Sample records for stray light correction

  1. Stray light correction of array spectroradiometer measurement in ultraviolet

    NASA Astrophysics Data System (ADS)

    Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Li, Ling

    2018-02-01

    For most of the array spectroradiometer, stray light is significant in UV band. Stray light correction of a UV array spectroradiometer is investigated using optical filters. If a group of filters with continuous bandpass are chosen, stray light contribution due to all the bands can be obtained using a numerical algorithm. The array spectroradiometer with the stray light corrected is used to measure the spectral irradiance of several UV lamps. The measurement results are compared to a double monochromator spectroradiometer. When xenon lamp is the array spectroradiometer calibration lamp, after stray light correction, the difference can be improved from nearly 10% to 2.0% in UVC band. When tungsten lamp is the calibration lamp, the difference can be improved from around 90% to less than 20%.

  2. Stray light effects in above-water remote-sensing reflectance from hyperspectral radiometers.

    PubMed

    Talone, Marco; Zibordi, Giuseppe; Ansko, Ilmar; Banks, Andrew Clive; Kuusk, Joel

    2016-05-20

    Stray light perturbations are unwanted distortions of the measured spectrum due to the nonideal performance of optical radiometers. Because of this, stray light characterization and correction is essential when accurate radiometric measurements are a necessity. In agreement with such a need, this study focused on stray light correction of hyperspectral radiometers widely applied for above-water measurements to determine the remote-sensing reflectance (RRS). Stray light of sample radiometers was experimentally characterized and a correction algorithm was developed and applied to field measurements performed in the Mediterranean Sea. Results indicate that mean stray light corrections are appreciable, with values generally varying from -1% to +1% in the 400-700 nm spectral region for downward irradiance and sky radiance, and from -1% to +4% for total radiance from the sea. Mean corrections for data products such as RRS exhibit values that depend on water type varying between -0.5% and +1% in the blue-green spectral region, with peaks up to 9% in the red in eutrophic waters. The possibility of using one common stray light correction matrix for the analyzed class of radiometers was also investigated. Results centered on RRS support such a feasibility at the expense of an increment of the uncertainty typically well below 0.5% in the blue-green and up to 1% in the red, assuming sensors are based on spectrographs from the same production batch.

  3. SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.

    1995-01-01

    Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be converted into computationally fast algorithms. Second, they must be shown to operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.

  4. Stray light correction on array spectroradiometers for optical radiation risk assessment in the workplace.

    PubMed

    Barlier-Salsi, A

    2014-12-01

    The European directive 2006/25/EC requires the employer to assess and, if necessary, measure the levels of exposure to optical radiation in the workplace. Array spectroradiometers can measure optical radiation from various types of sources; however poor stray light rejection affects their accuracy. A stray light correction matrix, using a tunable laser, was developed at the National Institute of Standards and Technology (NIST). As tunable lasers are very expensive, the purpose of this study was to implement this method using only nine low power lasers; other elements of the correction matrix being completed by interpolation and extrapolation. The correction efficiency was evaluated by comparing CCD spectroradiometers with and without correction and a scanning double monochromator device as reference. Similar to findings recorded by NIST, these experiments show that it is possible to reduce the spectral stray light by one or two orders of magnitude. In terms of workplace risk assessment, this spectral stray light correction method helps determine exposure levels, with an acceptable degree of uncertainty, for the majority of workplace situations. The level of uncertainty depends upon the model of spectroradiometers used; the best results are obtained with CCD detectors having an enhanced spectral sensitivity in the UV range. Thus corrected spectroradiometers require a validation against a scanning double monochromator spectroradiometer before using them for risk assessment in the workplace.

  5. Novel ray tracing method for stray light suppression from ocean remote sensing measurements.

    PubMed

    Oh, Eunsong; Hong, Jinsuk; Kim, Sug-Whan; Park, Young-Je; Cho, Seong-Ick

    2016-05-16

    We developed a new integrated ray tracing (IRT) technique to analyze the stray light effect in remotely sensed images. Images acquired with the Geostationary Ocean Color Imager show a radiance level discrepancy at the slot boundary, which is suspected to be a stray light effect. To determine its cause, we developed and adjusted a novel in-orbit stray light analysis method, which consists of three simulated phases (source, target, and instrument). Each phase simulation was performed in a way that used ray information generated from the Sun and reaching the instrument detector plane efficiently. This simulation scheme enabled the construction of the real environment from the remote sensing data, with a focus on realistic phenomena. In the results, even in a cloud-free environment, a background stray light pattern was identified at the bottom of each slot. Variations in the stray light effect and its pattern according to bright target movement were simulated, with a maximum stray light ratio of 8.5841% in band 2 images. To verify the proposed method and simulation results, we compared the results with the real acquired remotely sensed image. In addition, after correcting for abnormal phenomena in specific cases, we confirmed that the stray light ratio decreased from 2.38% to 1.02% in a band 6 case, and from 1.09% to 0.35% in a band 8 case. IRT-based stray light analysis enabled clear determination of the stray light path and candidates in in-orbit circumstances, and the correction process aided recovery of the radiometric discrepancy.

  6. Stray light characteristics of the diffractive telescope system

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  7. Measurement and application of bidirectional reflectance distribution function

    NASA Astrophysics Data System (ADS)

    Liao, Fei; Li, Lin; Lu, Chengwen

    2016-10-01

    When a beam of light with certain intensity and distribution reaches the surface of a material, the distribution of the diffused light is related to the incident angle, the receiving angle, the wavelength of the light and the types of the material. Bidirectional Reflectance Distribution Function (BRDF) is a method to describe this distribution. For an optical system, the optical and mechanical materials' BRDF are unique, and if we want to calculate stray light of the system we should know the correct BRDF data of the whole materials. There are fundamental significances in the area of space remote sensor where BRDF is needed in the precise radiation calibration. It is also important in the military field where BRDF can be used in the object identification and target tracking, etc. In this paper, 11 kinds of aerospace materials' BRDF are measured and more than 310,000 groups of BRDF data are achieved , and also a BRDF database is established in China for the first time. With the BRDF data of the database, we can create the detector model, build the stray light radiation surface model in the stray light analysis software. In this way, the stray radiation on the detector can be calculated correctly.

  8. Stray light calibration of the Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Sierks, Holger; Nathues, Andreas; Richards, Michael; Gutierrez-Marques, Pablo

    2013-10-01

    Sensitive imaging systems with high dynamic range onboard spacecrafts are susceptible to ghost and stray-light effects. During the design phase, the Dawn Framing Camera was laid out and optimized to minimize those unwanted, parasitic effects. However, the requirement of low distortion to the optical design and use of a front-lit focal plane array induced an additional stray light component. This paper presents the ground-based and in-flight procedures characterizing the stray-light artifacts. The in-flight test used the Sun as the stray light source, at different angles of incidence. The spacecraft was commanded to point predefined solar elongation positions, and long exposure images were recorded. The PSNIT function was calculated by the known illumination and the ground based calibration information. In the ground based calibration, several extended and point sources were used with long exposure times in dedicated imaging setups. The tests revealed that the major contribution to the stray light is coming from the ghost reflections between the focal plan array and the band pass interference filters. Various laboratory experiments and computer modeling simulations were carried out to quantify the amount of this effect, including the analysis of the diffractive reflection pattern generated by the imaging sensor. The accurate characterization of the detector reflection pattern is the key to successfully predict the intensity distribution of the ghost image. Based on the results, and the properties of the optical system, a novel correction method is applied in the image processing pipeline. The effect of this correction procedure is also demonstrated with the first images of asteroid Vesta.

