Science.gov

Sample records for stratospheric cloud formation

  1. Cloud formation in Titan's Stratosphere

    NASA Astrophysics Data System (ADS)

    Barth, Erika

    2016-06-01

    In addition to the organic haze particles produced photochemically in Titan's upper atmosphere, a number of trace gases are also created. These hydrocarbon and nitrile species include C2H6, C2H2, C4H10, HCN, HC3N, C2H5CN and many more. While both Voyager and Cassini observations have found evidence for ices (e.g. C4N2, HCN) in the atmosphere above Titan's poles, these species are also likely to condense at other latitudes forming optically thin ice layers in the stratosphere. A series of simulations have been conducted using Titan CARMA, a 1-D microphysics and radiative transfer model, to explore cloud particle formation with ˜20 of Titan's trace hydrocarbon and nitrile gases. These species reach their condensation temperatures between 60 and 110 km. Most condense solely as ices, however, C3H8 will condense first near 70 km as a liquid and then freeze as the droplets descend toward the surface. C3H8 and C2H6 join CH4 as a liquid at Titan's surface. Many ices have long condensation timescales resulting in particle radii ˜1 micron or less. Several (including HCN, C3H8, C2H2) will grow 10-50 times larger. Expected condensation altitudes and particle sizes will be presented, as well as the implications for the optical properties of Titan's stratospheric aerosol particles.

  2. Studies of polar stratospheric cloud formation.

    PubMed

    Prenni, A J; Tolbert, M A

    2001-07-01

    Stratospheric ozone depletion was first reported in 1985. Early on, researchers identified polar stratospheric clouds (PSCs) as being important in chemistry related to ozone depletion. PSCs exist as crystalline water-ice particles (type II), and as crystalline (type Ia) or liquid (type Ib) particles stable above the water-ice frost point. Uncertainty remains concerning the composition and formation mechanism of the most common PSC, type Ia. Here, we consider likely formation mechanisms for type Ia PSCs.

  3. Sulfate aerosols and polar stratospheric cloud formation

    SciTech Connect

    Tolbert, M.A. )

    1994-04-22

    Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.

  4. Cloud formation, convection, and stratospheric dehydration

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark R.; Dessler, Andrew E.; Wang, Tao; Avery, Melody A.; Jensen, Eric J.

    2014-12-01

    Using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds, temperatures, and anvil cloud ice, we use our domain-filling, forward trajectory model combined with a new cloud module to show that convective transport of saturated air and ice to altitudes below the tropopause has a significant impact on stratospheric water vapor and upper tropospheric clouds. We find that including cloud microphysical processes (rather than assuming that parcel water vapor never exceeds saturation) increases the lower stratospheric average H2O by 10-20%. Our model-computed cloud fraction shows reasonably good agreement with tropical upper troposphere (TUT) cloud frequency observed by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument in boreal winter with poorer agreement in summer. Our results suggest that over 40% of TUT cirrus is due to convection, and it is the saturated air from convection rather than injected cloud ice that primarily contributes to this increase. Convection can add up to 13% more water to the stratosphere. With just convective hydration (convection adds vapor up to saturation), the global lower stratospheric modeled water vapor is close to Microwave Limb Sounder observations. Adding convectively injected ice increases the modeled water vapor to ~8% over observations. Improving the representation of MERRA tropopause temperatures fields reduces stratospheric water vapor by ~4%.

  5. Tropical Tropopause Layer Cloud Formation, Convection and Stratospheric Dehydration

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.; Avery, M. A.; Jensen, E. J.

    2014-12-01

    Using MERRA reanalysis winds, temperatures and anvil cloud ice, we use our domain-filling, forward trajectory model to study the impact that more realistic cloud formation and convective water injection has on stratospheric water vapor. Our model computed cloud fraction shows reasonable agreement with cloud frequency observed by HIRDLS and CALIOP in the tropical troposphere layer (TTL). Our results suggest that ~64% of the cirrus formed in the TTL are due convection. Overall we find that inclusion of cloud microphysical processes increases stratospheric water vapor by 0.5 ppmv. Adding anvil ice increases stratospheric water vapor by an additional 0.5-0.6 ppmv but has a bigger impact on cloud formation with an increase of ~20-30% in TTL cloud fraction. With convection and cloud dehydration global 18-30 km average water vapor is ~5-7% higher than MLS water vapor observations. Adding waves to the MERRA temperature fields reduces stratospheric water vapor bringing our estimates to within 3% of MLS.

  6. Formation of Polar Stratospheric Clouds in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Aloyan, Artash; Yermakov, Alex; Arutyunyan, Vardan; Larin, Igor

    2014-05-01

    A new mathematical model of the global transport of gaseous species and aerosols in the atmosphere and the formation of polar stratospheric clouds (PSCs) in both hemispheres was constructed. PSCs play a significant role in ozone chemistry since heterogeneous reactions proceed on their particle surfaces and in the bulk, affecting the gas composition of the atmosphere, specifically, the content of chlorine and nitrogen compounds, which are actively involved in the destruction of ozone. Stratospheric clouds are generated by co-condensation of water vapor and nitric acid on sulfate particles and in some cases during the freezing of supercooled water as well as when nitric acid vapors are dissolved in sulfate aerosol particles [1]. These clouds differ in their chemical composition and microphysics [2]. In this study, we propose new kinetic equations describing the variability of species in the gas and condensed phases to simulate the formation of PSCs. Most models for the formation of PSCs use constant background values of sulfate aerosols in the lower stratosphere. This approach is too simplistic since sulfate aerosols in the stratosphere are characterized by considerably nonuniform spatial and temporal variations. Two PSC types are considered: Type 1 refers to the formation of nitric acid trihydrate (NAT) and Type 2 refers to the formation of particles composed of different proportions of H2SO4/HNO3/H2O. Their formation is coupled with the spatial problem of sulfate aerosol generation in the upper troposphere and lower stratosphere incorporating the chemical and kinetic transformation processes (photochemistry, nucleation, condensation/evaporation, and coagulation) and using a non-equilibrium particle-size distribution [3]. In this formulation, the system of equations is closed and allows an adequate description of the PSC dynamics in the stratosphere. Using the model developed, numerical experiments were performed to reproduce the spatial and temporal variability of

  7. On the importance of meteoric dust for the stratospheric aerosol and polar stratospheric cloud formation (Invited)

    NASA Astrophysics Data System (ADS)

    Borrmann, S.

    2013-12-01

    Aerosol particles originating from meteoric ablation at high altitudes appear after some time in the lower mesosphere and upper stratosphere. They can be transported to even lower altitudes by the down-welling in connection with the winter hemisphere polar vortices. At altitudes below 30 km these particles are a component of the stratospheric background aerosol and become involved in microphysical processes including polar stratospheric cloud formation (PSC). PSCs are believed to heterogeneously form on the sulfuric acid background aerosol. However at times of relative volcanic quiescence the number densities of such background aerosol particles decreases and PSC formation may become more dependent on the presence of the meteoric ablation dust. In this presentation at first a short review of laboratory experiments on cloud nucleation on meteoric dust is given, and literature results from atmospheric measurements are discussed. In the second section recent in-situ lower stratospheric measurements (up to 20 km altitude) within the Northern hemispheric polar vortex from the RECONCILE and ESSENCE campaigns (2010 and 2011) are presented. Here in-situ measurements of the non-volatility of submicron aerosol particles are described as well as results from a-posteriori analyses on particles sampled from flight altitudes (using EDX and electron microscopy).

  8. A study of Type I polar stratospheric cloud formation

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Turco, R. P.; Drdla, K.; Jacobson, M. Z.; Toon, O. B.

    1994-01-01

    Mechanisms for the formation of Type I (nitric acid-based) polar stratospheric clouds (PSCs) are discussed. If the pre-existing sulfate aerosols are liquid prior to PSC formation, then nitric acid particles (Type Ib) form by HNO3 dissolution in aqueous H2SO4 solution droplets. This process does not require a nucleation step for the formation of HNO3 aerosols, so most pre-existing aerosols grow to become relatively small HNO3-containing particles. At significantly lower temperatures, the resulting supercooled solutions (Type Ib) may freeze to form HNO3 ice particles (Type Ia). If the pre-existing sulfate aerosols are initially solid before PSC formation, then HNO3 vapor can be deposited directly on the frozen sulfate particles. However, because an energy barrier to the condensation exists a nucleation mechanism is involved. Here, we suggest a unique nucleation mechanism that involves formation of HNO3/H20 solutions on the sulfate ice particles. These nucleation processes may be highly selective, resulting in the formation of relatively small number of large particles.

  9. Characteristics of polar stratospheric clouds during the formation of the Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Toon, O. B.; Turco, R. P.

    1986-01-01

    Measured properties of Antarctic polar stratospheric clouds are described, and the possible relationship between the clouds and the formation of the ozone hole is considered. It is shown that the ozone hole develops and the clouds dissipate in the same place and at the same time. There may be a causal relationship between cloud particle evaporation and ozone depletion. A heterogeneous mechanism involving chemical reactions in the cloud droplets is suggested.

  10. Comparisons Between the Formation of Polar Stratospheric Clouds and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    Analyses of lidar data taken during the 1989 AASE I program show that polar stratospheric clouds most often contain frozen particles, but sometimes contain spherical, presumably liquid, particles. In this paper the mechanisms that lead to the freezing of particles, and to the formation of liquid particles will be discussed based largely upon analyses of existing data. For example, trajectory studies help shed light on the conditions that lead to particle freezing. During April of 1996 an experiment using the NASA DC-8 and ER-2 aircraft will be conducted over the central U.S. Some of the goals of the project are to better understand the mechanisms of cirrus cloud formation, and to investigate the properties of freezing nuclei in the upper troposphere. Results from this field program will be presented as they apply to the topic of ice crystal nucleation. Comparisons will be drawn between the mechanisms that lead to new particle formation in the polar stratosphere, and the mechanisms that lead to new particles formation in the upper troposphere.

  11. Stratospheric water vapour and temperature variability and their effect on polar stratospheric cloud formation and existence in the Arctic

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Lossow, Stefan; Stiller, Gabriele; Weigel, Katja; Braesicke, Peter; Pitts, Michael C.; Murtagh, Donal

    2015-04-01

    Based on more than 10-years of satellite measurements from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS and SciSat/ACE-FTS we investigate water vapour (H2O) variability in the northern hemisphere polar regions. We find from the observations a connection between cold winters and enhanced water vapour mixing ratios in the lower polar stratosphere (475 to 525 K). We perform a sensitivity study along air parcel trajectories to test how an increase of stratospheric water vapour of 1 ppmv or a temperature decrease of 1 K affects the time period during which polar stratospheric clouds (PSCs) can be formed and exist. Air parcel trajectories were calculated 6-days backward in time. The trajectories were started at the time and locations where PSCs were observed by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations) during the Arctic winter 2010/2011. We test the sensitivity of PSCs formation and existence to changes in H2O and temperature based on PSC observations during this winter since it was one of the coldest Arctic winters in the last decade. The polar vortex persisted over a period of four months, thus leading to extensive PSC formation. During this winter PSCs were detected by CALIPSO on 42 days. In total, 738 trajectories were calculated and analysed. The resulting statistic derived from the air parcel trajectories shows a clear prolongation of the time period where PSCs can be formed and exist when the temperature in the stratosphere is decreased by 1 K and H2O is increased by 1 ppmv. We derive an increase in time where the stratospheric air is exposed to temperatures below Tice and TNAT, respectively, by ~6000 h. Thus, changes in stratospheric water vapour and temperature can prolong PSC formation and existence and thus have a significant influence on the chemistry of the polar stratosphere.

  12. Denitrification of the polar winter stratosphere: Implications of SAM II (Stratospheric Aerosol Measurement II) cloud formation temperatures

    SciTech Connect

    Hamill, P. ); Toon, O.B. )

    1990-03-01

    The authors use the Stratospheric Aerosol Measurement II (SAM II) extinction profiles and the associated temperature profiles to determine the amount of denitrification of the winter polar stratospheres. The authors see clear evidence of the denitrification process in the Antarctic data. There are indications in the Arctic data that denitrification mechanisms may be at work there also. At the latitudes observed by the SAM II satellite system, denitrification begins before the formation of extensive ice clouds and may be due to sedimentation of nitric acid particles. However, they cannot exclude the possibility of denitrification by type II PSC's at latitudes not observed by SAM II.

  13. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  14. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2015-07-01

    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Although in the polar regions no significant trend is found in the lower stratosphere, we found from the observations a correlation between cold winters and enhanced water vapour mixing ratios.

  15. Polar stratospheric clouds and the ozone hole

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Toon, Owen B.

    1991-01-01

    An account is given of physical processes governing the formation of stratospheric particles, in order to dramatize the interactions between polar stratospheric clouds and the Antarctic ozone-destruction mechanism. Attention is given to the successive stages of particle nucleation, condensation/evaporation and sedimentation/coagulation phenomena, and the ways in which polar stratospheric clouds are observed. Considerable evidence exists that polar stratospheric cloud particles are composed of nitric acid. The relatively small Arctic ozone hole depletion is due to the much smaller duration of Arctic stratospheric clouds.

  16. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2016-01-01

    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000 K. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in

  17. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    NASA Technical Reports Server (NTRS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  18. Investigating Type I Polar Stratospheric Cloud Formation Mechanisms with POAM Satellite Observations

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Drdla, K.; Fromm, M.; Hoppel, K.; Browell, E.; Hamill, P.; Dempsey, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Type Ia PSCs are believed to be composed of nitric acid hydrate particles. Recent results from the SOLVE/THESEO 2000 campaign showed evidence that this type of PSC was composed of a small number of very large particles capable of sedimentary denitrification of regions of the stratosphere. It is unknown whether homogeneous or heterogeneous nucleation is responsible for the formation of these PSCs. Arctic winters are tending to be colder in response to global tropospheric warming. The degree to which this influences ozone depletion will depend on the freezing mechanism of nitric acid hydrate particles. If nucleation is homogeneous it implies that the freezing process is an inherent property of the particle, while heterogeneous freezing means that the extent of PSCs will depend in part on the number of nuclei available. The Polar Ozone and Aerosol Measurement (POAM)II and III satellites have been making observations of stratospheric aerosols and Polar Stratospheric Clouds (PSCs) since 1994. Recently, we have developed a technique that can discriminate between Type Ia and Ib PSCs using these observations. A statistical approach is employed to demonstrate the robustness of this approach and results are compared with lidar measurements. The technique is used to analyze observations from POAM II and II during Northern Hemisphere winters where significant PSC formation occurred with the objective of exploring Type I PSC formation mechanisms. The different PSCs identified using this method exhibit different growth curve as expressed as extinction versus temperature.

  19. Denitrification of the polar winter stratosphere - Implications of SAM II cloud formation temperatures

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Toon, O. B.

    1990-01-01

    The SAM II extinction profiles and the associated temperature profiles are used to determine the amount of denitrification of the winter polar stratospheres. Clear evidence of the denitrification process in the Antarctic data is seen. There are indications in the Arctic data that denitrification mechanisms may be at work there also. At the latitudes observed by the SAM II satellite system, denitrification begins before the formation of extensive ice clouds and may be due to sedimentation of nitric acid particles. However, the possibility of dinitrification by type II PSCs at latitudes not observed by SAM II cannot be excluded.

  20. Modeling the formation of polar stratospheric clouds with allowance for kinetic and heterogeneous processes

    NASA Astrophysics Data System (ADS)

    Aloyan, A. E.; Yermakov, A. N.; Arutyunyan, V. O.

    2015-05-01

    A new mathematical model of global transport of multicomponent gaseous admixtures and aerosols in the atmosphere and the formation of polar stratospheric clouds (PSC) in both hemispheres has been constructed. Two types of PSCs are considered: type Ia, nitric acid trihydrate (NAT), and type Ib, supercooled ternary solutions of H2SO4/HNO3/H2O (STS). New equations are used to describe the variation in gas- and condensed-phase components on the basis of their thermodynamic properties. The formation of PSCs is coupled with sulfate aerosols generated in the upper troposphere and lower stratosphere, and with chemical and kinetic transformation processes (photochemistry, nucleation, condensation/evaporation, and coagulation). Using this coupled model, numerical experiments were performed to reproduce the spatial and temporal variability of PSCs in winter in both hemispheres. First, the formation of primary sulfate aerosols in the atmosphere is considered and then these aerosols are incorporated to the PSC model. The results of the numerical experiments are analyzed.

  1. Polar stratospheric clouds and ozone depletion

    SciTech Connect

    Toon, O.B. ); Turco, R.P. )

    1991-06-01

    During the Antarctic winter, strange and often invisible clouds form in the stratosphere over the pole. These clouds of ice and frozen nitric acid play a crucial role in the chemical cycle responsible for the recent appearance of the annual ozone hole. Their chemistry removes compounds that would normally trap ozone-destroying free chlorine produced by the breakdown of CFCs. The paper describes these clouds, their formation, and the mechanisms by which these clouds help chlorine destroy ozone.

  2. Solid-state photochemistry as a formation mechanism for Titan's stratospheric C4N2 ice clouds

    NASA Astrophysics Data System (ADS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-04-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 cm-1 ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  3. The radiative impact of Polar Stratospheric Clouds

    NASA Astrophysics Data System (ADS)

    Wegner, T.; Merrelli, A. J.; Poole, L. R.; Pitts, M. C.

    2014-12-01

    Polar Stratospheric Clouds (PSCs) are an ubiquitous feature in the stratosphere over the polar regions on the winter hemisphere. Heterogeneous chemistry and microphysics of these clouds play a pivotal role in the formation of the ozone hole. We constrain the radiative impact of these clouds utilizing observations from the space-borne lidar CALIPSO and the state of the art radiative transfer model LBLDIS.In addition to spatial and vertical distribution of PSCs, CALIPSO also provides their composition which is used in LBLDIS to calculate their radiative impact.This analysis focuses on the Antarctic winter season of 2008. Here, CALIPSO shows a distinct maximum in integrated optical depth of PSCs east of the Antarctic peninsula which is present throughout the entire winter season. Under clear-sky conditions PSCs can warm the lower stratosphere by several K/day in this region. However, the radiative impact of PSCs is greatly reduced in the presence of underlying tropospheric clouds. With tropospheric cloud parameters provided by CALIPSO we calculate the radiative impact of PSCs for several tropospheric cloud conditions to constrain the potential impact of PSCs on stratospheric temperatures.We find that high tropospheric clouds reduce the heating effect of PSCs and eventually PSCs have a cooling effect on lower stratospheric temperatures. We investigate how the radiative impact of PSCs changes throughout the winter with changing tropospheric conditions and how these locally forced temperature fluctuations impact the formation of PSCs.

  4. An analysis of polar stratospheric clouds on quasi-lagrangian surfaces: Particle formation and properties

    NASA Astrophysics Data System (ADS)

    Ward, Shauna M.

    Polar stratospheric clouds (PSCs) have been extensively studied to understand their formation properties so the extent of the ozone hole in future years can be more accurately modeled adding to the accuracy of global climate models. In 2010, as part of the Concordiasi project in Antarctica, four long-duration balloons were flown on quasi-Lagrangian surfaces carrying optical particle counters, allowing for measurement of changes in particle size and concentration with the changing environmental conditions encountered by an air parcel. Both nitric acid trihydrate (NAT) and supercooled ternary solution (STS) particles were measured, resulting in similar size distributions to previous Arctic measurements. STS particle growth was observed shortly after going below its condensation point agreeing with earlier measurements and theories. NAT particles were observed only after the environmental temperature went below the equilibrium temperature for NAT for approximately two days. The environmental temperature did not go below the frost point before NAT was observed, confirming that NAT does not require temperatures below the frost point to nucleate. A slow increasing trend in the number of NAT particles nucleated was observed with time leading to a NAT nucleation rate of 0.0002 m-3 s -1, a fact which will help better model NAT nucleation in PSCs. Quasi-Lagrangian and profile measurements both indicated a lack of PSC particles between 16-18 km altitude which may have resulted from severe denitrification caused by PSC formation early in the winter. Severe denitrification by PSC sedimentation may explain background aerosol volumes observed where temperatures were below PSC particle threshold temperatures.

  5. A case of type I polar stratospheric cloud formation by heterogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Ferry, G. V.; Snetsinger, K. G.; Goodman, J.; Dye, J. E.; Baumgardner, D.; Gandrud, B. W.

    1992-01-01

    The NASA ER-2 aircraft flew on January 24, 1989, from Stavanger to Spitsbergen, Norway, at the 430-440 K potential temperature surface (19.2-19.8 km pressure altitude). Aerosols were sampled continuously by an optical particle counter (PMS-FSSP300) for concentration and size analyses, and during five 10-min intervals by four wire and one replicator impactor for concentration, size, composition, and phase analysis. During sampling, the air saturation of H2O with respect to ice changed from 20 to 100 percent, and of HNO3 with respect to nitric acid trihydrate (NAT) from subsaturation to supersaturation. Data from both instruments indicate a condensation of hydrochloric acid and, later, nitric acid on the background aerosol particles as the ambient temperature decreases along the flight track. This heterogeneous nucleation mechanism generates type I polar stratospheric cloud particles of 10-fold enhanced optical depth, which could play a role in stratospheric ozone depletion.

  6. Physical processes in polar stratospheric ice clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard; Jordan, Joseph

    1988-01-01

    A one dimensional model of cloud microphysics was used to simulate the formation and evolution of polar stratospheric ice clouds. Some of the processes which are included in the model are outlined. It is found that the clouds must undergo preferential nucleation upon the existing aerosols just as do tropospheric cirrus clouds. Therefore, there is an energy barrier between stratospheric nitric acid particles and ice particles implying that nitric acid does not form a continuous set of solutions between the trihydrate and ice. The Kelvin barrier is not significant in controlling the rate of formation of ice particles. It was found that the cloud properties are sensitive to the rate at which the air parcels cool. In wave clouds, with cooling rates of hundreds of degrees per day, most of the existing aerosols nucleate and become ice particles. Such clouds have particles with sizes on the order of a few microns, optical depths on order of unity and are probably not efficient at removing materials from the stratosphere. In clouds which form with cooling rates of a few degrees per day or less, only a small fraction of the aerosols become cloud particles. In such clouds the particle radius is larger than 10 microns, the optical depths are low and water vapor is efficiently removed. Seasonal simulations show that the lowest water vapor mixing ratio is determined by the lowest temperature reached, and that the time when clouds disappear is controlled by the time when temperatures begin to rise above the minimum values.

  7. Investigation of Polar Stratospheric Cloud Solid Particle Formation Mechanisms Using ILAS and AVHRR Observations in the Arctic

    NASA Technical Reports Server (NTRS)

    Irie, H.; Pagan, K. L.; Tabazadeh, A.; Legg, M. J.; Sugita, T.

    2004-01-01

    Satellite observations of denitrification and ice clouds in the Arctic lower stratosphere in February 1997 are used with Lagrangian microphysical box model calculations to evaluate nucleation mechanisms of solid polar stratospheric cloud (PSC) particles. The occurrences of ice clouds are not correlated in time and space with the locations of back trajectories of denitrified air masses, indicating that ice particle surfaces are not always a prerequisite for the formation of solid PSCs that lead to denitrification. In contrast, the model calculations incorporating a pseudoheterogeneous freezing process occurring at the vapor-liquid interface can quantitatively explain most of the observed denitrification when the nucleation activation free energy for nitric acid dihydrate formation is raised by only approx.10% relative to the current published values. Once nucleated, the conversion of nitric acid dihydrate to the stable trihydrate phase brings the computed levels of denitrification closer to the measurements. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and SblctureC: loud physics and chemistry; 0340 Atmospheric Composition and Structure: Middle atmosphere-composition and chemistry

  8. Polar Stratospheric Cloud formation and denitrification during the Arctic winter 2009/2010 and 2010/2011

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Pitts, Michael C.; Kirner, Oliver; Braesicke, Peter; Santee, Michelle L.; Manney, Gloria L.; Murtagh, Donal

    2015-04-01

    The sedimentation of HNO3 containing polar stratospheric cloud particles leads to a permanent removal of HNO3 from the stratosphere. The so-called denitrification is an effect that plays an important role in stratospheric ozone depletion. The Arctic winter 2009/2010 and 2010/2011 were both quite unique. The Arctic winter 2010/2011 was one of the coldest winters on record leading to the strongest depletion of ozone measured in the Arctic. Though the Arctic winter 2009/2010 was rather warm in the climatological sense it was distinguished by an exceptionally cold stratosphere from mid December 2009 to mid January 2010 leading to prolonged PSC formation and significant denitrification. Model simulations and space-borne observations are used to investigate PSC formation and denitrification during these two winters. Model simulations were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) and compared to observations by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Satellite (CALIPSO) and the Odin Sub-Millimetre Radiometer (Odin/SMR) as well as with observations from the Microwave Limb Sounder on Aura (Aura/MLS). While PSCs were present during the Arctic winter 2010/2011 over nearly four months, from mid December to end of March, they were not as persistent as the ones that occurred during the shorter (one month) cold period during the Arctic winter 2009/2010. Although the PSC season during the Arctic winter 2009/2010 was much shorter than in 2010/2011, denitrification during the Arctic winter 2009/2010 was similar in magnitude than during 2010/2011.

  9. Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Mayer, Erwin; Loerting, Thomas

    2010-03-01

    Polar stratospheric clouds (PSCs) are extremely efficient at catalysing the transformation of photostable chlorine reservoirs into photolabile species, which are actively involved in springtime ozone-depletion events. Why PSCs are such efficient catalysts, however, is not well understood. Here, we investigate the freezing behaviour of ternary HNO₃-H₂SO₄-H₂O droplets of micrometric size, which form type II PSC ice particles. We show that on freezing, a phase separation into pure ice and a residual solution coating occurs; this coating does not freeze but transforms into glass below ∼150 K. We find that the coating, which is thicker around young ice crystals, can still be approximately 30 nm around older ice crystals of diameter about 10 µm. These results affect our understanding of PSC microphysics and chemistry and suggest that chlorine-activation reactions are better studied on supercooled HNO₃-H₂SO₄-H₂O solutions rather than on a pure ice surface.

  10. Laboratory studies of nitric acid hydrate and sulfuric acid aerosols: Implications for polar stratospheric cloud formation

    SciTech Connect

    Miller, R.E.

    1995-12-31

    The optical properties of atmospheric aerosols are important in a number of modeling and remote sensing applications. We have devised a new approach for determining the frequency dependent real and imaginary refractive indices directly from the observation of the infrared spectra of the aerosols. We have applied this method to the study of water ice aerosols and comparisons with previous measurements confirm that the method is sound and accurate. The temperature dependence of the refractive index of ice has also been measured over the range 130 K to 210 K, which includes the region of interest for the study of Polar Stratospheric Clouds (PSC`s). The method has also been applied to the study of nitric acid dehydrate (NAD) and nitric acid trihydrate (NAT). Sulfuric acid/nitric acid/water ternary systems are also being studied with the aim of determining the nature of the phases formed and the associated freezing points as a function of the concentrations of the acids.

  11. The ozone hole - The role of polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.

    1988-01-01

    The role of polar stratospheric clouds in the formation of the Antarctic ozone hole is considered. Several researchers have suggested that the decrease in ozone over Antarctica is related to the polar stratospheric clouds (PSCs) which had been observed in the antarctic winter stratosphere. Some of the pertinent characteristics of polar stratospheric clouds are discussed, and it is shown how these clouds may participate in the ozone destruction process. The satellite data for PSCs is analyzed, and statistical information regarding the number and maximum extinctions of these clouds is presented. Evidence that the polar stratospheric clouds are composed of frozen nitric acid is considered. It is suggested that the evaporation of the clouds, in late August and September, will release HOCl and HNO3 to the environment. This could be followed by the photodissociation of HOCl to OH and Cl, which would very effectively destroy ozone. However, the ozone destruction mechanism could be halted when enough of the evaporated nitric acid is photolized.

  12. Titan's Tropopause Temperatures from CIRS: Implications for Stratospheric Methane Cloud Formation

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Achterberg, R. K.; Barnes, J. W.; Flasar, F. M.

    2012-01-01

    Analysis of Cassini Composite Infrared Spectrometer (CIRS) far-IR spectra enable the construction of Titan's temperature profile in the altitude region containing the tropopause. Whereas the methane V4 band at 1306/cm (7.7 microns) is the primary opacity source for deducing thermal structure between 100 km and 500 km, N2-N2 collision-induced absorption between 70 and 140/cm (143 microns and 71 microns) is utilized to determine temperatures at Titan's tropopause. Additional opacity due to aerosol and nitrile ices must also be taken into account in this part of the far-IR spectral region. The spectral characteristics of these particulate opacities have been deduced from CIRS limb data at 58degS, 15degS, 15degN, and 85degN. Empirically, the spectral shapes of these opacities appear to be independent of both latitude and altitude below 300 km (Anderson and Samuelson, 2011, Icarus 212, 762-778), justifying the extension of these spectral properties to all latitudes. We find that Titan's tropopause temperature is cooler than the HAS! value of 70.5K by approx. 6K. This leads to the possibility that subsidence at high northern latitudes can cause methane condensation in the winter polar stratosphere. A search for methane clouds in this region is in progress.

  13. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds.

    PubMed

    Zondlo, M A; Hudson, P K; Prenni, A J; Tolbert, M A

    2000-01-01

    Ice particles found within polar stratospheric clouds (PSCs) and upper tropospheric cirrus clouds can dramatically impact the chemistry and climate of the Earth's atmosphere. The formation of PSCs and the subsequent chemical reactions that occur on their surfaces are key components of the massive ozone hole observed each spring over Antarctica. Cirrus clouds also provide surfaces for heterogeneous reactions and significantly modify the Earth's climate by changing the visible and infrared radiation fluxes. Although the role of ice particles in climate and chemistry is well recognized, the exact mechanisms of cloud formation are still unknown, and thus it is difficult to predict how anthropogenic activities will change cloud abundances in the future. This article focuses on the nucleation, chemistry, and microphysical properties of ice particles composing PSCs and cirrus clouds. A general overview of the current state of research is presented along with some unresolved issues facing scientists in the future.

  14. Large-scale variations in ozone and polar stratospheric clouds measured with airborne lidar during formation of the 1987 ozone hole over Antarctica

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Poole, Lamont R.; Mccormick, M. Patrick; Ismail, Syed; Butler, Carolyn F.; Kooi, Susan A.; Szedlmayer, Margaret M.; Jones, Rod; Krueger, Arlin J.; Tuck, Adrian

    1988-01-01

    A joint field experiment between NASA and NOAA was conducted during August to September 1987 to obtain in situ and remote measurements of key gases and aerosols from aircraft platforms during the formation of the ozone (O3) hole over Antarctica. The ER-2 (advanced U-2) and DC-8 aircraft from the NASA Ames Research Center were used in this field experiment. The NASA Langley Research Center's airborne differential absorption lidar (DIAL) system was operated from the DC-8 to obtain profiles of O3 and polar stratospheric clouds in the lower stratosphere during long-range flights over Antarctica from August 28 to September 29, 1987. The airborne DIAL system was configured to transmit simultaneously four laser wavelengths (301, 311, 622, and 1064 nm) above the DC-8 for DIAL measurements of O3 profiles between 11 to 20 km ASL (geometric altitude above sea level) and multiple wavelength aerosol backscatter measurements between 11 to 24 km ASL. A total of 13 DC-8 flights were made over Antarctica with 2 flights reaching the South Pole. Polar stratospheric clouds (PSC's) were detected in multiple thin layers in the 11 to 21 km ASL altitude range with each layer having a typical thickness of less than 1 km. Two types of PSC's were found based on aerosol backscattering ratios: predominantly water ice clouds (type 2) and clouds with scattering characteristics consistent with binary solid nitric acid/water clouds (type 1). Large-scale cross sections of O3 distributions were obtained. The data provides additional information about a potentially important transport mechanism that may influence the O3 budget inside the vortex. There is also some evidence that strong low pressure systems in the troposphere are associated with regions of lower stratospheric O3. This paper discusses the spatial and temporal variations of O3 inside and outside the polar vortex region during the development of the O3 hole and relates these data to other measurements obtained during this field experiment.

  15. Clouds and water vapor in the Northern Hemisphere summertime stratosphere

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.

    2009-02-01

    Cloud top observations from the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) instrument and water vapor measured by the Microwave Limb Sounder (MLS) are used to study the occurrence of clouds in the Northern Hemisphere (NH) summertime lower stratosphere (20°-70°N) and their relation to water vapor. At low latitudes, clouds in the stratosphere tend to occur in regions of intense convection, while at high latitudes, there is little longitudinal preference for the clouds. In general, the 0.1% cloud top occurrence contour tends to be found ˜3 km or 40-50 K of potential temperature above the tropopause. At midlatitudes, the occurrence of clouds above the tropopause is associated with enhanced water vapor, suggesting that clouds are associated with moistening events in the lower stratosphere. In the subtropics, the occurrence of clouds is associated with reduced water vapor, suggesting that clouds are associated with dehydration events. Our results are consistent with hydration or dehydration being determined by the local relative humidity. Low relative humidity allows significant evaporation of lofted cloud ice, which is thought to be the key to moistening events. High relative humidity inhibits evaporation of lofted cloud ice and encourages in situ formation of clouds that are thought to play a role in dehydration.

  16. Polar stratospheric clouds and ozone depletion

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  17. How do Polar Stratospheric Clouds Form?

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Gandrud, Bruce; Baumgardner, Darrel; Herman, Robert; Gore, Warren J. (Technical Monitor)

    2000-01-01

    SOLVE measurements have been compared with results from a microphysical model to understand the composition and formation of the polar stratospheric clouds (PSCs) observed during SOLVE. Evidence that the majority of the particles remain liquid throughout the winter will be presented. However, a small fraction of the particles do freeze, and the presence of these frozen particles can not be explained by current theories, in which the only freezing mechanism is homogeneous freezing to ice below the ice frost point. Alternative formation mechanisms, in particular homogeneous freezing above the ice frost point and heterogeneous freezing, have been explored using the microphysical model. Both nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) have been considered as possible compositions for the solid-phase nitric acid aerosols. Comparisons between the model results and the SOLVE measurements will be used to constrain the possible formation mechanisms. Other effects of these frozen particles will also be discussed, in particular denitrification.

  18. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability

  19. Proceedings of a Workshop on Polar Stratospheric Clouds: Their Role in Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Hamill, P. (Editor); Mcmaster, L. R. (Editor)

    1984-01-01

    The potential role of polar stratospheric clouds in atmospheric processes was assessed. The observations of polar stratospheric clouds with the Nimbus 7 SAM II satellite experiment were reviewed and a preliminary analysis of their formation, impact on other remote sensing experiments, and potential impact on climate were presented. The potential effect of polar stratospheric clouds on climate, radiation balance, atmospheric dynamics, stratospheric chemistry and water vapor budget, and cloud microphysics was assessed. Conclusions and recommendations, a synopsis of materials and complementary material to support those conclusions and recommendations are presented.

  20. Polar stratospheric clouds inferred from satellite data

    NASA Technical Reports Server (NTRS)

    Austin, J.; Jones, R. L.; Remsberg, E. E.; Tuck, A. F.

    1986-01-01

    Anomalously high radiances from the ozone channel of the Limb Infrared Monitor of the Stratosphere (LIMS) sounding instrument have been observed in the Northern Hemisphere winter lower stratosphere. Such events, thought to be due to polar stratospheric clouds (PSCs), are examined further by computing relative humidities using Stratospheric Sounding Unit temperatures and water vapor measurements from the LIMS Map Archive Tape analyses. Regions identified as PSCs are found to correspond closely to regions of high humidity. While instances of saturation were found, the average humidity at the centers of 39 PSCs was calculated to be 58 percent. Possible reasons for this apparent discrepancy are discussed. Applying a similar approach to the Southern Hemisphere, in 1979, virtually no PSCs are found in the vortex after September 10 at 20 km. This result has important implications for a number of proposed explanations for the Antarctic ozone hole.

  1. Laboratory chemistry and stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1989-01-01

    Results are presented from laboratory experiments on the chemistry of ice particles to study the role of HCl and ClONO2 from CFCs in stratospheric ozone depletion over Antarctica. It is found that gaseous HCl is scavenged with high efficiency by the ice and the gas phase chlorine nitrate may react with the HCL-containing ice to produce Cl2. Also, consideration is given ot the behavior of solid nitric acid trihydrate and sulfuric acid aerosols.

  2. Observational Evidence Against Mountain-Wave Generation of Ice Nuclei as a Prerequisite for the Formation of Three Solid Nitric Acid Polar Stratospheric Clouds Observed in the Arctic in Early December 1999

    NASA Technical Reports Server (NTRS)

    Pagan, Kathy L.; Tabazadeh, Azadeh; Drdla, Katja; Hervig, Mark E.; Eckermann, Stephen D.; Browell, Edward V.; Legg, Marion J.; Foschi, Patricia G.

    2004-01-01

    A number of recently published papers suggest that mountain-wave activity in the stratosphere, producing ice particles when temperatures drop below the ice frost point, may be the primary source of large NAT particles. In this paper we use measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by stratospheric mountain-wave activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid nitric acid (Type Ia or NAT) polar stratospheric clouds (PSCs). By using back trajectories and superimposing the position maps on the AVHRR cloud imagery products, we show that these observed NAT clouds could not have originated at locations of high-amplitude mountain-wave activity. We also show that mountain-wave PSC climatology data and Mountain Wave Forecast Model 2.0 (MWFM-2) raw hemispheric ray and grid box averaged hemispheric wave temperature amplitude hindcast data from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain waves cannot explain how at least three large scale NAT clouds were formed in the stratosphere in early December 1999.

  3. Composition of Polar Stratospheric Clouds from Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tolbert, M. A.; Anthony, S. E.; Disselkamp, R.; Toon, O. B.; Condon, Estelle P. (Technical Monitor)

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO3/H2O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H2SO4/HNO3/H2O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO3/H2O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric clouds formation.

  4. Polar stratospheric clouds and the Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Poole, Lamont R.; Mccormick, M. Patrick

    1988-01-01

    A theoretical model for the formation and growth of polar stratospheric clouds (PSCs) has been developed. Results for the calculated temperature dependence of optical backscattering are found to agree well with values obtained during two Arctic airborne-lidar experiments. Results for PSC formation in Antarctica show that at the 70-mbar level, about 80 percent of the HNO3 and about 30 percent of the H2O vapor available may be sequestered in relatively large PSC particles at a temperature near 189 K.

  5. Monitoring of the Polar Stratospheric Clouds formation and evolution in Antarctica in August 2007 during IPY with the MATCH method applied to lidar data

    NASA Astrophysics Data System (ADS)

    Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels

    2010-05-01

    The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving

  6. Nitric acid trihydrate (NAT) in polar stratospheric clouds.

    PubMed

    Voigt, C; Schreiner, J; Kohlmann, A; Zink, P; Mauersberger, K; Larsen, N; Deshler, T; Kröger, C; Rosen, J; Adriani, A; Cairo, F; Di Donfrancesco, G; Viterbini, M; Ovarlez, J; Ovarlez, H; David, C; Dörnbrack, A

    2000-12-01

    A comprehensive investigation of polar stratospheric clouds was performed on 25 January 2000 with instruments onboard a balloon gondola flown from Kiruna, Sweden. Cloud layers were repeatedly encountered at altitudes between 20 and 24 kilometers over a wide range of atmospheric temperatures (185 to 197 kelvin). Particle composition analysis showed that a large fraction of the cloud layers was composed of nitric acid trihydrate (NAT) particles, containing water and nitric acid at a molar ratio of 3:1; this confirmed that these long-sought solid crystals exist well above ice formation temperatures. The presence of NAT particles enhances the potential for chlorine activation with subsequent ozone destruction in polar regions, particularly in early and late winter.

  7. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  8. Stratospheric ion and aerosol chemistry and possible links with cirrus cloud microphysics - A critical assessment

    NASA Technical Reports Server (NTRS)

    Mohnen, Volker A.

    1990-01-01

    Aspects of stratospheric ion chemistry and physics are assessed as they relate to aerosol formation and the transport of aerosols to upper tropospheric regions to create conditions favorable for cirrus cloud formation. It is found that ion-induced nucleation and other known phase transitions involving ions and sulfuric acid vapor are probably not efficient processes for stratospheric aerosol formation, and cannot compete with condensation of sulfuric acid on preexisting particles of volcanic or meteoritic origin which are larger than about 0.15 micron in radius. Thus, galactic cosmic rays cannot have a significant impact on stratospheric aerosol population. Changes in the stratospheric aerosol burden due to volcanos are up to two orders of magnitude larger than changes in ion densities. Thus, volcanic activity may modulate the radiative properties of cirrus clouds.

  9. Quasi-Liquid Layer Formation on Ice under Stratospheric Conditions

    NASA Technical Reports Server (NTRS)

    McNeill, V. Faye; Loerting, Thomas; Trout, Bernhardt L.; Molina, Luisa T.; Molina, Mario J.

    2004-01-01

    Characterization of the interaction of hydrogen chloride (HCl) with ice is essential to understanding at a molecular level the processes responsible for ozone depletion involving polar stratospheric cloud (PSC) particles. To explain the catalytic role PSC particle surfaces play during chlorine activation, we proposed previously that HCl induces the formation of a disordered region on the ice surface, a quasi-liquid layer (QLL), at stratospheric conditions. The QLL is known to exist in pure ice crystals at temperatures near the melting point, but its existence at stratospheric temperatures (-85 C to -70 C) had not been reported yet. We studied the interaction of HCl with ice under stratospheric conditions using the complementary approach of a) ellipsometry to directly monitor the ice surface, using chemical ionization mass spectrometry (CIMS) to monitor the gas phase species present in the ellipsometry experiments, and b) flow-tube experiments with CIMS detection. Here we show that trace amounts of HCl induce QLL formation at stratospheric temperatures, and that the QLL enhances the chlorine-activation reaction of HCl with chlorine nitrate (ClONO2), and also enhances acetic acid (CH3COOH) adsorption.

  10. Microphysics and heterogeneous chemistry of polar stratospheric clouds.

    PubMed

    Peter, T

    1997-01-01

    Liquid and solid particles in polar stratospheric clouds are of central importance for the depletion of stratospheric ozone. Surface-catalyzed reactions on these particles, and diffusion-controlled processes in the bulk of the particles, convert halogens, which derive from compounds of mainly anthropogenic origin, from relatively inert reservoir species into forms that efficiently destroy ozone. The microphysics of these particles under cold stratospheric conditions is still uncertain in many respects, in particular concerning phase transitions such as freezing nucleation and deposition nucleation. Furthermore, there are indications that the rates of key heterogeneous reactions have not yet been established with sufficient accuracy to enable a reliable diagnosis of observed ozone losses by means of global models. The present paper reviews the current (late 1996) knowledge of the physico-chemistry of polar stratospheric clouds and evaluates the remaining uncertainties with respect to their ozone depletion potential.

  11. Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia

    NASA Astrophysics Data System (ADS)

    DöRnbrack, Andreas; Birner, Thomas; Fix, Andreas; Flentje, Harald; Meister, Alexander; Schmid, Heidi; Browell, Edward V.; Mahoney, Michael J.

    2002-10-01

    At three successive days at the end of January 2000 the Deutsches Zentrum für Luft- und Raumfahrt (DLR) airborne lidar Ozone Lidar Experiment explored mountain-wave-induced polar stratospheric clouds above the Scandinavian mountain ridge. Global analyses and mesoscale modeling are applied to explain their complex internal structure and their day-to-day variability. Depending on the synoptical-scale meteorological conditions, stratospheric temperature anomalies of different amplitude and horizontal extent are generated by the upward propagating mountain waves. Short-term excitation of about 6 hours resulted in localized stratospheric temperature anomalies directly above the mountain ridge as for 25 January 2000. In this case, the elevation of the observed clouds differed not much from the synoptic-scale clouds upstream above the Norwegian Sea. On the other hand, long-lasting flow past the Scandinavian mountain ridge formed huge 400-km horizontally extending stratospheric ice clouds in altitudes as much as 5 km above the elevation of the upstream clouds just 1 day later. Inertia gravity waves with horizontal wavelengths of about 350 km are responsible for their formation. For the first time a predicted temperature minimum far downstream of the mountains could be proofed by the observation of an isolated stratospheric ice cloud above Finland. The observed particles are classified in terms of their measured optical properties such as backscatter ratio and depolarization. In all cases, mountain waves generated ice clouds. In contrast to the nitric acid trihydrate tail of the ice cloud on 25 January the same classification results in a tail of liquid supercooled ternary solutions droplets 1 day later. The particle structure downstream of the mountains is very complex and needs detailed microphyical modeling and interpretation.

  12. Effects of a polar stratosphere cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.; Jackman, Charles H.

    1994-01-01

    A parameterization of Type 1 and 2 polar stratospheric cloud (PSC) formation is presented which is appropriate for use in two-dimensional (2-D) photochemical models of the stratosphere. The calculations of PSC frequency of occurrence and surface area density uses climatological temperature probability distributions obtained from National Meteorological Center data to avoid using zonal mean temperatures, which are not good predictors of PSC behavior. The parameterization does not attempt to model the microphysics of PSCs. The parameterization predicts changes in PSC formation and heterogeneous processing due to perturbations of stratospheric trace constituents. It is therefore useful in assessing the potential effects of a fleet of stratospheric aircraft (high speed civil transports, or HSCTs) on stratospheric composition. the model calculated frequency of PSC occurrence agrees well with a climatology based on stratospheric aerosol measurement (SAM) 2 observations. PSCs are predicted to occur in the tropics. Their vertical range is narrow, however, and their impact on model O3 fields is small. When PSC and sulfate aerosol heterogeneous processes are included in the model calculations, the O3 change for 1980 - 1990 is in substantially better agreement with the total ozone mapping spectrometer (TOMS)-derived O3 trend than otherwise. The overall changes in model O3 response to standard HSCT perturbation scenarios produced by the parameterization are small and tend to decrease the model sensitivity to the HSCT perturbation. However, in the southern hemisphere spring a significant increase in O3 sensitivity to HSCT perturbations is found. At this location and time, increased PSC formation leads to increased levels of active chlorine, which produce the O3 decreases.

  13. Polar stratospheric clouds observed by lidar at McMurdo Station during the 1993 winter

    SciTech Connect

    Adriani, A.; Gobbi, G.P.; Donfrancesco, G.D.

    1994-12-31

    Since 1990, a lidar system has been operating at McMurdo Station (78{degrees}S 167{degrees}E) during the local spring. In 1993, it performed measurements between 1 March and 10 October. The lidar can monitor the presence of clouds by measuring the light backscattered from the atmosphere. After system calibration, the received signal is compared with the one expected from an atmosphere not containing particles. On such a basis, a parameter called backscattering ratio, R, is calculated. When particles are not present R is 1. Any value larger than 1 is related to the presence of particles. Lidar can be used to monitor clouds in the lower stratosphere (polar stratospheric clouds - PSCs- or volcanic clouds). PSCs have an important role in the heterogeneous chemistry of the polar stratosphere, and their presence is strictly linked with the `ozone hole`. During the 1993 winter and spring, the antarctic stratosphere still presented a measurable amount of volcanic aerosol from the Mount Pinatubo eruption. The volcanic aerosols facilitated the formation of PSCs observed during the 1993 winter because they need condensation nuclei to form. 3 refs., 2 figs.

  14. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Weigel, Ralf; Kandler, Konrad; Günther, Gebhard; Molleker, Sergej; Grooß, Jens-Uwe; Vogel, Bärbel; Weinbruch, Stephan; Borrmann, Stephan

    2016-07-01

    Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate / carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ˜ 5 µm) taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  15. Observations of Antarctic Polar Stratospheric Clouds by Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Fromm, Michael; Spinhirne, James

    2005-01-01

    Polar Stratospheric Clouds (PSCs) frequently occur in the polar regions during winter and are important because they play a role in the destruction of stratospheric ozone. During late September and early October 2003, GLAS frequently observed PSCs over western Antarctica. At the peak of this activity on September 29 and 30 we investigate the vertical structure and extent, horizontal coverage and backscatter characteristics of the PSCs using the GLAS data. The PSCs were found to cover an area approximately 10 to 15 % of the size of Antarctica in a region where enhanced PSC frequency has been noted by previous PSC climatology studies. The area of PSC formation was found to coincide with the coldest temperatures in the lower stratosphere. In addition, extensive cloudiness was seen within the troposphere below the PSCs indicating that tropospheric disturbances might have played a role in their formation.

  16. Mixed-phased particles in polar stratospheric ice clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, Anatoli; Molina, Mario J.; Loerting, Thomas

    2010-05-01

    Keywords: polar stratospheric clouds (PSCs), ozone depletion, differential scanning calorimeter. The rate of chlorine activation reactions, which lead to ozone depletion in the winter/spring polar stratosphere (Molina, 1994), depends on the phase state of the surface of polar stratospheric cloud (PSC) ice crystals (McNeil et al., 2006). PSCs are thought to consist of solid ice and NAT (nitric acid trihydrate, HNO3× 3H2O) particles and supercooled HNO3/H2SO4/H2O droplets. The corresponding PSCs are called Type II, Ia, and Ib PSCs, respectively (Zondlo et al., 1998). Type II PSCs are formed in the Antarctic region below the ice frost point of 189 K by homogeneous freezing of HNO3/H2SO4/H2O droplets (Chang et al., 1999) with the excess of HNO3. The PSC ice crystals are thought to be solid. However, the fate of H+, NO3-, SO42- ions during freezing was not investigated. Our differential scanning calorimetry (DSC) studies of freezing emulsified HNO3/H2SO4/H2O droplets of sizes and compositions representative of the polar stratosphere demonstrate that during the freezing of the droplets, H+, NO3-, SO42- are expelled from the ice lattice. The expelled ions form a residual solution around the formed ice crystals. The residual solution does not freeze but transforms to glassy state at ~150 K (Bogdan et al., 2010). By contrast to glass-formation in these nitric-acid rich ternary mixtures the residual solution freezes in the case of sulphuric-acid rich ternary mixtures (Bogdan and Molina, 2009). For example, we can consider the phase separation into ice and a residual solution during the freezing of 23/3 wt% HNO3/H2SO4/H2O droplets. On cooling, ice is formed at ~189 K. This is inferred from the fact that the corresponding melting peak at ~248 K exactly matches the melting point of ice in the phase diagram of HNO3/H2SO4/H2O containing 3 wt % H2SO4. After the ice has formed, the glass transition occurs at Tg ≈ 150 K. The appearance of the glass transition indicates that the

  17. Spectral Signatures of Polar Stratospheric Clouds and Sulfate Aerosol.

    NASA Astrophysics Data System (ADS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-10-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm1 (10.8, 8.0, and 6.2 m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  18. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  19. Researchers Focus on Fire Clouds That Reach to the Stratosphere

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-08-01

    Volcanic eruptions are not the only violent events that can inject smoke-colored and cauliflower-textured clouds into the stratosphere. Pyrocumulonimbus (pyroCB) storms can, too. These recently discovered phenomena are storms caused or aided by fire; they have many characteristics similar to thunderstorms, including lightning, hail, and extreme vertical height through the troposphere and into the lower stratosphere. Common wisdom had held that “the only event that can explosively pollute the stratosphere is a volcanic eruption,” Michael Fromm, a meteorologist with the Naval Research Laboratory in Washington, D. C., said at a 9 August press briefing at the 2010 Meeting of the Americas in Foz do Iguaçu, Brazil. “Now we know that pyroCBs can do a version of this, thanks to the heat from fire.”

  20. The polar stratospheric cloud event of January 24. II - Photochemistry

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. S.; Solomon, S.; Poole, L. R.; Brune, W. H.

    1990-01-01

    During the 1988/89 Airborne Arctic Stratospheric Expedition (AASE), observations of the chemical composition, aerosol characteristics and atmospheric state were obtained from two aircraft, a NASA ER-2 and a DC-8. This paper presents a diagnosis of observations obtained using the ER-2 on January 24, 1989, using a Lagrangian coupled microphysical-photochemical model. The high chlorine monoxide mixing ratios observed from the ER-2 on the afternoon of January 24, 1989 are interpreted as a result of in situ heterogeneous release of reactive chlorine from the reservoirs HCl and CIONO2 on type-1 polar stratospheric cloud particles observed to be present at that time. This essential element in theories of polar ozone depletion has never before been observed directly in the stratosphere.

  1. Mesospheric cloud formations

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.

    1980-01-01

    Formation of mesospheric clouds as a result of deposition of large amounts of H2O by the heavy lift launch vehicle (HLLV) of the solar power satellite system is discussed. The conditions which must be met in order to form and maintain clouds near the mesopause are described. The frequency and magnitude of H2O injections from the HLLV rocket exhaust are considered.

  2. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  3. Cirrus and Polar Stratospheric Cloud Studies using CLAES Data

    NASA Technical Reports Server (NTRS)

    Mergenthaler, John L.; Douglass, A. (Technical Monitor)

    2001-01-01

    We've concluded a 3 year (Period of Performance- January 21, 1998 to February 28, 2001) study of cirrus and polar stratospheric clouds using CLAES (Cryogenic Limb Array Etalon Spectrometer) data. We have described the progress of this study in monthly reports, UARS (Upper Atmosphere Research Satellite) science team meetings, American Geophysical Society Meetings, refereed publications and collaborative publications. Work undertaken includes the establishment of CLAES cloud detection criteria, the refinement of CLAES temperature retrieval techniques, compare the findings of CLAES with those of other instruments, and present findings to the larger community. This report describes the progress made in these areas.

