The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.
Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T
2006-02-01
The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.
Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.
Ru, Nan; Liu, Sean Shih-Yao; Bai, Yuxing; Li, Song; Liu, Yunfeng; Wei, Xiaoxia
2016-04-01
BoneCeramic (Straumann, Basel, Switzerland) can regenerate bone in alveolar defects after tooth extraction, but it is unknown whether it is feasible to move a tooth through BoneCeramic grafting sites. The objective of this study was to investigate 3-dimensional real-time root resorption and bone responses in grafted sites during orthodontic tooth movement. Sixty 5-week-old rats were randomly assigned to 3 groups to receive BoneCeramic, natural bovine cancellous bone particles (Bio-Oss; Geistlich Pharma, Wolhusen, Switzerland), or no graft, after the extraction of the maxillary left first molar. After 4 weeks, the maxillary left second molar was moved into the extraction site for 28 days. Dynamic bone microstructures and root resorption were evaluated using in-vivo microcomputed tomography. Stress distribution and corresponding tissue responses were examined by the finite element method and histology. Mixed model analysis of variance was performed to compare the differences among time points with Bonferroni post-hoc tests at the significance level of P <0.05. The BoneCeramic group had the least amount of tooth movement and root resorption volumes and craters, and the highest bone volume fraction, trabecular number, and mean trabecular thickness, followed by the Bio-Oss and the control groups. The highest stress accumulated in the cervical region of the mesial roots. BoneCeramic has better osteoconductive potential and induces less root resorption compared with Bio-Oss grafting and naturally recovered extraction sites. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Cehreli, Murat Cavit; Uysal, Serdar; Akca, Kivanc
2010-06-01
Documentation of early loading of mandibular overdentures supported by different implant systems is scarce. This study aimed to compare the biologic and prosthetic outcome of mandibular overdentures supported by unsplinted early-loaded one- and two-stage oral implants after 5 years of function. Twenty-eight consecutive patients were screened following an inclusion and exclusion criteria, and randomly allocated to treatment groups. Ball-retained mandibular overdentures were fabricated on two unsplinted Straumann (Institut Straumann AG, Basel, Switzerland) and Brånemark (Nobel Biocare AB, Göteborg, Sweden) dental implants and subjected to an early-loading protocol. During the 5-year period, prosthetic complications were recorded. At 5-years of function, plaque, peri-implant inflammation, bleeding, and calculus index scores were recorded, and standard periapical radiographs were obtained from each implant for measurement of marginal bone loss. All implants survived during the observation period. The peri-implant inflammation, bleeding, and calculus index scores around Straumann and Brånemark implants were similar (p > .05). The marginal bone loss around Brånemark implants (1.21 +/- 0.1) was higher than Straumann implants (0.73 +/- 0.06) at 5 years of function (p = .002). Kaplan-Meier tests revealed that 1- and 5-year survival of overdentures on Straumann and Brånemark implants were similar (p = .85). Wear of the ball abutment in the Brånemark group was higher than in the Straumann group (p < .05). Complications regarding the retainer and the need for occlusal adjustments were higher in the Straumann group (p < .05). Chi-square test revealed that the frequency of retightening of the retainer was higher in the Straumann group than in the Brånemark group (p < .05). Mandibular overdentures supported by unsplinted early-loaded Straumann and Brånemark implants lead to similar peri-implant soft tissue and prosthetic outcomes, although higher marginal bone loss could be observed around Brånemark implants after 5 years.
[Comperative study of implant surface characteristics].
Katona, Bernadett; Daróczi, Lajos; Jenei, Attila; Bakó, József; Hegedus, Csaba
2013-12-01
The osseointegration between the implant and its' bone environment is very important. The implants shall meet the following requirements: biocompatibility, rigidity, resistance against corrosion and technical producibility. In our present study surface morphology and material characteristics of different implants (Denti Bone Level, Denti Zirconium C, Bionika CorticaL, Straumann SLA, Straumann SLA Active, Dentsply Ankylos and Biotech Kontact implant) were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The possible surface alterations caused by the manufacturing technology were also investigated. During grit-blasting the implants' surface is blasted with hard ceramic particles (titanium oxide, alumina, calcium phosphate). Properties of blasting material are critical because the osseointegration of dental implants should not be hampered. The physical and chemical features of blasting particles could importantly affect the produced surfaces of implants. Titanium surfaces with micro pits are created after immersion in mixtures of strong acids. On surfaces after dual acid-etching procedures the crosslinking between fibrin and osteogenetic cells could be enhanced therefore bone formation could be directly facilitated on the surface of the implant. Nowadays there are a number of surface modification techniques available. These can be used as a single method or in combination with each other. The effect of the two most commonly used surface modifications (acid-etching and grit-blasting) on different implants are demonstrated in our investigation.
Alharbi, Hend M; Babay, Nadir; Alzoman, Hamad; Basudan, Sumaya; Anil, Sukumaran; Jansen, John A
2015-09-01
Minimizing crestal bone loss following immediate implant placement is considered the most challenging aspect in implant therapy. Implant surface topography and chemical modifications have been shown to influence the success of Osseointegration. The Straumann Bone Level implant, featuring SLActive surface, has been introduced with the aim of enhancing bone apposition. Similarly, the OsseoSpeed implants from Astra Tech claim to have an enhanced osseointegration. Because of the specific features in the implant design, both companies claim that crestal resorption is minimal with these implants. To evaluate the osseointegration and crestal bone level following immediate placement of Straumann Bone Level implant and OsseoSpeed implants in fresh extraction sockets in Beagle dogs. The distal roots of the second, third and fourth premolars were extracted in both sides of the mandible. The distal roots were removed using a dental elevator. A total of 60 fixtures were installed in 10 Beagle dogs. Two types of implants were used: Straumann Bone-Level implants, which were 8 × 3.3 mm in size, and Astra Tech OsseoSpeed 3.5 S MicroThread implants, which were 8 × 3.5 mm in size. The histomorphometrical evaluation was performed at the end of 4- and 12-week healing. The implant-bone contact and bone volume percentage were assessed. The bone-to-implant contact (BIC) and the bone volume did not show any significant changes for both types of implants. The OsseoSpeed™ implants showed 67.4% and 65.3% BIC, respectively, at 4 and 12 weeks compared with 71.7 and 73.1 for the Straumann Bone-Level implants. The bone volume around both types of implants did not differ significantly at both time periods. The crestal bone resorption was observed for both types of implants. The first BIC at buccal side and lingual side of the implants also did not differ significantly for both implant systems. This study showed that Straumann Bone Level and OsseoSpeed implants induced similar bone response after immediate implantation at 4 and 12 weeks. The immediate implant placement resulted in peri-implant crestal bone-level changes for both types of implants. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gahlert, Michael; Kniha, Heinz; Weingart, Dieter; Schild, Sabine; Gellrich, Nils-Claudius; Bormann, Kai-Hendrik
2016-12-01
Dental implants have traditionally been made from titanium or its alloys, but recently full-ceramic implants have been developed with comparable osseointegration properties and functional strength properties to titanium. These ceramic implants may have advantages in certain patients and situations, for example, where esthetic outcomes are particularly important. The objective of this investigation was to evaluate the performance of a newly developed full-ceramic ZrO 2 monotype implant design (PURE Ceramic Implant; Institut Straumann AG, Basel, Switzerland) in single-tooth gaps in the maxilla and mandible. This was a prospective, open-label, single-arm study in patients requiring implant rehabilitation in single-tooth gaps. Full-ceramic implants were placed, with provisional and final prostheses inserted after 3 and 6 months, respectively. Crestal bone level was measured at implant placement and after 6 and 12 months. Implant survival and success were evaluated after 6 and 12 months. Further evaluations are planned after 24 and 36 months. Forty-six patients were screened for potential study participation, of whom 44 (17 men and 27 women, mean age 48 ± 14 years) were recruited into the study. The majority of implants (90.9%) were placed in the maxilla. The implant survival and implant success rate after 12 months were 97.6%. A minor change of the mean bone level occurred between implant loading (final prosthesis insertion after 6 months) and 12 months (-0.14 mm) after initial bone remodeling was observed between implant placement and loading (-0.88 mm). The results indicated that monotype ceramic implants can achieve clinical outcomes comparable to published outcomes of equivalent titanium implants. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mordenfeld, Arne; Lindgren, Christer; Hallman, Mats
2016-10-01
Straumann® BoneCeramic™ is a synthetic biphasic calcium phosphate (BCP) aimed for sinus floor augmentation. Long-term follow-up of implants placed in BCP after sinus augmentation is still missing. The primary aim of the study was to compare survival rates and marginal bone loss of Straumann SLActive implants placed in either BCP (test) or Bio-Oss® (DBB) (control) after sinus floor augmentation. The secondary aim was to calculate graft sinus height at different time points. Bilateral sinus floor augmentation was performed in a split mouth model. Eleven patients (mean age 67 years) received 100% BCP on one side and 100% DBB on the contralateral side. After 8 months of graft healing, 62 Straumann SLActive implants were placed. After 5 years of functional loading (6 years after augmentation) of implants, marginal bone levels and grafted sinus height were measured, and implant survival and success rates were calculated. After 5 years of loading, all prosthetic constructions were in function although two implants were lost in each grafting material. The overall implant survival rate was 93.5% (91.7% for BCP, 91.3% for DBB, and 100% for residual bone). The success rates were 83.3% and 91.3% for BCP and DBB, respectively. There was no statistically significant difference in mean marginal bone level after 5 years between BCP (1.4 ± 1.2 mm) and DBB (1.0 ± 0.7 mm). Graft height reduction (GHR) after 6 years was limited to 6.6% for BCP and 5.8% for DBB. In this limited RCT study, the choice of biomaterial used for sinus floor augmentation did not seem to have any impact on survival rates and marginal bone level of the placed implants after 5 years of functional loading and GHR was minimal. © 2015 Wiley Periodicals, Inc.
Acar, Ahmet Hüseyin; Yolcu, Ümit; Gül, Mehmet; Keleş, Ali; Erdem, Necip Fazıl; Altundag Kahraman, Sevil
2015-04-01
The present study aimed to investigate the effectiveness of platelet-rich fibrin (PRF) on bone regeneration when used alone or in combination with hydroxyapatite (HA)/beta-tricalcium phosphate (βTCP). In this study, 20 New Zealand white rabbits were used and four calvarial defects were prepared in each animal. PRF, Straumann(®) Bone Ceramic (SBC), or PRF+SBC was applied to the defects; one defect was left untreated as a control. Ten rabbits were sacrificed at week 4 (T1) and 10 at week 8 (T2). After micro-computed tomography (micro-CT) scanning, the samples were sent for histological and histomorphometric analysis to evaluate and compare the volume and area of regenerated bone. Histomorphometric and micro-CT analysis showed that both PRF and SBC significantly increased bone regeneration at T1 and T2 (P<0.01). When PRF was used in combination with HA/βTCP, a further significant increase in new bone formation was observed at T1 and T2 compared with that when PRF or SBC was used alone (P<0.01). PRF has a positive effect on bone formation when used alone and in combination with HA/βTCP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yamaguchi, Yoko; Shiota, Makoto; FuJii, Masaki; Sekiya, Michi; Ozeki, Masahiko
2016-01-01
Primary stability after implant placement is essential for osseointegration. It is important to understand the bone/implant interface for analyzing the influence of implant design on primary stability. In this study rigid polyurethane foam is used as artificial bone to evaluate the bone-implant interface and to identify where the torque is being generated during placement. Five implant systems-Straumann-Standard (ST), Straumann-Bone Level (BL), Straumann-Tapered Effect (TE), Nobel Biocare-Brånemark MKIII (MK3), and Nobel Biocare-Brånemark MKIV (MK4)-were used for this experiment. Artificial bone blocks were prepared and the implant was installed. After placement, a metal jig and one side artificial bone block were removed and then the implant embedded in the artificial bone was exposed for observing the bone-implant interface. A digital micro-analyzer was used for observing the contact interface. The insertion torque values were 39.35, 23.78, 12.53, 26.35, and 17.79 N cm for MK4, BL, ST, TE, and MK3, respectively. In ST, MK3, TE, MK4, and BL the white layer areas were 61 × 103 μm(2), 37 × 103 μm(2), 103 × 103 μm(2) in the tapered portion and 84 × 03 μm(2) in the parallel portion, 134 × 103 μm(2), and 98 × 103 μm(2) in the tapered portion and 87 × 103 μm(2) in the parallel portion, respectively. The direct observation method of the implant/artificial bone interface is a simple and useful method that enables the identification of the area where implant retention occurs. A white layer at the site of stress concentration during implant placement was identified and the magnitude of the stress was quantitatively estimated. The site where the highest torque occurred was the area from the thread crest to the thread root and the under and lateral aspect of the platform. The artificial bone debris created by the self-tapping blade accumulated in both the cutting chamber and in the space between the threads and artificial bone.
Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E
2018-04-01
There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p < .05). Titanium abutments (C) had significantly higher bending moments than identical zirconia abutments (T1) (p < .05). Zirconia abutments (T1) with internal connection had higher bending moments than zirconia abutments with external connection (T2) (p < .05). For all test groups, the bending moments were significantly reduced when restored with all-ceramic crowns. For narrow diameter abutments, the fracture strength of 2-piece internal connected zirconia abutments fixed on titanium resin bases was similar to those obtained for 1-piece titanium abutments. Narrow diameter zirconia abutments with internal connection exhibited higher fracture strength than zirconia abutments with an external connection. Titanium abutments with an internal connection were significantly stronger than identical zirconia abutments. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Şener-Yamaner, Işil Damla; Yamaner, Gökhan; Sertgöz, Atilla; Çanakçi, Cenk Fatih; Özcan, Mutlu
2017-08-01
The aim of this study was to compare marginal bone loss around early-loaded SLA and SLActive tissue-level implants (Straumann Dental Implants; Institut Straumann AG, Basel, Switzerland) after a mean of 81-month follow-up period. One hundred seven SLA and 68 SLActive implants were placed in 55 patients and loaded with final restoration after 8 and 3 weeks of healing time, respectively. Marginal bone loss around implants was determined radiographically at initial and after a mean observation time ranging between 20 and 81 months. The effect of location (mandible vs maxilla), smoking habit, sex, implant length and diameter, and the type of prosthesis on the marginal bone loss was evaluated. The overall cumulative survival rate was 98.2% being 99% for SLA implants and 97% for SLActive implants. After 20-month follow-up period, mean marginal bone loss values for the SLA and SLActive implants were 0.24 and 0.17 mm, respectively. After 81 months, mean marginal bone loss for the SLA and SLActive implants reached 0.71 and 0.53 mm, respectively. Marginal bone loss was affected by the length and type of implant and patients' smoking habit after a mean observation time of 20 months. However, none of the parameters had any significant effect on the marginal bone loss after a follow-up period of 81 months. With both SLA and SLActive implants, successful clinical results could be achieved up to 6.5 years of follow-up period.
Kelly, J Robert; Rungruanganunt, Patchnee
2016-01-01
Zirconia is being widely used, at times apparently by simply copying a metal design into ceramic. Structurally, ceramics are sensitive to both design and processing (fabrication) details. The aim of this work was to examine four computer-aided design/computer-assisted manufacture (CAD/CAM) abutments using a modified International Standards Organization (ISO) implant fatigue protocol to determine performance as a function of design and processing. Two full zirconia and two hybrid (Ti-based) abutments (n = 12 each) were tested wet at 15 Hz at a variety of loads to failure. Failure probability distributions were examined at each load, and when found to be the same, data from all loads were combined for lifetime analysis from accelerated to clinical conditions. Two distinctly different failure modes were found for both full zirconia and Ti-based abutments. One of these for zirconia has been reported clinically in the literature, and one for the Ti-based abutments has been reported anecdotally. The ISO protocol modification in this study forced failures in the abutments; no implant bodies failed. Extrapolated cycles for 10% failure at 70 N were: full zirconia, Atlantis 2 × 10(7) and Straumann 3 × 10(7); and Ti-based, Glidewell 1 × 10(6) and Nobel 1 × 10(21). Under accelerated conditions (200 N), performance differed significantly: Straumann clearly outperformed Astra (t test, P = .013), and the Glidewell Ti-base abutment also outperformed Atlantis zirconia at 200 N (Nobel ran-out; t test, P = .035). The modified ISO protocol in this study produced failures that were seen clinically. The manufacture matters; differences in design and fabrication that influence performance cannot be discerned clinically.
Toyoshima, Takeshi; Wagner, Wilfried; Klein, Marcus Oliver; Stender, Elmar; Wieland, Marco; Al-Nawas, Bilal
2011-03-01
Modifications of implant design have been intending to improve primary stability. However, little is known about investigation of a hybrid self-tapping implant on primary stability. The aims of this study were to evaluate the primary stability of two hybrid self-tapping implants compared to one cylindrical non-self-tapping implant, and to elucidate the relevance of drilling protocols on primary stability in an ex vivo model. Two types of hybrid self-tapping implants (Straumann® Bone Level implant [BL], Straumann® Tapered Effect implant [TE]) and one type of cylindrical non-self-tapping implant (Straumann® Standard Plus implant [SP]) were investigated in the study. In porcine iliac cancellous bones, 10 implants each were inserted either using standard drilling or under-dimensioned drilling protocol. The evaluation of implant-bone interface stability was carried out by records of maximum insertion torque, the Periotest® (Siemens, Bensheim, Germany), the resonance frequency analysis (RFA), and the push-out test. In each drilling group, the maximum insertion torque values of BL and TE were significantly higher than SP (p=.014 and p=.047, respectively). In each group, the Periotest values of TE were significantly lower than SP (p=.036 and p=.033, respectively). The Periotest values of BL and TE were significantly lower in the group of under-dimensioned drilling than standard drilling (p=.002 and p=.02, respectively). In the RFA, no statistical significances were found in implants between two groups and between implants in each group. In each group, the push-out values of BL and TE were significantly higher than SP (p=.006 and p=.049, respectively). Hybrid self-tapping implants could achieve a high primary stability which predicts them for use in low-density bone. However, there is still a debate to clarify the influence of under-dimensioned drilling on primary stability. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.
Garrana, Rhoodie; Mohangi, Govindrau; Malo, Paulo; Nobre, Miguel
2016-01-01
Background . Endotoxin initiates osteoclastic activity resulting in bone loss. Endotoxin leakage through implant abutment connections negatively influences peri-implant bone levels. Objectives . (i) To determine if endotoxin can traverse different implant-abutment connection (IAC) designs; (ii) to quantify the amount of endotoxins traversing the IAC; (iii) to compare the in vitro comportments of different IACs. Materials and Methods . Twenty-seven IACs were inoculated with E. coli endotoxin. Six of the twenty-seven IACs were external connections from one system (Southern Implants) and the remaining twenty-one IACs were made up of seven internal IAC types from four different implant companies (Straumann, Ankylos, and Neodent, Southern Implants). Results . Of the 27 IACs tested, all 6 external IACs leaked measurable amounts of endotoxin. Of the remaining 21 internal IACs, 9 IACs did not show measurable leakage whilst the remaining 12 IACs leaked varying amounts. The mean log endotoxin level was significantly higher for the external compared to internal types ( p = 0.015). Conclusion . Within the parameters of this study, we can conclude that endotoxin leakage is dependent on the design of the IAC. Straumann Synocta, Straumann Cross-fit, and Ankylos displayed the best performances of all IACs tested with undetectable leakage after 7 days. Each of these IACs incorporated a morse-like component in their design. Speculation still exists over the impact of IAC endotoxin leakage on peri-implant tissues in vivo; hence, further investigations are required to further explore this.
Marković, Aleksa; Calvo-Guirado, José Luís; Lazić, Zoran; Gómez-Moreno, Gerardo; Ćalasan, Dejan; Guardia, Javier; Čolic, Snježana; Aguilar-Salvatierra, Antonio; Gačić, Bojan; Delgado-Ruiz, Rafael; Janjić, Bojan; Mišić, Tijana
2013-06-01
The aim of this study was to investigate the relationship between surgical techniques and implant macro-design (self-tapping/non-self-tapping) for the optimization of implant stability in the low-density bone present in the posterior maxilla using resonance frequency analysis (RFA). A total of 102 implants were studied. Fifty-six self-tapping BlueSkyBredent® (Bredent GmbH&Co.Kg®, Senden, Germany) and 56 non-self-tapping Standard Plus Straumann® (Institut Straumann AG®, Waldenburg, Switzerland) were placed in the posterior segment of the maxilla. Implants of both types were placed in sites prepared with either lateral bone-condensing or with bone-drilling techniques. Implant stability measurements were performed using RFA immediately after implant placement and weekly during a 12-week follow-up period. Both types of implants placed after bone condensing achieved significantly higher stability immediately after surgery, as well as during the entire 12-week observation period compared with those placed following bone drilling. After bone condensation, there were no significant differences in primary stability or in implant stability after the first week between both implant types. From 2 to 12 postoperative weeks, significantly higher stability was shown by self-tapping implants. After bone drilling, self-tapping implants achieved significantly higher stability than non-self-tapping implants during the entire follow-up period. The outcomes of the present study indicate that bone drilling is not an effective technique for improving implant stability and, following this technique, the use of self-tapping implants is highly recommended. Implant stability optimization in the soft bone can be achieved by lateral bone-condensing technique, regardless of implant macro-design. © 2011 Wiley Periodicals, Inc.
Wittneben, J G; Gavric, J; Belser, U C; Bornstein, M M; Joda, T; Chappuis, V; Sailer, I; Brägger, U
2017-02-01
Patients' esthetic expectations are increasing, and the options of the prosthetic pathways are currently evolving. The objective of this randomized multicenter clinical trial was to assess and compare the esthetic outcome and clinical performance of anterior maxillary all-ceramic implant crowns (ICs) based either on prefabricated zirconia abutments veneered with pressed ceramics or on CAD/CAM zirconia abutments veneered with hand buildup technique. The null hypothesis was that there is no statistically significant difference between the 2 groups. Forty implants were inserted in sites 14 to 24 (FDI) in 40 patients in 2 centers, the Universities of Bern and Geneva, Switzerland. After final impression, 20 patients were randomized into group A, restored with a 1-piece screw-retained single crown made of a prefabricated zirconia abutment with pressed ceramic as the veneering material using the cut-back technique, or group B using an individualized CAD/CAM zirconia abutment (CARES abutment; Institut Straumann AG) with a hand buildup technique. At baseline, 6 mo, and 1 y clinical, esthetic and radiographic parameters were assessed. Group A exhibited 1 dropout patient and 1 failure, resulting in a survival rate of 94.7% after 1 y, in comparison to 100% for group B. No other complications occurred. Clinical parameters presented stable and healthy peri-implant soft tissues. Overall, no or only minimal crestal bone changes were observed with a mean DIB (distance from the implant shoulder to the first bone-to-implant contact) of -0.15 mm (group A) and 0.12 mm (group B) at 1 y. There were no significant differences at baseline, 6 mo, and 1 y for DIB values between the 2 groups. Pink esthetic score (PES) and white esthetic score (WES) values at all 3 examinations indicated stability over time for both groups and pleasing esthetic outcomes. Both implant-supported prosthetic pathways represent a valuable treatment option for the restoration of single ICs in the anterior maxilla ( ClinicalTrials.gov NCT02905838).
Domingues, Eduardo Pinheiro; Ribeiro, Rafael Fernandes; Horta, Martinho Campolina Rebello; Manzi, Flávio Ricardo; Côsso, Maurício Greco; Zenóbio, Elton Gonçalves
2017-10-01
Using computed tomography, to compare vertical and volumetric bone augmentation after interposition grafting with bovine bone mineral matrix (GEISTLICH BIO-OSS ® ) or hydroxyapatite/tricalcium phosphate (STRAUMANN ® BONECERAMIC) for atrophic posterior mandible reconstruction through segmental osteotomy. Seven patients received interposition grafts in the posterior mandible for implant rehabilitation. The computed tomography cone beam images were analysed with OsiriX Imaging Software 6.5 (Pixmeo Geneva, Switzerland) in the pre-surgical period (T0), at 15 days post-surgery (T1) and at 180 days post-surgery (T2). The tomographic analysis was performed by a single trained and calibrated radiologist. Descriptive statistics and nonparametric methods were used to analyse the data. There was a significant difference in vertical and volume augmentation with both biomaterials using the technique (P < 0.05). There were no significant differences (P > 0.05) in volume change of the graft, bone volume augmentation, or augmentation of the maximum linear vertical distance between the two analysed biomaterials. The GEISTLICH BIO-OSS ® and STRAUMANN ® BONECERAMIC interposition grafts exhibited similar and sufficient dimensional stability and volume gain for short implants in the atrophic posterior mandible. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Divac, Marija; Stawarczyk, Bogna; Sahrmann, Philipp; Attin, Thomas; Schmidlin, Patrick R
2013-01-01
To assess the primary stability of a hybrid self-tapping implant and a cylindric non-self-tapping implant in an in vitro test model using polyurethane foam. Eighty standardized blocks of cellular rigid polyurethane foam, 2 cm long and 1 cm wide, with different thicknesses of 2, 4, 6, and 9 mm (n = 10 per group) were cut. Two implant systems--a hybrid self-tapping (Tapered Effect [TE], Straumann) and a cylindric non-self-tapping (Standard Plus [SP] Wide Neck, Straumann) were placed in the block specimens. Subsequently, resonance frequency analysis (RFA) was performed. The RFA measurements were made in triplicate on four aspects of each implant (mesial, distal, buccal, and oral), and the mean RFA value was calculated. Subsequently, the tensile load of the implants was determined by pull-out tests. The data were analyzed using one-way and two-way analysis of variance followed by a post hoc Scheffe test and a t test (α = .05). Additionally, the simple linear correlation between the RFA and tensile load values was evaluated. No statistically significant differences were found between TE and SP in terms of RFA at different bone thicknesses. Starting from a bone thickness of 4 mm, TE implants showed significantly higher tensile load compared to SP implants (P = .016 to .040). A correlation was found between the RFA measurements and tensile load. Mechanically stable placement is possible with TE and SP implants in a trabecular bone model. RFA and tensile load increased with greater bone thickness.
Patel, K; Mardas, N; Donos, N
2013-06-01
The aim of this clinical study was to evaluate the interproximal radiographic bone levels and the survival/success rate of dental implants placed in alveolar ridges previously preserved with a synthetic bone substitute or a bovine xenograft. Alveolar ridge preservation was performed in 27 patients who were randomly assigned in two groups. In the test group (n = 14), the extraction socket was treated with a synthetic bone graft Straumann Bone Ceramic; SBC and a collagen barrier, whereas in the control group (n = 13) a deproteinized bovine bone mineral (DBBM) and the same collagen barrier were used. After 8 months of healing, titanium dental implants with a hydrophilic surface were placed in the preserved ridges. During surgery, 9/13 implants in the SBC group and 8/12 implants in the DBBM group presented with either dehiscence or fenestration defects and required additional bone augmentation. The implants were loaded at 4 months following placement and were followed up for 1 year post-loading. Interproximal radiographic bone levels were evaluated in standardized periapical radiographs at loading and 1 year post-loading. Probing pocket depth, gingival recession and bleeding upon probing were recorded at implants and neighbouring teeth. The success rate of the implants was evaluated according to criteria set by Albrektsson et al. (1986). The survival rate of the implants in both groups was 100% at 1-year post-loading. No statistically significant differences in any of the clinical and radiographic measurements were detected between the two groups (P < 0.05). The success rate of the implants was 84.6% (11/13) in the SBC group and 83.3% (10/12) in the DBBM group. Equivalent success and survival rates (as well as similar radiographic changes) of dental implants placed in alveolar ridges previously preserved with SBC or DBBM should be anticipated. © 2012 John Wiley & Sons A/S.
Mühlemann, Sven; Truninger, Thomas C; Stawarczyk, Bogna; Hämmerle, Christoph H F; Sailer, Irena
2014-01-01
To test the fracture load and fracture patterns of zirconia abutments restored with all-ceramic crowns after fatigue loading, exhibiting internal and external implant-abutment connections as compared to restored and internally fixed titanium abutments. A master abutment was used for the customization of 5 groups of zirconia abutments to a similar shape (test). The groups differed according to their implant-abutment connections: one-piece internal connection (BL; Straumann Bonelevel), two-piece internal connection (RS; Nobel Biocare ReplaceSelect), external connection (B; Branemark MkIII), two-piece internal connection (SP, Straumann StandardPlus) and one-piece internal connection (A; Astra Tech AB OsseoSpeed). Titanium abutments with internal implant-abutment connection (T; Straumann Bonelevel) served as control group. In each group, 12 abutments were fabricated, mounted to the respective implants and restored with glass-ceramic crowns. All samples were embedded in acrylic holders (ISO-Norm 14801). After aging by means of thermocycling in a chewing simulator, static load was applied until failure (ISO-Norm 14801). Fracture load was analyzed by calculating the bending moments. Values of all groups were compared with one-way ANOVA followed by Scheffé post hoc test (P-value<0.05). Failure mode was analyzed descriptively. The mean bending moments were 464.9 ± 106.6 N cm (BL), 581.8 ± 172.8 N cm (RS), 556.7 ± 128.4 N cm (B), 605.4 ± 54.7 N cm (SP), 216.4 ± 90.0 N cm (A) and 1042.0 ± 86.8 N cm (T). No difference of mean bending moments was found between groups BL, RS, B and SP. Test group A exhibited significantly lower mean bending moment than the other test groups. Control group T had significantly higher bending moments than all test groups. Failure due to fracture of the abutment and/or crown occurred in the test groups. In groups BL and A, fractures were located in the internal part of the connection, whereas in groups RS and SP, a partial deformation of the implant components occurred and cracks and fractures of the zirconia abutment were detected. The differently connected zirconia abutments exhibited similar bending moments with the exception of one group. Hence, the type of connection only had a minor effect on the stability of restored zirconia abutments. In general, restored titanium abutments exhibited the highest bending moments. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.
Dutta, S R; Passi, D; Singh, P; Bhuibhar, A
2015-03-01
Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.
Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.
Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru
2014-01-01
Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.
Promotion of osteogenesis by a piezoelectric biological ceramic.
Feng, J; Yuan, H; Zhang, X
1997-12-01
Hydroxyapatite (HA) ceramic and piezoelectric biological ceramic, hydroxyapatite and barium titanate (HABT), were implanted in the jawbones of dogs. Histological observation showed that, compared with HA ceramics, HABT promoted the growth and repair of the bone significantly, the tissue growth around the HABT ceramic was direction-dependent, the collagen arranged orderly and the bone grew orderly. The order growth of the bone increased the efficiency of osteogenesis on the surface of the implanted HABT ceramics.
Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry
Anderud, Jonas; Abrahamsson, Peter; Jimbo, Ryo; Isaksson, Sten; Adolfsson, Erik; Malmström, Johan; Naito, Yoshihito; Wennerberg, Ann
2015-01-01
The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. PMID:25792855
Alves, Célia C; Muñoz, Fernando; Cantalapiedra, António; Ramos, Isabel; Neves, Manuel; Blanco, Juan
2015-09-01
The effect on the marginal peri-implant tissues following repeated platform switching abutment removal and subsequent reconnection was studied. Six adult female Beagle dogs were selected, and Pm3 and Pm4 teeth, both left and right sides, were extracted and the sites healed for 3 months. At this time, 24 bone level (BL) (Straumann, Basel, Switzerland) Ø 3.3/8 mm implants were placed, 2 in each side on Pm3 and Pm4 regions. In one side (control group), 12 bone level conical Ø 3.6 mm healing abutments and, on the other side (test group), 12 Narrow CrossFit (NC) multibase abutments (Straumann) , Basel, Switzerland) were connected at time of implant surgery. On test group, all prosthetic procedures were carried out direct to multibase abutment without disconnecting it, where in the control group, the multibase abutment was connected/disconnected five times (at 6/8/10/12/14 weeks) during prosthetic procedures. Twelve fixed metal bridges were delivered 14 weeks after implant placement. A cleaning/control appointment was scheduled 6 months after implant placement. The animals were sacrificed at 9 months of the study. Clinical parameters and peri-apical x-rays were registered in every visit. Histomorphometric analysis was carried out for the 24 implants. The distance from multibase abutment shoulder to the first bone implant contact (S-BIC) was defined as the primary histomorphometric parameter. Wilcoxon comparison paired test (n = 6) found no statistically significant differences (buccal P = 0.917; Lingual P = 0.463) between test and control groups both lingually and buccally for S-BIC distance. Only Pm3 buccal aBE-BC (distance from the apical end of the barrier epithelium to the first bone implant contact) (P = 0.046) parameter presented statistically significant differences between test and control groups. Control group presented 0.57 mm more recession than test group, being this difference statistically significant between the two groups (P < 0.001). It can be conclude, within the limits of this animal study, that the connection/disconnection of platform switching abutments during prosthetic phase of implant treatment does not induce bone marginal absorption. Furthermore, it may present a negative influence in the buccal connective tissue attachment that becomes shorter anyway preventing marginal hard tissue resorption, especially in thin biotypes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ueno, Daisuke; Nakamura, Kei; Kojima, Kousuke; Toyoshima, Takeshi; Tanaka, Hideaki; Ueda, Kazuhiko; Koyano, Kiyoshi; Kodama, Toshiro
2018-04-01
Simultaneous vertical ridge augmentation (VRA) can reduce treatment procedures and surgery time, but the concomitant reduction in primary stability (PS) of a shallow-placed implant imparts risk to its prognosis. Although several studies have reported improvements in PS, there is little information from any simultaneous VRA model. This study aimed to evaluate whether tapered implants with stepwise under-prepared osteotomy could improve the PS of shallow-placed implants in an in vitro model of simultaneous VRA. Tapered implants (Straumann ® Bone Level Tapered implant; BLT) and hybrid implants (Straumann ® Bone Level implant; BL) were investigated in this study. A total of 80 osteotomies of different depths (4, 6, 8, 10 mm) were created in rigid polyurethane foam blocks, and each BLT and BL was inserted by either standard (BLT-S, BL-S) or a stepwise under-prepared (BLT-U, BL-U) osteotomy protocol. The PS was evaluated by measuring maximum insertion torque (IT), implant stability quotient (ISQ), and removal torque (RT). The significance level was set at P < 0.05. There were no significant differences in IT, ISQ or RT when comparing BLT-S and BL-S or BLT-U and BL-U at placement depths of 6 and 8 mm. When comparison was made between osteotomy protocols, IT was significantly greater in BLT-U than in BLT-S at all placement depths. A stepwise under-prepared osteotomy protocol improves initial stability of a tapered implant even in a shallow-placed implant model. BLT-U could be a useful protocol for simultaneous VRA.
Castellanos-Cosano, Lizett; Corcuera-Flores, José-Ramón; Mesa-Cabrera, María; Cabrera-Domínguez, José; Torres-Lagares, Daniel; Machuca-Portillo, Guillermo
2017-01-01
Background Paranoid schizophrenia is a mental illness that involves no observable anatomical alteration. Main characteristic affects the personality of the individual, as well as areas of his own psychology. Case Report A 33-year-old man with paranoid schizophrenia and obsessive-compulsive disorder in treatment with Haloperidol, Oxcarbazepine, Olanzapine and Seroquel is presented. Dental exploration showed widespread decay mostly cervical with numerous root fragments, agenesis of lateral incisors, impacted wisdom teeth, missing teeth and malocclusion. Treatment plan included restoration of teeth decay, extractions of root fragments and implant-supported prostheses in bilateral upper lateral incisors for aesthetics reason. A previous consultation with a psychiatric specialist was performed and no contraindication were observed. A preliminary radiological examination was performed previous dental treatment and implant placement. Due to patient refusal to replace dental abscenses with implants, inform consent was signed up from his parents. After local anesthesia, first implant was placed at upper right lateral positions (Straumann Bone Level Ø 3.3 mm, length 10 mm). Two weeks later a second implant was placed at upper left lateral position (Straumann Bone Level Ø 3.3 mm, length 12 mm). The patient showed no postoperative complications. After implant placement, the patient attended scheduled review appointments. The prosthesis was placed after a 3-month period of osseointegration. Conclusions Implant placement can be considered a suitable option for people with mental disorders. A previous consultation with psychiatric specialists for conducting a good patient management is necessaire. Key words:Paranoid schizophrenia, obsessive-compulsive disorder, dental implants. PMID:29302292
Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration
Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki
2009-01-01
Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid. PMID:19158015
Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping
2014-03-18
Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.
Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration
Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping
2014-01-01
Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration. PMID:24646912
Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan
2014-12-18
The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.
In vitro bioactivity of akermanite ceramics.
Wu, Chengtie; Chang, Jiang; Ni, Siyu; Wang, Junying
2006-01-01
In this study, the bone-like apatite-formation ability of akermanite ceramics (Ca2MgSi2O7) in simulated body fluid (SBF) and the effects of ionic products from akermanite dissolution on osteoblasts and mouse fibroblasts (cell line L929) were investigated. In addition, osteoblast morphology and proliferation on the ceramics were evaluated. The results showed that akermanite ceramics possessed bone-like apatite-formation ability comparable with bioactive wollastonite ceramics (CaSiO3) after 20 days of soaking in SBF and the mechanism of bone-like apatite formation on akermanite ceramics is similar to that of wollastonite ceramics. The Ca, Si, and Mg ions from akermanite dissolution at certain ranges of concentration significantly stimulated osteoblast and L929 cell proliferation. Furthermore, osteoblasts spread well on the surface of akermanite ceramics, and proliferated with increasing the culture time. The results showed that akermanite ceramics possess bone-like apatite-formation ability and can release soluble ionic products to stimulate cell proliferation, which indicated good bioactivity. (c) 2005 Wiley Periodicals, Inc
Verket, Anders; Lyngstadaas, Ståle P; Rønold, Hans J; Wohlfahrt, Johan C
2014-02-01
This study investigated osseointegration of dental implants inserted in healed extraction sockets preserved with porous titanium granules (PTG). Three adult female minipigs (Gøttingen minipig; Ellegaard A/S, Dalmose, Denmark) had the mandibular teeth P2, P3 and P4 extracted. The extraction sockets were preserved with metallic PTG (Tigran PTG; Tigran Technologies AB, Malmö, Sweden) n = 12, heat oxidized white porous titanium granules (WPTG) (Tigran PTG White) n = 12 or left empty (sham) n = 6. All sites were covered with collagen membranes (Bio-Gide; Geistlich Pharma, Wolhausen, Switzerland) and allowed 11 weeks of healing before implants (Straumann Bone Level; Straumann, Basel, Switzerland) were inserted. The temperature was measured during preparation of the osteotomies. Resonance frequency analysis (RFA, Osstell; Osstell AB, Gothenburg, Sweden) was performed at implant insertion and at termination. After 6 weeks of submerged implant healing, the pigs were euthanized and jaw segments were excised for microCT and histological analyses. In the temperature and RFA analyses no significant differences were recorded between the test groups. The microCT analysis demonstrated an average bone volume of 61.7% for the PTG group compared to 50.3% for the WPTG group (P = 0.03) and 57.1% for the sham group. Histomorphometry demonstrated an average bone-to-implant contact of 68.2% for the PTG group compared to 36.6% for the WPTG group and 60.9% for the sham group (n.s). Eight out of ten implants demonstrated apical osseous defects in the WPTG group, but similar defects were observed in all groups. PTG preserved extraction sockets demonstrate a similar outcome as the sham control group for all analyses suggesting that this material potentially can be used for extraction socket preservation prior to implant installment. Apical osseous defects were however observed in all groups including the sham group, and a single cause could not be determined. © 2012 John Wiley & Sons A/S.
Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S
2015-12-01
Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.
Osteoinductive ceramics as a synthetic alternative to autologous bone grafting
Yuan, Huipin; Fernandes, Hugo; Habibovic, Pamela; de Boer, Jan; Barradas, Ana M. C.; de Ruiter, Ad; Walsh, William R.; van Blitterswijk, Clemens A.; de Bruijn, Joost D.
2010-01-01
Biomaterials can be endowed with biologically instructive properties by changing basic parameters such as elasticity and surface texture. However, translation from in vitro proof of concept to clinical application is largely missing. Porous calcium phosphate ceramics are used to treat small bone defects but in general do not induce stem cell differentiation, which is essential for regenerating large bone defects. Here, we prepared calcium phosphate ceramics with varying physicochemical and structural characteristics. Microporosity correlated to their propensity to stimulate osteogenic differentiation of stem cells in vitro and bone induction in vivo. Implantation in a large bone defect in sheep unequivocally demonstrated that osteoinductive ceramics are equally efficient in bone repair as autologous bone grafts. Our results provide proof of concept for the clinical application of “smart” biomaterials. PMID:20643969
Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin
2015-11-01
The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.
Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong
2015-08-01
Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Akça, Kivanç; Chang, Ting-Ling; Tekdemir, Ibrahim; Fanuscu, Mete I
2006-08-01
The objective of this biomechanical study was to explore the effect of bone micro-morphology on initial intraosseous stability of implants with different designs. Straumann and Astra Tech dental implants were placed into anterior and posterior regions of completely edentulous maxilla and mandible of a human cadaver. Experiments were undertaken to quantify initial implant stability and bone micro-morphology. Installation torque values (ITVs) and implant stability quotients (ISQs) were measured to determine initial intraosseous implant stability. For quantification of relative bone volume and micro-architecture, sectioned implant-bone and bone core specimens of each implant placement site were consecutively scanned and trabecular bone was analyzed in a micro-computed tomography (micro-CT) unit. Experimental outcomes were evaluated for correlations among implant designs, initial intraosseous implant stability and bone micro-structural parameters. ITVs correlated higher with bone volume fraction (BV/TV) than ISQs, at 88.1% and 68.9% levels, respectively. Correlations between ITVs and micro-morphometric parameters were significant at the 95% confidence level (P<0.05) while ISQs were not. Differences in ITVs, ISQs and BV/TV data in regards to implant designs used were not significant at the 95% confidence level (P>0.05). Bone micro-morphology has a prevailing effect over implant design on intraosseus initial implant stability, and ITV is more sensitive in terms of revealing biomechanical properties at the bone-implant interface in comparison with ISQ.
Hoch, Allison I; Duhr, Ralph; Di Maggio, Nunzia; Mehrkens, Arne; Jakob, Marcel; Wendt, David
2017-12-01
Bone marrow-derived mesenchymal stromal cells (BMSC), when expanded directly within 3D ceramic scaffolds in perfusion bioreactors, more reproducibly form bone when implanted in vivo as compared to conventional expansion on 2D polystyrene dishes/flasks. Since the bioreactor-based expansion on 3D ceramic scaffolds encompasses multiple aspects that are inherently different from expansion on 2D polystyrene, we aimed to decouple the effects of specific parameters among these two model systems. We assessed the effects of the: 1) 3D scaffold vs. 2D surface; 2) ceramic vs. polystyrene materials; and 3) BMSC niche established within the ceramic pores during in vitro culture, on subsequent in vivo bone formation. While BMSC expanded on 3D polystyrene scaffolds in the bioreactor could maintain their in vivo osteogenic potential, results were similar as BMSC expanded in monolayer on 2D polystyrene, suggesting little influence of the scaffold 3D environment. Bone formation was most reproducible when BMSC are expanded on 3D ceramic, highlighting the influence of the ceramic substrate. The presence of a pre-formed niche within the scaffold pores had negligible effects on the in vivo bone formation. The results of this study allow a greater understanding of the parameters required for perfusion bioreactor-based manufacturing of osteogenic grafts for clinical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Jiao Jiao; Roohani-Esfahani, Seyed-Iman; Kim, Kyungsook; Kaplan, David L; Zreiqat, Hala
2017-06-01
Bioactive ceramic scaffolds represent competitive choices for clinical bone reconstruction, but their widespread use is restricted by inherent brittleness and weak mechanical performance under load. This study reports the development of strong and tough bioactive scaffolds suitable for use in load-bearing bone reconstruction. A strong and bioactive ceramic scaffold (strontium-hardystonite-gahnite) is combined with single and multiple coating layers of silk fibroin to enhance its toughness, producing composite scaffolds which match the mechanical properties of cancellous bone and show enhanced capacity to promote in vitro osteogenesis. Also reported for the first time is a comparison of the coating effects obtained when a polymeric material is coated on ceramic scaffolds with differing microstructures, namely the strontium-hardystonite-gahnite scaffold with high-density struts as opposed to a conventional ceramic scaffold, such as biphasic calcium phosphate, with low-density struts. The results show that silk coating on a unique ceramic scaffold can lead to simple and effective enhancement of its mechanical and biological properties to suit a wider range of applications in clinical bone reconstruction, and also establish the influence of ceramic microstructure on the effectiveness of silk coating as a method of reinforcement when applied to different types of ceramic bone graft substitutes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Non-linear 3D evaluation of different oral implant-abutment connections.
Streckbein, P; Streckbein, R G; Wilbrand, J F; Malik, C Y; Schaaf, H; Howaldt, H P; Flach, M
2012-12-01
Micro-gaps and osseous overload in the implant-abutment connection are the most common causes of peri-implant bone resorption and implant failure. These undesirable events can be visualized on standardized three-dimensional finite element models and by radiographic methods. The present study investigated the influence of 7 available implant systems (Ankylos, Astra, Bego, Brånemark, Camlog, Straumann, and Xive) with different implant-abutment connections on bone overload and the appearance of micro-gaps in vitro. The individual geometries of the implants were transferred to three-dimensional finite element models. In a non-linear analysis considering the pre-loading of the occlusion screw, friction between the implant and abutment, the influence of the cone angle on bone strain, and the appearance of micro-gaps were determined. Increased bone strains were correlated with small (< 15°) cone angles. Conical implant-abutment connections efficiently avoided micro-gaps but had a negative effect on peri-implant bone strain. Bone strain was reduced in implants with greater wall thickness (Ankylos) or a smaller cone angle (Bego). The results of our in silico study provide a solid basis for the reduction of peri-implant bone strain and micro-gaps in the implant-abutment connection to improve long-term stability.
Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone.
Lee, Jae Hyup; Nam, Hwa; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Chang, Bong-Soon; Lee, Choon-Ki
2011-05-01
A number of methods for coating implants with bioactive ceramics have been reported to improve osseointegration in bone, but the effects of bioactive ceramic coatings on the osseointegration of cancellous screws are not known. Accordingly, biomechanical and histomorphometric analyses of the bone-screw interface of uncoated cancellous screws and cancellous screws coated with four different bioactive ceramics were performed. After coating titanium alloy cancellous screws with calcium pyrophosphate (CPP), CaO-SiO(2)-B(2)O(3) glass-ceramics (CSG), apatite-wollastonite 1:3 glass-ceramics (W3G), and CaO-SiO(2)-P(2)O(5)-B(2)O(3) glass-ceramics (BGS-7) using an enameling method, the coated and the uncoated screws were inserted into the proximal tibia and distal femur metaphysis of seven male mongrel dogs. The torque values of the screws were measured at the time of insertion and at removal after 8 weeks. The bone-screw contact ratio was analyzed by histomorphometry. There was no significant difference in the insertion torque between the uncoated and coated screws. The torque values of the CPP and BGS-7 groups measured at removal after 8 weeks were significantly higher than those of the uncoated group. Moreover, the values of the CPP and BGS-7 groups were significantly higher than the insertion torques. The fraction of bone-screw interface measured from the undecalcified histological slide showed that the CPP, W3G, and BGS-7 groups had significantly higher torque values in the cortical bone area than the uncoated group, and the CPP and BGS-7 groups had significantly higher torque values in the cancellous bone area than the uncoated group. In conclusion, a cancellous screw coated with CPP and BGS-7 ceramic bonds directly to cancellous bone to improve the bone-implant osseointegration. This may broaden the indications for cancellous screws by clarifying their contribution to improving osseointegration, even in the cancellous bone area.
Design of bone-integrating organic-inorganic composite suitable for bone repair.
Miyazaki, Toshiki
2013-01-01
Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.
Tomco, Marek; Petrovova, Eva; Giretova, Maria; Almasiova, Viera; Holovska, Katarina; Cigankova, Viera; Jenca, Andrej; Jencova, Janka; Jenca, Andrej; Boldizar, Martin; Balazs, Kosa; Medvecky, Lubomir
2017-09-01
Bone tissue engineering combines biomaterials with biologically active factors and cells to hold promise for reconstructing craniofacial defects. In this study the biological activity of biphasic hydroxyapatite ceramics (HA; a bone substitute that is a mixture of hydroxyapatite and β-tricalcium phosphate in fixed ratios) was characterized (1) in vitro by assessing the growth of MC3T3 mouse osteoblast lineage cells, (2) in ovo by using the chick chorioallantoic membrane (CAM) assay and (3) in an in vivo pig animal model. Biocompatibility, bioactivity, bone formation and biomaterial degradation were detected microscopically and by radiology and histology. HA ceramics alone demonstrated great biocompatibility on the CAM as well as bioactivity by increased proliferation and alkaline phosphatase secretion of mouse osteoblasts. The in vivo implantation of HA ceramics with bone marrow mesenchymal stem cells (MMSCs) showed de novo intramembranous bone healing of critical-size bone defects in the right lateral side of pig mandibular bodies after 3 and 9 weeks post-implantation. Compared with the HA ceramics without MMSCs, the progress of bone formation was slower with less-developed features. This article highlights the clinical use of microporous biphasic HA ceramics despite the unusually shaped elongated micropores with a high length/width aspect ratio (up to 20) and absence of preferable macropores (>100 µm) in bone regenerative medicine.
3D printed porous ceramic scaffolds for bone tissue engineering: a review.
Wen, Yu; Xun, Sun; Haoye, Meng; Baichuan, Sun; Peng, Chen; Xuejian, Liu; Kaihong, Zhang; Xuan, Yang; Jiang, Peng; Shibi, Lu
2017-08-22
This study summarizes the recent research status and development of three-dimensional (3D)-printed porous ceramic scaffolds in bone tissue engineering. Recent literature on 3D-printed porous ceramic scaffolds was reviewed. Compared with traditional processing and manufacturing technologies, 3D-printed porous ceramic scaffolds have obvious advantages, such as enhancement of the controllability of the structure or improvement of the production efficiency. More sophisticated scaffolds were fabricated by 3D printing technology. 3D printed bioceramics have broad application prospects in bone tissue engineering. Through understanding the advantages and limitations of different 3D-printing approaches, new classes of bone graft substitutes can be developed.
Nakahara, Ken; Haga-Tsujimura, Maiko; Sawada, Kosaku; Kobayashi, Eizaburo; Mottini, Matthias; Schaller, Benoit; Saulacic, Nikola
2016-11-01
Simultaneous implant placement with bone grafting shortens the overall treatment period, but might lead to the peri-implant bone loss or even implant failure. The aim of this study was to compare the single-staged to two-staged implant placement using the bone ring technique. Four standardized alveolar bone defects were made in the mandibles of nine dogs. Dental implants (Straumann BL ® , Basel, Switzerland) were inserted simultaneously with bone ring technique in test group and after 6 months of healing period in control group. Animals of both groups were euthanized at 3 and 6 months of osseointegration period. The harvested samples were analyzed by means of histology and micro-CT. The amount of residual bone decreased while the amount of new bone increased up to 9 months of healing period. All morphometric parameters remained stable between 3 and 6 months of osseointegration period within groups. Per a given time point, median area of residual bone graft was higher in test group and area of new bone in control group. The volume of bone ring was greater in test than in control group, reaching the significance at 6 months of osseointegration period (P = 0.002). In the present type of bone defect, single-staged implant placement may be potentially useful to shorten an overall treatment period. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review
Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga
2015-01-01
In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750
Current knowledge about the hydrophilic and nanostructured SLActive surface
Wennerberg, Ann; Galli, Silvia; Albrektsson, Tomas
2011-01-01
This review summarizes the present documentation for the SLActive surface, a hydrophilic and nanostructured surface produced by Straumann Company in Switzerland, and covers the results from 15 in vitro, 17 in vivo, and 16 clinical studies. The SLActive surface is a development of the large grit-blasted and acid-etched SLA surface, and is further processed to a high degree of hydrophilicity. In general, the in vitro and in vivo studies of the SLActive surface demonstrate a stronger cell and bone tissue response than for the predecessor, the SLA surface, produced by the same company. However, in most studies, this difference disappears after 6–8 weeks. In the clinical studies, a stronger bone response was reported for the SLActive surface during the early healing phase when compared with the SLA surface. However, the later biological response was quite similar for the two surfaces and both demonstrated very good clinical results. PMID:23674916
Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon; Lee, Choon-Ki
2014-03-01
Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion.
Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon
2014-01-01
Background Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. Methods This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). Results In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. Conclusions The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion. PMID:24605194
Zou, Wen; Ran, Xu; Liang, Jie; Chen, Hezhong; Luo, Jiaoming
2012-12-01
Strontium added into porous hydroxyaptite ceramics has the functions of improving its osseointegration, decreasing its dissolution rate and improving the bone density. Strontium-containing hydroxyaptite (Sr-HA) ceramics has been used as bone replacement and scaffold to treat the osteoporosis and bone default in clinic, but the mechanism of interfacial tissue response caused by the trace element Sr in Sr-HA ceramics still remains to be further studied. Four types of Sr-HA ceramic samples with different contents of Sr were prepared by microwave plasma sintering for testing the response of the soft tissue implanted in dog muscles in our laboratory. The contents of Sr element in the samples are 0 mol%, 1 mol%, 5 mol%, and 7 mol%, respectively. The samples were implanted in the muscle of the dogs for 4 weeks, 8 weeks and 12 weeks, respectively. The histological observations at the end of each period showed that the irritant ranking increased with the content of Sr in Sr-HA ceramics at the end of 12 weeks, and there were rich bone tissue in Sr-HA ceramic samples with 5 mol% Sr element. The overdose of element Sr is harmful to soft tissues. When the content of Sr in Sr-HA ceramic was below 5 mol%, the soft tissue response was very slight and the new bones were induced to grow well.