  9. Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera

    NASA Astrophysics Data System (ADS)

    Lowman, Andrew E.; Stauder, John L.

    2004-10-01

    The Optical Navigation Camera (ONC) is a technical demonstration slated to fly on NASA"s Mars Reconnaissance Orbiter in 2005. Conventional navigation methods have reduced accuracy in the days immediately preceding Mars orbit insertion. The resulting uncertainty in spacecraft location limits rover landing sites to relatively safe areas, away from interesting features that may harbor clues to past life on the planet. The ONC will provide accurate navigation on approach for future missions by measuring the locations of the satellites of Mars relative to background stars. Because Mars will be a bright extended object just outside the camera"s field of view, stray light control at small angles is essential. The ONC optomechanical design was analyzed by stray light experts and appropriate baffles were implemented. However, stray light testing revealed significantly higher levels of light than expected at the most critical angles. The primary error source proved to be the interface between ground glass surfaces (and the paint that had been applied to them) and the polished surfaces of the lenses. This paper will describe troubleshooting and correction of the problem, as well as other lessons learned that affected stray light performance.

  10. [Influence of different multifocal intraocular lens concepts on retinal stray light parameters].

    PubMed

    Ehmer, A; Rabsilber, T M; Mannsfeld, A; Sanchez, M J; Holzer, M P; Auffarth, G U

    2011-10-01

    Multifocal intraocular lenses (MIOL) are known to induce various photic phenomena depending on the optical principle. The aim of this study was to investigate the correlation between stray light measurements performed with the C-Quant (Oculus, Germany) and the results of a subjective patient questionnaire. In this study three different MIOLs were compared: AMO ReZoom (refractive design, n=10), AMO ZM900 (diffractive design, n=10) and Oculentis Mplus (near segment design, n=10). Cataract and refractive patients were enrolled in the study. Functional results were evaluated at least 3 months postoperatively followed by stray light measurements and a subjective questionnaire. Surgery was performed for all patients without complications. The three groups were matched for age, IOL power and corrected distance visual acuity (CDVA). Significantly different stray light (median) values log(s) were found (Kruskal-Wallis test, p<0.05): 1.12 log (refractive), 1.13 log (segment) and 1.28 log (diffractive). The subjective questionnaire did not show differences in glare perception but refractive MIOL patients noticed more halos surrounding light sources than the diffractive and segment MIOL patients. Stray light and subjective photopic phenomena do not show any basic correlation. Measurements in patients with refractive MIOLs showed less stray light than near segment or diffractive MIOLs. However, refractive MIOLs induced more halos compared to the other groups analyzed.

  11. Correction of the spectral calibration of the Joint European Torus core light detecting and ranging Thomson scattering diagnostic using ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawke, J.; Scannell, R.; Maslov, M.

    2013-10-15

    This work isolated the cause of the observed discrepancy between the electron temperature (T{sub e}) measurements before and after the JET Core LIDAR Thomson Scattering (TS) diagnostic was upgraded. In the upgrade process, stray light filters positioned just before the detectors were removed from the system. Modelling showed that the shift imposed on the stray light filters transmission functions due to the variations in the incidence angles of the collected photons impacted plasma measurements. To correct for this identified source of error, correction factors were developed using ray tracing models for the calibration and operational states of the diagnostic. Themore » application of these correction factors resulted in an increase in the observed T{sub e}, resulting in the partial if not complete removal of the observed discrepancy in the measured T{sub e} between the JET core LIDAR TS diagnostic, High Resolution Thomson Scattering, and the Electron Cyclotron Emission diagnostics.« less

  12. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    NASA Astrophysics Data System (ADS)

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-01

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing optical CT-scanned radiochromic gels allows for the acquisition of a self-consistent volumetric data set in a single exposure, with sufficient spatial resolution to accurately characterize small fields.

  13. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST).

    PubMed

    Jacobson, C M; Borchardt, M T; Den Hartog, D J; Falkowski, A F; Morton, L A; Thomas, M A

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  14. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  15. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The modelmore » of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.« less

  16. Stray-light suppression in a reflecting white-light coronagraph

    NASA Technical Reports Server (NTRS)

    Romoli, Marco; Weiser, Heinz; Gardner, Larry D.; Kohl, John L.

    1993-01-01

    An analysis of stray-light suppression in the white-light channel of the Ultraviolet Coronagraph Spectrometer experiment for the Solar and Heliospheric Observatory is reported. The white-light channel consists of a reflecting telescope with external and internal occultation and a polarimeter section. Laboratory tests and analytical methods are used to perform the analysis. The various stray-light contributions are classified in two main categories: the contribution from sunlight that passes directly through the entrance aperture and the contribution of sunlight that is diffracted by the edges of the entrance aperture. Values of the stray-light contributions from various sources and the total stray-light level for observations at heliocentric heights from 1.4 to 5 solar radii are derived. Anticipated signal-to-stray-light ratios are presented together with the effective stray-light rejection by the polarimeter, demonstrating the efficacy of the stray-light suppression design.

  17. VIIRS day-night band (DNB) electronic hysteresis: characterization and correction

    NASA Astrophysics Data System (ADS)

    Mills, Stephen

    2016-09-01

    The VIIRS Day-Night Band (DNB) offers measurements over a dynamic range from full daylight to the dimmest nighttime. This makes radiometric calibration difficult because effects that are otherwise negligible become significant for the DNB. One of these effects is electronic hysteresis and this paper evaluates this effect and its impact on calibration. It also considers possible correction algorithms. The cause of this hysteresis is uncertain, but since the DNB uses a charge-coupled device (CCD) detector array, it is likely the result of residual charge or charge depletion. The effects of hysteresis are evident in DNB imagery. Steaks are visible in the cross-track direction around very bright objects such as gas flares. Dark streaks are also visible after lightning flashes. Each VIIRS scan is a sequence of 4 sectors: space view (SV); Earth-view (EV); blackbody (BB) view; and solar diffuser (SD) view. There are differences among these sectors in offset that can only be explained as being the result of hysteresis from one sector to the next. The most dramatic hysteresis effect is when the sun illuminates the SD and hysteresis is then observed in the SV and EV. Previously this was hypothesized to be due to stray light leaking from the SD chamber, but more careful evaluation shows that this can only be the result of hysteresis. There is a stray light correction algorithm that treats this as stray light, but there are problems with this that could be remedied by instead using the characterization presented here.

  18. HMI Data Corrected for Stray Light Now Available

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Duvall, T. L.; Schou, J.; Cheung, M. C. M.; Scherrer, P. H.