  4. Clouds, hazes, and the stratospheric methane abundance in Neptune.

    PubMed

    Baines, K H; Hammel, H B

    1994-05-01

    Analysis of high-spatial-resolution (approximately 0.8 arcsec) methane band and continuum imagery of Neptune's relatively homogeneous Equatorial Region yields significant constraints on (1) the stratospheric gaseous methane mixing ratio (fCH4,s), (2) the column abundances and optical properties of stratospheric and tropospheric hydrocarbon hazes, and (3) the wavelength-dependent single-scattering albedo of the 3-bar opaque cloud. From the center-to-limb behavior of the 7270-angstroms and 8900-angstrom sCH4 bands, the stratospheric methane mixing ratio is limited to fCH4,s < 1.7 x 10(-3), with a nominal value of fCH4,s = 3.5 x 10(-4), one to two orders of magnitude less than pre-Voyager estimates, but in agreement with a number of recent ultraviolet and thermal infrared measurements, and largely in agreement with the tropopause mixing ratio implied by Voyager temperature measurements. Upper limits to the stratospheric haze mass column abundance and 6190-angstroms and 8900-angstroms haze opacities are 0.61 microgram cm-2 and 0.075 and 0.042, respectively, with nominal values of 0.20 microgram cm-2 and 0.025 and 0.014 for the 0.2-micrometer radius particles preferred by the recent Voyager PPS analysis of Pryor et al. (1992, Icarus 99, 302-316). The tropospheric CH4 haze opacities are comparable to that found in the stratosphere, upper limits of 0.104 and 0.065 at 6190 angstroms and 8900 angstroms, respectively, with nominal values of 0.085 and 0.058. This indicates a column abundance less than 11.0 micrograms cm-2, corresponding to the methane gas content within a well-mixed 3% methane tropospheric layer only 0.1 cm thick near the 1.5-bar CH4 condensation level. Constraints on the single-scattering albedos of these hazes include (1) for the stratospheric component, 6190-angstroms and 8900-angstroms imaginary indices of refraction less than 0.047 and 0.099, respectively, with 0.000 (conservative scattering) being the nominal value at both wavelengths, and (2) CH4 haze

  5. Lidar observations of polar stratospheric clouds at Andoya, Norway, in January 1992

    SciTech Connect

    Schaefer, H.J.; Scheuch, P.; Langer, M.; Fricke, K.H.; Zahn, U. von ); Knudsen, B.M. )

    1994-06-22

    This paper reports on lidar measurements of polar stratospheric clouds above Andoya, Norway (69[degrees]N) during January 1992. On one day the cloud seemed to be just forming. One two days the clouds showed characteristics of type 1a clouds. The fourth observation showed the cloud formed within the altitude band where significant aerosol products from the Pinatubo volcanic eruption were present.

  6. Freezing temperatures of H2SO4/HNO3/H2O mixtures: Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Song, Naihui

    1994-01-01

    The freezing temperatures of H2SO4/HNO3/H2O mixtures were systematically documented. Nitric acid was found to affect freezing significantly. Measurements show that nitric acid can cause substantial supercooling over a broad composition range. However, some ternary compositions, like to those in polar stratospheric clouds (PSCs), have high freezing temperatures. The freezing of PSC particles could be controlled by the temperature and vapor pressure of both nitric acid and water in a non-linear way. Formation of polar stratospheric clouds may be forecasted on the basic of conditions of temperature and vapor contents of water and nitric acid.

  7. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.

  8. Measurements in polar stratospheric clouds over Antarctica in September 1989

    NASA Technical Reports Server (NTRS)

    Deshler, Terry

    1991-01-01

    The results of six balloon flights at McMurdo Station, Antarctica, under varying temperature conditions, are used in a study of polar stratospheric clouds during Sept. 1989. A particle counter, with size resolution in the 0.5 micron radius region, indicates that cloud size distributions are always bimodal. Mode radii ranging from 0.05 to 0.10 microns were observed for the small particle mode, representing the sulfate layer or condensational growth enhancements of it. The data are not inconsistent with the expected increase in size with decreasing temperature of the small particle mode in the sulfate layer owing to deliquescence although this phenomenon is often masked by nitric acid trihydrate (NAT) condensation when temperatures are sufficiently low. Mode radii generally ranged from 1.5 to 3.5 micron for the large particle mode at concentrations 3 to 4 orders of magnitude lower than the small particle mode. The large particle mode, which normally comprises most of the mass, is presumably caused by NAT condensation on larger particles of the sulfate layer and indicates HNO3 mixing ratios of 1 to 5 ppbv for most of the cloud layers observed, suggesting substantial denitrification. On several occasions, distributions were observed with mode radii as high as 7 microns, and correspondingly large inferred mass, indicating water ice clouds in the 12 to 15 km region. On other occasions, absence of such clouds at very low temperatures indicated water vapor mixing ratios of less than 3 ppmv suggesting dehydration. Generally, the inferred HNO3 mixing ratios were higher in the lower stratosphere, suggesting redistribution through particle sedimentation.

  9. Clouds, hazes, and the stratospheric methane abundance in Neptune

    NASA Astrophysics Data System (ADS)

    Baines, Kevin H.; Hammel, Heidi B.

    1994-05-01

    Analysis of high-spatial-resolution (approximately 0.8 arcsec) methane band and continuum imagery of Neptune's relatively homogeneous Equatorial Region yields significant constraints on (1) the stratospheric gaseous methane mixing ratio (fCH4, S), (2) the column abundances and optical properties of stratospheric and tropospheric hydrocarbon hazes, and (3) the wavelength-dependent single-scattering albedo of the 3-bar opaque cloud. From the center-to-limb behavior of the 7270-A and 8900-A CH4 bands, the stratospheric methane mixing ratios is limited to fCH4, S less than 1.7 x 10-3, with a nominal value of fCH4, S = 3.5 x 10-4, one to two orders of magnitude less than pre-Voyager estimates, but in agreement with a number of recent ultraviolet and thermal infrared measurements, and largely in agreement with the tropopause mixing ratio implied by Voyager temperature measurements. Upper limits to the stratospheric haze mass column abundance and 6190-A and 8900-A haze opacities are 0.61 micrograms/sq cm and 0.075 and 0.042, respectively, with nominal values of 0.20 micrograms/sq cm and 0.025 and 0.014 for the 0.2 micrometers radius particles preferred by the recent Voyager PPS analysis of Pryor et al. (1992). The tropospheric CH4 haze opacities are comparable to that found in the stratosphere, i.e., upper limits of 0.104 and 0.065 at 6190 A and 8900 A, respectively, with nominal values of 0.085 and 0.058. This indicates a column abundance less than 11.0 micrograms/sq cm, corresponding to the methane gas content within a well-mixed 3% methane tropospheric layer only 0.1 cm thick near the 1.5-bar CH4 condensation level. Conservative scattering is ruled out for the opaque cloud near 3 bars marking the bottom of the visible atmosphere. Specifically, we find cloud single-scattering albedos of 0.915 +/- 0.006 at 6340 A, 0.775 +/- 0.012 at 7490 A, and 0.803 +/- 0.010 at 8260 A. Global models utilizing a complete global spectrum confirm the red-absorbing character of the 3-bar

  10. Clouds, hazes, and the stratospheric methane abundance in Neptune

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Hammel, Heidi B.

    1994-01-01

    Analysis of high-spatial-resolution (approximately 0.8 arcsec) methane band and continuum imagery of Neptune's relatively homogeneous Equatorial Region yields significant constraints on (1) the stratospheric gaseous methane mixing ratio (f(sub CH4, S)), (2) the column abundances and optical properties of stratospheric and tropospheric hydrocarbon hazes, and (3) the wavelength-dependent single-scattering albedo of the 3-bar opaque cloud. From the center-to-limb behavior of the 7270-A and 8900-A CH4 bands, the stratospheric methane mixing ratios is limited to f(sub CH4, S) less than 1.7 x 10(exp -3), with a nominal value of f(sub CH4, S) = 3.5 x 10(exp -4), one to two orders of magnitude less than pre-Voyager estimates, but in agreement with a number of recent ultraviolet and thermal infrared measurements, and largely in agreement with the tropopause mixing ratio implied by Voyager temperature measurements. Upper limits to the stratospheric haze mass column abundance and 6190-A and 8900-A haze opacities are 0.61 micrograms/sq cm and 0.075 and 0.042, respectively, with nominal values of 0.20 micrograms/sq cm and 0.025 and 0.014 for the 0.2 micrometers radius particles preferred by the recent Voyager PPS analysis of Pryor et al. (1992). The tropospheric CH4 haze opacities are comparable to that found in the stratosphere, i.e., upper limits of 0.104 and 0.065 at 6190 A and 8900 A, respectively, with nominal values of 0.085 and 0.058. This indicates a column abundance less than 11.0 micrograms/sq cm, corresponding to the methane gas content within a well-mixed 3% methane tropospheric layer only 0.1 cm thick near the 1.5-bar CH4 condensation level. Conservative scattering is ruled out for the opaque cloud near 3 bars marking the bottom of the visible atmosphere. Specifically, we find cloud single-scattering albedos of 0.915 +/- 0.006 at 6340 A, 0.775 +/- 0.012 at 7490 A, and 0.803 +/- 0.010 at 8260 A. Global models utilizing a complete global spectrum confirm the red

  11. Heterogeneous nucleation of nitric acid trihydrate on clay minerals: relevance to type ia polar stratospheric clouds.

    PubMed

    Hatch, Courtney D; Gough, Raina V; Toon, Owen B; Tolbert, Margaret A

    2008-01-17

    Although critical to atmospheric modeling of stratospheric ozone depletion, selective heterogeneous nuclei that promote the formation of Type Ia polar stratospheric clouds (PSCs) are largely unknown. While mineral particles are known to be good ice nuclei, it is currently not clear whether they are also good nuclei for PSCs. In the present study, a high-vacuum chamber equipped with transmission Fourier transform infrared spectroscopy and a quadrupole mass spectrometer was used to study heterogeneous nucleation of nitric acid trihydrate (NAT) on two clay minerals-Na-montmorillonite and kaolinite-as analogs of atmospheric terrestrial and extraterrestrial minerals. The minerals are first coated with a 3:1 supercooled H2O/HNO3 solution prior to the observed nucleation of crystalline NAT. At 220 K, NAT formation was observed at low SNAT values of 12 and 7 on kaolinite and montmorillonite clays, respectively. These are the lowest SNAT values reported in the literature on any substrate. However, NAT nucleation exhibited significant temperature dependence. At lower temperatures, representative of typical polar stratospheric conditions, much higher supersaturations were required before nucleation was observed. Our results suggest that NAT nucleation on mineral particles, not previously treated with sulfuric acid, may not be an important nucleation platform for Type Ia PSCs under normal polar stratospheric conditions.

  12. Continuous Lidar Monitoring of Polar Stratospheric Clouds at the South Pole

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D

    2009-01-01

    Polar stratospheric clouds (PSC) play a primary role in the formation of annual ozone holes over Antarctica during the austral sunrise. Meridional temperature gradients in the lower stratosphere and upper troposphere, caused by strong radiative cooling, induce a broad dynamic vortex centered near the South Pole that decouples and insulates the winter polar airmass. PSC nucleate and grow as vortex temperatures gradually fall below equilibrium saturation and frost points for ambient sulfate, nitrate, and water vapor concentrations (generally below 197 K). Cloud surfaces promote heterogeneous reactions that convert stable chlorine and bromine-based molecules into photochemically active ones. As spring nears, and the sun reappears and rises, photolysis decomposes these partitioned compounds into individual halogen atoms that react with and catalytically destroy thousands of ozone molecules before they are stochastically neutralized. Despite a generic understanding of the ozone hole paradigm, many key components of the system, such as cloud occurrence, phase, and composition; particle growth mechanisms; and denitrification of the lower stratosphere have yet to be fully resolved. Satellite-based observations have dramatically improved the ability to detect PSC and quantify seasonal polar chemical partitioning. However, coverage directly over the Antarctic plateau is limited by polar-orbiting tracks that rarely exceed 80 degrees S. In December 1999, a NASA Micropulse Lidar Network instrument (MPLNET) was first deployed to the NOAA Earth Systems Research Laboratory (ESRL) Atmospheric Research Observatory at the Amundsen-Scott South Pole Station for continuous cloud and aerosol profiling. MPLNET instruments are eye-safe, capable of full-time autonomous operation, and suitably rugged and compact to withstand long-term remote deployment. With only brief interruptions during the winters of 2001 and 2002, a nearly continuous data archive exists to the present.

  13. Radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1992-01-01

    Results are presented of a study of the radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASE) in which daily 3D Type I nitric acid trihydrate (NAT) and Type II water ice polar stratospheric clouds (PSCs) were generated in the polar regions during AAOE and the AASE aircraft missions. Mission data on particular composition and size, together with NMC-analyzed temperatures, are used. For AAOE, both Type I and Type II clouds were formed for the time period August 23 to September 17, after which only Type I clouds formed. During AASE, while Type I clouds were formed for each day between January 3 and February 10, Type II clouds formed on only two days, January 24 and 31. Mie theory and a radiative transfer model are used to compute the radiative heating rates during the mission periods, for clear and cloudy lower sky cases. Only the Type II water ice clouds have a significant radiative effect, with the Type I NATO PSCs generating a net heating or cooling of 0.1 K/d or less.

  14. Simultaneous Observations fo Polar Stratospheric Clouds and HNO3 over Scandinavia in January, 1992

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Santee, M. L.; Read, W. G.; Grainger, R. G.; Lambert, A.; Mergenthaler, J. L.; Dye, J. E.; Baumbardner, D.; Randel, W. J.; Tabazadeh, A.; Tie, X.; Pan, L.; Figarol, F.; Wu, F.; Brasseur, G. P.

    1996-01-01

    Simultaneous observations of Polar Stratospheric Cloud aerosol extinction and HNO3 mixing ratios over Scandinavia are examined for January 9-10, 1992. Data measured by the Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon, Spectrometer (CLAES), and Improved Stratospheric and Mesospheric Sounder (ISAMA) experiments on the Upper Atmosphere Research Satellite (UARS) are examined at locations adjacent to parcel trajectory positions.

  15. Unique High-Resolution Stratospheric Observations of Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Miller, A.; Araujo, D.; Chapman, D.; Didier, J.; Fritts, D. C.; Jones, G.; Kjellstrand, B.; Limon, M.; Lizancos, A.; Luu, T. V.; Macioce, T.; Tucker, G.; Vinokurov, J.

    2014-12-01

    We present a unique data set consisting of high-resolution optical images of Polar Mesospheric Clouds (PMCs), observed serendipitously from a stratospheric balloon platform in January of 2013. Complex morphological structures in the PMC brightness distribution provide observable consequences of the deposition of energy and momentum by atmospheric gravity waves in the mesosphere and lower thermosphere. This data set represents the highest resolution set of optical images of this phenomenon to date, and therefore provides a unique window into the poorly understood instability and turbulent dynamics on the smallest scales (between roughly a meter and a few km). Through this analysis, morphological features identified in individual images will be compared with those predicted in numerical models in order to identify key dynamical features present in the data on these small scales. Multiple spatially-overlapping sequential images will be analyzed together in order to extract cloud velocities and to measure timescales for feature permanence. These image compilations will also be used to place the observed small-scale features in a broader context by using multiple images to re-construct larger features, as well as to compare to features simultaneously observed on much larger scales by the CIPS instrument flying on the AIM satellite.

  16. CALIPSO Polar Stratospheric Cloud Observations from 2006-2015

    NASA Technical Reports Server (NTRS)

    Pitts, Michael C.; Poole, Lamont R.

    2015-01-01

    Polar stratospheric clouds (PSCs) play a crucial role in the springtime chemical depletion of ozone at high latitudes. PSC particles (primarily supercooled ternary solution, or STS droplets) provide sites for heterogeneous chemical reactions that transform stable chlorine and bromine reservoir species into highly reactive ozone-destructive forms. Furthermore, large nitric acid trihydrate (NAT) PSC particles can irreversibly redistribute odd nitrogen through gravitational sedimentation (a process commonly known as denitrification), which prolongs the ozone depletion process by slowing the reformation of the stable chlorine reservoirs. Spaceborne observations from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite are providing a rich new dataset for studying PSCs. CALIPSO is an excellent platform for studying polar processes with CALIOP acquiring, on average, over 300,000 backscatter profiles daily at latitudes between 55o and 82o in both hemispheres. PSCs are detected in the CALIOP backscatter profiles using a successive horizontal averaging scheme that enables detection of strongly scattering PSCs (e.g., ice) at the finest possible spatial resolution (5 km), while enhancing the detection of very tenuous PSCs (e.g., low number density NAT) at larger spatial scales (up to 135 km). CALIOP PSCs are separated into composition classes (STS; liquid/NAT mixtures; and ice) based on the ensemble 532-nm scattering ratio (the ratio of total-to-molecular backscatter) and 532-nm particulate depolarization ratio (which is sensitive to the presence of non-spherical, i.e. NAT and ice particles). In this paper, we will provide an overview of the CALIOP PSC detection and composition classification algorithm and then examine the vertical and spatial distribution of PSCs in the Arctic and Antarctic on vortex-wide scales for entire PSC seasons over the more than nine-year data

  17. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.

  18. Polar stratospheric cloud measurements by means of depolarization lidar in the Antarctic

    NASA Astrophysics Data System (ADS)

    Stefanutti, L.

    1991-02-01

    POLE (Polar Ozone Lidar Experiment) is a cooperative project between the French and Italian services. It was started with the implementation of a first depolarization backscattering lidar for measurements both of background stratospheric aerosols and Polar Stratospheric Clouds (PSCs). A complex Ozone lidar was also installed which will replace the backscattering system and extend its measurements to tropospheric and stratospheric Ozone and to stratospheric and mesospheric temperatures. This new system allows also the measurement of the backscattered and depolarized signal produced by PSCs and background aerosols. The depolarization technique seemed to be quite efficient in the detection of different types of PSCs.

  19. Polar stratospheric cloud measurements by means of depolarization lidar in the Antarctic

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.

    1991-01-01

    POLE (Polar Ozone Lidar Experiment) is a cooperative project between the French and Italian services. It was started with the implementation of a first depolarization backscattering lidar for measurements both of background stratospheric aerosols and Polar Stratospheric Clouds (PSCs). A complex Ozone lidar was also installed which will replace the backscattering system and extend its measurements to tropospheric and stratospheric Ozone and to stratospheric and mesospheric temperatures. This new system allows also the measurement of the backscattered and depolarized signal produced by PSCs and background aerosols. The depolarization technique seemed to be quite efficient in the detection of different types of PSCs.

  20. Ultraviolet Mars Reveals Cloud Formation

    NASA Video Gallery

    Images from MAVEN's Imaging UltraViolet Spectrograph were used to make this movie of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in fal...

  1. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  2. Microphysical Modelling of Polar Stratospheric Clouds During the 1999-2000 Winter

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Schoeberl, Mark; Rosenfield, Joan; Gore, Warren J. (Technical Monitor)

    2000-01-01

    The evolution of the 1999-2000 Arctic winter has been examined using a microphysical/photochemical model run along diabatic trajectories. A large number of trajectories have been generated, filling the vortex throughout the region of polar stratospheric cloud (PSC) formation, and extending from November until the vortex breakup, in order to provide representative sampling of the evolution of PSCs and their effect on stratospheric chemistry. The 1999-2000 winter was particularly cold, allowing extensive PSC formation. Many trajectories have ten-day periods continuously below the Type I PSC threshold; significant periods of Type II PSCs are also indicated. The model has been used to test the extent and severity of denitrification and dehydration predicted using a range of different microphysical schemes. Scenarios in which freezing only occurs below the ice frost point (causing explicit coupling of denitrification and dehydration) have been tested, as well as scenarios with partial freezing at warmer temperatures (in which denitrification can occur independently of dehydration). The sensitivity to parameters such as aerosol freezing rates and heterogeneous freezing have been explored. Several scenarios cause sufficient denitrification to affect chlorine partitioning, and in turn, model-predicted ozone depletion, demonstrating that an improved understanding of the microphysics responsible for denitrification is necessary for understanding ozone loss rates.

  3. Tropical Stratospheric Cloud climatology from the PATMOS-x dataset - an assessment of convective contributions to stratospheric water

    NASA Astrophysics Data System (ADS)

    Nielsen, J. K.; Heidinger, A. K.; Foster, M. J.

    2012-04-01

    The PATMOS-x level 2b climatology, generated using three decades of AVHRR measurements, contains valuable information about the past global cloud record. We extract climatologies of tropical deep convective clouds from the PATMOS-x data set, based on the 10.30-11.30 micro meter brightness temperature. A comparison of the cross ropopause convective cloud frequency between ISCCP and PATMOS-x shows that PATMOS-x has a greater frequency of occurrence than does the ISCCP, and this enhanced frequency is attributed to greater horizontal resolution (2 km) in the PATMOS-x data. The high resolution makes this dataset suitable for a search for cross tropopause convection, which happens on length scales down to 1 km. We find there have been several changes in deep convective activity over land during the period 1982 to 2009. We explore specifically the epoch of the HALOE satellite, and find a correlation between land deep convective activity and anomalies in the HALOE stratospheric water retrievals. A simple model is able to predict stratospheric water vapor concentrations highly correlated to that observed using only frequency of deep convection. From this we conclude that deep convection over land contributes to moistening of the lowest tropical stratosphere on seasonal, annual and decadal timescales[1]. [1] GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L18801, 5 PP., 2011 doi:10.1029/2011GL049429

  4. The role of polar stratospheric clouds on total ozone minihole events

    NASA Technical Reports Server (NTRS)

    Sabutis, Joseph L.

    1989-01-01

    Using seven years of data from tha SAM 2 (Stratospheric Aerosol Measurement 2) and TOMS (Total Ozone Mapping Spectrometer) instruments, along with 70 mbar temperatures extracted from an NMC analysis, the effect of the austral spring polar stratospheric clouds (PSC) on the formation of total ozone miniholes is investigated. A total ozone minihole event is designated as the rapid decrease of more than 20 DU of total ozone over a time period of a day and a spatial extent of approximately 1000 by 1000 km. The severe decrease of total ozone during these minihole events could be explained in part by PSC being formed at altitudes of 10 to 24 km and preventing scattered UV radiation from ozone below the cloud from reaching the TOMS instrument. A result of the cloud's opaqueness is that the total ozone retrieval from TOMS data would underestimate the ozone column in the vicinity of the PSC. The approach to investigate the effect of PSC on total ozone was to use SAM 2 aerosol extinction values in conjunction with NMC stratospheric temperatures to determine if PSC are present during total ozone minihole events occurring during August and September, 1979 to 1986. The minihole events during these seven years were divided into two types: type 1, where the minihole region of 24 hour darkness from regions exposed to sunlight, and type 2, where the minihole occurred 5 to 10 degrees north of the terminator. The presence of PSC in a given region was ascertained by a maximum aerosol extinction greater than .006/km occurring with a temperature less than 189 K. It is found that PSC are consistently present with type 2 minihole events. This is contrasted with PSC rarely occurring in the same vicinity of type 2 miniholes. Also observed of that type 1 minihole events have minimum total ozone values which are on the average 3 to 10 DU smaller than type 2 miniholes. It can be concluded that care must be taken when trying to deduce a dynamical explanation of minihole events near the polar

  5. A Climatology of Polar Stratospheric Cloud Types by MIPAS-Envisat

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Griessbach, Sabine; Orr, Andrew; Höpfner, Michael; Müller, Rolf

    2015-04-01

    For Chemistry Climate Models (CCM) it is still a challenging task to properly represent the evolution of the polar vortices over the entire winter season. The models usually do not include comprehensive microphysical modules to evolve the formation of different types of polar stratospheric clouds (PSC) over the winter. Consequently, predictions on the development and recovery of the future ozone hole have relatively large uncertainties. A climatological record of hemispheric measurement of PSC types could help to better validate and improve the PSC schemes in CCMs. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument onboard the ESA Envisat satellite operated from July 2002 to April 2012. The infra-red limb emission measurements compile a unique dataset of day and night measurements of polar stratospheric clouds up to the poles. From the spectral measurements in the 4.15-14.6 microns range it is possible to select a number of atmospheric window regions and spectral signatures to classify PSC cloud types like nitric acid hydrates, sulfuric ternary solution droplets, and ice particles. The cloud detection sensitivity is similar to space borne lidars, but MIPAS adds complementary information due to its different measurement technique (limb instead of nadir) and wavelength region. Here we will describe a new classification method for PSCs based on the combination of multiple brightness temperature differences (BTD) and colour ratios. Probability density functions (PDF) of the MIPAS measurements in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions enable the definition of regions attributed to specific or mixed types clouds. Applying a naive bias classifier for independent criteria to all defined classes in four 2D PDF distributions, it is possible to assign the most likely PSC type to any measured cloud spectrum. Statistical Monte Carlo test have been applied to quantify

  6. A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture.

    PubMed

    Sherwood, Steven

    2002-02-15

    A likely causal chain is established here that connects humidity in the stratosphere, relative humidity near the tropical tropopause, ice crystal size in towering cumulus clouds, and aerosols associated with tropical biomass burning. The connections are revealed in satellite-observed fluctuations of each quantity on monthly to yearly time scales. More aerosols lead to smaller ice crystals and more water vapor entering the stratosphere. The connections are consistent with physical reasoning, probably hold on longer time scales, and may help to explain why stratospheric water vapor appears to have been increasing for the past five decades. PMID:11847336

  7. A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture.

    PubMed

    Sherwood, Steven

    2002-02-15

    A likely causal chain is established here that connects humidity in the stratosphere, relative humidity near the tropical tropopause, ice crystal size in towering cumulus clouds, and aerosols associated with tropical biomass burning. The connections are revealed in satellite-observed fluctuations of each quantity on monthly to yearly time scales. More aerosols lead to smaller ice crystals and more water vapor entering the stratosphere. The connections are consistent with physical reasoning, probably hold on longer time scales, and may help to explain why stratospheric water vapor appears to have been increasing for the past five decades.

  8. Discrimination of cloud and aerosol in the Stratospheric Aerosol and Gas Experiment III occultation data.

    PubMed

    Kent, G S; Wang, P H; Skeens, K M

    1997-11-20

    The Stratospheric Aerosol and Gas Experiment (SAGE) III, scheduled for a first launch in mid-1998, will be making measurements of the extinction that is due to aerosols and gases at many wavelengths between 385 and 1550 nm. In the troposphere and wintertime polar stratosphere, extinction will also occur because of the presence of cloud along the optical path from the Sun to the satellite instrument. We describe a method for separating the effects of aerosol and cloud using the extinction at 525, 1020, and 1550 nm and present the results of simulation studies. These studies show that the new method will work well under background nonvolcanic aerosol conditions in the upper troposphere and lower stratosphere. Under conditions of severe volcanic contamination, the error rate for the separation of aerosol and cloud may rise as high as 30%.

  9. Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Hu, Yongyun; Huang, Yi

    2016-06-01

    We investigate the climatic impact of stratospheric ozone recovery (SOR), with a focus on the surface temperature change in atmosphere-slab ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K) in a climate free of clouds and sea ice, it causes surface cooling (-0.06 K) in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest that clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.

  10. Nonorographic generation of Arctic polar stratospheric clouds during December 1999

    NASA Astrophysics Data System (ADS)

    Hitchman, Matthew H.; Buker, Marcus L.; Tripoli, Gregory J.; Browell, Edward V.; Grant, William B.; McGee, Thomas J.; Burris, John F.

    2003-03-01

    During December 1999, polar stratospheric clouds (PSCs) were observed in the absence of conditions conducive to generation by topographic gravity waves. The possibility is explored that PSCs can be generated by inertia gravity waves (IGW) radiating from breaking synoptic-scale Rossby waves on the polar front jet. The aerosol features on 7 and 12 December are selected for comparison with theory and with simulations using the University of Wisconsin Nonhydrostatic Modeling System (UWNMS). Consistent with Rossby adjustment theory, a common feature in the UWNMS simulations is radiation of IGW from the tropopause polar front jet, especially from sectors which are evolving rapidly in the Rossby wave breaking process. Packets of gravity wave energy radiate upward and poleward into the cold pool, while individual wave crests propagate poleward and downward, causing mesoscale variations in vertical motion and temperature. On 12 December the eastbound DC-8 lidar observations exhibited a fairly uniform field of six waves in aerosol enhancement in the 14-20 km layer, consistent with vertical displacement by a field of IGW propagating antiparallel to the flow, with characteristic horizontal and vertical wavelengths of ˜300 and ˜10 km. UWNMS simulations show emanation of a field of IGW upward and southwestward from a northward incursion of the polar front jet. The orientation and evolution of the aerosol features on 7 December are consistent with a single PSC induced by an IGW packet propagating from a breaking Rossby wave over western Russia toward the northeast into the coldest part of the base of the polar vortex, with characteristic period ˜9 hours, vertical wavelength ˜12 km, and horizontal wavelength ˜1000 km. Linear theory shows that for both of these cases, IGW energy propagates upward at ˜1 km/hour and horizontally at ˜100 km/hour, with characteristic trace speed ˜30 m/s. The spatial orientation of the PSC along IGW phase lines is contrasted with the nearly

  11. The Effects of Tropical Cirrus Clouds on the Abundance of Lower Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Minschwaner, K.; Weinstock, E. M.; Hintsa, E. J.; Anderson, J. G.; Russell, J. M., III

    1996-01-01

    The distribution of many chemical constituents of the atmosphere (e.g., ozone) is at least partially determined by the, distribution of net radiative heating in the atmosphere. In this paper, we demonstrate the significant effect of high cirrus clouds on the net radiative heating of the tropical lower stratosphere. A model of tropical lower stratospheric ozone is then used to demonstrate the sensitivity of calculated ozone to the varying cloud cover used in the model. We conclude that calculated ozone is sensitive to the inclusion of clouds in models and that models of the atmosphere should include a realistic description of tropical cirrus clouds in order to accurately simulate the chemical composition of the atmosphere.

  12. The Effects of Tropical Cirrus Clouds on the Abundance of Lower Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Minschwaner, K.; Weinstock, E. M.; Hintsa, E. J.; Anderson, J. G.; Russell, J. M., III

    1996-01-01

    The distribution of many chemical constituents of the atmosphere (e.g., ozone) is at least partially determined by the. distribution of net radiative heating in the atmosphere. In this paper, we demonstrate the significant effect of high cirrus clouds on the net radiative heating of the tropical lower stratosphere. A model of tropical lower stratospheric ozone is then used to demonstrate the sensitivity of calculated ozone to the varying cloud cover used in the model. We conclude that calculated ozone is sensitive to the inclusion of clouds In models and that models of the atmosphere should include a realistic description of tropical cirrus clouds in order to accurately simulate the chemical composition of the atmosphere.

  13. The Effects of Tropical Cirrus Clouds on the Abundance of Lower Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Minschwaner, K.; Weinstock, E. M.; Hintsa, E. J.; Anderson, J. G.; Russell, J. M., III

    1996-01-01

    The distribution of many chemical constituents of the atmosphere (e.g., ozone) is at least partially determined by the distribution of net radiative heating in the atmosphere. In this paper, we demonstrate the significant effect of high cirrus clouds on the net radiative heating of the tropical lower stratosphere. A model of tropical lower stratospheric ozone is then used to demonstrate the sensitivity of calculated ozone to the varying cloud cover used in the model. We conclude that calculated ozone is sensitive to the inclusion of clouds in models and that models of the atmosphere should include a realistic description of tropical cirrus clouds in order to accurately simulate the chemical composition of the atmosphere.

  14. The unsuitability of meteoritic and other nuclei for polar stratospheric cloud freezing

    NASA Astrophysics Data System (ADS)

    Biermann, U. M.; Presper, T.; Koop, T.; Mößinger, J.; Crutzen, P. J.; Peter, Th.

    Bulk freezing experiments have been performed with binary and ternary HNO3/H2SO4/H2O solutions containing original micrometeorites, ground samples of representative larger meteorites and other freezing nuclei of potential stratospheric importance. The experiments enable us to determine upper bounds for the heterogeneous freezing rates of sulfuric and nitric acid hydrates. Based on an analysis of the meteoritic mass flux from space and of the modifications meteorites undergo when entering the atmosphere, the resulting morphology and surface area of extraterrestrial material in the stratosphere are estimated. From this micrometeorites gained from Antarctica are shown to be a good proxy for meteoritic surfaces in the stratosphere. In combination with this analysis the freezing experiments suggest that heterogeneous nucleation rates on micrometeorites are too low to enhance freezing of polar stratospheric clouds above the frost point.

  15. Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds.

    PubMed

    Molina, M J; Zhang, R; Wooldridge, P J; McMahon, J R; Kim, J E; Chang, H Y; Beyer, K D

    1993-09-10

    Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO(3) hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H(2)SO(4)/H(2)O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO(3) vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO(3) and H(2)O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H(2)SO(4) solutions and on solid H(2)SO(4) hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles. PMID:17745351

  16. Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds.

    PubMed

    Molina, M J; Zhang, R; Wooldridge, P J; McMahon, J R; Kim, J E; Chang, H Y; Beyer, K D

    1993-09-10

    Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO(3) hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H(2)SO(4)/H(2)O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO(3) vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO(3) and H(2)O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H(2)SO(4) solutions and on solid H(2)SO(4) hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.

  17. Physical chemistry of the H2SO4/HNO3/H2O system - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Zhang, R.; Wooldridge, P. J.; Mcmahon, J. R.; Kim, J. E.; Chang, H. Y.; Beyer, K. D.

    1993-01-01

    Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO3 hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H2SO4/H2O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO3 vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO3 and H2O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H2SO4 solutions and on solid H2SO4 hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.

  18. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  19. Impact of stratospheric aircraft on calculations of nitric acid trihydrate cloud surface area densities using NMC temperatures and 2D model constituent distributions

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.

    1994-01-01

    A parameterization of NAT (nitric acid trihydrate) clouds is developed for use in 2D models of the stratosphere. The parameterization uses model distributions of HNO3 and H2O to determine critical temperatures for NAT formation as a function of latitude and pressure. National Meteorological Center temperature fields are then used to determine monthly temperature frequency distributions, also as a function of latitude and pressure. The fractions of these distributions which fall below the critical temperatures for NAT formation are then used to determine the NAT cloud surface area density for each location in the model grid. By specifying heterogeneous reaction rates as functions of the surface area density, it is then possible to assess the effects of the NAT clouds on model constituent distributions. We also consider the increase in the NAT cloud formation in the presence of a fleet of stratospheric aircraft. The stratospheric aircraft NO(x) and H2O perturbations result in increased HNO3 as well as H2O. This increases the probability of NAT formation substantially, especially if it is assumed that the aircraft perturbations are confined to a corridor region.

  20. Influence of polar stratospheric clouds on the depletion of Antarctic ozone

    NASA Technical Reports Server (NTRS)

    Salawitch, Ross J.; Wofsy, Steven C.; Mcelroy, Michael B.

    1988-01-01

    Precipitation of nitrate in polar stratospheric clouds (PSCs) can provide a significant sink for Antarctic stratospheric odd nitrogen. It is argued that the depth of the Ozone Hole is sensitive to the occurrence of temperatures below about 196 K. An increase in the prevalence of temperatures below 196 K would enhance ozone loss by increasing the spatial extent and persistence of PSCs, and by decreasing the level of HNO3 that remains following PSC evaporation. Concentrations of halogen gases in the 1960s and earlier were insufficient to support major ozone loss, even if thermal conditions were favorable.

  1. Extreme stratospheric springs and their consequences for the onset of polar mesospheric clouds

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Allen, Douglas R.; Randall, Cora E.; Harvey, V. Lynn; Hervig, Mark E.; Lumpe, Jerry; Thurairajah, Brentha; Bailey, Scott M.; Russell, James M.

    2015-09-01

    We use data from the Aeronomy of Ice in the Mesosphere (AIM) explorer and from the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) stratospheric analysis to explore the variability in the onset of the Northern Hemisphere (NH) Polar Mesospheric Cloud (PMC) season. Consistent with recently published results, we show that the early onset of the NH PMC season in 2013 was accompanied by a warm springtime stratosphere; conversely, we show that the late onset in 2008 coincides with a very cold springtime stratosphere. Similar stratospheric temperature anomalies for 1997 and 2011 also are connected either directly, through observed temperatures, or indirectly, through an early PMC onset, to conditions near the mesopause. These 4 years, 2008, 1997, 2011, and 2013 represent the extremes of stratospheric springtime temperatures seen in the MERRA analysis and correspond to analogous extrema in planetary wave activity. The three years with enhanced planetary wave activity (1997, 2011 and 2013) are shown to coincide with the recently identified stratospheric Frozen In Anticyclone (FrIAC) phenomenon. FrIACs in 1997 and 2013 are associated with early PMC onsets; however, the dramatic FrIAC of 2011 is not. This may be because the 2011 FrIAC occurred too early in the spring. The link between NH PMC onset and stratospheric FrIAC occurrences represents a new mode of coupling between the stratosphere and mesosphere. Since FrIACs appear to be more frequent in recent years, we speculate that as a result, PMCs may occur earlier as well. Finally we compare the zonal mean zonal winds and observed gravity wave activity for the FrIACs of 2011 and 2013. We find no evidence that gravity wave activity was favored in 2013 relative to 2011, thus suggesting that direct forcing by planetary waves was the key mechanism in accelerating the cooling and moistening of the NH mesopause region in May of 2013.

  2. Lidar Observations of Stratospheric Clouds After Volcanic Eruption of Pinatubo

    NASA Technical Reports Server (NTRS)

    Sun, Jinhui; Qiu, Jinhuan; Xia, Qilin; Zhang, Jinding

    1992-01-01

    A very large increase of backscattered light from the stratospheric aerosol layer was observed by using a ruby laser in Beijing (39 degrees 54 minutes N, 116 degrees 27 minutes E) from the end of July 1991 to March 1992. It was concluded that this increase was almost certainly due to the volcanic eruption of Mt. Pinatubo in the Philippines in June 1991. The measuring instruments used are described. Information is given in graphical form for vertical profiles, fluctuation of the maximum backscattering ratio above 20 km during the nine month period, and the time variation of the integrated backscattering coefficient at a height of 15 to 30 km.

  3. More rapid polar ozone depletion through the reaction of HOCl with HCl on polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.

    1992-01-01

    The direct reaction of HOCl with HCl is shown here to play a critical part in polar ozone loss. Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere confirm that most of the available chlorine is in the form of ClO(x). But current photochemical models have difficulty converting HCl to ClO(x) rapidly enough in early spring to account fully for the observations. Here, a chemical model is used to show that the direct reaction of HOCl with HCl provides the missing mechanism. As alternative sources of nitrogen-containing oxidants have been converted in the late autumn to inactive HNO3 by known reactions on the sulfate layer aerosols, the reaction of HOCl with HCl on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HCl.

  4. Aircraft deployment, and airborne arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Condon, Estelle; Tuck, Adrian; Hipskind, Steve; Toon, Brian; Wegener, Steve

    1990-01-01

    The Airborne Arctic Stratospheric Expedition had two primary objectives: to study the production and loss mechanisms of ozone in the north polar stratosphere and to study the effect on ozone distribution of the Arctic Polar Vortex and of the cold temperatures associated with the formation of Polar Stratospheric Clouds. Two specially instrumented NASA aircraft were flown over the Arctic region. Each aircraft flew to acquire data on the meteorological, chemical and cloud physical phenomena that occur in the polar stratosphere during winter. The chemical processes which occur in the polar stratosphere during winter were also observed and studied. The data acquired are being analyzed.

  5. Microphysical Simulations of Polar Stratospheric Clouds Compared with Calipso and MLS Observations

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Toon, O. B.; Kinnison, D. E.; Lambert, A.; Brakebusch, M.

    2014-12-01

    Polar stratospheric clouds (PSCs) form in the lower stratosphere during the polar night due to the cold temperature inside the polar vortex. PSCs are important to understand because they are responsible for the formation of the Antarctic ozone hole and the ozone depletion over the Arctic. In this work, we explore the formation and evolution of STS particles (Super-cooled Ternary Solution) and NAT (Nitric-acid Trihydrate) particles using the SD-WACCM/CARMA model. SD-WACCM/CARMA couples the Whole Atmosphere Community Climate Model using Specific Dynamics with the microphysics model (CARMA). The 2010-2011 Arctic winter has been simulated because the Arctic vortex remained cold enough for PSCs from December until the end of March (Manney et al., 2011). The unusual length of this cold period and the presence of PSCs caused strong ozone depletion. This model simulates the growth and evaporation of the STS particles instead of considering them as being in equilibrium as other models do (Carslaw et al., 1995). This work also explores the homogeneous nucleation of NAT particles and derives a scheme for NAT formation based on the observed denitrification during the winter 2010-2011. The simulated microphysical features (particle volumes, size distributions, etc.) of both STS (Supercooled Ternary Solutions) and NAT particles show a consistent comparison with historical observations. The modeled evolution of PSCs and gas phase ozone related chemicals inside the vortex such as HCl and ClONO2 are compared with the observations from MLS, MIPAS and CALIPSO over this winter. The denitrification history indicate the surface nucleation rate from Tabazadeh et al. (2002) removes too much HNO3 over the winter. With a small modification of the free energy term of the equation, the denitification and the PSC backscattering features are much closer to the observations. H2O, HCl, O3 and ClONO2 are very close to MLS and MIPAS observations inside the vortex. The model underestimates ozone

  6. Vapor pressures of solid hydrates of nitric Acid: implications for polar stratospheric clouds.

    PubMed

    Worsnop, D R; Zahniser, M S; Fox, L E; Wofsy, S C

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO(3).H(2)O, HNO(3).2H(2)O, HNO(3).3H(2)O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO(3).2H(2)O may be favored in polar stratospheric clouds over the slightly more stable HNO(3).3H(2)O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO(3).2H(2)O and HNO(3).3H(2)O. Vapor transfer from HNO(3).2H(2)O to HNO(3).3H(2)O could be a key step in the sedimentation of HNO(3), which plays an important role in the depletion of polar ozone. PMID:17757475

  7. Vapor pressures of solid hydrates of nitric Acid: implications for polar stratospheric clouds.

    PubMed

    Worsnop, D R; Zahniser, M S; Fox, L E; Wofsy, S C

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO(3).H(2)O, HNO(3).2H(2)O, HNO(3).3H(2)O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO(3).2H(2)O may be favored in polar stratospheric clouds over the slightly more stable HNO(3).3H(2)O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO(3).2H(2)O and HNO(3).3H(2)O. Vapor transfer from HNO(3).2H(2)O to HNO(3).3H(2)O could be a key step in the sedimentation of HNO(3), which plays an important role in the depletion of polar ozone.

  8. Vapor pressures of solid hydrates of nitric acid - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Worsnop, Douglas R.; Fox, Lewis E.; Zahniser, Mark S.; Wofsy, Steven C.

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO3.H2O, HNO3.2H2O, HNO3.3H2O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO3.2H2O may be favored in polar stratospheric clouds over the slightly more stable HNO3.3H2O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO3.2H2O and HNO3.3H2O. Vapor transfer from HNO3.2H2O to HNO3.3H2O could be a key step in the sedimentation of HNO3, which plays an important role in the depletion of polar ozone.

  9. Characteristics of polar stratospheric clouds as observed by SAM II, SAGE, and lidar

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Hamill, P.; Farrukh, U. O.

    1985-01-01

    Satellite and lidar data sets developed over several years of observations are analyzed to detail the macroscopic and microphysical characteristics of polar stratospheric clouds (PSCs). Mappings were made of the sizes, locations, probabilities of occurrence and temperature dependence of the PSCs, and indicated that PSCs are correlated with an extended stratospheric cloud bank in the cold polar vortex region. The bank is bounded by a 188 K isotherm, and the probability of occurrence drops to 50 percent at the 193 K isotherm. Values of 6.3 particles/cu cm and radii averaging 0.0725 micron/particle are calculated, along with an estimated downward velocity of 0.01 m/sec.

  10. Polar Stratospheric Clouds from ground-based lidar and CALIPSO observations and Chemistry Climate Models evaluation

    NASA Astrophysics Data System (ADS)

    Fierli, Federico; Di Liberto, Luca; Cairo, Francesco; Cagnazzo, Chiara; Snels, Marcel; Keckhut, Philippe; Jumelet, Julien; Pitts, Michael C.

    2014-05-01

    We evaluate the Antarctic PSC observational databases of CALIPSO and the ground-based lidars of NDACC (Network for Detection of Atmospheric Composition Changes) located in McMurdo and Dumont D'Urville stations and provide a process-oriented evaluation of PSC in a subset of CCMVAL-2 chemistry-climate models. Lidar observatories have a decadal coverage, albeit with discontinuities, spanning from 1992 to today hence offering a unique database. A clear issue is the representativeness of ground-based long-term data series of the Antarctic stratosphere conditions that may limit their value in climatological studies and model evaluation. The comparison with the CALIPSO observations with a global coverage is, hence, a key issue. In turn, models can have a biased representation of the stratospheric conditions and of the PSC microphysics leading to large discrepancies in PSC occurrence and composition. CALIPSO observations indicate a large longitudinal variability in PSC formation in the polar atmosphere and ground-based observations are hence representative of different cloud conditions. Point-to-point comparison is difficult due to sparseness of the database (or PSC appearance at the edge of the vortex) and to intrinsic differences in spatial distribution between models and observations. So the use of simple diagnostics that are independent from instrumental coverage is fundamental. Comparison between ground-based and satellite borne-lidar is overall satisfactory and differences may be attributed to differences in coverage. As expected, McMurdo site is dominated by a NAT-type regime that is a clear feature of the eastern part of polar vortex while Dumont D'Urville is largely influenced by the transition at the edge the polar vortex resulting, on average, in a much reduced PSC coverage with a partition between NAT and STS cloud types. Data from the 5 CCMs having provided PSC surface areas on daily basis have been evaluated using the same diagnostic type that may be derived

  11. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltmans, S. J.

    1988-01-01

    The first balloon-borne frost point measurements over Antarctica were made during September and October, 1987 as part of the NOZE 2 effort at McMurdo. The results indicate water vapor mixing ratios on the order of 2 ppmv in the 15 to 20 km region which is somewhat smaller than the typical values currently being used significantly smaller than the typical values currently being used in polar stratospheric cloud (PSC) theories. The observed water vapor mixing ratio would correspond to saturated conditions for what is thought to be the lowest stratospheric temperatures encountered over the Antarctic. Through the use of available lidar observations there appears to be significant evidence that some PSCs form at temperatures higher than the local frost point (with respect to water) in the 10 to 20 km region thus supporting the nitric acid theory of PSC composition. Clouds near 15 km and below appear to form in regions saturated with respect to water and thus are probably mostly ice water clouds although they could contain relatively small amounts of other constituents. Photographic evidence suggests that the clouds forming above the frost point probably have an appearance quite different from the lower altitude iridescent, colored nacreous clouds.

  12. Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere

    NASA Astrophysics Data System (ADS)

    Cirisan, A.; Spichtinger, P.; Luo, B. P.; Weisenstein, D. K.; Wernli, H.; Lohmann, U.; Peter, T.

    2013-05-01

    In the absence of tangible progress in reducing greenhouse gas emissions, the implementation of solar radiation management has been suggested as measure to stop global warming. Here we investigate the impacts on northern midlatitude cirrus from continuous SO2emissions of 2-10 Mt/a in the tropical stratosphere. Transport of geoengineering aerosols into the troposphere was calculated along trajectories based on ERA Interim reanalyses using ozone concentrations to quantify the degree of mixing of stratospheric and tropospheric air termed "troposphericity". Modeled size distributions of the geoengineered H2SO4-H2O droplets have been fed into a cirrus box model with spectral microphysics. The geoengineering is predicted to cause changes in ice number density by up to 50%, depending on troposphericity and cooling rate. We estimate the resulting cloud radiative effects from a radiation transfer model. Complex interplay between the few large stratospheric and many small tropospheric H2SO4-H2O droplets gives rise to partly counteracting radiative effects: local increases in cloud radiative forcing up to +2 W/m2for low troposphericities and slow cooling rates, and decreases up to -7.5 W/m2for high troposphericities and fast cooling rates. The resulting mean impact on the northern midlatitudes by changes in cirrus is predicted to be low, namely <1% of the intended radiative forcing by the stratospheric aerosols. This suggests that stratospheric sulphate geoengineering is unlikely to have large microphysical effects on the mean cirrus radiative forcing. However, this study disregards feedbacks, such as temperature and humidity changes in the upper troposphere, which must be examined separately.

  13. Variability of upper tropospheric clouds in the polar region during stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Kohma, Masashi; Sato, Kaoru

    2014-09-01

    The variability of upper tropospheric clouds during stratospheric sudden warmings (SSWs) in 2009, 2010, and 2012 in the Northern Hemisphere is examined using satellite observations and reanalysis data. It is shown that the zonal mean cloud frequency decreases in the altitude range of 8-12 km, and the mean cloud top height descends soon after an SSW. Following a sudden decrease in upper tropospheric cloud frequency, an increase in temperature and static stability around the tropopause and a downward shift of the tropopause height are simultaneously observed. These changes in the upper troposphere are observed when the downward residual mean flow associated with an SSW becomes stronger around the tropopause level. By means of analyses based on a recent theory of three-dimensional residual mean flow, it is shown that the horizontal structure of the vertical flow is consistent with the geographical distribution of clouds in the altitude range of 9-11 km. Another interesting feature is that the low cloud frequency in the upper troposphere that starts after an SSW continues for more than 1 month. Possible reasons are discussed in terms of a long radiative relaxation time and a change in the tropospheric wave activity. These findings indicate that SSWs can affect the tropospheric radiative budget through the modification of cloud frequency and cloud top heights.

  14. Melting of H2SO4·4H2O Particles upon Cooling: Implications for Polar Stratospheric Clouds

    PubMed

    Koop; Carslaw

    1996-06-14

    Polar stratospheric clouds (PSCs) are important for the chemical activation of chlorine compounds and subsequent ozone depletion. Solid PSCs can form on sulfuric acid tetrahydrate (SAT) (H2SO4·4H2O) nuclei, but recent laboratory experiments have shown that PSC nucleation on SAT is strongly hindered. A PSC formation mechanism is proposed in which SAT particles melt upon cooling in the presence of HNO3 to form liquid HNO3-H2SO4-H2O droplets 2 to 3 kelvin above the ice frost point. This mechanism offers a PSC formation temperature that is defined by the ambient conditions and sets a temperature limit below which PSCs should form.

  15. Unprecedented Evidence for Large Scale Heterogeneous Nucleation of Polar Stratospheric Clouds, Likely by Nanometer-Sized Meteoritic Particles

    NASA Astrophysics Data System (ADS)

    Engel, I.; Pitts, M. C.; Luo, B.; Hoyle, C. R.; Zobrist, B.; Jacot, L.; Poole, L. R.; Grooss, J.; Weigel, R.; Borrmann, S.; Ebert, M.; Duprat, J.; Peter, T.

    2012-12-01

    Recent observations cast serious doubts on our understanding of the processes responsible for polar stratospheric cloud (PSC) formation. PSCs play crucial roles in polar ozone chemistry by hosting heterogeneous reactions and by removal of reactive nitrogen through sedimenting nitric acid trihydrate (NAT) particles. An extensive field campaign took place in the Arctic during the winter 2009/2010 within the European Union project RECONCILE, complemented by measurements from the spaceborne CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) instrument. Through trajectory and microphysical box model calculations, we analyzed CALIOP data from the RECONCILE winter to investigate the nucleation of PSC particles in detail. One significant finding was that liquid/NAT mixture PSCs were prevalent in late December 2009, a period during which no ice PSCs were observed, and temperatures were higher by 6 K than required for homogeneous ice freezing at the onset of PSC formation. These NAT particles must have formed through some non-ice nucleation mechanism, which runs counter to the widely held view that the only efficient NAT nuclei were ice crystals formed by homogeneous freezing of STS droplets. Furthermore, in mid-January 2010, a large region of the Arctic vortex cooled below the frost point, leading to widespread synoptic-scale ice PSCs, unusual for the Arctic. Our modeling studies indicate that a match with the CALIOP data calls for new heterogeneous nucleation mechanisms for both NAT and ice particles, namely freezing on nanometer-sized, solid nuclei immersed in the liquid stratospheric aerosols. Number concentrations of non-volatile particles were measured in situ during RECONCILE by means of the heated channel of the condensation nuclei (CN) counter COPAS on board of the high-flying aircraft Geophysica. 60-80 % of all CN survived heating to 250 °C. Offline Environmental Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis of RECONCILE impactor samples

  16. A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.

    1997-01-01

    The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.

  17. Sulfuric Acid Monohydrate: Formation and Heterogeneous Chemistry in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1995-01-01

    We have investigated some thermodynamic properties (i.e., freezing/melting points) and heterogeneous chemistry of sulfuric acid monohydrate (SAM, H2SO4.H2O), using a fast flow reactor coupled to a quadrupole mass spectrometer. The freezing point observations of thin liquid sulfuric acid films show that for acid contents between 75 and 85 wt % the monohydrate crystallizes readily at temperatures between 220 and 240 K on a glass substrate. Once formed, SAM can be thermodynamically stable in the H2O partial pressure range of (1-4) x 10(exp -4) torr and in the temperature range of 220-240 K. For a constant H2O partial pressure, lowering the temperature causes SAM to melt when the temperature and water partial pressure conditions are out of its stability regime. The reaction probability measurements indicate that the hydrolysis of N2O5 is significantly suppressed owing to the formation of crystalline SAM: The reaction probability on water-rich SAM (with higher relative humidity, or RH) is of the order of 10(exp -3) at 210 K and decreases by more than an order of magnitude for the acid-rich form (with lower RH). The hydrolysis rate of ClONO2 on water-rich SAM is even smaller, of the order of 10(exp -4) at 195 K. These reported values on crystalline SAM are much smaller than those on liquid solutions. No enhancement of these reactions is observed in the presence of HCl vapor at the stratospheric concentrations. In addition, Brunauer, Emmett, and Teller analysis of gas adsorption isotherms and photomicrography have been performed to characterize the surface roughness and porosities of the SAM substrate. The results suggest the possible formation of SAM in some regions of the middle- or low-latitude stratosphere and, consequently, much slower heterogeneous reactions on the frozen aerosols.