Klünter, Tim; Schulz, Peter; Deisinger, Ulrike; Diez, Claudius; Waiss, Waltraud; Kirschneck, Christian; Reichert, Torsten E.; Detsch, Rainer
2017-01-01
Background: The aim of the present study was to evaluate the degradation pattern of highly porous bioceramics as well as the bone formation in presence of bone morphogenetic protein 7 (BMP-7) in an ectopic site. Methods: Novel calcium phosphate ceramic cylinders sintered at 1,300°C with a total porosity of 92–94 vol%, 45 pores per inch, and sized 15 mm (Ø) × 5 mm were grafted on the musculus latissimus dorsi bilaterally in 10 Göttingen minipigs: group I (n = 5): hydroxyapatite (HA) versus biphasic calcium phosphate (BCP), a mixture of HA and tricalcium phosphate (TCP) in a ratio of 60/40 wt%; group II (n = 5): TCP versus BCP. A test side was supplied in situ with 250 μg BMP-7. Fluorochrome bone labeling and computed tomography were performed in vivo. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, tartrate-resistant acid phosphatase, and pentachrome staining. Results: Bone formation was enhanced in the presence of BMP-7 in all ceramics (P = 0.001). Small spots of newly formed bone were observed in all implants in the absence of BMP-7. Degradation of HA and BCP was enhanced in the presence of BMP-7 (P = 0.001). In those ceramics, osteoclasts were observed. TCP ceramics were almost completely degraded independently of the effect of BMP-7 after 14 weeks (P = 0.76), osteoclasts were not observed. Conclusions: BMP-7 enhanced bone formation and degradation of HA and BCP ceramics via osteoclast resorption. TCP degraded via dissolution. All ceramics were osteoinductive. Novel degradable HA and BCP ceramics in the presence of BMP-7 are promising bone substitutes in the growing individual. PMID:28740783
Duan, Yourong; Wu, Yao; Wang, Chaoyuan; Chen, Jiyong; Zhang, Xingdong
2003-03-01
Bone-like apatite formation on the surface of calcium phosphate ceramics has been believed to be necessary for new bone to grow on the ceramics and to be related to the osteoinductivity of the material. The research of bone-like apatite formation is a great help to understanding the mechanism of osteoinduction. Synthetic porous calcium phosphate ceramics (HA/TCP = 70/30) were implanted intramuscularly in pigs, dogs, rabbits and rats to make a comparative study of the bone-like apatite formation onto the porous HA/TCP ceramics in different animals. Specimens were harvested at 14 days after implantation. Samples were detected for the surface morphology with SEM. The chemical composition of the sample surface after implantation was analyzed with reflection infrared (R-IR). Obvious bone-like apatite formation could be detected in the sections of porous specimens harvested from all animals after 14 days intramuscular implantation. Crystal deposition could be only observed on the surface of the concave regions of the samples collected from dogs, rabbits and rat. On the contrary, evenly distributed flake-shaped crystal could be found on the pore surface and also on the outer surface of the materials implanted in pigs. The morphology of bone-like apatite in pigs was different from that in the others animals. Bone-like apatite was not observed in dense specimen implanted intramuscularly. Bone-like apatite formed faster on specimens implanted in rabbit than that in other animals. This formation sequence is different from the sequence of osteoinductivity of biphasic calcium phosphate ceramics implanted in these animals. The results demonstrated that the formation of bone-like apatite on materials is a prerequisite condition to their osteoinduction but other factors also play important roles in osteoinduction.
Preparation and characterization of a novel willemite bioceramic.
Zhang, Meili; Zhai, Wanyin; Chang, Jiang
2010-04-01
Willemite (Zn(2)SiO(4)) ceramics were prepared by sintering the willemite green compacts. The effects of sintering temperature on the linear shrinkage, porosity and mechanical strength of the ceramics were examined. With the sintering temperature increased, the linear shrinkage of the ceramics increased and the porosity decreased. When sintered at 1,300 degrees C, willemite ceramics showed mechanical properties of the same order of magnitude as values for human cortical bone, as measured by bending strength (91.2 +/- 4.2 MPa) and Young's modulus (37.5 +/- 1.5 GPa). In addition, the adhesion and proliferation of rabbit bone marrow stromal cells (BMSCs) on willemite ceramics was investigated. The results showed that the ceramics supported cell adhesion and stimulated the proliferation. All these findings suggest that willemite ceramics possess suitable mechanical properties and favorable biocompatibility and might be a promising biomaterial for bone implant applications.
In vivo bone tissue response to a canasite glass-ceramic.
da Rocha Barros, V M; Salata, L A; Sverzut, C E; Xavier, S P; van Noort, R; Johnson, A; Hatton, P V
2002-07-01
The aim of this study was to determine the biocompatibility and osteoconductive potential of a high-strength canasite glass ceramic. Glass-ceramic rods were produced using the lost-wax casting technique and implanted in the mid-shafts rabbit femurs. Implants were harvested at 4, 13 and 22 weeks and prepared for light and electron microscopy. Hydroxyapatite was used as a control material. Hydroxyapatite implants were surrounded by new mineralised bone tissue after 4 weeks of implantation. The amount of bone surrounding the implant increased slightly at 13 weeks. In contrast, canasite glass and glass ceramic implants were almost entirely surrounded by soft tissue during all the time periods. Close contact between bone and canasite glass-ceramic implant without the intervening fibrous tissue was observed in only a few regions. The canasite formulation evaluated was not osteoconductive and appeared to degrade in the biological environment. It was therefore concluded that the canasite formulation used was unsuitable for use as implant. Further work is required to improve the biocompatibility of these materials with bone tissue. It is possible that this could be achieved by reducing the solubility of the glass and glass ceramic.
Persson, Leif G; Mouhyi, Jafaar; Berglundh, Tord; Sennerby, Lars; Lindhe, Jan
2004-01-01
Various methods have been applied for the treatment of periimplantitis lesions. It has been reported that the procedures used have been effective in eliminating the inflammatory lesion but that re-osseointegration to the once-contaminated implant surface has been difficult or impossible to achieve. The aim of this study was to examine the use of carbon dioxide (CO2) laser in combination with hydrogen peroxide in the treatment of experimentally induced periimplantitis lesions. Three dental implants (ITI Dental Implant System, Straumann AG, Waldenburg, Switzerland) were placed in each side of the edentulous mandible of four beagle dogs. Implants with a turned surface and implants with a sand-blasted large-grit acid-etched (SLA) surface (SLA, Straumann AG, Waldenburg, Switzerland) were used. Experimental periimplantitis was induced during 3 months. Five weeks later each animal received tablets of amoxicillin and metronidazole for a period of 17 days. Three days after the start of the antibiotic treatment, full-thickness flaps were elevated, and the granulation tissue in the bone craters was removed. In the two anterior implant sites in both sides of the mandible, a combination of CO2 laser therapy and application of a water solution of hydrogen peroxide was used. The implant in the posterior site of each quadrant was cleaned with cotton pellets soaked in saline. Biopsy specimens were obtained 6 months later. The amount of re-osseointegration was 21% and 82% at laser-treated turned-surface implants and SLA implants, respectively, and 22% and 84% at saline-treated turned-surface implants and SLA implants, respectively. The present study demonstrated the following: (1) a combination of systemic antibiotics and local curettage and debridement resulted in the resolution of experimentally induced periimplantitis lesions; (2) at implants with a turned surface, a small amount of re-osseointegration was observed at the base of the bone defects whereas a considerable amount of re-osseointegration occurred at implants with an SLA surface; and (3) the use of CO2 laser and hydrogen peroxide during surgical therapy had no apparent effect on bone formation and re-osseointegration.
Makowiecki, Arkadiusz; Botzenhart, Ute; Seeliger, Julia; Heinemann, Friedhelm; Biocev, Peter; Dominiak, Marzena
2017-07-01
The objective of the present study was to compare the primary and secondary stability of tissue-level short dental titanium implants with polished necks and hydrophilic surfaces of two different designs and manufacturers. The first implant system used (SPI ® ELEMENT RC INICELL titanium implants, Thommen Medical AG, Grenchen, Switzerland), allowed functional loading 6 weeks after its placement, whereas the second implant system (RN SLActiv ® tissue-level titanium implants, Straumann GmbH, Fribourg, Germany), was loaded after 15 weeks. The degree of primary and secondary stability was determined using an Osstell ISQ measuring device. Marginal bone loss (MBL) was evaluated radiographically 12 and 24 weeks after implantation and the Wachtel's healing index as well as the patient's satisfaction with the treatment was registered on a VAS scale. The intergroup comparison revealed significant differences in terms of primary stability as well as differences in MBL 3 months after the procedure, but no significant differences could be found after 6 months and for secondary stability. The primary stability was significantly higher for Thommen ® compared to Straumann ® implants. Insertion of short dental implants with a hydrophilic conditioned surface significantly shortens patient treatment time. Copyright © 2017 Elsevier GmbH. All rights reserved.
Gil-Albarova, Jorge; Salinas, Antonio J; Bueno-Lozano, Antonio L; Román, Jesus; Aldini-Nicolo, Nicolo; García-Barea, Agustina; Giavaresi, Gianluca; Fini, Milena; Giardino, Roberto; Vallet-Regí, Maria
2005-07-01
The in vivo evaluation, in New Zealand rabbits, of a sol-gel glass 70% CaO-30% SiO2 (in mol%) and a glass-ceramic obtained from thermal treatment of the glass, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Femoral bone diaphyseal critical defects were filled with: (i) sol-gel glass cylinders, (ii) glass-ceramic cylinders, or (iii) no material (control group). Osteosynthesis was done by means of anterior screwed plates with an associate intramedullar Kirschner wire. Each group included 10 mature rabbits, 9 months old. Follow-up was 6 months. After sacrifice, macroscopic study showed healing of bone defects, with bone coating over the cylinders, but without evidence of satisfactory repair in control group. Radiographic study showed good implant stability and periosteal growth and bone remodelling around and over the filled bone defect. The morphometric study showed minimum evidences of degradation or resorption in glass-ceramic cylinders, maintaining its original shape, but sol-gel glass cylinders showed abundant fragmentation and surface resorption. An intimate union of the new-formed bone to both materials was observed. Mechanical study showed the higher results in the glass-ceramic group, whereas sol-gel glass and control group showed no differences. The minimum degradation of glass-ceramic cylinders suggests their application in critical bone defects locations of transmission forces or load bearing. The performance of sol-gel glass cylinders suggests their usefulness in locations where a quick resorption should be preferable, considering the possibility of serving as drug or cells vehicle for both of them.
Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes
No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala
2017-01-01
Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513
Choi, Won-Young; Kim, Hyoun-Ee; Moon, Young-Wook; Shin, Kwan-Ha; Koh, Young-Hag
2015-01-01
Calcium phosphate (CaP) ceramics are one of the most valuable biomaterials for uses as the bone scaffold owing to their outstanding biocompatability, bioactivity, and biodegradation nature. In particular, these materials with an open porous structure can stimulate bone ingrowth into their 3-dimensionally interconnected pores. However, the creation of pores in bulk materials would inevitably cause a severe reduction in mechanical properties. Thus, it is a challenge to explore new ways of improving the mechanical properties of porous CaP scaffolds without scarifying their high porosity. Porous CaP ceramic scaffolds with aligned pores were successfully produced using ceramic/camphene-based co-extrusion. This aligned porous structure allowed for the achievement of high compressive strength when tested parallel to the direction of aligned pores. In addition, the overall porosity and mechanical properties of the aligned porous CaP ceramic scaffolds could be tailored simply by adjusting the initial CaP content in the CaP/camphene slurry. The porous CaP scaffolds showed excellent in vitro biocompatibility, suggesting their potential as the bone scaffold. Aligned porous CaP ceramic scaffolds with considerably enhanced mechanical properties and tailorable porosity would find very useful applications as the bone scaffold.
Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material
NASA Astrophysics Data System (ADS)
Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.
2011-04-01
As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.
Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer
2016-06-01
Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.
Jimbo, Ryo; Anchieta, Rodolfo; Baldassarri, Marta; Granato, Rodrigo; Marin, Charles; Teixeira, Hellen S; Tovar, Nick; Vandeweghe, Stefan; Janal, Malvin N; Coelho, Paulo G
2013-12-01
Commercial implants differ at macro-, micro-, and nanolevels, which makes it difficult to distinguish their effect on osseointegration. The aim of this study was to evaluate the early integration of 5 commercially available implants (Astra OsseoSpeed, Straumann SLA, Intra-Lock Blossom Ossean, Nobel Active, and OsseoFix) by histomorphometry and nanoindentation. Implants were installed in the tibiae of 18 beagle dogs. Samples were retrieved at 1, 3, and 6 weeks (n = 6 for each time point) and were histologically and nanomechanically evaluated. The results presented that both time (P < 0.01) and implant system and time interaction (P < 0.02) significantly affected the bone-to-implant contact (BIC). At 1 week, the different groups presented statistically different outcomes. No significant changes in BIC were noted thereafter. There were no significant differences in rank elastic modulus (E) or in rank hardness (H) for time (E: P > 0.80; H: P > 0.75) or implant system (E: P > 0.90; H: P > 0.85). The effect of different implant designs on osseointegration was evident especially at early stages of bone healing.
De Coster, Peter; Browaeys, Hilde; De Bruyn, Hugo
2011-03-01
Various grafting materials have been designed to minimize edentulous ridge volume loss following tooth extraction by encouraging new bone formation in healing sockets. BoneCeramic® is a composite of hydroxyapatite and bèta-tricalcium phosphate with pores of 100-500 microns. The aim of this study was to evaluate bone regeneration in healing sockets substituted with BoneCeramic® prior to implant procedures. Fifteen extraction sockets were substituted with BoneCeramic® and 14 sockets were left to heal naturally in 10 patients (mean age 59.6 years). Biopsies were collected only from the implant recipient sites during surgery after healing periods ranging from 6-74 weeks (mean 22). In total, 24 biopsies were available; 10 from substituted and 14 from naturally healed sites. In one site, the implant was not placed intentionally and, in four substituted sites, implant placement had to be postponed due to inappropriate healing, hence from five sites biopsies were not available. Histological sections were examined by transmitted light microscope. At the time of implant surgery, bone at substituted sites was softer than in controls, compromising initial implant stability. New bone formation at substituted sites was consistently poorer than in controls, presenting predominantly loose connective tissue and less woven bone. The use of BoneCeramic® as a grafting material in fresh extraction sockets appears to interfere with normal healing processes of the alveolar bone. On the basis of the present preliminary findings, its indication as a material for bone augmentation, when implant placement is considered within 6-38 weeks after extraction, should be revised. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.
Adhesive bone bonding prospects for lithium disilicate ceramic implants
NASA Astrophysics Data System (ADS)
Vennila Thirugnanam, Sakthi Kumar
Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.
Kitsugi, T; Yamamuro, T; Nakamura, T; Yoshii, S; Kokubo, T; Takagi, M; Shibuya, T
1992-01-01
Glass-ceramics containing crystalline oxy-fluoroapatite (Ca10(PO4)6(O,F2)) and wollastonite (CaSiO3) (designated AWGC) are reported to have a fairly high mechanical strength as well as the capability of forming a chemical bond with bone tissue. The chemical composition is MgO 4.6, CaO 44.9, SiO2 34.2, P2O5 16.3, and CaF2 0.5 in weight ratio. In this study the influence of substituting B2O3 for CaF2 on the bonding behaviour of glass-ceramics containing apatite and wollastonite to bone tissue was investigated. Two kinds of glass-ceramics containing apatite and wollastonite were prepared. CaF2 0.5 was replaced with B2O3 at 0.5 and 2.0 in weight ratio (designated AWGC-0.5B and AWGC-2.0B). Rectangular ceramic plates (15 x 10 x 2 mm, abraded with No. 2000 alumina powder) were implanted into a rabbit tibia. The failure load, when an implant detached from the bone, or the bone itself broke, was measured. The failure load of AWGC-0.5B was 8.00 +/- 1.82 kg at 10 weeks after implantation and 8.16 +/- 1.36 kg at 25 weeks after implantation. The failure load of AWGC-2B was 8.08 +/- 1.70 kg at 10 weeks after implantation and 9.92 +/- 2.46 kg at 25 weeks after implantation. None of the loads for the two kinds of glass-ceramics decreased as time passed. Giemsa surface staining and contact microradiography revealed direct bonding between glass-ceramics and bone. SEM-EPMA showed a calcium-phosphorus rich layer (reaction zone) at the interface of ceramics and bone tissue. The thickness of the reaction zone was 10 to -15 microns and did not increase as time passed.(ABSTRACT TRUNCATED AT 250 WORDS)
Khan, Safdar N; Toth, Jeffrey M; Gupta, Kavita; Glassman, Steven D; Gupta, Munish C
2014-06-01
We used a nonhuman primate lumbar intertransverse process arthrodesis model to evaluate biological cascade of bone formation using different carrier preparation methods with a single dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) at early time points. To examine early-term/mid-term descriptive histologic and computerized tomographic events in single-level uninstrumented posterolateral nonhuman primate spinal fusions using rhBMP-2/absorbable collagen sponge (ACS) combined with ceramic bulking agents in 3 different configurations. rhBMP-2 on an ACS carrier alone leads to consistent posterolateral lumbar spine fusions in lower-order animals; however, these results have been difficult to replicate in nonhuman primates. Twelve skeletally mature, rhesus macaque monkeys underwent single-level posterolateral arthrodesis at L4-L5. A hydroxyapatite/β-tricalcium phosphate ceramic bulking agent in 3 formulations was used in the treatment groups (n=3). When used, rhBMP-2/ACS at 1.5 mg/cm (3.0 mg rhBMP-2) was combined with 2.5 cm of ceramic bulking agent per side. Animals were euthanized at 4 and 12 weeks postoperative. Computerized tomography scans were performed immediately postoperatively and every 4 weeks until they were euthanized. Sagittal histologic sections were evaluated for bone histogenesis and location, cellular infiltration of the graft/substitute, and bone remodeling activity. Significant histologic differences in the developing fusion appeared between the 3 rhBMP-2/ACS treatment groups at 4 and 12 weeks. At 4 weeks, bone formation appeared to originate at the transverse process and the intertransverse membrane. Cellular infiltration was greatest in granular ceramic groups compared with matrix ceramic group. Minimal to no residual ACS was identified at the early time point. At 12 weeks, marked ceramic remodeling was observed with continued bone formation noted in all carrier groups. At the early time period, histology showed that bone formation appeared to originate at the transverse processes and the intertransverse membrane, indicating that the dorsal muscle bed may not be the only location for bone formation. Histology also showed that the collagen carrier for rhBMP-2 is mostly resorbed by 4 weeks. Our results and previous literature indicate that ceramic bulking agents are needed to provide resistance to compression caused by paraspinal muscles on the fusion bed in the posterolateral environment. Histology showed that ceramic bulking agents may offer long-term scaffolding and a structure to supporting bone formation of the developing fusion mass.
Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Zhu, J. W.; Yang, D. W.
2007-07-01
In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of implant coated nanometer HA ceramics had increased biocompatibility and improved the osteointegration. It endows the implants with new vital activity.
Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
Ramaswamy, Yogambha; Wu, Chengtie; Dunstan, Colin R; Hewson, Benjamin; Eindorf, Tanja; Anderson, Gail I; Zreiqat, Hala
2009-10-01
The host response to titanium alloy (Ti-6Al-4V) is not always favorable as a fibrous layer may form at the skeletal tissue-device interface, causing aseptic loosening. Recently, sphene (CaTiSiO(5)) ceramics were developed by incorporating Ti in the Ca-Si system, and found to exhibit improved chemical stability. The aim of this study is to evaluate the in vitro response of human osteoblast-like cells, human osteoclasts and human microvascular endothelial cells to sphene ceramics and determine whether coating Ti-6Al-4V implants with sphene enhances anchorage to surrounding bone. The study showed that sphene ceramics support human osteoblast-like cell attachment with organized cytoskeleton structure and express increased mRNA levels of osteoblast-related genes. Sphene ceramics were able to induce the differentiation of monocytes to form functional osteoclasts with the characteristic features of f-actin and alpha(v)beta(3) integrin, and express osteoclast-related genes. Human endothelial cells were also able to attach and express the endothelial cell markers ZO-1 and VE-Cadherin when cultured on sphene ceramics. Histological staining, enzyme histochemistry and immunolabelling were used for identification of mineralized bone and bone remodelling around the coated implants. Ti-6Al-4V implants coated with sphene showed new bone formation and filled the gap between the implants and existing bone in a manner comparable to that of the hydroxyapatite coatings used as control. The new bone was in direct contact with the implants, whereas fibrous tissue formed between the bone and implant with uncoated Ti-6Al-4V. The in vivo assessment of sphene-coated implants supports our in vitro observation and suggests that they have the ability to recruit osteogenic cells, and thus support bone formation around the implants and enhance osseointegration.
Guided bone regeneration using individualized ceramic sheets.
Malmström, J; Anderud, J; Abrahamsson, P; Wälivaara, D-Å; Isaksson, S G; Adolfsson, E
2016-10-01
Guided bone regeneration (GBR) describes the use of membranes to regenerate bony defects. A membrane for GBR needs to be biocompatible, cell-occlusive, non-toxic, and mouldable, and possess space-maintaining properties including stability. The purpose of this pilot study was to describe a new method of GBR using individualized ceramic sheets to perfect bone regeneration prior to implant placement; bone regeneration was assessed using traditional histology and three-dimensional (3D) volumetric changes in the bone and soft tissue. Three patients were included. After full-thickness flap reflection, the individualized ceramic sheets were fixed. The sites were left to heal for 7 months. All patients were evaluated preoperatively and at 7 months postoperative using cone beam computed tomography and 3D optical equipment. Samples of the regenerated bone and soft tissue were collected and analyzed. The bone regenerated in the entire interior volume of all sheets. Bone biopsies revealed newly formed trabecular bone with a lamellar structure. Soft tissue biopsies showed connective tissue with no signs of an inflammatory response. This was considered to be newly formed periosteum. Thus ceramic individualized sheets can be used to regenerate large volumes of bone in both vertical and horizontal directions independent of the bone defect and with good biological acceptance of the material. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
USE OF BIOCERAMICS IN FILLING BONE DEFECTS
Garrido, Carlos Antõnio; Sampaio, Tania Clarete Fonseca Vieira Sales
2015-01-01
Objective: To present the results from using biological ceramics for filling bone defects resulting from post-traumatic or orthopedic injuries. Methods: Thirty-six patients with bone defects caused by trauma or orthopedic injury were evaluated. Nineteen patients were male (52.8%) and 17 were female (47.2%). Their ages ranged from 19 to 84 years, with a mean of 45.7 years and median of 37 years. Only patients with defects that required at least five grams of biological ceramic were included. Eighteen cases were classified as orthopedic: bone defects were observed in 11 cases of total hip arthroplasty; one case of primary total hip arthroplasty, due to coxarthrosis; five cases of femoral or tibial open wedge osteotomy; and one case of tarsal arthrodesis. There were 18 cases of trauma-related defects; uninfected pseudarthrosis, eight cases; recent fractures of the tibial plateau with compression of the spongy bone, three cases; and exposed fractures treated with external fixators, seven cases. The surgical technique consisted of curetting and debriding the injury until bone suitable for grafting was found. Biological ceramic was then used to fill the defect and some kind of fixation was applied. Results: Among the 36 patients evaluated, it was seen that 35 (97.2%) presented integration of the biological ceramic, while one case of open fracture treated with external fixation had poor integration of the biological ceramic. Conclusion: Treatment of bone defects of orthopedic or post-traumatic etiology using a phosphocalcium ceramic composed of hydroxyapatite was shown to be a practical, effective and safe method. PMID:27022576
Gil-Albarova, Jorge; Garrido-Lahiguera, Ruth; Salinas, Antonio J; Román, Jesús; Bueno-Lozano, Antonio L; Gil-Albarova, Raúl; Vallet-Regí, María
2004-08-01
The in vivo evaluation, in New Zealand rabbits, of a SiO(2)-P(2)O(5)-CaO sol-gel glass and a SiO(2)-P(2)O(5)-CaO-MgO glass-ceramic, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Bone defects, performed in the lateral aspect of distal right femoral epiphysis, 5mm in diameter and 4mm in depth, were filled with (i) sol-gel glass disks, (ii) glass-ceramic disks, or (iii) no material (control group). Each group included 8 mature and 8 immature rabbits. A 4-month radiographic study showed good implant stability without axial deviation of extremities in immature animals and periosteal growth and remodelling around and over the bone defect. After sacrifice, the macroscopic study showed healing of bone defects, with bone coating over the implants. The morphometric study showed a more generous bone formation in animals receiving sol-gel glass or glass-ceramic disks than in control group. Histomorphometric study showed an intimate union of the new-formed bone to the implants. This study allows considering both materials as eligible for bone substitution or repair. Their indications could include cavities filling and the coating of implant surfaces. The minimum degradation of glass-ceramic disks suggests its application in locations of load or transmission forces. As specific indication in growth plate surgery, both materials could be used as material of interposition after bony bridges resection.
Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.
Kato, H; Neo, M; Tamura, J; Nakamura, T
2001-11-01
We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. Copyright 2001 John Wiley & Sons, Inc.
Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience.
Zaccaria, Laura; Tharakan, Sasha Job; Altermatt, Stefan
2017-02-01
The use of hydroxyapatite ceramic (HAC) implants for the treatment of skull defects in pediatric patients started 2010 at our institution. Ceramic implants facilitate osteoblast migration and therefore optimize osteointegration with the host bone. The purpose of this study is to report a single-center experience with this treatment modality. A retrospective review of all patients from July 2010 through June 2014 undergoing a cranioplasty using hydroxyapatite ceramic implant and managed at a single institution was performed. Indication for cranioplasty, the hospital course, and follow-up were reviewed. Bone density was measured in Hounsfield Units (HU) and osteointegration was calculated using Mimics Software® (Mimics Innovation Suite v17.0 Medical, Materialize, Leuven, Belgium). Over the 4-year period, six patients met criteria for the study. Five patients had an osteointegration of nearly 100%. One patient had an incomplete osteointegration with a total bone-implant contact area of 69%. The mean bone density was 2800 HU (2300-3000 HU). Bone density alone is estimated to have a Hounsfield value between 400 and 2000 HU depending on the body region and bone quality. There were no major complications, and the patients were highly satisfied with the esthetical result. Hydroxyapatite ceramic implants for cranioplasty in pediatric patients are a good choice for different indications. The implants show excellent osteointegration and esthetical results.
Ectopic Osteoid and Bone Formation by Three Calcium-Phosphate Ceramics in Rats, Rabbits and Dogs
Wang, Liao; Zhang, Bi; Bao, Chongyun; Habibovic, Pamela; Hu, Jing; Zhang, Xingdong
2014-01-01
Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA) sintered at 1200°C and two biphasic calcium phosphate (BCP) ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate), sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model. PMID:25229501
Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation
Ros-Tárraga, Patricia; Mazón, Patricia; Rodríguez, Miguel A.; Meseguer-Olmo, Luis; De Aza, Piedad N.
2016-01-01
This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ) rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared). The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially) and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung) as a result of degradation products being released. PMID:28773906
Bioactive calcium silicate ceramics and coatings.
Liu, Xuanyong; Morra, Marco; Carpi, Angelo; Li, Baoe
2008-10-01
CaO-SiO2 based ceramics have been regarded as potential candidates for artificial bone due to their excellent bone bioactivity and biocompatibility. However, they cannot be used as implants under a heavy load because of their poor mechanical properties, in particular low fracture toughness. Plasma spraying CaO-SiO2 based ceramic coatings onto titanium alloys can expand their application to the hard tissue replacement under a heavy load. Plasma sprayed wollastonite, dicalcium silicate and diopside coatings have excellent bone bioactivity and high bonding strength to titanium alloys. It is possible that these plasma sprayed CaO-SiO2 based ceramic coatings will be applied in clinic after they are widely and systematically researched.
Regenerating Articular Tissue by Converging Technologies
Paoluzzi, Luca; Pieper, Jeroen; de Wijn, Joost R.; van Blitterswijk, Clemens A.
2008-01-01
Scaffolds for osteochondral tissue engineering should provide mechanical stability, while offering specific signals for chondral and bone regeneration with a completely interconnected porous network for cell migration, attachment, and proliferation. Composites of polymers and ceramics are often considered to satisfy these requirements. As such methods largely rely on interfacial bonding between the ceramic and polymer phase, they may often compromise the use of the interface as an instrument to direct cell fate. Alternatively, here, we have designed hybrid 3D scaffolds using a novel concept based on biomaterial assembly, thereby omitting the drawbacks of interfacial bonding. Rapid prototyped ceramic particles were integrated into the pores of polymeric 3D fiber-deposited (3DF) matrices and infused with demineralized bone matrix (DBM) to obtain constructs that display the mechanical robustness of ceramics and the flexibility of polymers, mimicking bone tissue properties. Ostechondral scaffolds were then fabricated by directly depositing a 3DF structure optimized for cartilage regeneration adjacent to the bone scaffold. Stem cell seeded scaffolds regenerated both cartilage and bone in vivo. PMID:18716660
Duan, Yourong; Lü, Wanxin; Wang, Chaoyuan; Chen, Jiyong; Zhang, Xingdong
2002-06-01
Bone-like apatite formation on the surface of calcium phosphate ceramics has been believed to be the prerequisite of new bone growth on ceramics and to be related to the osteoinductivity of the material. The research of the factors effecting bone-like apatite formation is a great help in understanding the mechanism of osteoinduction. This paper is aimed to a comparative study of in vitro formation of bone-like apatite on the surface of dense and rough calcium phosphate ceramics with SBF flowing at different rates. The results showed that the rough surface was beneficial to the formation of bone-like apatite, and the apatite formed faster in 1.5 SBF than in SBF. Rough surface, namely, larger surface area, increased the dissolution of Ca2+ and HPO4(2-) and higher concentration of Ca2+ and HPO4(2-) ions of SBF and was in turn advantageous to the accumulation of Ca2+, HPO4(2-), PO4(3-) near the ceramic surface. Local supersaturating concentration of Ca2+, HPO4(2-), PO4(3-) near sample surface was essential to nucleation of apatite on the surface of sample.
Organic-inorganic composites designed for biomedical applications.
Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara
2013-01-01
Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.
Experimental verification of using nanostructured ceramic implants and osteograft
NASA Astrophysics Data System (ADS)
Rerikh, V. V.; Lastevskiy, A. D.; Sadovoy, M. A.; Zaidman, A. M.; Bataev, A. V.; Predein, Yu. A.; Avetisyan, A. R.; Romanenko, V. V.; Mamonova, E. V.; Nikulina, A. A.; Semantsova, E. S.; Smirnov, A. I.
2017-09-01
Ventral interbody fusion was carried out in 8 mini pigs in order to determine the effectiveness of anterior stabilization of the vertebral unit with implants made of nanostructured alumina ceramics using cellular technologies to form a bone block. A ceramic cage with a through cylindrical orifice in the center was implanted into the interbody gap; either cellular osteograft (group 1) or cellular autograft (group 2) was placed in it. The adjacent vertebrae were fixed anteriorly with a ceramic plate containing 4 screws. Bone block formation was studied radiographically, morphologically, and by MSCT. The signs of osteointegration of ceramic implants were observed in both groups after 90 days. MSCT and morphological analysis revealed the formation of the osteoceramic block and completed osteogenesis in the bone-graft contact region in group 1 compared to the control group (p < 0.05).
Electrically active bioceramics: a review of interfacial responses.
Baxter, F R; Bowen, C R; Turner, I G; Dent, A C E
2010-06-01
Electrical potentials in mechanically loaded bone have been implicated as signals in the bone remodeling cycle. Recently, interest has grown in exploiting this phenomenon to develop electrically active ceramics for implantation in hard tissue which may induce improved biological responses. Both polarized hydroxyapatite (HA), whose surface charge is not dependent on loading, and piezoelectric ceramics, which produce electrical potentials under stress, have been studied in order to determine the possible benefits of using electrically active bioceramics as implant materials. The polarization of HA has a positive influence on interfacial responses to the ceramic. In vivo studies of polarized HA have shown polarized samples to induce improvements in bone ingrowth. The majority of piezoelectric ceramics proposed for implant use contain barium titanate (BaTiO(3)). In vivo and in vitro investigations have indicated that such ceramics are biocompatible and, under appropriate mechanical loading, induce improved bone formation around implants. The mechanism by which electrical activity influences biological responses is yet to be clearly defined, but is likely to result from preferential adsorption of proteins and ions onto the polarized surface. Further investigation is warranted into the use of electrically active ceramics as the indications are that they have benefits over existing implant materials.
He, X; Zhang, Y Z; Mansell, J P; Su, B
2008-07-01
Zirconia toughened alumina (ZTA) has been regarded as the next generation orthopedic graft material due to its excellent mechanical properties and biocompatibility. Porous ZTA ceramics with good interconnectivity can potentially be used as bone grafts for load-bearing applications. In this work, three-dimensional (3D) interconnected porous ZTA ceramics were fabricated using a direct foaming method with egg white protein as binder and foaming agent. The results showed that the porous ZTA ceramics possessed a bimodal pore size distribution. Their mechanical properties were comparable to those of cancellous bone. Due to the bio-inertness of alumina and zirconia ceramics, surface bioactivation of the ZTA foams was carried out in order to improve their bioactivity. A simple NaOH soaking method was employed to change the surface chemistry of ZTA through hydroxylation. Treated samples were tested by conducting osteoblast-like cell culture in vitro. Improvement on cells response was observed and the strength of porous ZTA has not been deteriorated after the NaOH treatment. The porous 'bioactivated' ZTA ceramics produced here could be potentially used as non-degradable bone grafts for load-bearing applications.
Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolmakova, T. V., E-mail: kolmakova@ftf.tsu.ru; Buyakova, S. P., E-mail: sbuyakova@ispms.tsc.ru; Kul’kov, S. N., E-mail: kulkov@ms.tsc.ru
2015-11-17
The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.
Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong
2015-03-01
Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway. © 2014 Wiley Periodicals, Inc.
Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.
Gao, Chengde; Feng, Pei; Peng, Shuping; Shuai, Cijun
2017-10-01
The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel
2013-05-01
The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.
Germaini, Marie-Michèle; Detsch, Rainer; Grünewald, Alina; Magnaudeix, Amandine; Lalloue, Fabrice; Boccaccini, Aldo R; Champion, Eric
2017-06-06
The influence of carbonate substitution (4.4 wt%, mixed A/B type) in hydroxyapatite ceramics for bone remodeling scaffolds was investigated by separately analyzing the response of pre-osteoblasts and osteoclast-like cells. Carbonated hydroxyapatite (CHA) (Ca 9.5 (PO 4 ) 5.5 (CO 3 ) 0.5 (OH)(CO 3 ) 0.25 -CHA), mimicking the chemical composition of natural bone mineral, and pure hydroxyapatite (HA) (Ca 10 (PO 4 ) 6 (OH) 2 -HA) porous ceramics were processed to obtain a similar microstructure and surface physico-chemical properties (grain size, porosity ratio and pore size, surface roughness and zeta potential). The biological behavior was studied using MC3T3-E1 pre-osteoblastic and RAW 264.7 monocyte/macrophage cell lines. Chemical dissolution in the culture media and resorption lacunae produced by osteoclasts occur with both HA and CHA ceramics, but CHA exhibits much higher dissolution and greater bioresorption ability. CHA ceramics promoted a significantly higher level of pre-osteoblast proliferation. Osteoblastic differentiation, assessed by qRT-PCR of RUNX2 and COLIA2, and pre-osteoclastic proliferation and differentiation were not significantly different on CHA or HA ceramics but cell viability and metabolism were significantly greater on CHA ceramics. Thus, the activity of both osteoclast-like and osteoblastic cells was influenced by the carbonate substitution in the apatite structure. Furthermore, CHA showed a particularly interesting balance between biodegradation, by osteoclasts and chemical dissolution, and osteogenesis through osteoblasts' activity, to stimulate bone regeneration. It is hypothesized that this amount of 4.4 wt% carbonate substitution leads to an adapted concentration of calcium in the fluid surrounding the ceramic to stimulate the activity of cells. These results highlight the superior biological behavior of microporous 4.4 wt% A/B CHA ceramics that could beneficially replace the commonly used HA of biphasic calcium phosphates for future applications in bone tissue engineering.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... fragments, 29 historic ceramic sherds, 1 prehistoric ceramic sherd, 128 unmodified faunal bone fragments, 1 modified deer rib, 3 bone buttons, 4 chipped stone flakes, 2 wooden buttons, 1 historic clay pipe bowl...
Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.
Wu, Chengtie
2009-05-01
CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.
Hadzik, Jakub; Botzenhart, Ute; Krawiec, Maciej; Gedrange, Tomasz; Heinemann, Friedhelm; Vegh, Andras; Dominiak, Marzena
2017-09-01
Short dental implants can be an alternative method of treatment to a vertical bone augmentation procedure at sites of reduced alveolar height. However, for successful treatment, an implant system that causes a minimal marginal bone loss (MBL) should be taken into consideration. The aim of the study has been to evaluate implantation effectiveness for bone level and tissue level short implants provided in lateral aspects of partially edentulous mandible and limited alveolar ridge height. The MBL and primary as well as secondary implant stability were determined in the study. Patients were randomly divided into two groups according to the method of treatment provided. Sixteen short Bone Level Implants (OsseoSpeed TX, Astra tech) and 16 short Tissue Level Implants (RN SLActive ® , Straumann) were successfully placed in the edentulous part of the mandible. The determination of the marginal bone level was based on radiographic evaluation after 12 and 36 weeks. Implant stability was measured immediately after insertion and after 12 weeks. The marginal bone level of Bone Level Implants was significantly lower compared to Tissue Level Implants. Furthermore, the Bone Level Implants had greater primary and secondary stability in comparison with Tissue Level Implants (Primary: 77.8 ISQ versus 66.5 ISQ; Secondary: 78.9 ISQ versus 73.9 ISQ, respectively). Since short Bone Level Implants showed a significantly decreased MBL 12 and 36 weeks after implantation as well as better results for the primary stability compared to Tissue Level Implants, they should preferentially be used for this mentioned indication. Copyright © 2017 Elsevier GmbH. All rights reserved.
An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin
2015-05-01
The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.
Development of a ceramic surface replacement for the hip. An experimental Sialon model.
Clarke, I C; Phillips, W; McKellop, H; Coster, I R; Hedley, A; Amstutz, H C
1979-01-01
The objective of this study was to investigate the design and fixation advantages of Sialon ceramic surface replacements implanted without acrylic bone cement. The biocompatibility and friction and wear properties of Sialon ceramic were compared with more conventional prosthetic materials such as stainless steel and alumina. A functional load-bearing canine hip surface replacement model was established to test Sialon femoral cups designed for fixation by bone ingrowth. The results of the polyethylene wear tests on highly polished ceramic and stainless steel counterfaces were essentially similar. These laboratory data indicated that the in-vivo polyethylene wear performance on metal or ceramic prosthetic surfaces could be expected to be indistinguishable, i.e. the ceramic/polyethylene combination would not offer any improved wear resistance in-vivo. It was found possible to get bone ingrowth into the macrokeying areas of the ceramic femoral cups but not into the microporous surfaces due to the presence of a fibrous membrane lining their internal surfaces. The biocompatability specimens also appeared to be invested with a fibrous membrane. Further studies are under way to determine the relationship between reaming procedures, micro motion at the interfaces and Sialon biocompatibility.
Design of biocomposite materials for bone tissue regeneration.
Yunus Basha, Rubaiya; Sampath Kumar, T S; Doble, Mukesh
2015-12-01
Several synthetic scaffolds are being developed using polymers, ceramics and their composites to overcome the limitations of auto- and allografts. Polymer-ceramic composites appear to be the most promising bone graft substitute since the natural bone itself is a composite of collagen and hydroxyapatite. Ceramics provide strength and osteoconductivity to the scaffold while polymers impart flexibility and resorbability. Natural polymers have an edge over synthetic polymers because of their biocompatibility and biological recognition property. But, very few natural polymer-ceramic composites are available as commercial products, and those few are predominantly based on type I collagen. Disadvantages of using collagen include allergic reactions and pathogen transmission. The commercial products also lack sufficient mechanical properties. This review summarizes the recent developments of biocomposite materials as bone scaffolds to overcome these drawbacks. Their characteristics, in vitro and in vivo performance are discussed with emphasis on their mechanical properties and ways to improve their performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Becker, Stephan T; Beck-Broichsitter, Benedicta E; Rossmann, Christian M; Behrens, Eleonore; Jochens, Arne; Wiltfang, Jörg
2016-06-01
The aim of this study was to evaluate the long-term dental implant survival rates of Straumann dental implants in a university hospital environment over 12 to 23 years. A total of 388 Straumann dental implants with titanium-sprayed surfaces (TPS) were inserted in 92 patients between 1988 and 1999 in the Department of Oral and Maxillofacial Surgery of the University Hospital Schleswig-Holstein in Kiel, and they were reevaluated with standardized clinical and radiological exams. Kaplan-Meier analyses were performed for individual factors. Cox proportional hazard regression analysis was used to detect the factors influencing long-term implant failure. The long-term implant survival rate was 88.03% after an observation time of 12.2 to 23.5 years. Cox regression revealed statistically significant influences of the International Team for Implantology (ITI) implantation type (p = .00354) and tobacco smoking (p = .01264) on implant failure. A proportion 82.8% of the patients with implant losses had a medical history of periodontitis. Peri-implantitis was diagnosed in 9.7% of the remaining implants in the long-term survey. This study emphasized the long-term rehabilitation capabilities of Straumann dental implants in complex cases. The survival rates after several years constitute important information for patients, as well as for clinicians, in deciding about different concepts of tooth replacement. Patient-related and technical factors - determined before implant placement - could help to predict the risk of implant loss. © 2015 Wiley Periodicals, Inc.
BMP-7 Preserves Surface Integrity of Degradable-ceramic Cranioplasty in a Göttingen Minipig Model
Schulz, Peter; Klünter, Tim; Deisinger, Ulrike; Diez, Claudius; Waiss, Waltraud; Kirschneck, Christian; Reichert, Torsten E.; Detsch, Rainer
2017-01-01
Background: The aim of the study was to evaluate the integrity of a craniotomy grafted site in a minipig model using different highly porous calcium phosphate ceramic scaffolds either loaded or nonloaded with bone morphogenetic protein-7 (BMP-7). Methods: Four craniotomies with a diameter of 15 mm (critical-size defect) were grafted with different highly porous (92–94 vol%) calcium phosphate ceramics [hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium phosphate (BCP; a mixture of HA and TCP)] in 10 Göttingen minipigs: (a) group I (n = 5): HA versus BCP; (b) group II (n = 5): TCP versus BCP. One scaffold of each composition was supplied with 250 μg of BMP-7. In vivo computed tomography scan and fluorochrome bone labeling were performed. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, and Giemsa staining histology. Results: BMP-7 significantly enhanced bone formation in TCP (P = 0.047). Slightly enhanced bone formation was observed in BCP (P = 0.059) but not in HA implants. BMP-7 enhanced ceramic degradation in TCP (P = 0.05) and BCP (P = 0.05) implants but not in HA implants. Surface integrity of grafted site was observed in all BMP-7-loaded implants after successful creeping substitution by the newly formed bone. In 9 of 10 HA implants without BMP-7, partial collapse of the implant site was observed. All TCP implants without BMP-7 collapsed. Fluorescent labeling showed bone formation at week 1 in BMP-7-stimulated implants. Conclusions: BMP-7 supports bone formation, ceramic degradation, implant integration, and surface integrity of the grafted site. PMID:28458969
Abarrategi, Ander; Moreno-Vicente, Carolina; Martínez-Vázquez, Francisco Javier; Civantos, Ana; Ramos, Viviana; Sanz-Casado, José Vicente; Martínez-Corriá, Ramón; Perera, Fidel Hugo; Mulero, Francisca; Miranda, Pedro; López-Lacomba, José Luís
2012-01-01
Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering purposes, with the main advantage of being fully customizable 3D structures.
Abarrategi, Ander; Moreno-Vicente, Carolina; Martínez-Vázquez, Francisco Javier; Civantos, Ana; Ramos, Viviana; Sanz-Casado, José Vicente; Martínez-Corriá, Ramón; Perera, Fidel Hugo; Mulero, Francisca; Miranda, Pedro; López-Lacomba, José Luís
2012-01-01
Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering purposes, with the main advantage of being fully customizable 3D structures. PMID:22470527
[Osteosynthesis in facial bones: silicon nitride ceramic as material].
Neumann, A; Unkel, C; Werry, C; Herborn, C U; Maier, H R; Ragoss, C; Jahnke, K
2006-12-01
The favorable properties of silicon nitride (Si3N4) ceramic, such as high stability and biocompatibility suggest its biomedical use as an implant material. The aim of this study was to test its suitability for osteosynthesis. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in three minipigs. After 3 months, histological sections, CT and MRI scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfactory intraoperative workability. There was no implant loss, displacement or fracture. Bone healing was complete in all animals and formation of new bone was observed in direct contact to the implants. Si3N4 ceramic showed a good biocompatibility outcome both in vitro and in vivo. This ceramic may serve as biomaterial for osteosynthesis, e.g. of the midface including reconstruction of the floor of the orbit and the skull base. Advantages compared to titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, no interference with radiological imaging.
Duan, You-rong; Liu, Ke-wei; Chen, Ji-yong; Zhang, Xing-dong
2002-06-01
Objective. Bone-like apatite formation on the surface of calcium phosphate ceramics was believed to be the necessary step that new bone grows on the ceramics and to be relative to the osteoinductivity of the material. This study aimed at investigating the influence of the flow rate of simulated body fluid (SBF) (2 ml/min) in skeletal muscle upon the formation of bone-like apatite on porous calcium phosphate ceramics. Method. The dynamic condition was realized by controlling the SBF flowing in/out of the sample chamber of 100 ml. The flow rate of 2 ml/min is close to that in human muscle environment. The pH and inorganic ionic composition of SBF are close to those of human body fluid. Result. Bone-like apatite formation was relatively easier to occur in static SBF than in dynamic SBF. Experiment with flowing SBF (dynamic SBF) is better in mimicking the living body fluid than static SBF. Conclusion. The results from dynamic SBF may more truly show the relation between apatite layer formation and osteoinduction in biomaterials than that from in vitro experiments before.
Punke, Christoph; Zehlicke, Thorsten; Boltze, Carsten; Pau, Hans Wilhelm
2008-09-01
In an initial preliminary study, the applicability of a new high-porosity hydroxyapatite (HA) ceramic for obliterating large open mastoid cavities was proven and tested in an animal model (bulla of guinea pig). Experimental study. NanoBone, a highly porous matrix consisting of 76% hydroxyl apatite and 24% silicone dioxide fabricated in a sol-gel technique, was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal, the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histologic evaluations were performed 1, 2, 3, 4, 5, and 12 weeks after the implantation. After an initial phase in which the ceramic granules were surrounded by inflammatory cells (1-2 wk), there were increasing signs of vascularization. Osteoneogenesis and-at the same time-resorption of the HA ceramic were observed after the third week. No major difference in comparison to the bovine bone material could be found. Our results confirm the favorable qualities of the new ceramic reported in association with current maxillofacial literature. Conventional HA granules used for mastoid obliteration to date often showed problems with prolonged inflammatory reactions and, finally, extrusions. In contrast to those ceramics, the new material seems to induce more osteoneogenesis and undergoes early resorption probably due to its high porosity. Overall, it is similar to the bovine bone substance tested on the opposite ear in each animal. Further clinical studies may reveal whether NanoBone can be an adequate material for obliterating open mastoid cavities in patients.
Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering.
Ohgushi, Hajime
2014-02-01
In the human body, cells having self-renewal and multi-differentiation capabilities reside in many tissues and are called adult stem cells. In bone marrow tissue, two types of stem cells are well known: hematopoietic stem cells and mesenchymal stem cells (MSCs). Though the number of MSCs in bone marrow tissue is very low, it can be increased by in vitro culture of the marrow, and culture-expanded MSCs are available for various tissue regeneration. The culture-expanded MSCs can further differentiate into osteogenic cells such as bone forming osteoblasts by culturing the MSCs in an osteogenic medium. This paper discusses osteogenically differentiated MSCs derived from the bone marrow of patients. Importantly, the differentiation can be achieved on ceramic surfaces which demonstrate mineralized bone matrix formation as well as appearance of osteogenic cells. The cell/matrix/ceramic constructs could show immediate in vivo bone formation and are available for bone reconstruction surgery. Currently, MSCs are clinically available for the regeneration of various tissues due to their high proliferation/differentiation capabilities. However, the capabilities are still limited and thus technologies to improve or recover the inherent capabilities of MSCs are needed.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
[Synthesis and characteristics of porous hydroxyapatite bioceramics].
Niu, Jinlong; Zhang, Zhenxi; Jiang, Dazong
2002-06-01
The macroporous structure of human bone allows the ingrowth of the soft tissues and organic cells into the bone matrix, profits the development and metabolism of bone tissue, and adapts the bone to the change of load. There is great requirement for artificial biomimic porous bioactive ceramics with the similar structure of bone tissue that can be used clinically for repairing lost bone. Fine hydroxyapatite (HAp) powder produced by wet chemical reaction was mixed with hydrogen peroxide (H2O2), polyvinyl alcohol, methyl cellulose or other pores-making materials to form green cake. After drying at low temperature (below 100 degrees C) and decarbonizing at about 300 degrees C-400 degrees C, the spongy ceramic block was sintered at high temperature, thus, macroporous HAp bioceramic with interconnected pores and reasonable porosity and pore-diameter was manufactured. This kind of porous HAp bioceramics were intrinsically osteoinductive to a certain degree, but its outstanding property was that they can absorb human bone morphogenetic proteins and other bone growth factors to form composites, so that the macroporous HAp bioactive ceramic has appropriate feasibility for clinical application. From the point of biomedical application, the recent developments in synthesis and characteristics investigation of macroporous HAp are reviewed in this paper.
Three-dimensional accuracy of different impression techniques for dental implants
Nakhaei, Mohammadreza; Madani, Azam S; Moraditalab, Azizollah; Haghi, Hamidreza Rajati
2015-01-01
Background: Accurate impression making is an essential prerequisite for achieving a passive fit between the implant and the superstructure. The aim of this in vitro study was to compare the three-dimensional accuracy of open-tray and three closed-tray impression techniques. Materials and Methods: Three acrylic resin mandibular master models with four parallel implants were used: Biohorizons (BIO), Straumann tissue-level (STL), and Straumann bone-level (SBL). Forty-two putty/wash polyvinyl siloxane impressions of the models were made using open-tray and closed-tray techniques. Closed-tray impressions were made using snap-on (STL model), transfer coping (TC) (BIO model) and TC plus plastic cap (TC-Cap) (SBL model). The impressions were poured with type IV stone, and the positional accuracy of the implant analog heads in each dimension (x, y and z axes), and the linear displacement (ΔR) were evaluated using a coordinate measuring machine. Data were analyzed using ANOVA and post-hoc Tukey tests (α = 0.05). Results: The ΔR values of the snap-on technique were significantly lower than those of TC and TC-Cap techniques (P < 0.001). No significant differences were found between closed and open impression techniques for STL in Δx, Δy, Δz and ΔR values (P = 0.444, P = 0.181, P = 0.835 and P = 0.911, respectively). Conclusion: Considering the limitations of this study, the snap-on implant-level impression technique resulted in more three-dimensional accuracy than TC and TC-Cap, but it was similar to the open-tray technique. PMID:26604956
[Biomaterials in bone repair].
Puska, Mervi; Aho, Allan J; Vallittu, Pekka K
2013-01-01
In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.
He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming
2016-07-01
In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Hongli; Wu, Chengtie; Dai, Kerong; Chang, Jiang; Tang, Tingting
2006-11-01
In the present study, the effects of a calcium magnesium silicate bioactive ceramic (akermanite) on proliferation and osteoblastic differentiation of human bone marrow stromal cells (hBMSC) have been investigated and compared with the classical ceramic (beta-tricalcium phosphate, beta-TCP). Akermanite and beta-TCP disks were seeded with hBMSC and kept in growth medium or osteogenic medium for 10 days. Proliferation and osteoblastic differentiation were evaluated on day 1, 4, 7 and 10. The data from the Alamar Blue assay and lactic acid production assay showed that hBMSC proliferated more significantly on akermanite than on beta-TCP. The analysis of osteoblast-related genes, including alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OC), indicated that akermanite ceramics enhanced the expression of osteoblast-related genes, but type I collagen (COL I) showed no noticeable difference among akermanite and beta-TCP ceramics. Furthermore, this stimulatory effect was observed not only in osteogenic medium, but also in normal growth medium without osteogenic reagents such as l-ascorbic acid, glycerophosphate and dexamethasone. This result suggests that akermanite can promote osteoblastic differentiation of hBMSC in vitro even without osteogenic reagents, and may be used as a bioactive material for bone regeneration and tissue engineering applications.
Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y
2011-09-01
The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fernandez, Monica A; Paez de Mendoza, Carmen Y; Platt, Jeffrey A; Levon, John A; Hovijitra, Suteera T; Nimmo, Arthur
2013-07-01
A precise transfer of the position and orientation of the antirotational mechanism of an implant to the working cast is particularly important to achieve optimal fit of the final restoration. This study evaluated and compared the accuracy of metal and plastic impression copings for use in a full-arch mandibular edentulous simulation with four implants. Metal and plastic impression transfer copings for two implant systems, Nobel Biocare™ Replace and Straumann SynOcta®, were assessed on a laboratory model to simulate clinical practice. The accuracy of producing stone casts using these plastic and metal impression transfer copings was measured against a standard prosthetic framework consisting of a cast gold bar. A total of 20 casts from the four combinations were obtained. The fit of the framework on the cast was tested by a noncontact surface profilometer, the Proscan 3D 2000 A, using the one-screw test. The effects of implant/system and impression/coping material on gap measurements were analyzed using repeated measures ANOVA. The findings of this in vitro study were as follows: plastic copings demonstrated significantly larger average gaps than metal for Straumann (p = 0.001). Plastic and metal copings were not significantly different for Nobel (p = 0.302). Nobel had significantly larger average gaps than Straumann for metal copings (p = 0.003). Nobel had marginally smaller average gaps than Straumann (p = 0.096) for plastic copings. The system-by-screw location interaction was significant as well (p < 0.001), indicating significant differences among the four screw locations, but the location differences were not the same for the two systems. A rank transformation of the data was necessary due to the nonnormal distribution of the gap measurements. No adjustments were made for multiple comparisons. The metal impression copings were more accurate than plastic copings when using the Straumann system, and there was no difference between metal and plastic copings for the Nobel Replace system. The system-by-screw location was not conclusive, showing no correlation within each system. © 2013 by the American College of Prosthodontists.
Polymer ceramic composite that follows the rules of bone growth
NASA Astrophysics Data System (ADS)
Dry, Carolyn M.; Warner, Carrie
1998-07-01
Research at the University of Illinois School of Architecture Material's Lab is being done on a biomimetic building material with the unique properties of bone. This polymer/ceramic composite will mimic bone by controlling the (1) the structure and form of the material, (2) chemical makeup and sequencing of fabrication, (3) ability to adapt to environmental changes during fabrication, and (4) ability to later adapt and repair itself. Bones and shells obtain their great toughness and strength as a result of careful control of these four factors. The organic fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. Constituents are also placed in the material which allow it to later adapt to outside changes. The rules under which bone material naturally forms and adapts, albeit at a macroscale, are followed. Our efforts have concentrated on the chemical makeup, and basic sequencing of fabrication. Our research sought to match the intimate connection between material phases of bone by developing the chemical makeup.
