N and the pressure altitudes form 7 to 21 km. These particle size distributions were analyzed using the potential temperature, tropopause height, and the mixing ratio of gas phase tracers such as N2O, CO2, NOy, O3 and water vapor. Particle formation, growth and sedimentation were studied to examine how the aerosol dynamics and atmospheric transport (Holton et al., 1995) determine the steady state aerosol size distribution in the lower stratosphere. This comprehensive data set will help us to better understand the origins and fate of the stratospheric background aerosols. Reference: Holton, J. R., et al., Stratosphere-troposphere exchange, Rev. Geophys., 33, 403-439, 1995.

  1. Cloud Formation and Acceleration in a Radiative Environment

    NASA Astrophysics Data System (ADS)

    Proga, Daniel; Waters, Tim

    2015-05-01

    In a radiatively heated and cooled medium, thermal instability (TI) is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field’s theory to self-consistently account for a radiation force resulting from bound-free and bound-bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one- and two-dimensional (1D/2D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1D simulations demonstrate that the TI can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to supersonic velocities. However, our 2D simulations reveal that a single cloud with a simple morphology cannot be maintained due to destructive processes, triggered by the Rayleigh-Taylor instability and followed by the Kelvin-Helmholtz instability. Nevertheless, the resulting cold gas structures are still significantly accelerated before they are ultimately dispersed.

  2. CLOUD FORMATION AND ACCELERATION IN A RADIATIVE ENVIRONMENT

    SciTech Connect

    Proga, Daniel; Waters, Tim

    2015-05-10

    In a radiatively heated and cooled medium, thermal instability (TI) is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field’s theory to self-consistently account for a radiation force resulting from bound–free and bound–bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one- and two-dimensional (1D/2D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1D simulations demonstrate that the TI can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to supersonic velocities. However, our 2D simulations reveal that a single cloud with a simple morphology cannot be maintained due to destructive processes, triggered by the Rayleigh–Taylor instability and followed by the Kelvin–Helmholtz instability. Nevertheless, the resulting cold gas structures are still significantly accelerated before they are ultimately dispersed.

  3. Cluster-formation in the Rosette molecular cloud at the junctions of filaments

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Hennemann, M.; Motte, F.; Didelon, P.; Federrath, C.; Bontemps, S.; Di Francesco, J.; Arzoumanian, D.; Minier, V.; André, Ph.; Hill, T.; Zavagno, A.; Nguyen-Luong, Q.; Attard, M.; Bernard, J.-Ph.; Elia, D.; Fallscheer, C.; Griffin, M.; Kirk, J.; Klessen, R.; Könyves, V.; Martin, P.; Men'shchikov, A.; Palmeirim, P.; Peretto, N.; Pestalozzi, M.; Russeil, D.; Sadavoy, S.; Sousbie, T.; Testi, L.; Tremblin, P.; Ward-Thompson, D.; White, G.

    2012-04-01

    Aims: For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. Instead, gravitational collapse of filaments and/or merging of filamentary structures can lead to building up dense high-mass star-forming clumps. However, the overall density structure of the cloud has a large influence on this process, and requires a better understanding. Methods: The Rosette molecular cloud, irradiated by the NGC 2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. Results: The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression, while the PDFs of the center and other cloud parts are more complex, partly with a power-law tail. A deviation of the log-normal PDF form occurs at AV ≈ 9m for the center, and around 4m for the other regions. Only the part of the cloud farthest from the Rosette nebula shows a log-normal PDF. Conclusions: The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at AV ≈ 3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star

  4. Zernike moments as a useful tool for ACE imager aerological data retrieval (stratospheric temperature and cloud product)

    NASA Astrophysics Data System (ADS)

    Dodion, Jan; Fussen, Didier; Filip, Vanhellemont; Mateshvili, Nina; Christine, Bingen; Maxime, Stapelle; Dekemper, Emmanuel; Gilbert, Kathy; Walker, Kaley; Bernath, Peter

    The Atmospheric Chemistry Experiment (ACE) was launched in August 2003 aboard the Canadian satellite SCISAT-I, and is at present fully operational. ACE circles the Earth at an altitude of 650 km with an orbital inclination of 74° . Solar occultation is the primary observation technique used by the on board instruments, which consist of a high resolution Fourier Transform spectrometer (ACE-FTS), a dual optical spectrophotometer (MAESTRO) and two filtered imagers, subject of this presentation. While the Sun is setting below or rising from behind the Earth's horizon, at every timestamp, the imagers capture a snapshot of the Sun as seen through the atmosphere. On these pictures, the apparent Sun width is about 25 km at the tangent point and the apparent Sun height varies from almost 0.7 km in the optically thick, lower troposphere where the Sun image is highly flattened by the refraction to its maximum (about 25 km at the tangent point) where refractive effects are negligible. Used in image processing, image moments are certain particular weighted averages (moments) of the image pixel's intensities, or functions of those moments, usually chosen to have some attractive property on interpretation. Zernike moments were first introduced by Teague (1980) based on the complex, orthogonal functions called Zernike polynomials. Though computationally very complex compared to geometric and Legendre moments, Zernike moments have proved to be superior in terms of their feature representation capability and low noise sensitivity. Also, the construction of different moment invariants makes them well suited for our research. A detailed image analysis of ACE imager data using Zernike moments provides us the necessary information for the retrieval of temperature profiles from a series of distorted images of an object of known shape such as the Sun. These temperature profiles are validated with ACE-FTS data. Besides, a preliminary cloud product could be derived and, in addition, a

  5. The effects of flow-inhomogeneities on molecular cloud formation: Local versus global collapse

    SciTech Connect

    Carroll-Nellenback, Jonathan J.; Frank, Adam; Heitsch, Fabian

    2014-07-20

    Observational evidence from local star-forming regions mandates that star formation occurs shortly after, or even during, molecular cloud formation. Models of molecular cloud formation in large-scale converging flows have identified the physical mechanisms driving the necessary rapid fragmentation. They also point to global gravitational collapse driving supersonic turbulence in molecular clouds. Previous cloud formation models have focused on turbulence generation, gravitational collapse, magnetic fields, and feedback. Here, we explore the effect of structure in the flow on the resulting clouds and the ensuing gravitational collapse. We compare two extreme cases, one with a collision between two smooth streams, and one with streams containing small clumps. We find that structured converging flows lead to a delay of local gravitational collapse ({sup c}ore formation{sup )}. Hence, the cloud has more time to accumulate mass, eventually leading to a strong global collapse, and thus to a high core formation rate. Uniform converging flows fragment hydrodynamically early on, leading to the rapid onset of local gravitational collapse and an overall low core formation rate. This is also mirrored in the core mass distribution: the uniform initial conditions lead to more low-mass cores than the clumpy initial conditions. Kinetic (E{sub k} ) and gravitational energy (E{sub g} ) budgets suggest that collapse is only prevented for E{sub k} >> E{sub g} , which occurs for large scales in the smooth flow, and for small scales for the clumpy flow. Whenever E{sub k} ≈ E{sub g} , we observe gravitational collapse on those scales. Signatures of chemical abundance variations evolve differently for the gas phase and for the stellar population. For smooth flows, the forming cloud is well mixed, while its stellar population retains more information about the initial metallicities. For clumpy flows, the gas phase is less well mixed, while the stellar population has lost most of the

  6. Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B

    NASA Astrophysics Data System (ADS)

    Orkisz, Jan H.; Pety, Jérôme; Gerin, Maryvonne; Bron, Emeric; Guzmán, Viviana V.; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Roueff, Evelyne; Sievers, Albrecht; Tremblin, Pascal

    2017-03-01

    Context. The nature of turbulence in molecular clouds is one of the key parameters that control star formation efficiency: compressive motions, as opposed to solenoidal motions, can trigger the collapse of cores, or mark the expansion of Hii regions. Aims: We try to observationally derive the fractions of momentum density (ρv) contained in the solenoidal and compressive modes of turbulence in the Orion B molecular cloud and relate these fractions to the star formation efficiency in the cloud. Methods: The implementation of a statistical method applied to a 13CO(J = 1-0) datacube obtained with the IRAM-30 m telescope, enables us to retrieve 3-dimensional quantities from the projected quantities provided by the observations, which yields an estimate of the compressive versus solenoidal ratio in various regions of the cloud. Results: Despite the Orion B molecular cloud being highly supersonic (mean Mach number 6), the fractions of motion in each mode diverge significantly from equipartition. The cloud's motions are, on average, mostly solenoidal (excess > 8% with respect to equipartition), which is consistent with its low star formation rate. On the other hand, the motions around the main star forming regions (NGC 2023 and NGC 2024) prove to be strongly compressive. Conclusions: We have successfully applied to observational data a method that has so far only been tested on simulations, and we have shown that there can be a strong intra-cloud variability of the compressive and solenoidal fractions, these fractions being in turn related to the star formation efficiency. This opens a new possibility for star formation diagnostics in galactic molecular clouds. Based on observations carried out at the IRAM-30 m single-dish telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  7. THE GALACTIC CENTER CLOUD G0.253+0.016: A MASSIVE DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL

    SciTech Connect

    Kauffmann, Jens; Pillai, Thushara; Zhang Qizhou

    2013-03-10

    We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using CARMA and the SMA. This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2 Multiplication-Sign 10{sup 5} M{sub Sun }) into a radius of only 3 pc, but it is essentially starless. G0.253+0.016 therefore violates ''star formation laws'' presently used to explain trends in galactic and extragalactic star formation by a factor {approx}45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths {approx}< 1 km s{sup -1}-probably the narrowest lines reported for the GC region to date-are found. Evolution over several 10{sup 5} yr is needed before more massive cores, and possibly an Arches-like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound nature of G0.253+0.016, it is not clear that this evolution will happen.

  8. Measurements of Chlorine Partitioning in the Winter Arctic Stratosphere

    NASA Technical Reports Server (NTRS)

    Stachnik, R.; Salawitch, R.; Engel, A.; Schmidt, U.

    1999-01-01

    Under the extremely cold conditions in the polar winter stratosphere, heterogeneous reactions involving HCl and CIONO(sub 2) on the surfaces of polar stratospheric cloud particles can release large amounts of reactive chlorine from these reservoirs leading to rapid chemical loss of ozone in the Arctic lower stratosphere during late winter and early spring.

  9. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations

  10. Effect of Smoke on Cloud Formation during the Biomass Burning Season over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Koren, I.; Kaufman, Y. J.; Remer, L. A.

    2003-01-01

    Aerosol absorption of sunlight reduces surface irradiation and heats the aerosol layer. The consequent changes in the temperature and humidity profiles can affect cloud formation extent and life time, which is called the semi-direct effect. We evaluate this aerosol semi-direct effect using data collected during the 2002 biomass burning season over the Amazon basin from the MODIS instrument on the Aqua satellite. MODIS measures the cloud coverage and the aerosol optical thickness among the clouds. We found that the radiative heating of the atmosphere and cooling of the surface due to the presence of the smoke decreases the cloud coverage. A very clear negative correlation emerges between the cloud fraction and the smoke optical depth. The results are compared to calculations using 1-D radiation model (M.D. Chou), and used to calculate this regional semi direct effect on climate forcing.

  11. Modeling studying on ice formation by bacteria in warm-based convective cloud

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2005-12-01

    Bacteria have been recognized as cloud condensation nuclei (CCN), and certain bacteria, commonly found in plants, have exhibited capacity to act as ice nuclei (IN) at temperatures as warm as -2 °C. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds at altitudes of several kilometres. It is noteworthy that over 20 years ago, one assumed the possibility of bacterial transport and their importance into cloud formation process, rain and precipitation, as well as causing disease in plants and animal kingdom. We used a 1-D cumulus cloud model with the CCOPE 19th July 1981 case and the observed field profile of bacterial concentration, to simulate the significance of bacteria as IN through condensation freezing mechanism. In this paper, we will present our results on the role of bacteria as active ice nuclei in the developing stage of cumulus clouds, and their potential significance in atmospheric sciences.

  12. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  13. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  14. Students' Understanding of Cloud and Rainbow Formation and Teachers' Awareness of Students' Performance

    ERIC Educational Resources Information Center

    Malleus, Elina; Kikas, Eve; Kruus, Sigrid

    2016-01-01

    This study describes primary school students' knowledge about rainfall, clouds and rainbow formation together with teachers' predictions about students' performance. In our study, primary school students' (N = 177) knowledge about rainfall and rainbow formation was examined using structured interviews with open-ended questions. Primary school…

  15. SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS

    SciTech Connect

    Keres, Dusan; Hernquist, Lars

    2009-07-20

    We use one of the highest resolution cosmological smoothed particle hydrodynamic simulations to date to demonstrate that cold gaseous clouds form around Milky Way-size galaxies. We further explore mechanisms responsible for their formation and show that a large fraction of clouds originate as a consequence of late-time filamentary 'cold mode' accretion. Here, filaments that are still colder and denser than the surrounding halo gas are not able to connect directly to galaxies, as they do at high redshift, but are instead susceptible to the combined action of cooling and Rayleigh-Taylor instabilities at intermediate radii within the halo leading to the production of cold, dense pressure-confined clouds, without an associated dark matter component. This process is aided through the compression of the incoming filaments by the hot halo gas and expanding shocks during the halo buildup. Our mechanism directly seeds clouds from gas with substantial local overdensity, unlike in previous models, and provides a channel for the origin of cloud complexes. These clouds can later 'rain' onto galaxies, delivering fuel for star formation. Owing to the relatively large cross-section of filaments and the net angular momentum carried by the gas, the clouds will be distributed in a modestly flattened region around a galaxy.

  16. Detection of Star Formation in the Unusually Cold Giant Molecular Cloud G216-2.5

    NASA Astrophysics Data System (ADS)

    Megeath, S. T.; Allgaier, E.; Young, E.; Allen, T.; Pipher, J. L.; Wilson, T. L.

    2009-04-01

    The giant molecular cloud G216-2.5, also known as Maddalena's cloud or the Maddalena-Thaddeus cloud, is distinguished by an unusual combination of high gas mass (1-6 × 105 M sun), low kinetic temperatures (10 K), and the lack of bright far-IR emission. Although star formation has been detected in neighboring satellite clouds, little evidence for star formation has been found in the main body of this cloud. Using a combination of mid-IR observations with the IRAC and Multiband Imaging Photometer for Spitzer instruments onboard the Spitzer Space Telescope, and near-IR images taken with the Flamingos camera on the KPNO 2.1 m telescope, we identify a population of 41 young stars with disks and 33 protostars in the center of the cloud. Most of the young stellar objects are coincident with a filamentary structure of dense gas detected in CS (2 → 1). These observations show that the main body of G216 is actively forming stars, although at a low stellar density comparable to that found in the Taurus cloud. Based on observations made with ESO telescopes at the La Silla Observatory.

  17. DETECTION OF STAR FORMATION IN THE UNUSUALLY COLD GIANT MOLECULAR CLOUD G216-2.5

    SciTech Connect

    Megeath, S. T.; Allgaier, E.; Allen, T.; Young, E.; Pipher, J. L.; Wilson, T. L.

    2009-04-15

    The giant molecular cloud G216-2.5, also known as Maddalena's cloud or the Maddalena-Thaddeus cloud, is distinguished by an unusual combination of high gas mass (1-6 x 10{sup 5} M {sub sun}), low kinetic temperatures (10 K), and the lack of bright far-IR emission. Although star formation has been detected in neighboring satellite clouds, little evidence for star formation has been found in the main body of this cloud. Using a combination of mid-IR observations with the IRAC and Multiband Imaging Photometer for Spitzer instruments onboard the Spitzer Space Telescope, and near-IR images taken with the Flamingos camera on the KPNO 2.1 m telescope, we identify a population of 41 young stars with disks and 33 protostars in the center of the cloud. Most of the young stellar objects are coincident with a filamentary structure of dense gas detected in CS (2 {yields} 1). These observations show that the main body of G216 is actively forming stars, although at a low stellar density comparable to that found in the Taurus cloud.

  18. Overshooting cloud top, variation of tropopause and severe storm formation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1984-01-01

    The development of severe multicell thunderstorms leading to the touchdown of six tornados near Pampa, TX, on May 19-20, 1982, is characterized in detail on the basis of weather maps, rawinsonde data, and radar summaries, and the results are compared with GOES rapid-scan IR images. The multicell storm cloud is shown to have formed beginning at 1945 GMT at the point of highest horizontal moisture convergence and lowest tropopause height and to have penetrated the tropopause at 2130 GMT, reaching a maximum altitude and a cloud-top black-body temperature 9 C lower than the tropopause temperature at 2245 GMT and collapsing about 20 min, when the firt tornado touched down. The value of the real-time vertical profiles provided by satellite images in predicting which severe storms will produce tornados or other violent phenomena is stressed.