  18. Star formation in Lynds dark clouds

    NASA Astrophysics Data System (ADS)

    Spuck, Tim; Rebull, Luisa

    2008-03-01

    Recent research on star formation in large molecular cloud complexes, such as the Cepheus Flare (Kun 1995), Orion, Perseus (Rebull et al. 2007), and Taurus molecular clouds, have included studies of a number of Lynds dark nebulae (LDN). Less attention has been given to isolated Lynds clouds. Both LDN 981 and LDN 425 are smaller, more isolated, dark molecular clouds that could contain regions of active star formation within them -- they both are associated with IRAS sources, and based on prior shallow surveys, they both have a YSO candidate in the neigborhood. Spitzer observations with IRAC and MIPS will allow us to see deep inside the cloud, deeper than any prior observations could see, and reveal any hidden star formation that is ongoing in these clouds. This project is part of the Spitzer Teachers Program.

  19. Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR

    USGS Publications Warehouse

    Schneider, D.J.; Rose, William I.; Coke, L.R.; Bluth, G.J.S.; Sprod, I.E.; Krueger, A.J.

    1999-01-01

    This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chicho??n, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1-10 ??m radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 ?? 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 ?? 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 ??m to about 4 ??m. Copyright 1999 by the American Geophysical Union.

  20. Theoretical Investigations of Clouds and Aerosols in the Stratosphere and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    2005-01-01

    support of the Atmospheric Chemistry Modeling and Data Analysis Program. We investigated a wide variety of issues involving ambient stratospheric aerosols, polar stratospheric clouds or heterogeneous chemistry, analysis of laboratory data, and particles in the upper troposphere. The papers resulting from these studies are listed below. In addition, I participated in the 1999-2000 SOLVE mission as one of the project scientists and in the 2002 CRYSTAL field mission as one of the project scientists. Several CU graduate students and research associates also participated in these mission, under support from the ACMAP program, and worked to interpret data. During the past few years my group has completed a number of projects under the

  1. The Arctic polar stratospheric cloud aerosol - Aircraft measurements of reactive nitrogen, total water, and particles

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Fahey, D. W.; Kelly, K. K.; Dye, J. E.; Baumgardner, D.; Gandrud, B. W.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1992-01-01

    In situ aircraft measurements in the lower stratosphere are used to investigate the reactive nitrogen, NO(y), total water, and particle components of the polar stratospheric cloud (PSC) aerosol in the Arctic. The results are compared to findings from the Antarctic derived using similar measurements and interpretive techniques. The Arctic data show that particle volume well above background values is present at temperatures above the frostpoint, confirming the result from the Antarctic that the observed PSCs are not water ice particles. NO(y) measurements inside a PSC are enhanced above ambient values consistent with anisokinetic sampling of particles containing NO(y). In the Arctic data over long segments of several flights, calculations show saturation with respect to nitric acid trihydrate without significant PSC particle growth above background.

  2. Application of physical adsorption thermodynamics to heterogeneous chemistry on polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1991-01-01

    Laboratory isotherms for the binding of several nonheterogeneously active atmospheric gases and for HCl to water ice are translated into adsorptive equilibrium constants and surface enthalpies. Extrapolation to polar conditions through the Clausius Clapeyron relation yields coverage estimates below the percent level for N2, Ar, CO2, and CO, suggesting that the crystal faces of type II stratospheric cloud particles may be regarded as clean with respect to these species. For HCl, and perhaps HF and HNO3, estimates rise to several percent, and the adsorbed layer may offer acid or proton sources alternate to the bulk solid for heterogeneous reactions with stratospheric nitrates. Measurements are lacking for many key atmospheric molecules on water ice, and almost entirely for nitric acid trihydrate as substrate. Adsorptive equilibria enter into gas to particle mass flux descriptions, and the binding energy determines rates for desorption of, and encounter between, potential surface reactants.

  3. Influence of Tropospheric SO2 Emissions on Particle Formation and the Stratospheric Humidity

    NASA Technical Reports Server (NTRS)

    Notholt, J.; Luo, B. P.; Fueglistaler, S.; Weisenstein, D.; Rex, M.; Lawrence, M. G.; Bingemer, H.; Wohltmann, I.; Corti, T.; Warneke, T.; vonKuhlmann, R.; Peters, T.

    2005-01-01

    Stratospheric water vapor plays an important role in the chemistry and radiation budget of the stratosphere. Throughout the last decades stratospheric water vapor levels have increased and several processes have been suggested to contribute to this trend. Here we present a mechanism that would link increasing anthropogenic SO2 emissions in southern and eastern Asia with an increase in stratospheric water. Trajectory studies and model simulations suggest that the SO2 increase results in the formation of more sulfuric acid aerosol particles in the upper tropical troposphere. As a consequence, more ice crystals of smaller size are formed in the tropical tropopause, which are lifted into the stratosphere more readily. Our model calculations suggest that such a mechanism could increase the amount of water that entered the stratosphere in the condensed phase by up to 0.5 ppmv from 1950-2000.

  4. FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION

    SciTech Connect

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-10

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  5. The impact of gravity waves and cloud nucleation threshold on stratospheric water and tropical tropospheric cloud fraction

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark; Dessler, Andrew; Ye, Hao; Wang, Tao; Avery, Melody; Jensen, Eric

    2016-08-01

    Using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and MERRA-2 reanalysis winds, temperatures, and anvil cloud ice, we explore the impact of varying the cloud nucleation threshold relative humidity (RH) and high-frequency gravity waves on stratospheric water vapor (H2O) and upper tropical tropopause cloud fraction (TCF). Our model results are compared to 2008/2009 winter TCF derived from Cloud-Aerosol Lidar with Orthogonal Polarization and H2O observations from the Microwave Limb Sounder (MLS). The RH threshold affects both model H2O and TCF, while high-frequency gravity waves mostly impact TCF. Adjusting the nucleation RH and the amplitude of high-frequency gravity waves allows us to tune the model to observations. Reasonable observational agreement is obtained with a nucleation threshold between 130% and 150% RH consistent with airborne observations. For the MERRA reanalysis, we lower the tropopause temperature by 0.5 K roughly consistent with GPS radio occultation measurements and include ~0.1 K high-frequency gravity wave temperature oscillations in order to match TCF and H2O observations. For MERRA-2 we do not need to adjust the tropopause temperature nor add gravity waves, because there are sufficient high-frequency temperature oscillations already present in the MERRA-2 reanalysis to reproduce the observed TCF.

  6. Star formation in the Magellanic clouds

    NASA Technical Reports Server (NTRS)

    Frogel, Jay A.

    1987-01-01

    Because of their proximity, the Magellanic Clouds provide the opportunity to conduct a detailed study of the history and current state of star formation in dwarf irregular galaxies. There is considerable evidence that star formation in the Clouds was and is proceeding in a manner different from that found in a typical well-ordered spiral galaxy. Star formation in both Clouds appears to have undergone a number of relatively intense bursts. There exist a number of similarities and differences in the current state of star formation in the Magellanic Clouds and the Milky Way. Examination of Infrared Astronomy Satellite (IRAS) sources with ground based telescopes allows identification of highly evolved massive stars with circumstellar shells as well as several types of compact emission line objects.

  7. Star formation relations in nearby molecular clouds

    SciTech Connect

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  8. Stratospheric Ozone Changes and Polar Mesospheric Cloud (PMC) Trends Observed in SBUV Data

    NASA Astrophysics Data System (ADS)

    DeLand, M. T.; Thomas, G. E.; Shettle, E. P.; Olivero, J. J.

    2013-12-01

    Polar mesospheric clouds (PMCs) are observed at 80-85 km altitude and high latitudes (typically > 50°) only during summer months. It has been suggested that long-term variations of PMC occurrence frequency and brightness are indicators of global climate change as represented through changes in mesospheric temperature and water vapor. The Solar Backscatter Ultraviolet (SBUV) series of satellite instruments, although designed to measure stratospheric profile and total column ozone, have made global observations of bright PMCs since November 1978. Previous analysis of SBUV data found that long-term variations in PMC brightness and occurrence frequency were anti-correlated with solar activity, and that a positive secular trend was present at most latitudes. The limited database of mesospheric temperature and water vapor data has precluded further determination of the source of this trend. Motivated by recent studies with the LIMA general circulation model [Berger and Lübken 2011], which relate mesospheric temperature trends to changes in stratospheric ozone, we have investigated the use of stratospheric ozone changes as a proxy for changes in mesospheric heating and temperature. The decrease in ozone from 1979 to the mid-1990s leads to a cooler mesosphere, and is thus consistent with the rise in PMC ice water content observed in the SBUV record during this period. Similarly, stratospheric ozone changes are smaller from the mid-1990s to the present, and PMC ice water content trends are also reduced in recent years. We will discuss these results and their implications for both previous (before 1979) and future PMC behavior.

  9. An experimental study of growth and phase change of polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hallett, John; Teets, Edward

    1992-01-01

    This report describes the progress made on understanding phase changes related to solutions which may comprise Polar Stratospheric Clouds. In particular, it is concerned with techniques for investigating specific classes of metastability and phase change which may be important not only in Polar Stratospheric Clouds but in all atmospheric aerosols in general. While the lower level atmospheric aerosol consists of mixtures of (NH4)(SO4)2, NH4HSO4, NaCl among others, there is evidence that aerosol at PSC levels is composed of acid aerosol, either injected from volcanic events (such as Pinatubo) or having diffused upward from the lower atmosphere. In particular, sulfuric acid and nitric acid are known to occur at PSC levels, and are suspected of catalyzing ozone destruction reactions by adsorption on surfaces of crystallized particles. The present study has centered on two approaches: (1) the extent of supercooling (with respect to ice) and supersaturation (with respect to hydrate) and the nature of crystal growth in acid solutions of specific molality; and (2) the nature of growth from the vapor of HNO3 - H2O crystals both on a substrate and on a pre-existing aerosol.

  10. Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideaki; Wohltmann, Ingo; Wegner, Tobias; Takeda, Masanori; Pitts, Michael C.; Poole, Lamont R.; Lehmann, Ralph; Santee, Michelle L.; Rex, Markus

    2016-03-01

    We examined observations of polar stratospheric clouds (PSCs) by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  11. Polar Stratospheric Cloud evolution and chlorine activation measured by CALIPSO and MLS, and modelled by ATLAS

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Wohltmann, I.; Wegner, T.; Takeda, M.; Pitts, M. C.; Poole, L. R.; Lehmann, R.; Santee, M. L.; Rex, M.

    2015-08-01

    We examined observations of polar stratospheric clouds (PSCs) by CALIPSO and of HCl, ClO and HNO3 by MLS along air mass trajectories to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels, and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/10 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed, and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an airmass encountered PSCs. The observed and modelled dependence of the rate of chlorine activation on the PSC composition class was small. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  12. Cloud Optimized Image Format and Compression

    NASA Astrophysics Data System (ADS)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  13. Effects of stratospheric aerosols and thin cirrus clouds on the atmospheric correction of ocean color imagery: simulations.

    PubMed

    Gordon, H R; Zhang, T; He, F; Ding, K

    1997-01-20

    Using simulations, we determine the influence of stratospheric aerosol and thin cirrus clouds on the performance of the proposed atmospheric correction algorithm for the moderate resolution imaging spectroradiometer (MODIS) data over the oceans. Further, we investigate the possibility of using the radiance exiting the top of the atmosphere in the 1.38-microm water vapor absorption band to remove their effects prior to application of the algorithm. The computations suggest that for moderate optical thicknesses in the stratosphere, i.e., tau(s) < or approximately 0.15, the stratospheric aerosol-cirrus cloud contamination does not seriously degrade the MODIS except for the combination of large (approximately 60 degrees) solar zenith angles and large (approximately 45 degrees) viewing angles, for which multiple-scattering effects can be expected to be particularly severe. The performance of a hierarchy of stratospheric aerosol/cirrus cloud removal procedures for employing the 1.38-microm water vapor absorption band to correct for stratospheric aerosol/cirrus clouds, ranging from simply subtracting the reflectance at 1.38 microm from that in the visible bands, to assuming that their optical properties are known and carrying out multiple-scattering computations of their effect by the use of the 1.38-microm reflectance-derived concentration, are studied for stratospheric aerosol optical thicknesses at 865 nm as large as 0.15 and for cirrus cloud optical thicknesses at 865 nm as large as 1.0. Typically, those procedures requiring the most knowledge concerning the aerosol optical properties (and also the most complex) performed the best; however, for tau(s) < or approximately 0.15, their performance is usually not significantly better than that found by applying the simplest correction procedure. A semiempirical algorithm is presented that permits accurate correction for thin cirrus clouds with tau(s) as large as unity when an accurate estimate of the cirrus cloud

  14. Effects of stratospheric aerosols and thin cirrus clouds on the atmospheric correction of ocean color imagery: simulations.

    PubMed

    Gordon, H R; Zhang, T; He, F; Ding, K

    1997-01-20

    Using simulations, we determine the influence of stratospheric aerosol and thin cirrus clouds on the performance of the proposed atmospheric correction algorithm for the moderate resolution imaging spectroradiometer (MODIS) data over the oceans. Further, we investigate the possibility of using the radiance exiting the top of the atmosphere in the 1.38-microm water vapor absorption band to remove their effects prior to application of the algorithm. The computations suggest that for moderate optical thicknesses in the stratosphere, i.e., tau(s) < or approximately 0.15, the stratospheric aerosol-cirrus cloud contamination does not seriously degrade the MODIS except for the combination of large (approximately 60 degrees) solar zenith angles and large (approximately 45 degrees) viewing angles, for which multiple-scattering effects can be expected to be particularly severe. The performance of a hierarchy of stratospheric aerosol/cirrus cloud removal procedures for employing the 1.38-microm water vapor absorption band to correct for stratospheric aerosol/cirrus clouds, ranging from simply subtracting the reflectance at 1.38 microm from that in the visible bands, to assuming that their optical properties are known and carrying out multiple-scattering computations of their effect by the use of the 1.38-microm reflectance-derived concentration, are studied for stratospheric aerosol optical thicknesses at 865 nm as large as 0.15 and for cirrus cloud optical thicknesses at 865 nm as large as 1.0. Typically, those procedures requiring the most knowledge concerning the aerosol optical properties (and also the most complex) performed the best; however, for tau(s) < or approximately 0.15, their performance is usually not significantly better than that found by applying the simplest correction procedure. A semiempirical algorithm is presented that permits accurate correction for thin cirrus clouds with tau(s) as large as unity when an accurate estimate of the cirrus cloud

  15. Characterization of Polar Stratospheric Clouds With Spaceborne Lidar: CALIPSO and the 2006 Antarctic Season

    NASA Technical Reports Server (NTRS)

    Pitts, Michael C.; Thomason, L. W.; Poole, Lamont R.; Winker, David M.

    2007-01-01

    The role of polar stratospheric clouds in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously unavailable. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, including tenuous clouds, with a very low rate of false positives and few missed clouds. We applied the algorithm to CALIPSO data acquired during the 2006 Antarctic winter season from 13 June through 31 October. The spatial and temporal distribution of CALIPSO PSC observations is illustrated with weekly maps of PSC occurrence. The evolution of the 2006 PSC season is depicted by time series of daily PSC frequency as a function of altitude. Comparisons with virtual solar occultation data indicate that CALIPSO provides a different view of the PSC season than attained with previous solar occultation satellites. Measurement-based time series of PSC areal coverage and vertically-integrated PSC volume are computed from the CALIPSO data. The observed area covered with PSCs is significantly smaller than would be inferred from a temperature-based proxy such as TNAT but is similar in magnitude to that inferred from TSTS. The potential of CALIPSO measurements for investigating PSC microphysics is illustrated using combinations of lidar backscatter coefficient and volume depolarization to infer composition for two CALIPSO PSC scenes.

  16. Simulations of Polar Stratospheric Clouds and Denitrification Using Laboratory Freezing Rates

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Tabazadeh, Azadeh; Gore, Warren J. (Technical Monitor)

    2001-01-01

    During the 1999-2000 Arctic winter, the SAGE (Stratospheric Aerosol and Gas Experiment) III Ozone Loss and Validation Experiment (SOLVE) provided evidence of widespread solid-phase polar stratospheric clouds (PSCs) accompanied by severe nitrification. Previous simulations have shown that a freezing process occurring at temperatures above the ice frost point is necessary to explain these observations. In this work, the nitric acid freezing rates measured by Salcedo et al. and discussed by Tabazadeh et al. have been examined. These freezing rates have been tested in winter-long microphysical simulations of the 1999-2000 Arctic vortex evolution in order to determine whether they can explain the observations. A range of cases have been explored, including whether the PSC particles are composed of nitric acid dihydrate or trihydrate, whether the freezing process is a bulk process or occurs only on the particle surfaces, and uncertainties in the derived freezing rates. Finally, the possibility that meteoritic debris enhances the freezing rate has also been examined. The results of these simulations have been compared with key PSC and denitrification measurements made by the SOLVE campaign. The cases that best reproduce the measurements will he highlighted, with a discussion of the implications for our understanding of PSCs.

  17. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  18. Fourier transform infrared studies of the interaction of HCl with model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Koehler, Birgit G.; Mcneill, Laurie S.; Middlebrook, Ann M.; Tolbert, Margaret A.

    1993-01-01

    Heterogeneous reactions involving hydrochloric acid adsorbed on the surfaces of polar stratospheric clouds (PSCs) are postulated to contribute to polar ozone loss. Using FTIR spectroscopy to probe the condensed phase, we have examined the interaction of HCl with ice and nitric acid trihydrate (NAT) films representative of types II and I PSCs, respectively. For HCl pressures in the range of 10 exp -7 to 10 exp -5 Torr, our FTIR studies show that a small amount of crystalline HCl-6H2O formed on or in ice at 155 K. However, for higher HCl pressures, we observed that the entire film of ice rapidly converted into an amorphous 4:1 H2O:HCl mixture. From HCl-uptake experiments with P(HCl) = 8 x 10 exp -7 Torr, we estimate roughly that the diffusion coefficient of HCl in ice is around 2 x 10 exp -12 sq cm/s at 158 K. For higher temperatures more closely approximating those found in the stratosphere, we were unable to detect bulk HCl uptake by ice. Indirect evidence suggests that HCl adsorption onto the surface of model PSC films inhibited the evaporation of both ice and NAT by 3-5 K.

  19. Radiative-dynamical and microphysical processes of thin cirrus clouds controlling humidity of air entering the stratosphere

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Fueglistaler, Stephan

    2016-04-01

    Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.

  20. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    SciTech Connect

    Charnay, B.; Meadows, V.; Misra, A.; Arney, G.; Leconte, J.

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

  1. Chlorine chemistry on polar stratospheric cloud particles in the arctic winter.

    PubMed

    Webster, C R; May, R D; Toohey, D W; Avallone, L M; Anderson, J G; Newman, P; Lait, L; Schoeberl, M R; Elkins, J W; Chan, K R

    1993-08-27

    Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses, of up to 1 part per billion by volume (ppbv), which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 +/- 4 kelvin. High ClO was always accompanied by loss of HCI mixing ratios equal to (1/2)(ClO + 2Cl(2)O(2)). These data indicate that the heterogeneous reaction HCl + ClONO(2) --> Cl(2) + HNO(3) on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO(2), not HCl.

  2. Optical imaging of cloud-to-stratosphere/mesosphere lightning over the Amazon Basin (CS/LAB)

    NASA Technical Reports Server (NTRS)

    Sentman, Davis D.; Wescott, Eugene M.

    1995-01-01

    The purpose of the CS/LAB project was to obtain images of cloud to stratosphere lightning discharges from aboard NASA's DC-8 Airborne Laboratory while flying in the vicinity of thunderstorms over the Amazon Basin. We devised a low light level imaging package as an add-on experiment to an airborne Laboratory deployment to South America during May-June, 1993. We were not successful in obtaining the desired images during the South American deployment. However, in a follow up flight over the American Midwest during the night of July 8-9, 1993 we recorded nineteen examples of the events over intense thunderstorms. From the observations were estimated absolute brightness, terminal altitudes, flash duration, horizontal extents, emission volumes, and frequencies relative to negative and positive ground strokes.

  3. Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Toohey, D. W.; Avallone, L. M.; Anderson, J. G.; Newman, P.; Lait, L.; Schoeberl, M. R.; Elkins, J. W.; Chan, K. R.

    1993-01-01

    Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses of up to 1 ppbv, which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 -/+ 4 kelvin. High ClO was always accompanied by loss of HCl mixing ratios equal to 1/2(ClO+ 2Cl2O2). These data indicate that the heterogeneous reaction HCl + ClONO2 - Cl2 + HNO3 on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO2, not HCl.

  4. Effects of polar stratospheric clouds in the Nimbus 7 LIMS Version 6 data set

    NASA Astrophysics Data System (ADS)

    Remsberg, Ellis; Harvey, V. Lynn

    2016-07-01

    The historic Limb Infrared Monitor of the Stratosphere (LIMS) measurements of 1978-1979 from the Nimbus 7 satellite were re-processed with Version 6 (V6) algorithms and archived in 2002. The V6 data set employs updated radiance registration methods, improved spectroscopic line parameters, and a common vertical resolution for all retrieved parameters. Retrieved profiles are spaced about every 1.6° of latitude along orbits and include the additional parameter of geopotential height. Profiles of O3 are sensitive to perturbations from emissions of polar stratospheric clouds (PSCs). This work presents results of implementing a first-order screening for effects of PSCs using simple algorithms based on vertical gradients of the O3 mixing ratio. Their occurrences are compared with the co-located, retrieved temperatures and related to the temperature thresholds needed for saturation of H2O and/or HNO3 vapor onto PSC particles. Observed daily locations where the major PSC screening criteria are satisfied are validated against PSCs observed with the Stratospheric Aerosol Monitor (SAM) II experiment also on Nimbus 7. Remnants of emissions from PSCs are characterized for O3 and HNO3 following the screening. PSCs may also impart a warm bias in the co-located LIMS temperatures, but by no more than 1-2 K at the altitudes of where effects of PSCs are a maximum in the ozone; thus, no PSC screening was applied to the V6 temperatures. Minimum temperatures vary between 187 and 194 K and often occur 1 to 2 km above where PSC effects are first identified in the ozone (most often between about 21 and 28 hPa). Those temperature-pressure values are consistent with conditions for the existence of nitric acid trihydrate (NAT) mixtures and to a lesser extent of super-cooled ternary solution (STS) droplets. A local, temporary uptake of HNO3 vapor of order 1-3 ppbv is indicated during mid-January for the 550 K surface. Seven-month time series of the distributions of LIMS O3 and HNO3 are shown

  5. Effects of Polar Stratospheric Clouds in the Nimbus 7 LIMS Version 6 Data Set

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis; Harvey, V. Lynn

    2016-01-01

    The historic Limb Infrared Monitor of the Stratosphere (LIMS) measurements of 1978-1979 from the Nimbus 7 satellite were re-processed with Version 6 (V6) algorithms and archived in 2002. The V6 data set employs updated radiance registration methods, improved spectroscopic line parameters, and a common vertical resolution for all retrieved parameters. Retrieved profiles are spaced about every 1.6 of latitude along orbits and include the additional parameter of geopotential height. Profiles of O3 are sensitive to perturbations from emissions of polar stratospheric clouds (PSCs). This work presents results of implementing a first-order screening for effects of PSCs using simple algorithms based on vertical gradients of the O3 mixing ratio. Their occurrences are compared with the co-located, retrieved temperatures and related to the temperature thresholds needed for saturation of H2O and/or HNO3 vapor onto PSC particles. Observed daily locations where the major PSC screening criteria are satisfied are validated against PSCs observed with the Stratospheric Aerosol Monitor (SAM) II experiment also on Nimbus 7. Remnants of emissions from PSCs are characterized for O3 and HNO3 following the screening. PSCs may also impart a warm bias in the co-located LIMS temperatures, but by no more than 1-2K at the altitudes of where effects of PSCs are a maximum in the ozone; thus, no PSC screening was applied to the V6 temperatures. Minimum temperatures vary between 187 and 194K and often occur 1 to 2 km above where PSC effects are first identified in the ozone (most often between about 21 and 28 hPa). Those temperature-pressure values are consistent with conditions for the existence of nitric acid trihydrate (NAT) mixtures and to a lesser extent of super-cooled ternary solution (STS) droplets. A local, temporary uptake of HNO3 vapor of order 1-3 ppbv is indicated during mid-January for the 550K surface. Seven-month time series of the distributions of LIMS O3 and HNO3 are shown based

  6. A multi-wavelength classification method for polar stratospheric cloud types using infrared limb spectra

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Höpfner, Michael; Griessbach, Sabine; Müller, Rolf; Pitts, Michael C.; Orr, Andrew M. W.; Riese, Martin

    2016-08-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on board the ESA Envisat satellite operated from July 2002 until April 2012. The infrared limb emission measurements represent a unique dataset of daytime and night-time observations of polar stratospheric clouds (PSCs) up to both poles. Cloud detection sensitivity is comparable to space-borne lidars, and it is possible to classify different cloud types from the spectral measurements in different atmospheric windows regions. Here we present a new infrared PSC classification scheme based on the combination of a well-established two-colour ratio method and multiple 2-D brightness temperature difference probability density functions. The method is a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption. The method has been tested in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions, geometries, and composition. The Bayesian classifier distinguishes between solid particles of ice and nitric acid trihydrate (NAT), as well as liquid droplets of super-cooled ternary solution (STS). The classification results are compared to coincident measurements from the space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument over the temporal overlap of both satellite missions (June 2006-March 2012). Both datasets show a good agreement for the specific PSC classes, although the viewing geometries and the vertical and horizontal resolution are quite different. Discrepancies are observed between the CALIOP and the MIPAS ice class. The Bayesian classifier for MIPAS identifies substantially more ice clouds in the Southern Hemisphere polar vortex than CALIOP. This disagreement is attributed in part to the difference in the sensitivity on mixed-type clouds. Ice seems to dominate the spectral behaviour in the limb infrared spectra and may cause an overestimation in ice occurrence

  7. The Formation of Molecular Clouds: Insights from Numerical Models

    NASA Astrophysics Data System (ADS)

    Heitsch, Fabian

    2010-10-01

    Galactic star formation occurs at a surprisingly low rate. Yet, recent large-scale surveys of dark clouds in the Galaxy show that one rarely finds molecular clouds without young stellar objects, suggesting that star formation should occur rapidly upon molecular cloud formation. This rapid onset challenges the traditional concept of ``slow'' star formation in long-lived molecular clouds. It also imposes strong constraints on the physical properties of the parental clouds, mandating that a cloud's structure and dynamics controlling stellar birth must arise during its formation. This requires a new approach to study initial conditions of star formation, namely addressing the formation of molecular clouds. Taking into account the observational constraints, I will outline the physics of flow-driven molecular cloud formation. I will discuss the relevance and the limitations of this scenario for setting the star formation efficiency in our Galaxy and beyond.

  8. Formation of giant molecular clouds in global spiral structures: The role of orbital dynamics and cloud-cloud collisions

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.; Stewart, G. R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes.

  9. Negative chlorine ion chemistry in the upper stratosphere and its application to an artificially created dense electron cloud

    NASA Astrophysics Data System (ADS)

    Prasad, S. S.

    1995-03-01

    This paper discusses new potential reactions of chlorine-bearing anions (negative ions) in the upper stratosphere. These reactions are then applied to the negative-ion chemistry following the injection of an electron cloud of very high density, of the order of 10(exp 6)-10(exp 7) e(-)/cu cm, in the 40-45 km region. The idea is to evaluate the recently proposed scheme to mitigate ozone depletion by converting the reactive chlorine atoms at these altitudes into Cl(-) ions which are unreactive towards ozone, i.e., electron scavenging of Cl. We find that the previously neglected photodetachment from Cl(-) is fast. For an overhead sun, this process may have a rate coefficient of 0.08/s when multiple scattering is included. The rate could be even higher, depending on the ground albedo. Switching reaction between Cl(-)-H2O and HCl might lead to the formation of Cl(-)-H2O and Cl(-)-HCl with O atoms could produce ClO(-) and CL2(-). The production of ClO(-) in this manner is significant because Cl(-) having a high photodetachment rate constant would be regenerated in the very likely reactions of ClO(-) with O. When these possibilities are considered, then it is found that the chlorine anions may not be the major ions inside the electron cloud due to the rapid photodetachment from Cl(-). Furthermore, in such a cloud, there may be the hazard that the Cl(-) - Cl(-)- H2O - ClO(-) - Cl(-) cycle amounts to catalytic destruction of two O atoms. Thus, the scheme could be risky if practised in the altitude region where atomic oxygen is an important constituent. Similar conclusions apply even if the ClO(-) species forms ClO3(-) by three-body association with O2, instead of reacting with O. It must be emphasized that the present study is speculative at this time, because none of the relevant reactions have been investigated in the laboratory as yet. The situation at the lower altitudes could be even more complex due to the formation of large cluster ions and the ion-induced aerosol

  10. Cloud Formation In The Troposphere Of Titan

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, J.; Liang, M.

    2010-10-01

    Methane-nitrogen containing clouds are known to be present in the troposphere of Titan. However, their formation mechanism and chemical properties remain poorly known. One major difficulty is due to the lack of laboratory constraints, resulting in great uncertainties in modeling cloud formation using microphysical models. Recently CH4-N2 clouds are synthesized in lab under conditions similar to that of Titan, providing a crucial constraint for microphysics model. In this study, a detail microphysical model is developed and used to analyze nucleation and condensation processes occurred in the troposphere of Titan. Sensitivity for the most probable unary and binary nucleation pathways and the subsequent condensation growth of particles is performed based on observed chemical and thermodynamic conditions of Titan's atmosphere. The model is first validated using a laboratory simulation. Comparing to laboratory results, our model simulation shows that binary nucleation from CH4 and N2 produces reasonable particle number concentration as in Titan's atmosphere when appropriate accommodation coefficient for vapor condensation is applied. Applying this detailed model to a model Titan atmosphere, clouds can be formed between 10-30 km, depending on the updraft velocity, with particle sizes of 1-10 μm. These results provide not only information of the size and composition of particles in Titan's atmosphere but also help to design laboratory experiments for measuring critical thermodynamic parameters relevant to the particle production mechanisms, as well as for interpreting observations.

  11. Retrieval of Polar Stratospheric Cloud Microphysical Properties From Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, Susanne; Reichardt, Jens; Yang, Ping; McGee, Thomas J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Knowledge of particle sizes and number densities of polar stratospheric clouds (PSCs) is highly important, because they are critical parameters for the modeling of the ozone chemistry of the stratosphere. In situ measurements of PSC particles are rare. the main instrument for the accumulation of PSC data are lidar systems. Therefore the derivation of some microphysical properties of PSCS from the optical parameters measured by lidars would be highly beneficial for ozone research. Inversion of lidar data obtained in the presence of PSCs formed from crystalline particles type 11 and the various nitric acid tri Ydrrate (NAT) types cannot be easily accomplished, because a suitable scattering theory for small faceted crystals has not been readily available tip to now. As a consequence, the T-matrix method is commonly used for the interpretation of these PSC lidar data. Here the assumption is made that the optical properties of an ensemble of spheroids resemble those of crystalline PSCs, and microphysical properties of the PSC are inferred from the optical signatures of the PSC at two or more wavelengths. The problem with the T-matrix approach is that the assumption of spheroidal instead of faceted particles can lead to dramatically wrong results: Usually cloud particle properties are deduced from analysis of lidar profiles of backscatter ratio and depolarization ratio. The particle contribution to the backscatter ratio is given by the product of the particle number density and the backscattering cross section. The latter is proportional to the value of the particle's scattering phase function at 180 degrees scattering angle. At 180 degrees however, the phase functions of rough, faceted crystals and of spheroids with same maximum dimension differ by a factor of 6. From this it follows that for a PSC consisting of faceted crystals, the particle number density is underestimated by roughly the same factor if spheroidal particles are unrealistically assumed. We are currently

  12. Formation of planetesimals in collapsing pebble clouds

    NASA Astrophysics Data System (ADS)

    Wahlberg Jansson, K.; Johansen, A.

    2014-07-01

    Asteroids and Kuiper belt objects are remnant planetesimals from the epoch of planet formation. Their physical properties hold important clues to understanding how minor bodies formed in the Solar Nebula. The first stage of the planet formation process is the accumulation of dust and ice grains into mm-cm-sized pebbles. Due to the interaction with the gas in the protoplanetary disk, these pebbles can clump together through the streaming instability and form gravitationally bound particle pebble 'clouds'. Pebbles in the cloud collide with each other, dissipating energy into heat. As the cloud loses energy, it contracts, and one would expect the particles to move faster and faster due to the negative heat capacity nature of self-gravitating systems. However, for high-mass clouds, the collapse is limited by free-fall and the cloud does not have time to virialize. This in turn leads to lower collision speeds but thanks to increased density also to increased collision rates and a runaway collapse. We investigate three important properties of the collapse: (i) the time-scale to collapse to solid density, (ii) the temporal evolution of the size spectrum of the pebbles, and (iii) the multiplicity of the resulting planetesimals. We find that planetesimals larger than 100 km in radius collapse on the free-fall time-scale of about 25 years. Lower-mass clouds have longer pebble collision time-scales and hence collapse much more slowly, with collapse times of a few hundred years for 10-km-scale planetesimals and a few thousand years for 1-km-scale planetesimals. The mass of the pebble cloud also determines the structure of the resulting planetesimal. The collision speed among the pebbles in low- mass clouds is below the threshold for fragmentation, forming pebble- pile planetesimals consisting of the primordial pebbles from the nebula. Planetesimals above 100 km in radius, on the other hand, consist of mixtures of dust (pebble fragments) and pebbles which have undergone

  13. Heterogeneous chemistry on Antarctic polar stratospheric clouds - A microphysical estimate of the extent of chemical processing

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Turco, R. P.; Elliott, S.

    1993-01-01

    A detailed model of polar stratospheric clouds (PSCs), which includes nucleation, condensational growth. and sedimentation processes, has been applied to the study of heterogeneous chemical reactions. For the first time, the extent of chemical processing during a polar winter has been estimated for an idealized air parcel in the Antarctic vortex by calculating in detail the rates of heterogeneous reactions on PSC particles. The resulting active chlorine and NO(x) concentrations at first sunrise are analyzed with respect to their influence upon the Antarctic ozone hole using a photochemical model. It is found that the species present at sunrise are primarily influenced by the relative values of the heterogeneous reaction rate constants and the initial gas concentrations. However, the extent of chlorine activation is also influenced by whether N2O5 is removed by reaction with HCl or H2O. The reaction of N2O5 with HCl, which occurs rapidly on type 1 PSCs, activates the chlorine contained in the reservoir species HCl. Hence the presence and surface area of type 1 PSCs early in the winter are crucial in determining ozone depletion.

  14. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  15. 21st Century Trends in Antarctic Temperature and Polar Stratospheric Cloud (PSC) Area in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Newman, P. A.

    2010-01-01

    This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.

  16. A Lidar and Backscatter Sonde Aerosol Measurement Campaign at Table Mountain During February-March 1997: Observations of Stratospheric Background Aerosols and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M.; Haner, D.; Kjome, N.; McDermid, I.; McGee, T.; Rosen, J.; Schafer, H. J.; Schrems, O.

    1999-01-01

    Altitude profiles of backscater ratio of the stratospheric background aerosol layer at altitudes between 15 and 25 km and high-altitude cirrus clouds at altitudes below 13 km are analyzed and discussed. Cirrus clouds were present on 16 of the 26 campaign nights.

  17. Effects of the El Chichon volcanic cloud in the stratosphere on the polarization of light from the sky.

    PubMed

    Coulson, K L

    1983-04-01

    A dense volcanic cloud from the El Chichon volcanic eruption has been observed in the stratosphere over Hawaii since it was first discovered at the Mauna Loa Observatory 9 Apr. 1982. Lidar observations have shown the cloud to have been dense and highly layered in its early stages, but as the cloud matured it became more homogeneous and the top portion underwent considerable enhancement. Measurements of the degree of polarization of skylight at the zenith and across the sky in the sun's vertical show that the polarization field is strongly modified by the effects of the cloud and that the modifications are of a different nature from those produced by high turbidity in the lower layers of the atmosphere. The degree of polarization at the zenith during twilight shows a secondary maximum at a solar depression D = 4.8-5 degrees, a secondary minimum at D = 4 degrees, a primary maximum at D = 1-2 degrees, and a rapid decrease to values generally <10% in the immediate sunrise period. The positions of the neutral points are strongly affected by the cloud, the Arago point being shifted from its normal position by as much as 15-20 degrees and the Babinet point being shifted even farther. Multiple Babinet points were observed on some occasions. The measurements indicate the polarization field to be modified more by the El Chichon cloud than it was by the clouds from previous eruptions which have occurred during this century.

  18. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  19. Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations.

    PubMed

    Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; Di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen

    2005-06-01

    A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

  20. A Long Data Record (1979-2003) of Stratospheric Ozone Derived from TOMS Cloud Slicing: Comparison with SAGE and Implications for Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerry R.; Chandra, Sushil; Bhartia, Pawan K.

    2004-01-01

    It is generally recognized that Stratospheric Aerosols and Gas Experiment (SAGE) stratospheric ozone data have become a standard long-record reference field for comparison with other stratospheric ozone measurements. This study demonstrates that stratospheric column ozone (SCO) derived from total ozone mapping spectrometer (TOMS) Cloud Slicing may be used to supplement SAGE data as a stand-alone long- record reference field in the tropics extending to middle and high latitudes over the Pacific. Comparisons of SAGE I1 version 6.2 SCO and TOMS version 8 Cloud Slicing SCO for 1984-2003 exhibit remarkable agreement in monthly ensemble means to within 1-3 DU (1 - 1.5% of SCO) despite being independently-calibrated measurements. An important component of our study is to incorporate these column ozone measurements to investigate long-term trends for the period 1979-2003. Our study includes Solar Backscatter Ultraviolet (SBW) version 8 measurements of upper stratospheric column ozone (i.e., zero to 32 hPa column ozone) to characterize seasonal cycles and seasonal trends in this region, as well as the lower stratosphere and troposphere when combined with TOMS SCO and total column ozone. The trend analyses suggest that most ozone reduction in the atmosphere since 1979 in mid-to-high latitudes has occurred in the Lower stratosphere below approx. 25 km. The delineation of upper and lower stratospheric column ozone indicate that trends in the upper stratosphere during the latter half of the 1979-2003 period have reduced to near zero globally, while trends in the lower stratosphere have become larger by approx. 5 DU decade%om the tropics extending to mid-latitudes in both hemispheres. For TCO, the trend analyses suggest moderate increases over the 25-year time record in the extra-tropics of both hemispheres of around 4-6 DU (Northern Hemisphere) and 6-8 DU (Southern Hemisphere).

  1. Polar stratospheric cloud processed air and potential vorticity in the Northern Hemisphere lower stratosphere at mid-latitudes during winter

    NASA Technical Reports Server (NTRS)

    Tuck, A. F.; Davies, T.; Hovde, S. J.; Noguer-Alba, M.; Fahey, D. W.; Kawa, S. R.; Kelly, K. K.; Murphy, D. M.; Proffitt, M. H.; Margitan, J. J.

    1992-01-01

    The present study compares small-scale (less than 100 km) features in ER-2 measurements of ClO, O3, H2O, N2O, and NO(y) outside the lower stratospheric Arctic vortex of 1988-1989 with features on potential vorticity maps from ECMWF. The potential vorticity maps are obtained from T106 analyses and forecasts. Some of the plots were truncated to lower resolution (T63 or T42) which smooths out the finer-scale structure. Comparison of these lower resolution plots shows how much detail is lost by excessive smoothing. It is also evident that the forecast plots lose fine-scale structure due to dissipation in the model resulting mainly from horizontal diffusion. It is concluded that blobs of air on the maps at latitudes between the vortex edge and 25 deg N having potential vorticities characteristic of the vortex did indeed originate from the vortex, but that the real atmosphere is more sharply differentiated than the meteorological analyses, implying that the potential vorticity maps underestimate the amount of peeled-off material.

  2. A Unified Satellite-Observation Polar Stratospheric Cloud (PSC) Database for Long-Term Climate-Change Studies

    NASA Technical Reports Server (NTRS)

    Fromm, Michael; Pitts, Michael; Alfred, Jerome

    2000-01-01

    This report summarizes the project team's activity and accomplishments during the period 12 February, 1999 - 12 February, 2000. The primary objective of this project was to create and test a generic algorithm for detecting polar stratospheric clouds (PSC), an algorithm that would permit creation of a unified, long term PSC database from a variety of solar occultation instruments that measure aerosol extinction near 1000 nm The second objective was to make a database of PSC observations and certain relevant related datasets. In this report we describe the algorithm, the data we are making available, and user access options. The remainder of this document provides the details of the algorithm and the database offering.

  3. Star formation triggered by cloud-cloud collisions

    NASA Astrophysics Data System (ADS)

    Balfour, S. K.; Whitworth, A. P.; Hubber, D. A.; Jaffa, S. E.

    2015-11-01

    We present the results of smoothed particle hydrodynamics simulations in which two clouds, each having mass MO = 500 M⊙ and radius RO = 2 pc, collide head-on at relative velocities of ΔvO = 2.4, 2.8, 3.2, 3.6 and 4.0 km s-1. There is a clear trend with increasing ΔvO. At low ΔvO, star formation starts later, and the shock-compressed layer breaks up into an array of predominantly radial filaments; stars condense out of these filaments and fall, together with residual gas, towards the centre of the layer, to form a single large-N cluster, which then evolves by competitive accretion, producing one or two very massive protostars and a diaspora of ejected (mainly low-mass) protostars; the pattern of filaments is reminiscent of the hub and spokes systems identified recently by observers. At high ΔvO, star formation occurs sooner and the shock-compressed layer breaks up into a network of filaments; the pattern of filaments here is more like a spider's web, with several small-N clusters forming independently of one another, in cores at the intersections of filaments, and since each core only spawns a small number of protostars, there are fewer ejections of protostars. As the relative velocity is increased, the mean protostellar mass increases, but the maximum protostellar mass and the width of the mass function both decrease. We use a Minimal Spanning Tree to analyse the spatial distributions of protostars formed at different relative velocities.

  4. Water Vapor and Cloud Formation in the TTL: Simulation Results vs. Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wang, T.; Dessler, A. E.; Schoeberl, M. R.

    2012-12-01

    Driven by analyzed winds and temperatures, a domain-filling forward trajectory model is used to simulate water vapor and clouds in the tropical tropopause layer (TTL). During this Lagrangian model calculations, excess water vapor is instantaneously removed from the parcel to keep the relative humidity with respect to ice from exceeding a specified (super) saturation level. The occurrences of dehydration serve as an indication of where and when clouds form. During the simulation, simple parameterizations for convective moistening through ice lofting and temperature perturbations from gravity waves are also included. Our simulations produce water vapor mixing ratios close to that observed by the Aura Microwave Limb Sounder (MLS). The results are consistent with the biases of reanalysis tropical tropopause temperature, which confirms the dominant role of the cold-point temperatures for regulating the water vapor abundances in the stratosphere. The simulation of cloud formation agrees with the patterns of cirrus distributions from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). It demonstrates that trajectory calculations driven by analyzed winds and temperatures can produce reasonable simulations of water vapor and cloud formation in the TTL.

  5. Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex

    NASA Astrophysics Data System (ADS)

    Molleker, S.; Borrmann, S.; Schlager, H.; Luo, B.; Frey, W.; Klingebiel, M.; Weigel, R.; Ebert, M.; Mitev, V.; Matthey, R.; Woiwode, W.; Oelhaf, H.; Dörnbrack, A.; Stratmann, G.; Grooß, J.-U.; Günther, G.; Vogel, B.; Müller, R.; Krämer, M.; Meyer, J.; Cairo, F.

    2014-10-01

    In January 2010 and December 2011, synoptic-scale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40μm were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical array imaging probe. Optical particle diameters of up to 35μm were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas-phase and particle-bound NOy was measured, as well as water vapor concentrations. The optical characteristics of the clouds were measured by the remote sensing lidar MAL (Miniature Aerosol Lidar) and by the in situ backscatter sonde MAS (Multiwavelength Aerosol Scatterometer), showing the synoptic scale of the encountered PSCs. The particle mode below 2μm in size diameter has been identified as supercooled ternary solution (STS) droplets. The PSC particles in the size range above 2μm in diameter are considered to consist of nitric acid hydrates, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. Therefore the measurement uncertainties concerning probable overestimations of measured particle sizes and volumes are discussed in detail. We hypothesize that either a strong asphericity or an alternate particle composition (e.g., water ice coated with NAT) could explain our observations. In particular

  6. To examine the association between oscillations of the stratospheric aerosol layer peaks and different types of clouds

    NASA Astrophysics Data System (ADS)

    Mane, P. B.

    2014-11-01

    Aerosol measurements have been carried out at Kolhapur (16°42'N, 74°14'E) by using newly designed Semiautomatic Twilight Photometer. The system is a ground based simple and inexpensive but very sensitive passive remote sensing technique. The altitudes of the Junge layer peaks on measurement days were derived from the aerosol vertical profiles. One attempt is made to examine the association between oscillations of the stratospheric aerosol layer peaks and different types of clouds. The values of AND for the Junge layer peaks for each observational day were also calculated. The graph between AND at peak point of Junge layer and day numbers was also studied in comparison with High, Medium and Low level clouds. There is an annual variation in the altitude of the peak of Junge layer also. Its maximum is observed during January. The annual variation of the altitude of the peak of Junge layer and the AND of Junge layer peak showed opposite phase relation.

  7. Morphological diagnostics of star formation in molecular clouds

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher Norris

    Molecular clouds are the birth sites of all star formation in the present-day universe. They represent the initial conditions of star formation, and are the primary medium by which stars transfer energy and momentum back to parsec scales. Yet, the physical evolution of molecular clouds remains poorly understood. This is not due to a lack of observational data, nor is it due to an inability to simulate the conditions inside molecular clouds. Instead, the physics and structure of the interstellar medium are sufficiently complex that interpreting molecular cloud data is very difficult. This dissertation mitigates this problem, by developing more sophisticated ways to interpret morphological information in molecular cloud observations and simulations. In particular, I have focused on leveraging machine learning techniques to identify physically meaningful substructures in the interstellar medium, as well as techniques to inter-compare molecular cloud simulations to observations. These contributions make it easier to understand the interplay between molecular clouds and star formation. Specific contributions include: new insight about the sheet-like geometry of molecular clouds based on observations of stellar bubbles; a new algorithm to disambiguate overlapping yet morphologically distinct cloud structures; a new perspective on the relationship between molecular cloud column density distributions and the sizes of cloud substructures; a quantitative analysis of how projection effects affect measurements of cloud properties; and an automatically generated, statistically-calibrated catalog of bubbles identified from their infrared morphologies.

  8. A-train CALIOP and MLS observations of early winter antarctic polar stratospheric clouds and nitric acid in 2008

    NASA Astrophysics Data System (ADS)

    Lambert, A.; Santee, M. L.; Wu, D. L.; Chae, J. H.

    2011-10-01

    A-train Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Microwave Limb Sounder (MLS) observations are used to investigate the development of polar stratospheric clouds (PSCs) and the gas phase nitric acid distribution in the early 2008 Antarctic winter. Observational evidence of gravity-wave activity is provided by Atmospheric Infrared Sounder (AIRS) radiances and infrared spectroscopic detection of nitric acid trihydrate (NAT) in PSCs is obtained from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Goddard Earth Observing System Data Assimilation System (GEOS-5 DAS) analyses are used to derive Lagrangian trajectories and to determine temperature-time histories of air parcels. We use CALIOP backscatter and depolarization measurements to classify PSCs and the MLS measurements to determine the corresponding gas phase HNO3 as a function of temperature. For liquid PSCs the uptake of HNO3 follows the theoretical equilibrium curve for supercooled ternary solutions (STS), but at temperatures about 1 K lower as determined from GEOS-5. In the presence of solid phase PSCs, above the ice frost-point, the HNO3 depletion occurs over a wider range of temperatures (+2 to -7 K) distributed about the NAT equilibrium curve. Rapid gas phase HNO3 depletion is first seen by MLS from from 23-25 May 2008, consisting of a decrease in the volume mixing ratio (parts per billion by volume) from 14 ppbv to 7 ppbv on the 46-32 hPa (hectopascal) pressure levels and accompanied by a 2-3 ppbv increase by renitrification at the 68 hPa pressure level. Temperature-time histories of air parcels demonstrate that the depleted HNO3 region is more clearly correlated with prior low temperature exposure of a few kelvin above the frost-point than with either the region bounded by the NAT existence temperature threshold or the region of minimum temperatures. From the combined data we infer the presence of large-size NAT particles with effective radii >5-7 μm and low NAT

  9. Magmatic gas source for the stratospheric SO[sub 2] cloud from the June 15, 1991, eruption of Mount Pinatubo

    SciTech Connect

    Westrich, H.R. ); Gerlach, T.M. )

    1992-10-01

    A water-rich magmatic gas phase escaped explosively from Mount Pinatubo on June 15, 1991, taking with it a load of crystalline and molten material sufficient to form pumice and tephra deposits with an estimated total dense-rock-equivalent volume of 3-5 km[sup 3], and carrying in it enough sulfur to form a 20 Mt SO[sub 2] cloud in the stratosphere. Application of the petrologic method for estimating sulfur degassing during the climatic event from the sulfur content of trapped glass inclusions and matrix glasses in the pumice deposits requires an unacceptably large volume of erupted magma to account for SO[sub 2] in the stratospheric cloud. The ubiquitous presence of primary vapor bubbles in glass inclusions and unaltered anhydrite phenocrysts in the pumice suggest that sulfur was present in a separate H[sub 2]O-rich gas phase of the Pinatubo magma before eruption. Thus, for this eruption, and perhaps others, the petrologic method for estimating sulfur degassing is prone to substantial underestimation of sulfur release and the potential climatic impact of past explosive eruptions.

  10. Models for Polar Haze Formation in Jupiter's Stratosphere

    NASA Astrophysics Data System (ADS)

    Friedson, A. James; Wong, Ah-San; Yung, Yuk L.

    2002-08-01

    We present coupled chemical-microphysical models for the formation, growth, and physical properties of the jovian polar haze based on a gas-phase photochemical model for the auroral regions developed by A. S. Wong et al. (2000, Astrophys. J.534, L215-217). In this model, auroral particle precipitation provides an important energy source for enhanced decomposition of methane and production of benzene and polycyclic aromatic hydrocarbons (PAHs). We find that at high altitude, A 4 (pyrene, a hydrocarbon consisting of four fused aromatic rings) should homogeneously nucleate to form tiny primary particles. At lower altitudes, A 3 (phenanthrene) and A 2 (naphthalene) heterogeneously nucleate on the A 4 nuclei. These particles subsequently grow by additional condensation of A 2 on the nucleated particles and by coagulation and eventually sediment out to the troposphere. We run different cases of the aerosol microphysical model for different assumptions regarding the fractal dimension of aggregate particles formed by the coagulation process. If coagulation is assumed to produce spherical particles (of dimensionality 3), then their mean radius at altitudes below the 20-mbar pressure level is computed to be approximately 0.1 μm. If coagulation produces fractal aggregates of dimension 2.1, then their equivalent mean radius below the 20-mbar level is much larger, of order 0.7 μm. Aggregates with fractal dimensions between 2.1 and 3 form with equivalent mean radii between 0.1 and 0.7 μm. In every case, mean particle radius is found to decrease with increasing altitude, as expected for a system approximately in sedimentation-coagulation equilibrium. The predicted range of altitudes where aerosol formation occurs and the mean size to which particles grow are found to be generally consistent with observations. However, our calculations cannot presently account for the large amount of total aerosol loading inferred by M. G. Tomasko et al. (1986, Icarus65, 218-243). We suggest

  11. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K Cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  12. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER( box model for an idealized parcel in the lower stratosphere at 70 N during winter/spring with different assumed stratospheric coolings and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  13. Letter to the Editor: A strange cloud in the Arctic summer stratosphere 1998 above Esrange (68 deg N), Sweden

    NASA Astrophysics Data System (ADS)

    Siebert, J.; Timmis, C.; Vaughan, G.; Fricke, K. H.

    2000-04-01

    When the University of Bonn lidar on the Esrange (68 deg N, 21 deg E), Sweden, was switched on in the evening of July 18, 1998, a geometrically and optically thin cloud layer was present near 14 km altitude or 400 K potential temperature, where it persisted for two hours. The tropopause altitude was 4 km below the cloud altitude. The cloud particles depolarized the lidar returns, thus must they have been aspherical and hence solid. Atmospheric temperatures near 230 K were approximately 40 K too high to support ice particles at stratospheric water vapour pressures of a few ppmv. The isentropic back trajectory on 400 K showed the air parcels to have stayed clear of active major rocket launch sites. The air parcels at 400 K had traveled from the Aleutians across Canada and the Atlantic Ocean arriving above central Europe and then turned northward to pass over above the lidar station. Parcels at levels at +/-25 K from 400 K had come from the pole and joined the 400 K trajectory path above eastern Canada. Apparently the cloud existed in a filament of air with an origin different from those filaments both above and below. Possibly the 400 K level air parcels had carried soot particles from forest wild fires in northern Canada or volcanic ash from the eruption of the Korovin Volcano in the Aleutian Islands.

  14. A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008

    NASA Astrophysics Data System (ADS)

    Lambert, A.; Santee, M. L.; Wu, D. L.; Chae, J. H.