Interconnected porous hydroxyapatite ceramics for bone tissue engineering
Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira
2008-01-01
Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069
Synthesis of β-tricalcium phosphate.
Chaair, H; Labjar, H; Britel, O
2017-09-01
Ceramics play a key role in several biomedical applications. One of them is bone grafting, which is used for treating bone defects caused by injuries or osteoporosis. Calcium-phosphate based ceramic are preferred as bone graft biomaterials in hard tissue surgery because their chemical composition is close to the composition of human bone. They also have a marked bioresorbability and bioactivity. In this work, we have developed methods for synthesis of β-tricalcium phosphate apatite (β-TCP). These products were characterized by different techniques such as X-ray diffraction, infrared spectroscopy, scanning electron microscopy and chemical analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.
He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin
2015-05-01
Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.
Manchón, Angel; Hamdan Alkhraisat, Mohammad; Rueda-Rodriguez, Carmen; Prados-Frutos, Juan Carlos; Torres, Jesús; Lucas-Aparicio, Julia; Ewald, Andrea; Gbureck, Uwe; López-Cabarcos, Enrique
2015-10-20
β-tricalcium phosphate (β-TCP) is an osteoconductive and biodegradable material used in bone regeneration procedures, while iron has been suggested as a tool to improve the biological performance of calcium phosphate-based materials. However, the mechanisms of interaction between these materials and human cells are not fully understood. In order to clarify this relationship, we have studied the iron role in β-TCP ceramics. Iron-containing β-TCPs were prepared by replacing CaCO3 with C6H5FeO7 at different molar ratios. X-ray diffraction analysis indicated the occurrence of β-TCP as the sole phase in the pure β-TCP and iron-containing ceramics. The incorporation of iron ions in the β-TCP lattice decreased the specific surface area as the pore size was shifted toward meso- and/or macropores. Furthermore, the human osteoblastlike cell line MG-63 was cultured onto the ceramics to determine cell proliferation and viability, and it was observed that the iron-β-TCP ceramics have better cytocompatibility than pure β-TCP. Finally, in vivo assays were performed using rabbit calvaria as a bone model. The scaffolds were implanted for 8 and 12 weeks in the defects created in the skullcap with pure β-TCP as the control. The in vivo behavior, in terms of new bone formed, degradation, and residual graft material were investigated using sequential histological evaluations and histomorphometric analysis. The in vivo implantation of the ceramics showed enhanced bone tissue formation and scaffold degradation for iron-β-TCPs. Thus, iron appears to be a useful tool to enhance the osteoconductive properties of calcium phosphate ceramics.
Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit
2016-11-01
Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Aguado, E; Daculsi, G
1999-08-01
This in vivo study investigated the influence of two calcium phosphate particle sizes (40-80 microm and 200-500 microm) on the cellular degradation activity associated with the bone substitution process of two injectable bone substitutes (IBS). The tested biomaterials were obtained by associating a biphasic calcium phosphate (BCP) ceramic mineral phase and a 3% aqueous solution of a cellulosic polymer (hydroxypropylmethylcellulose). Both were injected into osseous defects at the distal end of rabbit femurs for 2- and 3-week periods. Quantitative results for tartrate-resistant acid phosphatase (TRAP) cellular activity, new bone formation, and ceramic resorption were studied for statistical purposes. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than IBS 200-500, regardless of implantation time. BCP degradation was quite marked during the first 2 weeks for IBS 40-80, and bone colonization occurred more extensively for IBS 40-80 than for IBS 200-500. The resorption-bone substitution process occurred earlier and faster for IBS 40-80 than IBS 200-500. Both tested IBS displayed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Differences in calcium phosphate particle sizes influenced cellular degradation activity and ceramic resorption but were compatible with efficient bone substitution.
NASA Astrophysics Data System (ADS)
Murata, Masaru; Akazawa, Toshiyuki; Yuasa, Toshihiro; Okayama, Miki; Tazaki, Junichi; Hanawa, Takao; Arisue, Makoto; Mizoguchi, Itaru
2012-12-01
A midpalatal implant system has been used as the unmoved anchorage for teeth movement. An 18-year-old male patient presented with reversed occlusion and was diagnosed as malocclusion. A pure titanium fixture (lengths: 4 mm, diameter: 3.3 mm, Orthosystem®, Institute Straumann, Switzerland) was implanted into the palatal bone of the patient as the orthodontic anchorage. The implant anchorage was connected with the upper left and right first molars, and had been used for 3 years. After dynamic treatments, the titanium fixture connected with bone was removed surgically, fixed in formalin solution, and embedded in resin. Specimens were cut along the frontal section of face and the direction of longitudinal axis of the implant, stained, and observed histologically. The titanium fixture was integrated directly with compact bone showing cortical bone-like structure such as lamella and osteon. In addition, to qualitatively characterize the implant-supported human bone, the crystallinity and orientation of hydroxyapatite (HAp) phase were evaluated by the microbeam X-ray diffraction analysis. Preferential alignment of c-axis of HAp crystals was represented by the relative intensity ratio of (0 0 2)-face diffraction peak to (3 1 0)-face one. The values decreased monotonously along the direction of the lateral stress from the site near the implant thread to the distant site in all horizontal lines of the map. These results indicated that the X-ray images for the intensity of c-face in HAp revealed functionally graded distribution of cortical bone quality. The micro-scale measurements of HAp structure could be a useful method for evaluating the mechanical stress distribution in human hard tissues.
Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta
2006-07-01
The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.
NASA Astrophysics Data System (ADS)
Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong
2012-12-01
Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... through the survey collection was conducted in 2010. One human bone fragment from the Adamsville site... ceramic jars, 1 ceramic scoop, 5 ceramic sherds, 4 pieces of chipped stone, and 1 flotation sample. Las...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
...,703 associated funerary objects are 4 animal bones, 3 animal claws, 7 antler artifacts, 1 antler fragment, 9 bone artifacts, 32 bone awls, 3 bone awl fragments, 4 bone beads, 2 bone hairpins, 2 bone needles, 1 bone needle fragment, 3 bone ornaments, 14 bone rings, 1 bone spatula, 1 bone wand, 556 ceramic...
In vitro bioactivity of novel tricalcium silicate ceramics.
Zhao, Wenyuan; Chang, Jiang; Wang, Junying; Zhai, Wanyin; Wang, Zheng
2007-05-01
In this study, bone-like apatite-formation ability of tricalcium silicate (Ca(3)SiO(5)) ceramics in simulated body fluid (SBF) was evaluated and the in vitro degradability was investigated by soaking in Ringer's solution. The effect of ionic products from Ca(3)SiO(5) dissolution on osteobalsts proliferation was investigated. The result indicated that hydroxyapatite (HA) was formed on the surface of the Ca(3)SiO(5) ceramics after soaking in SBF for 1 day, and Ca(3)SiO(5) ceramics could degraded in Ringer's solution. The Si ions from Ca(3)SiO(5) dissolution at certain concentration range significantly stimulated osteoblasts proliferation. Our results show that Ca(3)SiO(5) ceramics possess bone-like apatite-formation ability and degradability, and can release soluble ionic products to stimulate cell proliferation.
An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering.
Deepthi, S; Venkatesan, J; Kim, Se-Kwon; Bumgardner, Joel D; Jayakumar, R
2016-12-01
Chitin and chitosan based nanocomposite scaffolds have been widely used for bone tissue engineering. These chitin and chitosan based scaffolds were reinforced with nanocomponents viz Hydroxyapatite (HAp), Bioglass ceramic (BGC), Silicon dioxide (SiO 2 ), Titanium dioxide (TiO 2 ) and Zirconium oxide (ZrO 2 ) to develop nanocomposite scaffolds. Plenty of works have been reported on the applications and characteristics of the nanoceramic composites however, compiling the work done in this field and presenting it in a single article is a thrust area. This review is written with an aim to fill this gap and focus on the preparations and applications of chitin or chitosan/nHAp, chitin or chitosan/nBGC, chitin or chitosan/nSiO 2 , chitin or chitosan/nTiO 2 and chitin or chitosan/nZrO 2 in the field of bone tissue engineering in detail. Many reports so far exemplify the importance of ceramics in bone regeneration. The effect of nanoceramics over native ceramics in developing composites, its role in osteogenesis etc. are the gist of this review. Copyright © 2016 Elsevier B.V. All rights reserved.
Bone repair using a new injectable self-crosslinkable bone substitute.
Fellah, Borhane H; Weiss, Pierre; Gauthier, Olivier; Rouillon, Thierry; Pilet, Paul; Daculsi, Guy; Layrolle, Pierre
2006-04-01
A new injectable and self-crosslinkable bone substitute (IBS2) was developed for filling bone defects. The IBS2 consisted of a chemically modified polymer solution mixed with biphasic calcium phosphate (BCP) ceramic particles. The polymer hydroxypropylmethyl cellulose was functionalized with silanol groups (Si-HPMC) and formed a viscous solution (3 wt %) in alkaline medium. With a decrease in pH, self-hardening occurred due to the formation of intermolecular -Si-O- bonds. During setting, BCP particles, 40 to 80 microm in diameter, were added to the polymer solution at a weight ratio of 50/50. The resulting injectable material was bilaterally implanted into critically sized bone defects at the distal femoral epiphyses of nine New Zealand White rabbits. The IBS2 filled the bone defects entirely and remained in place. After 8 weeks, bone had grown centripetally and progressed towards the center of the defects. Newly formed bone, ceramic, and nonmineralized tissue ratios were 24.6% +/- 5.6%, 21.6% +/- 5.8%, and 53.7% +/- 0.1%, respectively. Mineralized and mature bone was observed between and in contact with the BCP particles. The bone/ceramic apposition was 73.4% +/- 10.6%. The yield strength for the IBS2-filled defects was 16.4 +/- 7.2 MPa, significantly higher than for the host trabecular bone tissue (2.7 +/- 0.4 MPa). This study showed that BCP particles supported the bone healing process by osteoconduction while the Si-HPMC hydrogel created intergranular space for bone ingrowth. This new injectable and self-crosslinkable bone substitute could be used conveniently in orthopedic surgery for filling critical-size bone defects. Copyright 2006 Orthopaedic Research Society
Ceramic-polylactide composite material used in a model of healing of osseous defects in rabbits.
Myciński, Paweł; Zarzecka, Joanna; Skórska-Stania, Agnieszka; Jelonek, Agnieszka; Okoń, Krzysztof; Wróbel, Maria
The growing demand for various kinds of bone regeneration material has in turn increased the desire to find materials with optimal physical, chemical, and biological properties. The objective of the present study was to identify the proportions of ceramic and polylactide components in a bone substitute material prepared in collaboration with the Crystal Chemistry of Drugs Team of the Faculty of Chemistry at the Jagiellonian University, which would be optimal for bone regeneration processes. Another goal was to provide a histological analysis of the influence of a ceramic-polylactide composite on the healing of osseous defects in rabbits. The study was performed on laboratory animals (18 New Zealand White rabbits). The following study groups were formed: - group A (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite based on an 80/20 mix of hydroxyapatite and polylactide; - group B (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite with a reduced amount of hydroxyapatite compared to the previous group, i.e. in a ratio of 61/39; - group K (control, 18 animals) - the control group comprised self-healing, standardised osseous defects prepared in the calvarial bone of the rabbits on the contralateral side. In the assessment of histological samples, we were also able to eliminate individual influences that might have led to differentiation in wound healing. The material used in the histological analysis took the form of rabbit bone tissue samples, containing both defects, with margins of around 0.5 cm, taken 1, 3, and 6 months after the experiment. The osseous defects from groups A and B filled with ceramic-polylactide material healed with less inflammatory infiltration than was the case with control group K. They were also characterised by faster regression, and no resorption or osteonecrosis, which allowed for better regeneration of the bone tissue. A statistical analysis of the study results revealed the increased resorptive activity of the composite in group B, which may have been due to its higher polylactide content. Simultaneously, we observed that healing of osseous defects filled with ceramic-polylactide composites in 80/20 and 61/39 ratios was comparable.
SPS-RS technique for solid-phase “in situ” synthesis of biocompatible ZrO2 porous ceramics
NASA Astrophysics Data System (ADS)
Shichalin, O. O.; Medkov, M. A.; Grishchenko, D. N.; Mayorov, V. Yu; Fedorets, A. N.; Belov, A. A.; Golub, A. V.; Gridasova, E. A.; Papynov, E. K.
2018-02-01
The prospective method of spark plasma sintering-reaction synthesis (SPS-RS) for fabrication of ceramics based on ZrO2 and biocompatible with living tissue is presented. Nanostructured ceramics has high mechanical strength (more than 400 MPa) and controlled porosity depending on specified sintering conditions. Biocompatible phases Ca10(PO4)6(OH)2 are formed “in situ” during SPS sintering of ZrO2 powder due to chemical interaction of phosphate precursors preliminary introduced into the mixture. The effective method to improve (to develop) porous structure of bioceramics obtained by SPS or SPS-RS techniques using poreforming agent (carbon black) is proposed. Suggested original SPS-RS “in situ” technique provides fabrication of new ZrO2 ceramics containing biocompatible phosphate components and possessing unique structural and mechanical characteristics. Such ceramics is indispensable for bone-ceramic implants that are able to activate processes of osteogenesis during bone tissue recovery.
Fabbri, M; Celotti, G C; Ravaglioli, A
1995-02-01
At the request of medical teams from the maxillofacial sector, a highly porous ceramic support based on hydroxyapatite of around 70-80% porosity was produced with a pore size distribution similar to bone texture (< 10 microns, approximately 3 vol%; 10-150 microns, approximately 110 vol%; > 150 microns, approximately 86 vol%). The ceramic substrates were conceived not only as a fillers for bone cavities, but also for use as drug dispensers and as supports to host cells to produce particular therapeutic agents. A method is suggested to obtain a substrate of high porosity, exploiting the impregnation of spongy substrate with hydroxyapatite ceramic particles. X-ray and scanning electron microscopy analyses were carried out to evaluate the nature of the new ceramic support in comparison with the most common commercial product; pore size distribution and porosity were controlled to known hydroxyapatite ceramic architecture for the different possible uses.
Moya, José S.; Martínez, Arturo; López-Píriz, Roberto; Guitián, Francisco; Díaz, Luis A.; Esteban-Tejeda, Leticia; Cabal, Belén; Sket, Federico; Fernández-García, Elisa; Tomsia, Antoni P.; Torrecillas, Ramón
2016-01-01
Bacterial and fungal infections remain a major clinical challenge. Implant infections very often require complicated revision procedures that are troublesome to patients and costly to the healthcare system. Innovative approaches to tackle infections are urgently needed. We investigated the histological response of novel free P2O5 glass-ceramic rods implanted in the jaws of beagle dogs. Due to the particular percolated morphology of this glass-ceramic, the dissolution of the rods in the animal body environment and the immature bone formation during the fourth months of implantation maintained the integrity of the glass-ceramic rod. No clinical signs of inflammation took place in any of the beagle dogs during the four months of implantation. This new glass-ceramic biomaterial with inherent bactericidal and fungicidal properties can be considered as an appealing candidate for bone tissue engineering. PMID:27515388
Towards the optimal design of an uncemented acetabular component using genetic algorithms
NASA Astrophysics Data System (ADS)
Ghosh, Rajesh; Pratihar, Dilip Kumar; Gupta, Sanjay
2015-12-01
Aseptic loosening of the acetabular component (hemispherical socket of the pelvic bone) has been mainly attributed to bone resorption and excessive generation of wear particle debris. The aim of this study was to determine optimal design parameters for the acetabular component that would minimize bone resorption and volumetric wear. Three-dimensional finite element models of intact and implanted pelvises were developed using data from computed tomography scans. A multi-objective optimization problem was formulated and solved using a genetic algorithm. A combination of suitable implant material and corresponding set of optimal thicknesses of the component was obtained from the Pareto-optimal front of solutions. The ultra-high-molecular-weight polyethylene (UHMWPE) component generated considerably greater volumetric wear but lower bone density loss compared to carbon-fibre reinforced polyetheretherketone (CFR-PEEK) and ceramic. CFR-PEEK was located in the range between ceramic and UHMWPE. Although ceramic appeared to be a viable alternative to cobalt-chromium-molybdenum alloy, CFR-PEEK seems to be the most promising alternative material.
Nair, Manitha B; Bernhardt, Anne; Lode, Anja; Heinemann, Christiane; Thieme, Sebastian; Hanke, Thomas; Varma, Harikrishna; Gelinsky, Michael; John, Annie
2009-08-01
Hydroxyapatite (HA) ceramics are widely used as bone graft substitutes because of their biocompatibility and osteoconductivity. However, to enhance the success of therapeutic application, many efforts are undertaken to improve the bioactivity of HA. We have developed a triphasic, silica-containing ceramic-coated hydroxyapatite (HASi) and evaluated its performance as a scaffold for cell-based tissue engineering applications. Human bone marrow stromal cells (hBMSCs) were seeded on both HASi and HA scaffolds and cultured with and without osteogenic supplements for a period of 4 weeks. Cellular responses were determined in vitro in terms of cell adhesion, viability, proliferation, and osteogenic differentiation, where both materials exhibited excellent cytocompatibility. Nevertheless, an enhanced rate of cell proliferation and higher levels of both alkaline phosphatase expression and activity were observed for cells cultured on HASi with osteogenic supplements. These findings indicate that the bioactivity of HA endowed with a silica-containing coating has definitely influenced the cellular activity, projecting HASi as a suitable candidate material for bone regenerative therapy.
Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius
NASA Astrophysics Data System (ADS)
Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong
2012-12-01
Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.
Surface reactivity and hydroxyapatite formation on Ca5MgSi3O12 ceramics in simulated body fluid
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Yaorong; Huang, Yanlin; Cheng, Han; Seo, Hyo Jin
2017-11-01
In this work, the new calcium-magnesium-silicate Ca5MgSi3O12 ceramic was made via traditional solid-state reaction. The bioactivities were investigated by immerging the as-made ceramics in simulated body fluid (SBF) for different time at body temperature (37 °C). Then the samples were taken to measure X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), X-ray energy-dispersive spectra (EDS), and Fourier transform infrared spectroscopy (FT-IR) measurements. The bone-like hydroxyapatite nanoparticles formation was observed on the ceramic surfaces after the immersion in SBF solutions. Ca5MgSi3O12 ceramics possess the Young's modulus and the bending strength and of 96.3 ± 1.2 GPa and 98.7 ± 2.3 MPa, respectively. The data suggest that Ca5MgSi3O12 ceramics can quickly induce HA new layers after soaking in SBF. Ca5MgSi3O12 ceramics are potential to be used as biomaterials for bone-tissue repair. The cell adherence and proliferation experiments are conducted confirming the reliability of the ceramics as a potential candidate.
Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J
2015-08-01
One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. © 2014 Wiley Periodicals, Inc.
Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.
Neumann, Andreas; Unkel, Claus; Werry, Christoph; Herborn, Christoh U; Maier, Horst R; Ragoss, Christian; Jahnke, Klaus
2006-06-01
The favorable properties of silicon nitride (Si3N4) ceramics, such as high mean strength level and fracture toughness, suggest biomedical use as an implant material. Minor reservations about the biocompatibility of Si3N4 ceramics were cleared up by previous in vitro and in vivo investigations. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in 3 minipigs. After 3 months, histological sections, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfying intraoperative workability. There was no implant loss, displacement, or fracture. Bone healing was complete in all animals. The formation of new bone was observed in direct contact to the implants. The implants showed no artifacts on CT and MRI scanning. FEM simulation confirmed the mechanical reliability of the screws, whereas simulated plate geometries regarding pullout forces at maximum load showed limited safety in a bending situation. Si3N4 ceramics show a good biocompatibility outcome both in vitro and in vivo. In ENT surgery, this ceramic may serve as a biomaterial for osteosynthesis (eg, of the midface including reconstruction the floor of the orbit and the skull base). To our knowledge, this is the first introduction of a ceramic-based miniplate-osteofixation system. Advantages compared with titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, and no interference with radiologic imaging. Disadvantages include the impossibility of individual bending of the miniplates.
Velasquez, Pablo; Luklinska, Zofia B; Meseguer-Olmo, Luis; Mate-Sanchez de Val, Jose E; Delgado-Ruiz, Rafael A; Calvo-Guirado, Jose L; Ramirez-Fernandez, Ma P; de Aza, Piedad N
2013-07-01
This study reports on the in vitro and in vivo behavior of α-tricalcium phosphate (αTCP) and also αTCP doped with either 1.5 or 3.0 wt % of dicalcium silicate (C2 S). The ceramics were successfully prepared by powder metallurgy method combined with homogenization and heat treatment procedures. All materials were composed of a single-phase, αTCP in the case of a pure material, or solid solution of C2 S in αTCP for the doped αTCP, which were stable at room temperature. The ceramics were tested for bioactivity in simulated body fluid, cell culture medium containing adult mesenchymal stem cells of human origin, and in animals. Analytical scanning electron microscopy combined with chemical elemental analysis was used and Fourier transform infrared and conventional histology methods. The in vivo behavior of the ceramics matched the in vitro results, independently of the C2 S content in αTCP. Carbonated hydroxyapatite (CHA) layer was formed on the surface and within the inner parts of the specimens in all cases. A fully mineralized new bone growing in direct contact with the implants was found under the in vivo conditions. The bioactivity and biocompatibility of the implants increased with the C2 S content in αTCP. The C2 S doped ceramics also favoured a phase transformation of αTCP into CHA, important for full implant integration during the natural bone healing processes. αTCP ceramic doped with 3.0 wt % C2 S showed the best bioactive in vitro and in vivo properties of all the compositions and hence could be of interest in specific applications for bone restorative purposes. Copyright © 2012 Wiley Periodicals, Inc.
Zhang, Wenyou; He, Jiankang; Li, Xiang; Liu, Yaxiong; Bian, Weiguo; Li, Dichen; Jin, Zhongmin
2014-03-01
To solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments. The model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control. Biomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384 +/- 181) N and dynamic creep of (0.74 +/- 0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370 +/- 103) N and dynamic creep of (1.48 +/- 0.49) mm, showing significant differences (t = 11.617, P = 0.000; t = 2.991, P = 0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface. Ligament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone interface. It is expected to achieve physical fixation between ligament grafts and host bone.
Sponer, P; Urban, K; Urbanová, E
2006-06-01
The aim of the study was to demonstrate, by three-phase bone scintigraphy, radionuclide uptake at the site of defects in long bones filled with the non-resorbable bioactive glass-ceramic material BAS-0 at a long follow-up. Twenty patients, 14 men and 6 women, operated on between 1990 and 2000 for benign bone tumors or tumor-like lesions localized in the femur, tibia or humerus were comprised in the study. Their average age at the time of operation was 14 years (range, 8 to 24). The diagnoses based on histological examination included juvenile bone cysts in 11, aneurysmal bone cyst in five, non-ossifying fibroma in two, and fibrous dysplasia in two patients. The lesions were localized in the femur, humerus and tibia in 11, five and four patients, respectively. The metaphysis was affected in eight and the diaphysis in 12 patients. Clinical, radiological and scintigraphic examinations were carried out at 2 to 12 years (7 years on average) after surgery. The clinical evaluation included subjective complaints and objective findings. Radiographs were made in standard projections and the osteo-integration of glass-ceramic material was investigated. Three-phase bone scans were made and the healthy and the affected limbs in each patient were compared by means of an index. Radionuclide uptake was considered normal when the index value was equal to 1.0, mildly increased at an index value of 1.2, moderately increased at 1.2-1.5 and markedly increased at an index value higher than 1.5. The clinical evaluation showed that, in the patients with glass-ceramic filling of metaphyses, six had no subjective complaints and two reported transient pain. In the patients with implants in diaphyses, subjective complaints were recorded in nine and no complaints in three patients. No inflammatory changes in soft tissues were found. No restriction in weightbearing of the limb treated was reported by any of the patients. On radiography, 18 patients were free from any disease residue or recurrence. Two patients had a residual defect. The bioactive glass-ceramic material BAS-0 was completely incorporated in all patients. On three-phase bone scans, radionuclide distribution on the flow phase and soft tissue phase was symmetrical in both limbs of all patients. For the metaphyseal location of implants, the delayed images demonstrated physiological radionuclide distribution in one patient, mildly increased distribution (index up to 1.2) in four, increased uptake (index up to 1.5) in two patients, and highly increased uptake (index above 1.5) in one patient. For the diaphyseal location of implants, the delayed scans demonstrated slightly increased radionuclide distribution in two, markedly increased in two and highly increased uptake in eight patients. The tissue during incorporation of a non-resorbable synthetic material is influenced by stress-shielding. This changes local mechanical signals, which has a negative effect on the adjacent bone tissue. Stress accumulating at the interface of a rigid implant and bone tissue may result in pain, and is detected by scintigraphy as an increased nucleotide uptake, particularly in diaphyseal grafts. This paper presents problems associated with implantation of the non-resorbable bioactive glass-ceramic material BAS-0 in the treatment of diaphyseal defects of long bones. The results show that, for filling of the defects described herein, non-resorbable glass-ceramic materials are not suitable.
Jiménez-Garrudo, Antonio; Gil-Mur, Francisco Javier; Manero, José María; Punset-Fuste, Miquel; Chávarri-Prado, David; Diéguez-Pereira, Markel; Monticelli, Francesca
2017-01-01
The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV) alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland) via ultrasound. Their biomechanical behaviour was described via finite element analysis. Their osseointegration capacity was compared via an in vivo study performed on 12 adult rabbits. Young's modulus of the Roxolid© implant was around 103 GPa, and the Poisson coefficient was around 0.33. There were no significant differences in terms of Von Mises stress values at the implant and bone level between both alloys. Regarding deformation, the highest value was observed for Ti-15Zr implant, and the lowest value was observed for the cortical bone surrounding TAV implant, with no deformation differences at the bone level between both alloys. Histological analysis of the implants inserted in rabbits demonstrated higher BIC percentage for Ti-15Zr implants at 3 and 6 weeks. Ti-15Zr alloy showed elastic properties and biomechanical behaviours similar to TAV alloy, although Ti-15Zr implant had a greater BIC percentage after 3 and 6 weeks of osseointegration. PMID:29318142
3D bioactive composite scaffolds for bone tissue engineering.
Turnbull, Gareth; Clarke, Jon; Picard, Frédéric; Riches, Philip; Jia, Luanluan; Han, Fengxuan; Li, Bin; Shu, Wenmiao
2018-09-01
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface
Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie
2018-01-01
The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366
Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering
Gerhardt, Lutz-Christian; Boccaccini, Aldo R.
2010-01-01
Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship). In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review. PMID:28883315
Zijderveld, Steven A; Zerbo, Ilara R; van den Bergh, Johan P A; Schulten, Engelbert A J M; ten Bruggenkate, Chris M
2005-01-01
A prospective human clinical study was conducted to determine the clinical and histologic bone formation ability of 2 graft materials, a beta-tricalcium phosphate (Cerasorb; Curasan, Kleinostheim, Germany) and autogenous chin bone, in maxillary sinus floor elevation surgery. Ten healthy patients underwent a bilateral (n = 6) or unilateral (n = 4) maxillary sinus floor elevation procedure under local anesthesia. In each case, residual posterior maxillary bone height was between 4 and 8 mm. In cases of bilateral sinus floor elevation, the original bone was augmented with a split-mouth design with 100% beta-tricalcium phosphate on the test side and 100% chin bone on the contralateral control side. The unilateral cases were augmented with 100% beta-tricalcium phosphate. After a healing period of 6 months, ITI full body screw-type implants (Straumann, Waldenburg, Switzerland) were placed. At the time of implant surgery, biopsy samples were removed with a 3.5-mm trephine drill. Sixteen sinus floor elevations were performed. Forty-one implants were placed, 26 on the test side and 15 on the control side. The clinical characteristics at the time of implantation differed, especially regarding clinical appearance and drilling resistance. The increase in height was examined radiographically prior to implantation and was found to be sufficient in all cases. After a mean of nearly 1 year of follow-up, no implant losses or failures had occurred. The promising clinical results of the present study and the lack of implant failures are probably mainly the result of requiring an original bone height of at least 4 mm at the implant location. Although autogenous bone grafting is still the gold standard, according to the clinical results, the preimplantation sinus floor elevation procedure used, which involved a limited volume of beta-tricalcium phosphate, appeared to be a clinically reliable procedure in this patient population.
Improvement in Mechanical Properties through Structural Hierarchies in Bio-Inspired Materials
2011-02-01
alloys , ceramics and their composites which show improvement in one mechanical property (e.g. stiffness) at the cost of another disparate one (e.g... properties of their base constituents. This is in contrast to many engineering materials, such as metals, alloys , ceramics and their composites which show...mnechanical properties seen in many synthetic nanoma- Collagen (a) Ccellous bone Collagen Collagen Lamella fibr ibi Cortical nBone Osteon C Crystak H I nm
Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.
López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S
2014-06-01
A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc). Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara
2013-04-01
A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Preparation and characterization of calcium phosphate ceramics and composites as bone substitutes
NASA Astrophysics Data System (ADS)
Zhang, Xing
Marine CaCO3 skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone and sea urchin spines have interconnected porous structures. In our experiments, seashells, coral and cuttlebone were hydrothermally converted to hydroxyapatite (HAP), and sea urchin spines were converted to Mg-substituted tricalcium phosphate (beta-TCMP), while maintaining their original structures. Partially converted shell samples have mechanical strength, which is close to that of compact human bone. After implantation of converted shell and spine samples in rat femoral defects for 6 weeks, there was newly formed bone growth up to and around the implants. Some new bone was found to migrate through the pores of converted spine samples and grow inward. These results show good bioactivity and osteoconductivity of the implants, indicating the converted shell and spine samples can be used as bone defect fillers. Calcium phosphate powders were prepared through different synthesis methods. Micro-size HAP rods were synthesized by hydrothermal method through a nucleation-growth mechanism. On the other hand, HAP particles, which have good crystallinity, were prepared by wet precipitation with further hydrothermal treatment. beta-TCP or beta-TCMP powders were prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate ('precursor') and calcination of the precursor at 800°C for 3 hours. beta-TCMP or beta-TCP powders were also prepared by solid-state reactions from CaHPO4 and CaCO 3 with/without MgO. Biphasic calcium phosphate, which is mixture of HAP and beta-TCP, can be prepared though mechanical mixing of HAP and beta-TCP powders synthesized as above. Dense beta-TCP and beta-TCMP ceramics can be produced by pressing green bodies at 100MPa and further sintering above 1100°C for 2 hours. beta-TCMP ceramics ˜99.4% relative dense were prepared by this method. Dense beta-TCP ceramics have average strength up to 540MPa. Macroporous beta-TCMP ceramics were produced with sucrose as the porogen following a two-step pressing method. Porous beta-TCMP ceramics were also prepared by replication of polyurethane sponge. beta-TCMP ceramics with porous structures in the center surrounded by dense structures were created. The outside dense structures give the scaffold mechanical strength, while the central porous structures enable cells migration and vascular infiltration, and finally in-growth of new bone into the scaffold.
Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants.
Schnettler, Reinhard; Alt, Volker; Dingeldein, Elvira; Pfefferle, Hans-Joachim; Kilian, Olaf; Meyer, Christof; Heiss, Christian; Wenisch, Sabine
2003-11-01
This experimental study was performed to evaluate angiogenesis, bone formation, and bone ingrowth in response to osteoinductive implants of bovine-derived hydroxyapatite (HA) ceramics either uncoated or coated with basic fibroblast growth factor (bFGF) in miniature pigs. A cylindrical bone defect was created in both femur condyles of 24 miniature pigs using a saline coated trephine. Sixteen of the 48 defects were filled with HA cylinders coated with 50 microg rhbFG, uncoated HA cylinders, and with autogenous transplants, respectively. Fluorochrome labelled histological analysis, histomorphometry, and scanning electron microscopy were performed to study angiogenesis, bone formation and bone ingrowth. Complete bone ingrowth into bFGF-coated HA implants and autografts was seen after 34 days compared to 80 days in the uncoated HA group. Active ring-shaped areas of fluorochrome labelled bone deposition with dynamic bone remodelling were found in all cylinders. New vessels could be found in all cylinders. Histomorphometric analysis showed no difference in bone ingrowth over time between autogenous transplants and bFGF-coated HA implants. The current experimental study revealed comparable results of bFGF-coated HA implants and autogenous grafts regarding angiogenesis, bone synthesis and bone ingrowth.
Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization
Molino, Giulia; Vitale Brovarone, Chiara
2018-01-01
Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions. PMID:29495498
Stona, Deborah; Burnett, Luiz Henrique; Mota, Eduardo Gonçalves; Spohr, Ana Maria
2015-07-01
Because no information was found in the dental literature regarding the fracture resistance of all-ceramic crowns using CEREC (Sirona) computer-aided design and computer-aided manufacturing (CAD-CAM) system on solid abutments, the authors conducted a study. Sixty synOcta (Straumann) implant replicas and regular neck solid abutments were embedded in acrylic resin and randomly assigned (n = 20 per group). Three types of ceramics were used: feldspathic, CEREC VITABLOCS Mark II (VITA); leucite, IPS Empress CAD (Ivoclar Vivadent); and lithium disilicate, IPS e.max CAD (Ivoclar Vivadent). The crowns were fabricated by the CEREC CAD-CAM system. After receiving glaze, the crowns were cemented with RelyX U200 (3M ESPE) resin cement under load of 1 kilogram. For each ceramic, one-half of the specimens were subjected to the fracture resistance testing in a universal testing machine with a crosshead speed of 1 millimeter per minute, and the other half were subjected to the fractured resistance testing after 1,000,000 cyclic fatigue loading at 100 newtons. According to a 2-way analysis of variance, the interaction between the material and mechanical cycling was significant (P = .0001). According to a Tukey test (α = .05), the fracture resistance findings with or without cyclic fatigue loading were as follows, respectively: CEREC VITABLOCKS Mark II (405 N/454 N) was statistically lower than IPS Empress CAD (1169 N/1240 N) and IPS e.max CAD (1378 N/1025 N) (P < .05). The IPS Empress CAD and IPS e.max CAD did not differ statistically (P > .05). According to a t test, there was no statistical difference in the fracture resistance with and without cyclic fatigue loading for CEREC VITABLOCS Mark II and IPS Empress CAD (P > .05). For IPS e.max CAD, the fracture resistance without cyclic fatigue loading was statistically superior to that obtained with cyclic fatigue loading (P < .05). The IPS Empress CAD and IPS e.max CAD showed higher fracture resistance compared with CEREC VITABLOCS Mark II. The cyclic fatigue loading negatively influenced only IPS e.max CAD. The CEREC VITABLOCS Mark II, IPS Empress CAD, and IPS e.max CAD ceramic crowns cemented on solid abutments showed sufficient resistance to withstand normal chewing forces. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.
Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction
Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan
2012-01-01
Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283
Filardo, Giuseppe; Tampieri, Anna; Cabezas-Rodríguez, Rafael; Di Martino, Alessandro; Fini, Milena; Giavaresi, Gianluca; Lelli, Marco; Martínez-Fernández, Julian; Martini, Lucia; Ramírez-Rico, Joaquin; Salamanna, Francesca; Sandri, Monica; Sprio, Simone; Marcacci, Maurilio
2014-01-01
Bone loss is still a major problem in orthopedics. The purpose of this experimental study is to evaluate the safety and regenerative potential of a new scaffold based on a bio-ceramization process for bone regeneration in long diaphyseal defects in a sheep model. The scaffold was obtained by transformation of wood pieces into porous biomorphic silicon carbide (BioSiC®). The process enabled the maintenance of the original wood microstructure, thus exhibiting hierarchically organized porosity and high mechanical strength. To improve cell adhesion and osseointegration, the external surface of the hollow cylinder was made more bioactive by electrodeposition of a uniform layer of collagen fibers that were mineralized with biomimetic hydroxyapatite, whereas the internal part was filled with a bio-hybrid HA/collagen composite. The final scaffold was then implanted in the metatarsus of 15 crossbred (Merinos-Sarda) adult sheep, divided into 3 groups: scaffold alone, scaffold with platelet-rich plasma (PRP) augmentation, and scaffold with bone marrow stromal cells (BMSCs) added during implantation. Radiological analysis was performed at 4, 8, 12 weeks, and 4 months, when animals were sacrificed for the final radiological, histological, and histomorphometric evaluation. In all tested treatments, these analyses highlighted the presence of newly formed bone at the bone scaffolds' interface. Although a lack of substantial effect of PRP was demonstrated, the scaffold+BMSC augmentation showed the highest value of bone-to-implant contact and new bone growth inside the scaffold. The findings of this study suggest the potential of bio-ceramization processes applied to vegetable hierarchical structures for the production of wood-derived bone scaffolds, and document a suitable augmentation procedure in enhancing bone regeneration, particularly when combined with BMSCs. PMID:24099033
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
.... The 12 unassociated funerary objects are: 7 projectile points, 4 bone whistles and 1 spindle whorl... bone awl. Based on the ceramic collection, material culture and architecture, the New Caves Site has... trumpet; 1 shell artifact; 1 bone needle; 1 bone hairpin; 1 bone knife; 5 stone knives; 1 stone hammer...
Mahshid, Minoo; Sadr, Seyed Jalil; Fayyaz, Ali; Kadkhodazadeh, Mahdi
2013-01-01
Purpose This study aimed to assess the combined effect of dismantling before sterilization and aging on the accuracy (±10% of the target torque) of spring-style mechanical torque devices (S-S MTDs). Methods Twenty new S-SMTDs from two different manufacturers (Nobel Biocare and Straumann: 10 of each type) were selected and divided into two groups, namely, case (group A) and control (group B). For sterilization, 100 cycles of autoclaving were performed in 100 sequences. In each sequence, 10 repetitions of peak torque values were registered for aging. To measure and assess the output of each device, a Tohnichi torque gauge was used (P<0.05). Results Before steam sterilization, all of the tested devices stayed within 10% of their target values. After 100 cycles of steam sterilization and aging with or without dismantling of the devices, the Nobel Biocare devices stayed within 10% of their target torque. In the Straumann devices, despite the significant difference between the peak torque and target torque values, the absolute error values stayed within 10% of their target torque. Conclusion Within the limitations of this study, there was no significant difference between the mean and absolute value of error between Nobel Biocare and Straumann S-S MTDs. PMID:24236244
Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.
2010-01-01
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558
Tribst, João Paulo Mendes; Dal Piva, Amanda Maria de Oliveira; Shibli, Jamil Awad; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie
2017-12-07
This study evaluated the effect of implantoplasty on different bone insertion levels of exposed implants. A model of the Bone Level Tapered implant (Straumann Institute, Waldenburg, Switzerland) was created through the Rhinoceros software (version 5.0 SR8, McNeel North America, Seattle, WA, USA). The abutment was fixed to the implant through a retention screw and a monolithic crown was modeled over a cementation line. Six models were created with increasing portions of the implant threads exposed: C1 (1 mm), C2 (2 mm), C3 (3 mm), C4 (4 mm), C5 (5 mm) and C6 (6 mm). The models were made in duplicates and one of each pair was used to simulate implantoplasty, by removing the threads (I1, I2, I3, I4, I5 and I6). The final geometry was exported in STEP format to ANSYS (ANSYS 15.0, ANSYS Inc., Houston, USA) and all materials were considered homogeneous, isotropic and linearly elastic. To assess distribution of stress forces, an axial load (300 N) was applied on the cusp. For the periodontal insert, the strains increased in the peri-implant region according to the size of the exposed portion and independent of the threads' presence. The difference between groups with and without implantoplasty was less than 10%. Critical values were found when the inserted portion was smaller than the exposed portion. In the exposed implants, the stress generated on the implant and retention screw was higher in the models that received implantoplasty. For the bone tissue, exposure of the implant's thread was a damaging factor, independent of implantoplasty. Implantoplasty treatment can be safely used to control peri-implantitis if at least half of the implant is still inserted in bone.
Liu, Jingyin; Pan, Shaoxia; Dong, Jing; Mo, Zhongjun; Fan, Yubo; Feng, Hailan
2013-03-01
The aim of this study was to evaluate strain distribution in peri-implant bone, stress in the abutments and denture stability of mandibular overdentures anchored by different numbers of implants under different loading conditions, through three-dimensional finite element analysis (3D FEA). Four 3D finite element models of mandibular overdentures were established, using between one and four Straumann implants with Locator attachments. Three types of load were applied to the overdenture in each model: 100N vertical and inclined loads on the left first molar and a 100N vertical load on the lower incisors. The biomechanical behaviours of peri-implant bone, implants, abutments and overdentures were recorded. Under vertical load on the lower incisors, the single-implant overdenture rotated over the implant from side to side, and no obvious increase of strain was found in peri-implant bone. Under the same loading conditions, the two-implant-retained overdenture showed more apparent rotation around the fulcrum line passing through the two implants, and the maximum equivalent stress in the abutments was higher than in the other models. In the three-implant-supported overdenture, no strain concentration was found in cortical bone around the middle implant under three loading conditions. Single-implant-retained mandibular overdentures do not show damaging strain concentration in the bone around the only implant and may be a cost-effective treatment option for edentulous patients. A third implant can be placed between the original two when patients rehabilitated by two-implant overdentures report constant and obvious denture rotation around the fulcrum line. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Qing-qing; Dai, Ruoxi; Cao, Chris Ying; Fang, Hui; Han, Min; Li, Quan-Li
2017-01-01
Objective This review aims to compare peri-implant tissue changes in terms of clinical and radiographic aspects of implant restoration protocol using one-time abutment to repeated abutment connection in platform switched implant. Method A structured search strategy was applied to three electronic databases, namely, Pubmed, Embase and Web of Science. Eight eligible studies, including seven randomised controlled studies and one controlled clinical study, were identified in accordance with inclusion/exclusion criteria. Outcome measures included peri-implant bone changes (mm), peri-implant soft tissue changes (mm), probing depth (mm) and postsurgical complications. Result Six studies were pooled for meta-analysis on bone tissue, three for soft tissue, two for probing depth and four for postsurgical complications. A total of 197 implants were placed in one-time abutment group, whereas 214 implants were included in repeated abutment group. The implant systems included Global implants, Ankylos, JDEvolution (JdentalCare), Straumann Bone level and Conelog-Screwline. One-time abutment group showed significantly better outcomes than repeated abutment group, as measured in the standardised differences in mean values (fixed- and random-effect model): vertical bone change (0.41, 3.23) in 6 months, (1.51, 14.81) in 12 months and (2.47, 2.47) in 3 years and soft tissue change (0.21, 0.23). No significant difference was observed in terms of probing depth and complications. Conclusion Our meta-analysis revealed that implant restoration protocol using one-time abutment is superior to repeated abutment for platform switched implant because of less bone resorption and soft tissue shifts in former. However, future randomised clinical trials should be conducted to further confirm these findings because of the small samples and the limited quality of the original research. PMID:29049323
Wang, Qing-Qing; Dai, Ruoxi; Cao, Chris Ying; Fang, Hui; Han, Min; Li, Quan-Li
2017-01-01
This review aims to compare peri-implant tissue changes in terms of clinical and radiographic aspects of implant restoration protocol using one-time abutment to repeated abutment connection in platform switched implant. A structured search strategy was applied to three electronic databases, namely, Pubmed, Embase and Web of Science. Eight eligible studies, including seven randomised controlled studies and one controlled clinical study, were identified in accordance with inclusion/exclusion criteria. Outcome measures included peri-implant bone changes (mm), peri-implant soft tissue changes (mm), probing depth (mm) and postsurgical complications. Six studies were pooled for meta-analysis on bone tissue, three for soft tissue, two for probing depth and four for postsurgical complications. A total of 197 implants were placed in one-time abutment group, whereas 214 implants were included in repeated abutment group. The implant systems included Global implants, Ankylos, JDEvolution (JdentalCare), Straumann Bone level and Conelog-Screwline. One-time abutment group showed significantly better outcomes than repeated abutment group, as measured in the standardised differences in mean values (fixed- and random-effect model): vertical bone change (0.41, 3.23) in 6 months, (1.51, 14.81) in 12 months and (2.47, 2.47) in 3 years and soft tissue change (0.21, 0.23). No significant difference was observed in terms of probing depth and complications. Our meta-analysis revealed that implant restoration protocol using one-time abutment is superior to repeated abutment for platform switched implant because of less bone resorption and soft tissue shifts in former. However, future randomised clinical trials should be conducted to further confirm these findings because of the small samples and the limited quality of the original research.
Bose, Susmita; Banerjee, Dishary; Robertson, Samuel; Vahabzadeh, Sahar
2018-05-04
Calcium phosphate (CaP) ceramics show significant promise towards bone graft applications because of the compositional similarity to inorganic materials of bone. With 3D printing, it is possible to create ceramic implants that closely mimic the geometry of human bone and can be custom-designed for unusual injuries or anatomical sites. The objective of the study was to optimize the 3D-printing parameters for the fabrication of scaffolds, with complex geometry, made from synthesized tricalcium phosphate (TCP) powder. This study was also intended to elucidate the mechanical and biological effects of the addition of Fe +3 and Si +4 in TCP implants in a rat distal femur model for 4, 8, and 12 weeks. Doped with Fe +3 and Si +4 TCP scaffolds with 3D interconnected channels were fabricated to provide channels for micronutrients delivery and improved cell-material interactions through bioactive fixation. Addition of Fe +3 into TCP enhanced early-stage new bone formation by increasing type I collagen production. Neovascularization was observed in the Si +4 doped samples after 12 weeks. These findings emphasize that the additive manufacturing of scaffolds with complex geometry from synthesized ceramic powder with modified chemistry is feasible and may serve as a potential candidate to introduce angiogenic and osteogenic properties to CaPs, leading to accelerated bone defect healing.
NASA Astrophysics Data System (ADS)
Gotman, I.; Swain, S. K.; Sharipova, A.; Gutmanas, E. Y.
2016-11-01
Bioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their "mission" is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics (e.g., β-TCP) are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material. In present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering—high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in physiological media and high permeability falling in the range of trabecular bone. The proposed low-temperature processing approach allows for incorporation of drugs into the residual nanopores without damaging the biomolecule activity.
Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin
2007-01-01
Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rack, A.; Stiller, M.; Nelson, K.; Knabe, C.; Rack, T.; Zabler, S.; Dalügge, O.; Riesemeier, H.; Cecilia, A.; Goebbels, J.
2010-09-01
Biocompatible materials such as porous bioactive calcium phosphate ceramics or titanium are regularly applied in dental surgery: ceramics are used to support the local bone regeneration in a given defect, afterwards titanium implants replace lost teeth. The current gold standard for bone reconstruction in implant dentistry is the use of autogenous bone grafts. But the concept of guided bone regeneration (GBR) has become a predictable and well documented surgical approach using biomaterials (bioactive calcium phosphate ceramics) which qualify as bone substitutes for this kind of application as well. We applied high resolution synchrotron microtomography and subsequent 3d image analysis in order to investigate bone formation and degradation of the bone substitute material in a three-dimensional manner, extending the knowledge beyond the limits of classical histology. Following the bone regeneration, titanium-based implants to replace lost teeth call for high mechanical precision, especially when two-piece concepts are used in order to guaranty leak tightness. Here, synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in these kind of highly attenuating objects. Therefore, we could study micro-gap formation at interfaces in two-piece dental implants with the specimen under different mechanical load. We could prove the existence of micro-gaps for implants with conical connections as well as to study the micromechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential issue of failure, i. e. bacterial leakage which can induce an inflammatory process.
Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A
2014-11-01
In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Kadlec, Karol; Adamska, Katarzyna; Okulus, Zuzanna; Voelkel, Adam
2016-10-14
The novel technique for ceramic biomaterials surface characterisation was proposed. The examined bone substitute materials were two orthophosphates: hydroxyapatite, β-tricalcium phosphate and the mixture of these two - biphasic calcium phosphate. The aim of this work was characterisation of the ceramic biomaterials surface expressed via the values of parameters e, s, a, b, v considered in linear free energy relationship. The values of these parameters reflect the ability of stationary phase to occur in different types of interactions. The sorption phenomena occurring on the bone substitute materials surface are responsible for the process of the multiplication of the osteoblasts. Thus the detailed description of this phenomena may contribute to the better understanding of bone loss regeneration mechanism. The data required for characterisation by using LFER model was collected by means of inverse liquid chromatography with the use of five different mobile phases: 98% ethanol, ethanol/water (50/50), water, 0.2M NaCl and SBF. The determination of the ceramic orthophosphates surface properties in SBF solution allowed to observe the behaviour of biomaterials in "natural environment" - in living organism. Copyright © 2016 Elsevier B.V. All rights reserved.
Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala
2016-01-01
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications. PMID:26782020
NASA Astrophysics Data System (ADS)
Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala
2016-01-01
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.
Marković, Aleksa; Mišić, Tijana; Miličić, Biljana; Calvo-Guirado, Jose Luis; Aleksić, Zoran; Ðinić, Ana
2013-07-01
The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement. In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis. Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05). Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone. © 2012 John Wiley & Sons A/S.
Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G.; Yu, Xiaojun
2014-01-01
For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs) were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP) activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP), osteonectin (ON), osteocalcin (OC), and type I collagen (Col-1) were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic ratios. Amongst the different nano-HA/PCL spiral scaffolds, the 1∶4 weight ratio of HA and PCL is shown to be the most optimal composition for bone tissue regeneration. PMID:24475056
Ferreira, André; Aslanian, Thierry; Dalin, Thibaud; Picaud, Jean
2017-05-01
Using a ceramic-ceramic bearings, cementless total hip arthroplasty (THA) has provided good clinical results. To ensure longevity a good quality fixation of the implants is mandatory. Different surface treatments had been used, with inconsistent results. We hypothesized that a "bilayer coating" applied to both THA components using validated technology will provide a long-lasting and reliable bone fixation. We studied the survival and bone integration of a continuous, single-surgeon, retrospective series of 126 THA cases (116 patients) with an average follow-up of 12.2 years (minimum 10 years). The THA consisted of cementless implants with a bilayer coating of titanium and hydroxyapatite and used a ceramic-ceramic bearing. With surgical revision for any cause (except infection) as the end point, THA survival was 95.1 % at 13 years. Stem (98.8 %) and cup (98.6 %) survival was similar at 13 years. Bone integration was confirmed in 100 % of implants (Engh-Massin score of 17.42 and ARA score of 5.94). There were no instances of loosening. Revisions were performed because of instability (1.6 %), prosthetic impingement or material-related issues. A bilayer titanium and hydroxyapatite coating provides strong, fast, reliable osseo integration, without deterioration at the interface or release of damaging particles. The good clinical outcomes expected of ceramic bearings were achieved, as were equally reliable stem and cup fixation.
Chen, L; Chen, Z; Zhang, M
2001-12-01
To assess the effects of a piezoelectric biological ceramic on osteogenesis. Hydroxyapatite (HA) and piezoelectric biological ceramics (hydroxyapatite and barium titanate, HABT) were implanted in the jawbones of 5 dogs, and for sample collection, the dogs were killed separately at 1 week, 2 weeks, 1 month, 2 months and 3 months after implantation. The samples from a rhesus monkey and a blank control were collected 34 months after implantation. The implanted samples and surrounding tissues were subjected to histological observations using light microscopy (LM) and scanning electronmicroscopy (SEM) were made. Compared with the control groups, the HABTs promoted osteogenesis significantly. One week after implantation, new bone tissues were found on the surface vertical to the longitudinal direction of HABT; more bone tissues were found after 2 weeks. HABTs induced the bone tissues to arrange orderly. After two years and ten months of implantation, the piezoelectric bioceramic and bone became monolithic, and the structure of bone was normal. HABTs could promote osteogenesis.
Boaretto, Elisabetta; Wu, Xiaohong; Yuan, Jiarong; Bar-Yosef, Ofer; Chu, Vikki; Pan, Yan; Liu, Kexin; Cohen, David; Jiao, Tianlong; Li, Shuicheng; Gu, Haibin; Goldberg, Paul; Weiner, Steve
2009-01-01
Yuchanyan Cave in Daoxian County, Hunan Province (People's Republic of China), yielded fragmentary remains of 2 or more ceramic vessels, in addition to large amounts of ash, a rich animal bone assemblage, cobble and flake artifacts, bone tools, and shell tools. The artifacts indicate that the cave was a Late Paleolithic foragers' camp. Here we report on the radiocarbon ages of the sediments based on analyses of charcoal and bone collagen. The best-preserved charcoal and bone samples were identified by prescreening in the field and laboratory. The dates range from around 21,000 to 13,800 cal BP. We show that the age of the ancient pottery ranges between 18,300 and 15,430 cal BP. Charcoal and bone collagen samples located above and below one of the fragments produced dates of around 18,000. These ceramic potsherds therefore provide some of the earliest evidence for pottery making in China. PMID:19487667
Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut
2018-06-07
To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p < 0.001). Dual-energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p < 0.001). All dual-energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface. These findings support the use of dual-energy CT as a solid imaging base for clinical decision-making and the use of full-titanium or ceramic prostheses to allow for better CT visualization of the bone-prosthesis interface.
Philippart, Anahí; Boccaccini, Aldo R; Fleck, Claudia; Schubert, Dirk W; Roether, Judith A
2015-01-01
Inorganic scaffolds with high interconnected porosity based on bioactive glasses and ceramics are prime candidates for applications in bone tissue engineering. These materials however exhibit relatively low fracture strength and high brittleness. A simple and effective approach to improve the toughness is to combine the basic scaffold structure with polymer coatings or through the formation of interpenetrating polymer-bioactive ceramic microstructures. The polymeric phase can additionally serve as a carrier for growth factors and therapeutic drugs, thus adding biological functionalities. The present paper reviews the state-of-the art in the field of polymer coated and infiltrated bioactive inorganic scaffolds. Based on the notable combination of bioactivity, improved mechanical properties and drug or growth factor delivery capability, this scaffold type is a candidate for bone and osteochondral regeneration strategies. Remaining challenges for the improvement of the materials are discussed and opportunities to broaden the application potential of this scaffold type are also highlighted.