  19. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols - Climatic implications

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1992-01-01

    Supercooled droplets in cirrus uncinus cell heads between -40 and -50 C are identified from the First International Satellite Cloud Climatology Project Regional Experiment polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  20. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: climatic implications.

    PubMed

    Sassen, K

    1992-07-24

    Supercooled droplets in cirrus uncinus cell heads between -40 degrees and -50 degrees C are identified from Project FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  1. The collapse of clouds and the formation and evolution of stars and disks

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Galli, Daniele; Ostriker, Eve; Lizano, Susana

    1993-01-01

    We consider the interrelationships among the structure of molecular clouds; the collapse of rotating cloud cores; the formation of stars and disks; the origin of molecular outflows, protostellar winds, and highly collimated jets; the birth of planetary and binary systems; and the dynamics of star/disk/satellite interactions. Our discussion interweaves theory with the results of observations that span from millimeter wavelengths to X-rays.

  2. Numerical modelling of the formation process of planets from protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Kozlov, N. N.; Eneyev, T. M.

    1979-01-01

    Evolution of the plane protoplanetary cloud, consisting of a great number of gravitationally interacting and uniting under collision bodies (protoplanets) moving in the central field of a large mass (the Sun or a planet), is considered. It is shown that in the course of protoplanetary cloud evolution the ring zones of matter expansion and compression occur with the subsequent development leading to formation of planets, rotating about their axes mainly directly. The principal numerical results were obtained through digital simulation of planetary accumulation.

  3. Surfactants from the gas phase may promote cloud droplet formation

    PubMed Central

    Sareen, Neha; Schwier, Allison N.; Lathem, Terry L.; Nenes, Athanasios; McNeill, V. Faye

    2013-01-01

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8–10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas–aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  4. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

  5. Cloud fluid models of gas dynamics and star formation in galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  6. Influence of Dust Composition on Cloud Droplet Formation

    SciTech Connect

    Kelly, J T; Chuang, C C; Wexler, A S

    2006-08-21

    Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K{sup +}, Mg{sup 2+}, or Ca{sup 2+} compounds to estimate the conditions where reacted and unreacted dust can activate. We also use an adiabatic parcel model to evaluate the influence of dust particles on cloud properties via water competition. Based on their bulk solubilities, K{sup +} compounds, MgSO{sub 4} x 7H{sub 2}O, Mg(NO{sub 3}){sub 2} x 6H{sub 2}O, and Ca(NO{sub 3}){sub 2} x 4H{sub 2}O are classified as highly soluble substances, which enable activation of fine dust. Slightly soluble gypsum and MgSO{sub 3} x 6H{sub 2}O, which may form via heterogeneous reactions involving carbonates, enable activation of particles with diameters between about 0.6 and 2 mm under some conditions. Dust particles > 2 mm often activate regardless of their composition. Only under very specialized conditions does the addition of a dust distribution into a rising parcel containing fine (NH{sub 4}){sub 2}SO{sub 4} particles significantly reduce the total number of activated particles via water competition. Effects of dust on cloud saturation and droplet number via water competition are generally smaller than those reported previously for sea salt. Large numbers of fine dust CCN can significantly enhance the number of activated particles under certain conditions. Improved representations of dust mineralogy and reactions in global aerosol models

  7. The formation of stellar systems from interstellar molecular clouds.

    PubMed

    Gehrz, R D; Black, D C; Solomon, P M

    1984-05-25

    Star formation, a crucial link in the chain of events that led from the early expansion of the universe to the formation of the solar system, continues to play a major role in the evolution of many galaxies. Observational and theoretical studies of regions of ongoing star formation provide insight into the physical conditions and events that must have attended the formation of the solar system. Such investigations also elucidate the role played by star formation in the evolutionary cycle which appears to dominate the chemical processing of interstellar material by successive generations of stars in spiral galaxies like our own. New astronomical facilities planned for development during the 1980's could lead to significant advances in our understanding of the star formation process. Efforts to identify and examine both the elusive protostellar collapse phase of star formation and planetary systems around nearby stars will be especially significant.

  8. A possible role of ground-based microorganisms on cloud formation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Ekström, S.; Nozière, B.; Hultberg, M.; Alsberg, T.; Magnér, J.; Nilsson, E. D.; Artaxo, P.

    2009-10-01

    The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but also a difficult one to predict because some aspects of the transformations of aerosol particles into cloud droplets are still not well understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and should significantly enhance their conversion into of cloud droplets. In the first part of this work, the cloud-nucleating efficiency (or "CCN" efficiency) of standard biosurfactants was characterized by osmolality and surface tension measurements and found to be better than for any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give to organic compounds exceptional CCN properties. In the second part, atmospheric aerosols sampled at different locations (temperate & tropical, forested & marine ones) were found to all have a surface tension below 30 mN/m, which can only be accounted for by the presence of biosurfactants. The results also showed that these biosurfactants were concentrated enough to significantly affect the surface tension of these aerosols and enhance their CCN efficiency. The presence of such strong biosurfactants in aerosols would be consistent with the recent identification of organic fractions of higher CCN efficiency than ammonium sulfate in aerosols. And a role of microorganisms at the Earth's surface on clouds could also explain previously reported correlations between algae bloom and cloud cover. Our results also suggest that biosurfactants might be common in aerosols and thus of global relevance. If their impact on cloud formation is confirmed by future studies, this work would have identified a new role of microorganisms at the Earth's surface on the atmosphere, and a new component of the Earth

  9. Thermal-chemical instabilities in CO clouds. [interstellar matter and protostar formation

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1976-01-01

    The stability of interstellar clouds containing CO is analyzed taking account of formation processes for CO. Two such processes are examined: O(+) charge exchange and C(+) radiative association. It is found that the C(+) radiative-association chemistry leads to low-temperature instabilities which influence the evolution of clouds. It is also found that instability may set in if CO production increases sufficiently with density, that the O(+) charge-exchange chemistry leads to instability associated with attenuation of the interstellar radiation field by grains, and that thermal instabilities will also result if grain formation, rather than ion-molecule chemistry, dominates CO production. It is suggested that such instabilities play a role in the fragmentation of interstellar clouds and in the formation of protostellar objects.

  10. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  11. The Remarkable 2003--2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Kruger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2005-01-01

    The 2003-2004 Arctic winter was remarkable in the approximately 50-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly 2 months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with 2 previous years, 1984-1985 and 1986-1987, with prolonged midwinter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over 2 standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (7 in the past 6 years) is unprecedented. Lower stratospheric temperatures were unusually high during 6 of the past 7 years, with 5 having much lower than usual potential for polar stratospheric cloud (PSC) formation and ozone loss (nearly none in 1998-1999, 2001-2002, and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of 5 of the last 7 years with very low PSC potential would be expected to occur randomly once every 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  12. Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-01-01

    Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO2) with H2O and HCl on surfacers that simulate polar stratospheric clouds are studied at temperatures relevant to the Antarctic stratosphere. The gaseous products of the resulting reactions, HOCl, Cl2O, and Cl2, could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the additional formation of condensed-phase HNO3 could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.

  13. The location, clustering, and propagation of massive star formation in giant molecular clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram; Meixner, Margaret; Chastenet, Jeremy; Tielens, A. G. G. M.; Roman-Duval, Julia

    2017-01-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this talk, I will highlight results from a project utilizing data from several galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (< 10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We have employed this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. The main results are as follows: (1) Massive stars do not typically form at the highest column densities nor centers of their parent GMCs. (2) Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. (3) The rate of massive star formation is significantly boosted in clouds near SCs. Yet, comparison of molecular clouds associated with SCs with those that are not reveals no significant difference in their global properties. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. I will compare our findings with Galactic studies and discuss this in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  14. The Location, Clustering, and Propagation of Massive Star Formation in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy; Tielens, Alexander G. G. M.; Roman-Duval, Julia

    2016-11-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parent GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  15. Observational Evidence of Dynamic Star Formation Rate in Milky Way Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Miville-Deschênes, Marc-Antoine; Murray, Norman W.

    2016-12-01

    Star formation on galactic scales is known to be a slow process, but whether it is slow on smaller scales is uncertain. We cross-correlate 5469 giant molecular clouds (GMCs) from a new all-sky catalog with 256 star-forming complexes (SFCs) to build a sample of 191 SFC-GMC complexes—collections of multiple clouds each matched to 191 SFCs. The total mass in stars harbored by these clouds is inferred from WMAP free-free fluxes. We measure the GMC mass, the virial parameter, the star formation efficiency ɛ and the star formation rate per freefall time ɛ ff. Both ɛ and ɛ ff range over 3-4 orders of magnitude. We find that 68.3% of the clouds fall within {σ }{logɛ }=0.79+/- 0.22 {dex} and {σ }{log{ɛ }{ff}}=0.91+/- 0.22 {dex} about the median. Compared to these observed scatters, a simple model with a time-independent ɛ ff that depends on the host GMC properties predicts {σ }{log{ɛ }{ff}}=0.12{--}0.24. Allowing for a time-variable ɛ ff, we can recover the large dispersion in the rate of star formation. This strongly suggests that star formation in the Milky Way is a dynamic process on GMC scales. We also show that the surface star formation rate profile of the Milky Way correlates well with the molecular gas surface density profile.

  16. Magnetohydrodynamics of Wind-Cloud Interactions: Filament Formation in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, Wladimir E.

    2016-08-01

    Filaments are ubiquitous in the interstellar medium, yet their formation, internal structure, magnetic properties, and longevity have not been analysed in detail. In this thesis I report the results from a comprehensive numerical study that investigates the characteristics, formation, dynamics, and global evolution of filamentary structures arising from (magneto)hydrodynamic interactions between supersonic winds and interstellar clouds. Here I improve on previous wind-cloud simulations by utilising higher numerical resolutions, sharper density contrasts, more complex magnetic field configurations, and more realistic systems with turbulent clouds. I use gas multi-tracking algorithms and state-of-the-art visualisation techniques to study the physical mechanisms acting upon wind-swept clouds. I find that material originally in the envelopes of the clouds is removed and transported downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these low-density tails. The evolution of filaments comprises four phases: 1) tail formation, 2) tail erosion, 3) footpoint dispersion, and 4) filament free floating. Overall, wind-cloud interactions produce filaments with aspect ratios >10, lateral expansions 1-3 of the core radius, mixing fractions 10-30%, velocity dispersions 0.02-0.05 of the wind speed, and magnetic field amplifications by factors of 10-100. I find that the strength of magnetic fields regulates vorticity production: sinuous filamentary towers arise in non-magnetic environments, while strong magnetic fields inhibit small-scale Kelvin-Helmholtz perturbations at boundary layers making tails less turbulent. The orientation of magnetic fields also influences the morphology of filaments: magnetic field components aligned with the direction of the wind favour the formation of pressure-confined flux ropes inside the tails, whilst transverse components tend to form current sheets and favour the growth of Rayleigh

  17. The Airborne Arctic Stratospheric Expedition - Prologue

    NASA Technical Reports Server (NTRS)

    Turco, Richard; Plumb, Alan; Condon, Estelle

    1990-01-01

    This paper presents an introduction to the initial scientific results of the Airborne Arctic Stratospheric Expedition (AASE), as well as data from other atmospheric experiments and analyses carried out during the Arctic polar winter of 1989. Mission objectives of the AASE were to study the mechanisms of ozone depletion and redistribution in the northern polar stratosphere, including the influences of Arctic meteorology, and polar stratospheric clouds formed at low temperatures. Some major aspects of the AASE are described including: logistics and operations, meteorology, polar stratospheric clouds, trace composition and chemistry, and ozone depletion. It is concluded that the Arctic-89 experiments have provided the scientific community with a wealth of new information that will contribute to a better understanding of the polar winter stratosphere and the critical problem of global ozone depletion.

  18. Factors leading to the formation of arc cloud complexes

    NASA Technical Reports Server (NTRS)

    Welshinger, Mark John; Brundidge, Kenneth C.

    1987-01-01

    A total of 12 mesoscale convective systems (MCSs) were investigated. The duration of the gust front, produced by each MCS, was used to classify the MCSs. Category 1 MCSs were defined as ones that produced a gust front and the gust front lasted for more than 6 h. There were 7 category 1 MCSs in the sample. Category 2 MCSs were defined as ones that produced a gust front and the gust front lasted for 6 h or less. There were 4 category 2 MCSs. The MCS of Case 12 was not categorized because the precipitation characteristics were similar to a squall line, rather than an MCS. All of the category 1 MCSs produced arc cloud complexes (ACCs), while only one of the category 2 MCSs produced an ACC. To determine if there were any differences in the characteristics between the MCSs of the two categories, composite analyses were accomplished. The analyses showed that there were significant differences in the characteristics of category 1 and 2 MCSs. Category 1 MCSs, on average, had higher thunderstorm heights, greater precipitation intensities, colder cloud top temperatures and produced larger magnitudes of surface divergence than category 2 MCSs.

  19. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    PubMed

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.

  20. THE TWO MOLECULAR CLOUDS IN RCW 38: EVIDENCE FOR THE FORMATION OF THE YOUNGEST SUPER STAR CLUSTER IN THE MILKY WAY TRIGGERED BY CLOUD–CLOUD COLLISION

    SciTech Connect

    Fukui, Y.; Torii, K.; Ohama, A.; Hasegawa, K.; Hattori, Y.; Sano, H.; Yamamoto, H.; Tachihara, K.; Ohashi, S.; Fujii, K.; Kuwahara, S.; Mizuno, N.; Okuda, T.; Dawson, J. R.; Onishi, T.; Mizuno, A.

    2016-03-20

    We present distributions of two molecular clouds having velocities of 2 and 14 km s{sup −1} toward RCW 38, the youngest super star cluster in the Milky Way, in the {sup 12}CO J = 1–0 and 3–2 and {sup 13}CO J = 1–0 transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the J = 3–2 emission to the J = 1–0 emission, the bridging feature connecting the two clouds in velocity, and their morphological correspondence with the infrared dust emission. The velocity difference is too large for the clouds to be gravitationally bound. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the ∼20 O stars that are localized within ∼0.5 pc of the cluster center in the 2 km s{sup −1} cloud. We suggest that the collision is currently continuing toward part of the 2 km s{sup −1} cloud where the bridging feature is localized. This is the third super star cluster alongside Westerlund 2 and NGC 3603 where cloud–cloud collision has triggered the cluster formation. RCW 38 is the youngest super star cluster in the Milky Way, holding a possible sign of on-going O star formation, and is a promising site where we may be able to witness the moment of O star formation.

  1. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  2. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  3. Formation of a protocluster: A virialized structure from gravoturbulent collapse. I. Simulation of cluster formation in a collapsing molecular cloud

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Stars are often observed to form in clusters and it is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium. The properties of such a region eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. Aims: We study the formation of a gaseous protocluster inside a molecular cloud and associate its internal properties with those of the parent cloud by varying the level of the initial turbulence of the cloud with a view to better characterize the subsequent stellar cluster formation. Methods: We performed high resolution magnetohydrodynamic (MHD) simulations of gaseous protoclusters forming in molecular clouds collapsing under self-gravity. We determined ellipsoidal cluster regions via gas kinematics and sink particle distribution, permitting us to determine the mass, size, and aspect ratio of the cluster. We studied the cluster properties, such as kinetic and gravitational energy, and made links to the parent cloud. Results: The gaseous protocluster is formed out of global collapse of a molecular cloud and has non-negligible rotation owing to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region, which occupies only a small volume fraction of the whole cloud. This dense entity is a result of the interplay between turbulence and gravity. We identify such regions in simulations and compare the gas and sink particles to observed star-forming clumps and embedded clusters, respectively. The gaseous protocluster inferred from simulation results presents a mass-size relation that is compatible with observations. We stress that the stellar cluster radius, although clearly correlated with the gas cluster radius, depends sensitively on its definition. Energy analysis is performed to confirm that the gaseous protocluster is a product of gravoturbulent reprocessing and that the support of turbulent

  4. Ice Nuclei Variability and Ice Formation in Mixed-phase Clouds

    NASA Astrophysics Data System (ADS)

    Demott, P. J.; Twohy, C. H.; Prenni, A. J.; Kreidenweis, S. M.; Brooks, S. D.; Rogers, D. C.