    2016-10-01

    The form of the point spread function (PSF) derived for HMI is an Airy function convolved with a Lorentzian. The parameters are bound by observational ground-based testing of the instrument conducted prior to launch (Wachter et al., 2012), by full-disk data used to evaluate the off-limb behavior of the scattered light, as well as by data obtained during the Venus transit. The PSF correction has been programmed in both C and cuda C and runs within the JSOC environment using either a CPU or GPU. A single full-disk intensity image can be deconvolved in less than one second. The PSF is described in more detail in Couvidat et al. (2016) and has already been used by Hathaway et al. (2015) to forward-model solar-convection spectra, by Krucker et al. (2015) to investigate footpoints of off-limb solar flares and by Whitney, Criscuoli and Norton (2016) to examine the relations between intensity contrast and magnetic field strengths. In this presentation, we highlight the changes to umbral darkness, granulation contrast and plage field strengths that result from stray light correction. A twenty-four hour period of scattered-light corrected HMI data from 2010.08.03, including the isolated sunspot NOAA 11092, is currently available for anyone. Requests for additional time periods of interest are welcome and will be processed by the HMI team.

  19. Design and stray light analysis of ultra-thin geometrical waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Qiwei; Cheng, Dewen; Hou, Qichao; Hu, Yuan; Wang, Yongtian

    2015-08-01

    Nowadays, the waveguide has the advantages of small thickness and light weight so that it attracts more and more attention in the field of near-eye display. However, as a major problem, stray lights generated in the waveguide seriously degrade the display quality. In this paper, a geometrical waveguide with a beam-splitting mirror array (BSMA) is designed by using the non-sequential ray-tracing software LightTools, and great efforts are paid to study the causes and solutions of the stray light. With mass calculation and optimization based on the criterion of stray light/useful light ratio, an optimum design with the least amount of stray lights is found. To further eliminate the stray light, a novel structure that couples the rays into the waveguide is designed. The optimized waveguide has a FOV of 36° in the pupil-expanding direction of the waveguide, with stray light energy reduced to 1% over the useful light, the exit pupil diameter is 11.6mm at an eye relief of 20mm and the thickness is 2.4mm.

  20. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  1. Simulation and Measurement of Stray Light in the CLASP

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Tsuzuki, Toshihiro; Katsukawa, Yukio; Ishikawa, Shin-nosuke; Giono, Gabriel; Suematsu, Yoshinori; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman Alpha line polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly?? lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For total flux of the sun visible light overwhelmingly larger and about 200 000 times the Ly?? line wavelength region, also hinder to 0.1% of the polarization photometric accuracy achieved in the stray light of slight visible light. Therefore we were first carried out using the illumination design analysis software called stray light simulation CLASP Light Tools. Feature of this simulation, using optical design file (ZEMAX format) and structural design file (STEP format), to reproduce realistic CLASP as possible to calculate machine is that it was stray study. And, at the stage in the actual equipment that made the provisional set of CLASP, actually put sunlight into CLASP using coelostat of National Astronomical Observatory of Japan, was subjected to measurement of stray light (San test). Pattern was not observed in the simulation is observed in the stray light measurement results need arise that measures. However, thanks to the stray light measurement and simulation was performed by adding, it was found this pattern is due to the diffracted light at the slit. Currently, the simulation results is where you have taken steps to reference. In this presentation, we report the stray light simulation and stray light measurement results that we have implemented

  2. OMPS Limb Profiler Instrument Performance Assessment

    NASA Technical Reports Server (NTRS)

    Jaross, Glen R.; Bhartia, Pawan K.; Chen, Grace; Kowitt, Mark; Haken, Michael; Chen, Zhong; Xu, Philippe; Warner, Jeremy; Kelly, Thomas

    2014-01-01

    Following the successful launch of the Ozone Mapping and Profiler Suite (OMPS) aboard the Suomi National Polar-orbiting Partnership (SNPP) spacecraft, the NASA OMPS Limb team began an evaluation of instrument and data product performance. The focus of this paper is the instrument performance in relation to the original design criteria. Performance that is closer to expectations increases the likelihood that limb scatter measurements by SNPP OMPS and successor instruments can form the basis for accurate long-term monitoring of ozone vertical profiles. The team finds that the Limb instrument operates mostly as designed and basic performance meets or exceeds the original design criteria. Internally scattered stray light and sensor pointing knowledge are two design challenges with the potential to seriously degrade performance. A thorough prelaunch characterization of stray light supports software corrections that are accurate to within 1% in radiances up to 60 km for the wavelengths used in deriving ozone. Residual stray light errors at 1000nm, which is useful in retrievals of stratospheric aerosols, currently exceed 10%. Height registration errors in the range of 1 km to 2 km have been observed that cannot be fully explained by known error sources. An unexpected thermal sensitivity of the sensor also causes wavelengths and pointing to shift each orbit in the northern hemisphere. Spectral shifts of as much as 0.5nm in the ultraviolet and 5 nm in the visible, and up to 0.3 km shifts in registered height, must be corrected in ground processing.

  3. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shumei; Zang, Qing, E-mail: zangq@ipp.ac.cn; Han, Xiaofeng

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump systemmore » can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.« less

  4. Stray light suppression of optical and mechanical system for telescope detection

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ma, Wenli

    2013-09-01

    During telescope detection, there is atmosphere overflow and other stray light affecting the system which leads to background disturbance. Thus reduce the detection capability of the system. So it is very necessary to design mechanical structure to suppress the stray light for the telescope detection system. It can both improve the signal-to-noise and contrast of the object. This paper designs the optical and mechanical structure of the 400mm telescope. And then the main baffle, baffle vane, field stop and coating technology are used to eliminate the effect of stray light on the optical and mechanical system. Finally, software is used to analyze and simulate stray light on the whole optical and mechanical system. Using PST as the evaluating standard, separate and integrated analysis of the suppressing effect of main baffle, baffle vane and field aperture is completed. And also get the results of PST before and after eliminating the stray light. Meanwhile, the results of stray light analysis can be used to guide the design of the optical and mechanical structure. The analysis results demonstrate that reasonable optical and mechanical structure and stray light suppression measure can highly reduce the PST and also improve the detection capability of the telescope system, and the designed outside baffle, inside baffle, vanes and coating technique etc. can decrease the PST approximately 1 to 3 level.

  5. Calibration procedures for imaging spectrometers: improving data quality from satellite missions to UAV campaigns

    NASA Astrophysics Data System (ADS)

    Brachmann, Johannes F. S.; Baumgartner, Andreas; Lenhard, Karim

    2016-10-01

    The Calibration Home Base (CHB) at the Remote Sensing Technology Institute of the German Aerospace Center (DLR-IMF) is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric characterization is realized in the CHB in a precise and highly automated fashion. This allows performing a wide range of time consuming measurements in an efficient way. The implementation of ISO 9001 standards ensures a traceable quality of results. DLR-IMF will support the calibration and characterization campaign of the future German spaceborne hyperspectral imager EnMAP. In the context of this activity, a procedure for the correction of imaging artifacts, such as due to stray light, is currently being developed by DLR-IMF. Goal is the correction of in-band stray light as well as ghost images down to a level of a few digital numbers in the whole wavelength range 420-2450 nm. DLR-IMF owns a Norsk Elektro Optikks HySpex airborne imaging spectrometer system that has been thoroughly characterized. This system will be used to test stray light calibration procedures for EnMAP. Hyperspectral snapshot sensors offer the possibility to simultaneously acquire hyperspectral data in two dimensions. Recently, these rather new spectrometers have arisen much interest in the remote sensing community. Different designs are currently used for local area observation such as by use of small unmanned aerial vehicles (sUAV). In this context the CHB's measurement capabilities are currently extended such that a standard measurement procedure for these new sensors will be implemented.