    2012-03-01

    A-train Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Microwave Limb Sounder (MLS) observations are used to investigate the development of polar stratospheric clouds (PSCs) and the gas-phase nitric acid distribution in the early 2008 Antarctic winter. Observational evidence of gravity-wave activity is provided by Atmospheric Infrared Sounder (AIRS) radiances and infrared spectroscopic detection of nitric acid trihydrate (NAT) in PSCs is obtained from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Goddard Earth Observing System Data Assimilation System (GEOS-5 DAS) analyses are used to derive Lagrangian trajectories and to determine temperature-time histories of air parcels. We use CALIOP backscatter and depolarization measurements to classify PSCs and the MLS measurements to determine the corresponding gas-phase HNO3 as a function of temperature. For liquid PSCs the uptake of HNO3 follows the theoretical equilibrium curve for supercooled ternary solutions (STS), but at temperatures about 1 K lower as determined from GEOS-5. In the presence of solid phase PSCs, above the ice frost-point, the HNO3 depletion occurs over a wider range of temperatures (+2 to -7 K) distributed about the NAT equilibrium curve. Rapid gas-phase HNO3 depletion is first seen by MLS from from 23-25 May 2008, consisting of a decrease in the volume mixing ratio from 14 ppbv (parts per billion by volume) to 7 ppbv on the 46-32 hPa (hectopascal) pressure levels and accompanied by a 2-3 ppbv increase by renitrification at the 68 hPa pressure level. The observed region of depleted HNO3 is substantially smaller than the region bounded by the NAT existence temperature threshold. Temperature-time histories of air parcels demonstrate that the depletion is more clearly correlated with prior exposure to temperatures a few kelvin above the frost-point. From the combined data we infer the presence of large-size NAT particles with effective radii >5-7 μm and low NAT

  15. Type I polar stratospheric cloud particles - Concentration, shape, size, light extinction

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Ferry, G. V.; Snetsinger, K. G.; Goodman, J.; Hamill, P.; Livingston, J. M.; Mccormick, M. P.

    1990-01-01

    Results from the flight on January 24, 1989 of the Airborne Arctic Stratospheric Experiment during which the ER-2 aircraft transitioned from unsaturated to ice saturated air at 20 km altitude are presented. Aerosol particles were sampled by wire impactors and examined for number density as a function of particle size by taking photomicrographs in a scanning electron microscope and visually sizing and counting the particles. Differences in the chemical, physical and optical properties of stratospheric aerosol between ice-saturated and nonsaturated air are described.

  16. In-situ measurements of total reactive nitrogen, total water vapor, and aerosols in polar stratospheric clouds in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kelly, K. K.; Ferry, G. V.; Poole, L. R.; Wilson, J. C.; Murphy, D. M.; Chan, K. Roland

    1988-01-01

    Measurements of total reactive nitrogen, NOy, total water vapor, and aerosols were made as part of the Airborne Antarctic Ozone Experiment. The measurements were made using instruments located onboard the NASA ER-2 aircrafts which conducted twelve flights over the Antarctic continent reaching altitudes of 18 km at 72 S latitude. Each instrument utilized an ambient air sample and provided a measurement up to 1 Hz or every 200 m of flight path. The data presented focus on the flights of Aug. 17th and 18th during which Polar Stratospheric Clouds (PSCs) were encountered containing concentrations of 0.5 to 1.0 micron diameter aerosols greater than 1 cm/cu. The temperature pressure during these events ranged as low as 184 K near 75 mb pressure, with water values near 3.5 ppm by volume (ppmv). With the exception of two short periods, the PSC activity was observed at temperatures above the frost point of water over ice. The data gathered during these flights are analyzed and presented.

  17. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  18. Simulation of the climate effects of a geoengineered stratospheric sulfate cloud with the NASA GEOSCCM

    NASA Astrophysics Data System (ADS)

    Oman, L.; Aquila, V.; Colarco, P. R.

    2012-12-01

    Suggested solar radiation management (SRM) methods to mitigate global warming include the injection of sulfur dioxide (SO2 ) in the stratosphere. We present the results from SRM simulation ensemble performed with the NASA GEOS-5 Chemistry Climate Model (GEOSCCM). We focus on the response of the stratosphere to a stratospheric SO2 injection. In particular, we investigate the changes of the stratospheric dynamics and composition, and the impact of an increased aerosol layer on ozone recovery. As prescribed for experiment G4 of the Geoengineering Model Intercomparison Project (GeoMIP), we inject 5 Tg/year of SO2 from 2020 to 2070. The location of the injection is the equator at 0° longitude between 16 km and 25 km altitude. After 2070, we interrupt the SO2 injection and simulate the readjustment until 2090. The emissions scenario is RCP4.5, which predicts a radiative forcing of about 4.5 W/m2 by 2100. This is considered a "medium-low" scenario in terms of radiative forcing. GEOSCCM does not include an interactive ocean model, therefore we use the sea surface temperatures forecasted by the Community Climate System Model Version 4 (CCSM4) for RCP4.5.

  19. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    SciTech Connect

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James; Tasker, Elizabeth J.

    2013-10-10

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

  20. Star Formation in High-Latitude Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Magnus McGehee, Peregrine

    2015-08-01

    Galactic star formation preferentially occurs within the dense molecular clouds that reside primarily near the disk mid-plane and are thus seen in projection against the Milky Way. A population of molecular clouds are seen at higher Galactic latitude although distance determinations are required in order to identify those that are actually in extraplanar environments.We review the known high-latitude star formation regions (MBM 12, LDN 1642, and HRK 81.4-77.8) and discuss the nature and environment of other high-latitude molecular clouds. Distances to each of these structures are deduced from optical reddening profiles derived from analysis of Sloan Digital Sky Survey photometry. In particular, we examine those molecular clouds found within the complex of intermediate and high velocity HI clouds that span the Northern 2nd Galactic Quadrant: the Draco clouds, the IVC pair at (l+b) = 135+51 and 135+54, and IREC 306.

  1. Do cloud-cloud collisions trigger high-mass star formation? I. Small cloud collisions

    SciTech Connect

    Takahira, Ken; Tasker, Elizabeth J.; Habe, Asao

    2014-09-01

    We performed sub-parsec (∼0.06 pc) scale simulations of two idealized molecular clouds with different masses undergoing a collision. Gas clumps with densities greater than 10{sup –20} g cm{sup –3} (0.3 × 10{sup 4} cm{sup –3}) were identified as pre-stellar cores and tracked throughout the simulation. The colliding system showed a partial gas arc morphology with core formation in the oblique shock front at the collision interface. These characteristics support NANTEN observations of objects suspected to be colliding giant molecular clouds (GMCs). We investigated the effect of turbulence and collision speed on the resulting core population and compared the cumulative mass distribution to cores in observed GMCs. Our results suggest that a faster relative velocity increases the number of cores formed but that cores grow via accretion predominately while in the shock front, leading to a slower shock being more important for core growth. The core masses obey a power-law relation with index γ = –1.6, in good agreement with observations. This suggests that core production through collisions should follow a similar mass distribution as quiescent formation, albeit at a higher mass range. If cores can be supported against collapse during their growth, then the estimated ram pressure from gas infall is of the right order to counter the radiation pressure and form a star of 100 M {sub ☉}.

  2. Do Cloud-Cloud Collisions Trigger High-mass Star Formation? I. Small Cloud Collisions

    NASA Astrophysics Data System (ADS)

    Takahira, Ken; Tasker, Elizabeth J.; Habe, Asao

    2014-09-01

    We performed sub-parsec (~0.06 pc) scale simulations of two idealized molecular clouds with different masses undergoing a collision. Gas clumps with densities greater than 10-20 g cm-3 (0.3 × 104 cm-3) were identified as pre-stellar cores and tracked throughout the simulation. The colliding system showed a partial gas arc morphology with core formation in the oblique shock front at the collision interface. These characteristics support NANTEN observations of objects suspected to be colliding giant molecular clouds (GMCs). We investigated the effect of turbulence and collision speed on the resulting core population and compared the cumulative mass distribution to cores in observed GMCs. Our results suggest that a faster relative velocity increases the number of cores formed but that cores grow via accretion predominately while in the shock front, leading to a slower shock being more important for core growth. The core masses obey a power-law relation with index γ = -1.6, in good agreement with observations. This suggests that core production through collisions should follow a similar mass distribution as quiescent formation, albeit at a higher mass range. If cores can be supported against collapse during their growth, then the estimated ram pressure from gas infall is of the right order to counter the radiation pressure and form a star of 100 M ⊙.

  3. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE PAGESBeta

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  4. Comet Formation in Collapsing Pebble Clouds: Pebble Formation

    NASA Astrophysics Data System (ADS)

    Lorek, Sebastian; Lacerda, Pedro; Blum, Jürgen

    2016-10-01

    The formation of comets by gradual growth from (sub-)micron sized ice and dust monomers to km-sized bodies suffers from growth barriers (bouncing, fragmentation, drift). Growth stalls at sizes between mm and m, rendering it considerably difficult to form km-sized objects. However, the streaming instability and subsequent gravitational collapse of clouds of pebbles (particle agglomerates) provide an alternative. The pebbles require Stokes numbers between 0.01 and 3, which corresponds to sizes between mm and dm, unless the pebbles are very porous. Furthermore, the local solid/gas density ratio must be near unity and the local total mass in solids must be >2-3x higher than the minimum mass solar nebula value (1% of gas mass). The gravitational collapse of the pebble clouds then bypasses the growth barriers, forming km-sized bodies directly. The observed bulk properties of comets, e.g. porosity near 80%, are consistent with this scenario. Okuzumi et al. (2012) showed that including porosity comets can form directly via coagulation from sub-micron monomers. However, this relies on using 0.1 micron monomers and pure sticking collisions. Krijt et al. (2015) included erosion and found that highly porous pebbles around 109 g in mass can form and might trigger the streaming instability. Drazkowska & Dullemond (2014) showed that compact coagulation can lead to triggering the streaming instability. All those studies include only ice and a simplified collision model. However, a large fraction of a comet's mass is dust. Here, we develop a pebble formation model that includes sticking, bouncing, mass transfer/erosion, and fragmentation, as well as porosity. To take dust and ice into account, we extended the collision model for the treatment of mixed pebbles by linearly interpolating the threshold velocities and compression curves between the cases of pure dust and pure ice based on the fractional abundance of dust monomers. Our simulations show that pebble formation with the full

  5. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    SciTech Connect

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.

  6. Fourier transform infrared studies of model polar stratospheric cloud surfaces - Growth and evaporation of ice and nitric acid/ice

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Middlebrook, Ann M.

    1990-01-01

    Fourier-transform infrared surface studies are used to probe the microphysical properties of nitric acid trihydrate (NAT) and ice films representative of type I and II polar stratospheric clouds (PSC). Experiments indicate that, on initial exposure to 1.8 microtorr of HNO3, a layer of ice is quantitatively converted to NAT. However, conversion of ice to NAT does not proceed indefinitely, but rather the system reaches saturation. For longer exposures or higher HNO3 pressures, NAM becomes the dominant nitric acid containing species on the surface. Evaporation studies were performed to test the feasibility of a recent denitrification mechanism. The results indicate that ice coated with 0.20 micron of NAT evaporates at a temperature of about 4 C higher than uncoated ice.

  7. Development of an automated classification scheme for detection of polar stratospheric clouds over Antarctica using AVHRR imagery

    NASA Astrophysics Data System (ADS)

    Foschi, Patricia S.; Pagan, Kathy L.; Garcia, Oswaldo; Smith, Deborah K.; Gaines, Steven E.; Hipskind, R. Stephen

    1995-12-01

    Although polar stratospheric clouds (PSCs) are a critical component in the ozone depletion process, their timing, duration, geographic extent, and annual variability are not well understood. The goal of this study is the development of an automated classification scheme for detecting PSCs using NOAA AVHRR data. Visual interpretation, density slicing, and standard multispectral classification detect most optically thick PSCs, but only some thin PSCs. Two types of automated techniques for detecting thin PSCs are being investigated: namely, multispectral classification methods, including the use of texture and other imagederived features, and back-propagation neural networks, including the use of hyperspatial and hypertemporal data. UARS CLAES temperature and aerosol extinction coefficient data are being used as a verification dataset. If successful, this classification scheme will be used to process the entire record of AVHRR data in order to assemble a long-term PSC climatology.

  8. Lidar observations of Arctic polar stratospheric clouds, 1988 - Signature of small, solid particles above the frost point

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Osborn, M. T.; Hunt, W. H.

    1988-01-01

    The paper presents recent (January 1988) Arctic airborne lidar data which suggest that Type I polar stratospheric clouds (PSCs) are composed of small solid particles with radii on the order of 0.5 micron. PSCs were observed remotely in the 21-24 km altitude range north of Greenland during a round-trip flight from Andenes, Norway on January 29, 1988, aboard the NASA Wallops Flight Facility P-3 Orion aircraft. Synoptic analyses at the 30-mb level show local temperatures of 191-193 K, which are well above the estimated frost point temperature of 185 K; this suggests that the PSCs were probably of the binary HNO3-H2O (Type I) class.

  9. High-mass star formation due to cloud-cloud collisions

    NASA Technical Reports Server (NTRS)

    Scoville, N. Z.; Sanders, D. B.; Clemens, D. P.

    1986-01-01

    Observational evidence is presented for the compression of molecular gas in the interface between colliding GMCs, and it is proposed that this is the dominant mode for high-mass star formation in the Galaxy. For a sample of 94 GMCs associated with high-luminosity radio H II regions, the efficiency of OB star formation decreases significantly with increasing cloud mass over the observed mass range. It is concluded that star formation is generally not stimulated by an internal mechanism. The formation of OB stars by cloud-cloud collisions is suggested by the observed quadratic dependence of the Galactic H II region distribution on the local density of H2. The preference for OB star formation in spiral arms is then naturally accounted for by orbit crowding and the increased collision frequency of clouds in the spiral arms.

  10. CO mapping of the Orion molecular cloud: The influence of star formation on cloud structure

    NASA Technical Reports Server (NTRS)

    Schloerb, F. P.; Snell, R. L.; Goldsmith, P. F.; Morgan, J. A.

    1986-01-01

    Regions of massive star formation have long been believed to have a profound influence on the structure of their surrounding molecular clouds. The ways in which massive star formation has altered the structure and kinematics of the Orion Molecular Cloud are discussed. The data to be discussed consists of a large scale map of the CO J=1-0 emission from approximately 3 square degrees of OMC-1. During 1985, the Five College Radio Astronomy Observatory 14M antenna was used to map a 2 deg x 1 deg region centered on alpha(1950) = 5(h)33(m)00(s) delta(1950) = -5 deg 30 min. The region mapped in 1985 covers the well known HII regions M42, M43, and NGC1977, and the CO map contains abundant evidence of the interaction between these regions and the molecular cloud. Indeed, the global structure of the cloud appears to have been strongly influenced by the continuous formation of massive stars within the cloud. Individual instances of some of these features are discussed. There appear to be two classes of features which are indicative of this interaction: CO bright rims and CO holes. During 1986, we have undertaken further mapping of OMC-1 to the south of the region covered by the 1985 map. This portion of the cloud contains significant regions of star formation, but O star formation has not occured and large HII regions have not developed to alter the appearance of the cloud. A detailed map of this region is thus an opportunity to view the structure of the molecular cloud before it has been altered by massive star formation. Preliminary analysis of data obtained in this region suggests that the structure and kinematics of the southern portion of the Orion cloud are indeed dramatically different from those of the region previously mapped. Comparison of the two regions thus supports models of the development of structure in molecular clouds through interaction with the HII regions formed within them.

  11. Artificial cloud formation in the atmosphere.

    PubMed

    Jayaweera, K O; Ohtake, T

    1972-11-01

    An artificial cloud in the cloudless atmosphere at a temperature below 0 degrees C was formed by introducing pellets of Dry Ice into air containing more water vapor than would be present at the saturation point with respect to ice. Such clouds could be utilized to establish radiative equilibrium between ground and air so as to inhibit the cooling of selective arctic surface regions under clear skies.

  12. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  13. New Particle Formation in and Around Ice Clouds

    NASA Astrophysics Data System (ADS)

    Axisa, D.; Reeves, J. M.; Wilson, J. C.; Lawson, P.; Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Schiller, C.; Kraemer, M.

    2012-12-01

    The MACPEX mission permitted observation of aerosol size distributions in the 4 to 1000 nm diameter range, cloud particles and water vapor in and around clouds in the mid-latitude upper troposphere. The NMASS consists of 5 condensation particle counters (cpcs) operating in parallel. The 5 cpcs have lower detection limits of approximately 4 nm, 8 nm, 16 nm, 32 nm and 50 nm. The FCAS measures the optical size of particles in the 100 nm to 1000 nm range. The data from these instruments are combined to provide size distributions from 4 to 1000 nm. Size distributions that show a local maximum in the smallest size range are evidence for recent new particle formation since the lifetime of particles in this size range is short due to coagulation. Size distributions showing evidence of new particle formation were observed inside and near clouds in the altitude range from 10 to 14 km. The cloud particles in these high clouds are expected to be ice. Care was taken to avoid interpreting shattering of ice on the aerosol inlets as new particles. The size distributions showing new particle formation are contrasted with size distributions that do not show new particle formation in and out of the clouds. Temperature, relative humidity and trace gas abundances in air parcels exhibiting new particle formation are contrasted with those in air parcels not showing new particle formation.

  14. How Temperature and Water levels affect Polar Mesospheric Cloud Formation

    NASA Astrophysics Data System (ADS)

    Smith, L. L.; Randall, C. E.; Harvey, V.

    2012-12-01

    Using the Cloud Imaging and Particle Size (CIPS) instrument data, which is part of the Aeronomy in the Mesosphere (AIM) mission, we compare the albedo and ice water content measurements of CIPS with the Navy Operation Global Atmospheric Prediction System - Advanced Level Phyiscs and High Altitude (NOGAPS-ALPHA) temperature and water vapor data in order to derive a greater understanding of cloud formation and physics. We particularly focus on data from June 2007 and July 2007 in this case study because of particular cloud structures and formations during this time period for future studies.

  15. SUPERNOVA REMNANTS AND STAR FORMATION IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Desai, Karna M.; Chu, You-Hua; Gruendl, Robert A.; Dluger, William; Katz, Marshall; Wong, Tony; Looney, Leslie W.; Chen, C.-H. Rosie; Hughes, Annie; Muller, Erik; Ott, Juergen; Pineda, Jorge L.

    2010-08-15

    It has often been suggested that supernova remnants (SNRs) can trigger star formation. To investigate the relationship between SNRs and star formation, we have examined the known sample of 45 SNRs in the Large Magellanic Cloud (LMC) to search for associated young stellar objects (YSOs) and molecular clouds. We find seven SNRs associated with both YSOs and molecular clouds, three SNRs associated with YSOs but not molecular clouds, and eight SNRs near molecular clouds but not associated with YSOs. Among the 10 SNRs associated with YSOs, the association between the YSOs and SNRs either can be rejected or cannot be convincingly established for eight cases. Only two SNRs have YSOs closely aligned along their rims; however, the time elapsed since the SNR began to interact with the YSOs' natal clouds is much shorter than the contraction timescales of the YSOs, and thus we do not see any evidence of SNR-triggered star formation in the LMC. The 15 SNRs that are near molecular clouds may trigger star formation in the future when the SNR shocks have slowed down to <45 km s{sup -1}. We discuss how SNRs can alter the physical properties and abundances of YSOs.

  16. Aircraft observations of biomass burning emissions in the lower stratosphere during the Deep Convective Clouds and Chemistry Experiment (DC3)

    NASA Astrophysics Data System (ADS)

    Knapp, D. J.; Montzka, D.; Campos, T. L.; Flocke, F. M.; Stechman, D.; Farris, C.; Rooney, M.; Pan, L.; Apel, E. C.; Hornbrook, R. S.; Riemer, D. D.; Chen, D.; Huey, L. G.; Brock, C. A.; Froyd, K. D.; Liao, J.; Murphy, D. M.; Ryerson, T. B.; Dibb, J. E.; Scheuer, E. M.; Diskin, G. S.; Sachse, G. W.; Gao, R.; Langridge, J. M.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Fromm, M. D.; Lindsey, D.; Weinheimer, A. J.

    2012-12-01

    During test flights for the Deep Convective Clouds and Chemistry Experiment conducted in May and June of 2012, clear indications of biomass burning (BB) were observed in the Lower Stratosphere (LS). Enhancements in CO, aerosols, and CH3CN substantiate the impact of BB effluents on the studied air mass. A large complex of fires southwest of Lake Baikal in Russia had been observed to flare up significantly on May 7, 2012, leading to a strong Aerosol Index signature. The aerosol plume was tracked using AURA Ozone Monitoring Instrument (OMI) and Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO) curtains from the Baikal area, over Northern Siberia, the Aleutian Islands, South Western Canada and ultimately to the DC3 flight study area on May 14, 2012. BB tracers were sampled from the NASA DC8 and the NSF GV aircraft over a lateral range of 600km and an altitude of approximately 11.7 km which is approximately 0.5 km to 1.0 km above the local cold point tropopause.

  17. The vapor pressures of supercooled NHO3/H2O solutions. [in polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Hanson, David R.

    1990-01-01

    A procedure utilizing the Gibbs-Duhem relation is used to extrapolate vapor pressures of supercooled HNO3 mixtures to 190 K. Values of A and B from the equation logP = A - B/T are presented for solutions between 0.20 and 0.25 mole fraction HNO3. In the stratosphere, if sufficient HNO3 vapor is present because it has not come into equilibrium with the nitric acid trihydrate, supercooled nitric acid solutions could condense at temperatures up to 1.5 + or - 0.8 K above the ice point.

  18. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltsmans, S. J.

    1988-01-01

    Balloon-borne frost point measurements were performed over Antarctica during September-October 1987 as part of the NOZE II effort at McMurdo. The results show water mixing ratios on the order of 2 ppmv in the 20 km region, suggesting that models of the springtime Antarctic stratosphere should be based on approximately 2 ppmv water vapor. Evidence indicating that some PSCs form at temperatures higher than the frost point in the 15 to 20 km region is discussed. This supports the binary HNO3-H2O theory of PSC composition.

  19. Cloud-particle galactic gas dynamics and star formation

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.

    1983-01-01

    Galactic gas dynamics, spiral structure, and star formation are discussed in relation to N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium is seen as cloud-dominated and supernova-perturbed. It is noted that the cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale, in response to a spiral galactic gravitational field, global density waves and galactic shocks develop having large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds figure in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) or requiring a prescribed equation of state (such as the isothermal condition), the cloud-particle picture retains much of the detail lost in earlier work. By detail is meant the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often seen to be superposed on the global spiral structure.

  20. Effect of Stellar Encounters on Comet Cloud Formation

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.

    2015-07-01

    We have investigated the effect of stellar encounters on the formation and disruption of the Oort cloud using the classical impulse approximation. We calculate the evolution of a planetesimal disk into a spherical Oort cloud due to the perturbation from passing stars for 10 Gyr. We obtain the empirical fits of the e-folding time for the number of Oort cloud comets using the standard exponential and Kohlrausch formulae as functions of the stellar parameters and the initial semimajor axes of planetesimals. The e-folding time and the evolution timescales of the orbital elements are also analytically derived. In some calculations, the effect of the Galactic tide is additionally considered. We also show the radial variations of the e-folding times to the Oort cloud. From these timescales, we show that if the initial planetesimal disk has the semimajor axes distribution {dn}/{da}\\propto {a}-2, which is produced by planetary scattering, the e-folding time for planetesimals in the Oort cloud is ∼10 Gyr at any heliocentric distance r. This uniform e-folding time over the Oort cloud means that the supply of comets from the inner Oort cloud to the outer Oort cloud is sufficiently effective to keep the comet distribution as {dn}/{dr}\\propto {r}-2. We also show that the final distribution of the semimajor axes in the Oort cloud is approximately proportional to {a}-2 for any initial distribution.

  1. Molecular Clouds, Star Formation and Galactic Structure.

    ERIC Educational Resources Information Center

    Scoville, Nick; Young, Judith S.

    1984-01-01

    Radio observations show that the gigantic clouds of molecules where stars are born are distributed in various ways in spiral galaxies, perhaps accounting for the variation in their optical appearance. Research studies and findings in this area are reported and discussed. (JN)

  2. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  3. Responses of polar mesospheric cloud brightness to stratospheric gravity waves at the South Pole and Rothera, Antarctica

    NASA Astrophysics Data System (ADS)

    Chu, Xinzhao; Yamashita, Chihoko; Espy, Patrick J.; Nott, Graeme J.; Jensen, Eric J.; Liu, Han-Li; Huang, Wentao; Thayer, Jeffrey P.

    2009-03-01

    We present the first observational proof that polar mesospheric cloud (PMC) brightness responds to stratospheric gravity waves (GWs) differently at different latitudes by analyzing the Fe Boltzmann lidar data collected from the South Pole and Rothera (67.5°S, 68.0°W), Antarctica. Stratospheric GW strength is characterized by the root-mean-square (RMS) relative density perturbation in the 30-45 km region and PMC brightness is represented by the total backscatter coefficient (TBC) in austral summer from November to February. The linear correlation coefficient (LCC) between GW strength and PMC brightness is found to be +0.09 with a 42% confidence level at the South Pole and -0.49 with a 98% confidence level at Rothera. If a PMC case potentially affected by a space shuttle exhaust plume is removed from the Rothera dataset, the negative correlation coefficient and confidence level increase to -0.61 and 99%, respectively. The Rothera negative correlation increases when shorter-period waves are included while no change is observed in the South Pole correlation. Therefore, observations show statistically that Rothera PMC brightness is negatively correlated with the stratospheric GW strength but no significant correlation exists at the South Pole. A positive correlation of +0.74 with a confidence level of 99.98% is found within a distinct subset of the South Pole data but the rest of the dataset exhibits a random distribution, possibly indicating different populations of ice particles at the South Pole. Our data show that these two locations have similar GW strength and spectrum in the 30-45 km region during summer. The different responses of PMC brightness to GW perturbations are likely caused by the latitudinal differences in background temperatures in the ice crystal growth region between the PMC altitude and the mesopause. At Rothera, where temperatures in this region are relatively warm and supersaturations are not as large, GW-induced temperature perturbations can

  4. Numerical models of Oort Cloud formation and comet delivery

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.

    I use a newly designed numerical algorithm to simulate the dynamics of the Oort Cloud. The processes I model are the formation of the cloud, the current delivery of comets to the planetary region, and long-period comet production during comet showers. Concerning the cloud's formation, I find that the Sun's birth environment dramatically affects the structure of the inner Oort Cloud as well as the amount of material trapped in this region. In addition, the structure of this reservoir is also sensitive to the Sun's orbital history in the Milky Way. This raises the possibility that constraining our inner Oort Cloud's properties can constrain the Sun's dynamical history. In this regard, I use my simulations of comet delivery to better understand what the population of comets passing through the planetary region can tell us about the inner Oort Cloud. I find that the inner Oort Cloud (rather than the scattered disk) dominates the production of planet-crossing TNOs with perihelia beyond 15 AU and semimajor axes greater than a few hundred AU. My results indicate that two objects representing this population (2000 00 67 and 2006 SQ 372 ) have already been detected, and the detection of many analogous objects can constrain the inner Oort Cloud. In addition, these simulations of comet delivery also demonstrate that, contrary to previous understanding, the inner Oort Cloud is a significant and perhaps the dominant source of known long-period comets. This result can be used to place the first observationally motivated upper limit on the inner Oort Cloud's population. Finally, with this maximum population value, I use my comet shower simulations to show that comet showers are unlikely to be responsible for more than one minor extinction event since the Cambrian Explosion.

  5. Schmidt's conjecture and star formation in molecular clouds

    SciTech Connect

    Lada, Charles J.; Forbrich, Jan; Lombardi, Marco; Roman-Zuniga, Carlos; Alves, João F. E-mail: marco.lombardi@unimi.it E-mail: jan.forbrich@univie.ac.at

    2013-12-01

    We investigate Schmidt's conjecture (i.e., that the star formation rate (SFR) scales in a power-law fashion with the gas density) for four well-studied local molecular clouds (giant molecular clouds, GMCs). Using the Bayesian methodology, we show that a local Schmidt scaling relation of the form Σ{sub ∗}(A{sub K})=κA{sub K}{sup β} (protostars pc{sup –2}) exists within (but not between) GMCs. Further, we find that the Schmidt scaling law does not by itself provide an adequate description of star formation activity in GMCs. Because the total number of protostars produced by a cloud is given by the product of Σ{sub *}(A {sub K}) and S'(> A {sub K}), the differential surface area distribution function, integrated over the entire cloud, the cloud's structure plays a fundamental role in setting the level of its star formation activity. For clouds with similar functional forms of Σ{sub *}(A {sub K}), observed differences in their total SFRs are primarily due to the differences in S'(> A {sub K}) between the clouds. The coupling of Σ{sub *}(A {sub K}) with the measured S'(> A {sub K}) in these clouds also produces a steep jump in the SFR and protostellar production above A{sub K} ∼ 0.8 mag. Finally, we show that there is no global Schmidt law that relates the SFR and gas mass surface densities between GMCs. Consequently, the observed Kennicutt-Schmidt scaling relation for disk galaxies is likely an artifact of unresolved measurements of GMCs and not a result of any underlying physical law of star formation characterizing the molecular gas.

  6. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  7. Solar influences on cosmic rays and cloud formation: A reassessment

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Bradley, Raymond S.

    2002-07-01

    Svensmark and Friis-Christensen [1997] proposed a ``cosmic ray-cloud cover'' hypothesis that cosmic ray flux, modulated by solar activity, may modify global cloud cover and thus global surface temperature by increasing the number of ions in the atmosphere, leading to enhanced condensation of water vapor and cloud droplet formation. We evaluate this idea by extending their period of study and examining long-term surface-based cloud data (from national weather services and the Global Telecommunication System) as well as newer satellite data (International Satellite Cloud Climatology Project (ISCCP) D2, 1983-1993). No meaningful relationship is found between cosmic ray intensity and cloud cover over tropical and extratropical land areas back to the 1950s. The high cosmic ray-cloud cover correlation in the period 1983-1991 over the Atlantic Ocean, the only large ocean area over which the correlation is statistically significant, is greatly weakened when the extended satellite data set (1983-1993) is used. Cloud cover data from ship observations over the North Atlantic, where measurements are denser, did not show any relationship with solar activity over the period 1953-1995, though a large discrepancy exists between ISCCP D2 data and surface marine observations. Our analysis also suggests that there is not a solid relationship between cosmic ray flux and low cloudiness as proposed by Marsh and Svensmark [2000].

  8. A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Coe, H.; Held, G.

    2007-09-01

    Simulations of overshooting, tropical deep convection using a Cloud Resolving Model with bulk microphysics are presented in order to examine the effect on the water content of the TTL (Tropical Tropopause Layer) and lower stratosphere. This case study is a subproject of the HIBISCUS (Impact of tropical convection on the upper troposphere and lower stratosphere at global scale) campaign, which took place in Bauru, Brazil (22° S, 49° W), from the end of January to early March 2004. Comparisons between 2-D and 3-D simulations suggest that the use of 3-D dynamics is vital in order to capture the mixing between the overshoot and the stratospheric air, which caused evaporation of ice and resulted in an overall moistening of the lower stratosphere. In contrast, a dehydrating effect was predicted by the 2-D simulation due to the extra time, allowed by the lack of mixing, for the ice transported to the region to precipitate out of the overshoot air. Three different strengths of convection are simulated in 3-D by applying successively lower heating rates (used to initiate the convection) in the boundary layer. Moistening is produced in all cases, indicating that convective vigour is not a factor in whether moistening or dehydration is produced by clouds that penetrate the tropopause, since the weakest case only just did so. An estimate of the moistening effect of these clouds on an air parcel traversing a convective region is made based on the domain mean simulated moistening and the frequency of convective events observed by the IPMet (Instituto de Pesquisas Meteorológicas, Universidade Estadual Paulista) radar (S-band type at 2.8 Ghz) to have the same 10 dBZ echo top height as those simulated. These suggest a fairly significant mean moistening of 0.26, 0.13 and 0.05 ppmv in the strongest, medium and weakest cases, respectively, for heights between 16 and 17 km. Since the cold point and WMO (World Meteorological Organization) tropopause in this region lies at ~15.9 km

  9. Cloud fluid compression and softening in spiral arms and the formation of giant molecular cloud complexes

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.

    1981-01-01

    With regard to the galactodynamics of the cloudy interstellar medium, the paper considers the response of such a gas to a forcing potential in the tight-winding density wave theory. The cloud fluid is treated in the hydrodynamic limit with an equation of state which softens at high densities. It is shown that in the inner regions of the galaxy, cooling of the cloud fluid in the arms can result in gravitational instability and the formation of large bound complexes of clouds which are identified with the giant molecular clouds (GMCs). Masses, dimensions, distributions, and scale heights of the GMCs are predicted by the theory. It is suggested that the interstellar gas density in the disk is regulated by the gravitational instability mechanism in the arms which siphons material into star formation. Implications for the evolution of individual GMCs and for galactic morphology are discussed.

  10. Precipitation factors leading to arc cloud formation

    NASA Technical Reports Server (NTRS)

    Brundidge, Kenneth C.

    1987-01-01

    The combined efforts of three graduate students and the principal investigator are presented. Satellite observations and interpretation have become increasingly important in the areas of weather research and operational forecasting. One reason is that geostationary satellite imagery is the only meteorological observing tool that can follow the evolution of clouds from the synoptic scale down to the cumulas scale. Therefore, it can depict atmospheric activity which is up to two orders of magnitude smaller than can be resolved by conventional meteorological observations. This unique ability of the satellite provides the meteorologist a mechanism to infer weather events down to the mesoscale. This evolution is the subject of this report.

  11. Witnessing molecular cloud formation from HI gas in high-latitude clouds

    NASA Astrophysics Data System (ADS)

    Tachihara, Kengo; Hattori, Momo; Yamamoto, Hiroaki; Okamoto, Ryuji; Hayakawa, Takahiro; Fukui, Yasuo

    2015-08-01

    The formation of molecular cloud is a fundamental process in terms of the cycle and evolution of matter in the universe. Its detail process is, however, not well understood yet, despite the importance for the investigation of initial condition of molecular clouds. From the observational point of view, it can be best studied in high-latitude clouds where obstacles of the galactic contamination and strong UV radiation decline. It is known that the atomic interstellar gas consist of warm neutral medium (WNM) and cold neutral medium (CNM), and the molecular gas formation is believed to take place in the dense CNM, which is suggested to have small-scale structures by theoretical calculations (e.g., Inoue & Inutsuka 2012). In order to avoid confusions of many overlapping structures, relatively high resolution HI data of the GALFA survey at high-latitude clouds MBM 53-55 are used. We decompose the multiple velocity components at the interface region between molecular and atomic clouds, and succeeded to resolve ~ 1 pc scale atomic CNM with a density of ~ 10 cm-3. As compared with the CO data obtained by the NANTEN telescope, small fraction of the HI components with small velocity dispersions appear to have counterpart molecular gas. The physical properties of these small-scale HI gas give us clues of not only the conditions of molecular formation but also the origins of cloud structures and interstellar turbulence.

  12. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, L.; Backman, L.; Kivi, R.; Karpechko, A.

    2015-08-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry climate model simulation covering years 1990-2013 is compared to observations (satellite and frostpoint hygrometer soundings) and the sources of stratospheric water vapour are studied. According to observations and the simulations the water vapour concentration in the Arctic stratosphere started to increase after year 2006, but around 2011 the concentration started to decrease. Model calculations suggest that the increase in water vapour during 2006-2011 (at 56 hPa) is mostly explained by transport related processes, while the photochemically produced water vapour plays a relatively smaller role. The water vapour trend in the stratosphere may have contributed to increased ICE PSC occurrence. The increase of water vapour in the precense of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. The polar vortex was unusually cold in early 2010 and allowed large scale formation of the polar stratospheric clouds. The cold pool in the stratosphere over the Northern polar latitudes was large and stable and a large scale persistent dehydration was observed. Polar stratospheric ice clouds and dehydration were observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT atmospheric sounding campaign. The observed changes in water vapour were reproduced by the model. Both the observed and simulated decrease of the water vapour in the dehydration layer was up to 1.5 ppm.

  13. A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Coe, H.; Held, G.

    2007-05-01

    Simulations of overshooting, tropical deep convection using a Cloud Resolving Model with bulk microphysics are presented in order to examine the effect on the water content of the TTL (Tropical Tropopause Layer) and lower stratosphere. This case study is a subproject of the HIBISUCS (Impact of tropical convection on the upper troposphere and lower stratosphere at global scale) campaign, which took place in Bauru, Brazil (22° S), from the end of January to early March 2004. Comparisons between 2-D and 3-D simulations suggest that the use of 3-D dynamics is vital in order to capture the mixing between the overshoot and the stratospheric air, which caused evaporation of ice and resulted in an overall moistening of the lower stratosphere. In contrast, a dehydrating effect was predicted by the 2-D simulation due to the extra time, allowed by the lack of mixing, for the ice transported to the region to precipitate out of the overshoot air. Three different strengths of convection are simulated in 3-D by applying successively lower heating rates (used to initiate the convection) in the boundary layer. Moistening is produced in all cases, indicating that convective vigour is not a factor in whether moistening or dehydration is predicted, since the weakest case only just penetrated the tropopause. An estimate of the moistening effect of these clouds on an air parcel traversing a convective region is made based on the domain mean simulated moistening and the frequency of convective events observed by the IPMet (Instituto de Pesquisas Meteorológicas, Universidade Estadual Paulista) radar to have the same 10 dBZ echo top height as those simulated. These suggest a fairly significant mean moistening of 0.26, 0.13 and 0.05 ppmv in the strongest, medium and weakest cases, respectively, for heights between 16 and 17 km. Since the tropopause in this region is thought to lie at ~15.9 km, this is likely to represent direct stratospheric moistening. Much more moistening is predicted

  14. Facet shapes and thermo-stabilities of H₂SO₄•HNO₃ hydrates involved in polar stratospheric clouds.

    PubMed

    Verdes, Marian; Paniagua, Miguel

    2015-09-01

    The nucleation, ice crystal shapes and thermodynamic stability of polar stratospheric clouds particles are interesting concerns owing to their implication in the ozone layer destruction. Some of these particles are formed by conformers of H2O, HNO3, and H2SO4. We carried out calculations using density functional theory (DFT) to obtain optimized structures. Several stable trimers are achieved -divided in two groups, one with HNO3 moiety, second with H2SO4 moiety- after pre-optimization at B3LYP/6-31G and subsequently optimization at B3LYP/aug-cc-pVTZ level of theory. For both most stable conformers five H2O molecules are added to their optimized trimers to calculate hydrated geometries. The OH stretching harmonic frequencies are provided for all aggregates. The zero-point energy correction (ZEPC), relative electronic energies (∆E), relative reaction Gibbs free energies ∆(∆G)k-relative, and cooling constant (K cooling ) are reported at three temperatures: 188 K, 195 K, and 210 K. Shapes given in our calculations are compared with various experimental shapes as well as comparisons with their thermo-stabilities. PMID:26287119

  15. Facet shapes and thermo-stabilities of H₂SO₄•HNO₃ hydrates involved in polar stratospheric clouds.

    PubMed

    Verdes, Marian; Paniagua, Miguel

    2015-09-01

    The nucleation, ice crystal shapes and thermodynamic stability of polar stratospheric clouds particles are interesting concerns owing to their implication in the ozone layer destruction. Some of these particles are formed by conformers of H2O, HNO3, and H2SO4. We carried out calculations using density functional theory (DFT) to obtain optimized structures. Several stable trimers are achieved -divided in two groups, one with HNO3 moiety, second with H2SO4 moiety- after pre-optimization at B3LYP/6-31G and subsequently optimization at B3LYP/aug-cc-pVTZ level of theory. For both most stable conformers five H2O molecules are added to their optimized trimers to calculate hydrated geometries. The OH stretching harmonic frequencies are provided for all aggregates. The zero-point energy correction (ZEPC), relative electronic energies (∆E), relative reaction Gibbs free energies ∆(∆G)k-relative, and cooling constant (K cooling ) are reported at three temperatures: 188 K, 195 K, and 210 K. Shapes given in our calculations are compared with various experimental shapes as well as comparisons with their thermo-stabilities.

  16. In situ measurements of total reactive nitrogen, total water, and aerosol in a Polar Stratospheric Cloud in the Antarctic

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kelly, K. K.; Ferry, G. V.; Loewenstein, M.; Chan, K. R.; Poole, L. R.; Wilson, J. C.

    1989-01-01

    Measurements of total reactive nitrogen, NOy, total water vapor, and aerosols were made as part of the Airborne Antarctic Ozone Experiment. The measurements were made using instruments located onboard the NASA ER-2 aircrafts which conducted twelve flights over the Antarctic continent reaching altitudes of 18 km at 72 S latitude. Each instrument utilized an ambient air sample and provided a measurement up to 1 Hz or every 200 m of flight path. The data presented focus on the flights of Aug. 17th and 18th during which Polar Stratospheric Clouds (PSCs) were encountered containing concentrations of 0.5 to 1.0 micron diameter aerosols greater than 1 cm/cu. The temperature pressure during these events ranged as low as 184 K near 75 mb pressure, with water values near 3.5 ppm by volume (ppmv). With the exception of two short periods, the PSC activity was observed at temperatures above the frost point of water over ice. The data gathered during these flights are analyzed and presented.

  17. Formation and spread of aircraft-induced holes in clouds.

    PubMed

    Heymsfield, Andrew J; Thompson, Gregory; Morrison, Hugh; Bansemer, Aaron; Rasmussen, Roy M; Minnis, Patrick; Wang, Zhien; Zhang, Damao

    2011-07-01

    Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced. PMID:21719676

  18. Formation and Spread of Aircraft-Induced Holes in Clouds

    NASA Astrophysics Data System (ADS)

    Heymsfield, Andrew J.; Thompson, Gregory; Morrison, Hugh; Bansemer, Aaron; Rasmussen, Roy M.; Minnis, Patrick; Wang, Zhien; Zhang, Damao

    2011-07-01

    Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced.

  19. Formation and spread of aircraft-induced holes in clouds.

    PubMed

    Heymsfield, Andrew J; Thompson, Gregory; Morrison, Hugh; Bansemer, Aaron; Rasmussen, Roy M; Minnis, Patrick; Wang, Zhien; Zhang, Damao

    2011-07-01

    Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced.

  20. Formation of jets and water clouds on Jupiter

    NASA Astrophysics Data System (ADS)

    Lian, Y.; Showman, A. P.

    2012-12-01

    Ground-based and spacecraft observations show that Jupiter exhibits multiple banded zonal jet structures. These banded jets correlate with dark and bright clouds, often called "belts" and "zones". The mechanisms that produce these banded zonal jets and clouds are poorly understood. Our previous studies showed that the latent heat released by condensation of water vapor could produce equatorial superrotation along with multiple zonal jets in the mid-to-high latitudes. However, that previous work assumed complete and instant removal of condensate and therefore could not predict the cloud formation. Here we present an improved 3D Jupiter model to investigate some effects of cloud microphysics on large-scale dynamics using a closed water cycle that includes condensation, three-dimensional advection of cloud material by the large-scale circulation, evaporation and sedimentation. We use a simplified Betts-Miller scheme to relax the temperature and water vapor towards moist adiabat and saturation profile respectively when atmospheric columns become conditionally unstable, and apply a dry convective adjustment scheme in region deeper than the cloud base to mix heat and tracers. We further assume that the liquid particles are well mixed within the clouds during condensation. Other physics parameterizations included in our model are the bottom drag and internal heat flux as well as the Newtonian heating. We find that the active water cycle can produce numerous convective storms and multiple banded jets with equatorial superrotation. However the clouds are sporadic and not coherent with the jet structures. Here we will discuss the jet-forming mechanism compared to our previous studies and cloud morphologies under the influence of large-scale dynamics.

  1. Stratospheric Cooling and Arctic Ozone Recovery. Appendix L

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriguez, Jose M.; Tabazadeh, Azadeh

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4 - 0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  2. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    NASA Technical Reports Server (NTRS)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-01-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  3. Towards improving the formation of drizzle in marine stratiform clouds

    NASA Astrophysics Data System (ADS)

    Sant, V.; Seifert, A.; Posselt, R.; Lohmann, U.

    2012-04-01

    Due to their proximity to the surface and their vast expanse over global oceans, marine stratus and stratocumulus induce a net cooling towards the Earth's radiative budget. These low clouds are very susceptible to changes in meteorological and environmental conditions such that the amount of formed precipitation, although small, may be altered significantly. The formation of drizzle is highly dependent on the onset of the collision-coalescence process, which is related to the concentration of cloud condensation nuclei (CCN) and/or turbulence, but has also been recognised to feed back onto both microphysics and dynamics of the cloud. The three-way interaction of cloud microphysics, dynamics and precipitation formation in marine stratiform clouds is complex and has a significant impact on the clouds radiative properties. To achieve a more physical representation of the droplet spectrum in low clouds an additional drizzle drop class with radii between 25-100 μm is introduced to the traditionally existing classes of cloud liquid water and rain. The idea is to improve the microphysical, but possibly also dynamical or thermodynamical, mechanisms responsible for the precipitation onset. A new parameterization to describe the collision-coalescence processes between three drop classes has been developed based on the stochastic collection equation and solved for truncated moments. For polluted environments specifically, i.e. high CCN concentrations, where precipitation formation may be retarded, the additional drizzle drop class improves the evolution of the drop spectrum and possible influences of giant CCN such as large sea salt aerosols towards enhancing the collision-coalescence process. Results comparing the new parameterization to a resolved spectral description of the microphysics within a 1D kinematic cloud model revealed to be very promising for different CCN concentrations and vertical updraft regimes. Furthermore, with the goal of improving marine stratiform

  4. Formation of young massive clusters from turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Fujii, Michiko; Portegies Zwart, Simon

    2015-08-01

    We simulate the formation and evolution of young star clusters using smoothed-particle hydrodynamics (SPH) and direct N-body methods. We start by performing SPH simulations of the giant molecular cloud with a turbulent velocity field, a mass of 10^4 to 10^6 M_sun, and a density between 17 and 1700 cm^-3. We continue the SPH simulations for a free-fall time scale, and analyze the resulting structure of the collapsed cloud. We subsequently replace a density-selected subset of SPH particles with stars. As a consequence, the local star formation efficiency exceeds 30 per cent, whereas globally only a few per cent of the gas is converted to stars. The stellar distribution is very clumpy with typically a dozen bound conglomerates that consist of 100 to 10000 stars. We continue to evolve the stars dynamically using the collisional N-body method, which accurately treats all pairwise interactions, stellar collisions and stellar evolution. We analyze the results of the N-body simulations at 2 Myr and 10 Myr. From dense massive molecular clouds, massive clusters grow via hierarchical merging of smaller clusters. The shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with a power-law slope of beta = -1.73 at 2 Myr and beta = -1.67 at 10 Myr, which fits to observed cluster mass function of the Carina region. The superposition of mass functions have a power-law slope of < -2, which fits the observed mass function of star clusters in the Milky Way, M31 and M83. We further find that the mass of the most massive cluster formed in a single molecular cloud with a mass of M_g scales with 6.1 M_g^0.51 which also agrees with recent observation in M51. The molecular clouds which can form massive clusters are much denser than those typical in the Milky Way. The velocity dispersion of such molecular clouds reaches 20 km/s and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603

  5. Observations of cloud microphysics and ice formation during COPE

    NASA Astrophysics Data System (ADS)

    Taylor, J. W.; Choularton, T. W.; Blyth, A. M.; Liu, Z.; Bower, K. N.; Crosier, J.; Gallagher, M. W.; Williams, P. I.; Dorsey, J. R.; Flynn, M. J.; Bennett, L. J.; Huang, Y.; French, J.; Korolev, A.; Brown, P. R. A.

    2015-06-01

    Intense rainfall generated by convective clouds causes flash flooding in many parts of the world. Understanding the microphysical processes leading to the formation of precipitation is one of the main challenges to improving our capability to make quantitative precipitation forecasts. Here, we present microphysics observations of cumulus clouds measured over the Southwest Peninsula of the UK during the COnvective Precipitation Experiment (COPE) in August 2013, which are framed into a wider context using ground-based and airborne radar measurements. Two lines of cumulus clouds formed in the early afternoon along convergence lines aligned with the peninsula. The lines became longer and broader during the afternoon as a result of new cell formation and stratiform regions forming downwind of the convective cells. Aircraft penetrations at -5 °C showed that all the required conditions of the Hallett-Mossop (H-M) ice multiplication process were met in developing regions, and ice concentrations up to 350 L-1 were measured in the mature stratiform regions, indicating that secondary ice production was active. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. In the initial cell, a few drizzle drops were measured, some of which froze to form graupel; the ice images are most consistent with freezing drizzle, rather than smaller cloud drops forming the first ice. As new cells developed in and around the cloud, ice concentrations up to two orders of magnitude higher than the predicted ice nuclei concentrations began to be observed and the cloud glaciated over a period of 12-15 min. Ice splinters were captured by supercooled drizzle drops causing them to freeze to form instant-rimers. Graupel and columns were observed in cloud penetrations up to the -12 °C level, though many ice particles were mixed-habit due to riming and growth by vapour diffusion at multiple temperatures. Frozen drizzle

  6. Giant Molecular Cloud Collisions as Triggers of Star Formation

    NASA Astrophysics Data System (ADS)

    Wu, Benjamin; Tan, Jonathan C.; Van Loo, Sven; nakamura, fumitaka; Bruderer, Simon

    2016-01-01

    We investigate a potentially dominant mechanism for galactic star formation: triggering via collisions between giant molecular clouds (GMCs). We create detailed numerical simulations of this process, utilizing the Enzo code with magnetohydrodynamics (MHD), including non-ideal effects, and adaptive mesh refinement (AMR) to explore how cloud collisions trigger formation of dense filaments, clumps and stars. We implement photo-dissociation region (PDR) based density/temperature/extinction-dependent heating and cooling functions that span the atomic to molecular transition and can return detailed diagnostic information. We first carried out a parameter space study via a suite of 2D simulations, which track the fate of an initially stable clump embedded within one of the clouds. We have then extended these calculations to 3D, including introduction of initial turbulence into the clouds and magnetically-regulated sub-grid models for star formation. Different magnetic field strengths and orientations are considered, as is the role of cloud collisions at various velocities and impact parameters. We examine the effects of including ambipolar diffusion. Between isolated and colliding cases, the density and kinematic structure are visualized and characterized, in addition to magnetic field configuration. We discuss observational diagnostics of cloud collisions, focusing on 13CO(J=2-1), 13CO(J=3-2), and 12CO(J=8-7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find the ratio of J=8-7 to lower-J emission to be a powerful diagnostic probe of GMC collisions. We also analyze magnetic field orientation relative to filamentary structure, comparing to observations within the Galaxy. Finally, we examine the level of star formation activity that is induced by collisions and distinguishing kinematic properties of the stars that form by this mechanism.

  7. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  8. Surface areas and porosities of ices used to simulate stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Keyser, Leon F.; Leu, Ming-Taun

    1993-01-01

    Surface areas, bulk densities, and porosities of ices formed at 85 or 200 K are measured to study the morphology of the vapor-deposited ices that have been used to simulate ice clouds in the laboratory. Surface areas are measured from the Brunauer, Emmett, and Teller (BET) analysis of absorption isotherms obtained at 72.2 K. Bulk densities and porosities are determined photogrammetrically. Results show that water ice and HNO3-H2O ice films deposited from the vapor at temperatures below 200 K exhibit large BET surface areas and are highly porous. For the ices annealed at temperatures above 200 K, external surface areas calculated from the observed particle sizes agree reasonably well with the BET areas, which indicates that the annealed ices are composed of nonporous particles and that the porosity of these ices is due to interstices among the particles.

  9. One-dimensional cloud fluid model for propagating star formation

    NASA Technical Reports Server (NTRS)

    Titus, Timothy N.; Struck-Marcell, Curtis

    1990-01-01

    The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.

  10. Convective Formation of Pileus Cloud Near the Tropopause

    NASA Technical Reports Server (NTRS)

    Garrett, Timothy J.; Dean-Day, Jonathan; Liu, Chuntao; Barnett, Brian K.; Mace, Gerald G.; Baumgardner, Darrel G.; Webster, Christopher R.; Bui, T. Paul; Read, William G.; Minnis, Patrick

    2005-01-01

    Pileus clouds form where humid, stably stratified air is mechanically displaced vertically ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. In-situ measurements from off the coast of Honduras during the July 2002 CRYSTALFACE experiment show an example of TTL cirrus associated with, and penetrated by, deep convection. The cirrus was enriched with total water compared to its surroundings, but composed of extremely small ice crystals with effective radii between 2 and 4 m. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus in this case originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that some combination was involved in which, first, convection forced pileus cloud to form from TTL air; second, it punctured the pileus layer, contributing larger ice crystals through interfacial mixing; third, the addition of condensate inhibited evaporation of the original pileus ice crystals in the warm phase of the ensuing gravity wave; fourth, through successive pulses, deep convection formed the observed layer of TTL cirrus. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.

  11. Rosette: Understanding Star Formation in Molecular Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2010-09-01

    We propose Chandra imaging of three embedded clusters in the Rosette Molecular Cloud (RMC) complex. With complementary existing Spitzer and FLAMINGOS infrared surveys, the Chandra observation is critical for us to: (1) create a complete census of the young stars in the cloud; (2) study the spatial distribution of the young stars in different evolutionary stages within the RMC and the disk frequency in the embedded clusters; (3) construct X-ray Luminosity Function (XLF) and Initial Mass Function (IMF) for the clusters to examine XLF/IMF variations; (4) elucidate star formation history in this complex.