    2005-12-01

    While it is expected that ice nuclei impose a critical role in ice initiation in clouds, there are relatively few validations of direct relations between ice nuclei concentrations and ice crystal concentrations. Further, very little is known about the spatial and temporal distribution of ice nuclei, let alone their sources. Such knowledge is critical for understanding precipitation formation, cloud lifetimes, the existence of aircraft icing hazards, and the impacts of changing atmospheric aerosol particle concentrations and compositions on cold cloud processes. In this study, we document measurements of ice nuclei in relation to the presence and concentrations of ice crystals in modestly supercooled clouds and also consider the implications of differences in ice nuclei concentrations measured at different locations and times during several studies. In the first part of this presentation, we show results from measurements made in the Alliance Icing Research Study II, conducted in late Fall 2003 over the Northeast U.S. and Eastern Canada. A counterflow virtual impactor was used for selectively sampling cloud particles during aircraft measurements of clouds. Measurements were made on the evaporated residual aerosol particles, including re-processing at controlled temperatures and relative humidities to determine their ice nucleating behavior for conditions of direct relevance to the clouds using a continuous flow ice-thermal diffusion chamber (CFDC). Comparing to measurements of ice crystals in clouds, a clear correlation between the presence or absence of ice nuclei and ice crystals was demonstrated in some cases. However, the concentrations of the two populations did not correlate as well. Reasons for this may reflect different (or not assessed) ice formation processes, redistribution of ice in clouds, and potential artifacts of the sampling procedure. Since these results and those of Prenni et al. (this meeting), describing the vital role of ice nuclei in affecting

  5. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation

    PubMed Central

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H.; Morales, Ricardo; Moore, Richard H.; Lathem, Terry L.; Lance, Sara; Padró, Luz T.; Lin, Jack J.; Cerully, Kate M.; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R.; Chuang, Patrick Y.; Anderson, Bruce E.; Flagan, Richard C.; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N.

    2013-01-01

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought. PMID:23431189

  6. Studying the Formation and Development of Molecular Clouds: With the CCAT Heterodyne Array Instrument (CHAI)

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2012-01-01

    Surveys of all different types provide basic data using different tracers. Molecular clouds have structure over a very wide range of scales. Thus, "high resolution" surveys and studies of selected nearby clouds add critical information. The combination of large-area and high resolution allows Increased spatial dynamic range, which in turn enables detection of new and perhaps critical morphology (e.g. filaments). Theoretical modeling has made major progress, and suggests that multiple forces are at work. Galactic-scale modeling also progressing - indicates that stellar feedback is required. Models must strive to reproduce observed cloud structure at all scales. Astrochemical observations are not unrelated to questions of cloud evolution and star formation but we are still learning how to use this capability.

  7. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    SciTech Connect

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  8. Star Formation in Disk Galaxies. III. Does Stellar Feedback Result in Cloud Death?

    NASA Astrophysics Data System (ADS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  9. Laboratory studies of stratospheric aerosol chemistry

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1996-01-01

    In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.

  10. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup –1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  11. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  12. A Search for Star Formation in the Translucent Cloud MBM 40

    NASA Technical Reports Server (NTRS)

    Magnani, Loris; Caillault, Jean-Pierre; Hearty, Thomas; Stauffer, John; Schmitt, J. H. M. M.; Neuhaeuser, Ralph; Verter, Frances; Dwek, Eli

    1996-01-01

    The star formation status of the translucent high-latitude molecular cloud, MBM 40, is explored through analysis of radio, infrared, optical, and X-ray data. With a peak visual extinction of 1 to 2 mag, MBM 40 is an example of a high-latitude cloud near the diffuse/translucent demarcation. However, unlike most translucent clouds, MBM 40 exhibits a compact morphology and a kinetic energy-to gravitational potential energy ratio near unity. Our radio data, encompassing the CO (J = 1-0), CS (J = 2-1), and H2CO 1(sub 11-1(sub 10), spectral line transitions, reveal that the cloud contains a ridge of molecular gas with n greater than or equal to 10(exp 3)/ cc. In addition, the molecular data, together with IRAS data, indicate that the mass of MBM 40 is approx. 40 solar mass. In light of the ever-increasing number of recently formed stars far from any dense molecular clouds or cores, we searched the environs of MBM 40 for any trace of recent star formation. We used the ROSAT All-Sky Survey X-ray data and a ROSAT PSPC pointed observation toward MBM 40 to identify 33 stellar candidates with properties consistent with pre-main-sequence (PMS) stars. Follow-up optical spectroscopy of the candidates with V less than 15.5 was conducted with the 1.5 m Fred Lawrence Whipple Observatory telescope in order to identify signatures of T Tauri or pre-main- sequence stars (such as the Li 6708 A resonance line). Since none of our optically observed candidates display standard PMS signatures, we conclude that MBM 40 displays no evidence of recent or ongoing star formation. The absence of high-density molecular cores in the cloud and the relatively low column density compared to star-forming interstellar clouds may be the principal reasons that MBM 40 is devoid of star formation. More detailed comparison between this cloud and other, higher extinction translucent and dark clouds may elucidate the necessary initial conditions for the onset of low-mass star formation.

  13. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    NASA Technical Reports Server (NTRS)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  14. Star formation efficiencies of molecular clouds in a galactic centre environment

    NASA Astrophysics Data System (ADS)

    Bertram, Erik; Glover, Simon C. O.; Clark, Paul C.; Klessen, Ralf S.

    2015-08-01

    We use the AREPO moving mesh code to simulate the evolution of molecular clouds exposed to a harsh environment similar to that found in the galactic centre (GC), in an effort to understand why the star formation efficiency (SFE) of clouds in this environment is so small. Our simulations include a simplified treatment of time-dependent chemistry and account for the highly non-isothermal nature of the gas and the dust. We model clouds with a total mass of 1.3 × 105 M⊙ and explore the effects of varying the mean cloud density and the virial parameter, α = Ekin/|Epot|. We vary the latter from α = 0.5 to 8.0, and so many of the clouds that we simulate are gravitationally unbound. We expose our model clouds to an interstellar radiation field (ISRF) and cosmic ray flux (CRF) that are both a factor of 1000 higher than the values found in the solar neighbourhood. As a reference, we also run simulations with local solar neighbourhood values of the ISRF and the CRF in order to better constrain the effects of the extreme conditions in the GC on the SFE. Despite the harsh environment and the large turbulent velocity dispersions adopted, we find that all of the simulated clouds form stars within less than a gravitational free-fall time. Increasing the virial parameter from α = 0.5 to 8.0 decreases the SFE by a factor of ˜4-10, while increasing the ISRF/CRF by a factor of 1000 decreases the SFE again by a factor of ˜2-6. However, even in our most unbound clouds, the SFE remains higher than that inferred for real GC clouds. We therefore conclude that high levels of turbulence and strong external heating are not enough by themselves to lead to a persistently low SFE at the centre of the Galaxy.

  15. Lifetime Extension of Cirrus Cloud Ice Particles upon Contamination with HCl and HNO3 under conditions of the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Rossi, Michel J.; Delval, Christophe

    2016-04-01

    Ice particles in the Upper Troposphere/Lower Stratosphere (UT/LS) are the seat of heterogeneous chemical processes that are important in polar ozone chemistry. Estimated evaporative lifetimes of typical pure ice particles of a few micrometers radius in Cirrus clouds are on the order of a minute or so at 80% relative humidity, too short to allow significant heterogeneous processing. We took this as a motivation to systematically measure absolute rates of evaporation and condensation of H2O in 1 to 2 micrometer thick ice films taken as proxies for small atmospheric ice particles under controlled conditions of HCl and HNO3 trace gas contamination. We have used a multidiagnostic reaction vessel equipped with residual gas mass spectrometry (MS), FTIR absorption spectroscopy in transmission and a quartz crystal microbalance (QCMB) in order to simultaneously observe both the gas and condensed phases under relevant atmospheric conditions. The rates (Rev(H2O)) or fluxes of evaporation (Jev(H2O)) of H2O from thin ice films contaminated by a measured amount of HCl in the range of 10% of a formal monolayer to 20 formal monolayers decreased by factors of between 2 and 50 depending on parameters such as temperature of deposition (Tdep), rate (RHCl) and dose (NHCl) of contaminant doping. Experiments with HCl fell into two categories as far as the decrease of Jev with the average mole fraction of contaminant (χHCl) in the remaining ice slab was concerned: one group where Jev(H2O) decreased gradually after pure ice evaporated, and another group where Jev(H2O) abruptly changes with χHCl after evaporation of excess ice. FTIR spectroscopy revealed an unknown, yet crystalline form of HCl hydrate upon HCl doping that does not correspond to a known crystalline hydrate. Of importance is the observation, that the equilibrium vapor pressure of these contaminated ices correspond to that of pure ice even after evaporation of excess ice at the characteristic rate of pure ice evaporation

  16. Observations of Stratospheric Aerosols over Sondrestrom, Greenland Injected by Russia's Sarychev Peak Volcano

    NASA Astrophysics Data System (ADS)

    Neely, R. R.; Thayer, J. P.; Hayman, M.; Barnes, J. E.; O'Neill, M.

    2009-12-01

    Volcanic stratospheric aerosols affect global climate by influencing the radiative budget and chemistry of the lower stratosphere. Presently the stratospheric aerosol levels are in a background state. This provides the opportunity for studies of stratospheric injections by small volcanic eruptions. A thin stratospheric aerosol layer was identified during the month of July, 2009 using the Arctic Lidar Technology (ARCLITE) System operated at Sondrestrom. Trajectory analysis points to the source of the aerosols being the Sarychev Peak volcano in the Russian Kuril Islands. Latitudinal observations of the layer were made by the NOAA/Earth System Research Laboratory/Global Monitoring Division’s (GMD) stratospheric lidar network (Boulder,CO; Mauna Loa, HI; and Pago Pago, American Samoa). These observations show a significant increase in aerosol backscatter levels compared to the low background levels observed prior the eruption. Profiles derived from the from the ARCLITE observations include depolarization, backscatter and temperature which allow for a characterization of the layer on a daily basis. The ARCLITE observations also provide a time series of measurements showing the evolution of the aerosol layer over the month after the injection within the context of the less frequent profiles provided by the global GMD network. From the optical qualities observed, the exact nature of the aerosols and their role in the radiative budget and stratospheric chemistry are elucidated. These types of observations are unique to ground based lidar systems like ARCLITE due to the optically thin qualities of the layer which prevent detection in the visible band by nadir looking satellites. The long-term effect of this injection of sulfur dioxide into the stratosphere may influence the formation of type 1b polar stratospheric clouds during the coming winter.

  17. The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Joshi, M. M.; Jones, G. S.

    2009-03-01

    We describe a novel mechanism that can significantly lower the amplitude of the climatic response to certain large volcanic eruptions. The proximity of oceans to some volcanoes can cause significant entrainment of water into coignimbrite clouds during the eruption. If sufficiently large amounts of this entrained water vapour enter the stratosphere, a climatically significant amount of water vapour can be left over in the lower stratosphere after the eruption, even after sulphate aerosol formation. This excess stratospheric humidity warms the climate, and acts to balance the climatic cooling induced by the volcanic aerosol, especially because the humidity anomaly lasts for a period that is longer that the residence time of aerosol in the stratosphere. In particular, Northern Hemisphere cooling is reduced in magnitude. We discuss this mechanism in the context of the discrepancy between the observed and modelled cooling following the Krakatau eruption in 1883.

  18. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    SciTech Connect

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  19. Barium cloud evolution and striation formation in the magnetospheric release on September 21, 1971

    NASA Technical Reports Server (NTRS)

    Adamson, D.; Fricke, C. L.

    1974-01-01

    The joint NASA-Max Planck Institute Barium Ion Cloud (BIC) Experiment on September 21, 1971 involved the release of 1.7 kg of neutral barium at an altitude of 31,500 km at a latitude of 6.93 deg N. and a longitude of 74.40 deg W. A theoretical model describing the barium neutral cloud expansion and the ion cloud formation is developed. The mechanism of formation of the striational features observed in the release is also discussed. Two candidate instabilities, which may contribute to striation formation, are examined. The drift instability stemming from the outwardly directed drag force exerted on the ions by the outstreaming neutrals is rejected on the grounds that the ion density is too low during the collision-dominated phase of the cloud expansion to support this kind of instability. The joint action of Rayleigh-Taylor and flute instabilities plausibly accounts for the observed striational structure. This same mechanism may well be operative at times of sudden injection of plasma into the inner magnetosphere during geomagnetic storms and may thus contribute to the formation of field-alined inhomogeneities which serve as whistler ducts.

  20. Radiative Interaction of Shocks with Small Interstellar Clouds as a Pre-stage to Star Formation

    NASA Astrophysics Data System (ADS)

    Johansson, Erik P. G.; Ziegler, Udo

    2013-03-01

    Cloud compression by external shocks is believed to be an important triggering mechanism for gravitational collapse and star formation in the interstellar medium. We have performed MHD simulations to investigate whether the radiative interaction between a shock wave and a small interstellar cloud can induce the conditions for Jeans instability and how the interaction is influenced by magnetic fields of different strengths and orientation. The simulations use the NIRVANA code in three dimensions with anisotropic heat conduction and radiative heating/cooling at an effective resolution of 100 cells per cloud radius. Our cloud has radius 1.5 pc, has density 17 cm-3, is embedded in a medium of density 0.17 cm-3, and is struck by a planar Mach 30 shock wave. The simulations produce dense, cold fragments similar to those of Mellema et al. and Fragile et al. We do not find any regions that are Jeans unstable but do record transient cloud density enhancements of factors ~103-105 for the bulk of the cloud mass, which then decline and converge toward seemingly stable net density enhancement factors ~102-104. Our run with a weak, initial magnetic field (β = 103) perpendicular to the shock normal stands out as producing the most lasting density enhancements. We interpret this field strength as being the compromise between weak internal magnetic pressure preventing compression and sufficiently strong magnetic field to thermally insulate the condensations, thus helping them cool radiatively.

  1. Ice nucleation by cellulose and its potential contribution to ice formation in clouds

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Möhler, O.; Yamashita, K.; Tajiri, T.; Saito, A.; Kiselev, A.; Hoffmann, N.; Hoose, C.; Jantsch, E.; Koop, T.; Murakami, M.

    2015-04-01

    Ice particles in the atmosphere influence clouds, precipitation and climate, and often form with help from aerosols that serve as ice-nucleating particles. Biological particles, including non-proteinaceous ones, contribute to the diverse spectrum of ice-nucleating particles. However, little is known about their atmospheric abundance and ice nucleation efficiency, and their role in clouds and the climate system is poorly constrained. One biological particle type, cellulose, has been shown to exist in an airborne form that is prevalent throughout the year even at remote and elevated locations. Here we report experiments in a cloud simulation chamber to demonstrate that microcrystalline cellulose particles can act as efficient ice-nucleating particles in simulated supercooled clouds. In six immersion mode freezing experiments, we measured the ice nucleation active surface-site densities of aerosolized cellulose across a range of temperatures. Using these active surface-site densities, we developed parameters describing the ice nucleation ability of these particles and applied them to observed atmospheric cellulose and plant debris concentrations in a global aerosol model. We find that ice nucleation by cellulose becomes significant (>0.1 l-1) below about -21 °C, temperatures relevant to mixed-phase clouds. We conclude that the ability of cellulose to act as ice-nucleating particles requires a revised quantification of their role in cloud formation and precipitation.

  2. Star formation triggered by non-head-on cloud-cloud collisions, and clouds with pre-collision sub-structure

    NASA Astrophysics Data System (ADS)

    Balfour, S. K.; Whitworth, A. P.; Hubber, D. A.

    2017-03-01

    In an earlier paper, we used smoothed particle hydrodynamics (SPH) simulations to explore star formation triggered by head-on collisions between uniform-density 500 M⊙ clouds, and showed that there is a critical collision velocity, vCRIT. At collision velocities below vCRIT, a hub-and-spoke mode operates and delivers a monolithic cluster with a broad mass function, including massive stars (M⋆ ≳ 10 M⊙) formed by competitive accretion. At collision velocities above vCRIT, a spider's-web mode operates and delivers a loose distribution of small sub-clusters with a relatively narrow mass function and no massive stars. Here we show that, if the head-on assumption is relaxed, vCRIT is reduced. However, if the uniform-density assumption is also relaxed, the collision velocity becomes somewhat less critical: a low collision velocity is still needed to produce a global hub-and-spoke system and a monolithic cluster, but, even at high velocities, large cores - capable of supporting competitive accretion and thereby producing massive stars - can be produced. We conclude that cloud-cloud collisions may be a viable mechanism for forming massive stars - and we show that this might even be the major channel for forming massive stars in the Galaxy.

  3. Giant Molecular Clouds and Star Formation in the Non-Grand Design Spiral Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Wong, T.; Leroy, A.