  6. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.

    PubMed

    Berni, L A; Albuquerque, B F C

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  7. Validation of Ocean Color Sensors Using a Profiling Hyperspectral Radiometer

    DTIC Science & Technology

    2014-01-01

    shadows. The HyperOCRs are all thermally characterized for temperature corrections and spectrally characterized to account for stray light corrections...August 24,2010 is shown in Figure 4A along with the mean percent difference between the NOAA Hyperpro ( Black /Dash) and the other two identical Hyperpro...difference (n=24) between the NOAA Hyperpro ( Black /Dash, Fig. 4A) and the other two Hyperpro systems. The dotted line for the red (bottom) and dash line for

  8. Conceptual design of a stray light facility for Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.

    2017-11-01

    With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.

  9. A Consistent EPIC Visible Channel Calibration Using VIIRS and MODIS as a Reference.

    NASA Astrophysics Data System (ADS)

    Haney, C.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.

    2017-12-01

    The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.

  10. A Consistent EPIC Visible Channel Calibration using VIIRS and MODIS as a Reference

    NASA Technical Reports Server (NTRS)

    Haney, C. O.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.

    2017-01-01

    The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.

  11. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-15

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contributemore » to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.« less

  12. Enhanced-Adhesion Multi-Walled Carbon Nanotubes on Titanium Substrates for Stray Light Control

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2012-01-01

    Carbon nanotubes previously grown on silicon have extremely low reflectance, making them a good candidate for stray light suppression. Silicon, however, is not a good structural material for stray light components such as tubes, stops, and baffles. Titanium is a good structural material and can tolerate the 700 C nanotube growth process. The ability to grow carbon nanotubes on a titanium substrate that are ten times blacker than the current NASA state-of-the-art paints in the visible to near infrared spectra has been achieved. This innovation will allow significant improvement of stray light performance in scientific instruments or any other optical system. This innovation is a refinement of the utilization of multiwalled carbon nano tubes for stray light suppression in spaceflight instruments. The innovation is a process to make the surface darker and improve the adhesion to the substrate, improving robustness for spaceflight use. Bright objects such as clouds or ice scatter light off of instrument structures and components and make it difficult to see dim objects in Earth observations. A darker material to suppress this stray light has multiple benefits to these observations, including enabling scientific observations not currently possible, increasing observational efficiencies in high-contrast scenes, and simplifying instruments and lowering their cost by utilizing fewer stray light components and achieving equivalent performance. The prior art was to use commercially available black paint, which resulted in approximately 4% of the light being reflected (hemispherical reflectance or total integrated scatter, or TIS). Use of multiwalled carbon nanotubes on titanium components such as baffles, entrance aperture, tubes, and stops, can decrease this scattered light by a factor of ten per bounce over the 200-nm to 2,500-nm wavelength range. This can improve system stray light performance by orders of magnitude. The purpose of the innovation is to provide an enhanced stray light control capability by making a blacker surface treatment for typical stray light control components. Since baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it was critical to develop this surface treatment on structural materials. The innovation is to optimize the carbon nanotube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The titanium substrate carbon nanotubes are more robust than those grown on silicon and allow for easier utilization. They are darker than current surface treatments over larger angles and larger wavelength range. The primary advantage of titanium substrate is that it is a good structural material, and not as brittle as silicon.

  13. SeaWiFS Technical Report Series. Volume 41; Case Studies for SeaWiFS Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Yeh, Eueng-nan; Barnes, Robert A.; Darzi, Michael; Kumar, Lakshmi; Early, Edward A.; Johnson, B. Carol; Mueller, James L.; Trees, Charles C.

    1997-01-01

    This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter I describes the calibration and characterization of the GSFC sphere, which was used in the recent recalibration of the SeaWiFS instrument. Chapter 2 presents a revision of the diffuse attenuation coefficient, K(490), algorithm based on the SeaWiFS wavelengths. Chapter 3 provides an implementation scheme for an algorithm to remove out-of-band radiance when using a sensor calibration based on a finite width (truncated) spectral response function, e.g., between the 1% transmission points. Chapter 4 describes the implementation schemes for the stray light quality flag (local area coverage [LAC] and global area coverage [GAC]) and the LAC stray light correction.

  14. Characterization of in Band Stray Light in SBUV-2 Instruments

    NASA Technical Reports Server (NTRS)

    Huang, L. K.; DeLand, M. T.; Taylor, S. L.; Flynn, L. E.

    2014-01-01

    Significant in-band stray light (IBSL) error at solar zenith angle (SZA) values larger than 77deg near sunset in 4 SBUV/2 (Solar Backscattered Ultraviolet) instruments, on board the NOAA-14, 17, 18 and 19 satellites, has been characterized. The IBSL error is caused by large surface reflection and scattering of the air-gapped depolarizer in front of the instrument's monochromator aperture. The source of the IBSL error is direct solar illumination of instrument components near the aperture rather than from earth shine. The IBSL contamination at 273 nm can reach 40% of earth radiance near sunset, which results in as much as a 50% error in the retrieved ozone from the upper stratosphere. We have analyzed SBUV/2 albedo measurements on both the dayside and nightside to develop an empirical model for the IBSL error. This error has been corrected in the V8.6 SBUV/2 ozone retrieval.

  15. Nanostructure Secondary-Mirror Apodizing Mask for Transmitter Signal Suppression in a Duplex Telescope

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Livas, Jeffrey; Shiri, Shahram; Getty, Stephanie; Tveekrem, June; Butler, James

    2012-01-01

    A document discusses a nanostructure apodizing mask, made of multi-walled carbon nanotubes, that is applied to the centers (or in and around the holes) of the secondary mirrors of telescopes that are used to interferometrically measure the strain of space-time in response to gravitational waves. The shape of this ultra-black mask can be adjusted to provide a smooth transition to the clear aperture of the secondary mirror to minimize diffracted light. Carbon nanotubes grown on silicon are a viable telescope mirror substrate, and can absorb significantly more light than other black treatments. The hemispherical reflectance of multi-walled carbon nanotubes grown at GSFC is approximately 3 to 10 times better than a standard aerospace paint used for stray light control. At the LISA (Laser Interferometer Space Antenna) wavelength of 1 micron, the advantage over paint is a factor of 10. Primarily, in the center of the secondary mirror (in the region of central obscuration, where no received light is lost) a black mask is applied to absorb transmitted light that could be reflected back into the receiver. In the LISA telescope, this is in the center couple of millimeters. The shape of this absorber is critical to suppress diffraction at the edge. By using the correct shape, the stray light can be reduced by approximately 10 to the 9 orders of magnitude versus no center mask. The effect of the nanotubes has been simulated in a stray-light model. The effect of the apodizing mask has been simulated in a near-field diffraction model. Specifications are geometry-dependent, but the baseline design for the LISA telescope has been modeled as well. The coatings are somewhat fragile, but work is continuing to enhance adhesion.