Marx, B; Marx, R; Reisgen, U; Wirtz, D
2015-04-01
CoCrMo alloys are contraindicated for allergy sufferers. For these patients, uncemented and cemented prostheses made of titanium alloy are indicated. Knee prostheses machined from that alloy, however, may have poor tribological behaviour, especially in relation to UHMWPE inlays. Therefore, for knee replacement cemented high-strength oxide ceramic prostheses are suitable for allergy sufferers and in cases of particle-induced aseptic loosening. For adhesion of bone cement, the ceramic surface, however, only exposes inefficient mechanical retention spots as compared with a textured metal surface. Undercuts generated by corundum blasting which in the short-term are highly efficient on a CoCrMo surface are not possible on a ceramic surface due to the brittleness of ceramics. Textures due to blasting may initiate cracks which will weaken the strength of a ceramic prosthesis. Due to the lack of textures mechanical retention is poor or even not existent. Micromotions are promoted and early aseptic loosening is predictable. Instead silicoating of the ceramic surface will allow specific adhesion and result in better hydrolytic stability of bonding thereby preventing early aseptic loosening. Silicoating, however, presupposes a clean and chemically active surface which can be achieved by atmospheric plasma or thermal surface treatment. In order to evaluate the effectiveness of silicoating the bond strengths of atmospheric plasma versus thermal surface treated and silicate layered ZPTA surfaces were compared with "as-fired" surfaces by utilising TiAlV probes (diameter 6 mm) for traction-adhesive strength tests. After preparing samples for traction-adhesive strength tests (sequence: ceramic substrate, silicate and silane, protective lacquer [PolyMA], bone cement, TiAlV probe) they were aged for up to 150 days at 37 °C in Ringer's solution. The bond strengths observed for all ageing intervals were well above 20 MPa and much higher and more hydrolytically stable for silicate layered compared with "as-fired" ZPTA samples. Silicoating may be effective for achieving high initial bond strength of bone cement on surfaces of oxide ceramics and also suitable to stabilise bond strength under hydrolytic conditions as present in the human body in the long-term. Activation by atmospheric plasma or thermal surface treatment seems to be effective for activation prior to silicoating. Due the proposed silicate layer migration, micromotions and debonding should be widely reduced or even eliminated. Georg Thieme Verlag KG Stuttgart · New York.
The material and biological characteristics of osteoinductive calcium phosphate ceramics
Tang, Zhurong; Li, Xiangfeng; Tan, Yanfei
2018-01-01
Abstract The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems. PMID:29423267
Kulakov, A A; Volozhin, A I; Tkachenko, V M; Doktorov, A A; Salim, Ibrakhim Samir
2007-01-01
Influence of HAP-gel (2 g of 2% solution of hyaluronic acid mixed with 0,5 g of hydroxyapatite and 0,1 ml of colloidal silver) upon osseointegration in case of delayed introduction of titanium implantates in dog jaw. By scanning electron microscopy it was shown that solely use either of HAP-gel or of ceramic spraying increased direct contact area between bone and implantates in the 6 and 9 months time period. Combination of spray-coated ceramic with HAP-gel was effective in 3 months after implantation, when solely the HAP-gel or the ceramic spraying were little effective. In the following terms of experiment (6 and 9 months) significant differences between groups 3 and 4 (implantate with ceramic spraying but without HAP-gel in the alveolus and implantate with ceramic spraying and with HAP-gel in the alveolus) were not found. The area of implantate integration with jaw bone (cortical part of it was excluded) was equal to 80% and was maximal for the given conditions of the experiment.
NASA Astrophysics Data System (ADS)
Jallot, E.; Irigaray, J. L.; Oudadesse, H.; Brun, V.; Weber, G.; Frayssinet, P.
1999-05-01
From the viewpoint of hard tissue response to implant materials, calcium phosphates are probably the most compatible materials presently known. During the last few years, much attention has been paid to hydroxyapatite and β-tricalcium phosphate as potential biomaterials for bone substitute. A good implantation of biomaterials in the skeleton is to reach full integration of non-living implant with living bone. The aim of this study is to compare the resorption kinetics of four kinds of calcium phosphate ceramics: hydroxyapatite (Ca{10}(PO4)6(OH)2), hydroxyapatite doped with manganese or zinc and a composite material of 75% hydroxyapatite and 25% β-tricalcium phosphate (Ca3(PO4)2). Cylinders (5 6 mm in diameter) of these ceramics were packed into holes made in the femur diaphysis of mature ovine. At 2, 4, 8, 12, 16, 20, 28, 36 and 48 weeks after the operation, bone/implant interface was embedded in polymethylmethacrylate. We used the PIXE method (particle induced X-ray emission) to measure the distribution of mineral elements (Ca, P, Sr, Zn, Mn and Fe) at the bone/implant interface. At 4, 8, 16, 28 and 48 weeks after implantation we studied a biopsy of the ceramics by neutron activation method. Then, we have a global measurement of mineral elements in the biomaterial. The results showed that the resorption kinetics of hydroxyapatite doped with zinc was faster than that of the three other bioceramics.
Porous ceramic scaffolds with complex architectures
NASA Astrophysics Data System (ADS)
Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.
2008-06-01
This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.
Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia
2015-08-01
In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.
Ng, Min Hwei; Duski, Suryasmi; Tan, Kok Keong; Yusof, Mohd Reusmaazran; Low, Kiat Cheong; Mohamed Rose, Isa; Mohamed, Zahiah; Bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj
2014-01-01
Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function. PMID:25165699
van Velzen, Frank J J; Ofec, Ronen; Schulten, Engelbert A J M; Ten Bruggenkate, Christiaan M
2015-10-01
This prospective cohort study evaluates the 10-year survival and incidence of peri-implant disease at implant and patient level of sandblasted, large grid, and acid-etched titanium dental implants (Straumann, soft tissue level, SLA surface) in fully and partially edentulous patients. Patients who had dental implant surgery in the period between November 1997 and June 2001, with a follow-up of at least 10 years, were investigated for clinical and radiological examination. Among the 506 inserted dental implants in 250 patients, 10-year data regarding the outcome of implants were available for 374 dental implants in 177 patients. In the current study, peri-implantitis was defined as advanced bone loss (≧1.5 mm. postloading) in combination with bleeding on probing. At 10-year follow-up, only one implant was lost (0.3%) 2 months after implant surgery due to insufficient osseointegration. The average bone loss at 10 year postloading was 0.52 mm. Advanced bone loss at 10-year follow-up was present in 35 dental implants (9.8%). Seven percent of the observed dental implants showed bleeding on probing in combination with advanced bone loss and 4.2% when setting the threshold for advanced bone loss at 2.0 mm. Advanced bone loss without bleeding on probing was present in 2.8% of all implants. In this prospective study, the 10-year survival rate at implant and patient level was 99.7% and 99.4%, respectively. Peri-implantitis was present in 7% of the observed dental implants according to the above-mentioned definition of peri-implantitis. This study shows that SLA implants offer predictable long-term results as support in the treatment of fully and partially edentulous patients. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants.
Pabbruwe, Moreica B; Standard, Owen C; Sorrell, Charles C; Howlett, C Rolfe
2004-09-01
Alumina tubes (1.3mm outer diameter, 0.6mm inner diameter, 15 mm length) doped with Ca, Mn, or Cr at nominal concentrations of 0.5 and 5.0 mol% were implanted into femoral medullary canals of female rats for 16 weeks. Tissue formation within tubes was determined by histology and histomorphometry. Addition of Ca to alumina promoted hypertrophic bone formation at the advancing tissue fronts and tube entrances, and appeared to retard angiogenesis by limiting ongoing cellular migration into the tube. It is speculated that the presence of a secondary phase of calcium hexaluminate, probably having a solubility greater than that of alumina, possibly increased the level of extracellular Ca and, consequently, stimulated osteoclastic activity at the bone-ceramic interface. Addition of Mn significantly enhanced osteogenesis within the tubes. However, it is not possible to determine whether phase composition or microstructure of the ceramic was responsible for this because both were significantly altered by Mn addition. Addition of Cr to the alumina apparently stimulated bone remodelling as indicated by increased cellular activity and bone resorption at the tissue-implant interface. Cr was incorporated into the alumina as a solid solution and the tissue response was speculated to be an effect of surface chemistry rather than microstructure. The work demonstrates that doping a bioinert ceramic with small amounts of specific elements can significantly alter tissue ingrowth, differentiation, and osteogenesis within a porous implant.
Biomimetic Materials by Freeze Casting
NASA Astrophysics Data System (ADS)
Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.
2013-06-01
Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.
Clinical Application of Ceramics in Anterior Cervical Discectomy and Fusion: A Review and Update.
Zadegan, Shayan Abdollah; Abedi, Aidin; Jazayeri, Seyed Behnam; Bonaki, Hirbod Nasiri; Vaccaro, Alexander R; Rahimi-Movaghar, Vafa
2017-06-01
Narrative review. Anterior cervical discectomy and fusion (ACDF) is a reliable procedure, commonly used for cervical degenerative disc disease. For interbody fusions, autograft was the gold standard for decades; however, limited availability and donor site morbidities have led to a constant search for new materials. Clinically, it has been shown that calcium phosphate ceramics, including hydroxyapatite (HA) and tricalcium phosphate (TCP), are effective as osteoconductive materials and bone grafts. In this review, we present the current findings regarding the use of ceramics in ACDF. A review of the relevant literature examining the clinical use of ceramics in anterior cervical discectomy and fusion procedures was conducted using PubMed, OVID and Cochrane. HA, coralline HA, sandwiched HA, TCP, and biphasic calcium phosphate ceramics were used in combination with osteoinductive materials such as bone marrow aspirate and various cages composed of poly-ether-ether-ketone (PEEK), fiber carbon, and titanium. Stand-alone ceramic spacers have been associated with fracture and cracks. Metallic cages such as titanium endure the risk of subsidence and migration. PEEK cages in combination with ceramics were shown to be a suitable substitute for autograft. None of the discussed options has demonstrated clear superiority over others, although direct comparisons are often difficult due to discrepancies in data collection and study methodologies. Future randomized clinical trials are warranted before definitive conclusions can be drawn.
[Osteogenic activity of porous calcium phosphate ceramics fabricated by rapid prototyping].
He, Chenguang; Zhao, Li; Lin, Liulan; Gu, Huijie; Zhou, Heng; Cui, Lei
2010-07-01
Calcium phosphate bioceramics has a broad application prospect because of good biocompatibility, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs) were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell proliferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkaline phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and proliferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and proliferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were stronger than that in group B. There was no significant difference in the change of the ALP activity among 4 groups at the first 3 days (P > 0.05); the ALP activity increased obviously in 4 groups at 7 days, group A was significantly higher than other groups (P < 0.05) and groups C, D were significantly higher than group D (P < 0.05). The porous calcium phosphate ceramics has good cytocompatibility and the designed pores are favorable for cell ingrowth. The porous ceramics fabricated by rapid prototyping has prominent osteogenic differentiation activity and can be used as a choice of scaffolds for bone tissue engineering.
Fabrication and performance of porous lithium sodium potassium niobate ceramic
NASA Astrophysics Data System (ADS)
Chen, Caifeng; Zhu, Yuan; Ji, Jun; Cai, Feixiang; Zhang, Youming; Zhang, Ningyi; Wang, Andong
2018-02-01
Porous lithium sodium potassium niobate (LNK) ceramic has excellent piezoelectric properties, chemical stability and great chemical compatibility. It has a good application potential in the field of biological bone substitute. In the paper, porous LNK ceramic was fabricated with egg albumen foaming agent by foaming method. Effects of preparation process of the porous LNK ceramic on density, phase structure, hole size and piezoelectric properties were researched and characterized. The results show that the influence factors of LNK solid content and foaming agent addition are closely relevant to properties of the porous LNK ceramic. When solid content is 65% and foaming agent addition is 30%, the porous LNK ceramic has uniform holes and the best piezoelectric properties.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-04
... long bone shaft, 1 possible black bear phalanx, 1 possible crane carpometacarpus, 1 raptor carpometacarpus, 1 possible small bird long bone, 1 unidentified non-human cranium fragment, 2 bird or small mammal long bones and 2 probable bird phalanxes. In 1972, Middle Woodland period ceramic sherds were...
Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds
Juan Vivanco; Joseph E. Jakes; Josh Slane; Heidi-Lynn Ploeg
2014-01-01
Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may...
Maniewicz, Sabrina; Buser, Ramona; Duvernay, Elena; Vazquez, Lydia; Loup, Angelica; Perneger, Thomas V; Schimmel, Martin; Müller, Frauke
To describe the survival rate and peri-implant bone loss in very old patients dependent for their activities of daily living (ADL), treated with mandibular two-implant overdentures (IODs) in the context of a previously reported randomized controlled trial. A total of 19 patients received two interforaminal Straumann implants (Regular Neck, 4.1 mm diameter, 8 mm length) that were subsequently loaded with Locator attachments, transforming their preexisting inferior conventional denture into an IOD. The primary outcome measures were implant survival rate and radiographically assessed peri-implant bone loss. Secondary outcome measures included peri-implant probing depth and Plaque Index scores, as well as implant mobility. Nutritional state (body mass index and blood markers) and cognitive state (Mini-Mental State Examination) were also analyzed. The patient cohort comprised eight men and 11 women with a mean age of 85.7 ± 6.6 years. The implant survival rate up to 5 years was 94.7%, with one early and one late implant failure. The mean loss of peri-implant bone height was 0.17 mm per year (95% confidence interval: 0.09 to 0.24; P < .001). Peri-implant probing depth and Plaque Index scores were low and stable during the first 2 years, and thereafter increased continuously. Correlation analysis suggests that a reduced cognitive function and nutritional state are not a particular risk factor for accelerated peri-implant bone loss. The high implant survival and acceptable peri-implant health suggest that neither age nor dependency for the ADLs is a contraindication for the placement of implants. Nevertheless, close monitoring of the patients concerning a potential further functional decline precluding denture management and performing oral hygiene measures is advised.
Ding, Xi; Zhu, Xing-Hao; Liao, Sheng-Hui; Zhang, Xiu-Hua; Chen, Hong
2009-07-01
To establish a 3D finite element model of a mandible with dental implants for immediate loading and to analyze stress distribution in bone around implants of different diameters. Three mandible models, embedded with thread implants (ITI, Straumann, Switzerland) with diameters of 3.3, 4.1, and 4.8 mm, respectively, were developed using CT scanning and self-developed Universal Surgical Integration System software. The von Mises stress and strain of the implant-bone interface were calculated with the ANSYS software when implants were loaded with 150 N vertical or buccolingual forces. When the implants were loaded with vertical force, the von Mises stress concentrated on the mesial and distal surfaces of cortical bone around the neck of implants, with peak values of 25.0, 17.6 and 11.6 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains (5854, 4903, 4344 muepsilon) were located on the buccal cancellous bone around the implant bottom and threads of implants. The stress and strain were significantly lower (p < 0.05) with the increased diameter of implant. When the implants were loaded with buccolingual force, the peak von Mises stress values occurred on the buccal surface of cortical bone around the implant neck, with values of 131.1, 78.7, and 68.1 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains occurred on the buccal surface of cancellous bone adjacent to the implant neck, with peak values of 14,218, 12,706, and 11,504 microm, respectively. The stress of the 4.1-mm diameter implants was significantly lower (p < 0.05) than those of 3.3-mm diameter implants, but not statistically different from that of the 4.8 mm implant. With an increase of implant diameter, stress and strain on the implant-bone interfaces significantly decreased, especially when the diameter increased from 3.3 to 4.1 mm. It appears that dental implants of 10 mm in length for immediate loading should be at least 4.1 mm in diameter, and uniaxial loading to dental implants should be avoided or minimized.
He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming
2015-05-01
The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. Copyright © 2015 Elsevier B.V. All rights reserved.
Mid-term results of the BIOLOX delta ceramic-on-ceramic total hip arthroplasty.
Lee, Y K; Ha, Y C; Yoo, J-I; Jo, W L; Kim, K-C; Koo, K H
2017-06-01
We conducted a prospective study of a delta ceramic total hip arthroplasty (THA) to determine the rate of ceramic fracture, to characterise post-operative noise, and to evaluate the mid-term results and survivorship. Between March 2009 and March 2011, 274 patients (310 hips) underwent cementless THA using a delta ceramic femoral head and liner. At each follow-up, clinical and radiological outcomes were recorded. A Kaplan-Meier analysis was undertaken to estimate survival. Four patients (four hips) died and 18 patients (20 hips) were lost to follow-up within five years. The remaining 252 patients (286 hips) were followed for a mean of 66.5 months (60 to 84). There were 144 men (166 hips) and 108 women (120 hips) with a mean age of 49.7 years (16 to 83) at surgery. The mean pre-operative Harris Hip Score of 47.1 points improved to 93.8 points at final follow-up. Six patients reported squeaking in seven hips; however, none were audible. Radiolucent lines involving Gruen zones one and/or seven were seen in 52 hips (18.2%). No hip had detectable wear, focal osteolysis or signs of loosening. One hip was revised because of fracture of the ceramic liner, which occurred due to an undetected malseating of the ceramic liner at the time of surgery. One hip was revised for a periprosthetic fracture of the femur, and one hip was treated for periprosthetic joint infection. The six-year survivorship with re-operation for any reason as the endpoint was 99.0% (95% confidence interval 97.8% to 100%). The rate of delta ceramic fracture was 0.3% (one of 286). While ceramic head fracture was dominant in previous ceramic-on-ceramic THA, fracture of the delta ceramic liner due to malseating is a concern. Cite this article: Bone Joint J 2017;99-B:741-8. ©2017 The British Editorial Society of Bone & Joint Surgery.
Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro
NASA Astrophysics Data System (ADS)
Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica
2013-04-01
Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.
Liu, Jun; Zhang, Wei; Shi, Haigang; Yang, Kun; Wang, Gexia; Wang, Pingli; Ji, Junhui; Chu, Paul K
2016-05-01
Polymeric materials are commonly found in orthopedic implants due to their unique mechanical properties and biocompatibility but the poor surface hardness and bacterial infection hamper many biomedical applications. In this study, a ceramic-like surface structure doped with silver is produced by successive plasma implantation of silicon (Si) and silver (Ag) into the polyamine 66 (PA66) substrate. Not only the surface hardness and elastic modulus are greatly enhanced due to the partial surface carbonization and the ceramic-like structure produced by the reaction between energetic Si and the carbon chain of PA66, but also the antibacterial activity is improved because of the combined effects rendered by Ag and SiC structure. Furthermore, the modified materials which exhibit good cytocompatibility upregulate bone-related genes and proteins expressions of the contacted bone mesenchymal stem cells (BMSCs). For the first time, it explores out that BMSCs osteogenesis on the antibacterial ceramic-like structure is mediated via the iNOS and nNOS signal pathways. The results reveal that in situ plasma fabrication of an antibacterial ceramic-like structure can endow PA66 with excellent surface hardness, cytocompatibility, as well as antibacterial capability. © 2016 Wiley Periodicals, Inc.
Wen, Bo; Li, Zhen; Nie, Rongrong; Liu, Chao; Zhang, Peng; Miron, Richard J; Dard, Michel M
2016-10-01
The aim of this study was to investigate the ability of Enamel Matrix Derivative (EMD) on vertical bone regeneration around dental implants placed in an extra-oral rabbit model. A total of 30 Straumann BL implants were partially embedded in transverse orientation into the posterior mandibles of 15 rabbits. Macro-structuring BiPhasicCaPST (BCPT1), micro-structuring BiPhasicCaPST (BCPT2), and deproteinized bovine bone mineral (DBBM) were placed around the implant and covered with a scaffold stabilizing "umbrella." EMD was incorporated within the scaffold for test sites, but not control sites. Histological analysis was performed on retrieved specimens after 10 weeks of healing to assess new bone formation. All treatment groups displayed new supracrestal bone formation as determined by histomorphometric measurements, with mean values of new bone height ranging between 0.62 and 1.13 mm. Histological analysis revealed a higher mean bone formation (%) around the test sites where EMD (34.7, 95%CI: 27.1-39.4) was released from the scaffold, whereas the control group without EMD release (26.4, 95%CI: 16.3-31.9) (P = 0.069). The mean fBIC (%) in the BCPT2 group increased by the addition of EMD relative to no EMD (67.2, 95%CI: 48.6-84.1) and (54.7, 95%CI: 32.3-68.9), respectively). The BCPT2/EMD and DBBM/EMD interventions showed the greatest mean bone density (BA/TA), respectively, (12.8, 95%CI: 8.9-36.5) and (11.2, 6.3-16.4) in ROI 1. Values in ROI 2 were, similarly, (24.9, 95%CI: 17.2-31.7) and (27.7, 19.2-35.3). BA/TA in ROI 2 differences between the BCPT2 groups with and without EMD was statistically significant (P = 0.026), as well as the DBBM groups with and without EMD (P = 0.038). A layer of new bone was formed in both test and controls. The release of EMD from BCPT2 and DBBM adjacent to a bone-level implant with an SLActive surface and scaffold retention umbrella consistently regenerated the greater fBIC and bone density along the length of the implant. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wang, Yichao; Uemura, Toshimasa; Dong, Jian; Kojima, Hiroko; Tanaka, Junzo; Tateishi, Tetsuya
2003-12-01
Composites of bone marrow-derived osteoblasts (BMOs) and porous ceramics have been widely used as a bone graft model for bone tissue engineering. Perfusion culture has potential utility for many cell types in three-dimensional (3D) culture. Our hypothesis was that perfusion of medium would increase the cell viability and biosynthetic activity of BMOs in porous ceramic materials, which would be revealed by increased levels of alkaline phosphate (ALP) activity and osteocalcin (OCN) and enhanced bone formation in vivo. For testing in vitro, BMO/beta-tricalcium phosphate composites were cultured in a perfusion container (Minucells and Minutissue, Bad Abbach, Germany) with fresh medium delivered at a rate of 2 mL/h by a peristaltic pump. The ALP activity and OCN content of composites were measured at the end of 1, 2, 3, and 4 weeks of subculture. For testing in vivo, after subculturing for 2 weeks, the composites were subcutaneously implanted into syngeneic rats. These implants were harvested 4 or 8 weeks later. The samples then underwent a biochemical analysis of ALP activity and OCN content and were observed by light microscopy. The levels of ALP activity and OCN in the composites were significantly higher in the perfusion group than in the control group (p < 0.01), both in vitro and in vivo. Histomorphometric analysis of the hematoxylin- and eosin-stained sections revealed a higher average ratio of bone to pore in BMO/beta-TCP composites of the perfusion group after implantation: 47.64 +/- 6.16 for the perfusion group and 26.22 +/- 4.84 for control at 4 weeks (n = 6, p < 0.01); 67.97 +/- 3.58 for the perfusion group and 47.39 +/- 4.10 for control at 8 weeks (n = 6, p < 0.05). These results show that the application of a perfusion culture system during the subculture of BMOs in a porous ceramic scaffold is beneficial to their osteogenesis. After differentiation culture in vitro with the perfusion culture system, the activity of the osteoblastic cells and the consequent bone formation in vivo were significantly enhanced. These results suggest that the perfusion culture system is a valuable and convenient tool for applications in tissue engineering, especially in the generation of artificial bone tissue.
Ouyang, Shao-bo; Wang, Jun; Zhang, Hong-bin; Liao, Lan; Zhu, Hong-shui
2014-04-01
To investigate the stress distributions under load in 3 types of all-ceramic continuous crowns of the lower anterior teeth with differential shoulder thickness. Cone-beam CT (CBCT) was used to scan the in vitro mandibular central incisors, and achieve three-dimensional finite element model of all-ceramic continuous crowns with different shoulder width by using Mimics, Abaqus software. Different load conditions were simulated based on this model to study the effect of shoulder width variation on finite element analysis of 3 kinds of different all-ceramic materials of incisors fixed continuous crowns of the mandibular. Using CBCT, Mimics10.01 software and Abaqus 6.11 software, three-dimensional finite element model of all-ceramic continuous crowns of the mandibular incisor, abutment, periodontal ligament and alveolar bone was established. Different ceramic materials and various shoulder width had minor no impact on the equivalent stress peak of periodontal membrane, as well as alveolar bone. With the same shoulder width and large area of vertical loading of 120 N, the tensile stress was the largest in In-Ceram Alumina, followed by In-Ceram Zirconia and the minimum was IPS.Empress II. Under large area loading of 120 N 45° labially, when the material was IPS.Empress II, with the shoulder width increased, the porcelain plate edge of the maximum tensile stress value increased, while the other 2 materials had no obvious change. Finite element model has good geometric similarity. In the setting range of this study, when the elastic modulus of ceramic materials is bigger, the tensile stress of the continuous crown is larger. Supported by Research Project of Department of Education, Jiangxi Province (GJJ09130).
Stereolithographic processing of ceramics: Photon diffusion in colloidal dispersion
NASA Astrophysics Data System (ADS)
Garg, Rajeev
The technique of ceramic stereolithography (CSL) has been developed for fabricating near net shape ceramic objects. In stereolithography, the three-dimensional computer design file of the object is sliced into thin layers. Each layer is physically fabricated by photocuring the surface of a liquid photo-polymerizable resin bath by raster scanning an ultra-violet laser across the surface of the resin. In CSL, the liquid resin is a high concentration colloidal dispersion in a solution of ultraviolet curable polymers. The ceramic green body fabricated by ceramic stereolithography technique is subjected to the post processing steps of drying, binder burnout and sintering to form a dense ceramic object. An aqueous alumina dispersion in photocuring polymers with particle volume fraction greater than 0.5 was formulated for CSL process. Low molecular weight solution polymers were found to be best suited for formulating ceramic resins due to their inherently low viscosity and favorable interactions with the ceramic dispersant. A hydroxyapatite ceramic resin was also developed for the use in the CSL technique. A model is developed to describe the photocuring process in concentrated ceramic dispersion. The curing profile in ceramic dispersion is governed by multiple scattering from the ceramic particles and absorption by the photocuring polymers. Diffusion theory of light transport is used to model the multiple scattering and absorption phenomena. It is found that diffusive transport adequately describes the phenomena of laser pulse propagation in highly concentrated colloidal dispersions. A model was developed to describe the absorption in highly concentrated ceramic dispersion. Various complex-shaped monolithic alumina and hydroxyapatite objects were fabricated by CSL and shown to possess uniform microstructure. The mechanical properties and sintering behavior of the parts fabricated by CSL are shown to be comparable to those fabricated by other ceramic processing technique. An application of CSL has been established for fabricating orthopedic implants. Orthopedic implants and biomedical devices of defined micro and macro architecture with controlled pore sizes and porosity were fabricated by CSL. The bone implants were also fabricated form in vivo scan of the bone. The structures were implanted in rats to understand the biocompatibility of CSL fabricated parts.
In vitro evaluation of bioactivity of SiO2-CaO-P2O5-Na2O-CaF2-ZnO glass-ceramics
NASA Astrophysics Data System (ADS)
Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Bashir, Farooq; Hossain, Tousif; Kayani, Zohra
2014-09-01
Zinc is an essential trace element that stimulates bone formation but it is also known as an inhibitor of apatite crystal growth. In this work addition of ZnO to SiO2-CaO-P2O5-Na2O-CaF2 glass-ceramic system was made by conventional melt-quenching technique. DSC curves showed that the addition of ZnO moved the endothermic and exothermic peaks to lower temperatures. X-ray diffraction analysis did not reveal any additional phase caused by ZnO addition and showed the presence of wollastonite and hydroxyapatite crystalline phases only in all the glass-ceramic samples. As bio-implant apatite forming ability is an essential condition, the surface reactivity of the prepared glass-ceramic specimens was studied in vitro in Kokubo's simulated body fluid (SBF) [1] with ion concentration nearly equal to human blood plasma for 30 days at 37 °C under static condition. Atomic absorption spectroscopy (AAS) was used to study the changes in element concentrations in soaking solutions and XRD, FT-IR and SEM were used to elucidate surface properties of prepared glass-ceramics, which confirmed the formation of HCAp on the surface of all glass-ceramics. It was found that the addition of ZnO had a positive effect on bioactivity of glass-ceramics and made it a potential candidate for restoration of damaged bones.
Trace element doping in calcium phosphate ceramics to Understand osteogenesis and angiogenesis
Bose, Susmita; Fielding, Gary; Tarafder, Solaiman; Bandyopadhyay, Amit
2013-01-01
The general trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, recently have become the target of scrutiny over the safety. The importance of trace elements in natural bone health is well documented. Ions, e.g. lithium, zinc, magnesium, manganese, silicon, strontium etc. have shown to increase osteogenesis and neovascularization. Incorporation of dopants into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis. PMID:24012308
Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics
Barrère, Florence; van Blitterswijk, Clemens A; de Groot, Klaas
2006-01-01
Calcium phosphate bioceramics are widely used in orthopedic and dental applications and porous scaffolds made of them are serious candidates in the field of bone tissue engineering. They have superior properties for the stimulation of bone formation and bone bonding, both related to the specific interactions of their surface with the extracellular fluids and cells, ie, ionic exchanges, superficial molecular rearrangement and cellular activity. PMID:17717972
Ohta, Kouji; Tada, Misato; Ninomiya, Yoshiaki; Kato, Hiroki; Ishida, Fumi; Abekura, Hitoshi; Tsuga, Kazuhiro; Takechi, Masaaki
2017-12-01
Autogenous block bone grafting as treatment for alveolar ridge atrophy has various disadvantages, including a limited availability of sufficiently sized and shaped grafts, donor site morbidity and resorption of the grafted bone. As a result, interconnected porous hydroxyapatite ceramic (IP-CHA) materials with high porosity have been developed and used successfully in orthopedic cases. To the best of the author's knowledge, this is the first report of clinical application of an IP-CHA block for onlay grafting for implant treatment in a patient with horizontal alveolar atrophy. The present study performed onlay block grafting using an IP-CHA block to restore bone volume for implant placement in the alveolar ridge area without collecting autogenous bone. Dental X-ray findings revealed that the border of the IP-CHA block became increasingly vague over the 3-year period, whereas CT scanning revealed that the gap between the block and bone had a smooth transition, indicating that IP-CHA improved the process of integration with host bone. In follow-up examinations over a period of 5 years, the implants and superstructures had no problems. An IP-CHA block may be useful as a substitute for onlay block bone grafting in implant treatment.
Walschot, Lucas H B; Aquarius, René; Schreurs, Barend W; Verdonschot, Nico; Buma, Pieter
2012-08-01
Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium particles (TiP). In this in vivo study, bone ingrowth and bone volume in coated and noncoated TiP were compared to porous biphasic calcium-phospate CeP and allograft BoP. Coatings consisted of silicated calcium-phosphate and carbonated apatite. Materials were implanted in goats and impacted in cylindrical defects (diameter 8 mm) in the cancellous bone of the femur. On the basis of fluorochrome labeling and histology, bone ingrowth distance was measured at 4, 8, and 12 weeks. Cross-sectional bone area was measured at 12 weeks. TiP created a coherent matrix of entangled particles. CeP pulverized and were noncoherent. Bone ingrowth in TiP improved significantly by the coatings to levels comparable to BoP and CeP. Cross-sectional bone area was smaller in CeP and TiP compared to BoP. The osteoconductive properties of impacted TiP with a calcium-phosphate coating are comparable to impacted allograft bone and impacted biphasic ceramics. A more realistic loaded in vivo study should prove that coated TiP is an attractive alternative to allograft bone. Copyright © 2012 Wiley Periodicals, Inc.
Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics
NASA Astrophysics Data System (ADS)
Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai
2013-06-01
Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.
Burgo, F J; Mengelle, D E; Ozols, A; Fernandez, C; Autorino, C M
2016-11-01
Studies reporting specifically on squeaking in total hip arthroplasty have focused on cementless, and not on hybrid, fixation. We hypothesised that the cement mantle of the femur might have a damping effect on the sound transmitted through the metal stem. The objective of this study was to test the effect of cement on sound propagation along different stem designs and under different fixation conditions. An in vitro model for sound detection, composed of a mechanical suspension structure and a sound-registering electronic assembly, was designed. A pulse of sound in the audible range was propagated along bare stems and stems implanted in cadaveric bone femurs with and without cement. Two stems of different alloy and geometry were compared. The magnitudes of the maximum amplitudes of the bare stem were in the range of 10.8 V to 11.8 V, whereas the amplitudes for the same stems with a cement mantle in a cadaveric bone decreased to 0.3 V to 0.7 V, implying a pulse-attenuation efficiency of greater than 97%. The same magnitude is close to 40% when the comparison is made against stems implanted in cadaveric bone femurs without cement. The in vitro model presented here has shown that the cement had a remarkable effect on sound attenuation and a strong energy absorption in cement mantle and bone. The visco-elastic properties of cement can contribute to the dissipation of vibro-acoustic energy, thus preventing hip prostheses from squeaking. This could explain, at least in part, the lack of reports of squeaking when hybrid fixation is used.Cite this article: F. J. Burgo, D. E. Mengelle, A. Ozols, C. Fernandez, C. M. Autorino. The damping effect of cement as a potential mitigation factor of squeaking in ceramic-on-ceramic total hip arthroplasty. Bone Joint Res 2016;5:531-537. DOI: 10.1302/2046-3758.511.BJR-2016-0058.R1. © 2016 Burgo et al.
Lavallé, F; Pascal-Mousselard, H; Rouvillain, J L; Ribeyre, D; Delattre, O; Catonné, Y
2004-10-01
The aim of this radiological study was to evaluate the use of a biphasic ceramic wedge combined with plate fixation with locked adjustable screws for open wedge tibial osteotomy. Twenty-six consecutive patients (27 knees) underwent surgery between December 1999 and March 2002 to establish a normal lower-limb axis. The series included 6 women and 20 men, mean age 50 years (16 right knees and 11 left knees). Partial weight-bearing with crutches was allowed on day 1. A standard radiological assessment was performed on day 1, 90, and 360 (plain AP and lateral stance films of the knee). A pangonogram was performed before surgery and at day 360. Presence of a lateral metaphyseal space, development of peripheral cortical bridges, and osteointegration of the bone substitute-bone interface were evaluated used to assess bone healing. The medial tibial angle between the line tangent to the tibial plateau and the anatomic axis of the tibia (beta) was evaluated to assess preservation of postoperative correction. The HKA angle was determined. Three patients were lost to follow-up and 23 patients (24 knees) were retained for analysis. At last follow-up, presence of peripheral cortical bridges and complete filling of the lateral metaphyseal space demonstrated bone healing in all patients. Good quality osteointegration was achieved since 21 knees did not present an interface between the bone substitute and native bone (homogeneous transition zone). The beta angle was unchanged for 23 knees. A normal axis was observed in patients (16 knees) postoperatively. Use of a biphasic ceramic wedge in combination with plate fixation with locked adjustable screws is a reliable option for open wedge tibial osteotomy. The bone substitute fills the gap well. Tolerance and integration are optimal. Bone healing is achieved. Plate fixation with protected weight bearing appears to be a solid assembly, maintaining these corrections.
French, David; Cochran, David L; Ofec, Ronen
The purpose of this report is to describe the crestal bone level (CBL) around implants of various designs, describe the peri-implant soft tissue condition, and evaluate the relationship between the two over time. This retrospective cohort study reports on 2,060 patients with 4,591 implants evaluated after 3 months; 1, 3, 5, and 7 years; and up to 10 years. Periapical radiographs were used to evaluate changes in CBL. The peri-implant soft tissue was evaluated using a modified Bleeding Index termed the Implant Mucosal Index (IMI) where: 0 = no bleeding; 1 = minimal, single-point bleeding; 2 = moderate, multipoint bleeding; 3 = profuse, multipoint bleeding; and 4 = suppuration. At 3 months, the mean CBL was 0.06 ± 0.22 mm; by 8 to 10 years, it had increased to 0.44 ± 0.81 mm. The median CBL remained stable throughout the study at < 0.1 mm. At 8 to 10 years, 15% of implants exhibited a CBL > 1.02 mm, and 5% exhibited a CBL > 2.28 mm. More than 50% of patients experienced some bleeding, as seen by an IMI ≥ 1 during follow-up. A positive correlation was found between IMI and CBL, as shown by a mean CBL after 4 years of 0.33 mm, 0.71 mm, and 1.52 mm for IMI = 2, 3, and 4, respectively. One exception was between IMI = 0 and IMI = 1, where no significant difference was found and bone loss was minimal. Bone loss, as measured by changes in CBL during the first 10 years of implant life spans, was minimal for most implants. Nevertheless, it is not unusual to observe implants with advanced bone loss. The soft tissue condition is a good indicator of bone loss. Time alone and minimal bleeding did not correlate with bone loss, but care should be taken for implants with profuse bleeding or suppuration.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2013 CFR
2013-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2014 CFR
2014-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2012 CFR
2012-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2010 CFR
2010-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Process for fabrication of cermets
Landingham, Richard L [Livermore, CA
2011-02-01
Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.
NASA Astrophysics Data System (ADS)
Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.
2016-07-01
In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.
Wilson, Clayton E; Kruyt, Moyo C; de Bruijn, Joost D; van Blitterswijk, Clemens A; Oner, F Cumhur; Verbout, Abraham J; Dhert, Wouter J A
2006-01-01
This study presents a new screening model for evaluating the influence of multiple conditions on the initial process of bone formation in the posterior lumbar spine of a large animal. This model uses cages designed for placement on the decorticated transverse process of the goat lumbar spine. Five conduction channels per cage, each be defined by a different material treatment, are open to both the underlying bone and overlying soft tissue. The model was validated in ten adult Dutch milk goats, with each animal implanted with two cages containing a total of ten calcium phosphate material treatments according to a randomized complete block design. The ten calcium phosphate ceramic materials were created through a combination of material chemistry (BCP, TCP, HA), sintering temperature (low, medium, high), calcination and surface roughness treatments. To monitor the bone formation over time, fluorochrome markers were administered at 3, 5 and 7 weeks and the animals were sacrificed at 9 weeks after implantation. Bone formation in the conduction channels was investigated by histology and histomorphometry of non-decalcified sections using traditional light and epifluorescent microscopy. According to both observed and measured bone formation parameters, materials were ranked in order of increasing magnitude as follows: low sintering temperature BCP (rough and smooth) approximately medium sintering temperature BCP approximately = TCP > calcined low sintering temperature HA > non-calcined low sintering temperature HA > high sintering temperature BCP (rough and smooth) > high sintering temperature HA (calcined and non-calcined). These results agree closely with those obtained in previous studies of osteoconduction and bioactivity of ceramics thereby validating the screening model presented in this study.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
..., 5 chert flaked stone tools, 27 pieces of chert debitage, 15 ground stone tools, 75 bone tools, 1 basalt flake, 1 granite tool, 1 schist tool, 2 steatite ear plugs, 1 ceramic fragment, 1 bone bead, 1... individuals were identified. The 247 associated funerary objects are 128 bone tools, 78 obsidian tools, 18...
Bose, Susmita; Tarafder, Solaiman
2012-01-01
Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. PMID:22127225
Cementless Hydroxyapatite Coated Hip Prostheses
Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda
2015-01-01
More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848
The long range voice coil atomic force microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, H.; Randall, C.; Bridges, D.
2012-02-15
Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coilsmore » in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.« less
Fernandes, João S; Gentile, Piergiorgio; Pires, Ricardo A; Reis, Rui L; Hatton, Paul V
2017-09-01
Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag + , Cu + , and Sr 2+ , are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic, craniofacial and dental surgery. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bioglass: A novel biocompatible innovation.
Krishnan, Vidya; Lakshmi, T
2013-04-01
Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as "bioactive glass-bioglass." It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as "bioactive ceramics." The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone.
Bioactive and inert dental glass-ceramics.
Montazerian, Maziar; Zanotto, Edgar Dutra
2017-02-01
The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.
Lin, Kaili; Liu, Yong; Huang, Hai; Chen, Lei; Wang, Zhen; Chang, Jiang
2015-06-01
The investigation of the bone regeneration ability, degradation and excretion of the grafts is critical for development and application of the newly developed biomaterials. Herein, the in vivo bone-regeneration, biodegradation and silicon (Si) excretion of the new type calcium silicate (CaSiO3, CS) bioactive ceramics were investigated using rabbit femur defect model, and the results were compared with the traditional β-tricalcium phosphate [β-Ca3(PO4)2, β-TCP] bioceramics. After implantation of the scaffolds in rabbit femur defects for 4, 8 and 12 weeks, the bone regenerative capacity and degradation were evaluated by histomorphometric analysis. While urine and some organs such as kidney, liver, lung and spleen were resected for chemical analysis to determine the excretion of the ionic products from CS implants. The histomorphometric analysis showed that the bioresorption rate of CS was similar to that of β-TCP in femur defect model, while the CS grafts could significantly stimulate bone formation capacity as compared with β-TCP bioceramics (P < 0.05). The chemical analysis results showed that Si concentration in urinary of the CS group was apparently higher than that in control group of β-TCP. However, no significant increase of the Si excretion was found in the organs including kidney, which suggests that the resorbed Si element is harmlessly excreted in soluble form via the urine. The present studies show that the CS ceramics can be used as safe, bioactive and biodegradable materials for hard tissue repair and tissue engineering applications.
In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.
Lee, Jae Hyup; Hong, Kug Sun; Baek, Hae-Ri; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Lee, Hyun-Kyung
2013-07-01
Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-μm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo
2006-09-01
Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new bFGF gene enhanced tissue engineering strategy could be of potential benefit to accelerate bone healing, especially in defects caused by atrophic nonunion and avascular necrosis of the femoral head.
Kojima, Hiroko; Uemura, Toshimasa
2005-01-28
Core binding factor alpha-1 (Cbfa1), known as an essential transcription factor for osteogenic lineage, has two major N-terminal isoforms: Pebp2alphaA and Til-1. To study the roles of these isoforms in bone regeneration, we applied an adenoviral vector carrying their genes to transduce primary osteoprogenitor cells in vitro and in vivo. Overexpression of the two isoforms induced rapid and marked osteoblast differentiation, with Til-1 being more effective in vitro, by examination of the alkaline phosphatase activity, calcium content, and Alizarin red staining. Til-1 overexpressing cells/porous ceramic composites were transplanted into subcutaneous and bone defect sites in Fischer rats (cultured bone transplantation model) and markedly affected in vivo bone formation and osteoblast markers. The results demonstrated that the reconstitution of bone tissues, such as cortical bone and trabecular bone was accelerated by implantation of Til-1 overexpressing cells/porous ceramic composites. Moreover, the new bone formation by Til-1 overexpression appeared to reflect replacement of new bone within the implant boundaries. To ascertain whether implanted Cbfa1 overexpressing cells could differentiate into osteogenic cells to create bone or whether it stimulated the surrounding recipient tissue to regenerate bone, implanted male donor cells were visualized by fluorescent in situ hybridization analysis. The proportion of implanted cells in the presumptive bone forming region was over 80% and did not change throughout from 3 days to 8 weeks after implantation. These findings suggested that the newly formed bone in the porous area of the scaffold is mostly produced by the implanted donor cells or their derived cells, effectively by Til-1 overexpression.
Jazedje, Tatiana; Bueno, Daniela F; Almada, Bruno V P; Caetano, Heloisa; Czeresnia, Carlos E; Perin, Paulo M; Halpern, Silvio; Maluf, Mariangela; Evangelista, Lucila P; Nisenbaum, Marcelo G; Martins, Marília T; Passos-Bueno, Maria R; Zatz, Mayana
2012-06-01
We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30-50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)-a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% β-tricalciumphosphate-only, and the right side (RS) with the CellCeram and htMSCs (10(6) cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction.
Simple Signaling Molecules for Inductive Bone Regenerative Engineering
Nelson, Stephen J.; Deng, Meng; Sethuraman, Swaminathan; Doty, Stephen B.; Lo, Kevin W. H.; Khan, Yusuf M.; Laurencin, Cato T.
2014-01-01
With greater than 500,000 orthopaedic procedures performed in the United States each year requiring a bone graft, the development of novel graft materials is necessary. We report that some porous polymer/ceramic composite scaffolds possess intrinsic osteoinductivity as shown through their capacity to induce in vivo host osteoid mineralization and in vitro stem cell osteogenesis making them attractive synthetic bone graft substitutes. It was discovered that certain low crystallinity ceramics partially dissociate into simple signaling molecules (i.e., calcium and phosphate ions) that induce stem cells to endogenously produce their own osteoinductive proteins. Review of the literature has uncovered a variety of simple signaling molecules (i.e., gases, ions, and redox reagents) capable of inducing other desirable stem cell differentiation through endogenous growth factor production. Inductive simple signaling molecules, which we have termed inducerons, represent a paradigm shift in the field of regenerative engineering where they can be utilized in place of recombinant protein growth factors. PMID:25019622
1992-02-01
467 Table 4 Personal Items from Shovel Tests, 160R130. SURF SURF SURF N15 N5 NO NO $5 S5 1 2 3 W20 El5 E20 W10 E20 EO Bone button, Type B-5 Ceramic...Table 4 . Personal Items from Shovel Tests, 160R130. S15 S20 S20 S25 S25 S30 S30 S30 S32.5 E5 E35 E20 E50 E25 E50 E35 E20 E35 Bone button, Type B-5...1 1 1 7 1 471 Table 4 Personal Items from Shovel Tests, 160R130. S30 S34 S35 S45 S50 TOTAL El0 E35 E30 E30 E55 Bone button, Type B-5 1 1 Ceramic
From brittle to ductile fracture of bone
NASA Astrophysics Data System (ADS)
Peterlik, Herwig; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter
2006-01-01
Toughness is crucial to the structural function of bone. Usually, the toughness of a material is not just determined by its composition, but by the ability of its microstructure to dissipate deformation energy without propagation of the crack. Polymers are often able to dissipate energy by viscoplastic flow or the formation of non-connected microcracks. In ceramics, well-known toughening mechanisms are based on crack ligament bridging and crack deflection. Interestingly, all these phenomena were identified in bone, which is a composite of a fibrous polymer (collagen) and ceramic nanoparticles (carbonated hydroxyapatite). Here, we use controlled crack-extension experiments to explain the influence of fibre orientation on steering the various toughening mechanisms. We find that the fracture energy changes by two orders of magnitude depending on the collagen orientation, and the angle between collagen and crack propagation direction is decisive in switching between different toughening mechanisms.
Organic-Inorganic Composites Toward Biomaterial Application.
Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara
2015-01-01
Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. © 2015 S. Karger AG, Basel.
Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie
2015-11-04
Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.
Zhou, Changchun; Ye, Xingjiang; Fan, Yujiang; Ma, Liang; Tan, Yanfei; Qing, Fangzu; Zhang, Xingdong
2014-09-01
A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds.
Intensive Survey at 11-Jd-126, Jo Daviess County, Illinois. Volume 2. Data Sheets.
1983-07-01
wes-t- of_(Thtum a CONTENTS: Ceramics _____ Lithics- 4-pieces (1 shattgr, _3_ lakesfi q) Rough Rock-________ __ Bone 1 bone fragment __ Charcoal...Historic I historic ceramic iOther__ ___________ Washed fly M.0. /M. T.,/J. C. Sorted ByJ. C./M.T./M. O./P. Labeled By- M.O. Date 10/6/82 Date___ 10/6/82...5it.cU 6 I: I 1. . (3l 1: 1 t- y 1 P L _ ) .11 0/612 t" ) 1 L*Tot N:tr 29-it--~~ ~- o’. l.-).- I)"se ’ 10 ’r , c1 Sorte Byrj * Da e2 3 2 Vst 0 821f Co
Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies
Millhouse, Paul W; Kepler, Christopher K; Radcliff, Kris E.; Fehlings, Michael G.; Janssen, Michael E.; Sasso, Rick C.; Benedict, James J.; Vaccaro, Alexander R
2016-01-01
Study Design A narrative review of literature. Objective This manuscript intends to provide a review of clinically relevant bone substitutes and bone expanders for spinal surgery in terms of efficacy and associated clinical outcomes, as reported in contemporary spine literature. Summary of Background Data Ever since the introduction of allograft as a substitute for autologous bone in spinal surgery, a sea of literature has surfaced, evaluating both established and newly emerging fusion alternatives. An understanding of the available fusion options and an organized evidence-based approach to their use in spine surgery is essential for achieving optimal results. Methods A Medline search of English language literature published through March 2016 discussing bone graft substitutes and fusion extenders was performed. All clinical studies reporting radiological and/or patient outcomes following the use of bone substitutes were reviewed under the broad categories of Allografts, Demineralized Bone Matrices (DBM), Ceramics, Bone Morphogenic proteins (BMPs), Autologous growth factors (AGFs), Stem cell products and Synthetic Peptides. These were further grouped depending on their application in lumbar and cervical spine surgeries, deformity correction or other miscellaneous procedures viz. trauma, infection or tumors; wherever data was forthcoming. Studies in animal populations and experimental in vitro studies were excluded. Primary endpoints were radiological fusion rates and successful clinical outcomes. Results A total of 181 clinical studies were found suitable to be included in the review. More than a third of the published articles (62 studies, 34.25%) focused on BMP. Ceramics (40 studies) and Allografts (39 studies) were the other two highly published groups of bone substitutes. Highest radiographic fusion rates were observed with BMPs, followed by allograft and DBM. There were no significant differences in the reported clinical outcomes across all classes of bone substitutes. Conclusions There is a clear publication bias in the literature, mostly favoring BMP. Based on the available data, BMP is however associated with the highest radiographic fusion rate. Allograft is also very well corroborated in the literature. The use of DBM as a bone expander to augment autograft is supported, especially in the lumbar spine. Ceramics are also utilized as bone graft extenders and results are generally supportive, although limited. The use of autologous growth factors is not substantiated at this time. Cell matrix or stem cell-based products and the synthetic peptides have inadequate data. More comparative studies are needed to evaluate the efficacy of bone graft substitutes overall. PMID:27909654
[Mechanical strength and mechano-compatibility of tissue-engineered bones].
Tanaka, Shigeo
2016-01-01
Current artificial bones made of metals and ceramics may be replaced around a decade after implantation due to its low durability, which is brought on by a large difference from the host bone in mechanical properties, i.e., low mechano-compatibility. On the other hand, tissue engineering could be a solution with regeneration of bone tissues from stem cells in vitro. However, there are still some problems to realize exactly the same mechanical properties as those of real bone. This paper introduces the technical background of bone tissue engineering and discusses possible methods for installation of mechano-compatibility into a regenerative bone. At the end, future directions toward the realization of ideal mechano-compatible regenerative bone are proposed.
Spalthoff, S; Jehn, P; Zimmerer, R; Möllmann, U; Gellrich, N-C; Kokemueller, H
2015-06-01
We previously generated viable heterotopic bone in living animals and found that 3 months of intrinsic vascularization improved bone formation and matrix degeneration. In this study, we varied the pre-vascularization time to determine its effects on the kinetics of bone formation and ceramic degradation. Two 25-mm-long cylindrical β-tricalcium phosphate scaffolds were filled intraoperatively with autogenous iliac crest bone marrow and implanted in the latissimus dorsi muscle in six sheep. To examine the effect of axial perfusion, one scaffold was surgically implanted with (group C) or without (group D) a central vascular bundle. All animals were sacrificed 6 months postoperatively and histomorphometric measurements were compared to previous results. All implanted scaffolds exhibited ectopic bone growth. However, bone growth was not significantly different between the 3-month (group A, 0.191±0.097 vs. group C, 0.237±0.075; P=0.345) and 6-month (group B, 0.303±0.105 vs. group D, 0.365±0.258; P=0.549) pre-vascularization durations, regardless of vessel supply; early differences between surgically and extrinsically vascularized constructs disappeared after 6 months. Here, we describe a reliable procedure for generating ectopic bone in vivo. A 3-month pre-vascularization duration appears sufficient and ceramic degradation proceeds in accordance with bone generation, supporting the hypothesis of cell-mediated resorption. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Restrepo, S.; Ocampo, S.; Ramírez, J. A.; Paucar, C.; García, C.
2017-12-01
Repairing tissues and organs has been the main goal of surgical procedures. Since the 1990s, the main goal of tissue engineering has been reparation, using porous scaffolds that serve as a three-dimensional template for the initial fixation of cells and subsequent tissue formation both in vitro and in vivo. A scaffold must have specific characteristics of porosity, interconnectivity, surface area, pore volume, surface tortuosity, permeability and mechanical properties, which makes its design, manufacturing and characterization a complex process. Inspired by nature, triply periodic minimal surfaces (TPMS) have emerged as an alternative for the manufacture of porous pieces with design requirements, such as scaffolds for tissue repair. In the present work, we used the technique of 3D printing to obtain ceramic structures with Gyroid, Schwarz Primitive and Schwarz Diamond Surfaces shapes, three TPMS that fulfil the geometric requirements of a bone tissue scaffold. The main objective of this work is to compare the mechanical properties of ceramic pieces of three different forms of TPMS printed in 3D using a commercial ceramic paste. In this way it will be possible to clarify which is the TPMS with appropriate characteristics to construct scaffolds of ceramic materials for bone repair. A dependence of the mechanical properties with the geometry was found being the Primitive Surface which shows the highest mechanical properties.
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2009-12-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2010-03-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian
2017-04-01
Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Osteoinduction by Ca-P biomaterials implanted into the muscles of mice*
Yang, Rui-na; Ye, Feng; Cheng, Li-jia; Wang, Jin-jing; Lu, Xiao-feng; Shi, Yu-jun; Fan, Hong-song; Zhang, Xing-dong; Bu, Hong
2011-01-01
The osteoinduction of porous biphasic calcium phosphate ceramics (BCP) has been widely reported and documented, but little research has been performed on rodent animals, e.g., mice. In this study, we report osteoinduction in a mouse model. Thirty mice were divided into two groups. BCP materials (Sample A) and control ceramics (Sample B) were implanted into the leg muscle, respectively. Five mice in each group were killed at 15, 30, and 45 d after surgery. Sample A and Sample B were harvested and used for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC) staining, and Alizarin Red S staining to check bone formation in the biomaterials. Histological analysis showed that no bone tissue was formed 15 d after implantation (0/5) in either of the two groups. Newly-formed bone tissues were observed in Sample A at 30 d (5/5) and 45 d (5/5) after implantation; the average amounts of newly-formed bone tissues were approximately 5.2% and 8.6%, respectively. However, we did not see any bone tissue in Sample B until 45 d after implantation. Bone-related molecular makers such as bone morphogenesis protein-2 (BMP-2), collagen type I, and osteopontin were detected by IHC staining in Sample A 30 d after implantation. In addition, the newly-formed bone was also confirmed by Alizarin Red S staining. Because this is the report of osteoinduction in the rodent animal on which all the biotechnologies were available, our results may contribute to further mechanism research. PMID:21726066
A new hydroxyapatite-based biocomposite for bone replacement.