    2012-01-01

    Although the internal physical properties of molecular clouds have been extensively studied (Solomon et al. 1987), a more detailed understanding of their origin and evolution in different types of galaxies is needed. In order to disentangle the details of this process, we performed CO(1-0) CARMA observations of the eastern part of the multi-armed galaxy NGC 6946. Although we found no evidence of an angular offset between molecular gas, atomic gas and star formation regions in our observations (Tamburro et al. 2008), we observe a clear radial progression from regions where molecular gas dominates over atomic gas (for r ≤ 2.8 kpc) to regions where the gas becomes mainly atomic (5.6 kpc ≤ r ≤ 7.6 kpc) when azimuthally averaged. In addition, we found that the densest concentrations of molecular gas are located on arms, particularly where they appear to intersect, which is in concordance with the predictions by simulations of the spiral galaxies with an active potential (Clarke & Gittins 2006; Dobbs & Bonnell 2008). At CO(1-0) resolution (140 pc), we were able to find CO emitting complexes with masses greater than those of typical Giant Molecular Clouds (105-106 M⊙). To identify GMCs individually and make a more detailed study of their physical properties, we made D array observations of CO(2-1) toward the densest concentrations of gas, achieving a resolution similar to GMCs sizes found in other galaxies (Bolatto et al. 2008). We present first results about differences in properties of the on-arm clouds and inter-arm clouds. We found that, in general, on-arm clouds present broader line widths, are more massive and more active in star formation than inter-arm clouds. We investigated if the velocity dispersion observed in CO(1-0) emitting complexes reflects velocity differences between unresolved smaller clouds, or if it corresponds to actual internal turbulence of the gas observed.

  4. A possible role of ground-based microorganisms on cloud formation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Ekström, S.; Nozière, B.; Hultberg, M.; Alsberg, T.; Magnér, J.; Nilsson, E. D.; Artaxo, P.

    2010-01-01

    The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but some aspects of it are not completely understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and could significantly enhance their activation into cloud droplets. In the first part of this work, the cloud-nucleating efficiency of standard biosurfactants was characterized and found to be better than that of any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give organic compounds exceptional cloud-nucleating properties. In the second part, atmospheric aerosols were sampled at different locations: a temperate coastal site, a marine site, a temperate forest, and a tropical forest. Their surface tension was measured and found to be below 30 mN/m, the lowest reported for aerosols, to our knowledge. This very low surface tension was attributed to the presence of biosurfactants, the only natural substances able to reach to such low values. The presence of strong microbial surfactants in aerosols would be consistent with the organic fractions of exceptional cloud-nucleating efficiency recently found in aerosols, and with the correlations between algae bloom and cloud cover reported in the Southern Ocean. The results of this work also suggest that biosurfactants might be common in aerosols and thus of global relevance. If this is confirmed, a new role for microorganisms on the atmosphere and climate could be identified.

  5. Reassessing the formation of the inner Oort cloud in an embedded star cluster

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Duncan, M. J.; Levison, H. F.; Schwamb, M. E.; Brown, M. E.

    2012-01-01

    We re-examine the formation of the inner Oort comet cloud while the Sun was in its birth cluster with the aid of numerical simulations. This work is a continuation of an earlier study (Brasser, R., Duncan, M.J., Levison, H.F. [2006]. Icarus 184, 59-82) with several substantial modifications. First, the system consisting of stars, planets and comets is treated self-consistently in our N-body simulations, rather than approximating the stellar encounters with the outer Solar System as hyperbolic fly-bys. Second, we have included the expulsion of the cluster gas, a feature that was absent previously. Third, we have used several models for the initial conditions and density profile of the cluster - either a Hernquist or Plummer potential - and chose other parameters based on the latest observations of embedded clusters from the literature. These other parameters result in the stars being on radial orbits and the cluster collapses. Similar to previous studies, in our simulations the inner Oort cloud is formed from comets being scattered by Jupiter and Saturn and having their pericentres decoupled from the planets by perturbations from the cluster gas and other stars. We find that all inner Oort clouds formed in these clusters have an inner edge ranging from 100 AU to a few hundred AU, and an outer edge at over 100,000 AU, with little variation in these values for all clusters. All inner Oort clouds formed are consistent with the existence of (90377) Sedna, an inner Oort cloud dwarf planetoid, at the inner edge of the cloud: Sedna tends to be at the innermost 2% for Plummer models, while it is 5% for Hernquist models. We emphasise that the existence of Sedna is a generic outcome. We define a 'concentration radius' for the inner Oort cloud and find that its value increases with increasing number of stars in the cluster, ranging from 600 AU to 1500 AU for Hernquist clusters and from 1500 AU to 4000 AU for Plummer clusters. The increasing trend implies that small star

  6. Understanding star formation in molecular clouds. II. Signatures of gravitational collapse of IRDCs

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Klessen, R. S.; Tremblin, P.; Ossenkopf, V.; Peretto, N.; Simon, R.; Bontemps, S.; Federrath, C.

    2015-06-01

    We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1→0 and 12CO 3→2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N> 1023 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated

  7. A model for studying the composition and chemical effects of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.; Jacobson, Mark Z.

    1994-01-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  8. Laboratory studies of chemical and photochemical processes relevant to stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1994-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(sub x) and NO(sub x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO2 radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. In this annual report, we focus on our recent accomplishments in the quantitative spectroscopy of the HO2 radical. This report details the measurements of the broadening coefficients for the v(sub 2) vibrational band. Further measurements of the vapor pressures of nitric acid hydrates relevant to the polar stratospheric cloud formation indicate the importance of metastable crystalline phases of H2SO4, HNO3, and H2O. Large particles produced from these metastable phases may provide a removal mechanism for HNO3 in the polar stratosphere.

  9. Tiny Molten Droplets, Dusty Clouds, and Planet Formation

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2008-11-01

    Chondrules, millimeter-sized spherules that formed as rapidly-cooled molten droplets, are characteristic of chondrite meteorites. If they formed at low pressure in the solar nebula (the cloud of gas and dust surrounding the infant Sun and from which the planets formed), then they should have lost almost all their inventories of volatile elements, such as sodium, because volatile elements would have boiled off the chondrules when they were molten. Conel Alexander (Carnegie Institution of Washington) and colleagues at Carnegie, the U.S. Geological Survey (Reston), and the American Museum of Natural History (New York) show that there was little sodium loss. They measured the sodium concentrations in numerous crystals of olivine inside chondrules in the Semarkona meteorite. The results show that the variations in concentrations from the centers of crystals to their edges are consistent with crystallization in a molten droplet that was not losing sodium to the surrounding gas. These results are supported by independent measurements by Alexander Borisov (Russian Academy of Sciences, Moscow) and colleagues at the University of Hannover, Georg-August-University Goettingen, and Koln University, all in Germany. Sodium loss could have been suppressed if the gas surrounding each chondrule had a much higher pressure of sodium than that expected for the solar nebula. Such a high pressure of sodium is most easily explained if chondrules formed in a region with a high density of solids. Alexander and his co-workers argue that such dense regions could have enough mass in a small space to collapse by gravity, perhaps forming planetesimals, the first step in constructing the inner planets.

  10. Star Formation in the Filamentary Dark Cloud GF-9: a Multi-Wavelength Intra-Cloud Comparative Study

    NASA Astrophysics Data System (ADS)

    Ciardi, David Robert

    Filamentary dark clouds (FDCs) are a subclass of small molecular clouds containing small numbers of somewhat regularly spaced dense cores connected by lower density gas and dust. Most of the previous work performed on FDCs has concerned the star formation properties of individual dense cores within the FDCs and has not concerned the FDCs as entities of their own. As a result little is known about the general star formation properties of FDCs. The primary question addressed in this work is 'Within filamentary dark clouds, how does the star formation process within a core region compare to that within a filamentary region?' In order to address the above question, a multi-wavelength observational comparative study has been performed upon a representative dense core (hereafter, GF9-Core) and filamentary region (hereafter, GF9-Fila) within the FDC GF-9 (LDN 1082). At the Five College Radio Astronomy Observatory, the core and filamentary region were observed in the rotational transitions of 12CO/ (J=1/to0),/ 13CO/ (J=1/to0)/ and/ CS/ (J=2/to1) covering a region of 10' x 8'. The temperature, density and kinematic structures of the two regions were deduced from the radio imaging spectroscopy data and were used to estimate the energy balance of the regions. We also obtained 70, 100, 135 and 200 μm images from the Infrared Space Observatory (ISO) covering approximately 12' x 9' which were used to investigate the temperature and density distributions of the dust within the two regions. Finally, at the Wyoming Infrared Observatory using the Aerospace Corporation NICMOS3 camera, the core and filament were imaged in the near-infrared broadband filters J, H, and K-short covering a slightly smaller region of 7' x 7'. The near-infrared survey data were used to search for embedded Class I and Class II protostars and to investigate the density distribution of the dust. We have found that the evolutionary processes of the core region and the filament region proceed along similar

  11. The stratosphere

    NASA Astrophysics Data System (ADS)

    Taylor, F. W.

    2003-01-01

    The stratosphere is that part of the atmosphere which lies between ca.10 and 50 km above the surface of the Earth and which contains the ozone layer. It is the seat of much interesting behaviour in terms of dynamics, radiation and chemistry, now revealed in detail by observations from modern space instruments, but still not completely understood. Other planetary atmospheres exhibit stratospheric behaviour which in some ways resembles, and in others contrasts sharply with, that of the Earth. In reviewing these topics, this paper describes some key problems that will be addressed by new measurements from space in the near future.

  12. The stratosphere.

    PubMed

    Taylor, F W

    2003-01-15

    The stratosphere is that part of the atmosphere which lies between ca. 10 and 50 km above the surface of the Earth and which contains the ozone layer. It is the seat of much interesting behaviour in terms of dynamics, radiation and chemistry, now revealed in detail by observations from modern space instruments, but still not completely understood. Other planetary atmospheres exhibit stratospheric behaviour which in some ways resembles, and in others contrasts sharply with, that of the Earth. In reviewing these topics, this paper describes some key problems that will be addressed by new measurements from space in the near future.

  13. Diffusion and reaction of pollutants in stratus clouds: application to nocturnal acid formation in plumes

    SciTech Connect

    Seigneur, C.; Saxena, P.; Mirabella, V.A.

    1985-09-01

    A mathematical model is presented that describes the transport, turbulent diffusion, and chemical reactions of air pollutants in stratus clouds. The chemical kinetic mechanism treats 97 gaseous, heterogeneous, and aqueous reactions between 54 species. The dispersion and night-time chemistry of a power plant plume in a stratus cloud is simulated. The contributions of various chemical pathways to the formation of sulfate and nitrate, the differences between plume and background concentrations, and the effect of reduced primary emissions on secondary pollutants are discussed. Calculated sulfate and nitrate concentrations are commensurate with measured atmospheric concentrations.

  14. Star formation in a turbulent framework: from giant molecular clouds to protostars

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.

    2016-06-01

    Turbulence is thought to be a primary driving force behind the early stages of star formation. In this framework large, self-gravitating, turbulent clouds fragment into smaller clouds which in turn fragment into even smaller ones. At the end of this cascade we find the clouds which collapse into protostars. Following this process is extremely challenging numerically due to the large dynamical range, so in this paper we propose a semi-analytic framework which is able to model star formation from the largest, giant molecular cloud scale, to the final protostellar size scale. Because of the simplicity of the framework it is ideal for theoretical experimentation to explore the principal processes behind different aspects of star formation, at the cost of introducing strong assumptions about the collapse process. The basic version of the model discussed in this paper only contains turbulence, gravity and crude assumptions about feedback; nevertheless it can reproduce the observed core mass function and provide the protostellar system mass function (PSMF), which shows a striking resemblance to the observed initial mass function (IMF), if a non-negligible fraction of gravitational energy goes into turbulence. Furthermore we find that to produce a universal IMF protostellar feedback must be taken into account otherwise the PSMF peak shows a strong dependence on the background temperature.

  15. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  16. The Relationship Between Gas and Star Formation in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Jameson, Katherine; Bolatto, Alberto D.; Leroy, Adam K.; Meixner, Margaret; Roman-Duval, Julia; Gordon, Karl D.; Heritage Collaboration

    2015-01-01

    The low-mass, low-metallicity Magellanic Clouds provide ideal laboratories to study the physics of star formation at high resolution. We map the molecular gas distribution in the Large and Small Magellanic Clouds (LMC and SMC, respectively) by using the dust emission from HERITAGE Herschel data, which avoids the known biases of CO. Given the high resolution of the data (r˜20"˜5 pc for the LMC HERITAGE maps), we show the effect of convolving to resolutions up to r˜1 kpc and how the resolution differences compare to other studies of nearby galaxies. We find that the relationship between the molecular gas and star formation rate is consistent with studies of higher mass disk galaxies (i.e., Bigiel et al. 2011, Leroy et al. 2013), although the average molecular gas depletion time in the Magellanic Clouds may be shorter (~0.5 Gyr) than more massive, higher metallicity galaxies (typically ~2 Gyr). In the SMC, we find warm molecular gas fractions of ~10% using S4MC Spitzer IRS data of the rotational H2 lines, which is also consistent with higher mass, higher metallicity galaxies. Finally, we compare the total gas (atomic and molecular) and the star formation rate in the Magellanic Clouds to the model predictions from Krumholz (2013) and Ostriker, McKee, & Leroy (2010) and find that both models are consistent with the data.

  17. Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Sarah Elizabeth

    The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming

  18. Recent star formation in the Lupus clouds as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Benedettini, M.; Schisano, E.; Elia, D.; Molinari, S.; Pezzuto, S.; André, Ph.; Bernard, J. P.; White, G. J.; Polychroni, D.; Bontemps, S.; Cox, N. L. J.; Di Francesco, J.; Facchini, A.; Fallscheer, C.; di Giorgio, A. M.; Hennemann, M.; Hill, T.; Könyves, V.; Minier, V.; Motte, F.; Nguyen-Luong, Q.; Peretto, N.; Pestalozzi, M.; Sadavoy, S.; Schneider, N.; Spinoglio, L.; Testi, L.; Ward-Thompson, D.

    2013-01-01

    We present a study of the star formation histories of the Lupus I, III, and IV clouds using the Herschel 70-500 μm maps obtained by the Herschel Gould Belt Survey Key Project. By combining the new Herschel data with the existing Spitzer catalog we obtained an unprecedented census of prestellar sources and young stellar objects in the Lupus clouds, which allowed us to study the overall star formation rate (SFR) and efficiency (SFE). The high SFE of Lupus III, its decreasing SFR, and its large number of pre-main sequence stars with respect to proto- and prestellar sources, suggest that Lupus III is the most evolved cloud, and after having experienced a major star formation event in the past, is now approaching the end of its current star-forming cycle. Lupus I is currently undergoing a large star formation event, apparent by the increasing SFR, the large number of prestellar objects with respect to more evolved objects, and the high percentage of material at high extinction (e.g., above AV ≈ 8 mag). Also Lupus IV has an increasing SFR; however, the relative number of prestellar sources is much lower, suggesting that its star formation has not yet reached its peak. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org

  19. Recent Star Formation in the Lupus Clouds as Seen by Herschel

    NASA Astrophysics Data System (ADS)

    Rygl, Kazi L. J.; Benedettini, Milena

    We present a study of the star formation histories of the Lupus I, III, and IV clouds using the Herschel 70-500 μm maps obtained by the Herschel Gould Belt Survey Key-Project. By combining the new Herschel data with the existing Spitzer catalog we obtained an unprecedented census of prestellar sources and young stellar objects in the Lupus clouds, which allowed us to study the overall star formation rate (SFR) and efficiency (SFE). The high SFE of Lupus III and its decreasing SFR suggest that Lupus III is the most evolved cloud, that after having experienced a major star formation event, is now approaching the end of its current star-forming cycle. Lupus I is currently undergoing a large star formation event, apparent by the increasing SFR. Also Lupus IV has an increasing SFR, however, the relative number of prestellar sources is much lower than in Lupus I, suggesting that its star formation has not yet reached its peak.

  20. Formation and aging of secondary organic aerosol from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Giorio, C.; Siekmann, F.; Bregonzio, L.; Temime-Roussel, B.; Ravier, S.; Tapparo, A.; Kalberer, M.; Doussin, J.; Monod, A.