  16. Performance of the NIST goniocolorimeter with a broad-band source and multichannel charged coupled device based spectrometer.

    PubMed

    Podobedov, V B; Miller, C C; Nadal, M E

    2012-09-01

    The authors describe the NIST high-efficiency instrument for measurements of bidirectional reflectance distribution function of colored materials, including gonioapparent materials such as metallic and pearlescent coatings. The five-axis goniospectrometer measures the spectral reflectance of samples over a wide range of illumination and viewing angles. The implementation of a broad-band source and a multichannel CCD spectrometer corrected for stray light significantly increased the efficiency of the goniometer. In the extended range of 380 nm to 1050 nm, a reduction of measurement time from a few hours to a few minutes was obtained. Shorter measurement time reduces the load on the precise mechanical assembly ensuring high angular accuracy over time. We describe the application of matrix-based correction of stray light and the extension of effective dynamic range of measured fluxes to the values of 10(6) to 10(7) needed for the absolute characterization of samples. The measurement uncertainty was determined to be 0.7% (k = 2), which is comparable with similar instruments operating in a single channel configuration. Several examples of reflectance data obtained with the improved instrument indicate a 0.3% agreement compared to data collected with the single channel configuration.

  17. Fast and accurate modeling of stray light in optical systems

    NASA Astrophysics Data System (ADS)

    Perrin, Jean-Claude

    2017-11-01

    The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.

  18. Design, simulation and experimental analysis of an anti-stray-light illumination system of fundus camera

    NASA Astrophysics Data System (ADS)

    Ma, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2014-11-01

    Fundus camera is a complex optical system for retinal photography, involving illumination and imaging of the retina. Stray light is one of the most significant problems of fundus camera because the retina is so minimally reflective that back reflections from the cornea and any other optical surface are likely to be significantly greater than the light reflected from the retina. To provide maximum illumination to the retina while eliminating back reflections, a novel design of illumination system used in portable fundus camera is proposed. Internal illumination, in which eyepiece is shared by both the illumination system and the imaging system but the condenser and the objective are separated by a beam splitter, is adopted for its high efficiency. To eliminate the strong stray light caused by corneal center and make full use of light energy, the annular stop in conventional illumination systems is replaced by a fiber-coupled, ring-shaped light source that forms an annular beam. Parameters including size and divergence angle of the light source are specially designed. To weaken the stray light, a polarized light source is used, and an analyzer plate is placed after beam splitter in the imaging system. Simulation results show that the illumination uniformity at the fundus exceeds 90%, and the stray light is within 1%. Finally, a proof-of-concept prototype is developed and retinal photos of an ophthalmophantom are captured. The experimental results show that ghost images and stray light have been greatly reduced to a level that professional diagnostic will not be interfered with.

  19. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  20. Design of the OMPS limb sensor correction algorithm

    NASA Astrophysics Data System (ADS)

    Jaross, Glen; McPeters, Richard; Seftor, Colin; Kowitt, Mark

    The Sensor Data Records (SDR) for the Ozone Mapping and Profiler Suite (OMPS) on NPOESS (National Polar-orbiting Operational Environmental Satellite System) contains geolocated and calibrated radiances, and are similar to the Level 1 data of NASA Earth Observing System and other programs. The SDR algorithms (one for each of the 3 OMPS focal planes) are the processes by which the Raw Data Records (RDR) from the OMPS sensors are converted into the records that contain all data necessary for ozone retrievals. Consequently, the algorithms must correct and calibrate Earth signals, geolocate the data, and identify and ingest collocated ancillary data. As with other limb sensors, ozone profile retrievals are relatively insensitive to calibration errors due to the use of altitude normalization and wavelength pairing. But the profile retrievals as they pertain to OMPS are not immune from sensor changes. In particular, the OMPS Limb sensor images an altitude range of > 100 km and a spectral range of 290-1000 nm on its detector. Uncorrected sensor degradation and spectral registration drifts can lead to changes in the measured radiance profile, which in turn affects the ozone trend measurement. Since OMPS is intended for long-term monitoring, sensor calibration is a specific concern. The calibration is maintained via the ground data processing. This means that all sensor calibration data, including direct solar measurements, are brought down in the raw data and processed separately by the SDR algorithms. One of the sensor corrections performed by the algorithm is the correction for stray light. The imaging spectrometer and the unique focal plane design of OMPS makes these corrections particularly challenging and important. Following an overview of the algorithm flow, we will briefly describe the sensor stray light characterization and the correction approach used in the code.

  1. Stray light field dependence for large astronomical space telescopes

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the aspect ratio of the tubular baffle length to PM diameter. Additional analysis has been done to examine the stray light implications for the fields near the image of a bright source. This near field stray light is shown to be dependent on the Bidirectional Reflectance Distribution Function (BRDF) characteristics of the mirrors in the optical train. The near field stray light contribution is dominated by those mirrors closer to the focal plane compared to the contributions from the PM and SM. Hence the near field stray light is independent of the exterior telescope baffle geometry. Contributions from self-emission from the telescope have been compared to natural background for telescopes operating at infrared wavelengths.

  2. White Light Stray Light Test of the SOHO UVCS

    NASA Technical Reports Server (NTRS)

    Gardner, L. N.; Gardner, L. N.; Fineschi, S.

    1998-01-01

    During the late stages of the integration phase of the Ultraviolet Coronagraph Spectrometer (UVCS) instrument for the Solar and Heliospheric Observatory (SOHO) at MATRA-Marconi in Toulouse, France, SOHO Project management at Goddard Space Flight Center (GSFC) became concerned that the elaborate stray light rejection system for the instrument had not been tested and might possibly be misaligned such that the instrument could not deliver promised scientific returns. A white light stray light test, which would place an upper bound on the value of UVCS's stray light rejection capability, was commissioned, conceived, and carried out. This upper bound value would be indicative of the weakest coronal features the spectrometer would be capable of discerning. The test was rapidly developed at GSFC in coordination with science team members from Harvard-Smithsonian Center for Astrophysics (CFA) and was carried out at MATRA in late February 1995. The outcome of this test helped to justify similar, much desired tests with visible and far ultraviolet light at CFA in a facility specifically designed to perform such testing.

  3. Stray Light Analyis With The HP-41C/CV Calculator

    NASA Astrophysics Data System (ADS)

    Bamberg, Jack A.