Bellucci, Devis; Sola, Antonella; Gazzarri, Matteo; Chiellini, Federica; Cannillo, Valeria
2013-04-01
Since the 1970s, various types of ceramic, glass and glass-ceramic materials have been proposed and used to replace damaged bone in many clinical applications. Among them, hydroxyapatite (HA) has been successfully employed thanks to its excellent biocompatibility. On the other hand, the bioactivity of HA and its reactivity with bone can be improved through the addition of proper amounts of bioactive glasses, thus obtaining HA-based composites. Unfortunately, high temperature treatments (1200°C÷1300°C) are usually required in order to sinter these systems, causing the bioactive glass to crystallize into a glass-ceramic and hence inhibiting the bioactivity of the resulting composite. In the present study novel HA-based composites are realized and discussed. The samples can be sintered at a relatively low temperature (800 °C), thanks to the employment of a new glass (BG_Ca) with a reduced tendency to crystallize compared to the widely used 45S5 Bioglass®. The rich glassy phase, which can be preserved during the thermal treatment, has excellent effects in terms of in vitro bioactivity; moreover, compared to composites based on 45S5 Bioglass® having the same HA/glass proportions, the samples based on BG_Ca displayed an earlier response in terms of cell proliferation. Copyright © 2012 Elsevier B.V. All rights reserved.
Design of Natural Hydroxyapatite as bio-composite ceramics (HAP): Experimental and Numerical Study
NASA Astrophysics Data System (ADS)
Belghazi, Z.; Katundi, D.; Ayari, F.; Bayraktar, E.
2011-01-01
Hydroxyapatite (HAP—Ca10(PO4)6 (OH)2), which exhibits excellent biocompatibility in the body, is one of the most widely used bioactive ceramics for biomedical applications. Along with the ability to carry the load, one of the most important properties of materials used for bone replacement is biocompatibility. In fact, HAP is a bioactive material and it can incorporate into bone structures, supporting bone in-growth without breaking down or dissolving, and it interacts with the living tissue due to the presence of free calcium and phosphate compounds. Generally, Al2O3 powder is added to HAP powder in order to obtain high fracture toughness. Al2O3 has good mechanical properties as compared with HAP, and exhibits extremely high stability with human tissues [1-6]. In this paper, the effect of microwave sintering temperature on the relative density, hardness, and phase purity of compacted bovine Hydroxyapatite (BHA) powder was reported. This research is a comprehensive attempt to develop Hydroxyapatite bio composite ceramics reinforced with alumina—Al2O3, pure titanium and pure pulverised boron powder. A Finite Element (FEM) analysis is also used for modelling to simulate the macroscopic behaviour of this material, taking into account the relevant microscopic scales.
Tian, Ye; Lu, Teliang; He, Fupo; Xu, Yubin; Shi, Haishan; Shi, Xuetao; Zuo, Fei; Wu, Shanghua; Ye, Jiandong
2018-04-13
β-tricalcium phosphate (β-TCP) is well known as a resorbable bone repair material due to its inherent excellent biocompatibility and osteoconductivity. However, β-TCP is encountered with osteostimulation-deficiency and poor mechanical strength because of poor sinterability. Herein, we prepared novel β-TCP composite ceramics (TCP/SPGs) by introducing strontium-containing phosphate-based glass (SPG; 45P 2 O 5 -32SrO-23Na 2 O) as sintering additive. The SPG helped to achieve efficient liquid-phase sintering of β-TCP at 1100 °C. The compressive strength of TCP/SPGs with 15 wt.% SPG (TCP/SPG15) was 2.65 times as high as that of plain β-TCP ceramic. The SPG reacted with β-TCP, and the Sr 2+ and Na 2+ from SPG replaced Ca 2+ in the lattice structure of β-TCP, enabling the sustained release of strontium from TCP/SPGs. In vitro cytological test indicated that TCP/SPGs with certain amount of SPG were highly biocompatible, and noticeably promoted osteogenesis, and inhibited osteoclastic activities. Our results suggested that the TCP/SPG15 might be potential high-strength bone grafts used for bone defect repair, especially in the osteoporotic condition. Copyright © 2018 Elsevier B.V. All rights reserved.
Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion.
Slots, Casper; Jensen, Martin Bonde; Ditzel, Nicholas; Hedegaard, Martin A B; Borg, Søren Wiatr; Albrektsen, Ole; Thygesen, Torben; Kassem, Moustapha; Andersen, Morten Østergaard
2017-02-01
Craniofacial bone trauma is a leading reason for surgery at most hospitals. Large pieces of destroyed or resected bone are often replaced with non-resorbable and stock implants, and these are associated with a variety of problems. This paper explores the use of a novel fatty acid/calcium phosphate suspension melt for simple additive manufacturing of ceramic tricalcium phosphate implants. A wide variety of non-aqueous liquids were tested to determine the formulation of a storable 3D printable tricalcium phosphate suspension ink, and only fatty acid-based inks were found to work. A heated stearic acid-tricalcium phosphate suspension melt was then 3D printed, carbonized and sintered, yielding implants with controllable macroporosities. Their microstructure, compressive strength and chemical purity were analyzed with electron microscopy, mechanical testing and Raman spectroscopy, respectively. Mesenchymal stem cell culture was used to assess their osteoconductivity as defined by collagen deposition, alkaline phosphatase secretion and de-novo mineralization. After a rapid sintering process, the implants retained their pre-sintering shape with open pores. They possessed clinically relevant mechanical strength and were chemically pure. They supported adhesion of mesenchymal stem cells, and these were able to deposit collagen onto the implants, secrete alkaline phosphatase and further mineralize the ceramic. The tricalcium phosphate/fatty acid ink described here and its 3D printing may be sufficiently simple and effective to enable rapid, on-demand and in-hospital fabrication of individualized ceramic implants that allow clinicians to use them for treatment of bone trauma. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Tajbakhsh, Saeid; Hajiali, Faezeh
2017-01-01
The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites containing ceramic reinforcements, including various methods of production and the evaluation of the scaffolds in terms of porosity, mechanical properties, in vitro and in vivo biocompatibility and bioactivity for bone tissue engineering applications. The production routes range from traditional approaches such as the use of porogens to provide porosity in the scaffolds to novel methods such as solid free-form techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Arinc, Hakan
2018-06-01
To evaluate the effects of prosthetic material on the degree of stress to the cortical bone, trabecular bone, framework, and implants using finite element analysis (FEA). A mandibular implant-supported fixed prosthesis was designed. Different prosthetic materials [cobalt-chromium-supported ceramic, zirconia-supported ceramic, and zirconia-reinforced polymethyl methacrylate (ZRPMMA)-supported resin] were used. FEA was used to evaluate stress under different loading conditions. Maximum principal (σmax), minimum principal (σmin), and von Mises (σvM) stress values were obtained. Similar σmax, σmin, and σvM values were observed in the cortical and trabecular bones and in implants under both loading conditions, with the exception of the ZRPMMA model, which showed the highest σmax, σmin, and σvM values in oblique loading. The ZRPMMA model had the lowest σvM value in the framework under both loading conditions. ZRPMMA had the lowest stress values in the framework, with increased stress values in the implants and bone tissue. Framework and veneering materials may influence stress values under different loading conditions.
Chen, Lu; Zhou, Wen-qing; Wu, Yan-ping; Lu, Jing-hua
2011-06-01
To evaluate the clinical value of using the patient's autogenous bone mixed with beta-tricalcium phosphate ceramics(β-TCP) for maxillary sinus lift with simultaneous implantation. Patients with loss of posterior teeth and bone height of maxillary sinus floor between 4-10mm underwent internal sinus floor elevation, the proportion of bone to β-TCP was 1:1 and the mixture was inserted into the sinus floor. All cases had simultaneously placed ITI implants.The final crown fabrication was taken 4-6 months after implanting. Twenty-one implants were inserted in 16 cases, the mean increase height was 4.2mm(2-6mm). There was clinical complaint of maxillary sinus inflammation in 1 case within 2 weeks, but the symptoms disappeared after antibiotic therapy. The remaining of 20 implants had no obvious complications. All implants had loaded for 32 months and were stable and well osseointegration on X-ray film. Maxillary sinus elevation with simultaneous implantation is an easy procedure. Implants can be stable for a long time.
Srinivasan, Murali; Vazquez, Lydia; Rieder, Philippe; Moraguez, Osvaldo; Bernard, Jean-Pierre; Belser, Urs C
2014-05-01
The aim of this review was to test the hypothesis that 6 mm micro-rough short Straumann(®) implants provide predictable survival rates and verify that most failures occurring are early failures. A PubMed and hand search was performed to identify studies involving micro-rough 6-mm-short implants published between January 1987 and August 2011. Studies were included that (i) involve Straumann(®) 6 mm implants placed in the human jaws, (ii) provide data on the survival rate, (iii) mention the time of failure, and (iv) report a minimum follow-up period of 12 months following placement. A meta-analysis was performed on the extracted data. From a total of 842 publications that were screened, 12 methodologically sound articles qualified to be included for the statistical evaluation based on our inclusion criteria. A total of 690 Straumann(®) 6-mm-short implants were evaluated in the reviewed studies (Total: placed-690, failed-25; maxilla: placed-266, failed-14; mandible: placed-364, failed-5; follow-up period: 1-8 years). A meta-analysis was performed on the calculated early cumulative survival rates (CSR%). The pooled early CSR% calculated in this meta-analysis was 93.7%, whereas the overall survival rates in the maxilla and mandible were 94.7% and 98.6% respectively. Implant failures observed were predominantly early failures (76%). This meta-analysis provides robust evidence that micro-rough 6-mm-short dental implants are a predictable treatment option, providing favorable survival rates. The failures encountered with 6-mm-short implants were predominantly early and their survival in the mandible was slightly superior. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Retention of cast crown copings cemented to implant abutments.
Dudley, J E; Richards, L C; Abbott, J R
2008-12-01
The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.
Kim, Ju-Ang; Lim, Jiwon; Naren, Raja; Yun, Hui-Suk; Park, Eui Kyun
2016-10-15
Similar to calcium phosphates, magnesium phosphate (MgP) ceramics have been shown to be biocompatible and support favorable conditions for bone cells. Micropores below 25μm (MgP25), between 25 and 53μm (MgP53), or no micropores (MgP0) were introduced into MgP scaffolds using different sizes of an NaCl template. The porosities of MgP25 and MgP53 were found to be higher than that of MgP0 because of their micro-sized pores. Both in vitro and in vivo analysis showed that MgP scaffolds with high porosity promoted rapid biodegradation. Implantation of the MgP0, MgP25, and MgP53 scaffolds into rabbit calvarial defects (with 4- and 6-mm diameters) was assessed at two times points (4 and 8weeks), followed by analysis of bone regeneration. The micro-CT and histologic analyses of the 4-mm defect showed that the MgP25 and MgP53 scaffolds were degraded completely at 4weeks with simultaneous bone and marrow-like structure regeneration. For the 6-mm defect, a similar pattern of regeneration was observed. These results indicate that the rate of degradation is associated with bone regeneration. The MgP25 and MgP53 scaffold-implanted bone showed a better lamellar structure and enhanced calcification compared to the MgP0 scaffold because of their porosity and degradation rate. Tartrate-resistant acid phosphatase (TRAP) staining indicated that the newly formed bone was undergoing maturation and remodeling. Overall, these data suggest that the pore architecture of MgP ceramic scaffolds greatly influence bone formation and remodeling activities and thus should be considered in the design of new scaffolds for long-term bone tissue regeneration. The pore structural conditions of scaffold, including porosity, pore size, pore morphology, and pore interconnectivity affect cell ingrowth, mechanical properties and biodegradabilities, which are key components of scaffold in bone tissue regeneration. In this study, we designed hierarchical pore structure of the magnesium phosphate (MgP) scaffold by combination of the 3D printing process, self-setting reaction and salt-leaching technique, and first studied the effect of pore structures of bioceramic scaffolds on bone tissue regeneration through both in vitro and in vivo studies (rabbit calvarial model). The MgP scaffolds with higher porosity promoted more rapid biodegradation and enhanced new bone formation and remodeling activities at the same time. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mesenchymal Tissue Response to Heterotopically Placed Demineralized Bone Powder Particles in the Rat
1987-01-01
Press, Cambridge, England, pp. 329-356. Hurt, W. 1968. Freeze-dried bone homografts in periodontal lesions in dogs. J. Periodontology , JI89. Hynes, R...1974. Biodegradable ceramic in periodontal defects. Oral Surg., 11t344. Lindhe, J. 1983. Textbook of Clinical Periodontology . Philadelphia, Munskgaard... Periodontology , 58:129. Turner, D.W. and Mellonig, J. 1981. Antigenicity of freeze- dried bone allografts in periodontal osseous defects. J. Periodont. Res
Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin
2017-07-15
The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Spies, Christian K G; Schnürer, Stefan; Gotterbarm, Tobias; Breusch, Steffen J
2010-01-01
To examine and compare biocompatibility, osteocompatibility, rate of resorption, and remodelling dynamics of 2 calcium phosphate cements in comparison with a well-established hydroxyapatite ceramic. In a randomised fashion, Bone Source™, Cementek™, and Endobon™ were implanted bilaterally into the proximal metaphyseal tibiae of 35 Göttinger minipigs in a direct right vs. left intra-individual comparison. Fluorescent labelling was used. Histological and morphometric evaluations were carried out at 6, 12, and 52 weeks. All bone substitutes showed good biocompatibility, bioactivity, and osteoconductivity. Endobon™ was not degraded over the follow-up period. Cementek™ was degraded constantly and significantly over the time intervals, whereas Bone Source™ was degraded mainly from the 6 week to 12 week interval. After 52 weeks, a significant difference of residual material within the defect zone was detected between all substitutes, with the highest resorption rate for Cementek™. Bone Source™ was least degraded. Defects filled with Endobon™ were characterised by a significantly continuous bony ingrowth over the time intervals. Bone formation within the defects filled with Cementek™ and Bone Source™ showed significant peaks 12 weeks after implantation. After 52 weeks, a significant difference in the amount of new bone within the defect area was detected, with the highest levels for Endobon™, followed by Cementek™. After 1 year a restitution ad integrum could not be observed in any treatment group. The ceramic Endobon™ showed the expected response histologically. Based on its porosity it excelled in osteoconductivity. Concerning the calcium phosphate cements, a thorough osseous incorporation seemed to inhibit further degradation of both bone substitute materials.
3D microenvironment as essential element for osteoinduction by biomaterials.
Habibovic, Pamela; Yuan, Huipin; van der Valk, Chantal M; Meijer, Gert; van Blitterswijk, Clemens A; de Groot, Klaas
2005-06-01
In order to unravel the mechanism of osteoinduction by biomaterials, in this study we investigated the influence of the specific surface area on osteoinductive properties of two types of calcium phosphate ceramics. Different surface areas of the ceramics were obtained by varying their sintering temperatures. Hydroxyapatite (HA) ceramic was sintered at 1150 and 1250 degrees C. Biphasic calcium phosphate (BCP) ceramic, consisting of HA and beta-tricalcium phosphate (beta-TCP), was sintered at 1100, 1150 and 1200 degrees C. Changes in sintering temperature did not influence the chemistry of the ceramics; HA remained pure after sintering at different temperatures and the weight ratio of HA and beta-TCP in the BCP was independent of the temperature as well. Similarly, macroporosity of the ceramics was unaffected by the changes of the sintering temperature. However, microporosity (pore diameter <10 microm) significantly decreased with increasing sintering temperature. In addition to the decrease of the microporosity, the crystal size increased with increasing sintering temperature. These two effects resulted in a significant decrease of the specific surface area of the ceramics with increasing sintering temperatures. Samples of HA1150, HA1250, BCP1100, BCP1150 and BCP1200 were implanted in the back muscles of Dutch milk goats and harvested at 6 and 12 weeks post implantation. After explantation, histomorphometrical analysis was performed on all implants. All implanted materials except HA1250 induced bone. However, large variations in the amounts of induced bone were observed between different materials and between individual animals. Histomorphometrical results showed that the presence of micropores within macropore walls is necessary to make a material osteoinductive. We postulate that introduction of microporosity within macropores, and consequent increase of the specific surface area, affects the interface dynamics of the ceramic in such a way that relevant cells are triggered to differentiate into the osteogenic lineage.
Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.
Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M
2014-12-01
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings. Copyright © 2014 Elsevier Inc. All rights reserved.
Ghoveizi, Rahab; Alikhasi, Marzieh; Siadat, Mohammad-Reza; Siadat, Hakimeh; Sorouri, Majid
2013-01-01
Objective: Crestal bone loss is a biological complication in implant dentistry. The aim of this study was to compare the effect of progressive and conventional loading on crestal bone height and bone density around single osseointegrated implants in the posterior maxilla by a longitudinal radiographic assessment technique. Materials and Methods: Twenty micro thread implants were placed in 10 patients (two implants per patient). One of the two implants in each patient was assigned to progressive and the other to conventional loading groups. Eight weeks after surgery, conventional implants were restored with a metal ceramic crown and the progressive group underwent a progressive loading protocol. The progressive loading group took different temporary acrylic crowns at 2, 4 and 6 months. After eight months, acrylic crowns were replaced with a metal ceramic crown. Computer radiography of both progressive and conventional implants was taken at 2, 4, 6, and 12 months. Image analysis was performed to measure the height of crestal bone loss and bone density. Results: The mean values of crestal bone loss at month 12 were 0.11 (0.19) mm for progressively and 0.36 (0.36) mm for conventionally loaded implants, with a statistically significant difference (P < 0.05) using Wilcoxon sign rank. Progressively loaded group showed a trend for higher bone density gain compared to the conventionally loaded group, but when tested with repeated measure ANOVA, the differences were not statistically significant (P > 0.05). Conclusion: The progressive group showed less crestal bone loss in single osseointegrated implant than the conventional group. Bone density around progressively loaded implants showed increase in crestal, middle and apical areas. PMID:23724215
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Daculsi, G; Aguado, E
1999-10-01
This study investigated the in vivo performance of two composite injectable bone substitutes (IBS), each with different calcium-phosphate particles granulometries [40-80 (IBS 40-80) and 200-500 microm (IBS 200-500)]. These biomaterials were obtained by associating a biphasic calcium-phosphate (BCP) ceramic mineral phase with a 3% aqueous solution of a cellulosic polymer (hydroxy-propyl-methyl-cellulose). Both materials were injected for periods of 2, 3, 8, or 12 weeks into bone defects at the distal end of rabbit femurs. Quantitative results on new bone formation, BCP resorption, and staining for tartrate-resistant acid phosphatase (TRAP) activity were studied for statistical purposes. Measurements with scanning electron microscopy and image analysis showed that the final rates of newly formed bone were similar for both tested IBS after 12 weeks of implantation. Bone colonization occurred more extensively during early implantation times for IBS 40-80 than for IBS 200-500. For the latter, BCP degradation occurred regularly throughout the implantation period, whereas it was very intensive during the first 2 weeks for IBS 40-80. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than for IBS 200-500 regardless of implantation time. With the granulometry of either mineral phase, both tested IBS supported extensive bone colonization, which was greater than that previously reported for an equivalent block of macroporous BCP. The resorption-bone substitution process seemed to occur earlier and faster for IBS 40-80 than for IBS 200-500. Both tested IBS expressed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Copyright 1999 John Wiley & Sons, Inc.
Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael
2013-04-01
Granule-shaped calcium phosphate-based bone graft materials are often required for bone regeneration especially in implant dentistry. Two newly developed bone graft materials are Ceracell(®) , an open-celled highly porous bioceramic from β-tricalcium phosphate (β-TCP) under addition of bioglass and Osseolive(®) , an open porous glass ceramic with the general formula Ca2 KNa(PO4 )2 . The goal of this study was to characterize different modifications of the two bone graft materials in vitro in comparison to already established ceramic bone grafts Cerasorb M(®) , NanoBone(®) and BONIT Matrix(®) . Adhesion and proliferation of SaOS-2 osteoblast-like cells were evaluated quantitatively by determining DNA content and lactate dehydrogenase (LDH) activity and qualitatively by scanning electron microscopy (SEM). In addition, MTT cell-vitality staining was applied to confirm the attachment of viable cells to the different materials. Osteogenic differentiation was evaluated by measurement of alkaline phosphatase (ALP) activity as well as gene expression analysis of osteogenic markers using reverse transcriptase PCR. DNA content and LDH activity revealed good cell attachment and proliferation for Ceracell and Cerasorb M. When pre-incubated with cell-culture medium, also Osseolive showed good cell attachment and proliferation. Attachment and proliferation of osteoblast-like cells on NanoBone and BONIT Matrix was very low, even after pre-incubation with cell-culture medium. Specific ALP activity on Ceracell(®) , Osseolive (®) and Cerasorb M(®) increased with time and expression of bone-related genes ALP, osteonectin, osteopontin and bone sialoprotein II was demonstrated. Ceracell as well as Osseolive granules support proliferation and osteogenic differentiation in vitro and may be promising candidates for in vivo applications. © 2011 John Wiley & Sons A/S.
Schnider, Nicole; Forrer, Fiona Alena; Brägger, Urs; Hicklin, Stefan Paul
The aim of this study was to evaluate the clinical performance of one-piece, screw-retained implant crowns based on hand-veneered computer-aided design/computer-aided manufacture (CAD/CAM) zirconium dioxide abutments with a crossfit connection at least 1 year after insertion of the crown. Consecutive patients who had received at least one Straumann bone level implant and one-piece, screw-retained implant crowns fabricated with CARES zirconium dioxide abutments were reexamined. Patient satisfaction, occlusal and peri-implant parameters, mechanical and biologic complications, radiologic parameters, and esthetics were recorded. A total of 50 implant crowns in the anterior and premolar region were examined in 41 patients. The follow-up period of the definitive reconstructions ranged from 1.1 to 3.8 years. No technical and no biologic complications had occurred. At the reexamination, 100% of the implants and reconstructions were in situ. Radiographic evaluation revealed a mean distance from the implant shoulder to the first visible bone-to-implant contact of 0.06 mm at the follow-up examination. Screw-retained crowns based on veneered CAD/CAM zirconium dioxide abutments with a crossfit connection seem to be a promising way to replace missing teeth in the anterior and premolar region. In the short term, neither failures of components nor complications were noted, and the clinical and radiographic data revealed stable hard and soft tissue conditions.
Altinci, Pinar; Can, Gulsen; Gunes, Onur; Ozturk, Caner; Eren, Hakan
2016-12-01
Immediately-loaded, narrow-diameter implants can be a less invasive alternative for the implant-supported fixed rehabilitation of narrow, posterior crests. To determine the stability and marginal bone level (MBL) changes of narrow-diameter, titanium-zirconium (TiZr) implants placed with flapless surgery and loaded immediately in the posterior region. Thirty-eight TiZr implants (3.3 mm diameter, 10 mm length, Roxolid, Straumann AG) were placed in the posterior crests of 14 patients with computer-guided flapless surgery as a support of 3-unit posterior bridges. Eighteen implants were loaded immediately, and 20 implants were loaded conventionally. The implant stability quotients were determined at the 1, 2, 4, and 8. weeks of healing before conventional loading, and at the 3, 6, and 12. months after loading by resonance frequency analysis. The MBL changes were measured by digital radiography. The surgical protocols were accomplished without any biological complications. There was no significant difference in the stability changes of TiZr implants between the loading groups (p > .05). The MBL changes were -0.18 ± 0.27 mm and -0.24 ± 0.27 mm at the 12. month of immediate and conventional loading, respectively, which was not statistically significant (p > .05). The stability and MBL changes of TiZr implants supporting posterior 3-unit bridges were clinically acceptable at the first year of loading. © 2016 Wiley Periodicals, Inc.
Development and in vitro examination of materials for osseointegration
NASA Astrophysics Data System (ADS)
Jalota, Sahil
Bone is a connective tissue with nanosized particles of carbonated apatitic calcium phosphate dispersed in a hydrated collagen matrix. With the ageing of the baby boomer population, an increasing number of people sustain bone fractures and defects. Hence, efforts are underway to develop materials to hasten the healing and repairing of such defects. These materials are termed as artificial bone substitutes. This study represents innovative techniques for development of bone implant materials and improving the existing substitute materials. Emphasis was on three different kinds of materials: Metals (titanium and alloys), Ceramics (calcium phosphates), and Polymers (collagen). The bioactivity of titanium and alloys, resorptivity of calcium phosphates and biocompatibility of collagen were the major issues with these materials. These issues are appropriately addressed in this dissertation. For titanium and alloys, biomimetic coating methodology was developed for uniformly and evenly coating 3-D titanium structures. Cracks were observed in these coatings and a protocol was developed to form crack-free biomimetic coatings. In calcium phosphates, increasing the resorption rate of HA (hydroxyapatite) and decreasing the resorption rate of beta-TCP (beta-tricalcium phosphate) were studied. HA-based ceramics were synthesized with Na+ and CO32- ions dopings, and development of biphasic mixtures of HA-beta-TCP and HA-Rhenanite was performed. Similarly, beta-TCP ceramics were synthesized with Zn 2+ ion doping and development of beta-TCP-HA biphasic mixtures was performed. In case of collagen, a biomimetic coating process was developed that decreased the time to coat the collagen substrates and also increased biocompatibility, as determined by the response of mouse osteoblasts.
Design and Characterization of Calcium Phosphate Ceramic Scaffolds for Bone Tissue Engineering
Kuhn, Liisa T.
2015-01-01
Objectives Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. Methods We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro vs. in vivo testing are addressed, with an attempt to highlight reliable performance predictors. Results A combinatory design strategy should be used with CPS taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. Conclusions CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. PMID:26423007
Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
Denry, Isabelle; Kuhn, Liisa T
2016-01-01
Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
2005-01-01
demongtrated the synthesis of degradable scaffolds from PLAGA /calcium phosphate composite microspheres in which an amorphous calcium phosphate is...EXPERIMENTAL DETAILS Scaffold Preparation Scaffolds were prepared as described in detail previously [3]. Briefly, PLAGA /calcium phosphate composite...culture polystyrene (TCPS) 2- pure PLAGA microspheres 64 3- composite microsphere matrices with a low polymer/ceramic ratio 4- composite microsphere
Zhang, C; Wang, J; Feng, H; Lu, B; Song, Z; Zhang, X
2001-03-05
A porous ceramic material [hydroxyapatitetricalcium phosphate (HA-TCP)] was implanted in the femora of 30 dogs to investigate the possibility of using this material to repair segmental bone defects. A bone segment, 1.5 cm in length, was removed from the diaphysis of one femur in each dog to create the defect. Cylinders of corresponding size were inserted into the defects. The animals were divided into three groups with recovery times of 2 months, 4 months, and 6 months, respectively. The implants were harvested and subjected to biomechanic tests (bending strength) and X-ray diffraction analysis. The bending strengths of the implant construct increased gradually over time postoperatively. The values of strength for the three different time groups had significant variations (p < 0.05). The X-ray diffraction analysis indicated that the peaks of the TCP included in the cylinders decreased in intensity after implantation and tended to be similar to those of natural bone by 6 months after operation. Conversely, the peaks for the HA had fewer changes compared with preimplantation values. Based on the results of this experiment it was concluded that the porous HA-TCP ceramic cylinders have potential for repair of segmental bone defects if assisted by adequate stabilizing fixtures during the early postoperative period.
Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai
2015-01-01
Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839
Bioactive ceramic coating on orthopedic implants for enhanced bone tissue integration
NASA Astrophysics Data System (ADS)
Aniket
Tissue integration between bone and orthopedic implant is essential for implant fixation and longevity. An immunological response leads to fibrous encapsulation of metallic implants leading to implant instability and failure. Bioactive ceramics have the ability to directly bond to bone; however, they have limited mechanical strength for load bearing applications. Coating bioactive ceramics on metallic implant offers the exciting opportunity to enhance bone formation without compromising the mechanical strength of the implant. In the present study, we have developed a novel bioactive silica-calcium phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic implant using electrophoretic deposition (EPD) and evaluated bone tissue response to the coated implant at the cellular level. The effect of SCPC composition and suspending medium pH on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V discs were passivated, coated with SCPC50 (200 nm - 10 mum) and thermally treated at 600 - 800 ºC to produce a coating thickness in the range of 43.1 +/- 5.7 to 30.1 +/- 4.6 μm. After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 +/- 3.6, 44.7 +/- 8.7 and 47.2 +/- 4.3 MPa, respectively. XRD analyses of SCPC50 before and after EPD coating indicated no change in the crystallinity of the material. Fracture surface analyses showed that failure occurred within the ceramic layer or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 2 days (11.7 +/- 3.9 MPa) was higher than that measured on commercially available hydroxyapatite (HA) coated substrates (5.5 +/- 2.7 MPa), although the difference was not statistically significant. SEM - EDX analyses of SCPC50-coated Ti-6Al-4V pre-immersed in PBS for 7 days showed the formation of a Ca-deficient HA surface layer. Bone cells attached to the SCPC50-coated implants expressed significantly higher (p < 0.05) alkaline phosphatase activity (82.4 +/- 25.6 nmoles p-NP/mg protein/min) than that expressed by cells attached to HA-coated or uncoated implants. Protein adsorption analyses showed that SCPC50-coated substrates adsorbed significantly more (p < 0.05) serum protein (14.9 +/- 1.2 mug) than control uncoated substrates (8.9 +/- 0.7 mug). Moreover, Western blot analysis showed that the SCPC50 coating has a high affinity for serum fibronectin. Protein conformation analyses by FTIR showed that the ratio of the area under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the surface of SCPC50-coated substrate (5.0 +/- 0.6) than that on the surface of the control uncoated substrates (2.2 +/- 0.3). Moreover, ICP-OES analyses indicated that SCPC50-coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue culture medium, respectively. In conjunction with the favorable protein adsorption and modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin and had significantly higher production of osteopontin and osteocalcin proteins than cells attached to the uncoated Ti-6Al-4V substrate. In addition, osteoblast-like cells attached to the SCPC50-coated substrates produced significantly lower levels of the inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40 and RANKL than those attached to uncoated Ti-6Al-4V. Surface topography analyses using AFM suggested that the SCPC50 particles deposit onto the metal surface in a manner that preferentially fills the grooves on the substrate created during substrate preparation. An increase in the surface roughness of the SCPC50-coated substrate from 217.8 +/- 54.6 nm to 284.3 +/- 37.3 nm was accompanied by enhanced material dissolution, reduced cell proliferation and poor actin cytoskeleton organization, which are characteristics typical of differentiating bone cells on bioactive ceramic surfaces. Results of the study demonstrate that bioactive SCPC50 can efficiently be coated on Ti-6Al-4V using EPD. Moreover, the in vitro bone cell response suggests that SCPC50-coating has the potential to enhance bone integration with orthopedic and maxillofacial implants while minimizing the induction of inflammatory bone cell responses.
Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P
2011-10-01
The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires the development of porous, high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inks were optimized for the printing of features as fine as 30 μm and of three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds showed a compressive strength (136 ± 22 MPa) comparable with that of human cortical bone (100-150 MPa), while the porosity (60%) was in the range of that of trabecular bone (50-90%). The strength is ~100-times that of polymer scaffolds and 4-5-times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in SBF, the value (77 MPa) is still far above that of trabecular bone after 3 weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. Published by Elsevier Ltd.
Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.
2011-01-01
The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 μm and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. PMID:21745606
Schiegnitz, Eik; Al-Nawas, Bilal; Tegner, Alexander; Sagheb, Keyvan; Berres, Manfred; Kämmerer, Peer W; Wagner, Wilfried
2016-08-01
Tapered implant designs aim to improve primary stability and implant survival in soft bone. However, respective clinical long-term data are scarce. Therefore, a clinical and radiological evaluation of the long-term success of a transgingival-supracrestal inserted tapered implant system with special emphasis on the influence of augmentation procedures was conducted. In a retrospective study design, all in the Department of Oral and Maxillofacial Surgery of the University Medical Centre, Mainz, Germany, between May 2002 and March 2012, placed tapered implants (Straumann TE®, Basel, Switzerland) were analyzed. In this time period, a total of one hundred ninety-seven tapered implants were inserted in 90 patients. For patients available for clinical recall, success criteria according to Albrektsson and Buser were evaluated. The in situ rate was 96.3% after an average time in situ of 62 ± 31 months. In one hundred twenty-seven sites, bone augmentation procedures were performed. Hereof, 96 sites were sinus augmentation procedures and 31 sites were alveolar ridge augmentations. For patients with sinus augmentation procedures, implant survival was 97.9% and for patients with alveolar ridge augmentations, implant survival was 93.5% after 5 years, indicating a higher implant survival for sinus augmentation, however not statistically different (p = .194). Implant diameter and timing of implant placement had no significant impact on implant survival (p > .05). Mean marginal bone loss was -0.50 ± 1.54 mm for patients receiving maxillary sinus augmentation and -1.16 ± 1.13 mm for patients with alveolar ridge augmentations, indicating a lower marginal bone loss in patients receiving maxillary sinus augmentation (p = .046). Implant success rates ranged between 88% and 92% after a mean follow-up of 6 years. Within the limits of the retrospective character of this study, the tapered soft tissue level implant showed especially in maxillary sinus augmentation promising long-term survival and success rates and a low peri-implant bone resorption compared with the literature. © 2015 Wiley Periodicals, Inc.
Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Safari, Hamed; Samandari, Mohammad Mahdi; Geramipanah, Farideh
2015-06-01
Implants in posterior regions of the jaw require short dental implants with long crown heights, leading to increased crown-to-implant ratios and mechanical stress. This can lead to fracture and screw loosening. The purpose of this study was to investigate the dynamic nature and behavior of prosthetic components and preimplant bone and evaluate the effect of increased crown height space (CHS) and crown-to-implant ratio on stress concentrations under external oblique forces. The severely resorbed bone of a posterior mandible site was modeled with Mimics and Catia software. A second mandibular premolar tooth was modeled with CHS values of 8.8, 11.2, 13.6, and 16 mm. A Straumann implant (4.1×8 mm), a directly attached crown, and an abutment screw were modeled with geometric data and designed by using SolidWorks software. Abaqus software was used for the dynamic simulation of screw tightening and the application of an external load to the buccal cusp at a 75.8-degree angle with the occlusal plane. The distribution of screw load and member load at each step was compared, and the stress values were calculated within the dental implant complex and surrounding bone. During tightening, the magnitude and distribution of the preload and clamp load were uniform and equal at the cross section of all CHSs. Under an external load, the screw load decreased and member load increased. An increase in the CHS caused the corresponding distribution to become more nonuniform and increased the maximum compressive and tensile stresses in the preimplant bone. Additionally, the von Mises stress decreased at the abutment screw and increased at the abutment and fixture. Under nonaxial forces, increased CHS does not influence the decrease in screw load or increase in member load. However, it contributes to screw loosening and fatigue fracture by skewing the stress distribution to the transverse section of the implant. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Yang, C Y; Chen, C R; Chang, E; Lee, T M
2007-08-01
A porous metal coating applied to solid substrate implants has been shown, in vivo, to anchor implants by bone ingrowth. Calcium phosphate ceramics, in particular hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2), HA], are bioactive ceramics, which are known to be biocompatible and osteoconductive, and these ceramics deposited on to porous-coated devices may enhance bone ingrowth and implant fixation. In this study, bi-feedstock of the titanium powder and composite (Na(2)CO(3)/HA) powder were simultaneously deposited on a Ti-6Al-4V substrate by a plasma sprayed method. At high temperature of plasma torch, the solid state of Na(2)CO(3) would decompose to release CO(2) gas and then eject the molten Ti powder to induce the interconnected pores in the coatings. After cleaning and soaking in deionized water, the residual Na(2)CO(3) in the coating would dissolve to form the open pores, and the HA would exist at the surface of pores in the inner coatings. By varying the particle size of the composite powder, the porosity of porous coating could be varied from 25.0 to 34.0%, and the average pore size of the porous coating could be varied to range between 158.5 and 202.0 microm. Using a standard adhesive test (ASTM C-633), the bonding strength of the coating is between 27.3 and 38.2 MPa. By SEM, the HA was observed at the surface of inner pore in the porous coating. These results suggest that the method exhibits the potential to manufacture the bioactive ceramics on to porous-coated specimen to achieve bone ingrowth fixation for biomedical applications.
Orthobiologics in Pediatric Sports Medicine.
Bray, Christopher C; Walker, Clark M; Spence, David D
2017-07-01
Orthobiologics are biological substances that allow injured muscles, tendons, ligaments, and bone to heal more quickly. They are found naturally in the body; at higher concentrations they can aid in the healing process. These substances include autograft bone, allograft bone, demineralized bone matrix, bone morphogenic proteins, growth factors, stem cells, plasma-rich protein, and ceramic grafts. Their use in sports medicine has exploded in efforts to increase graft incorporation, stimulate healing, and get athletes back to sport with problems including anterior cruciate ligament ruptures, tendon ruptures, cartilage injuries, and fractures. This article reviews orthobiologics and their applications in pediatric sports medicine. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, L; Tan, J; He, Z Y; Jiang, Y H
2018-09-01
β-type Ti-35Nb-7Zr alloy has attracted considerable attentions as a bone implant material. The alloy, however, has poor bioactivity, which difficult to form a strong osseointegration between the bone tissues. Combining Ti alloy with a bioactive and biodegradable ceramic has been of interest to researchers. But the large difference in physicochemical property of high-melting metal and ceramic elements would bring the manufacturing restriction. In this work, Ti-35Nb-7Zr-CPP composites were fabricated with mechanical alloy of Ti, Nb, Zr and Nano calcium pyrophosphate (CPP) powders mixture followed by spark plasma sintering (SPS) routes. The effect of CPP ceramic on microstructural evolution and in vitro biocompatibility were investigated. As the addition of CPP (10-30 wt%), ceramic elements spreading towards the matrix, the generated metal-ceramic bioactive phases CaTiO 3 are observed well consolidated with β-Ti matrix. With the CPP increasing, Ca and P atoms rapidly migrated to the β-Ti matrix to form granulated Ti 5 P 3 , which leads to the increasing porosity (10%-18%) in the composites. The results demonstrated that the favorable cell viability (the cell proliferation rates were higher than 100%) and growth inside the pores of the composites arise from the rough micro-porous surface and the release of bioactive metal-ceramic phase ions into the biological environment. The enhanced bioactivity and microstructural evolution behaviors of the Ti-35Nb-7Zr-CPP composites may provide a strategy for designing and fabricating multifunctional implants. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Alesh; Mariappan, C. R.
2018-04-01
Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.
Hip arthroplasty today and tomorrow.
Amstutz, H C
1987-12-01
Acrylic-fixed total hip and surface replacement arthroplasty have been very effective in affording immediate relief of pain and providing improved function. Complications have been reduced by improvements in design, materials, and especially technique. They are now very low in the elderly, and the stem type acrylic-fixed design remains the procedure of choice. The failure rates in youthful patients and those with bone-stock deficiencies have been high in both THR and surface types, although the latter had the advantage of preserving femoral stock. On the femoral side, the new "macro" femoral designs from Europe and "micro" femoral porous designs have shown promise, but thigh pain, incomplete and difficult to predict bone ingrowth patterns, coupled with removal problems have influenced design and technique changes. Both press-fit stem types and porous surface replacements have produced promising initial results with less potential downside risks. On the acetabular side, both the cementless hemispherical with screw-type adjuvant fixation, or the chamfered cylinder designs, used primarily with the UCLA porous surface replacements, but also with stem-type devices, appear to achieve best short-term results, while the entire variety of screw rings are disappointing. The future will bring further refinements in technique and specific indications for certain types of replacement stem in specific types of bone stock deficiencies. The all ceramic-ceramic and ceramic-polyethylene bearings show promise of reducing wear and, hence, should improve longevity of implant fixation.
Structural properties of a bone-ceramic composite as a promising material in spinal surgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirilova, I. A., E-mail: IKirilova@mail.ru; Sadovoy, M. A.; Podorozhnaya, V. T., E-mail: VPodorognaya@niito.ru
The paper describes the results of in vitro tests of composite bone-ceramic implants and procedures for modifying implant surfaces to enhance osteogenesis. Analysis of CBCI ESs demonstrated that they have a porous structure with the mean longitudinal pore size of 70 µm and the mean transverse pore size of 46 µm; surface pores are open, while inner pores are closed. Elemental analysis of the CBCI surface demonstrates that CBCIs are composed of aluminum and zirconium oxides and contain HA inclusions. Profilometry of the CBCI ES surface revealed the following deviations: the maximum deviation of the profile in the sample center is 15 µmmore » and 16 µm on the periphery, while the arithmetical mean and mean square deviations of the profile are 2.65 and 3.4 µm, respectively. In addition, CBCI biodegradation products were pre-examined; a 0.9% NaCl solution was used as a comparison group. Potentially toxic and tissue accumulated elements, such as cadmium, cobalt, mercury, and lead, are present only in trace amounts and have no statistically significant differences with the comparison group, which precludes their potential toxic effects on the macroorganism. Ceramic-based CBCI may be effective and useful in medicine for restoration of the anatomic integrity and functions of the bone tissue.« less
Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru
2017-04-12
Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.
Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun
2017-01-01
The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration. PMID:28772704
Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun
2017-03-26
The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration.
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery
Trombetta, Ryan; Inzana, Jason A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.
2016-01-01
Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micropores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards. PMID:27324800
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.
Trombetta, Ryan; Inzana, Jason A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A
2017-01-01
Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micro-pores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards.
Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone grafts
NASA Astrophysics Data System (ADS)
Mata, D.; Oliveira, F. J.; Ferreira, N. M.; Araújo, R. F.; Fernandes, A. J. S.; Lopes, M. A.; Gomes, P. S.; Fernandes, M. H.; Silva, R. F.
2014-04-01
Electroconductive bone grafts have been designed to control bone regeneration. Contrary to polymeric matrices, the translation of the carbon nanotube (CNT) electroconductivity into oxide ceramics is challenging due to the CNT oxidation during sintering. Sintering strategies involving reactive-bed pressureless sintering (RB + P) and hot-pressing (HP) were optimized towards prevention of CNT oxidation in glass/hydroxyapatite (HA) matrices. Both showed CNT retentions up to 80%, even at 1300 °C, yielding an increase of the electroconductivity in ten orders of magnitude relative to the matrix. The RB + P CNT compacts showed higher electroconductivity by ˜170% than the HP ones due to the lower damage to CNTs of the former route. Even so, highly reproducible conductivities with statistical variation below 5% and dense compacts up to 96% were only obtained by HP. The hot-pressed CNT compacts possessed no acute toxicity in a human osteoblastic cell line. A normal cellular adhesion and a marked orientation of the cell growth were observed over the CNT composites, with a proliferation/differentiation relationship favouring osteoblastic functional activity. These sintering strategies offer new insights into the sintering of electroconductive CNT containing bioactive ceramics with unlimited geometries for electrotherapy of the bone tissue.
Piezoelectric ceramic implants: in vivo results.
Park, J B; Kelly, B J; Kenner, G H; von Recum, A F; Grether, M F; Coffeen, W W
1981-01-01
The suitability of barium titanate (BaTiO3) ceramic for direct substitution of hard tissues was evaluated using both electrically stimulated (piezoelectric) and inactive (nonpolarized) test implants. Textured cylindrical specimens, half of them made piezoelectric by polarization in a high electric field, were implanted into the cortex of the midshaft region of the femora of dogs for various periods of time. Interfacial healing and bio-compatibility of the implant material were studied using mechanical, microradiographical, and histological techniques. Our results indicate that barium titanate ceramic shows a very high degree of biocompatibility as evidenced by the absence of inflammatory or foreign body reactions at the implant-tissue interface. Furthermore, the material and its surface porosity allowed a high degree of bone ingrowth as evidenced by microradiography and a high degree of interfacial tensile strength. No difference was found between the piezoelectric and the electrically neutral implant-tissue interfaces. Possible reasons for this are discussed. The excellent mechanical properties of barium titanate, its superior biocompatibility, and the ability of bone to form a strong mechanical interfacial bond with it, makes this material a new candidate for further tests for hard tissue replacement.
Cellular compatibility of highly degradable bioactive ceramics for coating of metal implants.
Radetzki, F; Wohlrab, D; Zeh, A; Delank, K S; Mendel, T; Berger, G; Syrowatka, F; Mayr, O; Bernstein, A
2011-01-01
Resorbable ceramics can promote the bony integration of implants. Their rate of degradation should ideally be synchronized with bone regeneration. This study examined the effect of rapidly resorbable calcium phosphate ceramics 602020, GB14, 305020 on adherence, proliferation and morphology of human bone-derived cells (HBDC) in comparison to β-TCP. The in vitro cytotoxicity was determined by the microculture tetrazolium (MTT) assay. HBDC were grown on the materials for 3, 7, 11, 15 and 19 days and counted. Cell morphology, cell attachment, cell spreading and the cytoskeletal organization of HBDC cultivated on the substrates were investigated using laser scanning microscopy and environmental scanning electron microscopy. All substrates supported sufficient cellular growth for 19 days and showed no cytotoxicity. On each material an identical cell colonisation of well communicating, polygonal, vital cells with strong focal contacts was verified. HBDC showed numerous well defined stress fibres which give proof of well spread and strongly anchored cells. Porous surfaces encouraged the attachment and spreading of HBDC. Further investigations regarding long term biomaterial/cell interactions in vitro and in vivo are required to confirm the utility of the new biomaterials.
Development of Composite Scaffolds for Load Bearing Segmental Bone Defects
2013-07-01
general, is that they cannot be used alone for load-bearing applications due to the brittleness (failure due to lack of plastic deformation) of...5, 61, 77, 78], microsphere sintering [77], supercritical CO2 technology [80], fused deposition modeling (FDM) [5, 6], 3D printing [5], in situ...American Ceramic Society 2006;89: 1771- 1789. [36] Vitale-Brovarone C, Miola M, Balagna C, Verné E. 3D -glass–ceramic scaffolds with antibacterial
Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.
Sentuerk, U; von Roth, P; Perka, C
2016-01-01
The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.
Protopapadaki, Maria; Monaco, Edward A; Kim, Hyeong-Il; Davis, Elaine L
2013-11-01
The predictable nature of the hot pressing ceramic technique has several applications, but no study was identified that evaluated its application to the fabrication of custom implant abutments. The purpose of this study was to compare the fracture resistance of an experimentally designed pressable metal ceramic custom implant abutment (PR) with that of a duplicate zirconia abutment (ZR). Two groups of narrow platform (NP) (Nobel Replace) implant abutment specimens were fabricated (n=10). The experimental abutment (PR) had a metal substructure cast with ceramic alloy (Lodestar) and veneered with leucite pressable glass ceramic (InLine PoM). Each PR abutment was individually scanned and 10 duplicate CAD/CAM ZR abutments were fabricated for the control group. Ceramic crowns (n=20) with the average dimensions of a human lateral incisor were pressed with lithium disilicate glass ceramic (IPS e.max Press) and bonded on the abutments with a resin luting agent (Multilink Automix). The specimens were subjected to thermocycling, cyclic loading, and finally static loading to failure with a computer-controlled Universal Testing Machine. An independent t test (1 sided) determined whether the mean values of the fracture load differed significantly (α=.05) between the 2 groups. No specimen failed during cyclic loading. Upon static loading, the mean (SD) load to failure was significantly higher for the PR group (525.89 [143.547] N) than for the ZR group (413.70 [35.515] N) for internal connection narrow platform bone-level implants (P=.025). Failure was initiated at the screw and internal connection level for both groups. It is possible to fabricate PR abutments that are stronger than ZR abutments for Nobel Biocare internal connection NP bone-level implants. The screw and the internal connection are the weak links for both groups. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Howard, D P; Wall, P D H; Fernandez, M A; Parsons, H; Howard, P W
2017-08-01
Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used, but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR) for England, Wales, Northern Ireland and the Isle of Man. We analysed data on 223 362 bearings from 111 681 primary CoC THAs and 182 linked revisions for bearing fracture recorded in the NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. A total of 222 852 bearings (99.8%) were CeramTec Biolox products. Revisions for fracture were linked to seven of 79 442 (0.009%) Biolox Delta heads, 38 of 31 982 (0.119%) Biolox Forte heads, 101 of 80 170 (0.126%) Biolox Delta liners and 35 of 31 258 (0.112%) Biolox Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (chi-squared 68.0, p < 0.001). The highest fracture risk was observed in the 28 mm Biolox Forte subgroup (0.382%). There were no fractures in the 40 mm head group for either ceramic type. Liner thickness was not predictive of fracture (p = 0.67). Body mass index (BMI) was independently associated with revision for both head fractures (odds ratio (OR) 1.09 per unit increase, p = 0.031) and liner fractures (OR 1.06 per unit increase, p = 0.006). We report the largest independent study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low but previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased risk of ceramic bearing fracture. Cite this article: Bone Joint J 2017;99-B:1012-19. ©2017 The British Editorial Society of Bone & Joint Surgery.
A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications
NASA Astrophysics Data System (ADS)
Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.
2014-06-01
In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.
A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications
Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.
2014-01-01
In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility. PMID:24961911
Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics.
Du, Rui Lin; Chang, Jiang; Ni, Si Yu; Zhai, Wan Yin; Wang, Jun Ying
2006-04-01
Zinc-containing glass is prepared by the substitution of CaO in 58S bioactive glass with 0.5 and 4 wt% ZnO, and glass-ceramics are obtained by heat-treating the glass at 1,200 C. The bending strength and in vitro bioactivity of the glass and glass-ceramics are evaluated. The results indicate that Zn promotes the crystallization of SiO(2) and wollastonite in glass-ceramics, and proper crystallization can enhance the bending strength of the glass-ceramic. The in vitro results show that ZnO in glass retards the hydroxyapatite (HA) nucleation at the initial stage of simulated body fluid (SBF) soaking, but does not affect the growth of HA after long periods of soaking, and the ionic products of 58S4Z glass can stimulate the proliferation of osteoblast at certain concentrations. Osteoblasts attach well on both glass samples and glass-ceramic samples, but the high Si ion concentration released from glass samples restrains the proliferation of osteoblasts after 3 days of culture. In contrast, osteoblasts show good proliferation on glass-ceramic samples, and ZnO in glass-ceramics promotes the proliferation rate. The results in this study suggest that the glass and glass-ceramics with different ZnO content might be used as bioactive bone implant materials in different applications.
In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants
Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan
2013-01-01
The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone. PMID:23483914
In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.
Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan
2013-01-01
The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.
Advantageous new conic cannula for spine cement injection.
González, Sergio Gómez; Vlad, María Daniela; López, José López; Aguado, Enrique Fernández
2014-09-01
Experimental study to characterize the influence of the cannula geometry on both, the pressure drop and the cement flow velocity established along the cannula. To investigate how the new experimental geometry of cannulas can affect the extravertebral injection pressure and the velocity profiles established along the cannula during the injection process. Vertebroplasty procedure is being used to treat vertebral compression fractures. Vertebra infiltration is favored by the use of suitable: (1) syringes or injector devices; (2) polymer or ceramic bone cements; and (3) cannulas. However, the clinical use of ceramic bone cement has been limited due to press-filtering problems. Thus, new approaches concerning the cannula geometry are needed to minimize the press-filtering of calcium phosphate-based bone cements and thereby broaden its possible applications. Straight, conic, and combined conic-straight new cannulas with different proximal and distal both length and diameter ratios were drawn with computer-assisted design software. The new geometries were theoretically analyzed by: (1) Hagen-Poisseuille law; and (2) computational fluid dynamics. Some experimental models were manufactured and tested for extrusion in order to confirm and further advance the theoretical results. The results confirm that the totally conic cannula model, having proximal to distal diameter ratio equal 2, requires the lowest injection pressure. Furthermore, its velocity profile showed no discontinuity at all along the cannula length, compared with other known combined proximal and distal straight cannulas, where discontinuity was produced at the proximal-distal transition zone. The conclusion is that the conic cannulas: (a) further reduced the extravertebral pressure during the injection process; (b) showed optimum fluid flow velocity profiles to minimize filter-pressing problems, especially when ceramic cements are used; and (c) can be easily manufactured. In this sense, the new conic cannulas should favor the use of calcium phosphate bone cements in the spine. N/A.
Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing.
Miyazaki, Toshiki; Ohtsuki, Chikara; Tanihara, Masao
2003-12-01
So-called bioactive ceramics have been attractive because they form bone-like apatite on their surfaces to bond directly to living bone when implanted in bony defects. However, they are much more brittle and much less flexible than natural bone. Organic-inorganic hybrids consisting of flexible organic polymers and the essential constituents of the bioactive ceramics (i.e., Si-OH groups and Ca2+ ions) are useful as novel bone substitutes, because of their bioactivity and mechanical properties analogous to those of natural bone. In the present study, organic-inorganic nanohybrids were synthesized from hydroxyethylmethacrylate (HEMA) and methacryloxypropyltrimethoxysilane (MPS), as well as various calcium salts. Bioactivity of the synthesized hybrids was assessed in vitro by examining their acceptance of apatite deposition in simulated body fluid (Kokubo solution). The prepared hybrids formed apatite in Kokubo solution when they were modified with calcium chloride (CaCl2) at 5 or 10 mol% of the total of MPS and HEMA. Deposition of a kind of calcium phosphate was observed for the hybrids modified with calcium acetate (Ca(CH3COO)2), although it could not be identified with apatite. The addition of glycerol up to 10 mol% of the total of MPS and HEMA or water up to 20 mol% as plasticizers did not appreciably decrease the acceptance of apatite formation of the hybrids. These findings allow wide selectivity in the design of bioactive nanohybrids developed by organic modification of the Si-OH group and calcium ion through sol-gel processing. Such nanohybrids have potential as novel bone substitutes with both high bioactivity and high flexibility.
McNamara, Stephanie L; Rnjak-Kovacina, Jelena; Schmidt, Daniel F; Lo, Tim J; Kaplan, David L
2014-08-01
Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Miao; Liu, An; Shao, Huifeng; Yang, Xianyan; Ma, Chiyuan; Yan, Shigui; Liu, Yanming; He, Yong; Gou, Zhongru
2016-01-01
Wollastonite (CaSiO3; CSi) ceramic is a promising bioactive material for bone defect repair due to slightly fast degradation of its porous constructs in vivo. In our previous strategy some key features of CSi ceramic have been significantly improved by dilute magnesium doping for regulating mechanical properties and biodegradation. Here we demonstrate that 6 ~ 14% of Ca substituted by Mg in CSi (CSi-Mgx, x = 6, 10, 14) can enhance the mechanical strength (>40 MPa) but not compromise biological performances of the 3D printed porous scaffolds with open porosity of 60‒63%. The in vitro cell culture tests in vitro indicated that the dilute Mg doping into CSi was beneficial for ALP activity and high expression of osteogenic marker genes of MC3T3-E1 cells in the scaffolds. A good bone tissue regeneration response and elastoplastic response in mechanical strength in vivo were determined after implantation in rabbit calvarial defects for 6‒12 weeks. Particularly, the CSi-Mg10 and CSi-Mg14 scaffolds could enhance new bone regeneration with a significant increase of newly formed bone tissue (18 ~ 22%) compared to the pure CSi (~14%) at 12 weeks post-implantation. It is reasonable to consider that, therefore, such CSi-Mgx scaffolds possessing excellent strength and reasonable degradability are promising for bone reconstruction in thin-wall bone defects. PMID:27658481
Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds
McNamara, Stephanie L.; Rnjak-Kovacina, Jelena; Schmidt, Daniel; Lo, Tim J.; Kaplan, David L.