    2013-12-01

    Biogenic volatile organic compounds (BVOCs) can be oxidized in the gas phase to form more water-soluble compounds which could partition into atmospheric water droplets. Oxidation processes in the liquid phase could produce high molecular weight and less volatile compounds which can partly remain in the particle phase after water evaporation (Ervens et al., 2011). This work investigates the formation and composition of secondary organic aerosol (SOA) from the photooxidation of isoprene (the most abundant BVOC) and methacrolein (its main first-generation oxidation product). The experiments were performed during the CUMULUS (CloUd MULtiphase chemistry of organic compoUndS in the troposphere) campaigns at the 4.2 m3 stainless steel CESAM chamber at LISA, specifically designed to investigate multiphase processes (Wang et al., 2011). In each experiment, 500/1000 ppb of isoprene or methacrolein were injected in the chamber together with HONO before irradiation. Gas phase oxidation products have been analyzed on-line by a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and a Fourier Transform Infrared Spectrometer (FTIR) together with NOx and O3 analyzers. SOA formation and composition has been followed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS). Particular attention has been focused on the study of SOA formation and aging during cloud condensation-evaporation cycles simulated in the smog chamber. In all experiments, we noted that water soluble gas-phase oxidation products readily partition into cloud droplets accompanied by a prompt SOA production during cloud formation which partly persists after cloud evaporation. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069 11102. Wang, J. et al. (2011) Atmos. Measur. Tech. 4, 2465 2494.

  1. High-Velocity Star Formation in the Large Magellanic Cloud.

    PubMed

    Graff; Gould

    2000-05-01

    Light-echo measurements show that SN 1987A is 425 pc behind the LMC disk. It is continuing to move away from the disk at 18 km s-1. Thus, it has been suggested that SN 1987A was ejected from the LMC disk. However, SN 1987A is a member of a star cluster, so this entire cluster would have to have been ejected from the disk. We show that the cluster was formed in the LMC disk, with a velocity perpendicular to the disk of about 50 km s-1. Such high-velocity formation of a star cluster is unusual, having no known counterpart in the Milky Way.

  2. The Formation of First Generation Stars and Globular Clusters in Protogalactic Clouds

    SciTech Connect

    Murray, S

    2003-07-07

    Within collapsing protogalaxies, thermal instability leads to the formation of a population of cool fragments which are confined by the pressure of a residual hot background medium. The critical mass required for the cold clouds to become gravitationally unstable and to form stars is determined by both their internal temperature and external pressure. Massive first generation stars form in primordial clouds with sufficient column density to shield themselves from external UV photons emitted by nearby massive stars or AGNs. Less massive photoionized clouds gain mass due to ram pressure stripping by the residual halo gas. Collisions may also trigger thermal instability and fragmentation into cloudlets. While most cloudlets have substellar masses, the largest become self-gravitating and collapse to form protostellar cores without further fragmentation. The initial stellar mass function is established as these cores capture additional residual cloudlets. Energy dissipation from the mergers ensures that the cluster remains bound in the limit of low star formation efficiency. Dissipation also promotes the formation and retention of the most massive stars in the cluster center. On the scale of the protogalactic clouds, the formation of massive stars generates intense UV radiation which photoionizes gas and quenches star formation in nearby regions. As gas density accumulates in the center of the galactic potential, the self-regulated star formation rate increases. At the location where most of the residual gas can be converted into stars on its internal dynamical timescale, a galaxy attains its asymptotic kinematic structure such as exponential profiles, Tully-Fisher, and Faber-Jackson laws.

  3. Solid-State Chemistry as a Formation Mechanism for C 4N 2 Ice and Possibly the Haystack (220 cm -1 ice emission feature) in Titan's Stratosphere as Observed by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Samuelson, Robert E.; McLain, Jason L.; Nna Mvondo, Delphine; Romani, Paul; Flasar, F. Michael

    2016-10-01

    A profusion of organic ices containing hydrocarbons, nitriles, and combinations of their mixtures comprise Titan's complex stratospheric cloud systems, and are typically formed via vapor condensation. These ice particles are then distributed throughout the mid-to-lower stratosphere, with an increased abundance near the winter poles (see Anderson et al., 2016). The cold temperatures and the associated strong circumpolar winds that isolate polar air act in much the same way as on Earth, giving rise to compositional anomalies and stratospheric clouds that provide heterogeneous chemistry sites.Titan's C4N2 ice emission feature at 478 cm-1 and "the Haystack," a strong unidentified stratospheric ice emission feature centered at 220 cm-1, share a common characteristic. Even though both are distinctive ice emission features evident in Cassini Composite InfraRed (CIRS) far-IR spectra, no associated vapor emission features can be found in Titan's atmosphere. Without a vapor phase, solid-state chemistry provides an alternate mechanism beside vapor condensation for producing these observed stratospheric ices.Anderson et al., (2016) postulated that C4N2 ice formed in Titan's stratosphere via the solid-state photochemical reaction HCN + HC3N → C4N2 + H2 can occur within extant HCN-HC3N composite ice particles. Such a reaction, and potentially similar reactions that may produce the Haystack ice, are specific examples of solid-state chemistry in solar system atmospheres. This is in addition to the reaction HCl + ClONO2 → HNO3 + Cl2, which is known to produce HNO3 coatings on terrestrial water ice particles, a byproduct of the catalytic chlorine chemistry that produces ozone holes in Earth's polar stratosphere (see for example, Molina et al., 1987 Soloman, 1999).A combination of radiative transfer modeling of CIRS far-IR spectra, coupled with optical constants derived from thin film transmittance spectra of organic ice mixtures obtained in our Spectroscopy for Planetary ICes

  4. Studies of the effects of electron cloud formation on beam dynamics at CesrTA

    SciTech Connect

    Crittenden, J. A.; Calvey, J. R.; Dugan, G.; Livezey, J. A.; Kreinick, D.L.; Palmer, M. A.; Rubin, D. L.; Harkay, K.; Holtzapple, R. L.; Ohmi, K.; Furman, M. A.; Penn, G.; Venturini, M.; Pivi, M. T. F.; Wang, L.

    2009-05-01

    The Cornell Electron Storage Ring Test Accelerator (CesrTA) has commenced operation as a linear collider damping ring test bed following its conversion from an e{sup +}e{sup -}-collider in 2008. A core component of the research program is the measurement of effects of synchrotron-radiation-induced electron cloud formation on beam dynamics. We have studied the interaction of the beam with the cloud with measurements of coherent tune shifts and emittance growth in various bunch train configurations, bunch currents, beam energies, and bunch lengths, for both e{sup +} and e{sup -} beams. This paper compares a subset of these measurements to modeling results from the two-dimensional cloud simulation packages ECLOUD and POSINST. These codes each model most of the tune shift measurements with remarkable accuracy, while some comparisons merit further investigation.

  5. The VISTA Orion mini-survey: star formation in the Lynds 1630 North cloud

    NASA Astrophysics Data System (ADS)

    Spezzi, L.; Petr-Gotzens, M. G.; Alcalá, J. M.; Jørgensen, J. K.; Stanke, T.; Lombardi, M.; Alves, J. F.

    2015-09-01

    The Orion cloud complex presents a variety of star formation mechanisms and properties and is still one of the most intriguing targets for star formation studies. We present VISTA/VIRCAM near-infrared observations of the L1630N star-forming region, including the stellar clusters NGC 2068 and NGC 2071 in the Orion molecular cloud B, and discuss them in combination with Spitzer data. We select 186 young stellar object (YSO) candidates in the region on the basis of multi-color criteria, confirm the YSO nature of the majority of them using published spectroscopy from the literature, and use this sample to investigate the overall star formation properties in L1630N. The K-band luminosity function of L1630N is remarkably similar to that of the Trapezium cluster, i.e., it presents a broad peak in the range 0.3-0.7 M⊙ and a fraction of substellar objects of ~20%. The fraction of YSOs still surrounded by disk/envelopes is very high (~85%) compared to other star-forming regions of similar age (1-2 Myr), but includes some uncertain corrections for diskless YSOs. Yet, a possibly high disk fraction, together with the fact that 1/3 of the cloud mass has a gas surface density above the threshold for star formation (~129 M⊙ pc-2), points toward a still ongoing star formation activity in L1630N. The star formation efficiency (SFE), star formation rate (SFR), and density of star formation of L1630N are within the ranges estimated for Galactic star-forming regions by the Spitzer core to disk and Gould's Belt surveys. However, the SFE and SFR are lower than the average value measured in the Orion A cloud and, in particular, lower than that in the southern regions of L1630. This might suggest different star formation mechanisms within the L1630 cloud complex. Based on observations collected at the ESO La Silla Paranal Observatory under programme ID 060.A-9285(B).Tables A.1 and A.2 are are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  6. Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2008-09-01

    Dust and black carbon aerosol have long been known to have potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of such particles, and ignore interactions of the insoluble fraction with water vapor (even if known to be hydrophilic). To address this gap, we develop a new parameterization framework that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable) particles mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler Theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frankel-Halsey-Hill (FHH) adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory, and i) find combinations of the adsorption parameters AFHH, BFHH for which activation into cloud droplets is not possible, and, ii) express activation properties (critical supersaturation) that follow a simple power law with respect to dry particle diameter. Parameterization formulations are developed for sectional and lognormal aerosol size distribution functions. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2 ~0.98.

  7. Ultraviolet Escape Fractions from Giant Molecular Clouds during Early Cluster Formation

    NASA Astrophysics Data System (ADS)

    Howard, Corey; Pudritz, Ralph; Klessen, Ralf

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction (fesc) arising as a consequence of star cluster formation in a turbulent, 106 M⊙ giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloud boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum fesc of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and fesc drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average fesc of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for fesc from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.

  8. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming

    PubMed Central

    Cronin, Timothy W.; Tziperman, Eli

    2015-01-01

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919

  9. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    PubMed

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  10. Theory of molecular formation by radiative association in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Bates, D. R.

    1983-01-01

    A theory of molecular formation by radiative association is presented which is consistent with angular momentum being conserved during the encounter and which incorporates explicitly the long-range attraction between the reactants. It is pointed out that the activated complex would not have a Boltzmann energy distribution should the rotational and kinetic temperatures of the reactants differ, and it is shown how allowance for this may be made. Account is taken of the inaccessibility of a considerable fraction of the nuclear spin states of the complex. Methods are given for treating the effect which the finiteness of the dissociation frequency may have on the association rate. Calculations on some reactions of interest are performed. A very simple semiempirical formula for the rate coefficient for radiative association is also given.

  11. Jupiter Stratospheric Haze Comparison

    NASA Technical Reports Server (NTRS)

    1996-01-01

    These two views of Jupiter obtained by the imaging system aboard the Galileo spacecraft show evidence of strikingly different stratospheric hazes between the polar regions and low or mid latitudes. The Great Red Spot shows in one mosaic, centered at about 20 degrees South latitude and taken on June 26, 1996 at a range of 1.46 million kilometers. The other mosaic is centered near 50 degrees North latitude, and was taken on November 4, 1996 at a range of 1.60 million kilometers.

    North is at the top in both images. In the Red Spot image, the edge of the planet (limb) runs in a single arc from lower left to upper right, with dark space at lower right. In the polar image, the limb runs in two segments across the top right corner, with dark space at top right. Both images are mosaics; the offset of the individual frames of the mosaic produces the jagged border and the break in the polar limb.

    These are false color images, constructed specifically to reveal cloud elevation differences. Three color channels are used. The red channel is an image taken at a near infrared wavelength where methane in Jupiter's atmosphere is strongly absorbing, and therefore gives no information about deep clouds but reveals high clouds. The green channel is a weaker methane band, and the blue channel is assigned to a wavelength where Jupiter's atmosphere is transparent. Thus red features indicate high hazes. A view near the edge of the planet accentuates the high hazes because of the slanting path of the line of sight.

    The pronounced reddening near the edge of the planet in polar regions indicates a high stratospheric haze. Comparison with the Great Red Spot shows that such a high haze is absent at that latitude. Detailed analysis shows that a stratospheric haze exists at both latitudes but is approximately 50 km higher near the poles. It is likely that the high polar haze is produced by magnetospheric particles, which travel along magnetic field lines and bombard the upper atmosphere

  12. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  13. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    SciTech Connect

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Nagayama, Takumi; Sunada, Kazuyoshi; Fujisawa, Kenta; Nakano, Makoto; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  14. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Nagayama, Takumi; Fujisawa, Kenta; Sunada, Kazuyoshi; Nakano, Makoto; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH3 toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the Hα image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  15. Unfolding the laws of star formation: the density distribution of molecular clouds.

    PubMed

    Kainulainen, Jouni; Federrath, Christoph; Henning, Thomas

    2014-04-11

    The formation of stars shapes the structure and evolution of entire galaxies. The rate and efficiency of this process are affected substantially by the density structure of the individual molecular clouds in which stars form. The most fundamental measure of this structure is the probability density function of volume densities (ρ-PDF), which determines the star formation rates predicted with analytical models. This function has remained unconstrained by observations. We have developed an approach to quantify ρ-PDFs and establish their relation to star formation. The ρ-PDFs instigate a density threshold of star formation and allow us to quantify the star formation efficiency above it. The ρ-PDFs provide new constraints for star formation theories and correctly predict several key properties of the star-forming interstellar medium.

  16. Formation of Brown Aqueous Secondary Organic Aerosol during Multiphase Cloud Simulations using the CESAM Chamber Facility

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Welsh, H.; De Haan, D. O.; Doussin, J. F.; Pednekar, R.; Caponi, L.; Pangui, E.; Gratien, A.; Cazaunau, M.; Formenti, P.; Pajunoja, A.

    2015-12-01

    We investigated the formation of aqueous brown carbon (aqBrC) from methylglyoxal and methylamine in multiphase reactions using the CESAM chamber facility at the University Paris-Est Creteil. Following reaction in the chamber, droplets and particles were sampled with a Particle-Into-Liquid-Sampler (PILS), a capillary waveguide cell for UV/visible spectroscopy, and a total organic carbon analyzer (TOC). Particle size distributions were measured with a scanning mobility particle sizer and used to determine the mass absorption coefficient (a normalized absorbance measurement). Absorption spectra were recorded while aerosol or gas phase aqBrC precursors were introduced into the humid chamber. Sampling was continuous during and after cloud events. The events lasted 5-10 minutes and produced measurable brown carbon signal at 365 nm. When lights were used, absorbance at 365 nm decreased steadily indicating photobleaching of aqBrC products or preferential formation of different, non-absorbing products. Although absorptivity increases prior to cloud formation, cloud events produce sharp increased in aqBrC absorptivity. While measurable absorbance at 365 nm indicates aqBrC formation, very little absorbance was recorded beyond 450 nm indicating that the products were not as oligomerized as products observed in prior work in multi-day, bulk phase simulations.

  17. Attack of the flying snakes: formation of isolated H I clouds by fragmentation of long streams

    NASA Astrophysics Data System (ADS)

    Taylor, R.; Davies, J. I.; Jáchym, P.; Keenan, O.; Minchin, R. F.; Palouš, J.; Smith, R.; Wünsch, R.

    2016-09-01

    The existence of long (>100 kpc) H I streams and small (<20 kpc) free-floating H I clouds is well known. While the formation of the streams has been investigated extensively, and the isolated clouds are often purported to be interaction debris, little research has been done on the formation of optically dark H I clouds that are not part of a larger stream. One possibility is that such features result from the fragmentation of more extended streams, while another idea is that they are primordial, optically dark galaxies. We test the validity of the fragmentation scenario (via harassment) using numerical simulations. In order to compare our numerical models with observations, we present catalogues of both the known long H I streams (42 objects) and free-floating H I clouds suggested as dark galaxy candidates (51 objects). In particular, we investigate whether it is possible to form compact features with high velocity widths (>100 km s-1), similar to observed clouds which are otherwise intriguing dark galaxy candidates. We find that producing such features is possible but extremely unlikely, occurring no more than 0.2% of the time in our simulations. In contrast, we find that genuine dark galaxies could be extremely stable to harassment and remain detectable even after 5 Gyr in the cluster environment (with the important caveat that our simulations only explore harassment and do not yet include the intracluster medium, heating and cooling, or star formation). We also discuss the possibility that such objects could be the progenitors of recently discovered ultra diffuse galaxies.

  18. Collapse of primordial gas clouds and the formation of quasar black holes

    NASA Technical Reports Server (NTRS)

    Loeb, Abraham; Rasio, Frederic A.

    1994-01-01

    The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.

  19. Rapid collisional evolution of comets during the formation of the Oort cloud.

    PubMed

    Stern, S A; Weissman, P R

    2001-02-01

    The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.

  20. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2013-01-01

    A dense gas cloud is rapidly approaching the Galactic supermassive black hole (SMBH) SgrA^*, and will be ~ 2,200 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Sep 2013. The cloud is expected to be disrupted by instabilities and tidal forces, and the cloud fragments accrete onto the SMBH on the dynamical timescale of several days to several weeks, suggesting a jet formation in 2013. So we are carrying out daily monitoring observations of SgrA^* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-gamma line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass is, and when the fragment is accreted onto the SMBH. Polarimetric signals from a jet taken with Subaru/HiCIAO will be compared with the finely tuned simulation to understand the timescale of a jet formation, and to investigate the correlation between the accreted mass of the cloud fragment and a luminosity of a newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11 mum (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  1. What Controls the Arctic Lower Stratosphere Temperature?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.