    1983-10-01

    A stray radiation analysis program (nicknamed MINI-APART after its namesake: APART) suitable for use on the HP-41C/CV calculator is described. The program is ideally suited for quick estimates of stray light performance in well-baffled optical systems, which are limited by scatter from the first optical element. Critical path models are described, including single scatter, double scatter, diffraction-scatter, and thermal emission-scatter. Program use is illustrated, and several comparisons are made with the results obtained by the large stray radiation programs, GUERAP-3 and APART/PADE.

  4. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    NASA Astrophysics Data System (ADS)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  5. SIMBIOS Normalized Water-Leaving Radiance Calibration and Validation: Sensor Response, Atmospheric Corrections, Stray Light and Sun Glint. Chapter 14

    NASA Technical Reports Server (NTRS)

    Mueller, James L.

    2001-01-01

    This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) contract supports acquisition of match up radiometric and bio-optical data for validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and other ocean color satellites, and evaluation of uncertainty budgets and protocols for in situ measurements of normalized water leaving radiances.

  6. Effective suppression of stray light in rotational coherent anti-stokes Raman spectroscopy using an angle-tuned short-wave-pass filter.

    PubMed

    Bohlin, Alexis; Bengtsson, Per-Erik

    2010-08-01

    Stray light interference is a common problem in spontaneous rotational Raman spectroscopy and rotational coherent anti-Stokes Raman spectropscopy (CARS). The reason is that the detected spectrum appears in the spectral vicinity of the probe beam wavelength, and stray light at this wavelength from optics and surfaces is hard to suppress. In this Note, efficient suppression of stray light is demonstrated for rotational CARS measurements using a commercially available short-wave-pass filter. By angle-tuning this filter with a specified cut-off wavelength at 561 nm, the cut-off wavelength could be tuned to a desired spectral position so that more than 80% transmission is achieved as close as 15 cm(-1) (approximately 0.4 nm) from the probe beam wavelength of 532.0 nm, while the intensity at this wavelength is suppressed by two orders of magnitude.

  7. Rapid optimization method of the strong stray light elimination for extremely weak light signal detection.

    PubMed

    Wang, Geng; Xing, Fei; Wei, Minsong; You, Zheng

    2017-10-16

    The strong stray light has huge interference on the detection of weak and small optical signals, and is difficult to suppress. In this paper, a miniaturized baffle with angled vanes was proposed and a rapid optimization model of strong light elimination was built, which has better suppression of the stray lights than the conventional vanes and can optimize the positions of the vanes efficiently and accurately. Furthermore, the light energy distribution model was built based on the light projection at a specific angle, and the light propagation models of the vanes and sidewalls were built based on the Lambert scattering, both of which act as the bias of a calculation method of stray light. Moreover, the Monte-Carlo method was employed to realize the Point Source Transmittance (PST) simulation, and the simulation result indicated that it was consistent with the calculation result based on our models, and the PST could be improved by 2-3 times at the small incident angles for the baffle designed by the new method. Meanwhile, the simulation result was verified by laboratory tests, and the new model with derived analytical expressions which can reduce the simulation time significantly.

  8. Multiwalled carbon nanotubes for stray light suppression in space flight instruments

    NASA Astrophysics Data System (ADS)

    Hagopian, John G.; Getty, Stephanie A.; Quijada, Manuel; Tveekrem, June; Shiri, Ron; Roman, Patrick; Butler, James; Georgiev, Georgi; Livas, Jeff; Hunt, Cleophus; Maldonado, Alejandro; Talapatra, Saikat; Zhang, Xianfeng; Papadakis, Stergios J.; Monica, Andrew H.; Deglau, David

    2010-08-01

    Observations of the Earth are extremely challenging; its large angular extent floods scientific instruments with high flux within and adjacent to the desired field of view. This bright light diffracts from instrument structures, rattles around and invariably contaminates measurements. Astrophysical observations also are impacted by stray light that obscures very dim objects and degrades signal to noise in spectroscopic measurements. Stray light is controlled by utilizing low reflectance structural surface treatments and by using baffles and stops to limit this background noise. In 2007 GSFC researchers discovered that Multiwalled Carbon Nanotubes (MWCNTs) are exceptionally good absorbers, with potential to provide order-of-magnitude improvement over current surface treatments and a resulting factor of 10,000 reduction in stray light when applied to an entire optical train. Development of this technology will provide numerous benefits including: a.) simplification of instrument stray light controls to achieve equivalent performance, b.) increasing observational efficiencies by recovering currently unusable scenes in high contrast regions, and c.) enabling low-noise observations that are beyond current capabilities. Our objective was to develop and apply MWCNTs to instrument components to realize these benefits. We have addressed the technical challenges to advance the technology by tuning the MWCNT geometry using a variety of methods to provide a factor of 10 improvement over current surface treatments used in space flight hardware. Techniques are being developed to apply the optimized geometry to typical instrument components such as spiders, baffles and tubes. Application of the nanostructures to alternate materials (or by contact transfer) is also being investigated. In addition, candidate geometries have been tested and optimized for robustness to survive integration, testing, launch and operations associated with space flight hardware. The benefits of this technology extend to space science where observations of extremely dim objects require suppression of stray light.

  9. Image and Processing Models for Satellite Detection in Images Acquired by Space-based Surveillance-of-Space Sensors

    DTIC Science & Technology

    2010-09-01

    external sources ‘L1’ like zodiacal light (or diffuse nebula ) or stray light ‘L2’ and these components change with the telescope pointing. Bk (T,t...Astronomical scene background (zodiacal light, diffuse nebulae , etc.). L2(P A(tk), t): Image background component caused by stray light. MS

  10. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano R.; Freesland, Douglas C.; Tadikonda, Sivakumara K.; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields or stray fields are a problem for magnetometer systems. While constant fields can be removed with zero offset calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can be a good idea, but this gradiometer solution is even more susceptible to noise than a single magnetometer. Unless the stray fields are larger than the magnetometer noise, simply averaging the two measurements is a more accurate approach. If averaging is used, it may be worthwhile to explicitly estimate and remove stray fields. Models and estimation algorithms are provided for solar array, arcjet and reaction wheel fields.

  11. Optical artefact characterization and correction in volumetric scintillation dosimetry

    PubMed Central

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillation detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts. PMID:24321820

  12. Stray Light Analysis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Based on a Small Business Innovation Research contract from the Jet Propulsion Laboratory, TracePro is state-of-the-art interactive software created by Lambda Research Corporation to detect stray light in optical systems. An image can be ruined by incidental light in an optical system. To maintain image excellence from an optical system, stray light must be detected and eliminated. TracePro accounts for absorption, specular reflection and refraction, scattering and aperture diffraction of light. Output from the software consists of spatial irradiance plots and angular radiance plots. Results can be viewed as contour maps or as ray histories in tabular form. TracePro is adept at modeling solids such as lenses, baffles, light pipes, integrating spheres, non-imaging concentrators, and complete illumination systems. The firm's customer base includes Lockheed Martin, Samsung Electronics and other manufacturing, optical, aerospace, and educational companies worldwide.

  13. Radiometric assessment method for diffraction effects in hyperspectral imagers applied to the earth explorer #8 mission candidate flex

    NASA Astrophysics Data System (ADS)

    Berlich, R.; Harnisch, B.