  12. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Väisänen, Olli; Ruuskanen, Antti; Ylisirniö, Arttu; Miettinen, Pasi; Portin, Harri; Hao, Liqing; Leskinen, Ari; Komppula, Mika; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Virtanen, Annele

    2016-08-01

    The relationship between aerosol hygroscopicity and cloud droplet activation was studied at the Puijo measurement station in Kuopio, Finland, during the autumn 2014. The hygroscopic growth of 80, 120 and 150 nm particles was measured at 90 % relative humidity with a hygroscopic tandem differential mobility analyzer. Typically, the growth factor (GF) distributions appeared bimodal with clearly distinguishable peaks around 1.0-1.1 and 1.4-1.6. However, the relative contribution of the two modes appeared highly variable reflecting the probable presence of fresh anthropogenic particle emissions. The hygroscopicity-dependent activation properties were estimated in a case study comprising four separate cloud events with varying characteristics. At 120 and 150 nm, the activation efficiencies within the low- and high-GF modes varied between 0-34 and 57-83 %, respectively, indicating that the less hygroscopic particles remained mostly non-activated, whereas the more hygroscopic mode was predominantly scavenged into cloud droplets. By modifying the measured GF distributions, it was estimated how the cloud droplet concentrations would change if all the particles belonged to the more hygroscopic group. According to κ-Köhler simulations, the cloud droplet concentrations increased up to 70 % when the possible feedback effects on effective peak supersaturation (between 0.16 and 0.29 %) were assumed negligible. This is an indirect but clear illustration of the sensitivity of cloud formation to aerosol chemical composition.

  13. Observation of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, J.; McCormick, M. P.; Lei, L.

    2015-12-01

    We present the results of analyses performed on high-resolution remotely-sensed and in situ atmospheric measurements of the boundary layer and lower atmosphere centered over the northeast coast of the Hampton Roads body of water in southeast Virginia. This region is adjacent to the confluence of the Chesapeake Bay and the Atlantic Ocean where often times, low-level jets (LLJs) are found in the boundary layer during summer months. An East Hampton Roads Aerosol Flux (EHRAF) campaign, was conducted from the campus of Hampton University (HU) to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars, as well as rawindsondes over a one-week period in May 2014 . LLJs were observed from evening of 20 May to the morning of 21 May, and were found to lead to cloud formation. In this paper, the cloud formation caused by LLJs is analyzed using data that includes high-resolution profiles of: aerosol backscatter, turbulence structure, temperature, wind speed and direction, and water vapor. It is found that enhanced nighttime turbulence triggered by LLJs causes the aerosol and water vapor content of boundary layer to be lifted up forming a well-mixed region. We show that this region contains the cloud condensation nuclei that are very important for the formation of clouds.

  14. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  15. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Abstract: Water vapor in the winter arctic stratospheric middleworld (that part of the stratosphere with potential temperatures lower than the tropical tropopause) is important for two reasons: (1) the arctic middleworld is a source of air for the upper troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. The relationship between ozone and CO from aircraft measurements taken during the early, middle and late part of the winter of 1999-2000 show that recent mixing with tropospheric air extends up to ozone values of about 350-450 ppbv. Above that level, the relationship suggests stratospheric air with minimal tropospheric influence. The transition is quite abrupt, particularly in early spring. Trajectory analyses are consistent with these relationships, with a significant drop-off in the percentage of trajectories with tropospheric PV values in their 10-day history as in-situ ozone increases above 400 ppbv. The water distribution is affected by these mixing characteristics, and by cloud formation. Significant cloud formation along trajectories occurs up to ozone values of about 400 ppbv during the early spring, with small, but nonzero probabilities extending to 550 ppbv. Cloud formation in the stratospheric middleworld is minimal during early and midwinter. Also important is the fact that, during early spring 30% of the trajectories near the tropopause (ozone values less than 200 ppbv) have minimum saturation mixing ratios less than 5 ppmv. Such parcels can mix out into the troposphere and could lead to very dry conditions in

  16. Real refractive indices of infrared-characterized nitric-acid/ice films: Implications for optical measurements of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Berland, Brian S.; George, Steven M.; Tolbert, Margaret A.; Toon, Owen B.

    1994-01-01

    The infrared spectra of nitric-acid/ice films representative of polar stratospheric clouds (PSCs) were collected with simultaneous optical interference measurements to determine the real refractive indices at lambda = 632 nm. Ice and amphorous nitric-acid/ice films were prepared by condensation of water and nitric acid vapors onto a wedged Al2O3 substrate. The real refractive indices of these films were determined from the optical interference of a reflected helium-neon laser during film growth. The indices of the amphorous films varied smoothly from n = 1.30 for ice to n = 1.49 for nitric acid, similar to observations in previous work. We were unable to obtain the refractive index of crystlline films during adsorption because of optical scattering caused by surface roughness. Therefore crystlline nitric acid hydrate films were prepared by annealing amphorous nitric-acid/ice films. Further heating caused desorption of the crystalline hydrate films. During desorption, the refractive indices for ice, NAM (nitric acid monohydrate), alpha- and beta-NAT (nitric acid trihydrate) films were measured using the optical interference technique. In agreement with earlier data, the real refractive indices for ice and NAM determined in desorption were n = 1.30 +/- 0.01 and n = 1.53 +/- 0.03, respectively. The real refractive indices for alpha- and beta-NAT were found to be n = 1.51 +/- 0.01 and n greater than or equal to 1.46, respectively. Our measurements also suggest that the shape of crystalline nitric acid particles may depend on whether they nucleate from the liquid or by vapor deposition. If confirmed by future studies, this observation may provide a means of distinguishing the nucleation mechanism of crystalline PSCs.

  17. An interfacial mechanism for cloud droplet formation on organic aerosols

    NASA Astrophysics Data System (ADS)

    Ruehl, Christopher R.; Davies, James F.; Wilson, Kevin R.

    2016-03-01

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.

  18. Observations of cloud microphysics and ice formation during COPE

    NASA Astrophysics Data System (ADS)

    Taylor, J. W.; Choularton, T. W.; Blyth, A. M.; Liu, Z.; Bower, K. N.; Crosier, J.; Gallagher, M. W.; Williams, P. I.; Dorsey, J. R.; Flynn, M. J.; Bennett, L. J.; Huang, Y.; French, J.; Korolev, A.; Brown, P. R. A.

    2016-01-01

    We present microphysical observations of cumulus clouds measured over the southwest peninsula of the UK during the COnvective Precipitation Experiment (COPE) in August 2013, which are framed into a wider context using ground-based and airborne radar measurements. Two lines of cumulus clouds formed in the early afternoon along convergence lines aligned with the peninsula. The lines became longer and broader during the afternoon due to new cell formation and stratiform regions forming downwind of the convective cells. Ice concentrations up to 350 L-1, well in excess of the expected ice nuclei (IN) concentrations, were measured in the mature stratiform regions, suggesting that secondary ice production was active. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. In the initial cell, drizzle concentrations increased from ˜ 0.5 to ˜ 20 L-1 in around 20 min. Ice concentrations developed up to a few per litre, which is around the level expected of primary IN. The ice images were most consistent with freezing drizzle, rather than smaller cloud drops or interstitial IN forming the first ice. As new cells emerged in and around the cloud, ice concentrations up to 2 orders of magnitude higher than the predicted IN concentrations developed, and the cloud glaciated over a period of 12-15 min. Almost all of the first ice particles to be observed were frozen drops, while vapour-grown ice crystals were dominant in the latter stages. Our observations are consistent with the production of large numbers of small secondary ice crystals/fragments, by a mechanism such as Hallett-Mossop or droplets shattering upon freezing. Some of the small ice froze drizzle drops on contact, while others grew more slowly by vapour deposition. Graupel and columns were seen in cloud penetrations up to the -12 °C level, though many ice particles were mixed habit due to riming and growth by vapour deposition at multiple temperatures

  19. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  20. Isolated star formation: from cloud formation to core collapse.

    PubMed

    Ward-Thompson, Derek

    2002-01-01

    The formation of stars is one of the most fundamental problems in astrophysics, as it underlies many other questions, on scales from the formation of galaxies to the formation of the solar system. The physical processes involve the turbulent behavior of a partially ionized medium containing a non-uniform magnetic field. Current debate centers around the time taken for turbulence to decay and the relative importance of the roles played by magnetic fields and turbulence. Technological advances such as millimeter-wave cameras have made possible observations of the temperature and density profiles, and statistical calculations of the lifetimes, of objects collapsing under their own self-gravity and those on the verge of collapse. Increased computing power allows more complex models to be made that include magnetic and turbulent effects. No current model can reproduce all of the observations. PMID:11778038

  1. THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Harris, Jason; Zaritsky, Dennis E-mail: dzaritsky@as.arizona.edu

    2009-11-15

    We present the first ever global, spatially resolved reconstruction of the star formation history (SFH) of the Large Magellanic Cloud (LMC), based on the application of our StarFISH analysis software to the multiband photometry of 20 million of its stars from the Magellanic Clouds Photometric Survey. The general outlines of our results are consistent with previously published results: following an initial burst of star formation, there was a quiescent epoch from approximately 12 to 5 Gyr ago. Star formation then resumed and has proceeded until the current time at an average rate of roughly 0.2 M {sub sun} yr{sup -1}, with temporal variations at the factor of 2 level. The re-ignition of star formation about 5 Gyr ago, in both the LMC and Small Magellanic Cloud (SMC), is suggestive of a dramatic event at that time in the Magellanic system. Among the global variations in the recent star formation rate are peaks at roughly 2 Gyr, 500 Myr, 100 Myr, and 12 Myr. The peaks at 500 Myr and 2 Gyr are nearly coincident with similar peaks in the SFH of the SMC, suggesting a joint history for these galaxies extending back at least several Gyr. The chemical enrichment history recovered from our StarFISH analysis is in broad agreement with that inferred from the LMC's star cluster population, although our constraints on the ancient chemical enrichment history are weak. We conclude from the concordance between the star formation and chemical enrichment histories of the field and cluster populations that the field and cluster star formation modes are tightly coupled.

  2. Clarifying the dominant sources and mechanisms of cirrus cloud formation.

    PubMed

    Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M

    2013-06-14

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.

  3. Clarifying the dominant sources and mechanisms of cirrus cloud formation.

    PubMed

    Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M

    2013-06-14

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds. PMID:23661645

  4. How chemistry influences cloud structure, star formation, and the IMF

    NASA Astrophysics Data System (ADS)

    Hocuk, S.; Cazaux, S.; Spaans, M.; Caselli, P.

    2016-03-01

    In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of grain surface chemistry (GSC) on star formation and its impact on the initial mass function (IMF). We follow a contracting translucent cloud in which we treat the gas-grain chemical interplay in detail, including the process of freeze-out. We perform 3D hydrodynamical simulations under three different conditions, a pure gas-phase model, a freeze-out model, and a complete chemistry model. The models display different thermal evolution during cloud collapse as also indicated in Hocuk, Cazaux & Spaans, but to a lesser degree because of a different dust temperature treatment, which is more accurate for cloud cores. The equation of state (EOS) of the gas becomes softer with CO freeze-out and the results show that at the onset of star formation, the cloud retains its evolution history such that the number of formed stars differ (by 7 per cent) between the three models. While the stellar mass distribution results in a different IMF when we consider pure freeze-out, with the complete treatment of the GSC, the divergence from a pure gas-phase model is minimal. We find that the impact of freeze-out is balanced by the non-thermal processes; chemical and photodesorption. We also find an average filament width of 0.12 pc (±0.03 pc), and speculate that this may be a result from the changes in the EOS caused by the gas-dust thermal coupling. We conclude that GSC plays a big role in the chemical composition of molecular clouds and that surface processes are needed to accurately interpret observations, however, that GSC does not have a significant impact as far as star formation and the IMF is concerned.

  5. Star Formation Studies in the Magellanic Clouds with JWST

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret; Jones, Olivia; Nayak, Omnarayani; Ochsendorf, Bram

    2016-01-01

    The photometric and spectroscopic Spitzer Surveys of the Large and Small Magellanic Clouds (LMC, SMC): Surveying the Agents of Galaxy Evolution (SAGE) resulted in the discovery of thousands of massive young stellar objects. The JWST instruments will have an angular resolution at least 10 times better than Spitzer with hundreds or more times better sensitivity. This new capability in the 0.6 to 28 micron range will allow detailed studies of star formation regions at sub-solar metallicity in the LMC (~0.5 Z_sun) and SMC (~0.2 Z_sun) at the 0.05 pc scale size which is comparable to Galactic studies. In this presentation, we summarize highlights and open issues from the SAGE surveys and discuss some potential JWST observing programs that focus on the study of star formation at low metallicity in the Magellanic Clouds. Does the interstellar medium gas density threshold for star formation change at low metallicity? Is the dust content and ice composition of young stellar objects modified by the lower metallicity and high radiation fields found in the Magellanic Clouds? Do low metallicity solar mass pre-main sequence stars have sufficient circumstellar dust to form planets? The best regions for JWST followup will have been investigated with ALMA, HST and ground based high angular resolution telescopes. Examples of such regions include 30 Doradus, NGC 602, N159, and NGC 346.

  6. What flow conditions are conducive to banner cloud formation?

    NASA Astrophysics Data System (ADS)

    Wirth, Volkmar; Prestel, Isabelle

    2016-04-01

    Banner clouds are clouds that are attached to the leeward slope of a steep mountain. Their formation is essentially due to strong Lagrangian uplift of air in the lee of the mountain. However, little is known about the flow regime in which banner clouds can be expected to occur. The present study addresses this question through numerical simulations of flow past an idealized mountain. Systematic sets of simulations are carried out exploring the parameter space spanned by two dimensionless numbers, which represent the aspect ratio of the mountain and the stratification of the flow. The simulations include both two-dimensional flow past a two-dimensional mountain and three-dimensional flow past a three-dimensional mountain. Regarding boundary layer separation, both the two- and the three-dimensional simulations show the characteristic regime behavior which has previously been found in laboratory experiments for two-dimensional flow. Boundary layer separation is observed in two of the three regimes, namely in the "leeside separation regime", which occurs preferably for steep mountains in weakly stratified flow, and in the "post-wave separation regime", which requires increased stratification. The physical mechanism for the former is boundary layer friction, while the latter may also occur for inviscid flow. However, boundary layer separation is only a necessary, not sufficient condition for banner cloud formation. Diagnosing the vertical uplift and its leeward-windward asymmetry it turns out that banner clouds cannot form in the two-dimensional simulations. In addition, even in the three-dimensional simulations they can only be expected in a small part of the parameter space corresponding to steep mountains in weakly stratified flow.

  7. Anisotropic Formation of Magnetized Cores in Turbulent Clouds

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Ostriker, Eve C.

    2015-09-01

    In giant molecular clouds (GMCs), shocks driven by converging turbulent flows create high-density, strongly magnetized regions that are locally sheetlike. In previous work, we showed that within these layers, dense filaments and embedded self-gravitating cores form by gathering material along the magnetic field lines. Here, we extend the parameter space of our three-dimensional, turbulent MHD core formation simulations. We confirm the anisotropic core formation model we previously proposed and quantify the dependence of median core properties on the pre-shock inflow velocity and upstream magnetic field strength. Our results suggest that bound core properties are set by the total dynamic pressure (dominated by large-scale turbulence) and thermal sound speed cs in GMCs, independent of magnetic field strength. For models with a Mach number between 5 and 20, the median core masses and radii are comparable to the critical Bonnor-Ebert mass and radius defined using the dynamic pressure for Pext. Our results correspond to Mcore=1.2cs4 (G3ρ0v02)-1/2 and Rcore=0.34 cs2 (Gρ0v02)-1/2 for ρ0 and v0 the large-scale mean density and velocity. For our parameter range, the median Mcore 0.1-1M⊙, but a very high pressure cloud could have lower characteristic core mass. We find cores and filaments form simultaneously, and filament column densities are a factor of 2 greater than the surrounding cloud when cores first collapse. We also show that cores identified in our simulations have physical properties comparable to those observed in the Perseus cloud. Superthermal cores in our models are generally also magnetically supercritical, suggesting that the same may be true in observed clouds.

  8. Secondary organic aerosol formation through cloud processing of aromatic VOCs

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Hutchings, J. W.; Ervens, B.

    2010-12-01

    Field observations have shown substantial concentrations (20-5,500 ng L-1) of aromatic volatile organic compounds (VOC) in cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric laboratory conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction rates decreased with increasing organic carbon content. Kinetic data derived from these experiments were used as input to a multiphase box model in order to evaluate the secondary organic aerosol (SOA) mass formation potential of cloud processing of BTEX. Model results will be presented that quantify the SOA amounts from these aqueous phase pathways. The efficiency of this multiphase SOA source will be compared to SOA yields from the same aromatics as treated in traditional SOA models that are restricted to gas phase oxidation and subsequent condensation on particles.

  9. Star Formation in the Northern Cloud Complex of NGC 2264

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Walker, Christopher K.; Groppi, Christopher E.; Butner, Harold M.

    2006-07-01

    We have made continuum and spectral line observations of several outflow sources in the Mon OB1 dark cloud (NGC 2264) using the Heinrich Hertz Telescope (HHT) and ARO 12 m millimeter-wave telescope. This study explores the kinematics and outflow energetics of the young stellar systems observed and assesses the impact star formation is having on the surrounding cloud environment. Our data set incorporates 12CO (3-2),13CO (3-2), and 12CO (1-0) observations of outflows associated with the sources IRAS 06382+1017 and IRAS 06381+1039, known as IRAS 25 and 27, respectively, in the northern cloud complex. Complementary 870 μm continuum maps were made with the HHT 19 channel bolometer array. Our results indicate there is a weak <=0.5% coupling between outflow kinetic energy and turbulent energy of the cloud. An analysis of the energy balance in the IRAS 25 and 27 cores suggests they are maintaining their dynamical integrity except where outflowing material directly interacts with the core, such as along the outflow axes.

  10. H2 distribution during the formation of multiphase molecular clouds

    NASA Astrophysics Data System (ADS)

    Valdivia, Valeska; Hennebelle, Patrick; Gérin, Maryvonne; Lesaffre, Pierre

    2016-03-01

    Context. H2 is the simplest and the most abundant molecule in the interstellar medium (ISM), and its formation precedes the formation of other molecules. Aims: Understanding the dynamical influence of the environment and the interplay between the thermal processes related to the formation and destruction of H2 and the structure of the cloud is mandatory to understand correctly the observations of H2. Methods: We performed high-resolution magnetohydrodynamical colliding-flow simulations with the adaptive mesh refinement code RAMSES in which the physics of H2 has been included. We compared the simulation results with various observations of the H2 molecule, including the column densities of excited rotational levels. Results: As a result of a combination of thermal pressure, ram pressure, and gravity, the clouds produced at the converging point of HI streams are highly inhomogeneous. H2 molecules quickly form in relatively dense clumps and spread into the diffuse interclump gas. This in particular leads to the existence of significant abundances of H2 in the diffuse and warm gas that lies in between clumps. Simulations and observations show similar trends, especially for the HI-to-H2 transition (H2 fraction vs. total hydrogen column density). Moreover, the abundances of excited rotational levels, calculated at equilibrium in the simulations, turn out to be very similar to the observed abundances inferred from FUSE results. This is a direct consequence of the presence of the H2 enriched diffuse and warm gas. Conclusions: Our simulations, which self-consistently form molecular clouds out of the diffuse atomic gas, show that H2 rapidly forms in the dense clumps and, due to the complex structure of molecular clouds, quickly spreads at lower densities. Consequently, a significant fraction of warm H2 exists in the low-density gas. This warm H2 leads to column densities of excited rotational levels close to the observed ones and probably reveals the complex intermix between

  11. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  12. Relative stabilities of HCl•H2SO4•HNO3 aggregates in polar stratospheric clouds.

    PubMed

    Verdes, Marian; Paniagua, M

    2015-04-01

    Strong acids such as HCl (C), HNO3 (N) and H2SO4 (S) acquire relevance in Polar Stratospheric Clouds (PSCs) and aerosols in which nucleation processes occur. Ab initio quantum chemical studies of aggregates were performed for these strong acids. Structures were calculated using DFT methods with the B3LYP hybrid functional and aug-cc-pVTZ basis set. As an initial constraint, an H2SO4 moiety was placed in all candidate structures. A total of 11 optimized structures was found: a global minimum (CSN-a) plus ten local minima on the Potential Energy Surface (PES). The global minimum aggregate gave four hydrogen bonds, yielding a hexagonal ring in its structure. HNO3 acts as proton donor in all clusters; nevertheless, using trans-H2SO4 as the proton donor yielded the most stable structures, whereas HCl acts mainly as a proton donor/acceptor. Real harmonic frequencies, IR spectra, and inter-monomeric parameters were obtained. CSN-a symmetric stretching modes were shifted to 2805.56 cm(-1) and 3520.00 cm(-1) for H-Cl modes, while O-H modes shifted to 3256.87 cm(-1) and 3362.47 cm(-1). On the other hand, relative stabilities improved for 5 of the 11 aggregates when the temperature decreased from 298 K to 210 K, 195 K and 188 K. The aggregate CSN-f remained unstable only at 210 K. Moreover, the relative Gibbs free energy, ΔG(0-298K) was -9.26 kcalmol(-1) with respect to CSN-a; relative reaction Gibbs free energy [Δ(ΔG)] values ranged from 0.0 at 298 K, to -6.9 kcalmol(-1) at 188 K. It seems that CSN aggregates remain slightly more stable than CNS aggregates with a HNO3 moiety when the temperature decreases from 298 to 188 K. Five structures remained relatively stable under both study conditions.

  13. Protostellar formation in rotating interstellar clouds. VIII - Inner core formation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1989-01-01

    The results are presented of a variety of spherically symmetric one-dimensional (1D) calculations intended to determine the robustness of the dynamical hiccup phenomenon in protostellar cores. The 1D models show that the phenomenon is relatively insensitive to changes in the equations of state, numerical resolution, initial density and temperature, and the radiative transfer approximation. In 1D, the hiccup results in an explosive destruction of the entire inner protostellar core. Inner core formation is studied with a sequence of three-dimensional models which show that rapid inner core rotation stabilizes the hiccup instability. Instead, the inner core becomes quite flat and undergoes a cycle of binary fragmentation, binary decay into a single object surrounded by a bar, breakup of the bar into a binary, etc. When lesser amounts of rotation are involved, the inner core does hiccup somewhat, but mass is ejected in only a few directions, leading to several broad streams of ejecta.

  14. Molecular cloud formation in high-shear, magnetized colliding flows

    NASA Astrophysics Data System (ADS)

    Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.

    2016-08-01

    The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (i.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.

  15. Filament formation in wind-cloud interactions - I. Spherical clouds in uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, W. E.; Parkin, E. R.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2016-01-01

    Filamentary structures are ubiquitous in the interstellar medium, yet their formation, internal structure, and longevity have not been studied in detail. We report the results from a comprehensive numerical study that investigates the characteristics, formation, and evolution of filaments arising from magnetohydrodynamic interactions between supersonic winds and dense clouds. Here, we improve on previous simulations by utilizing sharper density contrasts and higher numerical resolutions. By following multiple density tracers, we find that material in the envelopes of the clouds is removed and deposited downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these tails. Aspect ratios ≳12, subsonic velocity dispersions ˜0.1-0.3 of the wind sound speed, and magnetic field amplifications ˜100 are found to be characteristic of these filaments. We also report the effects of different magnetic field strengths and orientations. The magnetic field strength regulates vorticity production: sinuous filamentary towers arise in non-magnetic environments, while strong magnetic fields inhibit small-scale perturbations at boundary layers making tails less turbulent. Magnetic field components aligned with the direction of the flow favour the formation of pressure-confined flux ropes inside the tails, whilst transverse components tend to form current sheets. Softening the equation of state to nearly isothermal leads to suppression of dynamical instabilities and further collimation of the tail. Towards the final stages of the evolution, we find that small cloudlets and distorted filaments survive the break-up of the clouds and become entrained in the winds, reaching velocities ˜0.1 of the wind speed.

  16. THE FORMATION OF FILAMENTARY BUNDLES IN TURBULENT MOLECULAR CLOUDS

    SciTech Connect

    Moeckel, Nickolas; Burkert, Andreas E-mail: burkert@usm.uni-muenchen.de

    2015-07-01

    The classical picture of a star-forming filament is a near-equilibrium structure with its collapse dependent on its gravitational criticality. Recent observations have complicated this picture, revealing filaments to be a mess of apparently interacting subfilaments with transsonic internal velocity dispersions and mildly supersonic intra-subfilament dispersions. How structures like this form is unresolved. Here, we study the velocity structure of filamentary regions in a simulation of a turbulent molecular cloud. We present two main findings. First, the observed complex velocity features in filaments arise naturally in self-gravitating hydrodynamic simulations of turbulent clouds without the need for magnetic or other effects. Second, a region that is filamentary only in projection and is in fact made of spatially distinct features can display these same velocity characteristics. The fact that these disjoint structures can masquerade as coherent filaments in both projection and velocity diagnostics highlights the need to continue developing sophisticated filamentary analysis techniques for star formation observations.

  17. Dynamic mineral clouds on HD 189733b. I. 3D RHD with kinetic, non-equilibrium cloud formation

    NASA Astrophysics Data System (ADS)

    Lee, G.; Dobbs-Dixon, I.; Helling, Ch.; Bognar, K.; Woitke, P.

    2016-10-01

    Context. Observations of exoplanet atmospheres have revealed the presence of cloud particles in their atmospheres. 3D modelling of cloud formation in atmospheres of extrasolar planets coupled to the atmospheric dynamics has long been a challenge. Aims: We investigate the thermo-hydrodynamic properties of cloud formation processes in the atmospheres of hot Jupiter exoplanets. Methods: We simulate the dynamic atmosphere of HD 189733b with a 3D model that couples 3D radiative-hydrodynamics with a kinetic, microphysical mineral cloud formation module designed for RHD/GCM exoplanet atmosphere simulations. Our simulation includes the feedback effects of cloud advection and settling, gas phase element advection and depletion/replenishment and the radiative effects of cloud opacity. We model the cloud particles as a mix of mineral materials which change in size and composition as they travel through atmospheric thermo-chemical environments. All local cloud properties such as number density, grain size and material composition are time-dependently calculated. Gas phase element depletion as a result of cloud formation is included in the model. In situ effective medium theory and Mie theory is applied to calculate the wavelength dependent opacity of the cloud component. Results: We present a 3D cloud structure of a chemically complex, gaseous atmosphere of the hot Jupiter HD 189733b. Mean cloud particle sizes are typically sub-micron (0.01-0.5 μm) at pressures less than 1 bar with hotter equatorial regions containing the smallest grains. Denser cloud structures occur near terminator regions and deeper (~1 bar) atmospheric layers. Silicate materials such as MgSiO3[s] are found to be abundant at mid-high latitudes, while TiO2[s] and SiO2[s] dominate the equatorial regions. Elements involved in the cloud formation can be depleted by several orders of magnitude. Conclusions: The interplay between radiative-hydrodynamics and cloud kinetics leads to an inhomogeneous, wavelength

  18. Large scale and cloud scale dynamics and microphysics in the formation and evolution of a TTL cirrus : a case modelling study

    NASA Astrophysics Data System (ADS)

    Podglajen, Aurélien; Plougonven, Riwal; Hertzog, Albert; Legras, Bernard

    2015-04-01

    Cirrus clouds in the tropical tropopause layer (TTL) control dehydration of air masses entering the stratosphere and strongly contribute to the local radiative heating. In this study, we aim at understanding, through a real case simulation, the dynamics controlling the formation and life cycle of a cirrus cloud event in the TTL. We also aim at quantifying the chemical and radiative impacts of the clouds. To do this, we use the Weather Research and Forecast (WRF) model to simulate a large scale TTL cirrus event happening in January 2009 (27-29) over the Eastern Pacific, which has been extensively described through satellite observations (Taylor et al., 2011). Comparison of simulated and observed high clouds shows a fair agreement, and validates the reference simulation regarding cloud extension, location and life time. The simulation and Lagrangian trajectories within the simulation are then used to characterize the evolution of the cloud : displacement, Lagrangian life time and links with dynamics. The efficiency of dehydration by such clouds is also examined. Sensitivity tests were performed to evaluate the importance of different microphysics schemes and initial and boundary conditions to accurately simulate the cirrus. As expected, both were found to have strong impacts. In particular, there were substantial differences between simulations using different initial and boundary conditions from atmospheric analyses (NCEP CFSR and ECMWF). This illustrates the primordial role of accurate vapour and dynamics for realistic cirrus modelling, on top of the need for appropriate microphysics. Last, we examined the effects of cloud radiative heating. Long wave radiative heating in cirrus clouds has been invoked to induce a cloud scale circulation that would lengthen the cloud lifetime, and increase the size of its dehydration area (Dinh et al. 2010). To try to diagnose this, we have carried out simulations using different radiative schemes, including or suppressing the

  19. Molecular cloud-scale star formation in NGC 300

    SciTech Connect

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan; Menten, Karl M.; Bouy, Hervé

    2014-07-01

    We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily to the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.

  20. On the detectability of acid formation in clouds

    SciTech Connect

    Kelly, T.J.; Schwartz, S.E.; Daum, P.H. )

    1987-01-01

    Deposition of acids from the atmosphere to the earth's surface in hydrometeors (precipitation or impacted fog droplets) is a well-documented phenomenon. The acids involved are primarily sulfuric (H{sub 2}SO{sub 4}) and nitric (HNO{sub 3}) acids, derived from sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO and NO{sub 2}, collectively called NO{sub x}). This so-called wet deposition is an important means of removing sulfur- and nitrogen-containing pollutants from the atmosphere, but is also considered a serious environmental problem because of the potential harmful effects of the deposited materials on vegetation and aquatic life. The chemical composition of precipitation is determined primarily by the composition of cloudwater in the clouds from which the precipitation falls. Two processes which determine the cloudwater composition can be distinguised: dissolution of soluble aerosol and gaseous species at the time of cloud formation, and production of acids in the cloud from gaseous SO{sub 2} and NO{sub x}. These processes are discussed by the authors.

  1. The Two Molecular Clouds in RCW 38: Evidence for the Formation of the Youngest Super Star Cluster in the Milky Way Triggered by Cloud-Cloud Collision

    NASA Astrophysics Data System (ADS)

    Fukui, Y.; Torii, K.; Ohama, A.; Hasegawa, K.; Hattori, Y.; Sano, H.; Ohashi, S.; Fujii, K.; Kuwahara, S.; Mizuno, N.; Dawson, J. R.; Yamamoto, H.; Tachihara, K.; Okuda, T.; Onishi, T.; Mizuno, A.

    2016-03-01

    We present distributions of two molecular clouds having velocities of 2 and 14 km s-1 toward RCW 38, the youngest super star cluster in the Milky Way, in the 12CO J = 1-0 and 3-2 and 13CO J = 1-0 transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the J = 3-2 emission to the J = 1-0 emission, the bridging feature connecting the two clouds in velocity, and their morphological correspondence with the infrared dust emission. The velocity difference is too large for the clouds to be gravitationally bound. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the ˜20 O stars that are localized within ˜0.5 pc of the cluster center in the 2 km s-1 cloud. We suggest that the collision is currently continuing toward part of the 2 km s-1 cloud where the bridging feature is localized. This is the third super star cluster alongside Westerlund 2 and NGC 3603 where cloud-cloud collision has triggered the cluster formation. RCW 38 is the youngest super star cluster in the Milky Way, holding a possible sign of on-going O star formation, and is a promising site where we may be able to witness the moment of O star formation.

  2. Large NAT particle formation by mother clouds: Analysis of SOLVE/THESEO-2000 observations

    NASA Astrophysics Data System (ADS)

    Fueglistaler, S.; Luo, B. P.; Buss, S.; Wernli, H.; Voigt, C.; Müller, M.; Neuber, R.; Hostetler, C. A.; Poole, L. R.; Flentje, H.; Fahey, D. W.; Northway, M. J.; Peter, Th.

    2002-06-01

    During the SOLVE/THESEO-2000 Arctic stratospheric campaign in the winter 1999/2000 widespread occurrences of very large HNO3-containing particles, probably composed of nitric acid trihydrate (NAT), were observed in situ by instruments on board the ER-2 stratospheric research aircraft. These large NAT particles were found with low number densities (n ~ 10-4 cm-3) in vast regions, in air generally supersaturated with respect to NAT. Within the same campaign other instruments have performed airborne and ground-based measurements of polar stratospheric clouds (PSCs), often showing the existence of type 1a and type 1a-enh clouds. Such PSCs often occur on the mesoscale with particle number densities n >~ 10-2cm-3 and are also most likely composed of NAT. We use forward trajectories for the path of NAT particles, which are advected by winds based on ECMWF analyses and sediment due to gravity, to show that high number density NAT PSCs (mother clouds) could give rise to low number density NAT particle populations several days downstream.

  3. On the possibly low H2 formation rate in dense clouds

    NASA Technical Reports Server (NTRS)

    Snow, T. P.

    1983-01-01

    It has been found for the Rho Ophiuchi cloud, and suggested for diffuse cloud cores in general, that H2 has a lower formation rate than normally expected in diffuse clouds. It is proposed that this may be due to a reduction in grain surface area per unit volume, if the grains in these regions are enlarged due to coagulation. For the Rho Oph cloud, there is independent evidence that grain coagulation has occurred, so this hypothesis regarding H2 formation has a more substantial basis than for other clouds, where the evidence for suppressed H2 formation is less certain, and for which there is little information on grain sizes.

  4. Conditions for Circumstellar Disc Formation II: Effects of Initial Cloud Stability and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-09-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate onto the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brake the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with nonuniform densities.

  5. Star formation in a hierarchical model for Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Sanchez, N.; Parravano, A.

    The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.

  6. Parameterizations of ice formation derived from AIDA cloud simulation experiments

    NASA Astrophysics Data System (ADS)

    Möhler, Ottmar; Hiranuma, Naruki; Höhler, Kristina; Hoose, Corinna; Hummel, Matthias; Niemand, Monika; Oehm, Caroline; Schmitt, Thea; Steinke, Isabelle; Wagner, Robert

    2013-05-01

    Since 2003, the AIDA cloud chamber has been used for comprehensive series of ice nucleation experiments with a variety of different aerosols and in wide ranges of temperature, relative humidity and cooling rate. Ice nucleation onset and ice formation rates have been obtained as a function of aerosol parameters, ice supersaturation, temperature and cooling rate for homogeneous freezing of water droplets and solution particles, immersion freezing at and below water saturation, and deposition ice nucleation between ice and water saturation. The AIDA team has started a consistent and comprehensive re-analysis of the 10 year data set to provide a new set of parameters for formulating the ice formation in atmospheric models as function of aerosol properties, temperature and humidity. Here we present basic concepts and some selected results.

  7. Observational and simulated cloud microphysical features of rain formation in the mixed phase clouds observed during CAIPEEX

    NASA Astrophysics Data System (ADS)

    Patade, Sachin; Shete, Sonali; Malap, Neelam; Kulkarni, Gayatri; Prabha, T. V.

    2016-03-01

    Cloud microphysical observations of rain formation in mixed phase monsoon clouds (from 10 to - 9 °C) using instrumented aircraft during Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) are presented. The drop size and particle size distributions are broader in the mixed phase region, indicating efficient growth of liquid as well as ice phase. Aircraft observations noticed higher ice particle concentrations in Hallet-Mossop zone (- 3 to - 8 °C) with existence of smaller and larger cloud droplets, rimed needles columns, and graupel particles. Observations strongly suggested the active presence of Hallet-Mossop (1974) process in this cloud. The higher correlations found between slope and intercept parameters of exponential size distributions can be attributed to the efficient secondary ice production as well as to the aggregation growth of ice particles. Large Eddy Simulation (LES) of these clouds are compared with observed cloud microphysical properties, also illustrated the important role of Hallet-Mossop (HM) process and its link with warm rain and graupel formation. The raindrop freezing plays a crucial role in graupel formation in early stage of ice development. The observed mean values of microphysical parameters including liquid water content, ice water content, ice number concentrations, and reflectivity showed good agreement with model simulations. Primary ice nuclei have only a minor role in the total ice mass in these clouds.

  8. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  9. Comparing Cirrus Cloud Formation and Evolution Using in Situ Aircraft Observations and a Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Diao, M.; Jensen, J. B.; Bryan, G. H.; Morrison, H.; Stern, D. P.

    2014-12-01

    Cirrus clouds, covering ~30% of the Earth, play important roles in Earth's climate and weather. As a major uncertainty in climate models, cirrus clouds' radiative forcing (cooling or warming) is influenced by both the microphysical properties (such as ice crystal concentration and size) and the larger scale structure (such as horizontal and vertical extent). Recent studies (Diao et al. 2013; Diao et al. 2014), based on in situ observations with ~200 m horizontal resolution, showed that the initial conditions of cirrus formation - ice supersaturated regions (ISSRs, where ISS is spatially continuous) - occur mostly at horizontal scales around 1 km, in contrast to the ~100 km scales by previous observations (Gierens et al. 2000). Yet it is still unknown whether current cloud resolving models can capture these small-scale ISSR features. In this work, we compare the observed characteristics of the ice supersaturation (ISS) with an idealized, cloud-resolving simulation of a squall line (Bryan and Morrison, 2012). The model (CM1) was run with 250 m grid spacing using a double-moment microphysics scheme (Morrison et al. 2005). Our comparisons show that the CM1 model has captured the majority of the small-scale ISSRs (~1 km). In addition, the simulated ISSRs are dominated by water vapor horizontal heterogeneities (~90%) as opposed to temperature heterogeneities (~10%). This result is comparable to the observed values of ~88% and ~9%, respectively. However, when comparing the evolution phases of cirrus clouds (clear-sky ISS, nucleation/freezing, growth and sedimentation/sublimation; Diao et al. 2013), the CM1 simulation does not have sufficient amount of ISS in clear-sky and nucleation phases. This disagreement indicates a shortcoming of the idealized model setup. Overall, the observations show more ISS at higher magnitude (up to ~150% of RHi) than CM1 (~up to 130% of RHi). Also the largest ISSRs in the observations are up to ~100 km, compared with those in CM1 of up to ~10

  10. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  11. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  12. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  13. Modelling the local and global cloud formation on HD 189733b

    NASA Astrophysics Data System (ADS)

    Lee, G.; Helling, Ch.; Dobbs-Dixon, I.; Juncher, D.

    2015-08-01

    Context. Observations suggest that exoplanets such as HD 189733b form clouds in their atmospheres which have a strong feedback onto their thermodynamical and chemical structure, and overall appearance. Aims: Inspired by mineral cloud modelling efforts for brown dwarf atmospheres, we present the first spatially varying kinetic cloud model structures for HD 189733b. Methods: We apply a 2-model approach using results from a 3D global radiation-hydrodynamic simulation of the atmosphere as input for a detailed, kinetic cloud formation model. Sampling the 3D global atmosphere structure with 1D trajectories allows us to model the spatially varying cloud structure on HD 189733b. The resulting cloud properties enable the calculation of the scattering and absorption properties of the clouds. Results: We present local and global cloud structure and property maps for HD 189733b. The calculated cloud properties show variations in composition, size and number density of cloud particles which are strongest between the dayside and nightside. Cloud particles are mainly composed of a mix of materials with silicates being the main component. Cloud properties, and hence the local gas composition, change dramatically where temperature inversions occur locally. The cloud opacity is dominated by absorption in the upper atmosphere and scattering at higher pressures in the model. The calculated 8 μm single scattering albedo of the cloud particles are consistent with Spitzer bright regions. The cloud particles scattering properties suggest that they would sparkle/reflect a midnight blue colour at optical wavelengths.

  14. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft

    NASA Astrophysics Data System (ADS)

    Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia; Peter, Thomas; Keith, David W.

    2010-09-01

    Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO2 is limited because the slow conversion to H2SO4 tends to produce aerosol particles that are too large; SO2 injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO2 doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H2SO4, a condensable vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO2 injection. Relative to SO2 injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO2.

  15. Efficient Formation of Stratospheric Aerosol for Climate Engineering by Emission of Condensible Vapor from Aircraft

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia; Peter. Thomas; Keith, David W.

    2010-01-01

    Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO2 is limited because the slow conversion to H2SO4 tends to produce aerosol particles that are too large; SO2 injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO2 doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H2SO4, a condensable vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO2 injection. Relative to SO2 injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO2.

  16. Chemical Evolution of Collapsing Clouds in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Oman, Kris; Doty, S.; Krumholz, M.

    2011-01-01

    The process of massive star formation is not well understood. Recent work in large scale radiation hydrodynamical simulations have strongly suggested that radiation pressure can play an important role in opening cavities through which energy can be released, thus avoiding the problems of high radiation pressure supressing massive star formation. As a result, this pressure valve allows for the direct accretion of matter, and formation of massive stars. While these models include significant microphysics, it is important that predictions be made that allow the models to be compared with observations. Toward that end, we have undertaken a study of the chemistry in one of these collapsing cloud models. The chemical model involves the application of a large gas-phase and grain surface chemistry to the dynamical structure, including the effects of density, temperature, and radiation field. We present maps of H2, CO, and other molecular abundances as functions of space and time, as well as consider the resulting observational consequences of these results.

  17. Radiative heating rates near the stratospheric fountain

    NASA Technical Reports Server (NTRS)

    Doherty, G. M.; Newell, R. E.; Danielsen, E. F.

    1984-01-01

    Radiative heating rates are computed for various sets of conditions thought to be appropriate to the stratospheric fountain region: with and without a layer of cirrus cloud between 100 and 150 mbar; with standard ozone and with decreased ozone in the lower stratosphere, again with and without the cirrus cloud; and with different temperatures in the tropopause region. The presence of the cloud decreases the radiative cooling below the cloud in the upper troposphere and increases the cooling above it in the lower stratosphere. The cloud is heated at the base and cooled at the top and thus radiatively destabilized; overall it gains energy by radiation. Decreasing ozone above the cloud also tends to cool the lower stratosphere. The net effect is a tendency for vertical convergence and horizontal divergence in the cloud region. High resolution profiles of temperature, ozone, and cloudiness within the fountain region are required in order to assess the final balance of the various processes.

  18. Some effects of cloud-aerosol interaction on cloud microphysics structure and precipitation formation: numerical experiments with a spectral microphysics cloud ensemble model

    NASA Astrophysics Data System (ADS)

    Khain, A.; Pokrovsky, A.; Sednev, I.

    A spectral microphysics Hebrew University Cloud Model (HUCM) is used to evaluate some effects of cloud-aerosol interaction on mixed-phase cloud microphysics and aerosol particle size distribution in the region of the Eastern Mediterranean coastal circulation. In case of a high concentration of aerosol particles (APs), the rate of warm rain formation is several times lower, a significant fraction of droplets ascends above the freezing level. These drops produce a large amount of comparably small graupel particles and ice crystals. The warm rain from these clouds is less intense as compared to clouds with low drop concentration. At the same time, melted rain from clouds with high droplet concentration is more intense than from low drop concentration clouds. Melted rain can take place downwind at a distance of several tens of kilometers from the convective zone. It is shown that APs entering clouds above the cloud base influence the evolution of the drop size spectrum and the rate of rain formation. The chemical composition of APs influences the concentration of nucleated droplets and, therefore, changes accumulated rain significantly (in our experiments these changes are of 25-30%). Clouds in a coastal circulation influence significantly the concentration and size distribution of APs. First, they decrease the concentration of largest APs by nucleation scavenging. In our experiments, about 40% of APs were nucleated within clouds. The remaining APs are transported to middle levels by cloud updrafts and then enter the land at the levels of 3 to 7 km. In our experiments, the concentration of small APs increased several times at these levels. The cut off APs spectrum with an increased concentration of small APs remains downwind of the convective zone for several of tens and even hundreds of kilometers. The schemes of drop nucleation (based on the dependence of nucleated drop concentration on supersaturation in a certain power) and autoconversion (based on the Kessler

  19. Molecular emission towards RCW38 and RCW120; Possible candidates of the star formation via cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Torii, Kazufumi; Fukui, Yasuo; Furukawa, Naoko; Akio, Ohama; Hasegawa, Keisuke

    2012-04-01

    Understanding the formation of high-mass stars is one of the most pressing issues in modern astronomy. Recent observations towards the young cluster Trifid Neubla (M20) have revealed that two molecular clouds of 10^3 Mo are physically associated with the cluster, and the cloud-cloud collision process as the mechanism of the cluster formation was proposed (Torii et al. 2011). A large relative velocity of ~10 km/s between these two clouds is much larger than the permitted gravitational binding velocity of the constituent clouds. It is a crucial next step that we identify other examples of cloud-cloud collision to further constrain triggered-formed stars. In this proposal, we will observe two well-known bubble-shaped HII regions RCW 38 and RCW 120, located within 2 kpc, from the Sun in CO J=1-0 with Mopra. High spatial resolutions of ~0.1-0.2 pc enable to describe the detailed velocity components and therefore to establish unambiguous association with the optical and infrared nebula just like in M20. We request 26 hours in total.

  20. FORMATION PUMPING OF MOLECULAR HYDROGEN IN DARK CLOUDS

    SciTech Connect

    Islam, Farahjabeen; Viti, Serena; Cecchi-Pestellini, Cesare; Casu, Silvia E-mail: sv@star.ucl.ac.u E-mail: scasu@ca.astro.i

    2010-12-10

    Many theoretical and laboratory studies predict H{sub 2} to be formed in highly excited rovibrational states. The consequent relaxation of excited levels via a cascade of infrared transitions might be observable in emission from suitable interstellar regions. In this work, we model H{sub 2} formation pumping in standard dense clouds, taking into account the H/H{sub 2} transition zone, through an accurate description of chemistry and radiative transfer. The model includes recent laboratory data on H{sub 2} formation, as well as the effects of the interstellar UV field, predicting the populations of gas-phase H{sub 2} molecules and their IR emission spectra. Calculations suggest that some vibrationally excited states of H{sub 2} might be detectable toward lines of sight where significant destruction of H{sub 2} occurs, such as X-ray sources, and provides a possible explanation as to why observational attempts resulted in no detections reported to date.

  1. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones

    SciTech Connect

    Danielsen, E.F. )

    1993-05-20

    The author describes evidence from three different cloud types observed in the Australian monsoon, continental-maritime convective, maritime convective, and tropical cyclones, which contribute to transport of tropospheric air masses into the lower stratosphere. Measurements were made from ER-2 aircraft flying out of Darwin, Australia, equipped to measure an array of different parameters, including water vapor, temperatures, pressures, radon, etc. Maritime environmental conditions do not produce as much bouyancy for ascending air masses near Darwin, as do continental-maritime conditions when intense solar heating over the arid continental center of Australia heat and drys air masses which flow over the moist surface marine layers and have bouyancy to allow deep penetration into the lower stratosphere. For the tropical cyclones, their large scale, slower ascending air seems to mix into the stratosphere by gravity wave generation, which produces turbulence enough to drive air mass mixing across the inversions which cap these features.

  2. Clouds in a Bottle: Qualitative and Quantiative Demonstrations for Cloud Formation in a Learning Environment

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.

    2015-12-01

    The NASA CloudSat mission has been revealing the inner secrets of clouds since 2006 using its one-of-a-kind spaceborne cloud radar. During its mission, the CloudSat Education Network, consisting of schools in Asia, Europe, and North America, have been collecting data on Clouds when CloudSat passes overhead. The education team has spent many hours researching and presenting different methods for making clouds for demonstrations in formal and informal settings. In this presentation, we will present several variations on methods for doing the cloud in a bottle demonstration, including strengths and weaknesses for each, and a brief overview of the science involved in the various demonstrations.

  3. Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.

    PubMed

    Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen

    2009-01-20

    We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

  4. EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION

    SciTech Connect

    Heitsch, Fabian; Hartmann, Lee W.; Stone, James M.

    2009-04-10

    We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formation of massive clouds but permit the buildup of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a 'selection effect' for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.

  5. Stratospheric denitrification due to polar aerosol formation: Implications for a future atmosphere with increased CO{sub 2}

    SciTech Connect

    Pitari, G.; Ricciardulli, L.

    1994-08-15

    The authors use an atmospheric photochemical model to simulate the impact of increases in carbon dioxide on stratospheric denitrification, and hence on stratospheric ozone. Their model results show that an increase in carbon dioxide could result in a substantial cooling of the polar vortex, which could result in a significant increase in the denitrification rate. The lack of reactive nitrogen can feed into the chemical cycle for stratospheric ozone, resulting in a decrease in the destruction of ozone.

  6. Influence of wave activity on the composition of the polar stratosphere

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, S. P.; Pogoreltsev, A. I.; Galin, V. Ya.; Drobashevskaya, E. A.

    2016-01-01

    The planetary wave impact on the polar vortex stability, polar stratosphere temperature, and content of ozone and other gases was simulated with the global chemical-climatic model of the lower and middle atmosphere. It was found that the planetary waves propagating from the troposphere into the stratosphere differently affect the gas content of the Arctic and Antarctic stratosphere. In the Arctic region, the degree of wave activity critically affects the polar vortex formation, the appearance of polar stratospheric clouds, the halogen activation on their surface, and ozone anomaly formation. Ozone anomalies in the Arctic region as a rule are not formed at high wave activity and can be registered at low activity. In the Antarctic Regions, wave activity affects the stability of polar vortex and the depth of ozone holes, which are formed at almost any wave activity, and the minimal ozone values depend on the strong or weak wave activity that is registered in specific years.

  7. A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2015-01-01

    The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February-March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1σ) of better than 0.17 parts per million (ppm, 10-6 mol mol-1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2σ) was 0.023-0.013 ppm, corresponding to approximately 2 μg m

  8. Finding of the key formation mechanisms of the ionospheric response to sudden stratospheric warming using GSM TIP model

    NASA Astrophysics Data System (ADS)

    Klimenko, Vladimir; Klimenko, Maxim; Bessarab, Fedor; Korenkov, Yurij; Karpov, Ivan

    The Sudden Stratospheric Warming (SSW) is a large-scale phenomenon, which response is detected in the mesosphere, thermosphere and ionosphere. SSW ionospheric effects are studied using multi-instrumental satellites and by ground-based measurements. We report a brief overview of the observational and theoretical results of the global ionospheric response and its formation mechanisms during Sudden Stratospheric Warming. We also present the results of our investigation of thermosphere-ionosphere response to the SSW obtained within the Global Self-consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP). The SSW effects were modeled by specifying various boundary conditions at the height of 80 km in the GSM TIP model: (1) by setting the stationary perturbations s = 1 of the temperature and density at high latitudes; (2) by setting the global distribution of the neutral atmosphere parameters, calculated in the TIME-GCM and CCM SOCOL models for the conditions of the SSW 2009 event. It has been shown that the selected low boundary conditions do not allow to fully reproduce the observed variation in the ionospheric parameters during SSW 2009 event. Based on observations of the velocity of vertical plasma drift obtained by the incoherent scatter radar at Jicamarca, we introduced additional electric potential in the GSM TIP model, which allowed us to reproduce the zonal electric field (ÉB vertical plasma drift) and the observed SSW effects in the low-latitude ionosphere. Furthermore, we tried to reproduce the SSW ionospheric effects by including internal gravity waves in the high-latitude mesosphere. We discuss the model calculation results and possible reasons for model/data disagreements and give the proposals for further investigations. This work was supported by RFBR Grants №12-05-31217 and №14-05-00578.

  9. Evaluation of Antarctic polar stratospheric clouds data obtained by ground based lidars (at Dome C, McMurdo and Dumont D'Urville) and the satellite based CALIOP lidar system versus a subset of CCMVAL-2 chemistry-climate models.

    NASA Astrophysics Data System (ADS)

    Snels, Marcel; Fierli, Federico; de Muro, Mauro; Cagnazzo, Chiara; Cairo, Francesco; Di Liberto, Luca

    2016-04-01

    Polar stratospheric clouds play an important role in the ozone depletion process in polar regions and are thus strongly linked to climate changes. Long term observations are needed to monitor the presence of PSCs and to compare to climate models. The last decades PSCs in Antarctica have been observed by using the CALIOP lidar system on the CALIPSO satellite and by ground based lidars at Dumont D'Urville, McMurdo, Casey, and since 2014 at Dome C. We evaluate the Antarctic PSC observational databases of CALIPSO and the ground-based lidars of NDACC (Network for Detection of Atmospheric Composition Changes) located in McMurdo and Dumont D'Urville and Dome C stations and provide a process-oriented evaluation of PSC in a subset of CCMVAL-2 chemistry-climate models. Lidar observatories have a decadal coverage, albeit with discontinuities, spanning from 1992 to today hence offering a unique database. A clear issue is the representativeness of ground-based long-term data series of the Antarctic stratosphere conditions that may limit their value in climatological studies and model evaluation. The comparison with the CALIPSO observations with a global coverage is, hence, a key issue. In turn, models can have a biased representation of the stratospheric conditions and of the PSC microphysics leading to large discrepancies in PSC occurrence and composition. Point-to-point comparison is difficult due to sparseness of the database and to intrinsic differences in spatial distribution between models and observations. However, a statistical analysis of PSC observations shows a satisfactory agreement between ground-based and satellite borne-lidar. The differences may be attributed to averaging processes for data with a bad signal to noise ratio, which tends to smear out the values of the optical parameters. Data from some Chemistry Climate models (CCMs) having provided PSC surface areas on daily basis have been evaluated using the same diagnostic type that may be derived CALIPSO (i

  10. Polar Stratospheric Clouds and heterogeneous chemistry: Comparison between a 3D-CTM with detailed online PSC microphysics and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Viscardy, Sébastien; Errera, Quentin; Pitts, Michael C.; Poole, Lamont R.; Chabrillat, Simon; Daerden, Frank

    2013-04-01

    A 3-D Chemical Transport Model (CTM), with full stratospheric chemistry and driven by the ECMWF temperature and wind fields, has been coupled to a detailed PSC microphysical model to simulate polar winters. The formation and evolution of four types of PSC particles (STS, SAT, NAT, and ice) are described through relevant microphysical processes which alter interactively the nitric acid and water vapor concentrations of the atmosphere. Each particle type is described by a binned size distribution for the number density and chemical composition. This set-up allows for detailed calculation of optical properties and surface area densities used to compute the heterogeneous reaction rates. After comparing the evolution of the stratospheric chemical structure to satellite observations, we will investigate how the model reproduces the PSC coverage detected by CALIPSO. A comparison between the model and CALIPSO optical properties will be used to discuss the PSC composition. Finally, we aim at estimating the contribution of each PSC particle type to the chlorine activation.