2014-01-01
Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs. PMID:24881027
The Design of Mechanically Compatible Fasteners for Human Mandible Reconstruction
NASA Technical Reports Server (NTRS)
Roberts, Jack C.; Ecker, John A.; Biermann, Paul J.
1993-01-01
Mechanically compatible fasteners for use with thin or weakened bone sections in the human mandible are being developed to help reduce large strain discontinuities across the bone/implant interface. Materials being considered for these fasteners are a polyetherertherketone (PEEK) resin with continuous quartz or carbon fiber for the screw. The screws were designed to have a shear strength equivalent to that of compact/trabecular bone and to be used with a conventional nut, nut plate, or an expandable shank/blind nut made of a ceramic filled polymer. Physical and finite element models of the mandible were developed in order to help select the best material fastener design. The models replicate the softer inner core of trabecular bone and the hard outer shell of compact bone. The inner core of the physical model consisted of an expanding foam and the hard outer shell consisted of ceramic particles in an epoxy matrix. This model has some of the cutting and drilling attributes of bone and may be appropriate as an educational tool for surgeons and medical students. The finite element model was exercised to establish boundary conditions consistent with the stress profiles associated with mandible bite forces and muscle loads. Work is continuing to compare stress/strain profiles of a reconstructed mandible with the results from the finite element model. When optimized, these design and fastening techniques may be applicable, not only to other skeletal structures, but to any composite structure.
[Biocompatibility research of true bone ceramics].
Qiao, Wei; Ren, Xiaoqi; Shi, Hao; Li, Jing; Yang, Ting; Ma, Shaoying; Zhao, Yaping; Su, Chengzhong; Li, Baoxing
2017-10-01
To investigate the biocompatibility of true bone ceramic (TBC) and provide experimental basis for clinic application. TBC was prepared from healthy adult bovine cancellous bone by deproteinization and high temperature calcinations. Mouse fibroblast cell line (L929 cells) were cultured with the leaching liquor of TBC in vitro , and the cytotoxicity was evaluated at 2nd, 4th, and 7th days. L929 cells were inoculated into the TBC and cultured for 4 days. The cell adhesion and proliferation on the surface of the TBC were observed by scanning electron microscopy, and evaluated the cell compatibility of TBC. Ten New Zealand white rabbits were divided into 2 groups, and drilled holes at the tibia of both hind limbs. TBC and hydroxyapatite (HA) were implanted into the left side (experimental group) and the right side (control group), respectively. And the biocompatibility of TBC was evaluated by general observation and histological observation at 4 and 26 weeks after implantation. Cytotoxicity test showed that the cytotoxicity level of leaching liquor of TBC was grade 0-1. Cell compatibility experiments showed that the L929 cells adhered well on the surface of TBC and migrated into the pores. The implantation test in vivo showed that experimental group and control group both had mild or moderate inflammatory response at 4 weeks, and new bone formation occurred. At 26 weeks, there was no inflammatory reaction observed in both groups, and new bone formation was observed in varying degrees. TBC have good biocompatibility and can be used to repair bone defect in clinic.
Nair, Manitha B; Varma, H K; Menon, K V; Shenoy, Sachin J; John, Annie
2009-06-01
Segmental bone defects resulting from trauma or pathology represent a common and significant clinical problem. In this study, a triphasic ceramic (calcium silicate, hydroxyapatite and tricalcium phosphate)-coated hydroxyapatite (HASi) having the benefits of both HA (osteointegration, osteoconduction) and silica (degradation) was used as a bone substitute for the repair of segmental defect (2 cm) created in a goat femur model. Three experimental goat femur implant groups--(a) bare HASi, (b) osteogenic-induced goat bone marrow-derived mesenchymal stem cells cultured HASi (HASi+C) and (c) osteogenic-induced goat bone marrow-derived mesenchymal stem cells cultured HASi+platelet-rich plasma (HASi+CP)--were designed and efficacy performance in the healing of the defect was evaluated. In all the groups, the material united with host bone without any inflammation and an osseous callus formed around the implant. This reflects the osteoconductivity of HASi where the cells have migrated from the cut ends of host bone. The most observable difference between the groups appeared in the mid region of the defect. In bare HASi groups, numerous osteoblast-like cells could be seen together with a portion of material. However, in HASi+C and HASi+CP, about 60-70% of that area was occupied by woven bone, in line with material degradation. The interconnected porous nature (50-500 microm), together with the chemical composition of the HASi, facilitated the degradation of HASi, thereby opening up void spaces for cellular ingrowth and bone regeneration. The combination of HASi with cells and PRP was an added advantage that could promote the expression of many osteoinductive proteins, leading to faster bone regeneration and material degradation. Based on these results, we conclude that bare HASi can aid in bone regeneration but, with the combination of cells and PRP, the sequence of healing events are much faster in large segmental bone defects in weight-bearing areas in goats.
Lin, Kaili; Xia, Lunguo; Li, Haiyan; Jiang, Xinquan; Pan, Haobo; Xu, Yuanjin; Lu, William W; Zhang, Zhiyuan; Chang, Jiang
2013-12-01
The regeneration capacity of the osteoporotic bones is generally lower than that of the normal bones. Current methods of bone defect treatment for osteoporosis are not always satisfactory. Recent studies have shown that the silicate based biomaterials can stimulate osteogenesis and angiogenesis due to the silicon (Si) ions released from the materials, and enhance bone regeneration in vivo. Other studies showed that strontium (Sr) plays a distinct role on inhibiting bone resorption. Based on the hypothesis that the combination of Si and Sr may have synergetic effects on osteoporotic bone regeneration, the porous Sr-substituted calcium silicate (SrCS) ceramic scaffolds combining the functions of Sr and Si elements were developed with the goals to promote osteoporotic bone defect repair. The effects of the ionic extract from SrCS on osteogenic differentiation of bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX), angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) were investigated. The in vitro results showed that Sr and Si ions released from SrCS enhanced cell viability, alkaline phosphatase (ALP) activity, and mRNA expression levels of osteoblast-related genes of rBMSCs-OVX and expression of vascular endothelial growth factor (VEGF) without addition of extra osteogenic and angiogenic reagents. The activation in extracellular signal-related kinases (ERK) and p38 signaling pathways were observed in rBMSCs-OVX cultured in the extract of SrCS, and these effects could be blocked by ERK inhibitor PD98059, and P38 inhibitor SB203580, respectively. Furthermore, the ionic extract of SrCS stimulated HUVECs proliferation, differentiation and angiogenesis process. The in vivo experiments revealed that SrCS dramatically stimulated bone regeneration and angiogenesis in a critical sized OVX calvarial defect model, and the enhanced bone regeneration might be attributed to the modulation of osteogenic differentiation of endogenous mesenchymal stem cells (MSCs) and the inhibition of osteoclastogenesis, accompanying with the promotion of the angiogenic activity of endothelial cells (ECs). Copyright © 2013 Elsevier Ltd. All rights reserved.
Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2011-01-01
Abstract Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29+, CD44+ and CD166+ after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. PMID:20636333
Ye, Xinhai; Yin, Xiaofan; Yang, Dawei; Tan, Jian; Liu, Guangpeng
2012-07-01
Tissue engineering approaches using the combination of porous ceramics and bone marrow mesenchymal stem cells (BMSCs) represent a promising bone substitute for repairing large bone defects. Nevertheless, optimal conditions for constructing tissue-engineered bone have yet to be determined. It remains unclear if transplantation of predifferentiated BMSCs is superior to undifferentiated BMSCs or freshly isolated bone marrow mononucleated cells (BMNCs) in terms of new bone formation in vivo. The aim of this study was to investigate the effect of in vitro osteogenic differentiation (β-glycerophosphate, dexamethasone, and l-ascorbic acid) of human BMSCs on the capability to form tissue-engineered bone in unloaded conditions after subcutaneous implantation in nude mice. After isolation from human bone marrow aspirates, BMNCs were divided into three parts: one part was seeded onto porous beta-tricalcium phosphate ceramics immediately and transplanted in a heterotopic nude mice model; two parts were expanded in vitro to passage 2 before cell seeding and in vivo transplantation, either under osteogenic conditions or not. Animals were sacrificed for micro-CT and histological evaluation at 4, 8, 12, 16, and 20 weeks postimplantation. The results showed that BMSCs differentiated into osteo-progenitor cells after induction, as evidenced by the altered cell morphology and elevated alkaline phosphatase activity and calcium deposition, but their clonogenicity, proliferating rate, and seeding efficacy were not significantly affected by osteogenic differentiation, compared with undifferentiated cells. Extensive new bone formed in the pores of all the scaffolds seeded with predifferentiated BMSCs at 4 weeks after implantation, and maintained for 20 weeks. On the contrary, scaffolds containing undifferentiated BMSCs revealed limited bone formation only in 1 out of 6 cases at 8 weeks, and maintained for 4 weeks. For scaffolds with BMNCs, woven bone was observed sporadically only in one case at 8 weeks. Overall, this study suggests that ectopic osteogenesis of cell/scaffold composites is more dependent on the in vitro expansion condition, and osteo-differentiated BMSCs hold the highest potential concerning in vivo bone regeneration.
Barbanti Brodano, G; Griffoni, C; Zanotti, B; Gasbarrini, A; Bandiera, S; Ghermandi, R; Boriani, S
2015-10-01
Iliac crest bone graft (ICBG) is considered the gold standard for spine surgical procedures to achieve a successful fusion, because of its known osteoinductive and osteoconductive properties. Considering its autogenous origin, the use of ICBG has not been associated to an increase of intraoperative or postoperative complications directly related to the surgery. However, complications related to the harvesting procedure and to the donor site morbidity have been largely reported in the literature, favoring the development of a wide range of alternative products to be used as bone graft extenders or substitutes for spine fusion. The family of ceramic-based bone grafts has been widely used and studied during the last years for spine surgical procedures in order to reduce the need for iliac crest bone grafting and the consequent morbidity associated to the harvesting procedures. We report here the results of a post-market surveillance analysis performed on four independent cohorts of patients (115 patients) to evaluate the safety of three different formulations of hydroxyapatite-derived products used as bone graft extenders/substitutes for lumbar arthrodesis. No intraoperative or post-operative complications related to the use of hydroxyapatite-derived products were detected, during medium and long follow up period (minimum 12 months-maximum 5 years). This post-market surveillance analysis evidenced the safety of ceramic products as bone graft extenders or substitutes for spine fusion. Moreover, the evidence of the safety of hydroxyapatite-derived products allows to perform clinical studies aimed at evaluating the fusion rates and the clinical outcomes of these materials as bone graft extenders/substitutes, in order to support their use as an alternative to ICBG for spine fusion.
High prevalence of noise following Delta ceramic-on-ceramic total hip arthroplasty.
Salo, P P; Honkanen, P B; Ivanova, I; Reito, A; Pajamäki, J; Eskelinen, A
2017-01-01
We evaluated the short-term functional outcome and prevalence of bearing-specific generation of audible noise in 301 patients (336 hips) operated on with fourth generation (Delta) medium diameter head, ceramic-on-ceramic (CoC) total hip arthroplasties (THAs). There were 191 female (63%) and 110 male patients (37%) with a mean age of 61 years (29 to 78) and mean follow-up of 2.1 years (1.3 to 3.4). Patients completed three questionnaires: Oxford Hip Score (OHS), Research and Development 36-item health survey (RAND-36) and a noise-specific symptom questionnaire. Plain radiographs were also analysed. A total of three hips (0.9%) were revised. There were 52 patients (54 hips, 17%) who reported noise, and in 25 (48%) of them the noise was frequently heard. In the multiple regression analysis, the only independent risk factor for noise was a specific THA brand, with a threefold increased risk (95% confidence intervals 1.39 to 6.45, p = 0.005) of noise compared with the reference THA brand. Patients with noisy hips had lower median OHS (43 versus 46.5, p = 0.002) and their physical functioning (p = 0.021) subscale in RAND-36 was reduced. Noise was surprisingly common in this population. Cite this article: Bone Joint J 2017;99-B:44-50. ©2017 The British Editorial Society of Bone & Joint Surgery.
Aniket; Reid, Robert; Hall, Benika; Marriott, Ian; El-Ghannam, Ahmed
2015-06-01
Pro-osteogenic stimulation of bone cells by bioactive ceramic-coated orthopedic implants is influenced by both surface roughness and material chemistry; however, their concomitant impact on osteoblast behavior is not well understood. The aim of this study is to investigate the effects of nano-scale roughness and chemistry of bioactive silica-calcium phosphate nanocomposite (SCPC50) coated Ti-6Al-4V on modulating early bone cell responses. Cell attachment was higher on SCPC50-coated substrates compared to the uncoated controls; however, cells on the uncoated substrate exhibited greater spreading and superior quality of F-actin filaments than cells on the SCPC50-coated substrates. The poor F-actin filament organization on SCPC50-coated substrates is thought to be due to the enhanced calcium uptake by the ceramic surface. Dissolution analyses showed that an increase in surface roughness was accompanied by increased calcium uptake, and increased phosphorous and silicon release, all of which appear to interfere with F-actin assembly and osteoblast morphology. Moreover, cell attachment onto the SCPC50-coated substrates correlated with the known adsorption of fibronectin, and was independent of surface roughness. High-throughput genome sequencing showed enhanced expression of extracellular matrix and cell differentiation related genes. These results demonstrate a synergistic relationship between bioactive ceramic coating roughness and material chemistry resulting in a phenotype that leads to early osteoblast differentiation. © 2014 Wiley Periodicals, Inc.
Fosca, Marco; De Bonis, Angela; Curcio, Mariangela; Lolli, Maria Grazia; De Stefanis, Adriana; Marchese, Rodolfo; Rau, Julietta V.
2016-01-01
In tissue engineering protocols, the survival of transplanted stem cells is a limiting factor that could be overcome using a cell delivery matrix able to support cell proliferation and differentiation. With this aim, we studied the cell-friendly and biocompatible behavior of RKKP glass-ceramic coated Titanium (Ti) surface seeded with human amniotic mesenchymal stromal cells (hAMSCs) from placenta. The sol-gel synthesis procedure was used to prepare the RKKP glass-ceramic material, which was then deposited onto the Ti surface by Pulsed Laser Deposition method. The cell metabolic activity and proliferation rate, the cytoskeletal actin organization, and the cell cycle phase distribution in hAMSCs seeded on the RKKP coated Ti surface revealed no significant differences when compared to the cells grown on the treated plastic Petri dish. The health of of hAMSCs was also analysed studying the mRNA expressions of MSC key genes and the osteogenic commitment capability using qRT-PCR analysis which resulted in being unchanged in both substrates. In this study, the combination of the hAMSCs' properties together with the bioactive characteristics of RKKP glass-ceramics was investigated and the results obtained indicate its possible use as a new and interesting cell delivery system for bone tissue engineering and regenerative medicine applications. PMID:28078286
Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration
Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang
2017-01-01
The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics. PMID:28240268
Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration.
Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang
2017-02-27
The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO 3 ) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d 33 of HA/BaTiO 3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO 3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO 3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO 3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO 3 piezoelectric ceramics.
Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian
2018-01-01
Background and aim As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Methods Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. Results The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. Conclusion These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects. PMID:29416332
Song, Yue; Lin, Kaifeng; He, Shu; Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian
2018-01-01
As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects.
Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration
NASA Astrophysics Data System (ADS)
Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang
2017-02-01
The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.
Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate
Caetano, Guilherme; Vyas, Cian; Diver, Carl; Bártolo, Paulo
2018-01-01
The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA) and β-tri-calcium phosphate (TCP)) were mixed with poly-ε-caprolactone (PCL). Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physically and chemically assessed, considering mechanical, wettability, scanning electron microscopy and thermal gravimetric tests. Cell viability, attachment and proliferation tests were performed using human adipose derived stem cells (hADSCs). Results show that scaffolds containing HA present better biological properties and TCP scaffolds present improved mechanical properties. It was also possible to observe that the addition of ceramic particles had no effect on the wettability of the scaffolds. PMID:29342890
Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain
2007-06-01
The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over the final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.
Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain
2007-06-14
The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over themore » final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.« less
NASA Astrophysics Data System (ADS)
Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.
2016-01-01
Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.
Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T
2016-01-05
Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.
Bioactive scaffold for bone tissue engineering: An in vivo study
NASA Astrophysics Data System (ADS)
Livingston, Treena Lynne
Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment with cells seeded at the time of surgery. Porous, surface modified bioactive ceramic is a promising scaffold material for tissue-engineered bone repair. Bone formation and scaffold resorption act in concert for maintenance and improvement of the structural properties of the long bones over time. As determined histomorphometrically and mechanically, the rate of incorporation of the scaffold was enhanced with the tissue-engineered constructs.
Ono, I; Tateshita, T; Sasaki, T; Matsumoto, M; Kodama, N
2001-05-01
We devised a technique to fix the temporalis muscle to the transplanted hydroxyapatite implant by using a titanium plate, which is fixed to the hydroxyapatite ceramic implant by screws and achieves good clinical results. The size, shape, and curvature of the hydroxyapatite ceramic implants were determined according to full-scale models fabricated using the laser lithographic modeling method from computed tomography data. A titanium plate was then fixed with screws on the implant before implantation, and then the temporalis muscle was refixed to the holes at both ends of the plate. The application of this technique reduced the hospitalization time and achieved good results esthetically.
Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization.
Boushell, Margaret K; Khanarian, Nora T; LeGeros, Raquel Z; Lu, Helen H
2017-10-01
The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017. © 2017 Wiley Periodicals, Inc.
Structures and properties of alumina-based ceramic for reconstructive oncology
NASA Astrophysics Data System (ADS)
Grigoriev, M. V.; Kulkov, S. N.
2016-08-01
The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/cm3, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone.
Collagen/hydroxyapatite composite materials with desired ceramic properties.
Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton
2011-01-01
Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.
Determinants of bone and blood lead concentrations in the early postpartum period
Brown, M. J.; Hu, H.; Gonzales-Cossio, T.; Peterson, K.; Sanin, L.; Kageyama, M. d.; Palazuelos, E.; Aro, A.; Schnaas, L.; Hernandez-Avila, M.
2000-01-01
OBJECTIVE—This study investigated determinants of bone and blood lead concentrations in 430 lactating Mexican women during the early postpartum period and the contribution of bone lead to blood lead. METHODS—Maternal venous lead was measured at delivery and postpartum, and bone lead concentrations, measured with in vivo K-x ray fluorescence, were measured post partum. Data on environmental exposure, demographic characteristics, and maternal factors related to exposure to lead were collected by questionnaire. Linear regression was used to examine the relations between bone and blood lead, demographics, and environmental exposure variables. RESULTS—Mean (SD) blood, tibial, and patellar lead concentrations were 9.5 (4.5) µg/dl, 10.2 (10.1) µg Pb/g bone mineral, and 15.2 (15.1) µg Pb/g bone mineral respectively. These values are considerably higher than values for women in the United States. Older age, the cumulative use of lead glazed pottery, and higher proportion of life spent in Mexico City were powerful predictors of higher bone lead concentrations. Use of lead glazed ceramics to cook food in the past week and increased patellar lead concentrations were significant predictors of increased blood lead. Patellar lead concentrations explained one third of the variance accounted for by the final blood lead model. Women in the 90th percentile for patella lead had an untransformed predicted mean blood lead concentration 3.6 µg/dl higher than those in the 10th percentile. CONCLUSIONS—This study identified the use of lead glazed ceramics as a major source of cumulative exposure to lead, as reflected by bone lead concentrations, as well as current exposure, reflected by blood lead, in Mexico. A higher proportion of life spent in Mexico City, a proxy for exposure to leaded gasoline emissions, was identified as the other major source of cumulative lead exposure. The influence of bone lead on blood lead coupled with the long half life of lead in bone has implications for other populations and suggests that bone stores may pose a threat to women of reproductive age long after exposure has declined. Keywords: postpartum; blood lead; bone lead PMID:10896960
Fahmy, Rania A; Mahmoud, Naguiba; Soliman, Samia; Nouh, Samir R; Cunningham, Larry; El-Ghannam, Ahmed
2015-12-01
The aim of the present study was to evaluate the effect of a porous silica-calcium phosphate composite (SCPC50) loaded with and without recombinant human bone morphogenetic protein-2 (rhBMP-2) on alveolar ridge augmentation in saddle-type defects. Micro-granules of SCPC50 resorbable bioactive ceramic were coated with rhBMP-2 10 mg and then implanted into a saddle-type defect (12 × 7 mm) in a dog mandible and covered with a collagen membrane. Control groups included defects grafted with SCPC50 granules without rhBMP-2 and un-grafted defects. Bone healing was evaluated at 8 and 16 weeks using histologic and histomorphometric techniques. The increase in bone height and total defect fill were assessed for each specimen using the ImageJ 1.46 program. The release kinetics of rhBMP-2 was determined in vitro. The height of the bone in the grafted defects and the total defect fill were statistically analyzed. SCPC50 enhanced alveolar ridge augmentation as indicated by the increased vertical bone height, bone surface area, and bone volume after 16 weeks. SCPC50-rhBMP-2 provided a sustained release profile of a low effective dose (BMP-2 4.6 ± 1.34 pg/mL per hour) during the 1- to 21-day period. The slow rate of release of rhBMP-2 from SCPC50 accelerated synchronized complete bone regeneration and graft material resorption in 8 weeks. Successful rapid reconstruction of the alveolar ridge by SCPC50 and SCPC50-rhBMP-2 occurred without any adverse excessive bone formation, inflammation, or fluid-filled voids. Results of this study suggest that SCPC50 is an effective graft material to preserve the alveolar ridge after tooth extraction. Coating SCPC50-rhBMP-2 further accelerated bone regeneration and a considerable increase in vertical bone height. These findings make SCPC50 the primary choice as a carrier for rhBMP-2. SCPC50-rhBMP-2 can serve as an alternative to autologous bone grafting. Published by Elsevier Inc.
Development of biocomposed material based on zirconium oxide for regeneration of bone tissue
NASA Astrophysics Data System (ADS)
Lytkin, Ivan; Buyakov, Ales; Kurzina, Irina
2017-11-01
Porous ceramic materials based on magnesium oxide stabilized zirconia were studied. The pore structure and thin crystalline structure were studied. The porosity of some of the materials studied was obtained by conducting a pore-forming additive, UHMWPE. It is shown that after impregnation with polylactide, the residual porosity varies from 22.5 to 5.9%. The average pore size was 2 µm. X-Ray diffraction analysis showed that the fine crystal structure of the ceramic is mainly represented by baddeleyite.
Roriz, Virgílio M; Rosa, Adalberto L; Peitl, Oscar; Zanotto, Edgar D; Panzeri, Heitor; de Oliveira, Paulo T
2010-02-01
The aims of this research were to evaluate the efficacy of a bioactive glass-ceramic (Biosilicate) and a bioactive glass (Biogran) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants. Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate, Biogran particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken. After 12 weeks a new surgery was performed to take the final ridge measurements and to insert bilaterally three Ti implants in biomaterial-implanted and control sites. Eight weeks post-Ti implant placement block biopsies were processed for histological and histomorphometric analysis. The percentages of bone-implant contact (BIC), of mineralized bone area between threads (BABT), and of mineralized bone area within the mirror area (BAMA) were determined. The presence of Biosilicate or Biogran particles preserved alveolar ridge height without affecting its width. No significant differences in terms of BIC, BAMA, and BABT values were detected among Biosilicate, Biogran, and the non-implanted group. The results of the present study indicate that filling of sockets with either Biosilicate or Biogran particles preserves alveolar bone ridge height and allows osseointegration of Ti implants.
Sprio, Simone; Guicciardi, Stefano; Dapporto, Massimiliano; Melandri, Cesare; Tampieri, Anna
2013-01-01
Bioactive tricalcium phosphate/titania ceramic composites were synthesized by pressureless air sintering of mixed hydroxyapatite and titania (TiO2) powders. The sintering process was optimized to achieve dense ceramic bodies consisting in a bioactive/bioresorbable matrix (β-tricalcium phosphate) reinforced with defined amounts of sub-micron sized titania particles. Extensive chemico-physical and mechanical characterization was carried out on the resulting composites, which displayed values of flexural strength, fracture toughness and elastic modulus in the range or above the typical ranges of values manifested by human cortical bone. It was shown that titania particles provided a toughening effect to the calcium-phosphate matrix and a reinforcement in fracture strength, in comparison with sintered hydroxyapatite bodies characterized by similar relative density. The characteristics of the resulting composites, i.e. bioactivity/bioresorbability and ability of manifesting biomimetic mechanical behavior, are features that can promote processes of bone regeneration in load-bearing sites. Hence, in the perspective of developing porous bone scaffolds with high bioactivity and improved biomechanical behavior, TCP/TiO2 composites with controlled composition can be considered as very promising biomaterials for application in a field of orthopedics where no acceptable clinical solutions still exist. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bretcanu, Oana; Baino, Francesco; Verné, Enrica; Vitale-Brovarone, Chiara
2014-05-01
One of the major challenges of hard tissue engineering research focuses on the development of scaffolds that can match the mechanical properties of the host bone and resorb at the same rate as the bone is repaired. The aim of this work was the synthesis and characterization of a resorbable phosphate glass, as well as its application for the fabrication of three dimensional (3-D) scaffolds for bone regeneration. The glass microstructure and behaviour upon heating were analysed by X-ray diffraction, differential scanning calorimetry and hot stage microscopy. The glass solubility was investigated according to relevant ISO standards using distilled water, simulated body fluid (SBF) and Tris-HCl as testing media. The glass underwent progressive dissolution over time in all three media but the formation of a hydroxyapatite-like layer was also observed on the samples soaked in SBF and Tris-HCl, which demonstrated the bioactivity of the material. The glass powder was used to fabricate 3-D macroporous bone-like glass-ceramic scaffolds by adopting polyethylene particles as pore formers: during thermal treatment, the polymer additive was removed and the sintering of glass particles was allowed. The obtained scaffolds exhibited high porosity (87 vol.%) and compressive strength around 1.5 MPa. After soaking for 4 months in SBF, the scaffolds mass loss was 76 wt.% and the pH of the solution did not exceed the 7.55 value, thereby remaining in a physiological range. The produced scaffolds, being resorbable, bioactive, architecturally similar to trabecular bone and exhibiting interesting mechanical properties, can be proposed as promising candidates for bone repair applications.
NASA Astrophysics Data System (ADS)
Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong
2009-04-01
Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.
A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics.
Chen, Qi-Zhi; Li, Yuan; Jin, Li-Yu; Quinn, Julian M W; Komesaroff, Paul A
2010-10-01
The sol-gel process of producing SiO(2)-CaO bioactive glasses is well established, but problems remain with the poor mechanical properties of the amorphous form and the bioinertness of its crystalline counterpart. These properties may be improved by incorporating Na(2)O into bioactive glasses, which can result in the formation of a hard yet biodegradable crystalline phase from bioactive glasses when sintered. However, production of Na(2)O-containing bioactive glasses by sol-gel methods has proved to be difficult. This work reports a new sol-gel process for the production of Na(2)O-containing bioactive glass ceramics, potentially enabling their use as medical implantation materials. Fine powders of 45S5 (a Na(2)O-containing composition) glass ceramic have for the first time been successfully synthesized using the sol-gel technique in aqueous solution under ambient conditions, with the mean particle size being approximately 5 microm. A comparative study of sol-gel derived S70C30 (a Na(2)O-free composition) and 45S5 glass ceramic materials revealed that the latter possesses a number of features desirable in biomaterials used for bone tissue engineering, including (i) the crystalline phase Na(2)Ca(2)Si(3)O(9) that couples good mechanical strength with satisfactory biodegradability, (ii) formation of hydroxyapatite, which may promote good bone bonding and (iii) cytocompatibility. In contrast, the sol-gel derived S70C30 glass ceramic consisted of a virtually inert crystalline phase CaSiO(3). Moreover, amorphous S70C30 largely transited to CaCO(3) with minor hydroxyapatite when immersed in simulated body fluid under standard tissue culture conditions. In conclusion, sol-gel derived Na(2)O-containing glass ceramics have significant advantages over related Na(2)O-free materials, having a greatly improved combination of mechanical capability and biological absorbability. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhu, Minghua; Zeng, Yi; Sun, Tao; Peng, Qiang
2005-03-15
To investigate the osteogenic potential of four kinds of new bioactive ceramics combined with bovine bone morphogenetic proteins (BMP) and to explore the feasibility of using compounds as bone substitute material. Ninety-six rats were divided into 4 groups (24 in each group). BMP was combined with hydroxyapatite (HA), tricalcium phosphate (TCP), fluoridated-HA (FHA), and collagen-HA(CHA) respectively. The left thighs of the rats implanted with HA/BMP, TCP/BMP, FHA/BMP, and CHA/BMP were used as experimental groups. The right thighs of the rats implanted with HA, TCP, CHA, and decalcified dentin matrix (DDM) were used as control groups. The rats were sacrificed 1, 3, 5 and 7 weeks after implantation and bone induction was estimated by alkaline phosphatase (ALP), phosphorus (P), and total protein (TP) measurement. The histological observation and electronic microscope scanning of the implants were also made. The cartilage growth in the 4 experimental groups and the control group implanted with DDM was observed 1 week after operation and fibrous connective tissues were observed in the other 3 control groups. 3 weeks after implantation, lamellar bone with bone marrow and positive reaction in ALP stain were observed in the 4 experimental groups. No bone formation or positive reaction in ALP stain were observed in the control groups. The amount of ALP activity, P value, and new bone formation in the experimental groups were higher than those in the control group(P < 0.05). The amount of ALP activity, P value, and new bone formation in TCP/BMP group were higher than those in HA/BMP, CHA/BMP and FHA/BMP groups (P < 0.05). There was no significant difference in TP between the BMP treatment group and the control groups. From 5th to 7th week, new bone formation, histochemistry evaluation, and the level of ALP, P, TP value were as high as those in the 3rd week. New composite artificial bone of TCP/BMP, HA/BMP, CHA/BMP, and FHA/BMP all prove to be effective, but TCP/BMP is the most effective so that it is the most suitable biomaterial replacement of tissue.
Faruq, Omar; Kim, Boram; Padalhin, Andrew R; Lee, Gun Hee; Lee, Byong-Taek
2017-10-01
An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a promising system for bone regeneration.
Alkali-free bioactive glasses for bone regeneration =
NASA Astrophysics Data System (ADS)
Kapoor, Saurabh
Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass-ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.
Pneumaticos, Spyros G; Triantafyllopoulos, Georgios K; Basdra, Efthimia K; Papavassiliou, Athanasios G
2010-01-01
Abstract Several conditions in clinical orthopaedic practice can lead to the development of a diaphyseal segmental bone defect, which cannot heal without intervention. Segmental bone defects have been traditionally treated with bone grafting and/or distraction osteogenesis, methods that have many advantages, but also major drawbacks, such as limited availability, risk of disease transmission and prolonged treatment. In order to overcome such limitations, biological treatments have been developed based on specific pathways of bone physiology and healing. Bone tissue engineering is a dynamic field of research, combining osteogenic cells, osteoinductive factors, such as bone morphogenetic proteins, and scaffolds with osteoconductive and osteoinductive attributes, to produce constructs that could be used as bone graft substitutes for the treatment of segmental bone defects. Scaffolds are usually made of ceramic or polymeric biomaterials, or combinations of both in composite materials. The purpose of the present review is to discuss in detail the molecular and cellular basis for the development of bone tissue engineering constructs. PMID:20345845
The Endo-Distractor for preimplant mandibular regeneration.
Krenkel, C; Grunert, I
2009-02-01
A simple practical device for a new technique of vertical distraction osteogenesis was developed. The Endo-Distractor Krenkel was originally intended for the anterior regeneration of highly atrophic mandibles. The Endo-Distractor features several novelties. Placement is made intraosseously in the basal cortical bone. The distraction screw length may be adapted to the depth of chin soft tissues. The quality of anchorage in the basal cortical bone guarantees the stability of the distraction vector. The endobuccal emergence is that of an artificial crown, and does not cause any patient discomfort. The device can easily be removed without secondary surgery. All kinds of implants may be placed after the retention time. This study's objective was to evaluate the use of the Endo-Distractor Krenkel in edentulous patients with highly atrophic mandibles. This new device was used on 18 patients, between January 2000 and September 2004, who were then followed-up for at least 36 months. Mandibular atrophy was measured with a lateral cephalogram, then classified according to Atwood's modified classification. The studied criteria included the amplitude of distraction, its duration, the distractor's lingual tilt, the number and outcome of implants, and complications. The sex ratio was 17 female for one male patient. The mean patient age was 56 years (43 to 66 years). The mean distraction amplitude was 11.3mm (8 to 14 mm). The mean retention time was 186.8 days (37 to 309 days). The distractor's mean lingual tilt was 4.3 degrees (0 to 23 degrees ). Two mandibular fractures occurred 6 weeks after placing the Endo-Distractor. The first one was treated medically, and the second one required removing the Endo-Distractor and osteosynthesis. An average of four interforaminal implants were placed for a total of 24 Brånemark and 51 Straumann implants. Four implants were lost in a patient due to infection. All other implants were osseointegrated. No bone loss was detected at follow-up after functional loading. These results show that alveolar distraction is possible on severely atrophic mandibles. The quality of bone and gum reconstruction is satisfactory both for functional and esthetic results. Surgical difficulty and rate of complications were lower than with conventional distraction techniques.
Gupta, Vineet; Lyne, Dina V.; Barragan, Marilyn; Berkland, Cory J.; Detamore, Michael S.
2016-01-01
Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix (ECM) components relevant to bone tissue compared to the “blank” (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903
NASA Astrophysics Data System (ADS)
Donkov, N.; Zykova, A.; Safonov, V.; Kolesnikov, D.; Goncharov, I.; Yakovin, S.; Georgieva, V.
2014-05-01
Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is a material considered to be used to form structural matrices in the mineral phase of bone, dentin and enamel. HAp ceramic materials and coatings are widely applied in medicine and dentistry because of their ability to increase the tissue response to the implant surface and promote bone ingrowth and osseoconduction processes. The deposition conditions affect considerably the structure and bio-functionality of the HAp coatings. We focused our research on developing deposition methods allowing a precise control of the structure and stoichiometric composition of HAp thin films. We found that the use of O2 as a reactive gas improves the quality of the sputtered hydroxyapatite coatings by resulting in the formation of films of better stoichiometry with a fine crystalline structure.
Long-term results of uncemented alumina acetabular implants.
Boehler, M; Knahr, K; Plenk, H; Walter, A; Salzer, M; Schreiber, V
1994-01-01
We report the clinical and tribological performance of 67 ceramic acetabular prostheses implanted between 1976 and 1979 without bone cement. They articulated with ceramic femoral heads mounted on mental femoral stems. After a mean elapsed period of 144 months, 59 sockets were radiographically stable but two showed early signs and six showed late signs of loosening. Four of the loose sockets have been revised. Histological analysis of the retrieved tissue showed a fibrous membrane around all the implants, with fibrocartilage in some. There was no bone ingrowth, and the fibrous membrane was up to 6 mm thick and infiltrated with lymphocytes, plasma cells, and macrophages. Intra- and extracellular birefringent wear particles were seen. Tribological analysis showed total wear rates in two retrieved alumina-on-alumina joints of 2.6 microns per year in a stable implant and 68 microns in a loose implant. Survival analysis showed a revision rate of 12.4% at 136 months.
An Investigation of Bonding Mechanisms at the Interface of a Prosthetic Material.
1977-12-01
II. CONTROLLING OFFICE NAME AND ADDRESS Command — IkThUM eEROFP AGE S Washington, D. C. 20314 144 _______________________ I...which can influence the precipitation of hydroxyapatite in bone. Variable rates of ion release have been achieved by varying (1) Ca/P ratio, (2) the...conducted to establish parameters controlling the bonding of the glass and glass—ceramic materials with bone. These studies have demonstrated that the
Development of processing techniques for advanced thermal protection materials
NASA Technical Reports Server (NTRS)
Selvaduray, Guna S.
1995-01-01
The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.
Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2011-06-01
Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk
2014-05-01
We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for in vitro bone engineering. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Yang, Li-qing; Li, Xi; Fu, Qin; Wang, Cheng
2013-07-01
To retrospectively study early therapeutic effects of the ceramics to ceramics prosthesis design in treating hip disease. From October 2007 to September 2010, 42 patients (44 hips) with hip disease underwent replacement of total hip. Hip prosthesis designs included the Pinnacle ceramics to ceramics and the Duraloc metal to polyethylene,produced by DePuy Company, all were non-bone cement type of artificial hip joint. Twenty patients (22 hips) were performed with ceramics to ceramics total hip prosthesis (CoC group, there were 12 males and 8 females, aged from 21 to 49 years) and 22 patients (22 hips) were performed with metal to polyethylene total hip prosthesis (MoP group, there were 13 males and 9 females, aged from 42 to 55 years). All the surgical approachs were posterolateral, and the routine anticoagulation and the corresponding functional exercise were performed after operation. The follow-up time was 6 months at least including clinical and radiographic observation. Measured the motion of joint and evaluated the function of hip joint according to Harris classification. All clinical effects were satisfactory and no dislocation ,loosening,infection, deep venous thrombosis and other complications occurred. There was no statistical significance in Harris scoring and the motion of joint between two groups before and after operation (P>0.05). The clinical effect of ceramics to ceramics prosthesis design in improving clinical symptoms and the motion of joint is coordinate with metal to polyethylene total hip prosthesis, however, its advantages and long-term efficacy need further observing. The ceramics to ceramics prosthesis design may be a good choice for the young patients with hip disease because of its good wear resistance.
Hainich, J; von Rechenberg, B; Jakubietz, R G; Jakubietz, M G; Giovanoli, P; Grünert, J G
2014-02-01
Surgical treatment of osteoporotic distal radius fractures with locking plates does not completely prevent loss of reduction. Additional bone deficit stabilisation with the use of bone substitute materials is receiving increased attention. Most knowledge on the in vivo behavior of bone substitutes originates from a small number of animal models after its implantation in young, good vascularized bone. This paper investigates the osteoconductivity, resorption and biocompatibility of beta-tricalcium phosphate as a temporary bone replacement in osteoporotic type distal radius fractures. 15 bone samples taken from the augmented area of the distal radius of elderly people during metal removal were examined. The material was found to be osteoconductive, good degradable, and biocompatible. Degrading process and remodelling to woven bone seem to require more time than in available comparative bioassays. The material is suitable for temporary replacement of lost, distal radius bone from the histological point of view. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad
2014-10-01
Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.
Design strategies and applications of nacre-based biomaterials.
Gerhard, Ethan Michael; Wang, Wei; Li, Caiyan; Guo, Jinshan; Ozbolat, Ibrahim Tarik; Rahn, Kevin Michael; Armstrong, April Dawn; Xia, Jingfen; Qian, Guoying; Yang, Jian
2017-05-01
The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacre's biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the integration and mechanical capabilities of calcium phosphates with increased bioactivity derived from proteins and biomolecules; however, there is limited awareness of this material's potential. Herein, we present, to our knowledge, the first comprehensive review of nacre as a biomaterial. Nacre is a highly promising yet overlooked biomaterial for orthopedic tissue engineering with great potential in a wide variety of material systems. It is our hope that publication of this article will lead to increased community awareness of the potential of nacre as a versatile, bioactive ceramic capable of improving bone tissue regeneration and will elicit increased research effort and innovation utilizing nacre. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A newly designed hydroxyapatite ceramic burr-hole button
Kashimura, Hiroshi; Ogasawara, Kuniaki; Kubo, Yoshitaka; Yoshida, Kenji; Sugawara, Atsushi; Ogawa, Akira
2010-01-01
Conventional burr-hole buttons sometimes do not fit the burr hole well due to the curvature of the surrounding bone. An irregular surface at the border between the button and the surrounding skull may appear unaesthetic. The major problem is the difference between the curvature radius of the skull and the burr-hole button in contact with the skull. To solve this problem, the authors designed a button made of hydroxyapatite ceramic to snugly fit the burr hole. The specifications of this device and its clinical application are described here. PMID:20448795
A newly designed hydroxyapatite ceramic burr-hole button.
Kashimura, Hiroshi; Ogasawara, Kuniaki; Kubo, Yoshitaka; Yoshida, Kenji; Sugawara, Atsushi; Ogawa, Akira
2010-03-24
Conventional burr-hole buttons sometimes do not fit the burr hole well due to the curvature of the surrounding bone. An irregular surface at the border between the button and the surrounding skull may appear unaesthetic. The major problem is the difference between the curvature radius of the skull and the burr-hole button in contact with the skull. To solve this problem, the authors designed a button made of hydroxyapatite ceramic to snugly fit the burr hole. The specifications of this device and its clinical application are described here.
Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso
2015-01-01
The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.
An Injectable Method for Posterior Lateral Spine Fusion
2013-09-01
any problems that would prevent us from reaching our proposed goals. We have begun to establish optimal parameters for encapsulation of the MSCs...783–799 (2009). 3. U. Heise, J. F. Osborn, and F. Duwe, “ Hydroxyapatite ceramic as a bone substitute,” Int. Orthop. 14(3), 329–338 (1990). 4. H...gel and porous hydroxyapatite for posterolateral lumbar spine fusion,” Spine 30(10), 1134–1138 (2005). 9. M. R. Urist, “Bone: formation by
1996-05-01
at San Antonio Supervising Professors: Barbara D. Boyan, Ph.D. David L. Cochran, D.D.S., Ph.D. Placement of endosseous dental implants requires the...titanium substratum was chosen for these studies since most medical and dental implants are fabricated from titanium The titanium was cut into uniform...electron microscopy to evaluate the histomorphometry of the implant-bone interface of various titanium and ceramic dental implants placed in dog mandibles
Development of hydroxyapatite/polyvinyl alcohol bionanocomposite for prosthesis implants
NASA Astrophysics Data System (ADS)
Karthik, V.; Pabi, S. K.; Chowdhury, S. K. Roy
2018-02-01
Hydroxyapatite (Ca10(PO4)6(OH)2) has similar structural and chemical properties of natural bone mineral and hence widely used as a bone replacement substitute. Natural bone consists of hydroxyapatite and collagen. For mimicking the natural, in the present work, a sintered porous hydroxyapatite component has been vacuum impregnated with Polyvinyl alcohol (PVA), which has better properties like biocompatibility, biodegradability and water- solubility. Hydroxyapatite powders have been made into nanosize to reduce the melting point and hence the sintering temperature. In the present investigation high energy ball mill is used to produce nano-hydroxyapatite powders in bulk quantity by optimizing the milling parameters using stainless steel grinding media. Pellets of 10 mm diameter have been produced from nano- hydroxyapatite powders under different uniaxial compaction pressures. The pellets have been sintered to form porous compacts. The vacuum impregnation of sintered pallets with PVA solution of different strength has been done to find the optimum impregnation condition. Microhardness, compressive strength, wear loss and haemocompatibility of hydroxyapatite ceramics have been studied before and after impregnation of PVA. The nano- hydroxyapatite/PVA composites have superior mechanical properties and reduced wear loss than the non-impregnated porous nano-hydroxyapatite ceramics.
Shokrollahi, H; Salimi, F; Doostmohammadi, A
2017-10-01
In recent years, due to the controllable mechanical properties and degradation rate, calcium silicates such as akermanite (Ca 2 MgSi 2 O 7 ) with Ca-Mg and Si- containing bio-ceramics have received much more attention. In addition, the piezoelectric effect plays an important role in bone growth, remodeling and defect healing. To achieve our objective, the porous bioactive nano-composite with a suitable piezoelectric coefficient was fabricated by the freeze-casting technique from the barium titanate and nano-akermanite (BT/nAK) suspension. The highest d 33 of 4pC/N was obtained for BT90/nAK10. The compressive strength and porosity were for BT75/nAK25 and BT60/nAK40 at the highest level, respectively. The average pore channel diameter was 41 for BT75/nAK25. Interestingly enough, the inter-connected pore channel was observed in the SEM images. There was no detectable transformation phase in the XRD pattern for the BT/nAK composites. The manipulation flexibility of this method indicated the potential for the customized needs in the application of bone substitutes. An ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)) MTT assay indicated that the obtained scaffolds have no cytotoxic effects on the human bone marrow mesenchymal stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moriguchi, Yu; Lee, Dae-Sung; Thamina, Khair; Masuda, Kazuto; Itsuki, Dai; Yoshikawa, Hideki; Hamaguchi, Satoshi; Myoui, Akira
2018-01-01
In the physiochemical sciences, plasma is used to describe an ionized gas. Previous studies have implicated plasma surface treatment in the enhancement of hydrophilicity of implanted musculoskeletal reconstructive materials. Hydroxyapatite (HA) ceramics, widely used in bone tissue regeneration, have made great advancements to skeletal surgery. In the present study, we investigate the impact of low-pressure plasma on the interconnected porous calcium hydroxyapatite (IP-CHA) both in vitro and in vivo. Our results indicate that dielectric barrier discharge (DBD) plasma, when used with oxygen, can augment the hydrophilicity of non-porous HA surfaces and the osteoconductivity of the IP-CHA disc via increased water penetration of inner porous structures, as demonstrated through microfocus computed tomography (μCT) assay. In vivo implantation of plasma-treated IP-CHA displayed superior bone ingrowth than untreated IP-CHA. Though plasma-treated IP-CHA did not alter osteoblast cell proliferation, it accelerated osteogenic differentiation of seeded marrow mesenchymal stem cells. In vitro X-ray photoelectron spectroscopy (XPS) revealed that this plasma treatment increases levels of oxygen, rather than nitrogen, on the plasma-treated IP-CHA surface. These findings suggest that plasma treatment, an easy and simple processing, can significantly improve the osteoconductive potential of commonly used artificial bones such as IP-CHA. Further optimization of plasma treatment and longer-term follow-up of in vivo application are required toward its clinical application. PMID:29538457
Arinc, Hakan
2018-06-22
BACKGROUND The purpose of this study was to evaluate the effects of prosthetic material and framework design on the stress within dental implants and peripheral bone using finite element analysis (FEA). MATERIAL AND METHODS A mandibular implant-supported fixed dental prosthesis with different prosthetic materials [cobalt-chromium-supported ceramic (C), zirconia-supported ceramic (Z), and zirconia-reinforced polymethyl methacrylate (ZRPMMA)-supported resin (ZP)] and different connector widths (2, 3, and 4 mm) within the framework were used to evaluate stress via FEA under oblique loading conditions. Maximum principal (smax), minimum principal (smin), and von Mises (svM) stress values were obtained. RESULTS Minimum stress values were observed in the model with a 2-mm connector width for C and ZP. The models with 3-mm and 4-mm connector widths showed higher stress values than the model with a 2-mm connector width for C (48-50%) and ZP (50-52%). Similar stress values were observed in the 3- and 4-mm models. There was no significant difference in the amount of stress with Z regardless of connector width. The Z and ZP models showed similar stress values in the 3- and 4-mm models and higher stress values than in the C model. Z, ZP, and C showed the highest stress values for the model with a 2-mm connector width. CONCLUSIONS Changes in the material and width of connectors may influence stress on cortical bone, cancellous bone, and implants. C was associated with the lowest stress values. Higher maximum and minimum principal stress values were seen in cortical bone compared to cancellous bone.
Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum
2016-07-01
Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. © 2016 Wiley Periodicals, Inc.
Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J
2018-04-01
In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in young patients. In this work, α-TCP/Fe composites are studied for the first time in a wide range of compositions, showing not only higher degradation rate in vitro than pure components, but also good cytocompatibility and mechanical properties controllable with the Fe content. Ceramic matrix composites show high specific strength and low elastic modulus, thus better fulfilling the requirements for bone fractures fixation. A significant advance over previous works on the topic is the use of pulsed electric current assisted sintering together with α-TCP, convenient to improve the mechanical performance and degradation rate, respectively. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Prieto, Edna M.; Talley, Anne D.; Gould, Nicholas R.; Zienkiewicz, Katarzyna J.; Drapeau, Susan J.; Kalpakci, Kerem N.
2014-01-01
Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity (LV) and high viscosity (HV) grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105 – 500 μm) allograft particles healed at 12 weeks post-implantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. PMID:25581686
Custom-made composite scaffolds for segmental defect repair in long bones.
Reichert, Johannes C; Wullschleger, Martin E; Cipitria, Amaia; Lienau, Jasmin; Cheng, Tan K; Schütz, Michael A; Duda, Georg N; Nöth, Ulrich; Eulert, Jochen; Hutmacher, Dietmar W
2011-08-01
Current approaches for segmental bone defect reconstruction are restricted to autografts and allografts which possess osteoconductive, osteoinductive and osteogenic properties, but face significant disadvantages. The objective of this study was to compare the regenerative potential of scaffolds with different material composition but similar mechanical properties to autologous bone graft from the iliac crest in an ovine segmental defect model. After 12 weeks, in vivo specimens were analysed by X-ray imaging, torsion testing, micro-computed tomography and histology to assess amount, strength and structure of the newly formed bone. The highest amounts of bone neoformation with highest torsional moment values were observed in the autograft group and the lowest in the medical grade polycaprolactone and tricalcium phosphate composite group. The study results suggest that scaffolds based on aliphatic polyesters and ceramics, which are considered biologically inactive materials, induce only limited new bone formation but could be an equivalent alternative to autologous bone when combined with a biologically active stimulus such as bone morphogenetic proteins.
Low temperature setting polymer-ceramic composites for bone tissue engineering
NASA Astrophysics Data System (ADS)
Sethuraman, Swaminathan
Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo study of these novel bone cements in a 5mm unicortical defect in New Zealand white rabbits showed that the implants were osteoconductive, and osteointegrative. In conclusion, the various studies that have been carried out in this thesis to study the feasibility of a bone cement system have shown that these materials are promising candidates for various orthopaedic applications. Overall I believe that these next generation bone cements are promising bone graft substitutes in the armamentarium to treat bone defects.
Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo
2015-04-01
The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.
Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration
Short, Aaron R.; Koralla, Deepthi; Deshmukh, Ameya; Wissel, Benjamin; Stocker, Benjamin; Calhoun, Mark; Dean, David; Winter, Jessica O.
2015-01-01
Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current “gold standard” treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects. PMID:26693013
Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration.
Short, Aaron R; Koralla, Deepthi; Deshmukh, Ameya; Wissel, Benjamin; Stocker, Benjamin; Calhoun, Mark; Dean, David; Winter, Jessica O
2015-10-28
Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current "gold standard" treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects.
Gyo, K; Yanagihara, N
1986-01-01
Ossicular mobility was assessed by direct coupling of a piezoelectric ceramic vibrator to the ossicles during middle ear surgery. The sites excited were body of the incus, head of the stapes, and footplate of the stapes through a hydroxyapatite ceramic strut. The threshold of the vibratory hearing was determined by the patient's response as a minimum audition, and the vibration threshold was obtained by subtracting the preoperative bone conduction threshold from the vibratory hearing threshold. The results were analyzed by the state of hearing after the operation, which revealed that a patient with a good vibration threshold during the operation had a tendency to get good postoperative hearing. This may mean that postoperative hearing can be predicted to some extent during the operation by the measurement of ossicular mobility.
Park, Ji-Man; Baek, Chang-Hyun; Heo, Seong-Joo; Kim, Seong-Kyun; Koak, Jai-Young; Kim, Shin-Koo; Belser, Urs C
The aim of this study was to compare the loosening of interchangeable one-piece abutments connected to internal-connection-type implants after cyclic loading. Four implant abutment groups (n = 7 in each group) with Straumann tissue-level implants were assessed: Straumann solid abutment (group S), Southern Implants solid abutment (group SI), Implant Direct straight abutment (group ID), and Blue Sky Bio regular platform abutment (group BSB). The implant was firmly held in a special jig to ensure fixation. Abutment screws were tightened to manufacturers' recommended torque with a digital torque gauge. The hemispherical loading members were fabricated for the load cell of a universal testing machine to evenly distribute the force on the specimens and to fulfill the ISO 14801:2007 standard. A cyclic loading of 25 N at 30 degrees to the implant's long axis was applied for a duty of a half million cycles. Tightening torques were measured prior to the loading. Removal torques were measured after cyclic loading. The data were analyzed with one-way analysis of variance (ANOVA), and the significance level was set at P < .05. The mean removal torques after cyclic loading were 34.0 ± 1.1 Ncm (group S), 25.0 ± 1.5 Ncm (group SI), 23.9 ± 2.1 Ncm (group ID), and 27.9 ± 1.3 Ncm (group BSB). Removal torques of each group were statistically different in the order of group S > group BSB > groups SI and ID (P < .05). The mean reduction rates were -2.9% ± 3.2% (group S), -21.9% ± 4.8% (group SI), -20.2% ± 7.2% (group ID), and -6.9% ± 4.3% (group BSB) after a half million cycles, respectively. Reduction rates of groups S and BSB were statistically lower than those of groups SI and ID (P < .01). The standard deviation of group S was lower than group BSB. The removal torque of the original Straumann abutment was significantly higher than those of the copy abutments. The reduction rate of the groups S and BSB abutments was lower than those of the other copy abutments.
Modeling Nanomechanical Behavior of Calcium-Silicate-Hydrate
2012-08-01
applicability to hardened pastes of tricalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag , metakaolin, or silica...Hydrated Nanocomposites: Concrete, Bone, and Shale. J. Am. Ceram . Soc., 90(9): 2677-2692. Wu, Jianzhong. and John M. Prausnitz. 2002. Generalizations for
NASA Astrophysics Data System (ADS)
Sisson, Kristin M.