  2. Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.

    2016-06-01

    Ice nucleation is a critical process for the ice crystal formation in cirrus clouds. The relative contribution of homogeneous nucleation versus heterogeneous nucleation to cirrus formation differs between measurements and predictions from general circulation models. Here we perform large-ensemble simulations of the ice nucleation process using a cloud parcel model driven by observed vertical motions and find that homogeneous nucleation occurs rather infrequently, in agreement with recent measurement findings. When the effect of observed vertical velocity fluctuations on ice nucleation is considered in the Community Atmosphere Model version 5, the relative contribution of homogeneous nucleation to cirrus cloud occurrences decreases to only a few percent. However, homogeneous nucleation still has strong impacts on the cloud radiative forcing. Hence, the importance of homogeneous nucleation for cirrus cloud formation should not be dismissed on the global scale.

  3. A High-Latitude Winter Continental Low Cloud Feedback Suppresses Arctic Air Formation in Warmer Climates

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Tziperman, E.; Li, H.

    2015-12-01

    High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback

  4. METHANE-NITROGEN BINARY NUCLEATION: A NEW MICROPHYSICAL MECHANISM FOR CLOUD FORMATION IN TITAN'S ATMOSPHERE

    SciTech Connect

    Tsai, I-Chun; Chen, Jen-Ping; Liang, Mao-Chang

    2012-03-01

    It is known that clouds are present in the troposphere of Titan; however, their formation mechanism, particle size, and chemical composition remain poorly understood. In this study, a two-component (CH{sub 4} and N{sub 2}) bin-microphysics model is developed and applied to simulate cloud formation in the troposphere of Titan. A new process, binary nucleation of particles from CH{sub 4} and N{sub 2} gases, is considered. The model is validated and calibrated by recent laboratory experiments that synthesize particle formation in Titan-like environments. Our model simulations show that cloud layers can be formed at about 20 km with a particle size ranging from one to several hundred {mu}m and number concentration 10{sup -2} to over 100 cm{sup -3} depending on the strength of the vertical updraft. The particles are formed by binary nucleation and grow via the condensation of both CH{sub 4} and N{sub 2} gases, with their N{sub 2} mole fraction varying from <10% in the nucleation stage to >30% in the condensation growth stage. The locally occurring CH{sub 4}-N{sub 2} binary nucleation mechanism is strong and could potentially be more important than the falling condensation nuclei mechanism assumed in many current models.

  5. Dependence of the star formation efficiency on global parameters of molecular clouds

    NASA Astrophysics Data System (ADS)

    Rosas-Guevara, Yetli; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.; Jappsen, A.-Katharina

    2010-08-01

    We investigate the response of the star formation efficiency (SFE) to the main parameters of simulations of molecular cloud formation and evolution (growth and star formation) by the collision of warm diffuse medium [warm neutral medium (WNM)] cylindrical streams, and compare our results with theoretical predictions for this dependence. The parameters we vary are the Mach number of the inflow velocity of the streams, , the rms Mach number, , of the initial background turbulence in the WNM and the total mass contained in the colliding gas streams, Minf, which is eventually deposited in the forming clouds. Because the SFE is a function of time, we define two estimators for it, the `absolute' SFE, measured at t = 25Myr into the simulation's evolution (SFEabs,25), and the `relative' SFE, measured 5Myr after the onset of star formation in each simulation (SFErel,5). The latter is close to the `SFE per free-fall time' for gas at n = 100cm-3. Our simulations suggest that the dominant parameter controlling the SFE is Minf. The SFE in general decreases as this parameter is decreased, presumably because, with the other parameters being equal, smaller fragments are more weakly gravitationally bound. In terms of the initial virial parameter (α ≡ 2Ekin/|Egrav|) of the clouds, our results are qualitatively consistent with the theoretical prediction by Krumholz & McKee that the SFE decreases with increasing α. However, quantitatively, their prediction lies beyond the 1σ error of our observed trend. This may be due to the fact that the simulated clouds develop significant gravitational contraction motions, which overwhelm the initial turbulent motions, contrary to Krumholz & McKee's assumption of stationary turbulent support. We also observe that the SFE decreases (moderately) with increasing , although the SFR increases. The decrease of the SFE with is thus a consequence of the cloud mass accretion rate from the WNM increasing more steeply with this parameter than the SFR

  6. Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2009-04-01

    Dust and black carbon aerosol have long been known to exert potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of these particles, and overlook interactions of the insoluble fraction with water vapor (even if known to be hydrophilic). To address this gap, we developed a new parameterization that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable) particles externally mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frenkel-Halsey-Hill (FHH) adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory to i) find combinations of the adsorption parameters AFHH, BFHH which yield atmospherically-relevant behavior, and, ii) express activation properties (critical supersaturation) that follow a simple power law with respect to dry particle diameter. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2~0.98. A preliminary sensitivity study suggests that the sublinear response of droplet number to Köhler particle concentration is not as strong for FHH particles.

  7. Do NAD and NAT form in liquid stratospheric aerosols by pseudoheterogeneous nucleation?

    PubMed

    Knopf, Daniel A

    2006-05-04

    Laboratory data of the freezing of nitric acid hydrates (NAD, NAT) from HNO(3)/H(2)O and HNO(3)/H(2)SO(4)/H(2)O solution droplets have been evaluated with respect to a "pseudoheterogeneous" (surface-induced) nucleation mechanism of NAD and NAT, which has been argued to possibly lead to the formation of polar stratospheric clouds (PSCs). In addition, a parametrization of pseudoheterogeneous nucleation of NAD and NAT suggested recently (Tabazadeh et al. J. Phys. Chem. A 2002, 106, 10238-10246) has been analyzed, showing that this parametrization should not be used in stratospheric modeling studies. The analysis of several laboratory data sets yields an upper limit of the pseudoheterogeneous nucleation rate coefficient of NAD of 2.2 x 10(-5) cm(-2) s(-1). In contrast, the upper limit of the pseudoheterogeneous nucleation rate coefficient of NAT could not be constrained satisfactorily, since formation of NAT has not been observed at stratospheric conditions in laboratory experiments applying small droplets. Maximum NAD production rates of 9.6 x 10(-9) cm(-3) (air) h(-1) in the stratosphere have been estimated assuming a pseudoheterogeneous nucleation mechanism that is constrained by the experimental observations. If maximum NAD supersaturation persisted for 4 weeks in the polar stratosphere the corresponding NAD particle number densities are estimated to be about 6 x 10(-6) cm(-3). These particle number densities are 3 orders of magnitude lower than particle number densities recently observed in the stratosphere. In conclusion, on the basis of laboratory data it is found that a pseudoheterogeneous nucleation mechanism is not sufficient to explain recent observations of large nitric acid containing particles in the polar stratosphere.

  8. The potential for ozone depletion in the Arctic polar stratosphere

    NASA Technical Reports Server (NTRS)

    Brune, W. H.; Anderson, J. G.; Toohey, D. W.; Fahey, D. W.; Kawa, S. R.; Poole, L. R.

    1991-01-01

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (CHl and ClONO2) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl2O2 thoroughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO3, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15 percent at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8 percent losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50 percent over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  9. The potential for ozone depletion in the arctic polar stratosphere.

    PubMed

    Brune, W H; Anderson, J G; Toohey, D W; Fahey, D W; Kawa, S R; Jones, R L; McKenna, D S; Poole, L R

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  10. Hidden Star Formation in High-Velocity Gas Clouds in Clump 2 near the Edge of the CMZ

    NASA Astrophysics Data System (ADS)

    Tolls, Volker; Smith, Howard A.

    2017-01-01

    We present a snapshot of our ongoing investigation of molecular clouds in Clump 2 located in the Galactic Bar region at a projected distance of ~400pc from the Galactic Center. We show that the analysis of the Clump 2 molecular clouds is complicated because of many fore- and background clouds in the line of sight. Of all clouds, IGGC 22 is the most interesting one, showing very high dust column densities, significant high-J CO emission, and, potentially harbors star formations as eluded to by the detection of [OIII] emission.

  11. Simulations of the Vertical Redistribution of HNO3 by NAT or NAD PSCs: The Sensitivity to the Number of Cloud Particles Formed and the Cloud Lifetime

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Tabazadeh, Azadeh; Drdla, Katja; Toon, Owen B.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Recent satellite and in situ measurements have indicated that limited denitrification can occur in the Arctic stratosphere. In situ measurements from the SOLVE campaign indicate polar stratospheric clouds (PSCs) composed of small numbers (about 3 x 10^ -4 cm^-3) of 10-20 micron particles (probably NAT or NAD). These observations raise the issue of whether low number density NAT PSCs can substantially denitrify the air with reasonable cloud lifetimes. In this study, we use a one dimensional cloud model to investigate the verticle redistribution of HNO3 by NAT/NAD PSCs. The cloud formation is driven by a temperature oscillation which drops the temperature below the NAT/NAD formation threshold (about 195 K) for a few days. We assume that a small fraction of the available aerosols act as NAT nuclei when the saturation ratio of HNO3 over NAT(NAD) exceeds 10(l.5). The result is a cloud between about 16 and 20 km in the model, with NAT/NAD particle effective radii as large as about 10 microns (in agreement with the SOLVE data). We find that for typical cloud lifetimes of 2-3 days or less, the net depletion of HNO3 is no more than 1-2 ppbv, regardless of the NAT or NAD particle number density. Repeated passes of the air column through the cold pool build up the denitrification to 3-4 ppbv, and the cloud altitude steadily decreases due to the downward transport of nitric acid. Increasing the cloud lifetime results in considerably more effective denitrification, even with very low cloud particle number densities. As expected, the degree of denitrification by NAT clouds is much larger than that by NAD Clouds. Significant denitrification by NAD Clouds is only possible if the cloud lifetime is several days or more. The clouds also cause a local maximum HNO3 mixing ratio at cloud base where the cloud particles sublimate.

  12. Implications of Observed High Supersaturation for TTL Cloud Formation and Dehydration

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2004-01-01

    In situ measurements of water vapor concentration made during the CRYSTAL-FACE and Pre-AVE missions indicate higher than expected supersaturations in both clear and cloudy air near the cold tropical tropopause: (1) steady-state ice supersaturations of 20-30% were measured within cirrus at T < 200 K; (2) supersaturations exceeding 100% (near water saturation) were observed under cloud-free conditions near 187 K. The in-cloud measurements challenge the conventional belief that any water vapor in excess of ice saturation should be depleted by crystal growth given sufficient time. The high clear-sky supersaturations imply that thresholds for ice nucleation due to homogeneous freezing of aerosols (or any other mechanism) are much higher than those inferred from laboratory measurements. We will use simulations of Tropical Tropopause Layer (TTL) transport and cloud formation throughout the tropics to show that these effects have important implications for TTL cloud frequency and freeze-drying of air crossing the tropical tropopause cold trap.

  13. Formation of low-mass condensations in molecular cloud cores via thermal instability

    NASA Astrophysics Data System (ADS)

    Nejad-Asghar, Mohsen

    2011-06-01

    Low-mass condensations (LMCs) have been observed within molecular cloud cores. In this study, we investigate the effect of the application of isobaric thermal instability (TI) in forming these LMCs. For this purpose, we first investigate the occurrence of TI in molecular clouds. Then, to study the significance of linear isobaric TI, we use a contracting axisymmetric cylindrical core with an axial magnetic field. Consideration of cooling and heating mechanisms in molecular clouds shows that including the heating due to ambipolar diffusion can lead to the occurrence of TI on a time-scale smaller than the dynamical time-scale. Application of linear perturbation analysis shows that isobaric TI can take place in the outer regions of molecular cloud cores. Furthermore, the results show that perturbations with wavelengths greater than few astronomical units are protected from the destabilization property of thermal conduction, so that they can grow to form LMCs. Thus, the results show that the mechanism of TI can be used to explain the formation of LMCs as the progenitors of collapsing protostellar entities, brown dwarfs or protoplanets.

  14. Global aerosol formation and revised radiative forcing based on CERN CLOUD data

    NASA Astrophysics Data System (ADS)

    Gordon, H.; Carslaw, K. S.; Sengupta, K.; Dunne, E. M.; Kirkby, J.

    2015-12-01

    New particle formation in the atmosphere accounts for 40-70% of global cloud condensation nuclei (CCN). It is a complex process involving many precursors: sulphuric acid, ions, ammonia, and a wide range of natural and anthropogenic organic molecules. The CLOUD laboratory chamber experiment at CERN allows the contributions of different compounds to be disentangled in a uniquely well-controlled environment. To date, CLOUD has measured over 500 formation rates (Riccobono 2014, Kirkby 2015, Dunne 2015), under conditions representative of the planetary boundary layer and free troposphere. To understand the sensitivity of the climate to anthropogenic atmospheric aerosols, we must quantify historical aerosol radiative forcing. This requires an understanding of pre-industrial aerosol sources. Here we show pre-industrial nucleation over land usually involves organic molecules in the very first steps of cluster formation. The complexity of the organic vapors is a major challenge for theoretical approaches. Furthermore, with fewer sulphuric acid and ammonia molecules available to stabilize nucleating clusters in the pre-industrial atmosphere, ions from radon or galactic cosmic rays were probably more important than they are today. Parameterizations of particle formation rates determined in CLOUD as a function of precursor concentrations, temperature and ions are being used to refine the GLOMAP aerosol model (Spracklen 2005). The model simulates the growth, transport and loss of particles, translating nucleation rates to CCN concentrations. This allows us to better understand the effects of pre-industrial and present-day particle formation. I will present new results on global CCN based on CLOUD data, including estimates of anthropogenic aerosol radiative forcing, currently the most uncertain driver of climate change (IPCC 2013). References: Riccobono, F. et al, Science 344 717 (2014); Kirkby, J. et al, in review; Dunne, E. et al, in preparation; Spracklen, D. et al, Atmos

  15. Titan's south polar stratospheric vortex evolution

    NASA Astrophysics Data System (ADS)

    Teanby, Nicholas A.; Vinatier, Sandrine; Sylvestre, Melody; de Kok, Remco; Nixon, Conor; Irwin, Patrick Gerard Joseph

    2016-10-01

    Titan experienced northern spring equinox in August 2009 when the south polar region was plunged into perpetual darkness. Following equinox, the south pole experienced the most extreme changes in stratospheric behaviour ever observed: the global stratospheric circulation cell reversed direction (Teanby et al 2012), HCN ice clouds (de Kok et al 2014) and other exotic condensates appeared over the south pole (Jennings et al 2015, West et al 2016), and significant composition and temperature changes occurred (Vinatier et al 2015, Teanby et al 2015, Coustenis et al 2016). Here we use Cassini CIRS limb and nadir observations from 2004-2016 to investigate the evolution of south polar stratospheric temperature and composition in the post-equinox period. Reversal following equinox was extremely rapid, taking less than 6 months (1/60th of a Titan year), which resulted in an initial adiabatic polar hot spot and increased trace gas abundances (Teanby et al 2012). However, rather than develop this trend further as winter progressed, Titan's polar hot spot subsequently disappeared, with the formation of a polar cold spot. Recently in late 2015 / early 2016 a more subdued hotspot began to return with associated extreme trace gas abundances. This talk will reveal the rapid and significant changes observed so far and discuss implications for possible polar feedback mechanisms and Titan's atmospheric dynamics.Coustenis et al (2016), Icarus, 270, 409-420.de Kok et al (2014), Nature, 514, 65-67.Jennings et al (2015), ApJL, 804, L34.Teanby et al (2012), Nature, 491, 732-735.Teanby et al (2015), DPS47, National Harbor, 205.02.Vinatier et al (2015), Icarus, 250, 95-115.West et al (2016), Icarus, 270, 399-408.

  16. Effects of Deep Convection on Upper Tropospheric Outflow Ice Supersaturation and Cirrus Cloud Formation

    NASA Astrophysics Data System (ADS)

    DiGangi, J. P.; O'Brien, A.; Diao, M.; Beaton, S. P.; Zondlo, M. A.