  11. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2016-02-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene / NOx / light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  12. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  13. The influence of meteoric smoke particles on stratospheric aerosol properties

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Brooke, James; Dhomse, Sandip; Plane, John; Feng, Wuhu; Neely, Ryan; Bardeen, Chuck; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin; Abraham, Luke

    2016-04-01

    The ablation of metors in the thermosphere and mesosphere introduces a signficant source of particulate matter into the polar upper stratosphere. These meteoric smoke particles (MSP) initially form at nanometre sizes but in the stratosphere have grown to larger sizes (tens of nanometres) following coagulation. The presence of these smoke particles may represent a significant mechanism for the nucleation of polar stratospheric clouds and are also known to influence the properties of the stratospheric aerosol or Junge layer. In this presentation we present findings from experiments to investigate the influence of the MSP on the Junge layer, carried out with the UM-UKCA composition-climate model. The UM-UKCA model is a high-top (up to 80km) version of the general circulation model with well-resolved stratospheric dynamics, includes the aerosol microphysics module GLOMAP and has interactive sulphur chemistry suitable for the stratosphere and troposphere (Dhomse et al., 2014). We have recently added to UM-UKCA a source of meteoric smoke particles, based on prescribing the variation of the smoke particles from previous simulations with the Whole Atmosphere Community Climate Model (WACCM). In UM-UKCA, the MSP particles are transported within the GLOMAP aerosol framework, alongside interactive stratospheric sulphuric acid aerosol. For the experiments presented here, we have activated the interaction between the MSP and the stratospheric sulphuric acid aerosol. The MSP provide an important sink term for the gas phase sulphuric acid simulated in the model, with subsequent effects on the formation, growth and temporal evolution of stratospheric sulphuric acid aerosol particles. By comparing simulations with and without the MSP-sulphur interactions we quantify the influence of the meteoric smoke on the properties of volcanically-quiescent Junge layer. We also investigate the extent to which the MSP may modulate the effects from SO2 injected into the stratosphere from volcanic

  14. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Backman, Leif; Kivi, Rigel; Karpechko, Alexey Yu.

    2016-04-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry transport model simulation covering the years 1990-2014 is compared to observations (satellite and frost point hygrometer soundings), and the sources of stratospheric water vapour are studied. In the simulations, the Arctic water vapour shows decadal variability with a magnitude of 0.8 ppm. Both observations and the simulations show an increase in the water vapour concentration in the Arctic stratosphere after the year 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes, while the photochemically produced water vapour plays a relatively smaller role. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ice polar stratospheric clouds (PSCs) in the Arctic vortex. We perform a case study of ice PSC formation focusing on January 2010 when the polar vortex was unusually cold and allowed large-scale formation of PSCs. At the same time a large-scale persistent dehydration was observed. Ice PSCs and dehydration observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT (Lapland Atmosphere-Biosphere facility) atmospheric measurement campaign were well reproduced by the model. In particular, both the observed and simulated decrease in water vapour in the dehydration layer was up to 1.5 ppm.

  15. Molecular clouds toward the super star cluster NGC 3603; possible evidence for a cloud-cloud collision in triggering the cluster formation

    SciTech Connect

    Fukui, Y.; Ohama, A.; Hanaoka, N.; Furukawa, N.; Torii, K.; Hasegawa, K.; Fukuda, T.; Soga, S.; Moribe, N.; Kuroda, Y.; Hayakawa, T.; Kuwahara, T.; Yamamoto, H.; Okuda, T.; Dawson, J. R.; Mizuno, N.; Kawamura, A.; Onishi, T.; Maezawa, H.; Mizuno, A.

    2014-01-01

    We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC 3603 in the transitions {sup 12}CO(J = 2-1, J = 1-0) and {sup 13}CO(J = 2-1, J = 1-0). We suggest that two molecular clouds at 13 km s{sup –1} and 28 km s{sup –1} are associated with NGC 3603 as evidenced by higher temperatures toward the H II region, as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ∼20 km s{sup –1}. We suggest that the two clouds collided with each other 1 Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster, which is as young as 1 Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along with Westerlund 2 where formation may have been triggered by a cloud-cloud collision.

  16. MOLECULAR CLOUDS IN THE TRIFID NEBULA M20: POSSIBLE EVIDENCE FOR A CLOUD-CLOUD COLLISION IN TRIGGERING THE FORMATION OF THE FIRST GENERATION STARS

    SciTech Connect

    Torii, K.; Enokiya, R.; Sano, H.; Yoshiike, S.; Hanaoka, N.; Ohama, A.; Furukawa, N.; Dawson, J. R.; Moribe, N.; Oishi, K.; Nakashima, Y.; Okuda, T.; Yamamoto, H.; Kawamura, A.; Mizuno, N.; Onishi, T.; Fukui, Y.; Maezawa, H.; Mizuno, A.

    2011-09-01

    A large-scale study of the molecular clouds toward the Trifid Nebula, M20, has been made in the J = 2-1 and J = 1-0 transitions of {sup 12}CO and {sup 13}CO. M20 is ionized predominantly by an O7.5 star HD164492. The study has revealed that there are two molecular components at separate velocities peaked toward the center of M20 and that their temperatures-30-50 K as derived by a large velocity gradient analysis-are significantly higher than the 10 K of their surroundings. We identify the two clouds as the parent clouds of the first generation stars in M20. The mass of each cloud is estimated to be {approx}10{sup 3} M{sub sun} and their separation velocity is {approx}8 km s{sup -1} over {approx}1-2 pc. We find that the total mass of stars and molecular gas in M20 is less than {approx}3.2 x 10{sup 3} M{sub sun}, which is too small by an order of magnitude to gravitationally bind the system. We argue that the formation of the first generation stars, including the main ionizing O7.5 star, was triggered by the collision between the two clouds in a short timescale of {approx}1 Myr, a second example alongside Westerlund 2, where a super-star cluster may have been formed due to cloud-cloud collision triggering.

  17. Molecular Clouds in the Trifid Nebula M20: Possible Evidence for a Cloud-Cloud Collision in Triggering the Formation of the First Generation Stars

    NASA Astrophysics Data System (ADS)

    Torii, K.; Enokiya, R.; Sano, H.; Yoshiike, S.; Hanaoka, N.; Ohama, A.; Furukawa, N.; Dawson, J. R.; Moribe, N.; Oishi, K.; Nakashima, Y.; Okuda, T.; Yamamoto, H.; Kawamura, A.; Mizuno, N.; Maezawa, H.; Onishi, T.; Mizuno, A.; Fukui, Y.

    2011-09-01

    A large-scale study of the molecular clouds toward the Trifid Nebula, M20, has been made in the J = 2-1 and J = 1-0 transitions of 12CO and 13CO. M20 is ionized predominantly by an O7.5 star HD164492. The study has revealed that there are two molecular components at separate velocities peaked toward the center of M20 and that their temperatures—30-50 K as derived by a large velocity gradient analysis—are significantly higher than the 10 K of their surroundings. We identify the two clouds as the parent clouds of the first generation stars in M20. The mass of each cloud is estimated to be ~103 M sun and their separation velocity is ~8 km s-1 over ~1-2 pc. We find that the total mass of stars and molecular gas in M20 is less than ~3.2 × 103 M sun, which is too small by an order of magnitude to gravitationally bind the system. We argue that the formation of the first generation stars, including the main ionizing O7.5 star, was triggered by the collision between the two clouds in a short timescale of ~1 Myr, a second example alongside Westerlund 2, where a super-star cluster may have been formed due to cloud-cloud collision triggering.

  18. Testing Dynamical Models of Star Cloud Formation with the Hercules- Aquila Cloud

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson A.; Johnston, Kathryn V.; Majewski, Steven R.

    2013-02-01

    This proposal requests time using the Goodman Spectrograph on the SOAR Telescope to map the radial velocity structure of the Hercules- Aquila cloud - a diffuse stellar substructure in the Galactic halo that spans hundreds of deg^2 on the sky. A handful of these amorphous substructures have been detected in the halo over the past decade and models suggest that, like stellar streams, these clouds are the remnants of debris from an accreted Milky Way satellite. However, the models have definite predictions that differentiate clouds from streams in: velocity (they should exhibit stronger radial velocity gradients than streams), origin (the progenitors should be on highly eccentric orbits) and location (the clouds should lie at the orbital apocenter of the parent satellite). Owing to their orbital dynamics, the debris from these clouds is expected to have explored a large range of radii, and hence should be sensitive to the radial profile of the Galactic dark matter distribution. Spectroscopic studies of M giants in the Triangulum-Andromeda cloud support the model predictions for the origin of stellar clouds (Rocha-Pinto et. al 2004 and the results from the work of NOAO proposal 2011B-0575). Our proposed spectroscopic program to target the Hercules-Aquila cloud will provide results that can: (1) further confirm the nature of these substructures as suggested by the models and (2) serve as new constraints on the Galactic potential.

  19. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    SciTech Connect

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.

    2015-03-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.

  20. Suppression of Arctic Air Formation by Cloud Radiative Effects in a Two-Dimensional Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Li, H.

    2015-12-01

    To better understand equable paleoclimates, Arctic amplification of winter warming, and the high-latitude lapse-rate feedback, we investigate the process of Arctic air formation, wherein a high latitude maritime air mass is advected over land during polar night and strongly cooled from the surface up. We extend previous work done using a single-column model (Cronin and Tziperman, PNAS, in press) by performing two-dimensional idealized cloud-resolving simulations with the Weather Research and Forecasting (WRF) model. Quantitatively consistent with previous results, we find that as the initial atmospheric state is warmed, increases in low cloud amount reduce the average surface cooling over a 14-day period by roughly a degree for each degree of warming of the initial atmospheric state, with the feedback strength increasing with warming. This is primarily attributed to a monotonic increase in surface cloud radiative forcing of approximately 2 W m-2 for each degree that the initial atmospheric sounding is warmed. The use of a two-dimensional model as opposed to a single-column model shows that the lower-tropospheric cloud layer becomes more turbulent and dominated by cumulus clouds as the climate is warmed, yet the cloud fraction remains high owing to the continued prevalence of stratus and fog layers. These results are robust across a variety of cloud microphysics schemes and are not sensitive to the horizontal or vertical resolution of the model. We also explore the vertical structure and horizontal variability of the bulk horizontal flow, the sensitivity of the results to subsidence and atmospheric carbon dioxide concentration, and the contrasting roles of top-of-atmosphere and surface cloud radiative effects.

  1. Kinetic potential and barrier crossing: a model for warm cloud drizzle formation.

    PubMed

    McGraw, Robert; Liu, Yangang

    2003-01-10

    The kinetic potential of nucleation theory is used to describe droplet growth processes in a cloud. Drizzle formation is identified as a statistical barrier-crossing phenomenon that transforms cloud droplets to drizzle size with a rate dependent on turbulent diffusion, droplet collection, and size distribution. Steady-state and transient drizzle rates are calculated for typical cloud conditions. We find drizzle more likely under transient conditions. The model quantifies an important indirect effect of aerosols on climate-drizzle suppression in clouds of higher droplet concentration.

  2. A stochastic formation of radiative transfer in clouds

    SciTech Connect

    Stephens, G.L.; Gabriel, P.M.

    1993-03-01

    The research carried out under this award dealt with issues involving deterministic radiative transfer, remote sensing, Stochastic radiative transfer, and parameterization of cloud optical properties. A number of different forms of radiative transfer models in one, two, and three dimensions were developed in an attempt to build an understanding of the radiative transfer in clouds with realistic spatial structure and to determine the key geometrical parameter that influence this transfer. The research conducted also seeks to assess the relative importance of these geometrical effects in contrast to microphysical effects of clouds. The main conclusion of the work is that geometry has a profound influence on all aspects of radiative transfer and the interpretation of this transfer. We demonstrate how this geometry can influence estimate of particle effective radius to the 30-50% level and also how geometry can significantly bias the remote sensing of cloud optical depth.

  3. Comments on the Formation of Globular Clusters from Coalesced Clouds.

    PubMed

    Smith

    1999-11-20

    If a substantial fraction of the proto-Galactic halo was constituted of cloudy structures of sizes 1 kpc or larger, then collisions between these clouds would have been common during the infall of the Galaxy. Such collisions would have shaped the properties of the clouds from which globular clusters formed. If Milky Way globular clusters formed from progenitor clouds which in turn had been constructed from the coalescence of smaller cloud structures, then cluster properties that could naturally be accounted for include: (1) the low percentage of stars in globular clusters relative to the halo field, (2) the chemical homogeneity of globular clusters with respect to heavy elements, and (3) the fact that the lowest metallicity globular clusters are not as metal-poor as some halo field stars.

  4. Mathematical model of formation of Kordylewski cosmic dust clouds

    NASA Astrophysics Data System (ADS)

    Sal'nikova, T. V.; Stepanov, S. Ya.

    2015-07-01

    The question of occurrence of cosmic dust clouds, which were found by Kordylewski in 1961 in the vicinity of libration point L 5 of the Earth-Moon system, still causes debates and concern. We explain theoretically the phenomenon of the apparent vanishing and appearance of the Kordylewski cosmic dust clouds in the vicinity of triangular libration points L 4 and L 5 of the Earth-Moon system. The possibility of occurrence of two such clouds rotating around libration points L 4 and two clouds rotating around point L 5 is shown and optimal times for their observation from the Earth are determined. The investigation is performed based on analysis of a stable periodic motion in a planar restricted circular problem of three bodies, Earth-Moon—Particle, allowing for perturbations from the Sun under the assumption that the orbits of the Earth and Moon are circular and lie in one plane.

  5. Ice Formation and Growth in Orographically-Enhanced Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    David, Robert; Lowenthal, Douglas; Gannet Hallar, A.; McCubbin, Ian; Avallone, Linnea; Mace, Gerald; Wang, Zhien

    2015-04-01

    The formation and evolution of ice in mixed-phase clouds continues to be an active area of research due to the complex interactions between vapor, liquid and ice. Orographically-enhanced clouds are commonly mixed-phase during winter. An airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured temperature, and cloud droplet and ice crystal size distributions at SPL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes. Small ice crystal concentrations were routinely higher at the surface and a relationship between small ice crystal concentrations, large cloud droplet concentrations and temperature was observed, suggesting liquid-dependent ice nucleation near cloud base. Terrain flow effects on cloud microphysics and structure are considered.

  6. A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Kodera, K.; Nasuno, T.

    2015-01-01

    The dynamical coupling process between the stratosphere and troposphere in the tropical tropopause layer (TTL) during a~stratospheric sudden warming (SSW) in boreal winter was investigated using simulation data from a global non-hydrostatic model (NICAM) that does not use cumulus parameterization. The model reproduced well the observed tropical tropospheric changes during the SSW, including the enhancement of convective activity following the amplification of planetary waves. Deep convective activity was enhanced in the latitude zone 20-10° S, in particular over the southwest Pacific and southwest Indian Ocean. Although the upwelling in the TTL was correlated with that in the stratosphere, the temperature tendency in the TTL changed little due to a compensation by diabatic heating originating from cloud formation. This result suggests that the stratospheric meridional circulation affects cloud formation in the TTL.

  7. A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Kodera, K.; Nasuno, T.

    2014-03-01

    The dynamical coupling process between the stratosphere and troposphere in the tropical tropopause layer (TTL) during a stratospheric sudden warming (SSW) in boreal winter was investigated using simulation data from a global non-hydrostatic model (NICAM) that does not use cumulus parameterization. The model reproduced well the observed tropical tropospheric changes during the SSW including the enhancement of convective activity following the amplification of planetary waves. Deep convective activity was enhanced in the latitude zone 20-10° S, in particular over the southwest Pacific and southwest Indian Ocean. Although the upwelling in the TTL was correlated with that in the stratosphere, the temperature tendency in the TTL was mainly controlled by diabatic heating originating from cloud formation. This result suggests that the stratospheric meridional circulation affects cloud formation in the TTL.

  8. Ion-induced Aerosol-formation By Jet Aircraft: Implications For Contrail- and Cloud-formation

    NASA Astrophysics Data System (ADS)

    Eichkorn, S.; Wilhelm, S.; Arnold, F.

    Jet aircraft produced gaseous ions so called chemiions (CI) may promote the forma- tion of volatile aerosol particles (VAP). VAP are potentially important by acting as water vapor condensation nuclei in contrail- and perhaps even cloud-formation. This ion-induced VAP-formation proceeds via the formation of cluster ions which are suf- ficiently large to form stable VAP upon neutralisation by ion-ion recombination. Here we report the first measurements of large cluster ions in sulfur-poor and -rich exhaust plumes of jet aircraft in flight equipped with modern and old engines. Measurements were performed in the wake of an Airbus A340, a Boeing B707 and the German Re- search Aircraft ATTAS. Our measurements suggest that ion induced VAP-formation takes place and that gaseous sulphuric acid and gaseous low volatility organic com- pounds are involved. For modern engines burning fuel with a typical mean fuel sulfur content sulphuric acid seems to be the most abundant condensate in a contrail-free exhaust-plume.

  9. Seasonal and spatial variability of heterogeneous ice formation in stratiform clouds and its possible impact on precipitation formation

    NASA Astrophysics Data System (ADS)

    Seifert, P.; Ansmann, A.; Baars, H.; Buehl, J.; Kanitz, T.; Bohlmann, S.; Engelmann, R.; Kunz, C.

    2015-12-01

    Lidar observations of stratiform mid-level clouds were used to investigate the efficiency of heterogeneous ice nucleation as a function of cloud top temperature. The long-term lidar-based cloud datasets were collected in Germany (51°N,12°E), in southeastern China (22°N,112°E), Cape Verde (15°N,24°W), the Amazon Basin (1°N,60°W), South Africa (34°S,19°E), and southern Chile (53°S,71°W). They thus cover a variety of northern- and southern latitudinal belts from the midlatitudes to the tropics. Observations of the depolarization ratio were used to categorize the observed cloud layers into either ice-free (no depolarized signals observed) or ice-containing clouds (signals depolarized by scattering at ice crystals). Strong hemispheric and regional differences were observed in the heterogeneous ice formation efficiency at the different sites, especially in the high-temperature range between -20 and 0 °C. The fraction of ice containing clouds in this temperature range is highest at the northern-latitudinal sites of Germany and southeastern China. Over Leipzig, 50% of all clouds contain ice at -10 °C. In contrast, over southern Chile virtually no ice-containing clouds were observed between -20 and 0 °C. Seasonal differences in the ice-cloud fraction were found over Germany and the Amazon Basin. The observed regional, hemispheric and seasonal contrasts can be explained by differences in the aerosol concentration at cloud level above the different sites. Cloud vertical motion (observed with Doppler lidar), which also determine the microphysical cloud evolution, were found to be similar for all cloud layers. From combined observations of cloud radar and lidar at Leipzig it was in addition found that ice water contents of below approx. 10-6kg/m³ cannot be detected with lidar. Clouds classified as pure liquid from the lidar-only observations thus could contain ice water contents of below that threshold. Considering the hemispheric differences in heterogeneous

  10. Star formation in gravitationally unstable disk galaxies: From clouds to disks

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.

    In Part I, I examine the dynamics of giant molecular clouds through simplified semianalytic models. I focus on the growth of clouds as they accrete gas. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds: clouds attain virial equilibrium and grow maintaining roughly constant surface densities, Sigma ≃ 50--200 M[special character omitted]pc-2 and that clouds grow along the well-known linewidth-size relation. We compare our models to observations of giant molecular clouds and associated young star clusters in the Large Magellanic Cloud, finding good agreement between our models and the relationship between H ii regions, young star clusters, and giant molecular clouds. The role of gravitational-instability driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feed- back can explain galaxy properties, remains an open question. To address it, in Part II I present high resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation. The simulations resolve densities typical of the transition from atomic to molecular hydrogen, capturing the formation of gravitationally bound clouds. We present simulations both with and without stellar feedback from Type II supernova blast waves. We find gravitational instability alone can drive substantial turbulence in galactic disks and reproduce some properties of nearby star forming galaxies: Qtotal [special character omitted] 1, ceff ˜ 10 km/s, without stellar feedback. Including feedback produces an ISM with a structure similar to observed disks, with the bulk of the gas in the warm or cold atomic phase, and the remainder locked up in short-lived gravitationally bound clouds. We investigate radial flows of gas and find that radial migration of gas due to gravitational instability can

  11. Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Michelangeli, D. V.; Toon, O. B.; Haberle, R. M.; Pollack, J. B.

    1993-04-01

    A model of the formation, evolution, and description of Martian water ice clouds is developed which well reproduces the physical processes governing the microphysics of water ice cloud formation on Mars. The model is used to show that the cloud properties are most sensitive to the temperature profile, the number of days for which condensation previously occurred, the contact angle, and the presence of incoming meteoritic debris at the top of the atmosphere. The AM-PM differences in optical depths measured at the Viking Lander site were successfully simulated with the model, obtaining total column optical depths of ice of a few tenths in agreement with observations.

  12. An estimate of star formation efficiency in molecular clouds

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.

    1984-01-01

    From the existing data in the literature it is shown that there is a linear correlation between cloud mass derived from CO observations and the associated luminosity obtained from far-IR observations over a large luminosity range of 10 to the 4th to 10 to the 8th solar luminosities. The mean value of luminosity per unit mass for a giant molecular cloud is 5.6 solar-L/solar-M. The star-forming efficiency of the molecular cloud over its lifetime of 5-10 x 10 to the 7th yr is found to be 0.2-0.3, which yields the present star-forming rate of 6-11 solar masses per year. Furthermore, the integral luminosity distribution is a power-law with an exponent of about -0.5. The correlation between cloud mass and the far-IR luminosity observed for a sample of nuclei of external galaxies corresponds to molecular clouds similar to those in the Galaxy.

  13. CLOUD FORMATION AND ACCELERATION IN A RADIATIVE ENVIRONMENT

    SciTech Connect

    Proga, Daniel; Waters, Tim

    2015-05-10

    In a radiatively heated and cooled medium, thermal instability (TI) is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field’s theory to self-consistently account for a radiation force resulting from bound–free and bound–bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one- and two-dimensional (1D/2D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1D simulations demonstrate that the TI can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to supersonic velocities. However, our 2D simulations reveal that a single cloud with a simple morphology cannot be maintained due to destructive processes, triggered by the Rayleigh–Taylor instability and followed by the Kelvin–Helmholtz instability. Nevertheless, the resulting cold gas structures are still significantly accelerated before they are ultimately dispersed.

  14. Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-01

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a three-dimensional cloud-resolving model, the System for Atmospheric Modeling (SAM), coupled with an explicit bin microphysics scheme and a radar simulator. By implementing an aerosol-dependent and a temperature- and supersaturation-dependent ice nucleation scheme and treating IN size distribution prognostically, the link between ice crystal and aerosol properties is established to study aerosol indirect effects. Two possible ice enhancement mechanisms, activation of droplet evaporation residues by condensation followed by freezing and droplet evaporation freezing by contact freezing inside out, are scrutinized by extensive comparisons with the in situ and remote sensing measurements. Simulations with either mechanism agree well with the in situ and remote sensing measurements of ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give similar cloud properties, although ice nucleation occurs at very different rates and locations. Ice nucleation from activation of evaporation nuclei occurs mostly near cloud top areas, while ice nucleation from the drop freezing during evaporation has no significant location preference. Both ice enhancement mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. Ice nuclei (IN) recycling from ice sublimation contributes significantly to maintaining concentrations of IN and ice particles in this case, implying an important role to maintain the observed long-term existence of mixed-phase clouds. Cloud can be very sensitive to IN initially but become much less sensitive as cloud evolves to a steady mixed-phase condition.

  15. Zernike moments as a useful tool for ACE imager aerological data retrieval (stratospheric temperature and cloud product)

    NASA Astrophysics Data System (ADS)

    Dodion, Jan; Fussen, Didier; Filip, Vanhellemont; Mateshvili, Nina; Christine, Bingen; Maxime, Stapelle; Dekemper, Emmanuel; Gilbert, Kathy; Walker, Kaley; Bernath, Peter

    The Atmospheric Chemistry Experiment (ACE) was launched in August 2003 aboard the Canadian satellite SCISAT-I, and is at present fully operational. ACE circles the Earth at an altitude of 650 km with an orbital inclination of 74° . Solar occultation is the primary observation technique used by the on board instruments, which consist of a high resolution Fourier Transform spectrometer (ACE-FTS), a dual optical spectrophotometer (MAESTRO) and two filtered imagers, subject of this presentation. While the Sun is setting below or rising from behind the Earth's horizon, at every timestamp, the imagers capture a snapshot of the Sun as seen through the atmosphere. On these pictures, the apparent Sun width is about 25 km at the tangent point and the apparent Sun height varies from almost 0.7 km in the optically thick, lower troposphere where the Sun image is highly flattened by the refraction to its maximum (about 25 km at the tangent point) where refractive effects are negligible. Used in image processing, image moments are certain particular weighted averages (moments) of the image pixel's intensities, or functions of those moments, usually chosen to have some attractive property on interpretation. Zernike moments were first introduced by Teague (1980) based on the complex, orthogonal functions called Zernike polynomials. Though computationally very complex compared to geometric and Legendre moments, Zernike moments have proved to be superior in terms of their feature representation capability and low noise sensitivity. Also, the construction of different moment invariants makes them well suited for our research. A detailed image analysis of ACE imager data using Zernike moments provides us the necessary information for the retrieval of temperature profiles from a series of distorted images of an object of known shape such as the Sun. These temperature profiles are validated with ACE-FTS data. Besides, a preliminary cloud product could be derived and, in addition, a

  16. Ambipolar Diffusion and Star Formation: Formation and Contraction of Axisymmetric Cloud Cores. II. Results

    NASA Astrophysics Data System (ADS)

    Fiedler, Robert A.; Mouschovias, Telemachos Ch.

    1993-10-01

    The problem of the formation and contraction of fragments (or cores) in magnetically supported parent molecular clouds was formulated in a previous paper. Three dimensionless free parameters appear in the evolution equations: the initial ratio of the free-fall and neutral-ion collision times (in the uniform reference state), νff,0, the exponent κ in the relation between the ion and neutral densities ni ∝ nkn, and the initial ratio of the magnetic and thermal pressures, α0. The initial central mass-to-flux ratio in units of the critical value for gravitational collapse, μ0 enters through the initial conditions. We follow both the quasistatic and dynamic phases of contraction and demonstrate that ambipolar diffusion leads to self-initiated protostar formation ("quasistatic" meaning motion with negligible acceleration). A typical cloud core forms and contracts quasi- statically on the flux-loss time scale until the central mass-to-flux ratio (dM/dΦB)c exceeds the critical value. During quasistatic contraction, the magnetic field lines are essentially "held in place" as the neutrals contract through them, and the field strength increases by less than a factor of 2. Despite subsequent dynamic contraction perpendicular to magnetic field lines, thermal pressure continues to balance gravity along field lines, thereby enforcing quasistatic contraction in this direction. We follow the contraction until the central density nc increases by a factor of 106 (typically from 3 × 102 to 3 × 108 cm-3). The envelope remains magnetically supported. The results from our parameter study show that decreasing νff,0 speeds up ambipolar diffusion, shortens the quasistatic phase of contraction, and causes (dM/dΦB)c to increase by a greater amount above the critical value. The enhancement of the central magnetic field Bc, however, is not sensitive to the value of νff,0. A smaller κ leads to progressively more rapid ambipolar diffusion as nc increases. Reducing μ0 lengthens the

  17. Cluster-formation in the Rosette molecular cloud at the junctions of filaments

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Hennemann, M.; Motte, F.; Didelon, P.; Federrath, C.; Bontemps, S.; Di Francesco, J.; Arzoumanian, D.; Minier, V.; André, Ph.; Hill, T.; Zavagno, A.; Nguyen-Luong, Q.; Attard, M.; Bernard, J.-Ph.; Elia, D.; Fallscheer, C.; Griffin, M.; Kirk, J.; Klessen, R.; Könyves, V.; Martin, P.; Men'shchikov, A.; Palmeirim, P.; Peretto, N.; Pestalozzi, M.; Russeil, D.; Sadavoy, S.; Sousbie, T.; Testi, L.; Tremblin, P.; Ward-Thompson, D.; White, G.

    2012-04-01

    Aims: For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. Instead, gravitational collapse of filaments and/or merging of filamentary structures can lead to building up dense high-mass star-forming clumps. However, the overall density structure of the cloud has a large influence on this process, and requires a better understanding. Methods: The Rosette molecular cloud, irradiated by the NGC 2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. Results: The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression, while the PDFs of the center and other cloud parts are more complex, partly with a power-law tail. A deviation of the log-normal PDF form occurs at AV ≈ 9m for the center, and around 4m for the other regions. Only the part of the cloud farthest from the Rosette nebula shows a log-normal PDF. Conclusions: The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at AV ≈ 3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star

  18. STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS

    SciTech Connect

    Lada, Charles J.; Forbrich, Jan; Lombardi, Marco; Alves, Joao F. E-mail: jforbrich@cfa.harvard.edu E-mail: joao.alves@univie.ac.at

    2012-02-01

    In this paper, we investigate scaling relations between star formation rates and molecular gas masses for both local Galactic clouds and a sample of external galaxies. We specifically consider relations between the star formation rates and measurements of dense, as well as total, molecular gas masses. We argue that there is a fundamental empirical scaling relation that directly connects the local star formation process with that operating globally within galaxies. Specifically, the total star formation rate in a molecular cloud or galaxy is linearly proportional to the mass of dense gas within the cloud or galaxy. This simple relation, first documented in previous studies, holds over a span of mass covering nearly nine orders of magnitude and indicates that the rate of star formation is directly controlled by the amount of dense molecular gas that can be assembled within a star formation complex. We further show that the star formation rates and total molecular masses, characterizing both local clouds and galaxies, are correlated over similarly large scales of mass and can be described by a family of linear star formation scaling laws, parameterized by f{sub DG}, the fraction of dense gas contained within the clouds or galaxies. That is, the underlying star formation scaling law is always linear for clouds and galaxies with the same dense gas fraction. These considerations provide a single unified framework for understanding the relation between the standard (nonlinear) extragalactic Schmidt-Kennicutt scaling law, that is typically derived from CO observations of the gas, and the linear star formation scaling law derived from HCN observations of the dense gas.

  19. Measurements of Chlorine Partitioning in the Winter Arctic Stratosphere

    NASA Technical Reports Server (NTRS)

    Stachnik, R.; Salawitch, R.; Engel, A.; Schmidt, U.

    1999-01-01

    Under the extremely cold conditions in the polar winter stratosphere, heterogeneous reactions involving HCl and CIONO(sub 2) on the surfaces of polar stratospheric cloud particles can release large amounts of reactive chlorine from these reservoirs leading to rapid chemical loss of ozone in the Arctic lower stratosphere during late winter and early spring.

  20. An Assessment of Stratospheric Water Vapor Using a General Circulation Model. Ph.D. Thesis

    SciTech Connect

    Mote, P.W.

    1994-01-01

    Water vapor not only participates in the radiative balance of the atmosphere and in cloud formation, it also participates in stratospheric chemistry and, due to the strong dependence of saturation on temperature, serves as a tracer for exposure of air to cold temperatures. The application of general circulation models (GCM`s) to stratospheric chemistry and transport both enables and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the CCM2, to enable studies of stratospheric chemistry and tracer transport, including that of water vapor. Simple methane chemistry provides an adequate representation of the upper stratospheric water vapor source in the CCM2. The CCM2`s water vapor distribution and seasonality compare favorably with observations in many respects, and the CCM2 fills gaps in the obsevations, yielding some new insights. For example, southern polar dehydration can affect midlatitude water mixing ratios by a few tenths of a ppmv. The annual cycle of water vapor in the tropical and subtropical lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a very long adjustment time, a factor 2-4 longer than for methane, a common long-lived tracer. In the lower stratosphere, however, two model deficiencies have a profound impact on simulated water vapor. The first is a cold temperature bias in the winter polar stratosphere, a deficiency common to GCM`s. The cold bias produces excessive dehydration in the southern hemisphere. This deficiency can be eliminated fairly simply by setting a minimum vapor pressure. The second deficiency, however, is not so easily remedied. Stratosphere-troposphere exchange in the tropics has a different character from the observed; for example, too little mass flux occurs under low mixing ratio conditions, so that the stratosphere is somewhat too moist.

  1. The effects of flow-inhomogeneities on molecular cloud formation: Local versus global collapse

    SciTech Connect

    Carroll-Nellenback, Jonathan J.; Frank, Adam; Heitsch, Fabian

    2014-07-20

    Observational evidence from local star-forming regions mandates that star formation occurs shortly after, or even during, molecular cloud formation. Models of molecular cloud formation in large-scale converging flows have identified the physical mechanisms driving the necessary rapid fragmentation. They also point to global gravitational collapse driving supersonic turbulence in molecular clouds. Previous cloud formation models have focused on turbulence generation, gravitational collapse, magnetic fields, and feedback. Here, we explore the effect of structure in the flow on the resulting clouds and the ensuing gravitational collapse. We compare two extreme cases, one with a collision between two smooth streams, and one with streams containing small clumps. We find that structured converging flows lead to a delay of local gravitational collapse ({sup c}ore formation{sup )}. Hence, the cloud has more time to accumulate mass, eventually leading to a strong global collapse, and thus to a high core formation rate. Uniform converging flows fragment hydrodynamically early on, leading to the rapid onset of local gravitational collapse and an overall low core formation rate. This is also mirrored in the core mass distribution: the uniform initial conditions lead to more low-mass cores than the clumpy initial conditions. Kinetic (E{sub k} ) and gravitational energy (E{sub g} ) budgets suggest that collapse is only prevented for E{sub k} >> E{sub g} , which occurs for large scales in the smooth flow, and for small scales for the clumpy flow. Whenever E{sub k} ≈ E{sub g} , we observe gravitational collapse on those scales. Signatures of chemical abundance variations evolve differently for the gas phase and for the stellar population. For smooth flows, the forming cloud is well mixed, while its stellar population retains more information about the initial metallicities. For clumpy flows, the gas phase is less well mixed, while the stellar population has lost most of the

  2. THE GALACTIC CENTER CLOUD G0.253+0.016: A MASSIVE DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL

    SciTech Connect

    Kauffmann, Jens; Pillai, Thushara; Zhang Qizhou

    2013-03-10

    We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using CARMA and the SMA. This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2 Multiplication-Sign 10{sup 5} M{sub Sun }) into a radius of only 3 pc, but it is essentially starless. G0.253+0.016 therefore violates ''star formation laws'' presently used to explain trends in galactic and extragalactic star formation by a factor {approx}45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths {approx}< 1 km s{sup -1}-probably the narrowest lines reported for the GC region to date-are found. Evolution over several 10{sup 5} yr is needed before more massive cores, and possibly an Arches-like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound nature of G0.253+0.016, it is not clear that this evolution will happen.

  3. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations

  4. Carbon in different phases ([CII], [CI], and CO) in infrared dark clouds: Cloud formation signatures and carbon gas fractions

    NASA Astrophysics Data System (ADS)

    Beuther, H.; Ragan, S. E.; Ossenkopf, V.; Glover, S.; Henning, Th.; Linz, H.; Nielbock, M.; Krause, O.; Stutzki, J.; Schilke, P.; Güsten, R.

    2014-11-01

    Context. How molecular clouds form out of the atomic phase and what the relative fractions of carbon are in the ionized, atomic, and molecular phase are questions at the heart of cloud and star formation. Aims: We want to understand the kinematic processes of gas flows during the formation of molecular clouds. In addition to that, we aim at determining the abundance ratios of carbon in its various gas phases from the ionized to the molecular form. Methods: Using multiple observatories from Herschel and SOFIA to APEX and the IRAM 30 m telescope, we mapped the ionized and atomic carbon as well as carbon monoxide ([CII] at 1900 GHz, [CI] at 492 GHz, and C18O(2-1) at 220 GHz) at high spatial resolution (12''-25'') in four young massive infrared dark clouds (IRDCs). Results: The three carbon phases were successfully mapped in all four regions, only in one source does the [CII] line remain a non-detection. With these data, we dissect the spatial and kinematic structure of the four IRDCs and determine the abundances of gas phase carbon in its ionized, atomic, and most abundant molecular form (CO). Both the molecular and atomic phases trace the dense structures well, with [CI] also tracing material at lower column densities. [CII] exhibits diverse morphologies in our sample from compact to diffuse structures, probing the cloud environment. In at least two out of the four regions, we find kinematic signatures strongly indicating that the dense gas filaments have formed out of a dynamically active and turbulent atomic and molecular cloud, potentially from converging gas flows. The atomic carbon-to-CO gas mass ratios are low between 7% and 12% with the lowest values found toward the most quiescent region. In the three regions where [CII] is detected, its mass is always higher by a factor of a few than that of the atomic carbon. While the ionized carbon emission depends on the radiation field, we also find additional signatures that indicate that other processes, for example

  5. Effect of Smoke on Cloud Formation during the Biomass Burning Season over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Koren, I.; Kaufman, Y. J.; Remer, L. A.

    2003-01-01

    Aerosol absorption of sunlight reduces surface irradiation and heats the aerosol layer. The consequent changes in the temperature and humidity profiles can affect cloud formation extent and life time, which is called the semi-direct effect. We evaluate this aerosol semi-direct effect using data collected during the 2002 biomass burning season over the Amazon basin from the MODIS instrument on the Aqua satellite. MODIS measures the cloud coverage and the aerosol optical thickness among the clouds. We found that the radiative heating of the atmosphere and cooling of the surface due to the presence of the smoke decreases the cloud coverage. A very clear negative correlation emerges between the cloud fraction and the smoke optical depth. The results are compared to calculations using 1-D radiation model (M.D. Chou), and used to calculate this regional semi direct effect on climate forcing.

  6. Students' Understanding of Cloud and Rainbow Formation and Teachers' Awareness of Students' Performance

    ERIC Educational Resources Information Center

    Malleus, Elina; Kikas, Eve; Kruus, Sigrid

    2016-01-01

    This study describes primary school students' knowledge about rainfall, clouds and rainbow formation together with teachers' predictions about students' performance. In our study, primary school students' (N = 177) knowledge about rainfall and rainbow formation was examined using structured interviews with open-ended questions. Primary school…

  7. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  8. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  9. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  10. Formation of spectral lines in a planetary atmosphere. II - Spectroscopic evidence for the structure of the visible Venus clouds.

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.

    1972-01-01

    We demonstrate in this article that there is spectroscopic evidence for the structure of the visible Venus cloud layers. From physically realistic models of the lower Venus atmosphere, we have shown that only observations of the phase variations of the CO2 bands in the Venus spectrum can provide the information for a unique identification of the structure of the cloud layers. It is proved that Venus cannot have a single dense cloud layer, but must have two scattering layers; a thin aerosol layer situated in the lower stratosphere, overlying a dense cloud deck. The aerosol plays an important role in the scattering of radiation, so that its identification provides an explanation of the reflecting layer-scattering model controversy for the interpretation of spectra formed in a cloudy planetary atmosphere.

  11. Clumpy molecular clouds - A dynamic model self-consistently regulated by T Tauri star formation

    NASA Technical Reports Server (NTRS)

    Norman, C.; Silk, J.

    1980-01-01

    A model is proposed which can account for the longevity, energetics, and dynamical structure of dark molecular clouds. Recent observations of a high space density of T Tauri stars in some dark clouds provide the basis for the assertion that high-velocity winds from these low mass pre-main-sequence stars provide a continuous dynamic input into molecular clouds. It is postulated that as clumps are driven above the Jeans mass, both by coalescence and the enhancement of ram pressure through continuing acceleration by protostellar winds, collapse is followed by the formation of low-mass stars that generate additional protostellar winds. Finally, it is found that star formation occurs on a relatively slow time scale, comparable to the cloud lifetime

  12. Overshooting cloud top, variation of tropopause and severe storm formation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1984-01-01

    The development of severe multicell thunderstorms leading to the touchdown of six tornados near Pampa, TX, on May 19-20, 1982, is characterized in detail on the basis of weather maps, rawinsonde data, and radar summaries, and the results are compared with GOES rapid-scan IR images. The multicell storm cloud is shown to have formed beginning at 1945 GMT at the point of highest horizontal moisture convergence and lowest tropopause height and to have penetrated the tropopause at 2130 GMT, reaching a maximum altitude and a cloud-top black-body temperature 9 C lower than the tropopause temperature at 2245 GMT and collapsing about 20 min, when the firt tornado touched down. The value of the real-time vertical profiles provided by satellite images in predicting which severe storms will produce tornados or other violent phenomena is stressed.

  13. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

  14. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  15. Numerical simulation of cloud droplet formation in a tank

    NASA Astrophysics Data System (ADS)

    Schütze, Matthias; Stratmann, Frank

    2008-09-01

    Using the computational fluid dynamics (CFD) code FLUENT 6 together with the fine particle model (FPM), numerical simulations of droplet dynamics in a 12.4 m 3 cloud tank were conducted. The coupled fields of water vapor, temperature, flow velocity, particle number concentration, and particle mass concentration inside the cloud tank were computed. The system responses to changes of the wall's temperature and mass fraction of water vapor, respectively, were investigated. Typical times for mixing the cloud tank's contents are in the range of some tens of seconds. The maximum volume-averaged deviations from the mean of temperature and mass fraction of water vapor are around 5% of the respective parameter changes applied to the wall. Time-dependent simulations were performed in order to study the growth of ammonium-sulfate particles in humid air at around room temperature. Supersaturation up to ( Sw-1)=8.2×10 -3 was achieved by the expansion of the gas. The particles were activated and grew rapidly to a maximum diameter of 5.2×10 -6 m after critical supersaturation was reached. After Sw fell again below the equilibrium value, the particles shrank quickly and deactivated roughly 60 s after activation. The spatial inhomogeneities of temperature and water-vapor concentration cause volume-averaged deviations of the particle number N and diameter dg of up to 2.3% and 36%, respectively.

  16. DETECTION OF STAR FORMATION IN THE UNUSUALLY COLD GIANT MOLECULAR CLOUD G216-2.5

    SciTech Connect

    Megeath, S. T.; Allgaier, E.; Allen, T.; Young, E.; Pipher, J. L.; Wilson, T. L.

    2009-04-15

    The giant molecular cloud G216-2.5, also known as Maddalena's cloud or the Maddalena-Thaddeus cloud, is distinguished by an unusual combination of high gas mass (1-6 x 10{sup 5} M {sub sun}), low kinetic temperatures (10 K), and the lack of bright far-IR emission. Although star formation has been detected in neighboring satellite clouds, little evidence for star formation has been found in the main body of this cloud. Using a combination of mid-IR observations with the IRAC and Multiband Imaging Photometer for Spitzer instruments onboard the Spitzer Space Telescope, and near-IR images taken with the Flamingos camera on the KPNO 2.1 m telescope, we identify a population of 41 young stars with disks and 33 protostars in the center of the cloud. Most of the young stellar objects are coincident with a filamentary structure of dense gas detected in CS (2 {yields} 1). These observations show that the main body of G216 is actively forming stars, although at a low stellar density comparable to that found in the Taurus cloud.

  17. Detection of Star Formation in the Unusually Cold Giant Molecular Cloud G216-2.5

    NASA Astrophysics Data System (ADS)

    Megeath, S. T.; Allgaier, E.; Young, E.; Allen, T.; Pipher, J. L.; Wilson, T. L.

    2009-04-01

    The giant molecular cloud G216-2.5, also known as Maddalena's cloud or the Maddalena-Thaddeus cloud, is distinguished by an unusual combination of high gas mass (1-6 × 105 M sun), low kinetic temperatures (10 K), and the lack of bright far-IR emission. Although star formation has been detected in neighboring satellite clouds, little evidence for star formation has been found in the main body of this cloud. Using a combination of mid-IR observations with the IRAC and Multiband Imaging Photometer for Spitzer instruments onboard the Spitzer Space Telescope, and near-IR images taken with the Flamingos camera on the KPNO 2.1 m telescope, we identify a population of 41 young stars with disks and 33 protostars in the center of the cloud. Most of the young stellar objects are coincident with a filamentary structure of dense gas detected in CS (2 → 1). These observations show that the main body of G216 is actively forming stars, although at a low stellar density comparable to that found in the Taurus cloud. Based on observations made with ESO telescopes at the La Silla Observatory.

  18. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols - Climatic implications

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1992-01-01

    Supercooled droplets in cirrus uncinus cell heads between -40 and -50 C are identified from the First International Satellite Cloud Climatology Project Regional Experiment polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  19. Initial phases of massive star formation in high infrared extinction clouds *. I. Physical parameters

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Wyrowski, F.; Schuller, F.; Menten, K. M.

    2010-06-01

    Aims: The earliest phases of massive star formation are found in cold and dense infrared dark clouds (IRDCs). Since the detection method of IRDCs is very sensitive to the local properties of the background emission, we present here an alternative method to search for high column density in the Galactic plane by using infrared extinction maps. Using this method we find clouds between 1 and 5 kpc, of which many were missed by previous surveys. By studying the physical conditions of a subsample of these clouds, we aim at a better understanding of the initial conditions of massive star formation. Methods: We have made extinction maps of the Galactic plane based on the 3.6-4.5 μm color excess between the two shortest wavelength Spitzer IRAC bands, reaching to visual extinctions of ~100 mag and column densities of 9 × 1022 cm-2. From this we compiled a new sample of cold and compact high extinction clouds. We used the MAMBO array at the IRAM 30 m telescope to study the morphology, masses and densities of the clouds and the dense clumps within them. The latter were followed up by pointed ammonia observations with the 100 m Effelsberg telescope, to determine rotational temperatures and kinematic distances. Results: Extinction maps of the Galactic plane trace large scale structures such as the spiral arms. The extinction method probes lower column densities, NH2 ~ 4 × 1022 cm-2, than the 1.2 mm continuum, which reaches up to NH2 ~ 3 × 1023 cm-2 but is less sensitive to large scale structures. The 1.2 mm emission maps reveal that the high extinction clouds contain extended cold dust emission, from filamentary structures to still diffuse clouds. Most of the clouds are dark in 24 μm, but several show already signs of star formation via maser emission or bright infrared sources, suggesting that the high extinction clouds contain a variety of evolutionary stages. The observations suggest an evolutionary scheme from dark, cold and diffuse clouds, to clouds with a stronger 1

  20. Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols: Climatic Implications

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth

    1992-07-01

    Supercooled droplets in cirrus uncinus cell heads between -40^circ and -50^circC are identified from Project FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  1. The collapse of clouds and the formation and evolution of stars and disks

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Galli, Daniele; Ostriker, Eve; Lizano, Susana

    1993-01-01

    We consider the interrelationships among the structure of molecular clouds; the collapse of rotating cloud cores; the formation of stars and disks; the origin of molecular outflows, protostellar winds, and highly collimated jets; the birth of planetary and binary systems; and the dynamics of star/disk/satellite interactions. Our discussion interweaves theory with the results of observations that span from millimeter wavelengths to X-rays.

  2. Numerical modelling of the formation process of planets from protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Kozlov, N. N.; Eneyev, T. M.

    1979-01-01

    Evolution of the plane protoplanetary cloud, consisting of a great number of gravitationally interacting and uniting under collision bodies (protoplanets) moving in the central field of a large mass (the Sun or a planet), is considered. It is shown that in the course of protoplanetary cloud evolution the ring zones of matter expansion and compression occur with the subsequent development leading to formation of planets, rotating about their axes mainly directly. The principal numerical results were obtained through digital simulation of planetary accumulation.

  3. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  4. Influence of Dust Composition on Cloud Droplet Formation

    SciTech Connect

    Kelly, J T; Chuang, C C; Wexler, A S

    2006-08-21

    Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K{sup +}, Mg{sup 2+}, or Ca{sup 2+} compounds to estimate the conditions where reacted and unreacted dust can activate. We also use an adiabatic parcel model to evaluate the influence of dust particles on cloud properties via water competition. Based on their bulk solubilities, K{sup +} compounds, MgSO{sub 4} x 7H{sub 2}O, Mg(NO{sub 3}){sub 2} x 6H{sub 2}O, and Ca(NO{sub 3}){sub 2} x 4H{sub 2}O are classified as highly soluble substances, which enable activation of fine dust. Slightly soluble gypsum and MgSO{sub 3} x 6H{sub 2}O, which may form via heterogeneous reactions involving carbonates, enable activation of particles with diameters between about 0.6 and 2 mm under some conditions. Dust particles > 2 mm often activate regardless of their composition. Only under very specialized conditions does the addition of a dust distribution into a rising parcel containing fine (NH{sub 4}){sub 2}SO{sub 4} particles significantly reduce the total number of activated particles via water competition. Effects of dust on cloud saturation and droplet number via water competition are generally smaller than those reported previously for sea salt. Large numbers of fine dust CCN can significantly enhance the number of activated particles under certain conditions. Improved representations of dust mineralogy and reactions in global aerosol models

  5. Cloud fluid models of gas dynamics and star formation in galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  6. The formation of stellar systems from interstellar molecular clouds.

    PubMed

    Gehrz, R D; Black, D C; Solomon, P M

    1984-05-25

    Star formation, a crucial link in the chain of events that led from the early expansion of the universe to the formation of the solar system, continues to play a major role in the evolution of many galaxies. Observational and theoretical studies of regions of ongoing star formation provide insight into the physical conditions and events that must have attended the formation of the solar system. Such investigations also elucidate the role played by star formation in the evolutionary cycle which appears to dominate the chemical processing of interstellar material by successive generations of stars in spiral galaxies like our own. New astronomical facilities planned for development during the 1980's could lead to significant advances in our understanding of the star formation process. Efforts to identify and examine both the elusive protostellar collapse phase of star formation and planetary systems around nearby stars will be especially significant.

  7. The Remarkable 2003--2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Kruger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2005-01-01

    The 2003-2004 Arctic winter was remarkable in the approximately 50-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly 2 months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with 2 previous years, 1984-1985 and 1986-1987, with prolonged midwinter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over 2 standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (7 in the past 6 years) is unprecedented. Lower stratospheric temperatures were unusually high during 6 of the past 7 years, with 5 having much lower than usual potential for polar stratospheric cloud (PSC) formation and ozone loss (nearly none in 1998-1999, 2001-2002, and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of 5 of the last 7 years with very low PSC potential would be expected to occur randomly once every 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  8. Molecular cloud formation and the star formation efficiency in M 33. Molecule and star formation in M 33

    NASA Astrophysics Data System (ADS)

    Braine, J.; Gratier, P.; Kramer, C.; Schuster, K. F.; Tabatabaei, F.; Gardan, E.

    2010-09-01

    Does star formation proceed in the same way in large spirals such as the Milky Way and in smaller chemically younger galaxies? Earlier work suggests a more rapid transformation of H2 into stars in these objects but (1) a doubt remains about the validity of the H2 mass estimates and (2) there is currently no explanation for why star formation should be more efficient. M 33, a local group spiral with a mass ~10% and a metallicity half that of the Galaxy, represents a first step towards the metal poor Dwarf Galaxies. We have searched for molecular clouds in the outer disk of M 33 and present here a set of detections of both 12CO and 13CO, including the only detections (for both lines) beyond the R25 radius in a subsolar metallicity galaxy. The spatial resolution enables mass estimates for the clouds and thus a measure of the N(H2)/ICO ratio, which in turn enables a more reliable calculation of the H2 mass. Our estimate for the outer disk of M 33 is N(H2)/ICO(1-0) ~ 5 × 1020 cm-2/(K km s-1) with an estimated uncertainty of a factor ≤2. While the 12/13CO line ratios do not provide a reliable measure of N(H2)/ICO, the values we find are slightly greater than Galactic and corroborate a somewhat higher N(H2)/ICO value. Comparing the CO observations with other tracers of the interstellar medium, no reliable means of predicting where CO would be detected was identified. In particular, CO detections were often not directly on local HI or FIR or Hα peaks, although generally in regions with FIR emission and high HI column density. The results presented here provide support for the quicker transformation of H2 into stars in M 33 than in large local universe spirals.

  9. Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-01-01

    Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO2) with H2O and HCl on surfacers that simulate polar stratospheric clouds are studied at temperatures relevant to the Antarctic stratosphere. The gaseous products of the resulting reactions, HOCl, Cl2O, and Cl2, could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the additional formation of condensed-phase HNO3 could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.

  10. The Airborne Arctic Stratospheric Expedition - Prologue

    NASA Technical Reports Server (NTRS)

    Turco, Richard; Plumb, Alan; Condon, Estelle

    1990-01-01

    This paper presents an introduction to the initial scientific results of the Airborne Arctic Stratospheric Expedition (AASE), as well as data from other atmospheric experiments and analyses carried out during the Arctic polar winter of 1989. Mission objectives of the AASE were to study the mechanisms of ozone depletion and redistribution in the northern polar stratosphere, including the influences of Arctic meteorology, and polar stratospheric clouds formed at low temperatures. Some major aspects of the AASE are described including: logistics and operations, meteorology, polar stratospheric clouds, trace composition and chemistry, and ozone depletion. It is concluded that the Arctic-89 experiments have provided the scientific community with a wealth of new information that will contribute to a better understanding of the polar winter stratosphere and the critical problem of global ozone depletion.

  11. The Role of Aerosol Composition in Arctic Cloud Formation

    NASA Astrophysics Data System (ADS)

    Brooks, S. D.; Hiranuma, N.; Moffet, R.; Laskin, A.; Gilles, M. K.; Glen, A.