Electrospinning provides an avenue to explore tissue engineering with the ability to produce nano- and micro-sized fibers in a non-woven construct with properties ideal for a tissue engineered scaffold including: small diameter fibers, which create a large surface to volume ratio, and an interconnected porous network that enables cell migration, good mechanical integrity and a three-dimensional structure. A tissue engineered scaffold also must be biocompatible, biodegradable, non-toxic and able to be sterilized. All of these requirements can be satisfied by choosing an appropriate polymer and solvent system for electrospinning. The main objective of this research is to create a non-toxic, flat, bone tissue engineered scaffold to place into a non-immune compromised mouse. The current bone tissue repair and replacement methodologies include using metal and ceramic replacements or autologous and autogenous bone grafts. Each of these has its own set of disadvantages. Autologous grafts are bone harvested in one location in a patient and used in another location. This procedure is expensive, often results in pain and infection at the replacement site, and the actual harvesting procedure can cause problems for the patient. Autogenous grafts are bone harvested in one patient and used in another patient. The shortcomings include low donor availability and the possibility of rejection of the implant. The other options include using metal and ceramics to create replacement bone. However, metals provide good mechanical stability but can fail due to infection and also have poor integration into natural tissue. Ceramics, on the other hand, are brittle and have very low tensile strength. The natural extracellular matrix (ECM) of bone consists mainly of collagen type I. Electrospun fiber diameters closely resemble those of the natural ECM of bone. Thus, electrospinning a natural polymer like collagen type I for bone tissue engineering could make sense. Applications for these electrospun tissue engineered scaffolds include flat bone repair (skull, scapula, pelvis and sternum) or replacement applications. In order to meet the main objective, several critical milestones must be completed. The first is to develop an electrospinning system that uses less toxic solvents. Until recently, fluorinated solvents have been used to electrospin collagen and gelatin. These fluorinated solvents are cytotoxic and, even with vacuum drying and extensive washing, these toxic solvents may remain in the electrospun scaffolds. A solvent system using less toxic, non-fluorinated solvents to electrospin collagen and gelatin is necessary. Due to the high expense of collagen type I, gelatin is being used as a material substitute since gelatin is simply denatured collagen. Gelatin, like collagen, will dissolve in aqueous media unless it is crosslinked. The chemical generally used for crosslinking gelatin is glutaraldehyde, which is considered toxic. Therefore, the second objective is to find a less toxic method to crosslink the electrospun gelatin while maintaining the fiber morphology. The new crosslinking methods must also prove to be biocompatible in vivo. Another important objective is to investigate cell penetration as a function of fiber size, which is directly proportional to pore size. The final objective involves growing bone cells such as MG63 (osteoblast-like) in the electrospun scaffolds and compare to two-dimensional culture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari-Wahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my; Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar; Ginta, Turnad Lenggo
2014-10-24
Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics ismore » excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.« less
An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.
Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B
2009-08-01
Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.
NASA Astrophysics Data System (ADS)
Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.
2017-08-01
Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.
Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María
2016-11-01
The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca 10 (PO 4 ) 5.7 (SiO 4 ) 0.3 (OH) 1.7 h 0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SN A 15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T
2013-08-01
Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered bone tissue. In cases of large bone voids (such as bone cancer), tissue-engineered constructs may provide alternatives to traditional bone grafts by culturing patients' own MSCs with PLAGA/n-HA scaffolds in a HARV culture system.
Trajkovski, Branko; Jaunich, Matthias; Müller, Wolf-Dieter; Beuer, Florian; Zafiropoulos, Gregory-George; Houshmand, Alireza
2018-01-30
The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties' influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone ® ), synthetic (maxresorb ® ), and allograft (maxgraft ® , Puros ® ) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone ® and maxresorb ® blocks showed a slight height decrease in wet state, whereas both maxgraft ® and Puros ® had an almost identical height increase. In addition, cerabone ® and maxresorb ® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft ® and Puros ® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone ® , Bio-Oss ® , NuOss ® , SIC ® nature graft) and synthetic DBGS granules (maxresorb ® , BoneCeramic ® , NanoBone ® , Ceros ® ). The highest level of hydrophilicity was detected in cerabone ® and maxresorb ® , while Bio-Oss ® and BoneCeramic ® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results.
Müller, Wolf-Dieter; Beuer, Florian; Zafiropoulos, Gregory-George; Houshmand, Alireza
2018-01-01
The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone®), synthetic (maxresorb®), and allograft (maxgraft®, Puros®) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft) and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®). The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results. PMID:29385747
Zhang, Mengjiao; Chen, Xianchun; Pu, Ximing; Liao, Xiaoming; Huang, Zhongbing; Yin, Guangfu
2014-04-01
The effects in vitro of a novel multiphase glass-ceramic (with nominal composition of 43.19% CaO, 7.68% MgO, and 49.13% SiO2 in weight percent) on cell adhesion, proliferation, differentiation and ultrastructure of human osteosarcoma cell line MG63, mouse fibroblasts L929, and human lung adenocarcinoma epithelial cell line A549 were investigated in this research. Scanning electron microscopy (SEM) micrographs revealed that the surface morphology of this glass-ceramic was beneficial to cell adhesion. The glass-ceramic extracts at certain concentrations could stimulate the proliferation and differentiation of MG63 and L929 cells, whereas inhibit A549 proliferation, which might be resulted from the released Si ions. In addition, when cultured with 0.1mg/mL glass-ceramic powder suspension, the cell ultrastructure of MG63 showed abundant organelles and L929 displayed the phenomena of cellular stress response. While more interestingly, A549 exhibited chromatin condensation, mitochondria swell and RER expansion, which was presumed to be early signs of apoptosis. These results suggest that this novel CaO-MgO-SiO2-based multiphase glass-ceramic has potential for bone regeneration and tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.
Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L
2012-01-01
Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra
2015-10-01
In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with the special feature of radiopacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Krüger, Jörg; Berger, Georg
2010-08-01
Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 Jcm(-2). In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Legenstein, R; Huber, W; Ungersboeck, A; Boesch, P
2006-01-01
From 1990 to 1991 we implanted 176 non-cemented proximal press-fit (PPF) total hip arthroplasties (THA) with ceramic-on-polyethylene articulation in 170 patients. Of these, 119 patients (122 THA) were followed from 104 to 129 months. Four cups have been revised for aseptic loosening, but revealed no radiolucencies of the stem. Two infections and two dislocations occurred. The median postoperative Harris hip score was 91. Ninety-eight per cent of the patients were satisfied with the outcome, 83% were free of pain and 67% walked without a limp. Serial radiographs showed stable fixation with bone ongrowth in nearly all arthroplasties except for four cups. Stem radiolucencies were first seen within 12 months, but were of no clinical relevance. Proximal periprosthetic bone resorption of the stem was seen in 18%. Radiolucencies occurred because of polyethylene debris-induced granulomas. The PPF system yields satisfactory long-term results in patients with primary and secondary hip osteoarthritis and dysplasia.
[Cytocompatibility of two porous bioactive glass-ceramic in vitro].
Zhang, Yan; Jiang, Xinquan; Zhang, Xiuli; Wang, Deping; Zhen, Lei
2013-06-01
To compare the cytocompatibility of two kinds porous bioactive glass-ceramic made by same raw materials. Apatite/wollastonite bioactive glass-ceramic (4006) were prepared by sol-gel method, and bioactive glass (45S5) were prepared by melting method. Bone marrow stromal cells (BMSCs) were cultivated, differentiated and proliferated into osteoblasts, from a rabbit's marrow in the differentiatiofn culture medium with active function. The viability of BMSCs cultivated with extraction of these two kinds of biomaterial, which could represent the cytotoxicity effect of 4006 and 45S5 against BMSCs, was evaluated by the MTp assay. BMSCs were seeded and cocultivated with two kinds of biomaterial scaffolds respectively in vitro. The proliferation and biological properties of cells adhered to scaffolds were observed by inverted phase contrast microscope, scanning electron microscope (SEM), and environmental scanning electron microscope (ESEM), and a suitable cell amount for seeding on the scaffold was searched. There was no difference on the viability of BMSCs only cultured for one day by complete extract of 4006 and culture medium (P>0.05), but there was significant difference between them when the cells had been cultured for 3 days(P<0.01). The extract of 45S5 had significantly higher cytotoxicity than extract of culture medium (P<0.01). The BMSCs adhered, spread, and proliferated throughout the pores of the scaffold 4006, and the amount of cells adhered to 4006 was more than to 45S5. The adhered cells to 4006 increased with the rising amount of cells seeded. And 2 x 10(7) cells.mL-1 suspension resulted inthe highest cell adherence during the comparative cells adherence test. Apatite/woolastonite bioac tive glass-ceramic has good bioactivity and cytocompatibility. Therefore, it may have the potential to be a new cell vehicle for bone tissue engineering. And the suitable seeding cell amount of apatite/wollastonite bioactive glass-ceramic should be 2x10(7) cells.mL-1 or even more than that.
Kose, Nusret; Çaylak, Remzi; Pekşen, Ceren; Kiremitçi, Abdurrahman; Burukoglu, Dilek; Koparal, Savaş; Doğan, Aydın
2016-02-01
Despite improvement in operative techniques and antibiotic therapy, septic complications still occur in open fractures. We developed silver ion containing ceramic nano powder for implant coating to provide not only biocompatibility but also antibacterial activity to the orthopaedic implants. We hypothesised silver ion doped calcium phosphate based ceramic nano-powder coated titanium nails may prevents bacterial colonisation and infection in open fractures as compared with uncoated nails. 33 rabbits divided into three groups. In the first group uncoated, in the second group hydroxyapatite coated, and in the third group silver doped hydroxyapatite coated titanium nails were inserted left femurs of animals from knee regions with retrograde fashion. Before implantation of nails 50 μl solution containing 10(6)CFU/ml methicillin resistance Staphylococcus aureus (MRSA) injected intramedullary canal. Rabbits were monitored for 10 weeks. Blood was taken from rabbits before surgery and on 2nd, 6th and 10th weeks. Blood was analysed for biochemical parameters, blood count, C-reactive protein and silver levels. At the end of the 10 weeks animals were sacrificed and rods were extracted in a sterile fashion. Swab cultures were taken from intramedullary canal. Bacteria on titanium rods were counted. Liver, heart, spleen, kidney and central nervous tissues samples were taken for determining silver levels. Histopathological evaluation of bone surrounding implants was also performed. No significant difference was detected between the groups from hematologic, biochemical, and toxicological aspect. Microbiological results showed that less bacterial growth was detected with the use of silver doped ceramic coated implants compared to the other two groups (p=0.003). Accumulation of silver was not detected. No cellular inflammation was observed around the silver coated prostheses. No toxic effect of silver on bone cells was seen. Silver ion doped calcium phosphate based ceramic nano powder coating to orthopaedic implants may prevents bacterial colonisation and infection in open fractures compared with those for implants without any coating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cost Analysis of Ceramic Heads in Primary Total Hip Arthroplasty.
Carnes, Keith J; Odum, Susan M; Troyer, Jennifer L; Fehring, Thomas K
2016-11-02
The advent of adverse local tissue reactions seen in metal-on-metal bearings, and the recent recognition of trunnionosis, have led many surgeons to recommend ceramic-on-polyethylene articulations for primary total hip arthroplasty. However, to our knowledge, there has been little research that has considered whether the increased cost of ceramic provides enough benefit over cobalt-chromium to justify its use. The primary purpose of this study was to compare the cost-effectiveness of ceramic-on-polyethylene implants and metal-on-polyethylene implants in patients undergoing total hip arthroplasty. Markov decision modeling was used to determine the ceramic-on-polyethylene implant revision rate necessary to be cost-effective compared with the revision rate of metal-on-polyethylene implants across a range of patient ages and implant costs. A different set of Markov models was used to estimate the national cost burden of choosing ceramic-on-polyethylene implants over metal-on-polyethylene implants for primary total hip arthroplasties. The Premier Research Database was used to identify 20,398 patients who in 2012 were ≥45 years of age and underwent a total hip arthroplasty with either a ceramic-on-polyethylene implant or a metal-on-polyethylene implant. The cost-effectiveness of ceramic heads is highly dependent on the cost differential between ceramic and metal femoral heads and the age of the patient. At a cost differential of $325, ceramic-on-polyethylene bearings are cost-effective for patients <85 years of age. At a cost differential of $600, it is cost-effective to utilize ceramic-on-polyethylene bearings in patients <65 years of age, and, at a differential of $1,003, ceramic-on-polyethylene bearings are not cost-effective at any age. The ability to recoup the initial increased expenditure of ceramic heads through a diminished lifetime revision cost is dependent on the price premium for ceramic and the age of the patient. A wholesale switch to ceramic bearings regardless of age or cost differential may result in an economic burden to the health system. Economic and decision analysis, Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Development of polyurethanes for bone repair.
Marzec, M; Kucińska-Lipka, J; Kalaszczyńska, I; Janik, H
2017-11-01
The purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity of polyurethanes. Interaction with various cells, behavior in vivo and current strategies in enhancing bioactivity of polyurethanes are described. The discussion on the incorporation of biomolecules and growth factors, surface modifications, and obtaining polyurethane-ceramics composites strategies is held. The main emphasis is placed on the progress of polyurethane applications in bone regeneration, including bone void fillers, shape memory scaffolds, and drug carrier. Copyright © 2017 Elsevier B.V. All rights reserved.
Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie
2017-10-01
The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.
Poinern, Gérrard Eddy Jai; Brundavanam, Ravi Krishna; Thi Le, Xuan; Nicholls, Philip K.; Cake, Martin A.; Fawcett, Derek
2014-01-01
Hydroxyapatite (HAP) is a biocompatible ceramic that is currently used in a number of current biomedical applications. Recently, nanometre scale forms of HAP have attracted considerable interest due to their close similarity to the inorganic mineral component of the bone matrix found in humans. In this study ultrafine nanometre scale HAP powders were prepared via a wet precipitation method under the influence of ultrasonic irradiation. The resulting powders were compacted and sintered to form a series of ceramic pellets with a sponge-like structure with varying density and porosity. The crystalline structure, size and morphology of the powders and the porous ceramic pellets were investigated using advanced characterization techniques. The pellets demonstrated good biocompatibility, including mixed cell colonisation and matrix deposition, in vivo following surgical implantation into sheep M. latissimus dorsi. PMID:25168046
Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation
NASA Astrophysics Data System (ADS)
Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Hackbarth, Andreas; Berger, Georg; Krüger, Jörg
2012-07-01
The surface of a titanium alloy (Ti6Al4V) implant material was covered with a bioactive calcium alkali phosphate ceramic with the aim to accelerate the healing and to form a stronger bond to living bone tissue. To fix the ceramic powder we used a femtosecond laser, which causes a thin surface melting of the metal. It is a requirement to prove that the laser irradiation would not reduce the lifetime of implants. Here we present the results of mechanical stability tests, determined by the rotating bending fatigue strength of sample rods. After describing the sample surfaces and their modifications caused by the laser treatment we give evidence for an unchanged mechanical stability. This applies not only to the ceramic fixation but also to a comparatively strong laser ablation.
Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow
Seidenstuecker, Michael; Kissling, Steffen; Ruehe, Juergen; Suedkamp, Norbert P.; Mayr, Hermann O.; Bernstein, Anke
2015-01-01
The aim of this study was the development of a process for filling the pores of a β-tricalcium phosphate ceramic with interconnected porosity with an alginate hydrogel. For filling of the ceramics, solutions of alginate hydrogel precursors with suitable viscosity were chosen as determined by rheometry. For loading of the porous ceramics with the gel the samples were placed at the flow chamber and sealed with silicone seals. By using a vacuum induced directional flow, the samples were loaded with alginate solutions. The loading success was controlled by ESEM and fluorescence imaging using a fluorescent dye (FITC) for staining of the gel. After loading of the pores, the alginate is transformed into a hydrogel through crosslinking with CaCl2 solution. The biocompatibility of the obtained composite material was tested with a live dead cell staining by using MG-63 Cells. The loading procedure via vacuum assisted directional flow allowed complete filling of the pores of the ceramics within a few minutes (10 ± 3 min) while loading through simple immersion into the polymer solution or through a conventional vacuum method only gave incomplete filling. PMID:26703749
Mick, Enrico; Markhoff, Jana; Mitrovic, Aurica; Jonitz, Anika; Bader, Rainer
2013-09-11
Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations-consisting mainly of SiO₂, Al₂O₃, K₂O and Na₂O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa) was found for the three different coatings. The obtained roughness (R z ) amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm) or adhesive strength (57.2 ± 5.8 MPa). In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.
Management of segmental bony defects: the role of osteoconductive orthobiologics.
McKee, Michael D
2006-01-01
Our knowledge about, and the availability of, orthobiologic materials has increased exponentially in the last decade. Although previously confined to the experimental or animal-model realm, several orthobiologics have been shown to be useful in a variety of clinical situations. As surgical techniques in vascular anastomosis, soft-tissue coverage, limb salvage, and fracture stabilization have improved, the size and frequency of bony defects (commensurate with the severity of the initial injury) have increased, as well. Because all methods of managing segmental bony defects have drawbacks, a need remains for a readily available, void-filling, inexpensive bone substitute. Such a bone substitute fulfills a permissive role in allowing new bone to grow into a given defect. Such potential osteoconductive materials include ceramics, calcium sulfate or calcium phosphate compounds, hydroxyapatite, deproteinized bone, corals, and recently developed polymers. Some materials that have osteoinductive properties, such as demineralized bone matrix, also display prominent osteoconductive properties.
Ning, Huiying; Liu, Hongwei
2011-08-01
The purpose of this study was to establish an indirect co-culture system of rat apical tooth germ-conditioned medium (APTG-CM) and periodontal ligament cells (PDLCs). PDLCs were isolated and cultured through the method of enzyme-digestion. Vimentin and cytokeratin(CK) were used to demonstrate the cells' mesenchymal derivation. Co-culture system of APTG-CM and PDLCs for 28 days, osteocalcin (OCN), collagen type I (COL I) and bone sialoprotein (BSP) were detected in PDLCs by immunocytochemistry. Morphological changes were observed by inverted microscope. With building a transplant by dental tube, periodontal ligament cell sheet and ceramic biologic bone (CBB) in vitro, then, the combinations of dental tube and PDLCs incubated by APTG-CM were implanted subcutaneously into athymic mice for 8 weeks. This study demonstrated that cellular cementum-like tissue formed along the dentin surface and CBB, with fibrous tissue adjacent or inserted into CBB in vivo. PDLCs were grown better in the CBB than in dentin tubes. And the vertical fibers can't embed in the control. PDLCs, embedded within this APTG-CM, exhibite several phenotypic characteristics of cementoblast lineages. Thereby it contributes to the main processes of periodontal tissue regeneration with rat APTG-CM.
Gómez-Lizárraga, K K; Flores-Morales, C; Del Prado-Audelo, M L; Álvarez-Pérez, M A; Piña-Barba, M C; Escobedo, C
2017-10-01
One of the critical challenges that scaffolding faces in the organ and tissue regeneration field lies in mimicking the structure, and the chemical and biological properties of natural tissue. A high-level control over the architecture, mechanical properties and composition of the materials in contact with cells is essential to overcome such challenge. Therefore, definition of the method, materials and parameters for the production of scaffolds during the fabrication stage is critical. With the recent emergence of rapid prototyping (RP), it is now possible to create three-dimensional (3D) scaffolds with the essential characteristics for the proliferation and regeneration of tissues, such as porosity, mechanical strength, pore size and pore interconnectivity, and biocompatibility. In this study, we employed 3D bioplotting, a RP technology, to fabricate scaffolds made from (i) pure polycaprolactone (PCL) and (ii) a composite based on PCL and ceramic micro-powder. The ceramics used for the composite were bovine bone filling Nukbone® (NKB), and hydroxyapatite (HA) with 5%, 10% or 20% wt. The scaffolds were fabricated in a cellular lattice structure (i.e. meshing mode) using a 0/90° lay down pattern with a continuous contour filament in order to achieve interconnected porous reticular structures. We varied the temperature, as well as injection speed and pressure during the bioplotting process to achieve scaffolds with pore size ranging between 200 and 400μm and adequate mechanical stability. The resulting scaffolds had an average pore size of 323μm and an average porosity of 32%. Characterization through ATR-FTIR revealed the presence of the characteristic bands of hydroxyapatite in the PCL matrix, and presented an increase of the intensity of the phosphate and carbonyl bands as the ceramic content increased. The bioplotted 3D scaffolds have a Young's modulus (E) in the range between 0.121 and 0.171GPa, which is compatible with the modulus of natural bone. PCL/NKB scaffolds, particularly 10NKBP (10% NKB wt.) exhibited the highest proliferation optical density, demonstrating an evident osteoconductive effect when cultured in Dulbecco's Modified Eagle Medium (DMEM). Scanning electron microscopy (SEM) confirmed osteoblast anchorage to all composite scaffolds, but a low adhesion to the all-PCL scaffold, as well as cell proliferation. The results from this study demonstrate the potential of PCL/NKB 3D bioplotted scaffolds as viable platforms to enable osseous tissue formation, which can be used in several tissue engineering applications, including improvement of bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Current progress in inorganic artificial biomaterials.
Li, Zhixia; Kawashita, Masakazu
2011-09-01
In this review, recent advances in bioceramics, metallic biomaterials, and their composites are discussed in terms of their material properties and new medical applications. Porous calcium phosphate ceramics have attracted a lot attention as scaffolds for tissue-engineering purposes since the porous structure allows bone ingrowth. The addition of biodegradable polymers like chitosan, gelatin, and collagen have modified the degradability of the ceramics and their mechanical properties. Titanium (Ti) alloys are being developed for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants because they are very reliable from the viewpoint of mechanical performance. Physical treatment such as grooving or setting a spatial gap on the surface of materials is applicable to improve the apatite formation on the Ti alloys. Blood-compatible polymers such as poly(ethylene glycol) have been successfully fixed on the surface of Ti via chemical bonding by an electrodeposition method. New functions have been explored in Ni-free, Co-Cr-Mo alloys and Mg alloys. In addition, yttrium-containing or phosphorus-containing glass microspheres (20-30 μm in diameter) and ferrimagnetic ceramic particles have exhibited great potential to realize minimally invasive treatment of cancer without surgical operation via in situ radiotherapy or hyperthermia of cancer, but it is still a major challenge to clarify the biological reaction between the artificial implants and living body before their application.
Li, H C; Wang, D G; Hu, J H; Chen, C Z
2014-02-01
Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants. Copyright © 2013 Elsevier B.V. All rights reserved.
Iundusi, Riccardo; Gasbarra, Elena; D'Arienzo, Michele; Piccioli, Andrea; Tarantino, Umberto
2015-05-13
Reduction of tibial plateau fractures and maintain a level of well aligned congruent joint is key to a satisfactory clinical outcome and is important for the return to pre-trauma level of activity. Stable internal fixation support early mobility and weight bearing. The augmentation with bone graft substitute is often required to support the fixation to mantain reduction. For these reasons there has been development of novel bone graft substitutes for trauma applications and in particular synthetic materials based on calcium phosphates and/or apatite combined with calcium sulfates. Injectable bone substitutes can optimize the filling of irregular bone defects. The purpose of this study was to assess the potential of a novel injectable bone substitute CERAMENT™|BONE VOID FILLER in supporting the initial reduction and preserving alignment of the joint surface until fracture healing. From June 2010 through May 2011 adult patients presenting with acute, closed and unstable tibial plateau fractures which required both grafting and internal fixation, were included in a prospective study with percutaneous or open reduction and internal fixation (ORIF) augmented with an injectable ceramic biphasic bone substitute CERAMENT™|BONE VOID FILLER (BONESUPPORT™, Lund, Sweden) to fill residual voids. Clinical follow up was performed at 1, 3, 9 and 12 months and any subsequent year; including radiographic analysis and Rasmussen system for knee functional grading. Twenty four patients, balanced male-to-female, with a mean age of 47 years, were included and followed with an average of 44 months (range 41-52 months). Both Schatzker and Müller classifications were used and was type II or 41-B3 in 7 patients, type III or 41-B2 in 12 patients, type IV or 41-C1 in 2 patients and type VI or 41-C3 in 3 patients, respectively. The joint alignement was satisfactory and manteined within a range of 2 mm, with an average of 1.18 mm. The mean Rasmussen knee function score was 26.5, with 14 patients having an excellent result and the remaining 10 with a good result. It can be concluded that radiological and clinical outcome was satisfactory and obtained in all cases without complications. This injectable novel biphasic hydroxyapatite and calcium sulfate ceramic material is a valuable armamentarium in the treatment of trauma where bone graft is required.
Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin
2014-11-01
Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.
Wu, Chengtie; Han, Pingping; Liu, Xiaoguo; Xu, Mengchi; Tian, Tian; Chang, Jiang; Xiao, Yin
2014-01-01
The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel's adhesive versatility, which is thought to be due to the plaque-substrate interface being rich in 3,4-dihydroxy-l-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of β-tricalcium phosphate (β-TCP) bioceramics by soaking β-TCP bioceramics in Tris-dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris-HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of β-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the β-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of β-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Attempts to obtain re-osseointegration following experimental peri-implantitis in dogs.
Wetzel, A C; Vlassis, J; Caffesse, R G; Hämmerle, C H; Lang, N P
1999-04-01
The purpose of this study was to examine the healing potential and re-osseointegration in peri-implant infection defects adjacent to various implant surfaces. In 7 female Beagle dogs, a total of 41 titanium oral implants (ITI, Straumann, Waldenburg; Switzerland) with a sink depth of 6 mm (diameter 2.8 mm) were placed transmucosally. Four different surface configurations (TPS: titanium plasma sprayed (10); SLA: sand blasted and acid-etched (13); M: machined and smooth (11); TPS furc.: titanium plasma sprayed with coronally placed perforation to mimic a furcation (7) were distributed among the animals and locations. Following a healing period of 3 months, silk ligatures were placed and oral cleaning procedures abolished for 4 months to induce a vertical bone loss of about 40%. Following mechanical and chemical cleansing (chlorhexidine and metronidazole) and disinfection, the lesions were either sham operated (11) or subjected to a GTR procedure using ePTFE (30). After 6 months of healing the animals were killed and the jaws histologically evaluated. Six membranes were lost TPS: (1); SLA: (2); M: (2); TPS furc: (1) and 3 membranes exposed TPS: (1); M: (2) and excluded from further evaluation. Owing to the loss of 1 implant and infection of the membranes in the TPS furc group, this implant configuration was discarded from further analysis. For TPS surfaces, bone fill was 2.6 mm (73% of the distance from the bottom of the defect to the shoulder of the implant) sites with (4 GTR) and 0.33 mm (14%) for sites without membrane (2 controls). Re-osseointegration was 0.5 mm (14%) in the test group and 0.3 mm (14%) in the control. For SLA surfaces bone fill was 2.3 mm (83%) for sites with (7 GTR) and 0.41 mm (15%) for sites without membranes (4 controls). Re-osseointegration was 0.6 mm (20%) and 0.3 mm (11%) respectively. Corresponding values for M surfaces were 2.2 mm (62%) with 4 GTR) and 0.82 mm (31%) without membranes. Re-osseointegration was 0.07 mm (2%) and 0.19 mm (7%) respectively. This study has documented that peri-implant infections defects may heal with bone fill provided that the infection is controlled through effective antibacterial therapy. However, true reosseointegration appears to be difficult to achieve.
Failure modes and materials design for biomechanical layer structures
NASA Astrophysics Data System (ADS)
Deng, Yan
Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.
Could larger diameter of 4th generation ceramic bearing decrease the rate of dislocation after THA?
Lee, Young-Kyun; Ha, Yong-Chan; Jo, Woo-Lam; Kim, Tae-Young; Jung, Woon-Hwa; Koo, Kyung-Hoi
2016-05-01
Fourth generation (Delta) ceramic bearing was developed to reduce dislocation after total hip arthroplasty (THA) by increasing the head diameter. We tested a hypothesis that 32/36 mm Delta ceramic bearing decreases the dislocation rate. We also evaluated ceramic-related complications and early outcome of this thin liner-on-large head ceramic bearing. We performed a prospective study on patients who underwent THA with use of 32/36 mm Delta ceramic bearing. The dislocation rate was compared with the historical dislocation rate of third generation 28 mm ceramic bearing. We also evaluated ceramic fracture, squeak, short-term results and survival. Follow-up period was minimum 2 years. Between April 2010 and February 2012, we enrolled 250 consecutive patients (278 hips). All patients received cementless prostheses. Four patients (4 hips) who received metal shells ≤ 46 mm and 28 mm heads were excluded. Three patients died and 2 patients were lost within 2 years. The remaining 241 patients (269 hips) were followed for 24-46 months. There were 142 men (161 hips) and 99 women (108 hips) with a mean age of 53.7 years (range, 17-75 years) at the index operation. Dislocation occurred in three hips (1.1%). An old age was a risk factor for dislocation. Ceramic fracture and squeaking did not occur in any patient. Mean Harris hip score was 90.3 points at the latest follow-up. All acetabular and femoral components had bone-ingrowth stability. No hip had detectable wear or osteolysis. The survival was 99.3% in the best case scenario and 97.8% in the worst at 48 months. Total hip arthroplasty with use of 32/36 mm Delta ceramic bearing showed lower incidence of hip dislocation compared with 28 mm third generation ceramic bearing. A caution should be paid to prevent a fall in senile patients even though a large head is used. The short-term results of THA with this type of ceramic articulation are encouraging and we did not find any ceramic-related complications. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Cakan, Umut; Cakan, Murat; Delilbasi, Cagri
2016-01-01
The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. Cobalt-chromium copings were cemented onto straight titanium abutments. The temperature changes during removal of the copings were recorded over a period of 1 minute. The sectioning of coping with diamond bur and without water irrigation generated the highest temperature change at the cervical part of the implant. Both crown removal methods resulted in an increase in temperature at the implant-bone interface. However, this temperature change did not exceed 47°C, the potentially damaging threshold for bone reported in the literature.
Numerical FEM modeling in dental implantology
NASA Astrophysics Data System (ADS)
Roateşi, Iulia; Roateşi, Simona
2016-06-01
This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.
Ion Beam Sputtered Coatings of Bioglass
NASA Technical Reports Server (NTRS)
Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne
1982-01-01
The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.
Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration
Kruger, Thomas E.; Miller, Andrew H.; Wang, Jinxi
2013-01-01
Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds αvβ 3 and αvβ 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration. PMID:23653530
Collagen scaffolds in bone sialoprotein-mediated bone regeneration.
Kruger, Thomas E; Miller, Andrew H; Wang, Jinxi
2013-01-01
Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds α v β 3 and α v β 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration.
Uemura, Toshimasa; Kojima, Hiroko
2011-06-01
Overexpression of Cbfa1 (a transcription factor indispensable for osteoblastic differentiation) is expected to induce the formation of bone directly and indirectly in vivo by accelerating osteoblastic differentiation. Adenoviral vectors carrying the cDNA of Cbfa1/til-1(Adv-Cbf1) were allowed to be adsorbed onto porous blocks of β-tricalcium phosphate (β-TCP), a biodegradable ceramic, which were then implanted subcutaneously and orthotopically into bone defects. The adenoviral vectors were released sustainingly by biodegradation, providing long-term expression of the genes. Results of the subcutaneous implantation of Adv-Cbfa1-adsorbed β-TCP/osteoprogenitor cells suggest that a larger amount of bone formed in the pores of the implant than in the control material. Regarding orthotopic implantation into bone defects, the released Adv-Cbfa1 accelerated regeneration in the cortical bone, whereas it induced bone resorption in the marrow cavity. A safer gene transfer using a smaller amount of the vector was achieved using biodegradable porous β-TCP as a carrier.
NASA Astrophysics Data System (ADS)
Uemura, Toshimasa; Kojima, Hiroko
2011-06-01
Overexpression of Cbfa1 (a transcription factor indispensable for osteoblastic differentiation) is expected to induce the formation of bone directly and indirectly in vivo by accelerating osteoblastic differentiation. Adenoviral vectors carrying the cDNA of Cbfa1/til-1(Adv-Cbf1) were allowed to be adsorbed onto porous blocks of β-tricalcium phosphate (β-TCP), a biodegradable ceramic, which were then implanted subcutaneously and orthotopically into bone defects. The adenoviral vectors were released sustainingly by biodegradation, providing long-term expression of the genes. Results of the subcutaneous implantation of Adv-Cbfa1-adsorbed β-TCP/osteoprogenitor cells suggest that a larger amount of bone formed in the pores of the implant than in the control material. Regarding orthotopic implantation into bone defects, the released Adv-Cbfa1 accelerated regeneration in the cortical bone, whereas it induced bone resorption in the marrow cavity. A safer gene transfer using a smaller amount of the vector was achieved using biodegradable porous β-TCP as a carrier.
Boix, D; Weiss, P; Gauthier, O; Guicheux, J; Bouler, J-M; Pilet, P; Daculsi, G; Grimandi, G
2006-11-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30% of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction.
Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration
Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin
2017-01-01
The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K0.5Na0.5NbO3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials. PMID:28900517
Sun, Lanying; Danoux, Charlène B; Wang, Qibao; Pereira, Daniel; Barata, David; Zhang, Jingwei; LaPointe, Vanessa; Truckenmüller, Roman; Bao, Chongyun; Xu, Xin; Habibovic, Pamela
2016-09-15
Within the general aim of finding affordable and sustainable regenerative solutions for damaged and diseased tissues and organs, significant efforts have been invested in developing synthetic alternatives to natural bone grafts, such as autografts. Calcium phosphate (CaP) ceramics are among widely used synthetic bone graft substitutes, but their mechanical properties and bone regenerative capacity are still outperformed by their natural counterparts. In order to improve the existing synthetic bone graft substitutes, it is imperative to understand the effects of their individual properties on a biological response, and to find a way to combine the desired properties into new, improved functional biomaterials. To this end, we studied the independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the molecular weight of the polymer and presence/absence of the ceramic phase were used as the chemical variables, a soft embossing technique was used to pattern the surfaces of all materials with either pits or pillars with identical microscale dimensions. The results indicated that, while cell morphology was affected by both the presence and availability of HA and by the surface microstructure, the effect of the latter parameter on cell proliferation was negligible. The osteogenic differentiation of hMSCs, and in particular the expression of bone morphogenetic protein 2 (BMP-2) and osteopontin (OP) were significantly enhanced when cells were cultured on the composite based on low-molecular-weight PLA, as compared to the high-molecular-weight PLA-based composite and the two pure polymers. The OP expression on the low-molecular-weight PLA-based composite was further enhanced when the surface was patterned with pits. Taken together, within this experimental set up, the individual effect of the chemistry, and in particular of the presence of CaP, was more pronounced than the individual effect of the surface microstructure, although their combined effects were, in some cases, synergistic. The approach presented here opens new routes to study the interactions of biomaterials with the biological environment in greater depths, which can serve as a starting point for developing biomaterials with improved bioactivity. The aim of the this study was to obtain insight into independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the morphology, proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the need for synthetic alternatives for natural bone in bone regenerative strategies is rapidly increasing, the clinical performance of synthetic biomaterials needs to be further improved. To do this successfully, we believe that a better understanding of the relationship between a property of a material and a biological response is imperative. This study is a step forward in this direction, and we are therefore convinced that it will be of interest to the readers of Acta Biomaterialia. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Sun, Cong; Zhao, Jinxiu; Jianghao, Chen; Hong, Tao
2016-12-01
The objective of this study was to evaluate the implant stability and peri-implant tissue response in heavy smokers receiving dental implants due to partially edentulous posterior mandibles. Forty-five ITI Straumann dental implants were placed into the partially edentulous posterior mandibles of 16 heavy smokers and 16 nonsmokers. One implant in each patient was evaluated for implant stability after surgery and before loading, and for the modified plaque index (mPLI), modified sulcus bleeding index (mSBI), probing depth (PD), and marginal bone loss (MBL) after loading. Meanwhile, the osteogenic capability of jaw marrow samples collected from patients was evaluated via an in vitro mineralization test. For both groups, the implant stability quotient (ISQ) initially decreased from the initial ISQ achieved immediately after surgery and then increased starting from 2 weeks postsurgery. However, at 3, 4, 6, and 8 weeks postsurgery, the ISQ differed significantly between nonsmokers and heavy smokers. All implants achieved osseointegration without complications at least by the end of the 12th week postsurgery. At 6 or 12 months postloading, the MBL and PD were significantly higher in heavy smokers than in nonsmokers, whereas the mSBI and mPLI did not differ significantly between the 2 groups. The 1-year cumulative success rate of implants was 100% for both groups. Within the limitations of the present clinical study (such as small sample size and short study duration), which applied the loading at 3 months postoperation, heavy smoking did not affect the cumulative survival rate of dental implants placed at the posterior mandible in male patients, but heavy smoking did negatively affect bone healing around dental implants by decreasing the healing speed. These results implied that it might be of importance to select the right time point to apply the implant loading for heavy smokers. In addition, heavy smoking promoted the loss of marginal bone and the further development of dental pockets. Further clinical studies with larger patient populations are warranted to confirm our findings over a longer study duration.
Bone biomaterials and interactions with stem cells
Gao, Chengde; Peng, Shuping; Feng, Pei; Shuai, Cijun
2017-01-01
Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed. PMID:29285402
The biodegradation of hydroxyapatite bone graft substitutes in vivo.
Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.
Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae
2015-01-01
Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing. PMID:26491693
Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae
2015-01-01
Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.
LIBS analysis of hydroxyapatite extracted from bovine bone for Ca/P ratio measurements
NASA Astrophysics Data System (ADS)
Tariq, Usman; Haider, Zuhaib; Hussain, Rafaqat; Tufail, Kashif; Ali, Jalil
2017-03-01
Hydroxyapatite has been extensively used as a potential biocompatible ceramic in many orhtopedic applications. Hydroxyapatite is one of the members of calcium phosphate family and been used extensively as a bone substitute. The mechanical properties of hydroxyapatite itself, ceramics and bone cements prepared from hydroxyapatite vary greatly with slight variation in its Ca/P ratio. At present EDX, XRD, XRF and ICP-OES are being used for the determination of Ca/P ratio in hydroxyapatite. These techniques require special sample preparation, may also use toxic chemicals and usually are not very fast in giving the measurements. We report LIBS as a rapid alternative technique for calculation of Ca/P ratio in hydroxyapatite extracted from bovine bone (BHA). Ca/P ratio in laboratory prepared HA is calculated using LIBS and the results are validated against EDX results Ca/P ratio of the hydroxyapatite was calculated as 1.54±0.19 using LIBS while 1.63±0.03 using EDX. Ca/P ratio calculated by LIBS and EDX and showed comparable results with a difference of 5.5%. Moreover, plasma temperature and the ratio of the calcium (ion) line to calcium (atomic) line did not show significant variation in plasma conditions during measurements. The present study has demonstrated that LIBS can also be used for the determination of Ca/P ratio of hydroxyapatite and other calcium phosphates. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.
Influence of different restorative materials on the stress distribution in dental implants.
Datte, Carlos-Eduardo; Tribst, João-Paulo-Mendes; Dal Piva, Amanda-Maria-de Oliveira; Nishioka, Renato-Sussumu; Bottino, Marco-Antonio; Evangelhista, Alexandre-Duarte M; Monteiro, Fabrício M de M; Borges, Alexandre-Luiz-Souto
2018-05-01
To assist clinicians in deciding the most suitable restorative materials to be used in the crowns and abutment in implant rehabilitation. For finite element analysis (FEA), a regular morse taper implant was created using a computer aided design software. The implant was inserted at the bone model with 3 mm of exposed threads. An anatomic prosthesis representing a first maxillary molar was modeled and cemented on the solid abutment. Considering the crown material (zirconia, chromium-cobalt, lithium disilicate and hybrid ceramic) and abutment (Titanium and zirconia), the geometries were multiplied, totaling eight groups. In order to perform the static analysis, the contacts were considered bonded and each material was assigned as isotropic. An axial load (200 N) was applied on the crown and fixation occurred on the base of the bone. Results using Von-Mises criteria and micro strain values were obtained. A sample identical to the CAD model was made for the Strain Gauge (SG) analysis; four SGs were bonded around the implant to obtain micro strain results in bone tissue. FEA results were 3.83% lower than SG. According to the crown material, it is possible to note that the increase of elastic modulus reduces the stress concentration in all system without difference for bone. Crown materials with high elastic modulus are able to decrease the stress values in the abutments while concentrates the stress in its structure. Zirconia abutments tend to concentrate more stress throughout the prosthetic system and may be more susceptible to mechanical problems than titanium. Key words: Finite element analysis, dental implants, ceramic.
Low temperature sintering of fluorapatite glass-ceramics.
Denry, Isabelle; Holloway, Julie A
2014-02-01
Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Low temperature sintering of fluorapatite glass-ceramics
Denry, Isabelle; Holloway, Julie A.
2014-01-01
Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652
In vitro biocompatibility of a ferrimagnetic glass-ceramic for hyperthermia application.
Bretcanu, Oana; Miola, Marta; Bianchi, Claudia L; Marangi, Ida; Carbone, Roberta; Corazzari, Ingrid; Cannas, Mario; Verné, Enrica
2017-04-01
Ferrimagnetic glass-ceramics containing magnetite crystals were developed for hyperthermia applications of solid neoplastic tissue. The present work is focused on in vitro evaluation of the biocompatibility of these materials, before and after soaking in a simulated body fluid (SBF). X-ray diffraction, scanning electron microscopy, atomic absorption spectrophotometry, X-ray photoelectron spectrometry and pH measurements were employed in glass-ceramic characterisation. The free-radical mediated reactivity of the glass-ceramic was evaluated by Electron Paramagnetic Resonance (EPR) spin trapping. Cell adhesion and proliferation tests were carried out by using 3T3 murine fibroblasts. Cytotoxicity was performed by qualitative evaluation of human bone osteosarcoma cells U2OS cell line. The results show that almost two times more 3T3 cells proliferated on the samples pre-treated in SBF, compared with the untreated specimens. Moreover a decrease of confluence was observed at 48 and 72h for U2OS cells exposed to the untreated glass-ceramic, while the powder suspensions of glass-ceramic pre-treated in SBF did not influence the cell morphology up to 72h of exposition. The untreated glass-ceramic exhibited Fenton-like reactivity, as well as reactivity towards formate molecule. After pre-treatment with SBF the reactivity towards formate was completely suppressed. The concentration of iron released into the SBF solution was below 0.1ppm at 37°C, during one month of soaking. The different in vitro behaviour of the samples before and after SBF treatment has been correlated to the bioactive glass-ceramic surface modifications as detected by morphological, structural and compositional analyses. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Jae Hyup; Kong, Chang-Bae; Yang, Jae Jun; Shim, Hee-Jong; Koo, Ki-Hyoung; Kim, Jeehyoung; Lee, Choon-Ki; Chang, Bong-Soon
2016-11-01
The CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics spacer generates chemical bonding to adjacent bones with high mechanical stability to produce a union with the end plate, and ultimately stability. The authors aimed to compare the clinical efficacy and safety of CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics with a titanium cage that is widely used for posterior lumbar interbody fusion (PLIF) surgery in the clinical field. This is a prospective, stratified randomized, multicenter, single-blinded, comparator-controlled non-inferiority trial. The present study was conducted in four hospitals and enrolled a total of 86 patients between 30 and 80 years of age who required one-level PLIF due to severe spinal stenosis, spondylolisthesis, or huge disc herniation. The Oswestry Disability Index (ODI), Short Form-36 Health Survey (SF-36), and pain visual analog scale (VAS) were assessed before surgery and at 3, 6, and 12 months after surgery. The spinal fusion rate was assessed at 6 and 12 months after surgery. The spinal fusion rate and the area of fusion, subsidence of each CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics and titanium cage, and the extent of osteolysis were evaluated using a dynamic plain radiography and a three-dimensional computed tomography at 12 months after surgery. The present study was supported by BioAlpha, and some authors (JHL, C-KL, and B-SC) have stock ownership (<10,000 US dollars). From the plain radiography results, the 6-month fusion rates for the bioactive glass ceramics group and the titanium group were 89.7% and 91.4%, respectively. In addition, the 12-month fusion rates based on CT scan were 89.7% and 91.2%, respectively, showing no significant difference. However, the bone fusion area directly attached to the end plate of either bioactive glass ceramics or the titanium cage was significantly higher in the bioactive glass ceramics group than in the titanium group. The ODI, SF-36, back pain, and lower limb pain in both groups significantly improved after surgery, with no significant differences between the groups. No significant differences between the two groups were observed in the extent of subsidence and osteolysis. In lumbar posterior interbody fusion surgery, CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics spacer showed a similar fusion rates and clinical outcomes compared with titanium cage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Fracture behaviors of ceramic tissue scaffolds for load bearing applications
NASA Astrophysics Data System (ADS)
Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing
2016-07-01
Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.
Kanchana, Ponnusamy; Sekar, Chinnathambi
2010-01-01
Biphasic calcium phosphate (BCP) ceramics are suitable for synthetic bone applications. The strontium substituted calcium phosphate ceramics have potential for use in orthopedic surgeries. Aim of the present work is to introduce strontium into BCP (composed of hydroxyapatite and tricalcium phosphate) ceramics and to study their bioactivity and mechanical properties. BCP ceramics have been synthesized at room temperature under the physiological pH of 7.4 by gel method in the presence of strontium (5, 10 M %). The appropriate choice of anhydrous CaCl₂ as precursor solution has promoted the formation of BCP instead of pure HA for CaCl₂.2H₂O. Powder X-ray diffraction analysis confirmed the formation of BCP with different HA and ß -TCP ratios depending upon the Sr content. The presence of Sr has reduced the nucleation and growth rate of BCP when compared to pure system. The SEM micrographs showed that the microstructural morphology of BCP changes from fibrous to platelet. Nanoindentation studies indicate a significant decrease in the hardness and elastic modulus values of BCP ceramics due to Sr doping. In vitro bioactivity study has revealed the formation of apatite layer on the Sr doped BCP samples and the doping enhanced its bioactivity.
Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections
Ferguson, Jamie; Diefenbeck, Michael; McNally, Martin
2017-01-01
Local release of antibiotic has advantages in the treatment of chronic osteomyelitis and infected fractures. The adequacy of surgical debridement is still key to successful clearance of infection but local antibiotic carriers seem to afford greater success rates by targeting the residual organisms present after debridement and delivering much higher local antibiotic concentrations compared with systemic antibiotics alone. Biodegradable ceramic carriers can be used to fill osseous defects, which reduces the dead space and provides the potential for subsequent repair of the osseous defect as they dissolve away. A dissolving ceramic antibiotic carrier also raises the possibility of single stage surgery with definitive closure and avoids the need for subsequent surgery for spacer removal. In this article we provide an overview of the properties of various biodegradable ceramics, including calcium sulphate, the calcium orthophosphate ceramics, calcium phosphate cement and polyphasic carriers. We summarise the antibiotic elution properties as investigated in previous animal studies as well as the clinical outcomes from clinical research investigating their use in the surgical management of chronic osteomyelitis. Calcium sulphate pellets have been shown to be effective in treating local infection, although newer polyphasic carriers may support greater osseous repair and reduce the risk of further fracture or the need for secondary reconstructive surgery. The use of ceramic biocomposites to deliver antibiotics together with BMPs, bisphosphonates, growth factors or living cells is under investigation and merits further study. We propose a treatment protocol, based on the Cierny-Mader classification, to help guide the appropriate selection of a suitable ceramic antibiotic carrier in the surgical treatment of chronic osteomyelitis. PMID:28529863
Grinding model and material removal mechanism of medical nanometer zirconia ceramics.
Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao
2014-01-01
Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.
Carbon nanotube-based bioceramic grafts for electrotherapy of bone.
Mata, D; Horovistiz, A L; Branco, I; Ferro, M; Ferreira, N M; Belmonte, M; Lopes, M A; Silva, R F; Oliveira, F J
2014-01-01
Bone complexity demands the engineering of new scaffolding solutions for its reconstructive surgery. Emerging bone grafts should offer not only mechanical support but also functional properties to explore innovative bone therapies. Following this, ceramic bone grafts of Glass/hydroxyapatite (HA) reinforced with conductive carbon nanotubes (CNTs) - CNT/Glass/HA - were prepared for bone electrotherapy purposes. Computer-aided 3D microstructural reconstructions and TEM analysis of CNT/Glass/HA composites provided details on the CNT 3D network and further correlation to their functional properties. CNTs are arranged as sub-micrometric sized ropes bridging homogenously distributed ellipsoid-shaped agglomerates. This arrangement yielded composites with a percolation threshold of pc=1.5vol.%. At 4.4vol.% of CNTs, thermal and electrical conductivities of 1.5W·m(-1)·K(-1) and 55S·m(-1), respectively, were obtained, matching relevant requisites in electrical stimulation protocols. While the former avoids bone damaging from Joule's heat generation, the latter might allow the confinement of external electrical fields through the conductive material if used for in vivo electrical stimulation. Moreover, the electrically conductive bone grafts have better mechanical properties than those of the natural cortical bone. Overall, these highly conductive materials with controlled size CNT agglomerates might accelerate bone bonding and maximize the delivery of electrical stimulation during electrotherapy practices. © 2013.
Fernandez de Grado, Gabriel; Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Bornert, Fabien; Offner, Damien
2018-01-01
Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research. PMID:29899969
Biomaterials for periodontal regeneration
Shue, Li; Yufeng, Zhang; Mony, Ullas
2012-01-01
Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891
Ahmadzadeh, Elham; Talebnia, Farid; Tabatabaei, Meisam; Ahmadzadeh, Hossein; Mostaghaci, Babak
2016-07-01
To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute. Copyright © 2016 Elsevier Inc. All rights reserved.
Nanoscale hydroxyapatite particles for bone tissue engineering.
Zhou, Hongjian; Lee, Jaebeom
2011-07-01
Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Sousa, Dircilei Nascimento de; Santana, Washington Macedo de; Ferreira, Vania Moraes; Duarte, Wagner Rodrigues
2014-03-01
To analyze the effects of simvastatin (SVT) in the locomotion, anxiety and memory of rats, as a reflection of the administration of a minimum dose capable of stimulating bone regeneration in defects in the calvariae. Surgical procedures were performed in 15 female Wistar rats, 2-month old, to insert the grafting material regenerator (Bone-ceramic®) and/or SVT, followed by behavioural and cognitive assessments in the 7th, 30th and 60th days post surgery. The SVT locally applied with the goal of bone regeneration in defects created in rat calvariae does not interfere with locomotion, anxiety levels and/or memories of rats, except for the first week following surgery, when an anxiolytic effect was observed, as a result of a possible central action. Failure to provoke any response within 30 and 60 days post surgical procedures suggests that SVT may constitute a good choice in stimulating bone regeneration without affecting the long term neural functions.
A versatile fabrication strategy of three-dimensional foams for soft and hard tissue engineering.
Xu, Changlu; Bai, Yanjie; Yang, Shaofeng; Yang, Huilin; Stout, David A; Tran, Phong; Yang, Lei
2017-12-15
The fabrication strategies of three-dimensional porous biomaterials have been extensively studied and well established in the past decades, yet the biocompatibility and versatility in preparing porous architecture still lacks. Herewith, we present a novel and green fabrication technique of 3D porous foams for both soft and hard engineering. By utilizing the gelatinization and retrogradation property of starches, stabilized porous constructs made of various building blocks from living cells to ceramic particles were created for the first time. In soft tissue engineering applications, 3D cultured tissue foam (CTF) with controlled release property of cells was developed and the foams constituted by osteoblasts, fibroblasts and vascular endothelial cells all exhibited high mechanical stability and preservation of cell viability or functions. More importantly, the CTF achieved sustained self-release of cells controlled by serum (containing amylase) concentration and the released cells also maintained high viability and functions. In the context of hard tissue engineering applications, ceramic/bioglass (BG) foam scaffolds were developed by the similar starch-assisted foaming strategy where the resultant bone scaffolds of hydroxyapatite (HA)/BG and Si3N4/BG possessed>70% porosity with interconnected macropores (sizes 200~400μm) and fine pores (sizes1~10 μm) and superior mechanical properties despite the high porosity. Additionally, in vitro and in vivo evaluations on the biological properties revealed that porous HA/BG foam exhibited desired biocompatibility and osteogenesis. The in vivo study indicated new bone ingrowth after 1 week and significant increases in new bone volume after 2 weeks. In conclusion, the presented foaming strategy provides opportunities for biofabricating CTF with different cells for different target soft tissues and preparing porous ceramic/BG foams with different material components and high strengths-showing great versatility in soft and hard tissue engineering. © 2017 IOP Publishing Ltd.
Zhang, Xue; Li, Xiao-Wu; Li, Ji-Guang; Sun, Xu-Dong
2014-01-08
Magnesium has been recently recognized as a biodegradable metal for bone substitute applications. In order to improve the biocompatibility and osteointegration of pure Mg, two kinds of coatings, i.e., the Ca-P coating and bioglass ceramic cement (BGCC)/Ca-P coating, were prepared on the pure Mg ribbons in the present work. The Ca-P coating was obtained by aqueous solution method. Subsequently, Ca-P coated Mg was immersed into the BGCC slurry, which was prepared by the mix of SiO2-CaO-P2O5 bioglass ceramic (BGC) powders and phosphate liquid with a liquid-to-solid ratio (L/S) of 1.6, to obtain BGCC/Ca-P coating by a dipping-pulling method. The microstructures, morphologies, and compositions of these coatings have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The effect of these coatings on the mineralization activity of pure Mg has been investigated. The results indicated that both the Ca-P coating and BGCC/Ca-P coating could promote the nucleation of osteoconductive minerals, i.e., bone-like apatite, and the hydroxyapatite (HA) layer formed on the surface of the BGCC/Ca-P coating is obviously more dense, thick, and stable than that formed on the Ca-P coating after immersion in SBF solution for 15 days. The potentiodynamic polarization test indicated that the corrosion current density of the BGCC/Ca-P coated Mg is obviously lower than that of the Ca-P coating and 10 times lower than that of uncoated Mg. These results demonstrated that the BGCC/Ca-P coating can increase significantly the corrosion resistance of Mg and introduce a high biocompatibility of the bone-Mg substrate interface. In summary, the newly developed BGCC/Ca-P coated Mg has a good potential for biomedical applications.
Hu, Jianzhong; Zhou, Yongchun; Huang, Lihua; Liu, Jun; Lu, Hongbin
2014-04-01
Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50-200 nm and diameters from ~15-30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more suitable for applications in bone tissue engineering.
2014-01-01
Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more suitable for applications in bone tissue engineering. PMID:24690170
Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.
Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C
2009-01-01
Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
1989-08-01
Company Historic District," 1985. "Historic Resources of Hardin, Montana," :984. "Silver Bow Brewery Malt House," 1982. "Silver Bow County Poor Farm...34i QQL-- Q ..i FEATURE TYPE CULTURAL MATERIAL ’iii Site Type -0,- Cm Scatter , , Bone 0 Chimney %.Z Ceramics tA Context .Q, Depression 1 Charcoal i...Sec , QQQ i, QQ . Q, ,LTL, L- Twp R ,.. , Sec ,., QQO 1- QQ’ L- Q’ ’ FEATURE TYPE CULTURAL MATERIAL &. Site Type m, Cm Scatter ,.Z, Bone Chimney
Boix, Damien; Gauthier, Olivier; Guicheux, Jérôme; Pilet, Paul; Weiss, Pierre; Grimandi, Gaël; Daculsi, Guy
2004-05-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. Third and fourth mandibular premolars were extracted from three beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, titanium implants were immediately placed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and biphasic calcium phosphate ceramic granules. The right defects were left unfilled as controls. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. No post-surgical complications were observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (P<0.05) increase in terms of the number of threads in contact with bone, bone-to-implant contact, and peri-implant bone density of approximately 8.6%, 11.0%, and 14.7%, respectively. In addition, no significant difference was observed when number of threads, bone-to-implant contact, and bone density in the filled defects were compared to the no-defect sites. It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increases bone regeneration around immediately placed implants.