    2017-11-01

    An accurate stray light analysis represents a crucial part in the early design phase of hyperspectral imaging systems, since scattering effects can severely limit the radiometric accuracy performance. In addition to conventional contributors including ghost images and surface scattering, i.e. caused by a residual surface micro-roughness and particle contamination, diffraction effects can result in significant radiometric errors in the spatial and spectral domain of pushbroom scanners. In this paper, we present a mathematical approach that efficiently evaluates these diffraction effects based on a Fourier analysis. It is shown that considering the conventional diffraction at the systems entrance pupil only, significantly overestimates the stray light contribution. In fact, a correct assessment necessitates taking into account the joint influence of the entrance pupil, the spectrometer slit as well as the dispersion element. We quantitatively investigate the corresponding impact on the Instrument Spectral Response Function (ISRF) of the Earth Explorer #8 Mission Candidate FLEX and analyse the expected radiometric error distribution for a typical earth observation scenario requirement.

  14. Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range

    NASA Astrophysics Data System (ADS)

    Zuber, Ralf; Sperfeld, Peter; Riechelmann, Stefan; Nevas, Saulius; Sildoja, Meelis; Seckmeyer, Gunther

    2018-04-01

    A compact array spectroradiometer that enables precise and robust measurements of solar UV spectral direct irradiance is presented. We show that this instrument can retrieve total ozone column (TOC) accurately. The internal stray light, which is often the limiting factor for measurements in the UV spectral range and increases the uncertainty for TOC analysis, is physically reduced so that no other stray-light reduction methods, such as mathematical corrections, are necessary. The instrument has been extensively characterised at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. During an international total ozone measurement intercomparison at the Izaña Atmospheric Observatory in Tenerife, the high-quality applicability of the instrument was verified with measurements of the direct solar irradiance and subsequent TOC evaluations based on the spectral data measured between 12 and 30 September 2016. The results showed deviations of the TOC of less than 1.5 % from most other instruments in most situations and not exceeding 3 % from established TOC measurement systems such as Dobson or Brewer.

  15. Discovery deep space optical communications (DSOC) transceiver

    NASA Astrophysics Data System (ADS)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  16. Application of Peterson's stray light model to complex optical instruments

    NASA Astrophysics Data System (ADS)

    Fray, S.; Goepel, M.; Kroneberger, M.

    2016-07-01

    Gary L. Peterson (Breault Research Organization) presented a simple analytical model for in- field stray light evaluation of axial optical systems. We exploited this idea for more complex optical instruments of the Meteosat Third Generation (MTG) mission. For the Flexible Combined Imager (FCI) we evaluated the in-field stray light of its three-mirroranastigmat telescope, while for the Infrared Sounder (IRS) we performed an end-to-end analysis including the front telescope, interferometer and back telescope assembly and the cold optics. A comparison to simulations will be presented. The authors acknowledge the support by ESA and Thales Alenia Space through the MTG satellites program.

  17. [Scattered light and glare sensitivity after wavefront-guided photorefractive keratectomy (WFG-PRK) and laser in situ keratomileusis (WFG-LASIK)].

    PubMed

    Vignal, R; Tanzer, D; Brunstetter, T; Schallhorn, S

    2008-05-01

    To compare glare sensitivity measured by the intraocular scattered light between WFG-PRK and WFG-LASIK at 12 months follow-up and to assess its correlation to patients' complaints. Prospective and randomized study on 13 patients treated with WFG-LASIK, 13 patients with WFG-PRK and a control group of 35 patients. The intraocular stray light was measured by the Oculus C-Quant 12 months after surgery and before surgery for the control group. Photopic and mesopic contrast acuity and glare symptoms were reported pre- and postoperatively. Stray light values were normal in 79% of patients after WFG-LASIK and PRK and 86% in the control group, with mean values of 1.05 log, 1.03 log, and 0.99 log, respectively (p>0.05). All the patients with significant glare complaints had impaired stray light values versus 31.5% in the no-complaint group. Photopic and mesopic contrast acuity and glare symptoms were improved 1 year after surgery compared to preoperatively (no significant difference between groups). WFG-LASIK and PRK are safe and equivalent procedures regarding quality of vision. The measurement of stray light can be a discriminative test to assessing patients' glare complaints.

  18. An empirical comparison of primary baffle and vanes for optical astronomical telescope

    NASA Astrophysics Data System (ADS)

    Li, Taoran; Chen, Yingwei

    2017-09-01

    In optical astronomical telescopes, the primary baffle is a tube-like structure centering in the hole of the primary mirror and the vanes usually locate inside the baffle, improving the suppression of stray light. They are the most common methods of stray light control. To characterize the performance of primary baffle and vanes, an empirical comparison based on astronomical observations has been made with Xinglong 50cm telescope. Considering the convenience of switching, an independent vanes structure is designed, which can also improve the process of the primary mirror cooling and the air circulation. The comparison of two cases: (1) primary baffle plus vanes and (2) vanes alone involves in-dome and on-sky observations. Both the single star and the various off-axis angles of the stray light source observations are presented. The photometrical images are recorded by CCD to analyze the magnitude and the photometric error. The stray light uniformity of the image background derives from the reduction image which utilizes the MATLAB software to remove the stars. The in-dome experiments results reveal the effectiveness of primary baffle and the independent vanes structure. Meanwhile, the on-sky photometric data indicate there are little differences between them. The stray light uniformity has no difference when the angle between the star and the moon is greater than 20 degrees.

  19. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano; Freesland, Douglas; Tadikonda, Sivakumar; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields, i.e. stray fields, are a problem for magnetometer systems. While constant fields can be removed by calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can help, but this gradiometer solution is more sensitive to noise than a single magnetometer. As shown here for the R-series Geostationary Operational Environmental Satellites (GOES-R), unless the stray fields are larger than the noise, simply averaging the two magnetometer readings gives a more accurate solution. If averaging is used, it may be worthwhile to estimate and remove stray fields explicitly. Models and estimation algorithms to do so are provided for solar array, arcjet and reaction wheel fields.

  20. ASPIICS/PROBA-3 formation flying solar coronagraph: Stray light analysis and optimization of the occulter

    NASA Astrophysics Data System (ADS)

    Landini, F.; Mazzoli, A.; Venet, M.; Vivès, S.; Romoli, M.; Lamy, P.; Massone, G.