    2010-12-01

    While it has been shown that aerosol size has a direct correlation with its ability to act as an ice nucleus, the role of the composition of freshly emitted and evolving aerosol in nucleation is poorly understood. Here we use combined measurements of ice nucleation and high resolution single particle composition to provide insight on the connection between aerosol composition in ice nucleation. These measurements were collected during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, AK in the springtime of 2008. In-situ ice nucleation measurements were conducted using the Texas Continuous Flow Diffusion Chamber (CFDC). The composition of ambient particles as well as residuals of cloud droplets and ice crystals were studied on a particle by particle basis using computer controlled scanning electron microscopy with energy dispersive X-ray analysis (CCSEM/EDX) and scanning transmission X-Ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFAS). Observed IN concentrations varied from frequent values of 0.01 per liter to more than 10 per liters, depending on conditions and the availability of ice-nucleating aerosols. Ice crystals residuals collected in a fully glaciated cloud demonstrate that both particle chemistry and size requirement must be met for a particle to be an efficient ice nucleus. According to the STXM/NEXAFAS spectral maps, ice crystals residuals are characterized by insoluble cores of either large brown or black carbon (BBC) or carbonates coated by water soluble organics. In contrast, in ambient air samples collected from a biomass burning plume, many organic particles were also observed, but these were smaller and did not have insoluble cores. In-situ ice nucleation measurements show that these biomass particles have inferior ice nuclei ability, relative to those collected in the glaciated cloud. Taken together our measurements suggest that two key elements, a critical size (provided by BBC and/or carbonate

  12. Arctic stratospheric dehydration - Part 1: Unprecedented observation of vertical redistribution of water

    NASA Astrophysics Data System (ADS)

    Khaykin, S. M.; Engel, I.; Vömel, H.; Formanyuk, I. M.; Kivi, R.; Korshunov, L. I.; Krämer, M.; Lykov, A. D.; Meier, S.; Naebert, T.; Pitts, M. C.; Santee, M. L.; Spelten, N.; Wienhold, F. G.; Yushkov, V. A.; Peter, T.

    2013-11-01

    We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in situ instrumentation on balloon sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice polar stratospheric clouds (PSCs) remotely detected by the lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman- α hygrometers (Cryogenic Frostpoint Hygrometer, CFH; Fast In Situ Stratospheric Hygrometer, FISH; Fluorescent Airborne Stratospheric Hygrometer, FLASH) and backscatter sondes (Compact Optical Backscatter Aerosol Detector, COBALD) conducted in January 2010 within the LAPBIAT (Lapland Atmosphere-Biosphere Facility) and RECONCILE (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20-24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km thick layer below. Comparison with space-borne Aura MLS (Microwave Limb Sounder) water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.

  13. Noctilucent cloud formation and the effects of water vapor variability on temperatures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.

    1985-01-01

    To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mesosphere, a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a roughly 15 K drop in temperature at 82 km. It is suggested that this process may produce weeks of cold temperatures and influence noctilucent cloud formation.

  14. A possible role of ground-based microorganisms on cloud formation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Ekström, S.; Nozière, B.; Hultberg, M.; Alsberg, T.; Magnér, J.; Nilsson, E. D.; Artaxo, P.

    2009-10-01

    The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but also a difficult one to predict because some aspects of the transformations of aerosol particles into cloud droplets are still not well understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and should significantly enhance their conversion into of cloud droplets. In the first part of this work, the cloud-nucleating efficiency (or "CCN" efficiency) of standard biosurfactants was characterized by osmolality and surface tension measurements and found to be better than for any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give to organic compounds exceptional CCN properties. In the second part, atmospheric aerosols sampled at different locations (temperate & tropical, forested & marine ones) were found to all have a surface tension below 30 mN/m, which can only be accounted for by the presence of biosurfactants. The results also showed that these biosurfactants were concentrated enough to significantly affect the surface tension of these aerosols and enhance their CCN efficiency. The presence of such strong biosurfactants in aerosols would be consistent with the recent identification of organic fractions of higher CCN efficiency than ammonium sulfate in aerosols. And a role of microorganisms at the Earth's surface on clouds could also explain previously reported correlations between algae bloom and cloud cover. Our results also suggest that biosurfactants might be common in aerosols and thus of global relevance. If their impact on cloud formation is confirmed by future studies, this work would have identified a new role of microorganisms at the Earth's surface on the atmosphere, and a new component of the Earth

  15. A Survey for Distributed Star Formation in the Rosette Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Muench, August A.; Lada, Elizabeth A.; Phelps, Randy

    1999-08-01

    We propose to conduct a sensitive survey of a 1.4 deg^2 region of the Rosette Molecular Cloud (RMC) in the J(1.1(mu)m), H(1.6(mu)m), and K(2.2(mu)m) near-infrared bands (NIR) using ONIS on the 2.1m telescope. The main science goal of this survey is to determine whether or not a low mass, distributed mode of star formation exists within the cloud. An initial NIR survey using SQIID on the 1.3m telescope (Phelps & Lada, 1997) identified seven young embedded clusters. However the SQIID survey was not sensitive enough to determine whether or not a low- mass distributed population of stars is also present in the cloud. Therefore a more sensitive survey is required to determine which mode of star formation (distributed or clustered) dominates the star formation in the RMC. Additionally, our survey will allow us to investigate if the luminosity functions of the isolated stars are different from the cluster luminosity functions. We will also be able to investigate the influence of the adjacent HII nebulae on the distributed mode of star formation and how the nebulae may act as a trigger for sequential star formation. Our proposed survey will provide an important database for investigating the different modes of star formation in giant molecular clouds.

  16. Does the Galactic centre cloud G0.253+0.016 violate star formation relations?

    NASA Astrophysics Data System (ADS)

    Johnston, Katharine; Beuther, Henrik; Longmore, Steven; Rathborne, Jill; Ragan, Sarah

    2013-07-01

    The massive infrared dark cloud G0.253+0.016 near the Galactic centre contains 10^5 Msun of dense gas whilst being mostly devoid of observed star formation tracers. Thus G0.253+0.016 violates the recently proposed "star formation law" of Lada et al. (2010), which suggests a relation between the mass above a column density threshold of 0.024 gcm^-2 and the observed star formation rate. In fact, a recent study by Longmore et al. (2013) has shown that the SFR over the Galactic centre region appears to be an order of magnitude lower than predicted by the mass of dense gas. To scrutinize the gas properties of G0.253+0.016, we have carried out a concerted SMA and IRAM 30m study of this enigmatic cloud in dust continuum, CO isotopologues as low-density tracers, and CH3OH, SO, SiO and HNCO as shock tracers. In this poster, we discuss 1) how our results suggest that G0.253+0.016 is colliding with another cloud, which could affect its final star-forming fate, 2) the density structure of the cloud with relation to whether star formation is currently ongoing, and 3) whether it is possible to reconcile the lack of star formation in G0.253+0.016 and the Galactic centre with the density threshold for star formation, found for the Milky Way disk and external galaxies, by considering the effects of turbulent support.

  17. Factors leading to the formation of arc cloud complexes

    NASA Technical Reports Server (NTRS)

    Welshinger, Mark John; Brundidge, Kenneth C.

    1987-01-01

    A total of 12 mesoscale convective systems (MCSs) were investigated. The duration of the gust front, produced by each MCS, was used to classify the MCSs. Category 1 MCSs were defined as ones that produced a gust front and the gust front lasted for more than 6 h. There were 7 category 1 MCSs in the sample. Category 2 MCSs were defined as ones that produced a gust front and the gust front lasted for 6 h or less. There were 4 category 2 MCSs. The MCS of Case 12 was not categorized because the precipitation characteristics were similar to a squall line, rather than an MCS. All of the category 1 MCSs produced arc cloud complexes (ACCs), while only one of the category 2 MCSs produced an ACC. To determine if there were any differences in the characteristics between the MCSs of the two categories, composite analyses were accomplished. The analyses showed that there were significant differences in the characteristics of category 1 and 2 MCSs. Category 1 MCSs, on average, had higher thunderstorm heights, greater precipitation intensities, colder cloud top temperatures and produced larger magnitudes of surface divergence than category 2 MCSs.

  18. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  19. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  20. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    PubMed

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.

  1. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    PubMed

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation. PMID:22466199

  2. Formation of a protocluster: A virialized structure from gravoturbulent collapse. I. Simulation of cluster formation in a collapsing molecular cloud

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Stars are often observed to form in clusters and it is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium. The properties of such a region eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. Aims: We study the formation of a gaseous protocluster inside a molecular cloud and associate its internal properties with those of the parent cloud by varying the level of the initial turbulence of the cloud with a view to better characterize the subsequent stellar cluster formation. Methods: We performed high resolution magnetohydrodynamic (MHD) simulations of gaseous protoclusters forming in molecular clouds collapsing under self-gravity. We determined ellipsoidal cluster regions via gas kinematics and sink particle distribution, permitting us to determine the mass, size, and aspect ratio of the cluster. We studied the cluster properties, such as kinetic and gravitational energy, and made links to the parent cloud. Results: The gaseous protocluster is formed out of global collapse of a molecular cloud and has non-negligible rotation owing to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region, which occupies only a small volume fraction of the whole cloud. This dense entity is a result of the interplay between turbulence and gravity. We identify such regions in simulations and compare the gas and sink particles to observed star-forming clumps and embedded clusters, respectively. The gaseous protocluster inferred from simulation results presents a mass-size relation that is compatible with observations. We stress that the stellar cluster radius, although clearly correlated with the gas cluster radius, depends sensitively on its definition. Energy analysis is performed to confirm that the gaseous protocluster is a product of gravoturbulent reprocessing and that the support of turbulent

  3. Laboratory studies of stratospheric aerosol chemistry

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1996-01-01

    In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.

  4. Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Werner, F.; Ditas, F.; Shaw, R. A.; Kulmala, M.; Siebert, H.

    2015-10-01

    During the CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) campaign, the interaction between aerosol particles and cloud microphysical properties was investigated in detail, which also includes the influence of clouds on the aerosol formation. During two intensive campaigns in 2010 and 2011, helicopter-borne measurement flights were performed to investigate the thermodynamic, turbulent, microphysical, and radiative properties of trade-wind cumuli over Barbados. During these flights, 91 cases with increased aerosol particle number concentrations near clouds were detected. The majority of these cases are also correlated with enhanced irradiance in the ultraviolet (UV) spectral wavelength range. This enhancement reaches values up to a factor of 3.3 greater compared to background values. Thus, cloud boundaries provide a perfect environment for the production of precursor gases for new particle formation. Another feature of cloud edges is an increased turbulence, which may also enhance nucleation and particle growth. The observed events have a mean length of 100 m, corresponding to a lifetime of less than 300 s. This implies that particles with diameters of at least 7 nm grew several nanometers per minute, which corresponds to the upper end of values in the literature (Kulmala et al., 2004). Such high values cannot be explained by sulfuric acid alone; thus extremely low volatility organic compounds (ELVOCs) are probably involved here.

  5. Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Werner, F.; Ditas, F.; Shaw, R. A.; Kulmala, M.; Siebert, H.

    2015-04-01

    During the CARRIBA-campaign (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) the interaction between aerosol particles and cloud microphysical properties has been investigated in detail which includes also the influence of clouds on the aerosol formation. During two intensive campaigns in 2010 and 2011 helicopter-borne measurement flights have been performed to investigate the thermodynamic, turbulent, microphysical, and radiative properties of trade wind cumuli over Barbados. During these flights 91 cases with increased aerosol particle number concentrations near clouds were detected. The majority of these cases are also correlated with enhanced irradiance in the ultraviolet spectral wavelength range (UV). This enhancement reaches values up to a factor of 3.3 compared to background values. Thus, cloud boundaries provide a perfect environment for the production of precursor gases for new particle formation. Another feature of cloud edges is an increased turbulence which may also enhance nucleation and particle growth. The observed events have a mean length of 100 m corresponding to a lifetime of less than 300 s. This implies that particles with diameters of at least 7 nm grew several nm per minute which corresponds to the upper end of values in the literature (Kulmala et al., 2004). Such high values cannot be explained by sulfuric acid alone, thus probably extremely low volatile organic compounds (ELVOCs) are involved here.

  6. The effect of a temperature-dependent contact parameter on Mars cloud formation

    NASA Astrophysics Data System (ADS)

    Atsuki Urata, Richard; Hollingsworth, Jeffery; Kahre, Melinda

    2015-11-01

    Modeling the current water cycle on Mars is a complex problem that at present remains a scientific challenge. The water cycle is highly coupled to atmospheric temperature, dust, surface ice temperature, atmospheric transport and mixing (i.e. planetary boundary layer (PBL) processes, and radiation, just to name a few. One of the main features of Mars' water cycle is the formation of the aphelion cloud belt. Clouds are formed at altitude (10-40 km) within the subtropics during the aphelion season (Ls=60°-120°). In general the aphelion cloud belt forms at higher altitudes compared to the polar and high-latitude clouds, and therefore at colder temperatures (180 K and below). Laboratory experiments of nucleation under cold temperatures indicate that nucleation becomes more difficult at and below 180 K than expected. This can be modeled by using a temperature-dependent contact parameter, m(T). In this study we use the NASA Ames Mars Global Circulation Model (Mars GCM) to compare the constant contact parameter with the temperature-dependent contact parameterization described by Iraci et al. (2010). The simulations demonstrate that the contact parameter has a significant affect on the opacity of the aphelion clouds, as well as the clouds that form at the edge of the seasonal CO2 ice caps. Both types of clouds tend to form near 180 K, supporting the importance of a temperature-dependent contact parameter.

  7. Observations of Stratospheric Aerosols over Sondrestrom, Greenland Injected by Russia's Sarychev Peak Volcano

    NASA Astrophysics Data System (ADS)

    Neely, R. R.; Thayer, J. P.; Hayman, M.; Barnes, J. E.; O'Neill, M.

    2009-12-01

    Volcanic stratospheric aerosols affect global climate by influencing the radiative budget and chemistry of the lower stratosphere. Presently the stratospheric aerosol levels are in a background state. This provides the opportunity for studies of stratospheric injections by small volcanic eruptions. A thin stratospheric aerosol layer was identified during the month of July, 2009 using the Arctic Lidar Technology (ARCLITE) System operated at Sondrestrom. Trajectory analysis points to the source of the aerosols being the Sarychev Peak volcano in the Russian Kuril Islands. Latitudinal observations of the layer were made by the NOAA/Earth System Research Laboratory/Global Monitoring Division’s (GMD) stratospheric lidar network (Boulder,CO; Mauna Loa, HI; and Pago Pago, American Samoa). These observations show a significant increase in aerosol backscatter levels compared to the low background levels observed prior the eruption. Profiles derived from the from the ARCLITE observations include depolarization, backscatter and temperature which allow for a characterization of the layer on a daily basis. The ARCLITE observations also provide a time series of measurements showing the evolution of the aerosol layer over the month after the injection within the context of the less frequent profiles provided by the global GMD network. From the optical qualities observed, the exact nature of the aerosols and their role in the radiative budget and stratospheric chemistry are elucidated. These types of observations are unique to ground based lidar systems like ARCLITE due to the optically thin qualities of the layer which prevent detection in the visible band by nadir looking satellites. The long-term effect of this injection of sulfur dioxide into the stratosphere may influence the formation of type 1b polar stratospheric clouds during the coming winter.

  8. Studying the Formation and Development of Molecular Clouds: With the CCAT Heterodyne Array Instrument (CHAI)

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2012-01-01

    Surveys of all different types provide basic data using different tracers. Molecular clouds have structure over a very wide range of scales. Thus, "high resolution" surveys and studies of selected nearby clouds add critical information. The combination of large-area and high resolution allows Increased spatial dynamic range, which in turn enables detection of new and perhaps critical morphology (e.g. filaments). Theoretical modeling has made major progress, and suggests that multiple forces are at work. Galactic-scale modeling also progressing - indicates that stellar feedback is required. Models must strive to reproduce observed cloud structure at all scales. Astrochemical observations are not unrelated to questions of cloud evolution and star formation but we are still learning how to use this capability.

  9. Lifetime Extension of Cirrus Cloud Ice Particles upon Contamination with HCl and HNO3 under conditions of the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Rossi, Michel J.; Delval, Christophe

    2016-04-01

    Ice particles in the Upper Troposphere/Lower Stratosphere (UT/LS) are the seat of heterogeneous chemical processes that are important in polar ozone chemistry. Estimated evaporative lifetimes of typical pure ice particles of a few micrometers radius in Cirrus clouds are on the order of a minute or so at 80% relative humidity, too short to allow significant heterogeneous processing. We took this as a motivation to systematically measure absolute rates of evaporation and condensation of H2O in 1 to 2 micrometer thick ice films taken as proxies for small atmospheric ice particles under controlled conditions of HCl and HNO3 trace gas contamination. We have used a multidiagnostic reaction vessel equipped with residual gas mass spectrometry (MS), FTIR absorption spectroscopy in transmission and a quartz crystal microbalance (QCMB) in order to simultaneously observe both the gas and condensed phases under relevant atmospheric conditions. The rates (Rev(H2O)) or fluxes of evaporation (Jev(H2O)) of H2O from thin ice films contaminated by a measured amount of HCl in the range of 10% of a formal monolayer to 20 formal monolayers decreased by factors of between 2 and 50 depending on parameters such as temperature of deposition (Tdep), rate (RHCl) and dose (NHCl) of contaminant doping. Experiments with HCl fell into two categories as far as the decrease of Jev with the average mole fraction of contaminant (χHCl) in the remaining ice slab was concerned: one group where Jev(H2O) decreased gradually after pure ice evaporated, and another group where Jev(H2O) abruptly changes with χHCl after evaporation of excess ice. FTIR spectroscopy revealed an unknown, yet crystalline form of HCl hydrate upon HCl doping that does not correspond to a known crystalline hydrate. Of importance is the observation, that the equilibrium vapor pressure of these contaminated ices correspond to that of pure ice even after evaporation of excess ice at the characteristic rate of pure ice evaporation

  10. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  11. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    SciTech Connect

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  12. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup –1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  13. A Search for Star Formation in the Translucent Cloud MBM 40

    NASA Astrophysics Data System (ADS)

    Magnani, Loris; Caillault, Jean-Pierre; Hearty, Thomas; Stauffer, John; Schmitt, J. H. M. M.; Neuhaeuser, Ralph; Verter, Frances; Dwek, Eli

    1996-07-01

    The star formation status of the translucent high-latitude molecular cloud, MBM 40, is explored through analysis of radio, infrared, optical, and X-ray data. With a peak visual extinction of 1 to 2 mag, MBM 40 is an example of a high-latitude cloud near the diffuse/translucent demarcation. However, unlike most translucent clouds, MBM 40 exhibits a compact morphology and a kinetic energy-to- gravitational potential energy ratio near unity. Our radio data, encompassing the CO (J = 1-0), CS (J = 2-1), and H2CO 111-110 spectral line transitions, reveal that the cloud contains a ridge of molecular gas with n ≥ 103 cm-3. In addition, the molecular data, together with IRAS data, indicate that the mass of MBM 40 is ˜40 Msun. In light of the ever-increasing number of recently formed stars far from any dense molecular clouds or cores, we searched the environs of MBM 40 for any trace of recent star formation. We used the ROSAT All-Sky Survey X-ray data and a ROSAT PSPC pointed observation toward MBM 40 to identify 33 stellar candidates with properties consistent with pre-main-sequence (PMS) stars. Follow-up optical spectroscopy of the candidates with V < 15.5 was conducted with the 1.5 m Fred Lawrence Whipple Observatory telescope in order to identify signatures of T Tauri or pre-mainsequence stars (such as the Li 6708 Å resonance line). Since none of our optically observed candidates display standard PMS signatures, we conclude that MBM 40 displays no evidence of recent or ongoing star formation. The absence of high-density molecular cores in the cloud and the relatively low column density compared to star-forming interstellar clouds may be the principal reasons that MBM 40 is devoid of star formation. More detailed comparison between this cloud and other, higher extinction translucent and dark clouds may elucidate the necessary initial conditions for the onset of low-mass star formation.

  14. Triggered star formation in bright-rimmed clouds: the Eagle nebula revisited

    NASA Astrophysics Data System (ADS)

    Miao, J.; White, Glenn J.; Nelson, R.; Thompson, M.; Morgan, L.

    2006-06-01

    A three-dimensional smoothed particle hydrodynamics model has been extended to study the radiation-driven implosion effect of massive stars on the dynamical evolution of surrounding molecular clouds. The new elements in the upgraded code are the inclusion of Lyman continuum in the incident radiation flux and the treatment of hydrogen ionization process; the introduction of ionization heating and recombination cooling effects; and the addition of a proper description of the magnetic and turbulent pressures to the internal pressure of the molecular cloud. This extended code not only provides a realistic model to trace the dynamical evolution of a molecular cloud, but also can be used to model the kinematics of the ionization and shock fronts and the photoevaporating gas surrounding the molecular cloud, which the previous code is unable to handle. The application of this newly developed model to the structure of the middle Eagle nebula finger suggests that the shock induced by the ionizing radiation at the front side of the head precedes an ionization front moving towards the centre of the core, and that the core at the fingertip is at a transition stage evolving toward a state of induced star formation. The dynamical evolution of the velocity field of the simulated cloud structure is discussed to illustrate the role of the self-gravity and the different cloud morphologies which appear at different stages in the evolutionary process of the cloud. The motion of the ionization front and the evaporating gas are also investigated. The modelled gas evaporation rate is consistent with that of other current models and the density, temperature and chemical profiles are in agreement with the observed values. The relative lifetimes of different simulated cloud morphologies suggest a possible answer to the question of why more bright-rimmed clouds are observed to possess a flat-core than an elongated-core morphology.

  15. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    NASA Technical Reports Server (NTRS)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  16. Star formation efficiencies of molecular clouds in a galactic centre environment

    NASA Astrophysics Data System (ADS)

    Bertram, Erik; Glover, Simon C. O.; Clark, Paul C.; Klessen, Ralf S.

    2015-08-01

    We use the AREPO moving mesh code to simulate the evolution of molecular clouds exposed to a harsh environment similar to that found in the galactic centre (GC), in an effort to understand why the star formation efficiency (SFE) of clouds in this environment is so small. Our simulations include a simplified treatment of time-dependent chemistry and account for the highly non-isothermal nature of the gas and the dust. We model clouds with a total mass of 1.3 × 105 M⊙ and explore the effects of varying the mean cloud density and the virial parameter, α = Ekin/|Epot|. We vary the latter from α = 0.5 to 8.0, and so many of the clouds that we simulate are gravitationally unbound. We expose our model clouds to an interstellar radiation field (ISRF) and cosmic ray flux (CRF) that are both a factor of 1000 higher than the values found in the solar neighbourhood. As a reference, we also run simulations with local solar neighbourhood values of the ISRF and the CRF in order to better constrain the effects of the extreme conditions in the GC on the SFE. Despite the harsh environment and the large turbulent velocity dispersions adopted, we find that all of the simulated clouds form stars within less than a gravitational free-fall time. Increasing the virial parameter from α = 0.5 to 8.0 decreases the SFE by a factor of ˜4-10, while increasing the ISRF/CRF by a factor of 1000 decreases the SFE again by a factor of ˜2-6. However, even in our most unbound clouds, the SFE remains higher than that inferred for real GC clouds. We therefore conclude that high levels of turbulence and strong external heating are not enough by themselves to lead to a persistently low SFE at the centre of the Galaxy.

  17. The stratosphere.

    PubMed

    Taylor, F W

    2003-01-15

    The stratosphere is that part of the atmosphere which lies between ca. 10 and 50 km above the surface of the Earth and which contains the ozone layer. It is the seat of much interesting behaviour in terms of dynamics, radiation and chemistry, now revealed in detail by observations from modern space instruments, but still not completely understood. Other planetary atmospheres exhibit stratospheric behaviour which in some ways resembles, and in others contrasts sharply with, that of the Earth. In reviewing these topics, this paper describes some key problems that will be addressed by new measurements from space in the near future.

  18. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    SciTech Connect

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  19. N-nitrosodimethylamine occurrence, formation and cycling in clouds and fogs.

    PubMed

    Hutchings, James W; Ervens, Barbara; Straub, Derek; Herckes, Pierre

    2010-11-01

    The occurrence, source, and sink processes of N-nitrosodimethylamine (NDMA) have been explored by means of combined laboratory, field, and model studies. Observations have shown the occurrence of NDMA in fogs and clouds at substantial concentrations (7.5-397 ng L(-1)). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase. While NDMA was produced in the aqueous phase, the low yields (<1%) observed could not explain observational concentrations. Therefore gaseous formation of NDMA with partitioning to droplets likely dominates aqueous NDMA formation. Box-model calculations confirmed the predominant contributions from gas phase formation followed by partitioning into the cloud droplets. Measurements and model calculations showed that while NDMA is eventually photolyzed, it might persist in the atmosphere for hours after sunrise and before sunset since the photolysis in the aqueous phase might be much less efficient than in the gas phase.

  20. Freezing of stratospheric aerosol droplets

    SciTech Connect

    Luo, B.; Peter, T.; Crutzen, P. )

    1994-06-22

    The authors discuss the freezing of sulfuric acid droplets under stratospheric conditions from a thermodynamic point of view. They argue that the primary candidate for freezing is likely to be sulfuric acid tetrahydrate (H[sub 2]SO[sub 4][center dot]4H[sub 2]O). Their theoretical results suggest that the homogeneous freezing rate of this molecule is too low at stratospheric temperatures to explain measured results. Thus experimental values are likely to be due to heterogeneous freezing. This means that an appropriate nuclei must be present for freezing to commence, and has implications also for the formation of nitric acid trihydrates in the stratosphere.

  1. Barium cloud evolution and striation formation in the magnetospheric release on September 21, 1971

    NASA Technical Reports Server (NTRS)

    Adamson, D.; Fricke, C. L.

    1974-01-01

    The joint NASA-Max Planck Institute Barium Ion Cloud (BIC) Experiment on September 21, 1971 involved the release of 1.7 kg of neutral barium at an altitude of 31,500 km at a latitude of 6.93 deg N. and a longitude of 74.40 deg W. A theoretical model describing the barium neutral cloud expansion and the ion cloud formation is developed. The mechanism of formation of the striational features observed in the release is also discussed. Two candidate instabilities, which may contribute to striation formation, are examined. The drift instability stemming from the outwardly directed drag force exerted on the ions by the outstreaming neutrals is rejected on the grounds that the ion density is too low during the collision-dominated phase of the cloud expansion to support this kind of instability. The joint action of Rayleigh-Taylor and flute instabilities plausibly accounts for the observed striational structure. This same mechanism may well be operative at times of sudden injection of plasma into the inner magnetosphere during geomagnetic storms and may thus contribute to the formation of field-alined inhomogeneities which serve as whistler ducts.

  2. Laboratory studies of chemical and photochemical processes relevant to stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1994-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(sub x) and NO(sub x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO2 radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. In this annual report, we focus on our recent accomplishments in the quantitative spectroscopy of the HO2 radical. This report details the measurements of the broadening coefficients for the v(sub 2) vibrational band. Further measurements of the vapor pressures of nitric acid hydrates relevant to the polar stratospheric cloud formation indicate the importance of metastable crystalline phases of H2SO4, HNO3, and H2O. Large particles produced from these metastable phases may provide a removal mechanism for HNO3 in the polar stratosphere.

  3. A model for studying the composition and chemical effects of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.; Jacobson, Mark Z.

    1994-01-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  4. Magnetic braking, ambipolar diffusion, cloud cores, and star formation - Natural length scales and protostellar masses

    NASA Astrophysics Data System (ADS)

    Mouschovias, Telemachos Ch.

    1991-05-01

    Magnetic braking is essential for cloud contraction and star formation. Ambipolar diffusion is unavoidable in self-gravitating, magnetic clouds and leads to single-stage (as opposed to hierarchical) fragmentation (or core formation) and protostar formation. Magnetic forces dominate thermal-pressure and centrifugal forces over scales comparable to molecular cloud radii. Magnetic support of molecular clouds and the imperfect collisional coupling between charged and neutral particles introduce a critical magnetic length scale (λM,cr = 0.62υAτff) and an Alfvén length scale ((λA = πυAτni), respectively, in the problem which together with a critical thermal length scale (λT,cr = 1.09Caτff) explain naturally the formation of fragments (or cores) in otherwise quiescent clouds and determine the sizes and masses of these fragments during the subsequent stages of contraction. (The quantity υA is the Alfvén speed, τni the mean neutral-ion collision time, Ca the adiabatic speed of sound, and τff the free4all time scale.) Numerical calculations based on new adaptive-grid techniques follow the formation of fragments by ambipolar diffusion and their subsequent collapse up to an enhancement in central density above its initial equilibrium value by a factor ≃106 with excellent spatial resolution. The results confirm the existence and relevance of the three length scales and extend the analytical understanding of fragmentation and star formation derived from them. The ultimately bimodal opposition to gravity (by magnetic forces in the envelope and by thermal-pressure forces in the core) introduces a break in the slope of the log pn -log r profile. The relation Bc ∞ pkc between the magnetic field strength and the gas density in cloud cores holds with K = 0.4 - 0.5 even in the presence of ambipolar diffusion up to densities ˜109 cm-3 for a wide variety of clouds. The value K ≃ ½ is fairly typical. At the late stages of evolution, for example, at a central density

  5. Molecules in interstellar clouds. [physical and chemical conditions of star formation and biological evolution

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Hjalmarson, A.; Rydbeck, O. E. H.

    1981-01-01

    The physical conditions and chemical compositions of the gas in interstellar clouds are reviewed in light of the importance of interstellar clouds for star formation and the origin of life. The Orion A region is discussed as an example of a giant molecular cloud where massive stars are being formed, and it is pointed out that conditions in the core of the cloud, with a kinetic temperature of about 75 K and a density of 100,000-1,000,000 molecules/cu cm, may support gas phase ion-molecule chemistry. The Taurus Molecular Clouds are then considered as examples of cold, dark, relatively dense interstellar clouds which may be the birthplaces of solar-type stars and which have been found to contain the heaviest interstellar molecules yet discovered. The molecular species identified in each of these regions are tabulated, including such building blocks of biological monomers as H2O, NH3, H2CO, CO, H2S, CH3CN and H2, and more complex species such as HCOOCH3 and CH3CH2CN.

  6. The dependence of star formation on initial conditions and molecular cloud structure

    NASA Astrophysics Data System (ADS)

    Bate, Matthew R.

    2009-07-01

    We investigate the dependence of stellar properties on the initial kinematic structure of the gas in star-forming molecular clouds. We compare the results from two large-scale hydrodynamical simulations of star cluster formation that resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical, but in the new simulation the power spectrum of the velocity field imposed on the cloud initially and allowed to decay is biased in favour of large-scale motions. Whereas the calculation of Bate et al. began with a power spectrum P(k) ~ k-4 to match the Larson scaling relations for the turbulent motions observed in molecular clouds, the new calculation begins with a power spectrum P(k) ~ k-6. Despite this change to the initial motions in the cloud and the resulting density structure of the molecular cloud, the stellar properties resulting from the two calculations are indistinguishable. This demonstrates that the results of such hydrodynamical calculations of star cluster formation are relatively insensitive to the initial conditions. It is also consistent with the fact that the statistical properties of stars and brown dwarfs (e.g. the stellar initial mass function) are observed to be relatively invariant within our Galaxy and do not appear to depend on environment.

  7. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility

    NASA Astrophysics Data System (ADS)

    Blando, James D.; Turpin, Barbara J.

    This paper investigates the hypothesis that cloud and fog processes produce fine organic particulate matter in the atmosphere. The evidence provided suggests that cloud and fog processes could be important contributors to secondary organic aerosol formation, and the contribution of this formation pathway should be further investigated. This conclusion is based on the following observations: (1) many organic vapors present in the atmosphere are sorbed by suspended droplets and have been measured in cloud and fog water, (2) organics participate in aqueous-phase reactions, and (3) organic particulate matter is sometimes found in the size mode attributed to cloud processing (i.e. the droplet mode). Specific compounds identified as potential precursors include aldehydes (e.g. formaldehyde, acetaldehyde, and propionaldehyde), acetone, alcohols (e.g. methanol, ethanol, 2-propanol, and phenol), monocarboxylic acids, and organic peroxides. Carboxylic acids (e.g. diacids and oxo-acids), glyoxal, esters, organosulfur compounds, polyols, amines and amino acids are potential products of cloud and fog processing.

  8. Giant Molecular Clouds and Star Formation in the Non-Grand Design Spiral Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Wong, T.; Leroy, A.

    2012-01-01

    Although the internal physical properties of molecular clouds have been extensively studied (Solomon et al. 1987), a more detailed understanding of their origin and evolution in different types of galaxies is needed. In order to disentangle the details of this process, we performed CO(1-0) CARMA observations of the eastern part of the multi-armed galaxy NGC 6946. Although we found no evidence of an angular offset between molecular gas, atomic gas and star formation regions in our observations (Tamburro et al. 2008), we observe a clear radial progression from regions where molecular gas dominates over atomic gas (for r ≤ 2.8 kpc) to regions where the gas becomes mainly atomic (5.6 kpc ≤ r ≤ 7.6 kpc) when azimuthally averaged. In addition, we found that the densest concentrations of molecular gas are located on arms, particularly where they appear to intersect, which is in concordance with the predictions by simulations of the spiral galaxies with an active potential (Clarke & Gittins 2006; Dobbs & Bonnell 2008). At CO(1-0) resolution (140 pc), we were able to find CO emitting complexes with masses greater than those of typical Giant Molecular Clouds (105-106 M⊙). To identify GMCs individually and make a more detailed study of their physical properties, we made D array observations of CO(2-1) toward the densest concentrations of gas, achieving a resolution similar to GMCs sizes found in other galaxies (Bolatto et al. 2008). We present first results about differences in properties of the on-arm clouds and inter-arm clouds. We found that, in general, on-arm clouds present broader line widths, are more massive and more active in star formation than inter-arm clouds. We investigated if the velocity dispersion observed in CO(1-0) emitting complexes reflects velocity differences between unresolved smaller clouds, or if it corresponds to actual internal turbulence of the gas observed.

  9. Tiny Molten Droplets, Dusty Clouds, and Planet Formation

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2008-11-01

    Chondrules, millimeter-sized spherules that formed as rapidly-cooled molten droplets, are characteristic of chondrite meteorites. If they formed at low pressure in the solar nebula (the cloud of gas and dust surrounding the infant Sun and from which the planets formed), then they should have lost almost all their inventories of volatile elements, such as sodium, because volatile elements would have boiled off the chondrules when they were molten. Conel Alexander (Carnegie Institution of Washington) and colleagues at Carnegie, the U.S. Geological Survey (Reston), and the American Museum of Natural History (New York) show that there was little sodium loss. They measured the sodium concentrations in numerous crystals of olivine inside chondrules in the Semarkona meteorite. The results show that the variations in concentrations from the centers of crystals to their edges are consistent with crystallization in a molten droplet that was not losing sodium to the surrounding gas. These results are supported by independent measurements by Alexander Borisov (Russian Academy of Sciences, Moscow) and colleagues at the University of Hannover, Georg-August-University Goettingen, and Koln University, all in Germany. Sodium loss could have been suppressed if the gas surrounding each chondrule had a much higher pressure of sodium than that expected for the solar nebula. Such a high pressure of sodium is most easily explained if chondrules formed in a region with a high density of solids. Alexander and his co-workers argue that such dense regions could have enough mass in a small space to collapse by gravity, perhaps forming planetesimals, the first step in constructing the inner planets.

  10. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach using Conditional Subsetting

    NASA Astrophysics Data System (ADS)

    Booth, J. F.; Naud, C. M.; Del Genio, A. D.

    2013-12-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies General Circulation Model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, CALIPSO and AMSR-E and the NASA-MERRA reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on: (1, 2) the transect clouds and vertical motion, (3) the strength of the temperature gradient along the warm front, as well as the storm-local (4) wind speed and (5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper co-variability of low-altitude vertical motion and cloud at the warm front, and a joint dependence of cloudiness on wind and PW.

  11. The star formation history of the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Bertelli, Gianpaolo; Mateo, Mario; Chiosi, Cesare; Bressan, Alessandro

    1992-01-01

    Deep photometric observations of stars in three fields of the LMC are presented, and these data are interpreted using synthetic CMDs and LFs generated from overshoot models. The field CMDs and LFs with a star formation rate that experienced a large increase (4 +/- 0.5) x 10 exp 9 yr ago is successfully modeled. The precise age of this 'burst' depends sensitively on the characteristics of the models. Classical (i.e., nonovershoot) models yield a burst age about 2 x 10 exp 9 yr younger than the value obtained. An initial mass function with slope of 2.35 (the Salpeter value) and a mean field star metallicity of Fe/H of about -0.7 are consistent with the photometric data and LFs. It is suggested that the star formation rate in the LMC was globally quite low during at least the first half of its lifetime, and that a major event triggered a substantial and relatively sudden increase in the star formation rate throughout the entire LMC which persisted for several 10 exp 9 yr and even up to the present epoch in some parts of that galaxy.

  12. Understanding star formation in molecular clouds. II. Signatures of gravitational collapse of IRDCs

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Klessen, R. S.; Tremblin, P.; Ossenkopf, V.; Peretto, N.; Simon, R.; Bontemps, S.; Federrath, C.

    2015-06-01

    We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1→0 and 12CO 3→2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N> 1023 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated

  13. Solid-State Chemistry as a Formation Mechanism for C 4N 2 Ice and Possibly the Haystack (220 cm -1 ice emission feature) in Titan's Stratosphere as Observed by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Samuelson, Robert E.; McLain, Jason L.; Nna Mvondo, Delphine; Romani, Paul; Flasar, F. Michael

    2016-10-01

    A profusion of organic ices containing hydrocarbons, nitriles, and combinations of their mixtures comprise Titan's complex stratospheric cloud systems, and are typically formed via vapor condensation. These ice particles are then distributed throughout the mid-to-lower stratosphere, with an increased abundance near the winter poles (see Anderson et al., 2016). The cold temperatures and the associated strong circumpolar winds that isolate polar air act in much the same way as on Earth, giving rise to compositional anomalies and stratospheric clouds that provide heterogeneous chemistry sites.Titan's C4N2 ice emission feature at 478 cm-1 and "the Haystack," a strong unidentified stratospheric ice emission feature centered at 220 cm-1, share a common characteristic. Even though both are distinctive ice emission features evident in Cassini Composite InfraRed (CIRS) far-IR spectra, no associated vapor emission features can be found in Titan's atmosphere. Without a vapor phase, solid-state chemistry provides an alternate mechanism beside vapor condensation for producing these observed stratospheric ices.Anderson et al., (2016) postulated that C4N2 ice formed in Titan's stratosphere via the solid-state photochemical reaction HCN + HC3N → C4N2 + H2 can occur within extant HCN-HC3N composite ice particles. Such a reaction, and potentially similar reactions that may produce the Haystack ice, are specific examples of solid-state chemistry in solar system atmospheres. This is in addition to the reaction HCl + ClONO2 → HNO3 + Cl2, which is known to produce HNO3 coatings on terrestrial water ice particles, a byproduct of the catalytic chlorine chemistry that produces ozone holes in Earth's polar stratosphere (see for example, Molina et al., 1987 Soloman, 1999).A combination of radiative transfer modeling of CIRS far-IR spectra, coupled with optical constants derived from thin film transmittance spectra of organic ice mixtures obtained in our Spectroscopy for Planetary ICes

  14. Changes in polarization and angular distribution of scattered radiation during cloud formation.

    PubMed

    Harris, F S

    1969-01-01

    Changes in radiation scattering due to changes in droplet size distribution during development of stratus clouds have been calculated. The development model of Neiburger and Chien was used to give the droplet size distribution at various stages. Mie theory was used to calculate the angular variation for both parallel and perpendicular polarization of incident radiation at 0.4880 micro, 0.6328 micro, 3.50 micro, and 10.6 micro. The marked variations in the nature of the scattered radiation as the droplet size distribution varies with time indicate the measurement of radiation scattering may be a useful method of studying cloud formation processes.

  15. Star formation in a turbulent framework: from giant molecular clouds to protostars

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.

    2016-06-01

    Turbulence is thought to be a primary driving force behind the early stages of star formation. In this framework large, self-gravitating, turbulent clouds fragment into smaller clouds which in turn fragment into even smaller ones. At the end of this cascade we find the clouds which collapse into protostars. Following this process is extremely challenging numerically due to the large dynamical range, so in this paper we propose a semi-analytic framework which is able to model star formation from the largest, giant molecular cloud scale, to the final protostellar size scale. Because of the simplicity of the framework it is ideal for theoretical experimentation to explore the principal processes behind different aspects of star formation, at the cost of introducing strong assumptions about the collapse process. The basic version of the model discussed in this paper only contains turbulence, gravity and crude assumptions about feedback; nevertheless it can reproduce the observed core mass function and provide the protostellar system mass function (PSMF), which shows a striking resemblance to the observed initial mass function (IMF), if a non-negligible fraction of gravitational energy goes into turbulence. Furthermore we find that to produce a universal IMF protostellar feedback must be taken into account otherwise the PSMF peak shows a strong dependence on the background temperature.

  16. High-Velocity Star Formation in the Large Magellanic Cloud.

    PubMed

    Graff; Gould

    2000-05-01

    Light-echo measurements show that SN 1987A is 425 pc behind the LMC disk. It is continuing to move away from the disk at 18 km s-1. Thus, it has been suggested that SN 1987A was ejected from the LMC disk. However, SN 1987A is a member of a star cluster, so this entire cluster would have to have been ejected from the disk. We show that the cluster was formed in the LMC disk, with a velocity perpendicular to the disk of about 50 km s-1. Such high-velocity formation of a star cluster is unusual, having no known counterpart in the Milky Way.

  17. Recent star formation history of the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Indu, G.; Subramaniam, Annapurni

    Recent interactions between the Large and the Small Magellanic Clouds (LMC and SMC) and the Milky Way can be understood by studying their recent star formation history. We traced the age of the last star-formation event (LSFE) in the inner Large and Small Magellanic Cloud (L&SMC) using the photometric data in V and I passbands from the Optical Gravitational Lensing Experiment (OGLE-III) and the Magellanic Cloud Photometric Survey (MCPS). The spatial distribution of the age of the LSFE shows that the star-formation has shrunk to within the central regions in the last 100 Myr in both the galaxies. We detect peaks of star-formation at 0 - 10 Myr and 90 - 100 Myr in the LMC, and 0 - 10 Myr and 50 - 60 Myr in the SMC. We propose that the HI gas in the LMC has been pulled to the north of the LMC in the last 200 Myr because of the gravitational attraction of our Galaxy at the time of perigalactic passage. The shifted HI gas was preferentially compressed in the north during the time interval 200 - 40 Myr and in the north-east in the last 40 Myr, owing to the motion of the LMC in the Galactic halo. The recent star-formation in the SMC is due to the combined gravitational effect of the LMC and the perigalactic passage.

  18. Recent star formation in the Lupus clouds as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Benedettini, M.; Schisano, E.; Elia, D.; Molinari, S.; Pezzuto, S.; André, Ph.; Bernard, J. P.; White, G. J.; Polychroni, D.; Bontemps, S.; Cox, N. L. J.; Di Francesco, J.; Facchini, A.; Fallscheer, C.; di Giorgio, A. M.; Hennemann, M.; Hill, T.; Könyves, V.; Minier, V.; Motte, F.; Nguyen-Luong, Q.; Peretto, N.; Pestalozzi, M.; Sadavoy, S.; Schneider, N.; Spinoglio, L.; Testi, L.; Ward-Thompson, D.

    2013-01-01

    We present a study of the star formation histories of the Lupus I, III, and IV clouds using the Herschel 70-500 μm maps obtained by the Herschel Gould Belt Survey Key Project. By combining the new Herschel data with the existing Spitzer catalog we obtained an unprecedented census of prestellar sources and young stellar objects in the Lupus clouds, which allowed us to study the overall star formation rate (SFR) and efficiency (SFE). The high SFE of Lupus III, its decreasing SFR, and its large number of pre-main sequence stars with respect to proto- and prestellar sources, suggest that Lupus III is the most evolved cloud, and after having experienced a major star formation event in the past, is now approaching the end of its current star-forming cycle. Lupus I is currently undergoing a large star formation event, apparent by the increasing SFR, the large number of prestellar objects with respect to more evolved objects, and the high percentage of material at high extinction (e.g., above AV ≈ 8 mag). Also Lupus IV has an increasing SFR; however, the relative number of prestellar sources is much lower, suggesting that its star formation has not yet reached its peak. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org

  19. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Hartmann, Dennis L.

    1991-01-01

    Recent aircraft observations have determined the structure of polar vortices during winter and their relationship to polar ozone depletions, based on high dynamical isolation and the extremely low temperatures required for stratospheric cloud formation. The aircraft data reveal large gradients of potential vorticity and concentrations of conservative trace species at the transition from high-latitude to polar air, implying that the inward mixing of heat and constituents is strongly inhibited, and that the perturbed polar stratospheric chemistry associated with the ozone hole is isolated from the rest of the stratosphere until the vortex breaks up in late spring. It is therefore the overall polar vortex which limits the annual polar ozone depletions' maximum area-coverage.

  20. Theory of molecular formation by radiative association in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Bates, D. R.

    1983-01-01

    A theory of molecular formation by radiative association is presented which is consistent with angular momentum being conserved during the encounter and which incorporates explicitly the long-range attraction between the reactants. It is pointed out that the activated complex would not have a Boltzmann energy distribution should the rotational and kinetic temperatures of the reactants differ, and it is shown how allowance for this may be made. Account is taken of the inaccessibility of a considerable fraction of the nuclear spin states of the complex. Methods are given for treating the effect which the finiteness of the dissociation frequency may have on the association rate. Calculations on some reactions of interest are performed. A very simple semiempirical formula for the rate coefficient for radiative association is also given.

  1. The VISTA Orion mini-survey: star formation in the Lynds 1630 North cloud

    NASA Astrophysics Data System (ADS)

    Spezzi, L.; Petr-Gotzens, M. G.; Alcalá, J. M.; Jørgensen, J. K.; Stanke, T.; Lombardi, M.; Alves, J. F.

    2015-09-01

    The Orion cloud complex presents a variety of star formation mechanisms and properties and is still one of the most intriguing targets for star formation studies. We present VISTA/VIRCAM near-infrared observations of the L1630N star-forming region, including the stellar clusters NGC 2068 and NGC 2071 in the Orion molecular cloud B, and discuss them in combination with Spitzer data. We select 186 young stellar object (YSO) candidates in the region on the basis of multi-color criteria, confirm the YSO nature of the majority of them using published spectroscopy from the literature, and use this sample to investigate the overall star formation properties in L1630N. The K-band luminosity function of L1630N is remarkably similar to that of the Trapezium cluster, i.e., it presents a broad peak in the range 0.3-0.7 M⊙ and a fraction of substellar objects of ~20%. The fraction of YSOs still surrounded by disk/envelopes is very high (~85%) compared to other star-forming regions of similar age (1-2 Myr), but includes some uncertain corrections for diskless YSOs. Yet, a possibly high disk fraction, together with the fact that 1/3 of the cloud mass has a gas surface density above the threshold for star formation (~129 M⊙ pc-2), points toward a still ongoing star formation activity in L1630N. The star formation efficiency (SFE), star formation rate (SFR), and density of star formation of L1630N are within the ranges estimated for Galactic star-forming regions by the Spitzer core to disk and Gould's Belt surveys. However, the SFE and SFR are lower than the average value measured in the Orion A cloud and, in particular, lower than that in the southern regions of L1630. This might suggest different star formation mechanisms within the L1630 cloud complex. Based on observations collected at the ESO La Silla Paranal Observatory under programme ID 060.A-9285(B).Tables A.1 and A.2 are are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  2. Studies of the effects of electron cloud formation on beam dynamics at CesrTA

    SciTech Connect

    Crittenden, J. A.; Calvey, J. R.; Dugan, G.; Livezey, J. A.; Kreinick, D.L.; Palmer, M. A.; Rubin, D. L.; Harkay, K.; Holtzapple, R. L.; Ohmi, K.; Furman, M. A.; Penn, G.; Venturini, M.; Pivi, M. T. F.; Wang, L.

    2009-05-01

    The Cornell Electron Storage Ring Test Accelerator (CesrTA) has commenced operation as a linear collider damping ring test bed following its conversion from an e{sup +}e{sup -}-collider in 2008. A core component of the research program is the measurement of effects of synchrotron-radiation-induced electron cloud formation on beam dynamics. We have studied the interaction of the beam with the cloud with measurements of coherent tune shifts and emittance growth in various bunch train configurations, bunch currents, beam energies, and bunch lengths, for both e{sup +} and e{sup -} beams. This paper compares a subset of these measurements to modeling results from the two-dimensional cloud simulation packages ECLOUD and POSINST. These codes each model most of the tune shift measurements with remarkable accuracy, while some comparisons merit further investigation.

  3. Evolution of prolate molecular clouds at H II boundaries - II. Formation of BRCs of asymmetrical morphology

    NASA Astrophysics Data System (ADS)

    Kinnear, T. M.; Miao, J.; White, G. J.; Sugitani, K.; Goodwin, S.

    2015-06-01

    A systematic investigation on the evolution of a prolate cloud at an H II boundary is conducted using smoothed particle hydrodynamics in order to understand the mechanism for a variety of irregular morphological structures found at the boundaries of various H II regions. The prolate molecular clouds in this investigation are set with their semimajor axes at inclinations between 0° and 90° to a plane-parallel ionizing radiation flux. A set of four parameters, the number density n, the ratio of major to minor axis γ, the inclination angle ϕ and the incident flux FEUV, are used to define the initial state of the simulated clouds. The dependence of the evolution of a prolate cloud under radiation-driven implosion (RDI) on each of the four parameters is investigated. It is found that (i) in addition to the well-studied standard type A, B or C bright-rimmed clouds (BRCs), many other types such as asymmetrical BRCs, filamentary structures and irregular horse-head structures could also be developed at H II boundaries with only simple initial conditions; (ii) the final morphological structures are very sensitive to the four initial parameters, especially to the initial density and the inclination; (iii) the previously defined ionizing radiation penetration depth can still be used as a good indicator of the final morphology. Based on the simulation results, the formation time-scales and masses of the early RDI-triggered star formation from clouds of different initial conditions are also estimated. Finally a unified mechanism for the various morphological structures found in many different H II boundaries is suggested.

  4. Unfolding the laws of star formation: the density distribution of molecular clouds.

    PubMed

    Kainulainen, Jouni; Federrath, Christoph; Henning, Thomas

    2014-04-11

    The formation of stars shapes the structure and evolution of entire galaxies. The rate and efficiency of this process are affected substantially by the density structure of the individual molecular clouds in which stars form. The most fundamental measure of this structure is the probability density function of volume densities (ρ-PDF), which determines the star formation rates predicted with analytical models. This function has remained unconstrained by observations. We have developed an approach to quantify ρ-PDFs and establish their relation to star formation. The ρ-PDFs instigate a density threshold of star formation and allow us to quantify the star formation efficiency above it. The ρ-PDFs provide new constraints for star formation theories and correctly predict several key properties of the star-forming interstellar medium.

  5. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming

    PubMed Central

    Cronin, Timothy W.; Tziperman, Eli

    2015-01-01

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919

  6. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    PubMed

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  7. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  8. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    SciTech Connect

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Nagayama, Takumi; Sunada, Kazuyoshi; Fujisawa, Kenta; Nakano, Makoto; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  9. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Nagayama, Takumi; Fujisawa, Kenta; Sunada, Kazuyoshi; Nakano, Makoto; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH3 toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the Hα image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  10. THE EVOLUTION OF CLOUD CORES AND THE FORMATION OF STARS

    SciTech Connect

    Broderick, Avery E.; Keto, Eric E-mail: keto@cfa.harvard.ed

    2010-09-20

    For a number of starless cores, self-absorbed molecular line and column density observations have implied the presence of large-amplitude oscillations. We examine the consequences of these oscillations on the evolution of the cores and the interpretation of their observations. We find that the pulsation energy helps support the cores and that the dissipation of this energy can lead toward instability and star formation. In this picture, the core lifetimes are limited by the pulsation-decay timescales, dominated by non-linear mode-mode coupling, and on the order of {approx_equal} few x 10{sup 5}-10{sup 6} yr. Notably, this is similar to what is required to explain the relatively low rate of conversion of cores into stars. For cores with large-amplitude oscillations, dust continuum observations may appear asymmetric or irregular. As a consequence, some of the cores that would be classified as super-critical may be dynamically stable when oscillations are taken into account. Thus, our investigation motivates a simple hydrodynamic picture, capable of reproducing many of the features of the progenitors of stars without the inclusion of additional physical processes, such as large-scale magnetic fields.

  11. Formation of Brown Aqueous Secondary Organic Aerosol during Multiphase Cloud Simulations using the CESAM Chamber Facility

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Welsh, H.; De Haan, D. O.; Doussin, J. F.; Pednekar, R.; Caponi, L.; Pangui, E.; Gratien, A.; Cazaunau, M.; Formenti, P.; Pajunoja, A.

    2015-12-01

    We investigated the formation of aqueous brown carbon (aqBrC) from methylglyoxal and methylamine in multiphase reactions using the CESAM chamber facility at the University Paris-Est Creteil. Following reaction in the chamber, droplets and particles were sampled with a Particle-Into-Liquid-Sampler (PILS), a capillary waveguide cell for UV/visible spectroscopy, and a total organic carbon analyzer (TOC). Particle size distributions were measured with a scanning mobility particle sizer and used to determine the mass absorption coefficient (a normalized absorbance measurement). Absorption spectra were recorded while aerosol or gas phase aqBrC precursors were introduced into the humid chamber. Sampling was continuous during and after cloud events. The events lasted 5-10 minutes and produced measurable brown carbon signal at 365 nm. When lights were used, absorbance at 365 nm decreased steadily indicating photobleaching of aqBrC products or preferential formation of different, non-absorbing products. Although absorptivity increases prior to cloud formation, cloud events produce sharp increased in aqBrC absorptivity. While measurable absorbance at 365 nm indicates aqBrC formation, very little absorbance was recorded beyond 450 nm indicating that the products were not as oligomerized as products observed in prior work in multi-day, bulk phase simulations.