Evaluation of Soft Tissue Reaction to Corundum Ceramic Implants Infiltrated with Colloidal Silver.
Wnukiewicz, Witold; Rutowski, Roman; Zboromirska-Wnukiewicz, Beata; Reichert, Paweł; Gosk, Jerzy
2016-01-01
Corundum ceramic is a biomaterial used as a bone graft substitute. Silver is a well known antiseptic substance with many practical, clinical applications. The aim of this study was to estimate soft tissue (in vivo) reaction to a new kind of ceramic implants. In our experiment, we examined the soft tissue reaction after implantation of corundum ceramic infiltrated with colloidal silver in the back muscles of 18 Wistar rats. The use of colloidal silver as a coating for the implant was designed to protect it against colonization by bacteria and the formation of bacterial biofilm. In our study, based on the experimental method, we performed implantation operations on 18 Wistar rats. We implanted 18 modified ceramic implants and, as a control group, 18 unmodified implants. As a follow up, we observed the animals operated upon, and did postoperative, autopsy and histopathological examinations 14, 30, 90 and 180 days after implantation. We didn't observe any pathological reactions and significant differences between the soft tissue reaction to the modified implants and the control group. Lack of pathological reaction to the modified implants in the living organism is the proof of their biocompatibility. This is, of course, the first step on the long path to introduce a new kind of biocompatible ceramic implant with antiseptic cottage. Our experiment has an only introductory character and we plan to perform other, more specific, tests of this new kind of implant.
Parent, Marianne; Baradari, Hiva; Champion, Eric; Damia, Chantal; Viana-Trecant, Marylène
2017-04-28
Effective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability. Several approaches have been established to enhance this material ability to be loaded with a therapeutic agent, in order to obtain an in situ controlled release that meets the clinical needs. This article reviews the most important factors influencing on both drug loading and release capacity of porous calcium phosphate bone substitutes. Characteristics of the carrier, drug/carrier interactions, experimental conditions of drug loading and evaluation of drug delivery are considered successively. Copyright © 2017 Elsevier B.V. All rights reserved.
New approach in evaluation of ceramic-polymer composite bioactivity and biocompatibility.
Borkowski, Leszek; Sroka-Bartnicka, Anna; Polkowska, Izabela; Pawlowska, Marta; Palka, Krzysztof; Zieba, Emil; Slosarczyk, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna
2017-09-01
Regeneration of bone defects was promoted by a novel β-glucan/carbonate hydroxyapatite composite and characterized by Raman spectroscopy, microCT and electron microscopy. The elastic biomaterial with an apatite-forming ability was developed for bone tissue engineering and implanted into the critical-size defects of rabbits' tibiae. The bone repair process was analyzed on non-decalcified bone/implant sections during a 6-month regeneration period. Using spectroscopic methods, we were able to determine the presence of amides, lipids and assign the areas of newly formed bone tissue. Raman spectroscopy was also used to assess the chemical changes in the composite before and after the implantation process. SEM analyses showed the mineralization degree in the defect area and that the gap size decreased significantly. Microscopic images revealed that the implant debris were interconnected to the poorly mineralized inner side of a new bone tissue. Our study demonstrated that the composite may serve as a biocompatible background for collagen ingrowth and exhibits the advantages of applying Raman spectroscopy, SEM and microCT in studying these samples.
Lee, Kwang-il; Lee, Jung-soo; Lee, Keun-soo; Jung, Hong-hee; Ahn, Chan-min; Kim, Young-sik; Shim, Young-bock; Jang, Ju-woong
2015-12-01
Sequentially chemical-treated bovine bone was not only evaluated by mechanical and chemical analyses but also implanted into the gluteal muscles of rats for 12 weeks to investigate potential local pathological effects and systemic toxicities. The test (chemical treated bone) and control (heat treated bone) materials were compared using scanning electron microscope (SEM), x-ray diffraction pattern, inductively coupled plasma analysis, and bending strength test. In the SEM images, the micro-porous structure of heat-treated bone was changed to sintered ceramic-like structure. The structure of bone mineral from test and control materials was analyzed as100% hydroxyapatite. The ratio of calcium (Ca) to potassium (P), the main inorganic elements, was same even though the Ca and P percentages of the control material was relatively higher than the test material. No death or critical symptoms arose from implantation of the test (chemical treated bone) and control (physiological saline) materials during 12 weeks. The implanted sites were macroscopically examined, with all the groups showing non-irritant results. Our results indicate that chemical processed bovine bone has a better mechanical property than the heat treated bone and the implantation of this material does not produce systemic or pathological toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Jégoux, Franck; Goyenvalle, Eric; Cognet, Ronan; Malard, Olivier; Moreau, Francoise; Daculsi, Guy; Aguado, Eric
2009-12-15
The bone tissue engineering models used today are still a long way from any oncologic application as immediate postimplantation irradiation would decrease their osteoinductive potential. The aim of this study was to reconstruct a segmental critical size defect in a weight-bearing bone irradiated after implantation. Six white New Zealand rabbits were immediately implanted with a biomaterial associating resorbable collagen membrane EZ(R) filled and micro-macroporous biphasic calcium phosphate granules (MBCP+(R)). After a daily schedule of radiation delivery, and within 4 weeks, a total autologous bone marrow (BM) graft was injected percutaneously into the center of the implant. All the animals were sacrificed at 16 weeks. Successful osseous colonization was found to have bridged the entire length of the defects. Identical distribution of bone ingrowth and residual ceramics at the different levels of the implant suggests that the BM graft plays an osteoinductive role in the center of the defect. Periosteum-like formation was observed at the periphery, with the collagen membrane most likely playing a role. This model succeeded in bridging a large segmental defect in weight-bearing bone with immediate postimplantation fractionated radiation delivery. This has significant implications for the bone tissue engineering approach to patients with cancer-related bone defects.
Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.
Sethu, Sai Nievethitha; Namashivayam, Subhapradha; Devendran, Saravanan; Nagarajan, Selvamurugan; Tsai, Wei-Bor; Narashiman, Srinivasan; Ramachandran, Murugesan; Ambigapathi, Moorthi
2017-05-01
Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO 4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
[RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].
Wu, Tianqi; Yang, Chunxi
2016-04-01
To summarize the research progress of several three-dimensional (3-D)-printing scaffold materials in bone tissue engineering. The recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. Compared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. The development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.
Biofunctionalized Ceramic with Self-Assembled Networks of Nanochannels
Jang, Hae Lin; Lee, Keunho; Kang, Chan Soon; Lee, Hye Kyoung; Ahn, Hyo-Yong; Jeong, Hui-Yun; Park, Sunghak; Kim, Seul Cham; Jin, Kyoungsuk; Park, Jimin; Yang, Tae-Youl; Kim, Jin Hong; Shin, Seon Ae; Han, Heung Nam; Oh, Kyu Hwan; Lee, Ho-Young; Lim, Jun; Hong, Kug Sun; Snead, Malcolm L.; Xu, Jimmy; Nam, Ki Tae
2015-01-01
Nature designs circulatory systems with hierarchically organized networks of gradually tapered channels ranging from micrometer to nanometer in diameter. In most hard tissues in biological systems, fluid, gasses, nutrients and wastes are constantly exchanged through such networks. Here, we developed a biologically-inspired, hierarchically-organized structure in ceramic to achieve effective permeation with minimum void region, using fabrication methods that create a long-range, highly-interconnected nanochannel system in a ceramic biomaterial. This design of a synthetic model-material was implemented through a novel pressurized sintering process formulated to induce a gradual tapering in channel diameter based on pressure-dependent polymer agglomeration. The resulting system allows long range, efficient transport of fluid and nutrients into sites and interfaces that conventional fluid conduction cannot reach without external force. We demonstrate the ability of mammalian bone-forming cells placed at the distal transport termination of the nanochannel system to proliferate in a manner dependent solely upon the supply of media by the self-powering nanochannels. This approach mimics the significant contribution that nanochannel transport plays in maintaining living hard tissues by providing nutrient supply that facilitates cell growth and differentiation, and thereby makes the ceramic composite ‘alive’. PMID:25827409
2004-07-09
Lead poisoning adversely affects children worldwide. During 1999-2000, an estimated 434,000 children aged 1-5 years in the United States had elevated blood lead levels (BLLs) >/=10 microg/dL. Glazes found on ceramics, earthenware, bone china, and porcelain often contain lead and are a potential source of lead exposure. Children are especially vulnerable to the neurotoxic effects of lead. Exposures to lead in early childhood can have adverse effects on the developing nervous system, resulting in decreased intelligence and changes in behavior. In addition, certain behaviors (e.g., thumb sucking) place children at greater risk for exposure to lead. In 2003, the New York City Department of Health and Mental Hygiene's Lead Poisoning Prevention Program (LPPP), and the Mount Sinai Pediatric Environmental Health Specialty Unit (PEHSU) investigated a case of lead poisoning in a boy aged 20 months. This report summarizes that case investigation, which identified ceramic dinnerware imported from France as the source of lead exposure. This case underscores the susceptibility of children to a toxic exposure associated with 1) the high proportion of time spent in the home and 2) dietary habits that promote exposure to lead leached from ceramic ware.
Strontium-rich injectable hybrid system for bone regeneration.
Neves, Nuno; Campos, Bruno B; Almeida, Isabel F; Costa, Paulo C; Cabral, Abel Trigo; Barbosa, Mário A; Ribeiro, Cristina C
2016-02-01
Current challenges in the development of scaffolds for bone regeneration include the engineering of materials that can withstand normal dynamic physiological mechanical stresses exerted on the bone and provide a matrix capable of supporting cell migration and tissue ingrowth. The objective of the present work was to develop and characterize a hybrid polymer–ceramic injectable system that consists of an alginate matrix crosslinked in situ in the presence of strontium(Sr), incorporating a ceramic reinforcement in the form of Sr-rich microspheres. The incorporation of Sr in the microspheres and in the vehicle relies on the growing evidence that Sr has beneficial effects in bone remodeling and in the treatment of osteopenic disorders and osteoporosis. Sr-rich porous hydroxyapatite microspheres with a uniform size and a mean diameter of 555 μm were prepared, and their compression strength and friability tested. A 3.5% (w/v) ultrapure sodium alginate solution was used as the vehicle and its in situ gelation was promoted by the addition of calcium (Ca) or Sr carbonate and Glucone-δ-lactone. Gelation times varied with temperature and crosslinking agent, being slower for Sr than for Ca, but adequate for injection in both cases. Injectability was evaluated using a device employed in vertebroplasty surgical procedures, coupled to a texture analyzer in compression mode. Compositions with 35%w of microspheres presented the best compromise between injectability and compression strength of the system, the force required to extrude it being lower than 100 N.Micro CT analysis revealed a homogeneous distribution of the microspheres inside the vehicle, and a mean inter-microspheres space of 220 μm. DMA results showed that elastic behavior of the hybrid is over the viscous one and that the higher storage modulus was obtained for the 3.5%Alg–35%Sr-HAp-Sr formulation.
Comparison of heat generation during implant drilling using stainless steel and ceramic drills.
Sumer, Mahmut; Misir, A Ferhat; Telcioglu, N Tuba; Guler, Ahmet U; Yenisey, Murat
2011-05-01
The purpose of this study was to compare the heat generated from implant drilling using stainless steel and ceramic drills. A total of 40 fresh bovine femoral cortical bone samples were used in this study. A constant drill load of 2.0 kg was applied throughout the drilling procedures via a drilling rig at a speed of 1,500 rpm. Two different implant drill types (stainless steel and ceramic) were evaluated. Heat was measured with type K thermocouple from 3 different depths. Data were subjected to the independent-sample t test and Pearson correlation analysis. The α level was set a priori at 0.05. The mean maximum temperatures at the depths of 3 mm, 6 mm, and 9 mm with the stainless steel drill were 32.15°C, 35.94°C, and 37.05°C, respectively, and those with the ceramic drill were 34.49°C, 36.73°C, and 36.52°C, respectively. A statistically significant difference was found at the depth of 3 mm (P = .014) whereas there was no significant difference at the depths of 6 and 9 mm (P > .05) between stainless steel and ceramic drills. Within the limitations of the study, although more heat was generated in the superficial part of the drilling cavity with the ceramic drill, heat modifications seemed not to be correlated with the drill type, whether stainless steel or ceramic, in the deep aspect of the cavity. Further clinical studies are required to determine the effect of drill type on heat generation. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc
2016-12-01
Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the potential to improve osseointegration. Furthermore, our results show that the porosity can be used for drug delivery and suggest that the etched surface could reduce bacterial adhesion. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mick, Enrico
2014-01-01
Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants. PMID:25295270
Markhoff, Jana; Mick, Enrico; Mitrovic, Aurica; Pasold, Juliane; Wegner, Katharina; Bader, Rainer
2014-01-01
Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.
Oe, Kenichi; Iida, Hirokazu; Tsuda, Kohei; Nakamura, Tomohisa; Okamoto, Naofumi; Ueda, Yusuke
2017-03-01
The purpose of this study was to identify the long-term durability of the Kerboull-type reinforcement device (KT plate) in acetabular reconstruction for massive bone defects, assessing the remodeling of structural bone grafts. This study retrospectively evaluated 106 hips that underwent acetabular reconstruction using a KT plate between November 2000 and December 2010. Thirty-eight primary total hip arthoplasties (THAs) and 68 revised THAs were performed, and the mean duration of clinical follow-up was 8 years (5-14 years). Regarding reconstructing the acetabular bone defects, autografts were used in 37 hips, allografts in 68 hips, and A-W glass ceramics in 2 hips. One hip exhibited radiological migration and no revision for aseptic loosening. The mean Merle d'Aubigné Clinical Score improved from 7.5 points (4-12 points) preoperatively to 10.9 points (9-18 points) at the last follow-up. The Kaplan-Meier survival rate for radiological migration of primary and revised THAs at 10 years was 100% and 97% (95% confidence interval: 96%-100%), respectively. Bone remodeling was evaluated using the radiological demarcation at the bone-to-bone interface, and an improvement of 100% in primary THAs and 94% in revised THAs was observed. For massive bone defects, acetabular reconstruction using the KT plate with a structural bone grafting can yield successful results. Copyright © 2016 Elsevier Inc. All rights reserved.
Chakraborty, Jui; Sarkar, Soumi Dey; Chatterjee, Saradiya; Sinha, Mithlesh Kumar; Basu, Debabrata
2008-10-15
The tribological properties of alumina ceramic are excellent due in part to a high wettability because of the hydrophilic surface and fluid film lubrication that minimizes the adhesive wear. Such surfaces are further modified with bioactive glass/ceramic coating to promote direct bone apposition in orthopedic applications. The present communication reports the biomimetic coating of calcium hydroxyapatite (HAp) on dense (2-3% porosity) alumina (alpha-Al(2)O(3)) substrate (1cm x 1cm x 0.5 cm), at 37 degrees C. After a total period of 6 days immersion in simulated body fluid (SBF), at 37 degrees C, linear self-assembled porous (pore size: approximately 0.2 microm) structures (length: approximately 375.39 microm and width: 5-6 microm) of HAp were obtained. The phenomenon has been demonstrated by self-assembly and diffusion-limited aggregation (DLA) principles. Structural and compositional characterization of the coating was carried out using SEM with EDX facility, XRD and FT-IR data.
Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan
2015-05-01
To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Schaeren, Stefan; Jaquiéry, Claude; Wolf, Francine; Papadimitropoulos, Adam; Barbero, Andrea; Schultz-Thater, Elke; Heberer, Michael; Martin, Ivan
2010-03-15
In this study, we addressed whether Bone Sialoprotein (BSP) coating of various substrates could enhance the in vitro osteogenic differentiation and in vivo bone formation capacity of human Bone Marrow Stromal Cells (BMSC). Moreover, we tested whether synthetic polymer-based porous scaffolds, despite the absence of a mineral component, could support ectopic bone formation by human BMSC if coated with BSP. Adsorption of recombinant human BSP on tissue culture-treated polystyrene (TCTP), beta-tricalcium phosphate (Osteologic) or synthetic polymer (Polyactive) substrates was dose dependent, but did not consistently accelerate or enhance in vitro BMSC osteogenic differentiation, as assessed by the mRNA expression of osteoblast-related genes. Similarly, BSP coating of porous beta-tricalcium phosphate scaffolds (Skelite) did not improve the efficiency of bone tissue formation following loading with BMSC and ectopic implantation in nude mice. Finally, Polyactive foams seeded with BMSC did not form bone tissue in the same ectopic assay, even if coated with BSP. We conclude that BSP coating of a variety of substrates is not directly associated with an enhancement of osteoprogenitor cell differentiation in vitro or in vivo, and that presentation of BSP on polymeric materials is not sufficient to prime BMSC functional osteoblastic differentiation in vivo. (c) 2009 Wiley Periodicals, Inc.
Punke, C; Zehlicke, T; Boltze, C; Pau, H W
2009-04-01
Many different techniques for obliterating open mastoid cavity have been described. The results after the application of alloplastic materials like Hydroxyapatite and Tricalciumphosphate were poor due to long-lasting resorption. Extrusion of those materials has been described. We investigated the applicability of a new high-porosity ceramic for obliterating large open mastoid cavities and tested it in an animal model (bulla of guinea pig). A highly porous matrix (NanoBone) bone-inductor fabricated in a sol-gel-technique was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histological evaluations were performed 1, 2, 3, 4, 5 and 12 weeks after the implantation. After the initial phase with an inflammatory reaction creating a loose granulation tissue, we observed the formation of trabeculare bone within the fourth week in both groups. From the fifth week on we found osteoclasts on the surface of NanoBone and Bio-Oss with consecutive degradation of both materials. In our animal model study we found beneficial properties of the used bone-inductors NanoBone and Bio-Oss for obliterating open mastoid cavities.
Application of nonlinear phenomena induced by focused ultrasound to bone imaging.
Callé, Samuel; Remenieras, Jean-Pierre; Bou Matar, Olivier; Defontaine, Marielle; Patat, Frederic
2003-03-01
A tissue deformability image is obtained with the vibroacoustography imaging method using mechanical low-frequency (LF) excitation. This ultrasonic excitation is created locally by means of a focused annular array emitting two primary beams at two close frequencies, f(1) and f(2) (f(2) = f(1) + f(LF)). The LF acoustic emission resulting from the vibration of the medium is detected by a sensitive hydrophone and then used to form the image. This noninvasive imaging method was demonstrated in this study to be suitable for bone imaging, with x and y transverse resolutions less than 300 micro m. Two bone sites susceptible to demineralization were tested: the calcaneus and the neck of the femur. The vibroacoustic method provides valuable ultrasonic images regarding the structure and the elastic properties of bone tissue. Correlation was made between vibroacoustic bone images, performed in vitro, and images acquired by other imaging methods (i.e., bone ultrasound attenuation and x-ray computerized tomography (CT)). Moreover, the amplitudes of vibroacoustic signals radiating from phosphocalcic ceramic samples (bone substitute) of different porosity were evaluated. The good correlation between these results and the description of our images and the quality of vibroacoustic images indicate that bone decalcification could be detected using vibroacoustography.
Hydroxyapatite/collagen bone-like nanocomposite.
Kikuchi, Masanori
2013-01-01
Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.
Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus
2016-01-01
In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411
Azeena, S; Subhapradha, N; Selvamurugan, N; Narayan, S; Srinivasan, N; Murugesan, R; Chung, T W; Moorthi, A
2017-02-01
Bioactive ceramic materials with metal ions generation brought great attention in the class of biomaterials development and widely employed as a filler material for bone tissue regeneration. The present study aimed to fabricate calcium silicate based ceramic material doped with copper metal particles by sol-gel method. Rice straw of agricultural waste was utilized as a source material to synthesize wollastonite, then wollastonite was doped with copper to fabricate copper doped wollastonite (Cu-Ws) particles. The synthesized materials were subjected to physio-chemical characterization by TEM, DLS, FTIR, XRD and DSC analysis. It was found that the sizes of the WS particles was around 900nm, while adding copper the size was increased upto 1184nm and the addition of copper to the material sharpening the peak. The release of Cu ions was estimated by ICP analysis. The anti-bacterial potentiality of the particles suggested that better microbial growth inhibition against E. coli (Gram negative) and S. aureus (Gram positive) strains from ATCC, in which the growth inhibition was more significant against S. aureus. The biocompatibility in mouse Mesenchymal Stem cells (mMSC) showed the non-toxic effect up to 0.05mg/ml concentration while the increase in concentration was found to be toxic to the cells. So the particles may have better potential application with the challenging prevention of post implantation infection in the field of bone tissue engineering (BTE). Copyright © 2016. Published by Elsevier B.V.
Mechanical Properties of Abutments: Resin-Bonded Glass Fiber-Reinforced Versus Titanium.
Bassi, Mirko Andreasi; Bedini, Rosells; Pecci, Raffaela; Ioppolo, Pietro; Laritano, Dorina; Carinci, Francesco
2016-01-01
The clinical success and longevity of endosseous implants, after their prosthetic finalization, mainly depends on mechanical factors. Excessive mechanical stress has been shown to cause initial bone loss around implants in the presence of a rigid implant-prosthetic connection. The implant abutments are manufactured with high elastic modulus materials such as titanium, steel, precious alloys, or esthetic ceramics. These materials do not absorb any type of shock from the chewing loads or ensure protection of the bone-implant interface, especially when the esthetic restorative material is ceramic rather than composite resin. The mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment prototype (TCFRA) and compared to that of a similarly shaped titanium abutment (TA). Eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging the two types of abutments showed during the application of sinusoidal load was also analyzed. In the TA group, fracture and deformation occurred in 12.5% of samples, while debonding occurred in 62.5%. In the TCFRA group, only debonding was present, in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited greater swinging during the application of sinusoidal load. In the TA group extrusion prevailed, whereas in the TCFRA group intrusion was more frequent. TCFRA demonstrated a greater elasticity than did TAs to the flexural load, absorbing part of the transversal load applied on the fixture during the chewing function and thus reducing the stress on the bone-implant interface.
Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael
2011-06-01
The aim of this study was to optimize culture conditions for human mesenchymal stem cells (hMSCs) in β-tricalcium phosphate ceramics with large interconnected channels. Fully interconnected macrochannels comprising pore diameters of 750 µm and 1400 µm were inserted into microporous β-tricalcium phosphate (β-TCP) scaffolds by milling. Human bone marrow-derived MSCs were seeded into the scaffolds and cultivated for up to 3 weeks in both static and perfusion culture in the presence of osteogenic supplements (dexamethasone, β-glycerophosphate, ascorbate). It was confirmed by scanning electron microscopic investigations and histological staining that the perfusion culture resulted in uniform distribution of cells inside the whole channel network, whereas the statically cultivated cells were primarily found at the surface of the ceramic samples. It was also determined that perfusion with standard medium containing 10% fetal calf serum (FCS) led to a strong increase (seven-fold) of cell numbers compared with static cultivation observed after 3 weeks. Perfusion with low-serum medium (2% FCS) resulted in moderate proliferation rates which were comparable to those achieved in static culture, although the specific alkaline phosphatase (ALP) activity increased by a factor of more than 3 compared to static cultivation. Gene expression analysis of the ALP gene also revealed higher levels of ALP mRNA in low-serum perfused samples compared to statically cultivated constructs. In contrast, gene expression of the late osteogenic marker bone sialoprotein II (BSPII) was decreased for perfused samples compared to statically cultivated samples. Copyright © 2010 John Wiley & Sons, Ltd.
Cardaropoli, Daniele; Tamagnone, Lorenzo; Roffredo, Alessandro; Gaveglio, Lorena
2015-01-01
In the maxillary arch from premolar to premolar, 26 single dental implants were inserted in fresh extraction sockets and immediately provisionalized. The bone-to-implant gap was grafted with a bovine bone mineral. After 3 months, definitive ceramic crowns were placed. At baseline and after 1 year, the soft tissue horizontal width, mesiodistal papillary level, midfacial gingival level, and pink esthetic score were evaluated. No statistical differences were found between baseline and 1 year for all parameters. Immediate single-tooth implants, with immediate restoration, are capable of maintaining the soft tissue contour and esthetics compared to the pretreatment status.
Navarro, M; Michiardi, A; Castaño, O; Planell, J.A
2008-01-01
At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field. PMID:18667387
Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia
Fiume, Elisa; Miola, Marta; Leone, Federica; Onida, Barbara; Laviano, Francesco; Gerbaldo, Roberto; Verné, Enrica
2018-01-01
This work deals with the synthesis and characterization of novel Fe-containing sol-gel materials obtained by modifying the composition of a binary SiO2-CaO parent glass with the addition of Fe2O3. The effect of different processing conditions (calcination in air vs. argon flowing) on the formation of magnetic crystalline phases was investigated. The produced materials were analyzed from thermal (hot-stage microscopy, differential thermal analysis, and differential thermal calorimetry) and microstructural (X-ray diffraction) viewpoints to assess both the behavior upon heating and the development of crystalline phases. N2 adsorption–desorption measurements allowed determining that these materials have high surface area (40–120 m2/g) and mesoporous texture with mesopore size in the range of 18 to 30 nm. It was assessed that the magnetic properties can actually be tailored by controlling the Fe content and the environmental conditions (oxidant vs. inert atmosphere) during calcination. The glasses and glass-ceramics developed in this work show promise for applications in bone tissue healing which require the use of biocompatible magnetic implants able to elicit therapeutic actions, such as hyperthermia for bone cancer treatment. PMID:29361763
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Lin, Wei-Ting; Shiau, An-Cheng; Chie, Yu-Huang
2014-11-01
In radiotherapy of the head and neck, metal dentures or implants will increase the risk of complications such as mucositis and osteoradionecrosis. The aim of this study is to explore the back scatter effect of commercially available dental metal alloys on the mucosa and bone under 6 MV LINAC irradiation. The Monte Carlo method has been employed to calculate the dose distribution in the heterogeneous media of the designed oral phantom based on the oral cavity geometry. Backscatter dose increases up to a maximum of 53%, and is primarily dependent on the physical density and electron density of the metal crown alloy. Ceramic metal crowns have been quantified to increase backscatter dose up to 10% on mucosa. Ceramic serves as an inherent shield of mucosa. The backscatter dose will be greater for a small field size if the tumor is located at a deeper region. Titanium implants will increase the backscatter dose by 13% to bone but will not affect the mucosa. QC-20 (polystyrene resin) is recommended as a shield material (3 mm) to eliminate the backscatter dose on mucosa due to the high density metals.
Biodegradable Materials for Bone Repair and Tissue Engineering Applications
Sheikh, Zeeshan; Najeeb, Shariq; Khurshid, Zohaib; Verma, Vivek; Rashid, Haroon; Glogauer, Michael
2015-01-01
This review discusses and summarizes the recent developments and advances in the use of biodegradable materials for bone repair purposes. The choice between using degradable and non-degradable devices for orthopedic and maxillofacial applications must be carefully weighed. Traditional biodegradable devices for osteosynthesis have been successful in low or mild load bearing applications. However, continuing research and recent developments in the field of material science has resulted in development of biomaterials with improved strength and mechanical properties. For this purpose, biodegradable materials, including polymers, ceramics and magnesium alloys have attracted much attention for osteologic repair and applications. The next generation of biodegradable materials would benefit from recent knowledge gained regarding cell material interactions, with better control of interfacing between the material and the surrounding bone tissue. The next generations of biodegradable materials for bone repair and regeneration applications require better control of interfacing between the material and the surrounding bone tissue. Also, the mechanical properties and degradation/resorption profiles of these materials require further improvement to broaden their use and achieve better clinical results. PMID:28793533
Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel
2017-02-01
The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei
2015-01-01
Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953
Mason, Amy G; Sutton, Alan; Turkyilmaz, Ilser
2014-11-01
Thermal injury to the implant-bone interface may lead to bone necrosis and loss of osseointegration. This is a concern during manipulation of the implant throughout the restorative phase of treatment. The risk of heat transfer to the implant-bone interface during abutment preparation or prosthesis removal should be considered. The purpose of the study was to examine the amount of heat transferred to the implant-bone interface when a zirconia crown is drilled to access the screw channel or section a crown with a high-speed dental handpiece. Of the 64 ceramic-veneered zirconia crowns fabricated, 32 had a coping thickness of 0.5 mm and 32 had a coping thickness of 1.0 mm. The crowns were cemented on either titanium stock abutments or zirconia stock abutments. Each group was further subdivided to evaluate heat transfer when the screw channel was accessed or the crown was sectioned with a high-speed handpiece with or without irrigation. Temperature change was recorded for each specimen at the cervical and apical aspect of the implant with thermocouples and a logging thermometer. ANOVA was used to assess the statistical significance in temperature change between the test combinations, and nonparametric Mann-Whitney U tests were used to evaluate the findings. The use of irrigation during both crown removal processes yielded an average temperature increase of 3.59 ±0.35°C. Crown removal in the absence of irrigation yielded an average temperature increase of 18.76 ±3.09°C. When all parameter combinations in the presence of irrigation were evaluated, the maximum temperature change was below the threshold of thermal injury to bone. The maximum temperature change was above the threshold for thermal injury at the coronal aspect of the implant and below the threshold at the apical aspect in the absence of irrigation. Within the limitations of this investigation, the use of irrigation with a high-speed dental handpiece to remove a ceramic-veneered zirconia crown results in a temperature increase at the implant-bone interface insufficient to cause irreversible damage. Conversely, a lack of irrigation may yield a temperature increase capable of producing irreversible damage at the coronal aspect of the implant. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Elkhenany, Hoda; Amelse, Lisa; Lafont, Andersen; Bourdo, Shawn; Caldwell, Marc; Neilsen, Nancy; Dervishi, Enkeleda; Derek, Oshin; Biris, Alexandru S; Anderson, David; Dhar, Madhu
2015-04-01
Current treatments for bone loss injuries involve autologous and allogenic bone grafts, metal alloys and ceramics. Although these therapies have proved useful, they suffer from inherent challenges, and hence, an adequate bone replacement therapy has not yet been found. We hypothesize that graphene may be a useful nanoscaffold for mesenchymal stem cells and will promote proliferation and differentiation into bone progenitor cells. In this study, we evaluate graphene, a biocompatible inert nanomaterial, for its effect on in vitro growth and differentiation of goat adult mesenchymal stem cells. Cell proliferation and differentiation are compared between polystyrene-coated tissue culture plates and graphene-coated plates. Graphitic materials are cytocompatible and support cell adhesion and proliferation. Importantly, cells seeded on to oxidized graphene films undergo osteogenic differentiation in fetal bovine serum-containing medium without the addition of any glucocorticoid or specific growth factors. These findings support graphene's potential to act as an osteoinducer and a vehicle to deliver mesenchymal stem cells, and suggest that the combination of graphene and goat mesenchymal stem cells provides a promising construct for bone tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.
Henriksen, S S; Ding, M; Juhl, M Vinther; Theilgaard, N; Overgaard, S
2011-05-01
Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture. Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength. The increase in mechanical strength was seen as a result of increased scaffold thickness and changes to plate-like structure. However, the porosity was significantly lowered as a consequence of adding 15% PLA, whereas adding 10% PLA had no significant effect on porosity. Hyaluronic acid had no significant effect on mechanical strength. The novel composite scaffold is comparable to that of human bone which may be suitable for transplantation in specific weight-bearing situations, such as long bone repair.
Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho
2013-07-01
Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.
Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji
2016-05-01
Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.
Sedrakyan, Art; Graves, Stephen; Bordini, Barbara; Pons, Miquel; Havelin, Leif; Mehle, Susan; Paxton, Elizabeth; Barber, Thomas; Cafri, Guy
2014-12-17
The rapid decline in use of conventional total hip replacement with a large femoral head size and a metal-on-metal bearing surface might lead to increased popularity of ceramic-on-ceramic bearings as another hard-on-hard alternative that allows implantation of a larger head. We sought to address comparative effectiveness of ceramic-on-ceramic and metal-on-HXLPE (highly cross-linked polyethylene) implants by utilizing the distributed health data network of the ICOR (International Consortium of Orthopaedic Registries), an unprecedented collaboration of national and regional registries and the U.S. FDA (Food and Drug Administration). A distributed health data network was developed by the ICOR and used in this study. The data from each registry are standardized and provided at a level of aggregation most suitable for the detailed analysis of interest. The data are combined across registries for comprehensive assessments. The ICOR coordinating center and study steering committee defined the inclusion criteria for this study as total hip arthroplasty performed without cement from 2001 to 2010 in patients forty-five to sixty-four years of age with osteoarthritis. Six national and regional registries (Kaiser Permanente and HealthEast in the U.S., Emilia-Romagna region in Italy, Catalan region in Spain, Norway, and Australia) participated in this study. Multivariate meta-analysis was performed with use of linear mixed models, with survival probability as the unit of analysis. We present the results of the fixed-effects model and include the results of the random-effects model in an appendix. SAS version 9.2 was used for all analyses. We first compared femoral head sizes of >28 mm and ≤28 mm within ceramic-on-ceramic implants and then compared ceramic-on-ceramic with metal-on-HXLPE. A total of 34,985 patients were included; 52% were female. We found a lower risk of revision associated with use of ceramic-on-ceramic implants when a larger head size was used (HR [hazard ratio] = 0.73, 95% CI [confidence interval] = 0.60 to 0.88, p = 0.001). Use of smaller-head-size ceramic-on-ceramic bearings was associated with a higher risk of failure compared with metal-on-HXLPE bearings (HR = 1.36, 95% CI = 1.09 to 1.68, p = 0.006). Use of large-head-size ceramic-on-ceramic bearings was associated with a small protective effect relative to metal-on-HXLPE bearings (not subdivided by head size) in years zero to two, but this difference dissipated over the longer term. Our multinational study based on a harmonized, distributed network showed that use of ceramic-on-ceramic implants with a smaller head size in total hip arthroplasty without cement was associated with a higher risk of revision compared with metal-on-HXLPE and >28-mm ceramic-on-ceramic implants. These findings warrant careful reflection by regulatory and clinical communities and wide dissemination to patients for informed decision-making regarding such surgery. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Chávarri-Prado, David; Jiménez-Garrudo, Antonio; Solaberrieta-Méndez, Eneko; Diéguez-Pereira, Markel; Fernández-González, Felipe J.; Dehesa-Ibarra, Borja; Monticelli, Francesca
2016-01-01
The objective of the present study is to evaluate how the elastic properties of the fabrication material of dental implants influence peri-implant bone load transfer in terms of the magnitude and distribution of stress and deformation. A three-dimensional (3D) finite element analysis was performed; the model used was a section of mandibular bone with a single implant containing a cemented ceramic-metal crown on a titanium abutment. The following three alloys were compared: rigid (Y-TZP), conventional (Ti-6Al-4V), and hyperelastic (Ti-Nb-Zr). A 150-N static load was tested on the central fossa at 6° relative to the axial axis of the implant. The results showed no differences in the distribution of stress and deformation of the bone for any of the three types of alloys studied, mainly being concentrated at the peri-implant cortical layer. However, there were differences found in the magnitude of the stress transferred to the supporting bone, with the most rigid alloy (Y-TZP) transferring the least stress and deformation to cortical bone. We conclude that there is an effect of the fabrication material of dental implants on the magnitude of the stress and deformation transferred to peri-implant bone. PMID:27995137
NASA Astrophysics Data System (ADS)
Kalita, Samar Jyoti
Tissue engineering has made a significant contribution in developing new biomaterials that can restore the structural features and physiological functions of natural tissues. Various materials, such as metals, ceramics, polymers and composites have been developed for their use in hard tissue engineering applications. Part A of this thesis describes my research on HAp ceramics. HAp, a bioactive ceramic, is known for its osteoconductivity, but shows poor mechanical performance. This program aimed at improving mechanical performance of synthetic HAp by introducing small quantities of various sintering additives. A range of oxide-based sintering additives were selected and prepared. Dense compacts were prepared using a uniaxial press with an average green density of 1.6 g/cc. Results showed that some of these sintering additives improved densification, hardness and compression strength of synthetic HAp compared to the pure composition. A maximum bulk density of 3.06 g/cc was achieved for 2.5 wt% addition of MgO. A Microhardness of 4.9 GPa (505 HV) was measured for 2.5 wt% addition of BaO, and the highest compression strength (220MPa) was reported for 2.5 wt% addition of CaO. Cytotoxicity and cell proliferation studies with a modified human osteoblast (HOB) cell-line (OPC1) proved most of these materials non-toxic and biocompatible. Microscopic observation revealed that bone cells were attached and grew well on most of these ceramic matrices. Part B describes my work on development of controlled porosity polypropylene-tricalcium phosphate composite scaffolds via the fused deposition modeling (FDM) process. Hg-porosimetry was performed to determine pore size and their distribution. Uniaxial compression testing performed on samples with 36 vol% porosity and pore size of 160 mum showed the best compressive strength of 12.7 MPa. Part C includes my research on development of "3-D honeycomb" porous calcium aluminate structures via the indirect FDM process. Samples of 29% and 44% VFP (designed) with average pore size of 300 mum showed compressive strength between 2 and 24 MPa. Cell proliferation studies conducted with OPC1 cells on polymer-ceramic composite scaffolds and porous calcium aluminate structures showed good cell attachment and a steady cell growth behavior during the first three weeks of in vitro analyses.
Clinical evidence on titanium-zirconium dental implants: a systematic review and meta-analysis.
Altuna, P; Lucas-Taulé, E; Gargallo-Albiol, J; Figueras-Álvarez, O; Hernández-Alfaro, F; Nart, J
2016-07-01
The use of titanium implants is well documented and they have high survival and success rates. However, when used as reduced-diameter implants, the risk of fracture is increased. Narrow diameter implants (NDIs) of titanium-zirconium (Ti-Zr) alloy have recently been developed (Roxolid; Institut Straumann AG). Ti-Zr alloys (two highly biocompatible materials) demonstrate higher tensile strength than commercially pure titanium. The aim of this systematic review was to summarize the existing clinical evidence on dental NDIs made from Ti-Zr. A systematic literature search was performed using the Medline database to find relevant articles on clinical studies published in the English language up to December 2014. Nine clinical studies using Ti-Zr implants were identified. Overall, 607 patients received 922 implants. The mean marginal bone loss was 0.36±0.06mm after 1 year and 0.41±0.09mm after 2 years. The follow-up period ranged from 3 to 36 months. Mean survival and success rates were 98.4% and 97.8% at 1 year after implant placement and 97.7% and 97.3% at 2 years. Narrow diameter Ti-Zr dental implants show survival and success rates comparable to regular diameter titanium implants (>95%) in the short term. Long-term follow-up clinical data are needed to confirm the excellent clinical performance of these implants. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Kübler, N; Urist, M R
1990-09-01
In rabbits, after long-bone growth is complete and the cambium layer regresses, mesenchymal-type cells with embryonic potential (competence) for bone development persist in the adventitial layer of periosteum. These cells are not determined osteoprogenitor cells (stem cells) because bone tissue differentiation does not occur when adult periosteum is transplanted into a heterotopic site. In this respect, adventitial cells differ from bone marrow stroma cells. In a parosteal orthotopic site in the space between the adult periosteum and diaphysis, implants of bone morphogenetic protein (BMP) and associated noncollagenous proteins (BMP/NCP) induce adventitia and adjacent muscle connective-tissue-derived cells to switch from a fibrogenetic to a chondroosteoprogenetic pattern of bone development. The quantity of induced bone is proportional to the dose of BMP/NCP in the range from 10 to 50 mg; immature rabbits produced larger deposits than mature rabbits in response to BMP/NCP. Preoperative local intramuscular injections of citric, edetic, or hyaluronic acids in specified concentrations markedly enhanced subperiosteal BMP/NCP-induced bone formation. The quantity of bovine or human BMP/NCP-induced bone formation in rabbits is also increased by very low-dose immunosuppression but not by bone mineral, tricalcium phosphate ceramic, inorganic calcium salts, or various space-occupying, unspecific chemical irritants. Although composities of BMP/NCP and allogeneic rabbit tendon collagen increased the quantity of bone in a parosteal site, in a heterotopic site the composite failed to induce bone formation. In a parosteal site, the conditions permitting BMP/NCP-induced bone formation develop, and the end product of the morphogenetic response is a duplicate diaphysis. How BMP reactivates the morphogenetic process in postfetal mesenchymal-type adventitial cells persisting in adult periosteum (including adjacent muscle attachments) is not known.
Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S.; Narikovich, A. S.
It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of themore » static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.« less
Biocompatible glass-ceramic materials for bone substitution.
Vitale-Brovarone, Chiara; Verné, Enrica; Robiglio, Lorenza; Martinasso, Germana; Canuto, Rosa A; Muzio, Giuliana
2008-01-01
A new bioactive glass composition (CEL2) in the SiO(2)-P(2)O(5)-CaO-MgO-K(2)O-Na(2)O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass-ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300-600 microm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass-ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.
Effect of Porosity of Alumina and Zirconia Ceramics toward Pre-Osteoblast Response
Hadjicharalambous, Chrystalleni; Prymak, Oleg; Loza, Kateryna; Buyakov, Ales; Kulkov, Sergei; Chatzinikolaidou, Maria
2015-01-01
It is acknowledged that cellular responses are highly affected by biomaterial porosity. The investigation of this effect is important for the development of implanted biomaterials that integrate with bone tissue. Zirconia and alumina ceramics exhibit outstanding mechanical properties and are among the most popular implant materials used in orthopedics, but few data exist regarding the effect of porosity on cellular responses to these materials. The present study investigates the effect of porosity on the attachment and proliferation of pre-osteoblastic cells on zirconia and alumina. For each composition, ceramics of three different porosities are fabricated by sintering, and characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray powder diffraction. Cell proliferation is quantified, and microscopy is employed to qualitatively support the proliferation results and evaluate cell morphology. Cell adhesion and metabolic activity are found comparable among low porosity zirconia and alumina. In contrast, higher porosity favors better cell spreading on zirconia and improves growth, but does not significantly affect cell response on alumina. Between the highest porosity materials, cell response on zirconia is found superior to alumina. Results show that an average pore size of ~150 μm and ~50% porosity can be considered beneficial to cellular growth on zirconia ceramics. PMID:26579516
Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO·P₂O₅--SiO₂--MgO system.
Daguano, Juliana K M F; Rogero, Sizue O; Crovace, Murilo C; Peitl, Oscar; Strecker, Kurt; Dos Santos, Claudinei
2013-09-01
The mechanical strength of bioactive glasses can be improved by controlled crystallization, turning its use as bulk bone implants viable. However, crystallization may affect the bioactivity of the material. The aim of this study was to develop glass-ceramics of the nominal composition (wt%) 52.75(3CaO·P₂O₅)-30SiO₂-17.25MgO, with different crystallized fractions and to evaluate their in vitro cytotoxicity and bioactivity. Specimens were heat-treated at 700, 775 and 975 °C, for 4 h. The major crystalline phase identified was whitlockite, an Mg-substituted tricalcium phosphate. The evaluation of the cytotoxicity was carried out by the neutral red uptake methodology. Ionic exchanges with the simulated body fluid SBF-K9 acellular solution during the in vitro bioactivity tests highlight the differences in terms of chemical reactivity between the glass and the glass-ceramics. The effect of crystallinity on the rates of hydroxycarbonate apatite (HCA) formation was followed by Fourier transformed infrared spectroscopy. Although all glass-ceramics can be considered bioactive, the glass-ceramic heat-treated at 775 °C (V775-4) presented the most interesting result, because the onset for HCA formation is at about 24 h and after 7 days the HCA layer dominates completely the spectrum. This occurs probably due to the presence of the whitlockite phase (3(Ca,Mg)O·P₂O₅). All samples were considered not cytotoxic.
Shahrbaf, Shirin; vanNoort, Richard; Mirzakouchaki, Behnam; Ghassemieh, Elaheh; Martin, Nicolas
2013-08-01
The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8GPa, 4GPa, 8GPa, 18.3GPa and 40GPa; the four lower values are representative of currently used cementing lutes and 40GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown-tooth complex. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liou, Y. S.; Yi-Chang, L.
2017-12-01
Numerous stone artifacts, ceramics, bone tools, metal objects, and etc., had been unearthed from the Huagangshan site of Hualien City, eastern Taiwan, during the excavations of 2008-2010 and 2012. Of particular importance is more than ten thousands of potsherds were discovered. A stratigraphic sequence spanning the late Early Neolithic (ca. 5000 BP) through to the prehistoric of Taiwan (300 BP) was excavated. This study focuses on potteries from the Late Neolithic (ca. 3500-2800 BP), owing to some ceramics exhibiting distinct stylistic motifs and morphological attributes were recognized to be not produced locally. Have these wares been brought to the area by exchange trade and/or by immigrants? Or had they been made by local potters through the imitation of exotic styles? It is still unclear and is one of the most important archaeological issues in eastern Taiwan. To clarify this subject, understanding the raw material compositions and sources, manufacturing techniques, and etc. are considered to be the best ways. Thus, 21 potsherds from excavations and 6 river sand samples near the site were studied by petrographic analysis. The results of petrographic study show that temper components in the potsherds are quartz, pyroxene, amphibole, plagioclase, sedimentary rock fragments (sandstone), igneous rock fragments (andesite), and metamorphic rock fragments (metasandstone, slate, schist), and the contents and proportions are different in these samples. Petrography shows that the ceramic have multiple origins. A ternary plot of rock fragments shows three compositional groups. This result discriminates two types of ceramics from the others and confirms those ceramics producing non-locally. However, one type of potsherds have local origins through they were recognized to be exotic ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinney, J.
This session is comprised of two articles by John Kinney describing biomedical and other uses for computerized tomography. In the first article, Kinney describes the use of a three-dimensional x-ray tomographic microscope to image the trabecular bone architecture of the proximal tibias of rats in vivo. Research in this field may help to detect the earliest stages of hypoestrogenemic bone loss and may help to more rapidly test the effectiveness of new clinical treatments for this major public health problem. The second article describes recent advances in X-ray tomography using synchrotron radiation to evaluate microstructures in ceramic matrix composites, bonemore » loss in osteoporosis, and the development of carries lesions in teeth.« less
In vivo study of novel biodegradable and osteoconductive CaO-SiO2-B2O3 glass-ceramics.
Lee, Jae Hyup; Lee, Choon-Ki; Chang, Bong-Soon; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Hong, Kug Sun; Kim, Hwan
2006-05-01
To evaluate the possibility of novel CaO-SiO2-B2O3 glass-ceramics (CS10B) as a new bone replacement material, we compared the biodegradation and osteoconduction properties of CS10B, hydroxyapatite (HA), and tricalcium phosphate (TCP). Porous CS10B implants were prepared by the polymer sponge method. L5-6 single-level posterolateral spinal fusions were performed on 30 New Zealand white male rabbits. The animals were divided into three groups by implant material: CS10B, HA, and TCP. Radiographs were performed every 2 weeks. All animals were euthanized 12 weeks after surgery. The ratio of the area occupied by the ceramics by final and initial radiographs was calculated using radiomorphometric analysis. Uniaxial tensile strength was determined from seven cases in each group. The ratio of the area occupied by HA (88.7%+/-16.1%) was significantly higher than the others (p<0.005), and the ratio of the area occupied by CS10B (28.2%+/-9.3%) was significantly lower than those of HA and TCP (37%+/-9.6%, p<0.05). The mean values of the tensile strengths of the CS10B (182.7+/-19.9 N) and HA (191.4+/-33.5 N) were significantly higher (p<0.05) than that of TCP (141.1+/-28.2 N). CS10B had a fusion mass tensile strength similar to that of HA. Histological analysis confirmed that CS10B was well incorporated into the fusion mass. These findings suggest that CS10B is a possible bone replacement material. Copyright (c) 2006 Wiley Periodicals, Inc.
Pietrzyńska, Monika; Czerwiński, Michał; Voelkel, Adam
2017-07-15
Polymer-ceramic materials based on poly(vinyl alcohol) (PVA) and hydroxyapatite were applied as sorption material in Monolithic In-Needle Extraction (MINE) device. The presented device provides new possibilities for the examination of bisphosphonates affinity for bone and will be a helpful tool in evaluation of potential antiresorptive drugs suitability. A ceramic part of monoliths was prepared by incorporation of hydroxyapatite (HA) into the reaction mixture or by using a soaking method (mineralization of HA on the PVA). The parameters of synthesis conditions were optimized to achieve a monolithic material having the appropriate dimensions after the soaking process enabling placing of the monolithic material inside the needle. Furthermore, the material must have had optimal dimensions after the re-soaking process to fit perfectly to the needle. Among the sixteen monolithic materials, eight of them were selected for further study, and then four of them were selected as a sorbent material for the MINE device. The material properties were examined on the basis of several parameters: swelling ratio, initial mass reversion and initial diameter reversion, mass growth due to the HA formation, and antiresorptive drug sorption. The MINE device might be then used as a tool for examination of interactions between bisphosphonate and bone. The simulated body fluid containing sodium risedronate (RSD) as a standard compound was passed through the MINE device. The obtained device allowed for sorption about 0.38mg of RSD. The desorption process was carried out in five steps allowing insightful analysis. The MINE device turned out to be a helpful tool for determination of the bisphosphonates affinity to the ceramic part of sorbent (hydroxyapatite) and to assess the usefulness of them as antiresorptive drugs in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinnari, Teemu J; Esteban, Jaime; Martin-de-Hijas, Nieves Z; Sánchez-Muñoz, Orlando; Sánchez-Salcedo, Sandra; Colilla, Montserrat; Vallet-Regí, María; Gomez-Barrena, Enrique
2009-01-01
Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 200 nm. Moreover, total porosity was 20 % for HA and 50 % for BCP. Adherence of Staphylococcus aureus and Staphylococcus epidermidis was studied at a physiological pH of 7.4 and at a pH simulating bone infection of 6.8. Moreover, the effect of pH on the zeta potential of HA, BCP and of both staphylococci was evaluated. Results showed that when pH decreased from 7.4 to 6.8, the adherence of both staphylococci to HA and BCP surfaces decreased significantly, although at the same time the negative zeta-potential values of the ceramic surfaces and both bacteria diminished. At both pH values, the number of S. aureus adhered to the HA surface appeared to be lower than that for BCP. A decrease in pH to 6.8 reduced the adherence of both bacterial species (mean 57 %). This study provides evidence that HA and BCP ceramics do not have pores sufficiently large to allow the internalization of staphylococci. Their anti-adherent properties seemed to improve when pH value decreased, suggesting that HA and BCP bioceramics are not compromised upon orthopaedic use.
Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch
2016-12-01
Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma
2018-04-01
Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.
Tantalum—A bioactive metal for implants
NASA Astrophysics Data System (ADS)
Balla, Vamsi Krishna; Bose, Susmita; Davies, Neal M.; Bandyopadhyay, Amit
2010-07-01
Metallic biomaterials currently in use for load-bearing orthopedic applications are mostly bioinert and therefore lack sufficient osseointegration. Although bioactive ceramics such as hydroxyapatite (HA) can spontaneously bond to living bone tissue, low fracture toughness of HA limits their use as a bone substitute for load-bearing applications. Surface modification techniques such as HA coating on metals are current options to improve osseointegration in load-bearing metal implants. Over the last few decades researchers have attempted to find a bioactive metal with high mechanical strength and excellent fatigue resistance that can bond chemically with surrounding bone for orthopedic applications. Recent in vitro, in vivo, and clinical studies demonstrated that tantalum is a promising metal that is bioactive. However, tantalum applications in biomedical devices have been limited by processing challenges rather than biological performances. In this article, we provide an overview of processing aspects and biological properties of tantalum for load-bearing orthopedic applications.
Gabbai-Armelin, Paulo R; Renno, Ana Cm; Crovace, Murilo C; Magri, Angela Mp; Zanotto, Edgar D; Peitl, Oscar; Leeuwenburgh, Sander Cg; Jansen, John A; van den Beucken, Jeroen Jjp
2017-08-01
Calcium phosphates and bioactive glass ceramics have been considered promising biomaterials for use in surgeries. However, their moldability should be further enhanced. We here thereby report the handling, physicochemical features, and morphological characteristics of formulations consisting of carboxymethylcellulose-glycerol and hydroxyapatite-tricalcium phosphate or Biosilicate® particles. We hypothesized that combining either material with carboxymethylcellulose-glycerol would improve handling properties, retaining their bioactivity. In addition to scanning electron microscopy, cohesion, mineralization, pH, and viscoelastic properties of the novel formulations, cell culture experiments were performed to evaluate the cytotoxicity and cell proliferation. Putty-like formulations were obtained with improved cohesion and moldability. Remarkably, mineralization in simulated body fluid of hydroxyapatite-tricalcium phosphate/carboxymethylcellulose-glycerol formulations was enhanced compared to pure hydroxyapatite-tricalcium phosphate. Cell experiments showed that all formulations were noncytotoxic and that HA-TCP60 and BGC50 extracts led to an increased cell proliferation. We conclude that combining carboxymethylcellulose-glycerol with either hydroxyapatite-tricalcium phosphate or Biosilicate® allows for the generation of moldable putties, improves handling properties, and retains the ceramic bioactivity.
General introduction: Liquid and solid (materials, main properties and applications …)
NASA Astrophysics Data System (ADS)
Zabler, Simon
2014-10-01
A general introduction about the diversity of foam structures is given with focus onto the structural, mechanical and dynamical properties at hand. Two classes of materials are addressed: liquid and semi-solid foams, on the one hand, solid foams, on the other hand. The latter can be subdivided into metallic, ceramic and organic foams, depending on the nature of the solid skeleton that supports the overall cell structure. Solid foams generally stem from the concept of mechanical light-weight structures, but they can just as well be employed for their large surface area as well as for their acoustic and thermal properties. Modern biomaterials use tailored ceramic or organo-ceramic foams as bone scaffolds, whereas hierarchically micro- and nanoporous structures are being used by chemistry to control catalytic reactions. Future materials design and development is going to rely increasingly on natural and synthetic foam structures and properties, be it food, thermal insulators or car frames, thus giving a promising outlook onto the foam research and development that is about to come. xml:lang="fr"