    2013-12-01

    A barrier in constraining the Earth's radiative forcing budget stems from the large uncertainties associated with cloud formation and dynamics. Recent work* has shown that small scale dynamics play a significant role in controlling the relative humidity of the upper troposphere and, in turn, the microphysics of cirrus clouds. While there has been significant discussion of the long-term transport effects of ground level trace gases and aerosols, only recently have datasets become available which examine the effects of fast convective transport on the relatively pristine upper troposphere. During the NSF Deep Convective Clouds and Chemistry (DC3) Experiment in May-June 2012, multiple aircraft, each with a large suite of chemical, aerosol and, cloud physics payloads, were utilized to characterize both the inflow and outflow of deep convective storms over the continental US. We have used data from 10 storms during DC3 as case studies to illustrate the influence of trace gases and aerosols, transported by deep convection to the upper troposphere, on ice supersaturation regions and cirrus cloud formation. Ice supersaturation regions (ISSR), defined as regions with relative humidity greater than 100% at temperatures below -40°C, in the outflow region of each storm are identified using humidity data from the NSF/NCAR VCSEL hygrometer on the NSF G-V. The ISSR intensity of the outflow of a storm is defined as the aggregate mean of the maximum relative humidity encountered in each individual ISSR in this region, a quantity that is observed to increase with ISSR length scales. Coordinated sampling of the inflow region of each storm, determined from NEXRAD radar measurements and flight tracks combined with notes from the flight summaries, by the NASA DC-8 provide a characterization of the chemical and particulate composition at the base of the storm. Mineral and nitrate particulate in the storm inflow are observed to have strong positive correlations with the ISSR intensity in

  17. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-09-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  18. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    The objectives of this project are to: define the chemical and physical processes leading to stratospheric ozone change that involve polar stratospheric clouds (PSCS) and the reactions occurring on the surfaces of PSC particles; study the formation processes, and the physical and chemical properties of PSCS, that are relevant to atmospheric chemistry and to the interpretation of field measurements taken during polar stratosphere missions; develop quantitative models describing PSC microphysics and heterogeneous chemical processes; assimilate laboratory and field data into these models; and calculate the extent of chemical processing on PSCs and the impact of specific microphysical processes on polar composition and ozone depletion. During the course of the project, a new coupled microphysics/physical-chemistry/ photochemistry model for stratospheric sulfate aerosols and nitric acid and ice PSCs was developed and applied to analyze data collected during NASA's Arctic Airborne Stratospheric Expedition-II (AASE-II) and other missions. In this model, detailed treatments of multicomponent sulfate aerosol physical chemistry, sulfate aerosol microphysics, polar stratospheric cloud microphysics, PSC ice surface chemistry, as well as homogeneous gas-phase chemistry were included for the first time. In recent studies focusing on AASE measurements, the PSC model was used to analyze specific measurements from an aircraft deployment of an aerosol impactor, FSSP, and NO(y) detector. The calculated results are in excellent agreement with observations for particle volumes as well as NO(y) concentrations, thus confirming the importance of supercooled sulfate/nitrate droplets in PSC formation. The same model has been applied to perform a statistical study of PSC properties in the Northern Hemisphere using several hundred high-latitude air parcel trajectories obtained from Goddard. The rates of ozone depletion along trajectories with different meteorological histories are presently

  19. Aerosol silica as a possible candidate for the heterogeneous formation of nitric acid hydrates in the stratosphere

    NASA Astrophysics Data System (ADS)

    Bogdan, A.; Kulmala, M.

    The liquid-solid phase transitions in nanometersize HNO3/H2O solution droplets obtained on fumed silica (a counterpart of aerosol silica) have been studied with differential scanning calorimetry (DSC). “Soft” transitions, reduction in the freezing and melting temperatures, Tf and Tm, and enthalpies, ΔHf and ΔHm, are interpreted to be caused by very small size of droplets. The observed difference between ΔHf and ΔHm can serve as an evidence of temperature dependence of the enthalpy of fusion for hydrates. Freezing of droplets with stoichiometry close to nitric acid trihydrate (NAT) at temperature 4 K warmer than the ice frost point indicates that, in the stratosphere, silica particles can serve as nuclei for heterogeneous freezing of NAT.

  20. Flow-driven cloud formation and fragmentation: results from Eulerian and Lagrangian simulations

    NASA Astrophysics Data System (ADS)

    Heitsch, Fabian; Naab, Thorsten; Walch, Stefanie

    2011-07-01

    The fragmentation of shocked flows in a thermally bistable medium provides a natural mechanism to form turbulent cold clouds as precursors to molecular clouds. Yet because of the large density and temperature differences and the range of dynamical scales involved, following this process with numerical simulations is challenging. We compare two-dimensional simulations of flow-driven cloud formation without self-gravity, using the Lagrangian smoothed particle hydrodynamics (SPH) code VINE and the Eulerian grid code PROTEUS. Results are qualitatively similar for both methods, yet the variable spatial resolution of the SPH method leads to smaller fragments and thinner filaments, rendering the overall morphologies different. Thermal and hydrodynamical instabilities lead to rapid cooling and fragmentation into cold clumps with temperatures below 300 K. For clumps more massive than 1 M⊙ pc-1, the clump mass function has an average slope of -0.8. The internal velocity dispersion of the clumps is nearly an order of magnitude smaller than their relative motion, rendering it subsonic with respect to the internal sound speed of the clumps but supersonic as seen by an external observer. For the SPH simulations most of the cold gas resides at temperatures below 100 K, while the grid-based models show an additional, substantial component between 100 and 300 K. Independent of the numerical method, our models confirm that converging flows of warm neutral gas fragment rapidly and form high-density, low-temperature clumps as possible seeds for star formation.

  1. Seeding the Galactic Centre gas stream: gravitational instabilities set the initial conditions for the formation of protocluster clouds

    NASA Astrophysics Data System (ADS)

    Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.

    2016-11-01

    Star formation within the Central Molecular Zone (CMZ) may be intimately linked to the orbital dynamics of the gas. Recent models suggest that star formation within the dust ridge molecular clouds (from G0.253+0.016 to Sgr B2) follows an evolutionary time sequence, triggered by tidal compression during their preceding pericentre passage. Given that these clouds are the most likely precursors to a generation of massive stars and extreme star clusters, this scenario would have profound implications for constraining the time-evolution of star formation. In this Letter, we search for the initial conditions of the protocluster clouds, focusing on the kinematics of gas situated upstream from pericentre. We observe a highly regular corrugated velocity field in {l, vLSR} space, with amplitude and wavelength A = 3.7 ± 0.1 km s-1 and λvel,i = 22.5 ± 0.1 pc, respectively. The extremes in velocity correlate with a series of massive (˜104 M⊙) and compact (Req ˜ 2 pc), quasi-regularly spaced (˜8 pc), molecular clouds. The corrugation wavelength and cloud separation closely agree with the predicted Toomre (˜17 pc) and Jeans (˜6 pc) lengths, respectively. We conclude that gravitational instabilities are driving the condensation of molecular clouds within the Galactic Centre gas stream. Furthermore, we speculate these seeds are the historical analogue of the dust-ridge molecular clouds, representing the initial conditions of star and cluster formation in the CMZ.

  2. The Formation of the Local Group and the High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Spergel, D. N.; Blitz, L.; Teuben, P. J.; Hartmann, D.; Burton, B.

    1996-12-01

    We simulate the formation and evolution of the Local Group. The dynamics of the Local Group is governed primarily by the its two largest members, Andromeda (M31) and the Galaxy (M0) and secondarily by the tidal effects of neighboring galaxies. In the simulation, a long filament forms which contains M31 and M0. While the gas near M31 and M0 is likely shock heated, we expect that much of the gas in the filament is cold. The kinematics of this gas in the simulation is remarkably similar to the kinematics of the High Velocity Clouds (HVCs). This similarity suggests reinterpreting the HVCs as primarily extragalactic. In this model, the HVCs are similar to the Lyman alpha clouds. Recent work (Hernquist et al. 996) suggests that the Lyman alpha clouds are primarily condensations in the filaments between galaxies. We suggest a similar picture for most of the HVCs: they are gravitationally confined, rather than pressure confined, clouds infalling into the Local Group and are likely associated with a substantial amount of dark matter. In this picture, the two phase structure seen in some of the HVCs (Wakker & Schwarz 1991) would be due to self shielding that arises in gas clouds ionized by external UV (Murakami & Ikeuchi 1990). This model suggests that there is a substantial amount of gas in the HVCs: ~ 1 x 10(10) M_sun. This gas is and was a reservoir of relatively unprocessed gas for both M31 and our Galaxy and likely plays an important role in the evolution of both galaxies. Hernquist, L, Katz, N., Weinberg, D. & Miralda-Escude, J. 1996, ApJ L 457, 51 Murakami, I. & Ikeuchi, S. 1990 PASJ, 41 , L11. Wakker, B.P. & Schwarz, U.J. 1991 A & A, 250, 48.

  3. Lidar remote sensing of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, Jia; Felton, Melvin; Lei, Liqiao; McCormick, M. Patrick; Delgado, Ruben; St. Pé, Alexandra

    2016-05-01

    In May 2014, the East Hampton Roads Aerosol Flux campaign was conducted at Hampton University to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars and rawindsonde launches. We present the results of analyses performed on these high-resolution planetary boundary layer and lower atmospheric measurements, with a focus on the low-level jets (LLJs) that form in this region during spring and summer. We present a detailed case study of a LLJ lasting from evening of 20 May to morning of 21 May using vertical profiles of aerosol backscatter, wind speed and direction, water vapor mixing ratio, temperature, and turbulence structure. We show with higher resolution than in previous studies that enhanced nighttime turbulence triggered by LLJs can cause the aerosol and water vapor content of the boundary layer to be transported vertically and form a well-mixed region containing the cloud condensation nuclei that are necessary for cloud formation.

  4. A proposed chemical scheme for HCCO formation in cold dense clouds

    NASA Astrophysics Data System (ADS)

    Wakelam, V.; Loison, J.-C.; Hickson, K. M.; Ruaud, M.

    2015-10-01

    The ketenyl radical (HCCO) has recently been discovered in two cold dense clouds with a non-negligible abundance of a few 10-11 (compared to H2). Until now, no chemical network has been able to reproduce this observation. We propose here a chemical scheme that can reproduce HCCO abundances together with HCO, H2CCO and CH3CHO in the dark clouds Lupus-1A and L486. The main formation pathway for HCCO is the OH + CCH → HCCO + H reaction as suggested by Agúndez et al. but with a much larger rate coefficient than used in current models. Since this reaction has never been studied experimentally or theoretically, this larger value is based on a comparison with other similar systems.

  5. SAM 2 Measurements of the Polar Stratospheric Aerosol, volume 2. April 1979 to October 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Steele, H. M.; Hamill, P.

    1982-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor is abroad the Earth orbiting Nimbus 7 spacecraft proving extinction measurements of the Antarctic and Arctic stratospheric aerosol with a vertical resolution of 1 km. Representative examples and weekly averages of aerosol data and corresponding temperature profiles for the time and place of each SAM II measurement (April 29, 1979, to October 27, 1979) is presented. Contours of aerosol extinction as a function of altitude and longitude or time were plotted and weekly aerosol optical depths were calculated. Seasonal variations and variations in space (altitude and longitude) for both polar regions are easily seen. Typical values of aerosol extinction at the SAM II wavelength of 1.0 micron for the time priod were 1 to 3 x 10 to the -4th power km -1 in the main stratospheric aerosol layer. Optical depths for the stratosphere were about 0.002. Polar stratospheric clouds at altitudes between the tropopause and 20 km were observed during the Antarctic winter at various times and locations. A ready-to-use format containing a representative sample of the second 6 months of data to be used in atmospheric and climatic studies is presented.

  6. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  7. THE 'NESSIE' NEBULA: CLUSTER FORMATION IN A FILAMENTARY INFRARED DARK CLOUD

    SciTech Connect

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert E-mail: sfinn@bu.ed E-mail: rathborn@das.uchile.c

    2010-08-20

    The 'Nessie' Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1.{sup 0}5 x 0.{sup 0}01 or 80 pc x 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within {+-}3.4 km s{sup -1}, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of {approx}4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the 'sausage' or 'varicose' fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the 'sausage' fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  8. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  9. Solubility and equilibrium vapor pressures of HC1 dissolved in polar stratospheric cloud materials - Ice and the trihydrate of nitric acid

    NASA Technical Reports Server (NTRS)

    Hanson, David; Mauersberger, Konrad

    1988-01-01

    Measurements of the pressure-solubility behavior of HC1 in water ice and in the nitric acid trihydrate (NAT) crystal at 200 K are reported. It was found that HC1 is about 20 times more soluble in NAT than in ice for stratospheric conditions. A relation between HC1 pressure and substrate composition based on the Gibbs-Duhem equation is developed. This relation, along with other thermodynamic data, can be used to obtain the HC1 pressure-solubility behavior at different temperatures. Implications of these results for the south polar ozone hole are discussed.

  10. Discovery of star formation in the extreme outer galaxy possibly induced by a high-velocity cloud impact

    SciTech Connect

    Izumi, Natsuko; Kobayashi, Naoto; Hamano, Satoshi; Yasui, Chikako; Tokunaga, Alan T.; Saito, Masao

    2014-11-01

    We report the discovery of star formation activity in perhaps the most distant molecular cloud in the extreme outer galaxy. We performed deep near-infrared imaging with the Subaru 8.2 m telescope, and found two young embedded clusters at two CO peaks of 'Digel Cloud 1' at the kinematic distance of D = 16 kpc (Galactocentric radius R {sub G} = 22 kpc). We identified 18 and 45 cluster members in the two peaks, and the estimated stellar densities are ∼5 and ∼3 pc{sup –2}, respectively. The observed K-band luminosity function suggests that the age of the clusters is less than 1 Myr and also that the distance to the clusters is consistent with the kinematic distance. On the sky, Cloud 1 is located very close to the H I peak of high-velocity cloud Complex H, and there are some H I intermediate velocity structures between the Complex H and the Galactic disk, which could indicate an interaction between them. We suggest the possibility that Complex H impacting on the Galactic disk has triggered star formation in Cloud 1 as well as the formation of the Cloud 1 molecular cloud.

  11. The 1980 stratospheric-tropospheric exchange experiment

    NASA Technical Reports Server (NTRS)

    Margozzi, A. P. (Editor)

    1983-01-01

    Data are presented from the Stratospheric-Tropospheric Water Vapor Exchange Experiment. Measurements were made during 11 flights of the NASA U-2 aircraft which provided data from horizontal traverser and samplings in and about the tops of extensive cirrus-anvil clouds produced by overshooting cumulus turrets. Aircraft measurements were made of water vapor, ozone, ambient and cloud top temperature, fluorocarbons, nitrous oxide, nitric acid, aerosols, and ice crystal populations. Balloonsondes were flown about twice daily providing data on ozone, wind fields, pressure and temperature to altitudes near 30 km. Satellite photography provided detailed cloud and cloud top temperature information. Descriptions of individual experiments and detailed compilations of all results are provided.

  12. Oxidant supply and aqueous photochemical SOA formation in cloud droplets and aqueous aerosol

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Ervens, B.; Lim, Y. B.

    2012-12-01

    Many recent laboratory, field and model studies point to significant contributions to the total secondary organic aerosol (SOA) budget from aqueous phase reactions in cloud droplets and aqueous aerosol particles. Laboratory studies of the photochemical oxidation of glyoxal and methylglyoxal in the aqueous phase show a strong dependence on the initial concentration of dissolved organics, with preferential formation of large molecules (dimers, oligomers) at the high concentrations found in ambient deliquesced aerosol particles. In such experimental studies OH radicals are produced in the aqueous phase (via hydrogen peroxide photolysis) and OH radical is assumed to be the major oxidant. An explicit aqueous photooxidation mechanism has been validated, in part, based on the observed temporal evolution of organic intermediates and products in these experiments. In this work, this mechanism was incorporated into multiphase process models (box, cloud parcel) in order to further explore aqueous SOA formation in dilute cloud droplets and concentrated aerosol particles. We found that the predicted SOA mass in both aqueous phases can be comparable despite the much lower liquid water content in aerosols, where oligomer formation is favored. Direct uptake from the gas phase was the largest source of OH radicals in the aqueous phase. In-situ production through the Fenton reaction (Fe), hydrogen peroxide and nitrate photolysis were minor sources. Since phase transfer is slower than the OH(aq) consumption by organics, modeled OH(aq) concentrations were smaller by 1-2 orders of magnitude than predicted based on thermodynamic equilibrium. Our model studies suggest that, unless there are substantial additional sources of OH radical in the aqueous phase, aqueous SOA formation will be oxidant limited. Since the phase transfer rate is a function of the drop (or particle) surface area, aqueous SOA formation may occur preferentially at or near the drop/particle surface (e.g., be surface

  13. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  14. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    PubMed

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  15. Heterogeneous Chemistry Related to Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.