  12. Attack of the flying snakes: formation of isolated H I clouds by fragmentation of long streams

    NASA Astrophysics Data System (ADS)

    Taylor, R.; Davies, J. I.; Jáchym, P.; Keenan, O.; Minchin, R. F.; Palouš, J.; Smith, R.; Wünsch, R.

    2016-09-01

    The existence of long (>100 kpc) H I streams and small (<20 kpc) free-floating H I clouds is well known. While the formation of the streams has been investigated extensively, and the isolated clouds are often purported to be interaction debris, little research has been done on the formation of optically dark H I clouds that are not part of a larger stream. One possibility is that such features result from the fragmentation of more extended streams, while another idea is that they are primordial, optically dark galaxies. We test the validity of the fragmentation scenario (via harassment) using numerical simulations. In order to compare our numerical models with observations, we present catalogues of both the known long H I streams (42 objects) and free-floating H I clouds suggested as dark galaxy candidates (51 objects). In particular, we investigate whether it is possible to form compact features with high velocity widths (>100 km s-1), similar to observed clouds which are otherwise intriguing dark galaxy candidates. We find that producing such features is possible but extremely unlikely, occurring no more than 0.2% of the time in our simulations. In contrast, we find that genuine dark galaxies could be extremely stable to harassment and remain detectable even after 5 Gyr in the cluster environment (with the important caveat that our simulations only explore harassment and do not yet include the intracluster medium, heating and cooling, or star formation). We also discuss the possibility that such objects could be the progenitors of recently discovered ultra diffuse galaxies.

  13. Collapse of primordial gas clouds and the formation of quasar black holes

    NASA Technical Reports Server (NTRS)

    Loeb, Abraham; Rasio, Frederic A.

    1994-01-01

    The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.

  14. Rapid collisional evolution of comets during the formation of the Oort cloud.

    PubMed

    Stern, S A; Weissman, P R

    2001-02-01

    The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.

  15. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2013-01-01

    A dense gas cloud is rapidly approaching the Galactic supermassive black hole (SMBH) SgrA^*, and will be ~ 2,200 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Sep 2013. The cloud is expected to be disrupted by instabilities and tidal forces, and the cloud fragments accrete onto the SMBH on the dynamical timescale of several days to several weeks, suggesting a jet formation in 2013. So we are carrying out daily monitoring observations of SgrA^* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-gamma line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass is, and when the fragment is accreted onto the SMBH. Polarimetric signals from a jet taken with Subaru/HiCIAO will be compared with the finely tuned simulation to understand the timescale of a jet formation, and to investigate the correlation between the accreted mass of the cloud fragment and a luminosity of a newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11 mum (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  16. Rapid collisional evolution of comets during the formation of the Oort cloud.

    PubMed

    Stern, S A; Weissman, P R

    2001-02-01

    The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed. PMID:11214311

  17. A High-Latitude Winter Continental Low Cloud Feedback Suppresses Arctic Air Formation in Warmer Climates

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Tziperman, E.; Li, H.

    2015-12-01

    High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback

  18. Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.

    2016-06-01

    Ice nucleation is a critical process for the ice crystal formation in cirrus clouds. The relative contribution of homogeneous nucleation versus heterogeneous nucleation to cirrus formation differs between measurements and predictions from general circulation models. Here we perform large-ensemble simulations of the ice nucleation process using a cloud parcel model driven by observed vertical motions and find that homogeneous nucleation occurs rather infrequently, in agreement with recent measurement findings. When the effect of observed vertical velocity fluctuations on ice nucleation is considered in the Community Atmosphere Model version 5, the relative contribution of homogeneous nucleation to cirrus cloud occurrences decreases to only a few percent. However, homogeneous nucleation still has strong impacts on the cloud radiative forcing. Hence, the importance of homogeneous nucleation for cirrus cloud formation should not be dismissed on the global scale.

  19. Do NAD and NAT form in liquid stratospheric aerosols by pseudoheterogeneous nucleation?

    PubMed

    Knopf, Daniel A

    2006-05-01

    Laboratory data of the freezing of nitric acid hydrates (NAD, NAT) from HNO(3)/H(2)O and HNO(3)/H(2)SO(4)/H(2)O solution droplets have been evaluated with respect to a "pseudoheterogeneous" (surface-induced) nucleation mechanism of NAD and NAT, which has been argued to possibly lead to the formation of polar stratospheric clouds (PSCs). In addition, a parametrization of pseudoheterogeneous nucleation of NAD and NAT suggested recently (Tabazadeh et al. J. Phys. Chem. A 2002, 106, 10238-10246) has been analyzed, showing that this parametrization should not be used in stratospheric modeling studies. The analysis of several laboratory data sets yields an upper limit of the pseudoheterogeneous nucleation rate coefficient of NAD of 2.2 x 10(-5) cm(-2) s(-1). In contrast, the upper limit of the pseudoheterogeneous nucleation rate coefficient of NAT could not be constrained satisfactorily, since formation of NAT has not been observed at stratospheric conditions in laboratory experiments applying small droplets. Maximum NAD production rates of 9.6 x 10(-9) cm(-3) (air) h(-1) in the stratosphere have been estimated assuming a pseudoheterogeneous nucleation mechanism that is constrained by the experimental observations. If maximum NAD supersaturation persisted for 4 weeks in the polar stratosphere the corresponding NAD particle number densities are estimated to be about 6 x 10(-6) cm(-3). These particle number densities are 3 orders of magnitude lower than particle number densities recently observed in the stratosphere. In conclusion, on the basis of laboratory data it is found that a pseudoheterogeneous nucleation mechanism is not sufficient to explain recent observations of large nitric acid containing particles in the polar stratosphere.

  20. The potential for ozone depletion in the arctic polar stratosphere.

    PubMed

    Brune, W H; Anderson, J G; Toohey, D W; Fahey, D W; Kawa, S R; Jones, R L; McKenna, D S; Poole, L R

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  1. The potential for ozone depletion in the Arctic polar stratosphere

    SciTech Connect

    Brune, W.H. ); Anderson, J.G.; Toohey, D.W. ); Fahey, D.W.; Kawa, S.R. ); Jones, R.L. ); McKenna, D.S. ); Poole, L.R. )

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. most of the available chlorine (HCl and ClONO{sub 2}) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl{sub 2}O{sub 2} throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO{sub 3}, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  2. The potential for ozone depletion in the Arctic polar stratosphere

    NASA Technical Reports Server (NTRS)

    Brune, W. H.; Anderson, J. G.; Toohey, D. W.; Fahey, D. W.; Kawa, S. R.; Poole, L. R.

    1991-01-01

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (CHl and ClONO2) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl2O2 thoroughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO3, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15 percent at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8 percent losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50 percent over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  3. Backscatter laser depolarization studies of simulated stratospheric aerosols: crystallized sulfuric acid droplets.

    PubMed

    Sassen, K; Zhao, H; Yu, B K

    1989-08-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 microm) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of delta approximately 0.02, but delta approximately 0.10-0.15 are generated from acid droplet crystallization effects associated with recycled aerosols and the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar delta approximately 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (delta approximately 0) or ice crystal (delta approximately 0.5) clouds.

  4. MIPAS detects Antarctic stratospheric belt of NAT PSCs caused by mountain waves

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Larsen, N.; Spang, R.; Luo, B. P.; Ma, J.; Svendsen, S. H.; Eckermann, S. D.; Knudsen, B.; Massoli, P.; Cairo, F.; Stiller, G.; Clarmann, T. V.; Fischer, H.

    2005-10-01

    Space borne infrared limb emission measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) reveal the formation of a belt of polar stratospheric clouds (PSCs) of nitric acid trihydrate (NAT) particles over Antarctica in mid-June 2003. By mesoscale microphysical simulations we show that this sudden onset of NAT PSCs was caused by heterogeneous nucleation on ice in the cooling phases of large-amplitude stratospheric mountain waves over the Antarctic Peninsula and the Ellsworth Mountains. MIPAS observations of PSCs before this event show no indication for the presence of NAT clouds with volume densities larger than about 0.3 μm3/cm3 and radii smaller than 3 μm, but are consistent with supercooled droplets of ternary H2SO4/HNO3/H2O solution (STS). Simulations indicate that homogeneous surface nucleation rates have to be reduced by three orders of magnitude to comply with the observations.

  5. MIPAS detects Antarctic stratospheric belt of NAT PSCs caused by mountain waves

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Larsen, N.; Spang, R.; Luo, B. P.; Ma, J.; Svendsen, S. H.; Eckermann, S. D.; Knudsen, B.; Massoli, P.; Cairo, F.; Stiller, G.; Clarmann, T. V.; Fischer, H.

    2006-04-01

    Space borne infrared limb emission measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) reveal the formation of a belt of polar stratospheric clouds (PSCs) of nitric acid trihydrate (NAT) particles over Antarctica in mid-June 2003. By mesoscale microphysical simulations we show that this sudden onset of NAT PSCs was caused by heterogeneous nucleation on ice in the cooling phases of large-amplitude stratospheric mountain waves over the Antarctic Peninsula and the Ellsworth Mountains. MIPAS observations of PSCs before this event show no indication for the presence of NAT clouds with volume densities larger than about 0.3 µm3/cm3 and radii smaller than 3 µm, but are consistent with supercooled droplets of ternary H2SO4/HNO3/H2O solution (STS). Simulations indicate that homogeneous surface nucleation rates have to be reduced by three orders of magnitude to comply with the observations.

  6. Multiwavelength study of the high-latitude cloud L1642: chain of star formation

    NASA Astrophysics Data System (ADS)

    Malinen, Johanna

    2015-08-01

    L1642 is one of only two high Galactic latitude (|b| > 30 deg) clouds confirmed to have active star formation. We have mapped this cloud with Herschel as part of the Galactic Cold Cores project. We use multiwavelength observations to examine the properties of this cloud, especially the large-scale structure, dust properties, and compact sources at different stages of star formation. We present high-resolution far-infrared and submillimetre observations with the Herschel and AKARI satellites and millimetre observations with the AzTEC/ASTE telescope, which we combined with near- and mid-infrared data and millimetre Planck observations.The Herschel observations, combined with other data, show a sequence of objects from a cold clump to young stellar objects (YSOs) at different evolutionary stages. Source B-3 (2MASS J04351455-1414468) appears to be a YSO forming inside the L1642 cloud, instead of a foreground brown dwarf, as previously classified. Herschel data reveal striation in the diffuse dust emission around the cloud L1642. The western region shows striation towards the NE and has a steeper column density gradient on its southern side. The densest central region has a bow-shock like structure showing compression from the west and has a filamentary tail extending towards the east. The differences suggest that these may be spatially distinct structures, aligned only in projection. We derive values of the dust emission cross-section for different regions of the cloud. Modified black-body fits to the spectral energy distribution of Herschel and Planck data give emissivity spectral index β values 1.8-2.0 for the different regions. The compact sources have lower β values and show an anticorrelation between T and β. Markov chain Monte Carlo calculations demonstrate the strong anticorrelation between β and T errors and the importance of combining Herschel data with millimetre Planck data in constraining the dust properties. L1642 reveals a more complex structure and

  7. A model study of smoke-haze influence on clouds and warm precipitation formation in Indonesia 1997/1998

    NASA Astrophysics Data System (ADS)

    Langmann, Bärbel

    In the last few decades, fire and smoke-haze occurrence increased in Indonesia by intentionally set land clearing fires and higher fire susceptibility of disturbed forests. Particularly, during El Niño years with prolonged droughts in Indonesia, land clearing fires become uncontrolled wildfires and produce large amounts of gaseous and particulate emissions. This paper investigates the influence of smoke-haze aerosols from such fires on clouds and precipitation over Indonesia during the El Niño event 1997/1998 by numerical modelling. Warm precipitation formation in both layered and convective clouds is calculated dependent on the atmospheric aerosol concentration. In the smoke-haze affected regions of Indonesia, aerosol-cloud interactions induce events with both precipitation suppression and increase compared to a reference simulation without aerosol-cloud interactions. The effect of precipitation suppression is found to dominate with about 2/3 of all precipitation modification events pointing to a prolongation of smoke-haze episodes. The corresponding convective cloud top height of shallow clouds is increased whereas distinct lower deep convective cloud top heights are found. The remaining about 1/3 events are characterised by increased precipitation and cloud liquid water content, accompanied by lower convective cloud top heights of shallow clouds and higher deep convective clouds.

  8. Rate of formation of the ClO dimer in the polar stratosphere - Implications for ozone loss

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Friedl, Randall R.; Yung, Yuk L.

    1989-01-01

    The gas-phase recombination of chlorine monoxide (ClO) has been investigated under the conditions of pressure and temperature that prevail in the Antarctic stratosphere during the period of maximum ozone (O3) disappearance. Measured rate constants are less than one-half as great as the previously accepted values. One-dimensional model calculations based on the new rate data indicate that currently accepted chemical mechanisms can quantitatively account for the observed O3 losses in late spring (17 September to 7 October). A qualitative assessment indicates that the existing mechanisms can only account for at most one-half of the measured O3 depletion in the early spring (28 August to 17 September), indicating that there may be additional catalytic cycles, besides those currently recognized, that destroy O3.

  9. Titan's south polar stratospheric vortex evolution

    NASA Astrophysics Data System (ADS)

    Teanby, Nicholas A.; Vinatier, Sandrine; Sylvestre, Melody; de Kok, Remco; Nixon, Conor; Irwin, Patrick Gerard Joseph

    2016-10-01

    Titan experienced northern spring equinox in August 2009 when the south polar region was plunged into perpetual darkness. Following equinox, the south pole experienced the most extreme changes in stratospheric behaviour ever observed: the global stratospheric circulation cell reversed direction (Teanby et al 2012), HCN ice clouds (de Kok et al 2014) and other exotic condensates appeared over the south pole (Jennings et al 2015, West et al 2016), and significant composition and temperature changes occurred (Vinatier et al 2015, Teanby et al 2015, Coustenis et al 2016). Here we use Cassini CIRS limb and nadir observations from 2004-2016 to investigate the evolution of south polar stratospheric temperature and composition in the post-equinox period. Reversal following equinox was extremely rapid, taking less than 6 months (1/60th of a Titan year), which resulted in an initial adiabatic polar hot spot and increased trace gas abundances (Teanby et al 2012). However, rather than develop this trend further as winter progressed, Titan's polar hot spot subsequently disappeared, with the formation of a polar cold spot. Recently in late 2015 / early 2016 a more subdued hotspot began to return with associated extreme trace gas abundances. This talk will reveal the rapid and significant changes observed so far and discuss implications for possible polar feedback mechanisms and Titan's atmospheric dynamics.Coustenis et al (2016), Icarus, 270, 409-420.de Kok et al (2014), Nature, 514, 65-67.Jennings et al (2015), ApJL, 804, L34.Teanby et al (2012), Nature, 491, 732-735.Teanby et al (2015), DPS47, National Harbor, 205.02.Vinatier et al (2015), Icarus, 250, 95-115.West et al (2016), Icarus, 270, 399-408.

  10. Secondary Organic Aerosol Formation by Cloud Processing: Accretion Reactions Involving Glyoxal and Methylglyoxal in Evaporating Cloud Droplets

    NASA Astrophysics Data System (ADS)

    de Haan, D. O.; Hastings, W. P.; Corrigan, A. L.; Lee, F. E.; Hanley, S. W.

    2006-12-01

    Glyoxal and methyl glyoxal are dicarbonyl compounds found in atmospheric cloud and fog water, typically at low micromolar concentrations. These two compounds are known to form copolymers under certain industrial conditions by the nucleophilic addition of S, N and O-containing molecules. We report ambient FTIR-ATR and particle chamber data on a range of reactions between glyoxal and S, N and O-containing molecules found in cloudwater, some of which are triggered by droplet evaporation. Liquid-phase formation of adducts between glyoxal and S(IV) is seen to halt sulfur oxidation during droplet drying on the ATR crystal. Formation of glyoxal / S(VI) adducts, however, are not observed by ATR. At neutral or acidic pH, droplet evaporation triggers a reaction between glyoxal and amino acids in the residue left behind, forming imines. Glyoxal reacts under similar conditions with glycol compounds, forming cyclic acetals, but not with sugars, perhaps due to a lack of conformational freedom. Glyoxal is not observed to react with carboxylic acids, either in particle chambers or while drying on an ATR crystal.

  11. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    The objectives of this project are to: define the chemical and physical processes leading to stratospheric ozone change that involve polar stratospheric clouds (PSCS) and the reactions occurring on the surfaces of PSC particles; study the formation processes, and the physical and chemical properties of PSCS, that are relevant to atmospheric chemistry and to the interpretation of field measurements taken during polar stratosphere missions; develop quantitative models describing PSC microphysics and heterogeneous chemical processes; assimilate laboratory and field data into these models; and calculate the extent of chemical processing on PSCs and the impact of specific microphysical processes on polar composition and ozone depletion. During the course of the project, a new coupled microphysics/physical-chemistry/ photochemistry model for stratospheric sulfate aerosols and nitric acid and ice PSCs was developed and applied to analyze data collected during NASA's Arctic Airborne Stratospheric Expedition-II (AASE-II) and other missions. In this model, detailed treatments of multicomponent sulfate aerosol physical chemistry, sulfate aerosol microphysics, polar stratospheric cloud microphysics, PSC ice surface chemistry, as well as homogeneous gas-phase chemistry were included for the first time. In recent studies focusing on AASE measurements, the PSC model was used to analyze specific measurements from an aircraft deployment of an aerosol impactor, FSSP, and NO(y) detector. The calculated results are in excellent agreement with observations for particle volumes as well as NO(y) concentrations, thus confirming the importance of supercooled sulfate/nitrate droplets in PSC formation. The same model has been applied to perform a statistical study of PSC properties in the Northern Hemisphere using several hundred high-latitude air parcel trajectories obtained from Goddard. The rates of ozone depletion along trajectories with different meteorological histories are presently

  12. Studies of dynamical processes affecting the distribution of stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1993-01-01

    The purpose of the research was to understand large-scale tracer transport processes in the stratosphere. Two approaches were taken. The first is analysis of tracer observations, especially satellite observations of ozone concentration and total column ozone. The second is numerical simulation of tracer transport processes. Topics researched include: quasi-biennial oscillation (QBO) and stratospheric ozone; mixing in the polar vortices; polar stratospheric clouds (PSC) properties from Antarctic lidar data; and statistical methods for numerical experiments.

  13. Global aerosol formation and revised radiative forcing based on CERN CLOUD data

    NASA Astrophysics Data System (ADS)

    Gordon, H.; Carslaw, K. S.; Sengupta, K.; Dunne, E. M.; Kirkby, J.

    2015-12-01

    New particle formation in the atmosphere accounts for 40-70% of global cloud condensation nuclei (CCN). It is a complex process involving many precursors: sulphuric acid, ions, ammonia, and a wide range of natural and anthropogenic organic molecules. The CLOUD laboratory chamber experiment at CERN allows the contributions of different compounds to be disentangled in a uniquely well-controlled environment. To date, CLOUD has measured over 500 formation rates (Riccobono 2014, Kirkby 2015, Dunne 2015), under conditions representative of the planetary boundary layer and free troposphere. To understand the sensitivity of the climate to anthropogenic atmospheric aerosols, we must quantify historical aerosol radiative forcing. This requires an understanding of pre-industrial aerosol sources. Here we show pre-industrial nucleation over land usually involves organic molecules in the very first steps of cluster formation. The complexity of the organic vapors is a major challenge for theoretical approaches. Furthermore, with fewer sulphuric acid and ammonia molecules available to stabilize nucleating clusters in the pre-industrial atmosphere, ions from radon or galactic cosmic rays were probably more important than they are today. Parameterizations of particle formation rates determined in CLOUD as a function of precursor concentrations, temperature and ions are being used to refine the GLOMAP aerosol model (Spracklen 2005). The model simulates the growth, transport and loss of particles, translating nucleation rates to CCN concentrations. This allows us to better understand the effects of pre-industrial and present-day particle formation. I will present new results on global CCN based on CLOUD data, including estimates of anthropogenic aerosol radiative forcing, currently the most uncertain driver of climate change (IPCC 2013). References: Riccobono, F. et al, Science 344 717 (2014); Kirkby, J. et al, in review; Dunne, E. et al, in preparation; Spracklen, D. et al, Atmos

  14. Implications of Observed High Supersaturation for TTL Cloud Formation and Dehydration

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2004-01-01

    In situ measurements of water vapor concentration made during the CRYSTAL-FACE and Pre-AVE missions indicate higher than expected supersaturations in both clear and cloudy air near the cold tropical tropopause: (1) steady-state ice supersaturations of 20-30% were measured within cirrus at T < 200 K; (2) supersaturations exceeding 100% (near water saturation) were observed under cloud-free conditions near 187 K. The in-cloud measurements challenge the conventional belief that any water vapor in excess of ice saturation should be depleted by crystal growth given sufficient time. The high clear-sky supersaturations imply that thresholds for ice nucleation due to homogeneous freezing of aerosols (or any other mechanism) are much higher than those inferred from laboratory measurements. We will use simulations of Tropical Tropopause Layer (TTL) transport and cloud formation throughout the tropics to show that these effects have important implications for TTL cloud frequency and freeze-drying of air crossing the tropical tropopause cold trap.

  15. TRIGGERED STAR FORMATION IN A BRIGHT-RIMMED CLOUD (BRC 5) OF IC 1805

    SciTech Connect

    Fukuda, Naoya; Miao, Jingqi; Sugitani, Koji; Kawahara, Kentaro; Watanabe, Makoto; Nakano, Makoto; Pickles, Andrew J.

    2013-08-20

    We report recent optical, near-infrared (NIR), and millimeter observations which have revealed some new features of the bright-rimmed cloud BRC 5 associated with W4. With slitless spectroscopy, we detected 17 H{alpha} emission stars around the cloud; 4 are near the surface of the cloud, and 1 is toward IRAS 02252+6120. NIR photometry shows that the central H{alpha} emission star, together with one bright infrared source, has large NIR excesses and Class I spectral energy distributions. These two Class I objects are associated with the 2.9 mm continuum peaks and with a bipolar outflow, and are in between two separate, elongated C{sup 18}O(J = 1-0) cores. The C{sup 18}O cores and the two Class I sources are aligned along a line at position angle {approx}240 Degree-Sign , somewhat less than perpendicular to the direction of UV radiation from the OB stars. Most of the detected H{alpha} emission stars, all T Tauri candidates, are located within {approx}3' of the cloud on the exciting star side. An estimate of the age of the stars based on a color-magnitude diagram suggests that these T Tauri candidates have ages of {approx}1 Myr or less, but are more evolved objects than the central young stellar objects. This age sequence suggests sequential star formation within the BRC 5 cloud. The {sup 13}CO(J = 1-0) emission shows three elongated structures, which indicates the asymmetric structure toward the UV incident axis. We present our exploratory simulation results by using a smoothed particle hydrodynamic code that suggests that the asymmetrical BRC 5 structure could possibly result from the evolution of a preexisting prolate molecular cloud subject to radiation-driven implosion (RDI). Our best-fit prolate cloud has an initial mass of {approx}400 M{sub Sun }, an axial ratio of {approx}1.7, and a semi-major axis of {approx}1.6 pc, pointing away from the ionization flux by an angle of 15 Degree-Sign . The simulated cloud structure not only closely matches the observed

  16. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-09-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  17. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-04-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  18. Simulations of the Vertical Redistribution of HNO3 by NAT or NAD PSCs: The Sensitivity to the Number of Cloud Particles Formed and the Cloud Lifetime

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Tabazadeh, Azadeh; Drdla, Katja; Toon, Owen B.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Recent satellite and in situ measurements have indicated that limited denitrification can occur in the Arctic stratosphere. In situ measurements from the SOLVE campaign indicate polar stratospheric clouds (PSCs) composed of small numbers (about 3 x 10^ -4 cm^-3) of 10-20 micron particles (probably NAT or NAD). These observations raise the issue of whether low number density NAT PSCs can substantially denitrify the air with reasonable cloud lifetimes. In this study, we use a one dimensional cloud model to investigate the verticle redistribution of HNO3 by NAT/NAD PSCs. The cloud formation is driven by a temperature oscillation which drops the temperature below the NAT/NAD formation threshold (about 195 K) for a few days. We assume that a small fraction of the available aerosols act as NAT nuclei when the saturation ratio of HNO3 over NAT(NAD) exceeds 10(l.5). The result is a cloud between about 16 and 20 km in the model, with NAT/NAD particle effective radii as large as about 10 microns (in agreement with the SOLVE data). We find that for typical cloud lifetimes of 2-3 days or less, the net depletion of HNO3 is no more than 1-2 ppbv, regardless of the NAT or NAD particle number density. Repeated passes of the air column through the cold pool build up the denitrification to 3-4 ppbv, and the cloud altitude steadily decreases due to the downward transport of nitric acid. Increasing the cloud lifetime results in considerably more effective denitrification, even with very low cloud particle number densities. As expected, the degree of denitrification by NAT clouds is much larger than that by NAD Clouds. Significant denitrification by NAD Clouds is only possible if the cloud lifetime is several days or more. The clouds also cause a local maximum HNO3 mixing ratio at cloud base where the cloud particles sublimate.

  19. SAM 2 Measurements of the Polar Stratospheric Aerosol, volume 2. April 1979 to October 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Steele, H. M.; Hamill, P.

    1982-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor is abroad the Earth orbiting Nimbus 7 spacecraft proving extinction measurements of the Antarctic and Arctic stratospheric aerosol with a vertical resolution of 1 km. Representative examples and weekly averages of aerosol data and corresponding temperature profiles for the time and place of each SAM II measurement (April 29, 1979, to October 27, 1979) is presented. Contours of aerosol extinction as a function of altitude and longitude or time were plotted and weekly aerosol optical depths were calculated. Seasonal variations and variations in space (altitude and longitude) for both polar regions are easily seen. Typical values of aerosol extinction at the SAM II wavelength of 1.0 micron for the time priod were 1 to 3 x 10 to the -4th power km -1 in the main stratospheric aerosol layer. Optical depths for the stratosphere were about 0.002. Polar stratospheric clouds at altitudes between the tropopause and 20 km were observed during the Antarctic winter at various times and locations. A ready-to-use format containing a representative sample of the second 6 months of data to be used in atmospheric and climatic studies is presented.

  20. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions.

    PubMed

    Schoeberl, M R; Hartmann, D L

    1991-01-01

    Dramatic springtime depletions of ozone in polar regions require that polar stratospheric air has a high degree of dynamical isolation and extremely cold temperatures necessary for the formation of polar stratospheric clouds. Both of these conditions are produced within the stratospheric winter polar vortex. Recent aircraft missions have provided new information about the structure of polar vortices during winter and their relation to polar ozone depletions. The aircraft data show that gradients of potential vorticity and the concentration of conservative trace species are large at the transition from mid-latitude to polar air. The presence of such sharp gradients at the boundary of polar air implies that the inward mixing of heat and constituents is strongly inhibited and that the perturbed polar stratospheric chemistry associated with the ozone hole is isolated from the rest of the stratosphere until the vortex breaks up in late spring. The overall size of the polar vortex thus limits the maximum areal coverage of the annual polar ozone depletions. Because it appears that this limit has not been reached for the Antarctic depletions, the possibility of future increases in the size of the Antarctic ozone hole is left open. In the Northern Hemisphere, the smaller vortex and the more restricted region of cold temperatures suggest that this region has a smaller theoretical maximum for column ozone depletion, about 40 percent of the currently observed change in the Antarctic ozone column in spring.

  1. Interhemispheric Differences in Polar Stratospheric HNO3, H2O, CIO, and O3.

    PubMed

    Santee, M L; Read, W G; Waters, J W; Froidevaux, L; Manney, G L; Flower, D A; Jarnot, R F; Harwood, R S; Peckham, G E

    1995-02-10

    Simultaneous global measurements of nitric acid (HNO(3)), water (H(2)O), chlorine monoxide (CIO), and ozone (O(3)) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO(3) was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H(2)O after mid-July. By mid-August, near the time of peak CIO, abundances of gas-phase HNO(3) and H(2)O were extremely low. The concentrations of HNO(3) and H(2)O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO(3) or H(2)O were observed in the 1992-1993 Arctic winter vortex. Although CIO was enhanced over the Arctic as it was over the Antarctic, Arctic O(3) depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone "hole" is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  2. Dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions

    SciTech Connect

    Schoeberl, M.R. ); Hartmann, D.L. )

    1991-01-01

    Dramatic springtime depletions of ozone in polar regions require that polar stratospheric air has a high degree of dynamical isolation and extremely cold temperatures necessary for the formation of polar stratospheric clouds. Both of these conditions are produced within the stratospheric winter polar vortex. Recent aircraft missions have provided new information about the structure of polar vortices during winter and their relation to polar ozone depletions. The aircraft data show that gradients of potential vorticity and the concentration of conservative trace species are large at the transition from mid-latitude to polar air. The presence of such sharp gradients at the boundary of polar air implies that the inward mixing of heat and constituents is strongly inhibited and that the perturbed polar stratospheric chemistry associated with the ozone hole is isolated from the rest of the stratosphere until the vortex breaks up in late spring. The overall size of the polar vortex thus limits the maximum areal coverage of the annual polar ozone depletions. Because it appears that this limit has not been reached for the Antarctic depletions, the possibility of future increases in the size of the Antarctic ozone hole is left open. In the Northern Hemisphere, the smaller vortex and the more restricted region of cold temperatures suggest that this region has a smaller theoretical maximum for column ozone depletion, about 40 percent of the currently observed change in the Antarctic ozone column in spring. 5 figs., 43 refs.

  3. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  4. Flow-driven cloud formation and fragmentation: results from Eulerian and Lagrangian simulations

    NASA Astrophysics Data System (ADS)

    Heitsch, Fabian; Naab, Thorsten; Walch, Stefanie

    2011-07-01

    The fragmentation of shocked flows in a thermally bistable medium provides a natural mechanism to form turbulent cold clouds as precursors to molecular clouds. Yet because of the large density and temperature differences and the range of dynamical scales involved, following this process with numerical simulations is challenging. We compare two-dimensional simulations of flow-driven cloud formation without self-gravity, using the Lagrangian smoothed particle hydrodynamics (SPH) code VINE and the Eulerian grid code PROTEUS. Results are qualitatively similar for both methods, yet the variable spatial resolution of the SPH method leads to smaller fragments and thinner filaments, rendering the overall morphologies different. Thermal and hydrodynamical instabilities lead to rapid cooling and fragmentation into cold clumps with temperatures below 300 K. For clumps more massive than 1 M⊙ pc-1, the clump mass function has an average slope of -0.8. The internal velocity dispersion of the clumps is nearly an order of magnitude smaller than their relative motion, rendering it subsonic with respect to the internal sound speed of the clumps but supersonic as seen by an external observer. For the SPH simulations most of the cold gas resides at temperatures below 100 K, while the grid-based models show an additional, substantial component between 100 and 300 K. Independent of the numerical method, our models confirm that converging flows of warm neutral gas fragment rapidly and form high-density, low-temperature clumps as possible seeds for star formation.

  5. Gas distribution, star formation and giant molecular cloud evolution in nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Rebolledo Lara, David Andres

    2013-12-01

    In this thesis, I present a detailed study of the resolved properties of the cold gas in nearby galaxies at different size scales, starting from the whole galactic disk to the size of the Giant Molecular Clouds (GMCs). Differences in the shape and width of global CO and HI spectra of resolved disks of spiral galaxies are systematically investigated using a nearby sample for which high-resolution CO and HI maps are available. I find that CO line widths can be wider than HI widths in galaxies where the rotation curve declines in the outer parts, while they can be narrower in galaxies where the CO does not adequately sample the flat part of the rotation curve. Limited coverage of the CO emission by the telescope beam can mimic the latter effect. A physically based prescription linking the CO and HI radial profiles with the stellar disk is consistent with these findings. Then, I present an analysis performed on high spatial resolution observations of Giant Molecular Clouds in the three nearby spiral galaxies NGC 6946, NGC 628 and M101 obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Using the automated CPROPS algorithm I identified 112 CO cloud complexes in the CO(1 → 0) map and 145 GMCs in the CO(2 → 1) maps. The properties of the GMCs are similar to values found in other extragalactic studies. Clouds located on-arm present in general higher star formation rates than clouds located in inter-arm regions. Also, I find differences in the distribution of star formation efficiencies in the disk of these galaxies. These differences may be related to the underlying dynamical process that drives the observed spiral arm structure in the disks. In this scenario, in galaxies with nearly symmetric arm shape (e. g., NGC 628), the spiral shocks are triggering star formation along the arms. On other hand, galaxies with flocculent or multi-arm spiral structure (e. g., NGC 6946 and M101) show regions of high star formation efficiency at specific

  6. Evidence for oligomer formation in clouds: reactions of isoprene oxidation products.

    PubMed

    Altieri, Katye E; Carlton, Annmarie G; Lim, Ho-Jin; Turpin, Barbara J; Seitzinger, Sybil P

    2006-08-15

    Electrospray ionization mass spectrometry (ESI-MS) was used to investigate product formation in laboratory experiments designed to study secondary organic aerosol (SOA) formation in clouds. It has been proposed that water soluble aldehydes derived from aromatics and alkenes, including isoprene, oxidize further in cloud droplets forming organic acids and, upon droplet evaporation, SOA. Pyruvic acid is an important aqueous-phase intermediate. Time series samples from photochemical batch aqueous phase reactions of pyruvic acid and hydrogen peroxide were analyzed for product formation. In addition to the monomers predicted by the reaction scheme, products consistent with an oligomer system were found when pyruvic acid and OH radical were both present. No evidence of oligomer formation was found in a standard mix composed of pyruvic, glyoxylic, and oxalic acids prepared in the same matrix as the samples analyzed using the same instrument conditions. The distribution of high molecular weight products is consistent with oligomers composed of the mono-, oxo-, and di-carboxylic acids expected from the proposed reaction scheme.

  7. Molecular Clouds and Massive Star Formation in the Norma Spiral Arm

    NASA Astrophysics Data System (ADS)

    García, P.; Bronfman, L.; May, J.

    2006-06-01

    The Norma spiral arm in the Southern Galaxy contains the most massive molecular clouds as well as the most FIR luminous regions of massive star formation in the Galactic disk. The tangent region of this arm, at a well defined distance of ≈ 4.5 kpc from the Sun, is ideal to study in detail the process of massive star formation in GMCs (Bronfman et al. 1988, ApJ, 324, 248). We present maps of the major GMCs in ^{12}CO and C^{18}O obtained with the Nanten 4-m telescope, at a resolution of 2.5 arcmin. We have obtained also CS (2-1) and CS(5-4) maps of several OB star formation regions embedded in these GMCs (Bronfman et al. 1996, A&AS, 115, 81). What is the contribution from embedded OB stars to the total FIR emission from these GMCs? What is the fraction of cloud molecular gas involved in massive star formation?

  8. A proposed chemical scheme for HCCO formation in cold dense clouds

    NASA Astrophysics Data System (ADS)

    Wakelam, V.; Loison, J.-C.; Hickson, K. M.; Ruaud, M.

    2015-10-01

    The ketenyl radical (HCCO) has recently been discovered in two cold dense clouds with a non-negligible abundance of a few 10-11 (compared to H2). Until now, no chemical network has been able to reproduce this observation. We propose here a chemical scheme that can reproduce HCCO abundances together with HCO, H2CCO and CH3CHO in the dark clouds Lupus-1A and L486. The main formation pathway for HCCO is the OH + CCH → HCCO + H reaction as suggested by Agúndez et al. but with a much larger rate coefficient than used in current models. Since this reaction has never been studied experimentally or theoretically, this larger value is based on a comparison with other similar systems.

  9. Lidar remote sensing of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, Jia; Felton, Melvin; Lei, Liqiao; McCormick, M. Patrick; Delgado, Ruben; St. Pé, Alexandra

    2016-05-01

    In May 2014, the East Hampton Roads Aerosol Flux campaign was conducted at Hampton University to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars and rawindsonde launches. We present the results of analyses performed on these high-resolution planetary boundary layer and lower atmospheric measurements, with a focus on the low-level jets (LLJs) that form in this region during spring and summer. We present a detailed case study of a LLJ lasting from evening of 20 May to morning of 21 May using vertical profiles of aerosol backscatter, wind speed and direction, water vapor mixing ratio, temperature, and turbulence structure. We show with higher resolution than in previous studies that enhanced nighttime turbulence triggered by LLJs can cause the aerosol and water vapor content of the boundary layer to be transported vertically and form a well-mixed region containing the cloud condensation nuclei that are necessary for cloud formation.

  10. On the evolution of irradiated turbulent clouds: a comparative study between modes of triggered star formation

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.; Bhatt, H. C.

    2012-12-01

    Gas within molecular clouds (MCs) is turbulent and unevenly distributed. Interstellar shocks such as those driven by strong fluxes of ionizing radiation (IR) profoundly affect MCs. While small dense MCs exposed to a strong flux of IR have been shown to implode due to radiation-driven shocks, a phenomenon called radiation-driven implosion, larger MCs, however, are likely to survive this flux, which, in fact, may produce new star-forming sites within these clouds. Here we examine this hypothesis using the smoothed particle hydrodynamics algorithm coupled with a ray-tracing scheme that calculates the position of the ionization front at each time-step. We present results from simulations performed for three choices of IR flux spanning the range of fluxes emitted by a typical B-type star to a cluster of OB-type stars. The extent of photoablation, of course, depends on the strength of the incident flux and a strong flux of IR severely ablates an MC. Consequently, the first star formation sites appear in the dense shocked layer along the edges of the irradiated cloud. Radiation-induced turbulence readily generates dense filamentary structure within the photoablated cloud although several new star-forming sites also appear in some of the densest regions at the junctions of these filaments. Prevalent physical conditions within an MC play a crucial role in determining the mode, i.e. filamentary as compared to isolated pockets, of star formation, the time-scale on which stars form and the distribution of stellar masses. The probability distribution functions derived for irradiated clouds in this study are intriguing due to their resemblance with those presented in a recent census of irradiated MCs. Furthermore, irrespective of the nature of turbulence, the protostellar mass functions(MFs) derived in this study follow a power-law distribution. When turbulence within the cloud is driven by a relatively strong flux of IR such as that emitted by a massive O-type star or a cluster

  11. Solubility and equilibrium vapor pressures of HC1 dissolved in polar stratospheric cloud materials - Ice and the trihydrate of nitric acid

    NASA Technical Reports Server (NTRS)

    Hanson, David; Mauersberger, Konrad

    1988-01-01

    Measurements of the pressure-solubility behavior of HC1 in water ice and in the nitric acid trihydrate (NAT) crystal at 200 K are reported. It was found that HC1 is about 20 times more soluble in NAT than in ice for stratospheric conditions. A relation between HC1 pressure and substrate composition based on the Gibbs-Duhem equation is developed. This relation, along with other thermodynamic data, can be used to obtain the HC1 pressure-solubility behavior at different temperatures. Implications of these results for the south polar ozone hole are discussed.

  12. Evolution of First Cores and Formation of Stellar Cores in Rotating Molecular Cloud Cores

    NASA Astrophysics Data System (ADS)

    Saigo, Kazuya; Tomisaka, Kohji; Matsumoto, Tomoaki

    2008-02-01

    We followed the collapse of cloud cores with various rotation speed and density frustrations using three-dimensional hydrodynamical simulations by assuming a barotropic equation of state and examined the comprehensive evolution paths from the rotation molecule cloud core to stellar core. We found that the evolutionary paths depend only on the angular velocity of initial cloud core Ωc0. These evolutionary paths agree well with predictions of Saigo and Tomisaka's quasi-equilibrium axisymmetric models and SPH calculations of Bate. Evolutionary paths are qualitatively classified into three types. (1) A slowly rotating cloud with Ωc0 < 0.01/tff = 0.05(ρc0/10-19 g cm -3)1/2 rad Myr -1 shows spherical-type evolution, where ρc0 is the initial central density. Such a cloud forms a first core which is mainly supported by the thermal pressure. The first core has a small mass of Mcore ~ 0.01 M⊙ and a short lifetime of a few ×100 yr. After exceeding the H2 dissociation density ρ simeq 5.6 × 10-8 g cm -3, it begins the second collapse, and the whole of the first core accretes onto the stellar core/disk within a few free-fall timescales. (2) A rotating cloud with 0.01/tff < Ωc0lesssim 0.05/tff shows disk-type evolution. In this case, the first core becomes a centrifugally supported massive disk with Mcore ~ a few × 0.01-0.1 M⊙ and the lifetime is a few thousand years. The first core is unstable against nonaxisymmetric dynamic instability and forms spiral arms. The gravitational torque through spiral structure extracts angular momentum from the central region to the outer region of the first core. And only a central part with r ~ 1 AU begins the second collapse after exceeding dissociation density. However, the outer remnant disk keeps its centrifugal balance after stellar core formation. It seems that this remnant of the first core should control the mass and angular momentum accretion onto the newborn stellar system. (3) A rotating cloud with 0.05/tfflesssim Ωc0

  13. Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere

    NASA Astrophysics Data System (ADS)

    Drdla, K.; Müller, R.

    2012-07-01

    Low stratospheric temperatures are known to be responsible for heterogeneous chlorine activation that leads to polar ozone depletion. Here, we discuss the temperature threshold below which substantial chlorine activation occurs. We suggest that the onset of chlorine activation is dominated by reactions on cold binary aerosol particles, without the formation of polar stratospheric clouds (PSCs), i.e. without any significant uptake of HNO3 from the gas phase. Using reaction rates on cold binary aerosol in a model of stratospheric chemistry, a chlorine activation threshold temperature, TACL, is derived. At typical stratospheric conditions, TACL is similar in value to TNAT (within 1-2 K), the highest temperature at which nitric acid trihydrate (NAT) can exist. TNAT is still in use to parameterise the threshold temperature for the onset of chlorine activation. However, perturbations can cause TACL to differ from TNAT: TACL is dependent upon H2O and potential temperature, but unlike TNAT is not dependent upon HNO3. Furthermore, in contrast to TNAT, TACL is dependent upon the stratospheric sulfate aerosol loading and thus provides a means to estimate the impact on polar ozone of strong volcanic eruptions and some geo-engineering options, which are discussed. A parameterisation of TACL is provided here, allowing it to be calculated for low solar elevation (or high solar zenith angle) over a comprehensive range of stratospheric conditions. Considering TACL as a proxy for chlorine activation cannot replace a detailed model calculation, and polar ozone loss is influenced by other factors apart from the initial chlorine activation. However, TACL provides a more accurate description of the temperature conditions necessary for chlorine activation and ozone loss in the polar stratosphere than TNAT.

  14. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  15. The 1980 stratospheric-tropospheric exchange experiment

    NASA Technical Reports Server (NTRS)

    Margozzi, A. P. (Editor)

    1983-01-01

    Data are presented from the Stratospheric-Tropospheric Water Vapor Exchange Experiment. Measurements were made during 11 flights of the NASA U-2 aircraft which provided data from horizontal traverser and samplings in and about the tops of extensive cirrus-anvil clouds produced by overshooting cumulus turrets. Aircraft measurements were made of water vapor, ozone, ambient and cloud top temperature, fluorocarbons, nitrous oxide, nitric acid, aerosols, and ice crystal populations. Balloonsondes were flown about twice daily providing data on ozone, wind fields, pressure and temperature to altitudes near 30 km. Satellite photography provided detailed cloud and cloud top temperature information. Descriptions of individual experiments and detailed compilations of all results are provided.

  16. Development and evaluation of the unified tropospheric-stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Eastham, Sebastian D.; Weisenstein, Debra K.; Barrett, Steven R. H.

    2014-06-01

    Global chemistry-transport models (CTMs) typically use simplified parameterizations or relaxation to climatology to estimate the chemical behavior of the stratosphere only in the context of its impact on tropospheric chemistry. This limits investigation of stratospheric chemistry and interactions between tropospheric and stratospheric chemistry-transport processes. We incorporate stratospheric chemical and physical processes into the model GEOS-Chem in the form of a unified chemistry extension (UCX). The stratospheric chemistry framework from NASA's Global Modeling Initiative (GMI) is updated in accordance with JPL 10-06 and combined with GEOS-Chem's existing widely applied and validated tropospheric chemistry to form a single, unified gas-phase chemistry scheme. Aerosol calculations are extended to include heterogeneous halogen chemistry and the formation, sedimentation and evaporation of polar stratospheric clouds (PSCs) as well as background liquid binary sulfate (LBS) aerosols. The Fast-JX v7.0a photolysis scheme replaces a hybrid of Fast-J and Fast-JX v6.2, allowing photolytic destruction at frequencies relevant to the stratosphere and of species not previously modeled. Finally, new boundary conditions are implemented to cover both surface emissions of new species and mesospheric behavior. Results for four simulation years (2004-2007) are compared to those from the original, tropospheric model and to in situ and satellite-based measurements. We use these comparisons to show that the extended model is capable of modeling stratospheric chemistry efficiently without compromising the accuracy of the model at lower altitudes, perturbing mean OH below 250 hPa by less than 5% while successfully capturing stratospheric behavior not previously captured in GEOS-Chem such as formation and collapse of the Antarctic ozone hole. These extensions (with supporting validation and intercomparison) enable an existing and extensively validated tropospheric CTM to be used to

  17. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds.

    PubMed

    McKee, Christopher F; Tan, Jonathan C

    2002-03-01

    Massive stars (with mass m* > 8 solar masses Mmiddle dot in circle) are fundamental to the evolution of galaxies, because they produce heavy elements, inject energy into the interstellar medium, and possibly regulate the star formation rate. The individual star formation time, t*f, determines the accretion rate of the star; the value of the former quantity is currently uncertain by many orders of magnitude, leading to other astrophysical questions. For example, the variation of t*f with stellar mass dictates whether massive stars can form simultaneously with low-mass stars in clusters. Here we show that t*f is determined by the conditions in the star's natal cloud, and is typically about 105yr. The corresponding mass accretion rate depends on the pressure within the cloud--which we relate to the gas surface density--and on both the instantaneous and final stellar masses. Characteristic accretion rates are sufficient to overcome radiation pressure from about 100M middle dot in circle protostars, while simultaneously driving intense bipolar gas outflows. The weak dependence of t*f on the final mass of the star allows high- and low-mass star formation to occur nearly simultaneously in clusters.

  18. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  19. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    PubMed

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  20. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    PubMed

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  1. Discovery of star formation in the extreme outer galaxy possibly induced by a high-velocity cloud impact

    SciTech Connect

    Izumi, Natsuko; Kobayashi, Naoto; Hamano, Satoshi; Yasui, Chikako; Tokunaga, Alan T.; Saito, Masao

    2014-11-01

    We report the discovery of star formation activity in perhaps the most distant molecular cloud in the extreme outer galaxy. We performed deep near-infrared imaging with the Subaru 8.2 m telescope, and found two young embedded clusters at two CO peaks of 'Digel Cloud 1' at the kinematic distance of D = 16 kpc (Galactocentric radius R {sub G} = 22 kpc). We identified 18 and 45 cluster members in the two peaks, and the estimated stellar densities are ∼5 and ∼3 pc{sup –2}, respectively. The observed K-band luminosity function suggests that the age of the clusters is less than 1 Myr and also that the distance to the clusters is consistent with the kinematic distance. On the sky, Cloud 1 is located very close to the H I peak of high-velocity cloud Complex H, and there are some H I intermediate velocity structures between the Complex H and the Galactic disk, which could indicate an interaction between them. We suggest the possibility that Complex H impacting on the Galactic disk has triggered star formation in Cloud 1 as well as the formation of the Cloud 1 molecular cloud.

  2. Laser-induced supersaturation and snow formation in a sub-saturated cloud chamber

    NASA Astrophysics Data System (ADS)

    Ju, Jingjing; Leisner, Tomas; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2014-12-01

    Calculation of the saturation ratio inside vortices formed below the filament in a sub-saturation zone in a cloud chamber was given. By mixing the air with a large temperature gradient, supersaturation was sustained inside the vortices. This led to precipitation and snow formation when strong filaments were created using short focal length lenses ( f = 20 and 30 cm). However, when longer filaments were formed with the same laser pulse energy but longer focal length lenses ( f = 50 and 80 cm), only condensation (mist) was observed. The lack of precipitation was attributed to the weaker air flow, which was not strong enough to form strong vortices below the filament to sustain precipitation.

  3. Low-Mass Star Formation: From Molecular Cloud Cores to Protostars and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Inutsuka, S.-I.; Machida, M.; Matsumoto, T.; Tsukamoto, Y.; Iwasaki, K.

    2016-05-01

    This review describes realistic evolution of magnetic field and rotation of the protostars, dynamics of outflows and jets, and the formation and evolution of protoplanetary disks. Recent advances in the protostellar collapse simulations cover a huge dynamic range from molecular cloud core density to stellar density in a self-consistent manner and account for all the non-ideal magnetohydrodynamical effects, such as Ohmic resistivity, ambipolar diffusion, and Hall current. We explain the emergence of the first core, i.e., the quasi-hydrostatic object that consists of molecular gas, and the second core, i.e., the protostar. Ohmic dissipation largely removes the magnetic flux from the center of a collapsing cloud core. A fast well-collimated bipolar jet along the rotation axis of the protostar is driven after the magnetic field is re-coupled with warm gas (˜103 K) around the protostar. The circumstellar disk is born in the "dead zone", a region that is de-coupled from the magnetic field, and the outer radius of the disk increases with that of the dead zone during the early accretion phase. The rapid increase of the disk size occurs after the depletion of the envelope of molecular cloud core. The effect of Hall current may create two distinct populations of protoplanetary disks.

  4. Formation of flammable clouds due to rupture of a natural gas pipeline

    SciTech Connect

    Badr, O.; Elsheikh, H.

    1997-07-01

    Despite all precaution procedures, accidental release of natural gas from its massive pipeline networks may occur. This paper considers the environmental impact of such releases from flammability view point for two specific scenarios. The high initial pressure of the pipeline resulted in a choked flow. Equilibrium between the pressure of the released gas and the ambient one occurs through a series of interacting expansion and shock waves. Transient mass flow rate, temperature, speed, and cross sectional area of the released jet have been calculated using principles of compressible fluid flow. Time-average values of such parameters have been utilized in the EPA-based Screen software to predict the resulting steady state concentration profiles. Flammable clouds with dimensions up to 3,000 x 26 m in the downwind and upward directions, respectively have been predicted for the first scenario. On the other hand, the results of the second scenario have indicated the formation of flammable clouds extending to 14 m and 160 m in the downwind and upward directions, respectively. Moreover, a parametric study of wind speed and atmospheric stability has shown strong effects on the size of the formed dangerous clouds. Such results have been discussed in relation to the involved mixing processes.

  5. Molecular clouds and star formation : a multiwavelength study of Perseus, Serpens, and Ophiuchus

    NASA Astrophysics Data System (ADS)

    Enoch, Melissa Lanae

    NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document.In this thesis I utilize large-scale millimeter and mid- to far-infrared surveys to address a number of outstanding questions regarding the formation of low mass stars in molecular clouds. Continuum [lambda] = 1.1 mm maps completed with Bolocam at a resolution of 31" cover the largest areas observed to date at millimeter or submillimeter wavelengths in three molecular clouds: 7.5 deg(2) in Perseus (140 pc(2) at the adopted distance of d = 250 pc), 10.8 deg(2) (50 pc(2) at d = 125 pc) in Ophiuchus, and 1.5 deg(2) (30 pc(2) at d = 125 pc) in Serpens. These surveys are sensitive to dense substructures with mean density n [...] 2 - 3 x 10(4) cm(-3). A total of 122 cores are detected in Perseus, 44 in Ophiuchus, and 35 in Serpens above mass detection limits of 0.1 - 0.2 Msun. Combining with Spitzer mid- and far-infrared maps from the c2d Legacy program provides wavelength coverage from [lambda] = 1.25-1100 micron, and enables the assembly of an unbiased, complete sample of the youngest star forming objects in three environments. This sample includes 108 prestellar cores, 43 Class 0 sources and 94 Class I sources.The approximately equal number of starless cores and embedded protostars in each cloud implies a starless core lifetime of 2 - 4 x 10(5) yr, only a few free-fall timescales. This timescale, considerably shorter than the timescale predicted by the classic scenario of magnetic field support in which core evolution is moderated by ambipolar diffusion, suggests that turbulence is the dominant process controlling the formation and evolution of dense cores. However, dense cores in all three clouds are found only at high cloud column densities, where [...] 7 mag, and the fraction of cloud mass in these cores is less than 10%, indicating that magnetic fields must play some role as well. Measured angular deconvolved sizes of the majority of starless cores are

  6. Global collapse of molecular clouds as a formation mechanism for the most massive stars

    NASA Astrophysics Data System (ADS)

    Peretto, N.; Fuller, G. A.; Duarte-Cabral, A.; Avison, A.; Hennebelle, P.; Pineda, J. E.; André, Ph.; Bontemps, S.; Motte, F.; Schneider, N.; Molinari, S.

    2013-07-01

    The relative importance of primordial molecular cloud fragmentation versus large-scale accretion still remains to be assessed in the context of massive core/star formation. Studying the kinematics of the dense gas surrounding massive-star progenitors can tell us the extent to which large-scale flow of material impacts the growth in mass of star-forming cores. Here we present a comprehensive dataset of the 5500(±800) M⊙ infrared dark cloud SDC335.579-0.272 (hereafter SDC335), which exhibits a network of cold, dense, parsec-long filaments. Atacama Large Millimeter Array (ALMA) Cycle 0 observations reveal two massive star-forming cores, MM1 and MM2, sitting at the centre of SDC335 where the filaments intersect. With a gas mass of 545