    1995-01-01

    Emissions from stratospheric aircraft that may directly or indirectly affect ozone include NO(y), H2O, soot and sulfuric acid. To fully assess the impact of such emissions, it is necessary to have a full understanding of both the homogeneous and heterogeneous transformations that may occur in the stratosphere. Heterogeneous reactions on stratospheric particles play a key role in partitioning ozone-destroying species between their active and reservoir forms. In particular, heterogeneous reactions tend to activate odd chlorine while deactivating odd nitrogen. Accurate modeling of the net atmospheric effects of stratospheric aircraft requires a thorough understanding of the competing effects of this activation/deactivation. In addition, a full understanding of the potential aircraft impacts requires that the abundance, composition and formation mechanisms of the particles themselves be established. Over the last three years with support from the High Speed Research Program, we have performed laboratory experiments to determine the chemical composition, formation mechanism, and reactivity of stratospheric aerosols.

  16. Low-Mass Star Formation: From Molecular Cloud Cores to Protostars and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Inutsuka, S.-I.; Machida, M.; Matsumoto, T.; Tsukamoto, Y.; Iwasaki, K.

    2016-05-01

    This review describes realistic evolution of magnetic field and rotation of the protostars, dynamics of outflows and jets, and the formation and evolution of protoplanetary disks. Recent advances in the protostellar collapse simulations cover a huge dynamic range from molecular cloud core density to stellar density in a self-consistent manner and account for all the non-ideal magnetohydrodynamical effects, such as Ohmic resistivity, ambipolar diffusion, and Hall current. We explain the emergence of the first core, i.e., the quasi-hydrostatic object that consists of molecular gas, and the second core, i.e., the protostar. Ohmic dissipation largely removes the magnetic flux from the center of a collapsing cloud core. A fast well-collimated bipolar jet along the rotation axis of the protostar is driven after the magnetic field is re-coupled with warm gas (˜103 K) around the protostar. The circumstellar disk is born in the "dead zone", a region that is de-coupled from the magnetic field, and the outer radius of the disk increases with that of the dead zone during the early accretion phase. The rapid increase of the disk size occurs after the depletion of the envelope of molecular cloud core. The effect of Hall current may create two distinct populations of protoplanetary disks.

  17. Influence of 2010 Canadian Forest Fires on Cloud Formation on the Regional Scale

    NASA Astrophysics Data System (ADS)

    Walter, C.; Freitas, S. R.; Kraut, I.; Rieger, D.; Vogel, H.; Vogel, B.

    2014-12-01

    In July 2010 a strong biomass burning event occurred in the North of Saskatchewan, Canada. The fires were well observed by satellites. The changing synoptic situation and the variations in plume height created a complex distribution of the emitted gaseous and particulate matter. The comprehensive regional model system COSMO-ART allows us to study the influence of aerosols on the atmosphere. The formation of new aerosol particles from gaseous precursors is as well accounted as changes in the mixing state of existing aerosol particles. The impact of aerosol particles on cloud microphysics and precipitation is simulated by a two-moment scheme in combination with parameterizations for aerosol activation and ice nucleation. To address emissions from biomass burning, the model system was extended by a plume rise model. It delivers the effective emission height which depends on the current state of the atmosphere and the fire intensity. Datasets based on satellites provide the composition and source strength of numerous chemical tracers. With this framework we are able to gain insight into various effects of aerosols from biomass burning. We found that simulated aerosol optical depth is in very good agreement with AERONET measurements. Temperature at the surface is significantly influenced by adsorbing and scattering particles inside elevated smoke layers. This has further impact on thermal stratification. The high aerosol load inside clouds leads to displaced precipitation patterns. Number and size distributions of cloud droplets are examined for different smoke regimes. It turns out that it depends on the hygroscopicity of available aerosols.

  18. Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of orographic cloud formation to deforestation in the plains

    NASA Astrophysics Data System (ADS)

    Ray, Deepak K.; Nair, Udaysankar S.; Lawton, Robert O.; Welch, Ronald M.; Pielke, Roger A.

    2006-01-01

    The current study provides new insights into the coupling of land use in lowland and premontane regions (i.e., regions below 1000 m) and orographic cloud formation over the Monteverde cloud forests. Rawinsondes launched during the Land Use Cloud Interaction Experiment (LUCIE) together with those from the National Centers for Environmental Prediction (NCEP) provided profiles that were used to drive the Colorado State University Regional Atmospheric Modeling System (CSU RAMS) model, which simulated three realistic land use scenarios (pristine forests, current conditions and future deforestation). For current conditions, the model-simulated clouds were compared against those observed at hourly intervals by the Geostationary Environmental Observational Satellite-East (GOES E) satellite. The model performed best on 6 different days. The model-simulated profiles of dew point and air temperatures were compared with the observed profiles from rawinsondes for these days. There was generally very good agreement below 700 mb, the region of the atmosphere most crucial to the cloud forests. The average model simulations for the 6 days show that when the lowland and premontane regions were completely forested, the orographic cloud bank intersected the mountains at the lowest elevations, covered the largest land surface area and remained longest on the surface in the montane regions. Deforestation has decreased the cloud forest area covered with fog in the montane regions by around 5-13% and raised the orographic cloud bases by about 25-75 m in the afternoon. The model results show that further deforestation in the lowland and premontane regions would lead to around 15% decrease in the cloud forest area covered with fog and also raise the orographic cloud base heights by up to 125 m in the afternoon. The simulations show that deforestation in the lowland and premontane regions raises surface sensible heat fluxes and decreases latent heat fluxes. This warms the air temperature and

  19. Assessing nucleation in cloud formation modelling for Brown Dwarf and Exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Lee, Graham; Helling, Christiane; Giles, Helen; Bromley, Stefan

    2015-04-01

    Context. Substellar objects such as Brown Dwarfs and hot Jupiter exoplanets are cool enough that clouds can form in their atmospheres (Helling & Casewell 2014; A&ARv 22)). Unlike Earth, where cloud condensation nuclei are provided by the upward motion of sand or ash, in Brown Dwarf and hot Jupiters these condensation seeds form from the gas phase. This process proceeds in a stepwise chemical reaction of single monomer addition of a single nucleation species, referred to as homogeneous nucleation. The rate at which these seeds form is determined by the local thermodynamic conditions and the chemical composition of the local gas phase. Once the seed particles have formed, multiple materials are thermally stable and grow almost simultaneously by chemical surface reactions. This results in the growth of the condensation seeds to macroscopic particles of μm size. At the same time, the gas phase becomes depleted. Once temperatures become too high for thermal stability of the cloud particle, it evaporates until its constituents return to the gas phase. Convection from deeper atmospheric layers provides element replenishment to upper, cooler layers allowing the cloud formation process to reach a stationary state (Woitke & Helling 2003; A&A 399). Aims. The most efficient nucleation is a 'winner takes all' process as the losing molecules will condense on the surface of the faster nucleating seed particle. We apply new molecular (TiO2)N-cluster and SiO vapour data to our cloud formation model in order to re-asses the question of the primary nucleation species. Methods. We apply density functional theory (B3LYP, 6-311G(d)) using the computational chemistry package GAUSSIAN 09 to derive updated thermodynamical data for (TiO2)N-clusters as input for our TiO2 seed formation model. We test both TiO2 and SiO as primary nucleates assuming a homogeneous nucleation process and by solving a system of dust moment equations and element conservation for a pre-scribed Brown Dwarf

  20. What Controls the Arctic Lower Stratosphere Temperature?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period.

  1. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation

    DOE PAGES

    Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew; ...

    2017-01-24

    Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil-fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated by a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit amore » core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation in agreement with respective Tg and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid inducing ice nucleation. Naphthalene SOA coated soot particles acted as IN above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate further renders this even less likely. Furthermore, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during preindustrial times or in pristine areas.« less

  2. The impact of organic vapours on warm cloud formation; characterisation of chamber setup and first experimental results

    NASA Astrophysics Data System (ADS)

    Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon

    2016-04-01

    The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.

  3. The origin of massive clusters: from hyper-massive clouds to mini-bursts of star formation

    NASA Astrophysics Data System (ADS)

    Motte, Frederique; Louvet, Fabien; Nguyen Luong, Quang

    2015-08-01

    Herschel revealed high-density cloud filaments of several pc^3, which are forming clusters of OB-type stars. Counting Herschel protostars gives a direct measure of the mass of stars forming in a period of ~10^5 yrs, the ``instantaneous'' star formation activity. Given their activity, these so-called mini-starburst cloud ridges could be seen as "miniature and instant models" of starburst galaxies. Their characteristics could shed light on the origin of massive clusters.

  4. Students' understanding of cloud and rainbow formation and teachers' awareness of students' performance

    NASA Astrophysics Data System (ADS)

    Malleus, Elina; Kikas, Eve; Kruus, Sigrid

    2016-04-01

    This study describes primary school students' knowledge about rainfall, clouds and rainbow formation together with teachers' predictions about students' performance. In our study, primary school students' (N = 177) knowledge about rainfall and rainbow formation was examined using structured interviews with open-ended questions. Primary school teachers' (N = 110) awareness of students' understanding was measured with questionnaires and the results will be discussed in relation to teaching experience and the use of different teaching practices. Our results show that students in every grade hold a wide-ranging set of misconceptions that reflect different combinations of their own understanding and learnt scientific knowledge. Teachers tended to overestimate students' performance and described second-grade students' knowledge more accurately than fourth- and sixth-grade students' knowledge. Teachers with less teaching experience were found to less overestimate and more underestimate sixth-grade students' knowledge than teachers with more teaching experience.

  5. Study of the critical radius influence on the cloud drops formation in the seeding operations

    NASA Astrophysics Data System (ADS)

    Pérez, R.. C.

    2010-09-01

    In the seeding operations in order to mitigate the climatic changes or to intervene on the atmospherics process of the precipitations in order to can beneficent enhancement it; it is very important the roll that play the critical radius of the cloud formation drops. In the seeding operations is fundamental to determinate the critical radius in order to make more efficient its results; because if the size of the cloud drop formation nuclei in the heterogeneous nucleation is smaller than critical radius, then it is very possible that the precipitation amount decrease when the seeding take a place, and viceversa. So, we must take in account the critical radius that the boundary conditions determine, and with this data, it must to be established the seeding nuclei size to use, in order to get the results whit the wished efficiency. We had worked is in this way, searching and developed a methodology in order to get to calculate the critical radius to boundary atmospherics conditions, and with this data to can estimate the seeding nuclei size necessary. We had obtained approximate values that are enough to ours goals.

  6. CO{sub 2} FORMATION IN QUIESCENT CLOUDS: AN EXPERIMENTAL STUDY OF THE CO + OH PATHWAY

    SciTech Connect

    Noble, J. A.; Fraser, H. J.; Dulieu, F.; Congiu, E.

    2011-07-10

    The formation of CO{sub 2} in quiescent regions of molecular clouds is not yet fully understood, despite CO{sub 2} having an abundance of around 10%-34% H{sub 2}O. We present a study of the formation of CO{sub 2} via the nonenergetic route CO + OH on nonporous H{sub 2}O and amorphous silicate surfaces. Our results are in the form of temperature-programmed desorption spectra of CO{sub 2} produced via two experimental routes: O{sub 2} + CO + H and O{sub 3} + CO + H. The maximum yield of CO{sub 2} is around 8% with respect to the starting quantity of CO, suggesting a barrier to CO + OH. The rate of reaction, based on modeling results, is 24 times slower than O{sub 2} + H. Our model suggests that competition between CO{sub 2} formation via CO + OH and other surface reactions of OH is a key factor in the low yields of CO{sub 2} obtained experimentally, with relative reaction rates of k{sub CO+H}<clouds could be explained by the reaction CO + OH occurring concurrently with the formation of H{sub 2}O via the route OH + H.

  7. Airborne stratospheric observations of major volcanic eruptions: past and future

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Aquila, V.; Colarco, P. R.

    2015-12-01

    Major volcanic eruptions (e.g. the 1991 eruption of Mt. Pinatubo) lead to a surface cooling and disruptions of the chemistry of the stratosphere. In this presentation, we will show model simulations of Mt. Pinatubo that can be used to devise a strategy for answering specific science questions. In particular, what is the initial mass injection, how is the cloud spreading, how are the stratospheric aerosols evolving, what is the impact on stratospheric chemistry, and how will climate be affected? We will also review previous stratospheric airborne observations of volcanic clouds using NASA sub-orbital assets, and discuss our present capabilities to observe the evolution of a stratospheric volcanic plume. These capabilities include aircraft such as the NASA ER-2, WB-57f, and Global Hawk. In addition, the NASA DC-8 and P-3 can be used to perform remote sensing. Balloon assets have also been employed, and new instrumentation is now available for volcanic work.

  8. Mantle formation, coagulation, and the origin of cloud/core shine. II. Comparison with observations

    NASA Astrophysics Data System (ADS)

    Ysard, N.; Köhler, M.; Jones, A.; Dartois, E.; Godard, M.; Gavilan, L.

    2016-04-01

    Context. Many dense interstellar clouds are observable in emission in the near-IR (J, H, and K photometric bands), commonly referred to as "Cloudshine", and in the mid-IR (Spitzer IRAC 3.6 and 4.5 μm bands), the so-called "Coreshine". These C-shine observations have usually been explained in terms of grain growth but no model has yet been able to self-consistently explain the dust spectral energy distribution from the near-IR to the submm. Aims: Our new core/mantle evolutionary dust model, The Heterogeneous dust Evolution Model at the IaS (THEMIS), has been shown to be valid in the far-IR and submm. We want to demonstrate its ability to reproduce the C-shine observations. Methods: Our starting point is a physically motivated core/mantle dust model. It consists of three dust populations: small poly-aromatic-rich carbon grains, bigger core/mantle grains with mantles of aromatic-rich carbon, and cores made of either amorphous aliphatic-rich carbon or amorphous silicate. Then, we assume an evolutionary path where these grains, when entering denser regions, may first form a second aliphatic-rich carbon mantle (coagulation of small grains, accretion of carbon from the gas phase), second coagulate together to form large aggregates, and third accrete gas phase molecules coating them with an ice mantle. To compute the corresponding dust emission and scattering, we use a 3D Monte Carlo radiative transfer code. Results: We show that our global evolutionary dust modelling approach THEMIS allows us to reproduce C-shine observations towards dense starless clouds. Dust scattering and emission is most sensitive to the cloud central density and to the steepness of the cloud density profile. Varying these two parameters leads to changes that are stronger in the near-IR, in both the C-shine intensity and profile. Conclusions: With a combination of aliphatic-rich mantle formation and low-level coagulation into aggregates, we can self-consistently explain the observed C-shine and far

  9. STAR FORMATION AND YOUNG STELLAR CONTENT IN THE W3 GIANT MOLECULAR CLOUD

    SciTech Connect

    Rivera-Ingraham, Alana; Martin, Peter G.; Polychroni, Danae; Moore, Toby J. T.

    2011-12-10

    In this work, we have carried out an in-depth analysis of the young stellar content in the W3 giant molecular cloud (GMC). The young stellar object (YSO) population was identified and classified in the Infrared Array Camera/Multiband Imaging Photometer color-magnitude space according to the 'Class' scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low-/intermediate-mass pre-main-sequence (PMS) stars selected through their colors and magnitudes in the Two Micron All Sky Survey. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate-mass objects can be more reliably identified. By means of the minimum spanning tree algorithm and our YSO spatial distribution and age maps, we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large-scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high-density layer (HDL) also shows signs of quiescent and triggered stellar activity, as well as extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star-forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming a spontaneous origin for the isolated massive star(s) powering KR 140.

  10. The Effect of Metallicity on Molecular Gas and Star Formation in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Jameson, Katherine; Bolatto, A. D.; Leroy, A. K.; Wolfire, M. G.; Meixner, M.; Roman-Duval, J.; Gordon, K. D.; HERITAGE Collaboration

    2014-01-01

    The Magellanic Clouds provide the only laboratory to study the effect of metallicity on molecular gas and star formation at high resolution. We use the dust emission (Herschel 100, 160, 250, and 350 micron) to trace the total column of gas distribution and remove the HI gas leaving the molecular gas component distribution; we avoid the known biases of CO and reveal molecular gas with no bright CO emission. Relating the molecular gas to the star formation rate, traced by H-alpha and 24 micron, reveals an average molecular gas depletion time of ˜ 1 Gyr in the LMC. This is consistent with normal disk galaxies (˜ 2 Gyr; Bigiel et al. 2008, 2012) and the SMC (Bolatto et al. 2011), suggesting that metallicity does not strongly affect the galaxy-wide molecular gas star formation efficiency. We also contrast the metallicity-dependent predictions of the Ostriker, McKee, & Leroy (2011) and Krumholz, McKee, & Tumlinson (2009) models of star formation with the data.

  11. Completing the Mapping of the W3 Giant Molecular Cloud; Testing Models and the Importance of Triggered Star Formation

    NASA Astrophysics Data System (ADS)

    Moore, Toby; Allsopp, James; Jone