    2017-11-01

    The "Association de Satellites Pour l'Imagerie et l'Interferometrie de la Couronne Solaire", ASPIICS, selected by ESA for the PROBA-3 mission, heralds the next generation of coronagraph for solar research, exploiting formation flying to gain access to the inner corona under eclipse-like conditions for long periods of time. A detailed description of the ASPIICS instrument and of its scientific objectives can be found in [1]. ASPIICS is distributed on the two PROBA 3 spacecrafts (S/C) separated by 150 m. The coronagraph optical assembly is hosted by the "coronagraph S/C" protected from direct solar disk light by the occulting disk on the "occulter S/C". The most critical issue in the design of a solar coronagraph is the reduction of the stray light due to the diffraction and scattering of the solar disk light by the occulter, the aperture and the optics. In the present article, we deal with two of these issues: - The analysis of the stray light inside the telescope. - The optimization of the external occulter edge, in order to eliminate the Poisson spot behind the occulter and to lower the stray light level going through the entrance pupil of the telescope. This work was performed in the framework of the ESA STARTIGER program which took place at the Laboratoire d'Astrophysique de Marseille (LAM) during a 6-month period from September 2009 to March 2010. In general, it is a very complicated task to combine the above two stray light issues together in the simulation and design phase as it requires to consider the propagation inside the telescope of the light diffracted by the external occulter. Actually, the present literature only reports diffraction calculations performed for simple occulting systems (i.e., two disks and serrated disk). A more pragmatic approach, also driven by the tight schedule of the STARTIGER program, is to separate the two contributions, and perform two different stray light analyses. This paper is dedicated to the description of both analyses: in particular, the first part is dedicated to the evaluation of the stray light inside the telescope, assuming a simple disk as occulter, and a preliminary baffle design is presented; the second part describes the investigation on the geometry of the external occulter, with a detailed description of the laboratory setup that has been designed and implemented to compare together several types of occulting systems.

  1. Stray light modeling of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Astrophysics Data System (ADS)

    Rohrbach, Scott O.; Irvin, Ryan G.; Seals, Lenward T.; Skelton, Dennis L.

    2016-09-01

    This paper describes an integrated stray light model of each Science Instrument (SI) in the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) and the Optical Telescope Element Simulator (OSIM), the light source used to characterize the performance of ISIM in cryogenic-vacuum tests at the Goddard Space Flight Center (GSFC). We present three cases where this stray light model was integral to solving questions that arose during the testing campaign - 1) ghosting and coherent diffraction from hardware surfaces in the Near Infrared Imager and Slitless Spectrograph (NIRISS) GR700XD grism mode, 2) ghost spots in the Near Infrared Camera (NIRCam) GRISM modes, and 3) scattering from knife edges of the NIRCam focal plane array masks.

  2. Baffles design of the PROBA-V wide FOV TMA

    NASA Astrophysics Data System (ADS)

    Mazzoli, A.; Holbrouck, P.; Houbrechts, Y.; Maresi, L.; Stockman, Y.; Taccola, M.; Versluys, J.

    2017-11-01

    Proba-V payload is a successor of the Vegetation instrument, a multispectral imager flown on Spot-4 and subsequently on Spot-5, French satellites for Earth Observation and defence. The instrument, with its wide field of view, is capable of covering a swath of 2200 km, which, in combination with a polar low Earth orbit, guarantees a daily revisit. The lifetime of Spot-5 expires in early 2013, and to ensure the continuity of vegetation data, BELSPO, the Belgian Federal Science Policy Office, supported the development of an instrument that could be flown on a Proba type satellite, a small satellite developed by the Belgian QinetiQ Space (previously known as Verhaert Space). The challenge of this development is to produce an instrument responding to the same user requirements as Vegetation, but with an overall mass of about 30 kg, while the Vegetation instrument mass is 130 kg. This development had become feasible thanks to a number of new technologies that have been developed since the nineties, when Vegetation was first conceived, namely Single Point Diamond Turning fabrication of aspherical mirrors and efficient VNIR and SWIR detectors. The Proba-V payload is based on three identical reflective telescopes using highly aspherical mirrors in a TMA (Three Mirrors Anastigmat) configuration. Each telescope covers a field of view of 34° to reach the required swath. One of the challenges in the development of the PROBA-V instrument is the efficient reduction of stray light. Due to the mass and volume constraints it was not possible to implement a design with an intermediate focus to reduce the stray light. The analysis and minimization of the in-field stray light is an important element of the design because of the large FOV and the surface roughness currently achievable with the Single Point Diamond Turning. This document presents the preliminary baffle layout designed for the Three Mirrors Anastigmatic (TMA) telescope developed for the Proba-V mission. This baffling is used to avoid 1st order stray light i.e. direct stray light or through reflections on the mirrors. The stray light from the SWIR folding mirror is also studied. After these preliminary analyses the mechanical structure of the TMA is designed then verified in term of vignetting and stray light.

  3. Femtosecond laser correction of presbyopia (INTRACOR) in emmetropes using a modified pattern.

    PubMed

    Thomas, Bettina C; Fitting, Anna; Auffarth, Gerd U; Holzer, Mike P

    2012-12-01

    To evaluate functional results and corneal changes after femtosecond laser correction of presbyopia (INTRACOR, Technolas Perfect Vision GmbH) in emmetropes using a modified treatment pattern over a 12-month period. Twenty eyes from 20 emmetropic patients were treated with a modified intrastromal INTRACOR pattern consisting of 5 central rings and 8 radial cuts in a prospective, nonrandomized, uncontrolled, open, single-center, clinical study. Refraction, visual acuity, endothelial cell density, corneal pachymetry, total corneal power, and stray light were evaluated preoperatively and 1 (except endothelial cell density and stray light), 3, 6, and 12 months postoperatively. Patients filled out a subjective questionnaire at 12 months postoperatively. Comparison of preoperative versus 12-month postoperative median values revealed a significant improvement in uncorrected near visual acuity (UNVA) from 0.60 (20/80) to 0.10 logMAR (20/25) (P<.0001) and a significant decrease in corrected distance visual acuity (CDVA) from -0.10 (20/16) to 0.00 logMAR (20/20), which equals a median loss of one line (P=.0005). Fifteen percent of patients lost two lines of CDVA in the treated eye. Subjective spherical equivalent refraction remained unchanged at 0.00 diopters (D) (P=.194). After INTRACOR treatment, significant corneal steepening of 1.40 D and midperipheral flattening of 0.50 D occurred (both P<.0001). Corneal pachymetry at the thinnest point and endothelial cell density did not change significantly (P=.829 and P=.058, respectively). After 12 months, the modified INTRACOR pattern improved UNVA in emmetropic patients without inducing a myopic shift or significant changes in endothelial cell density or pachymetry. Copyright 2012, SLACK Incorporated.

  4. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  5. Bidirectional reflectance distribution function /BRDF/ measurements of stray light suppression coatings for the Space Telescope /ST/

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1979-01-01

    The paper considers the bidirectional reflectance distribution function (BRDF) of black coatings used on stray light suppression systems for the Space Telescope (ST). The ST stray light suppression requirement is to reduce earth, moon, and sun light in the focal plane to a level equivalent to one 23 Mv star per square arcsecond, an attenuation of 14 orders of magnitude. It is impractical to verify the performance of a proposed baffle system design by full scale tests because of the large size of the ST, so that a computer analysis is used to select the design. Accurate computer analysis requires a knowledge of the diffuse scatter at all angles from the surface of the coatings, for all angles of incident light. During the early phases of the ST program a BRDF scanner was built at the Marshall Space Flight Center to study the scatter from black materials; the measurement system is described and the results of measurements on samples proposed for use on the ST are presented.

  6. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  7. An assessment of the stray-light in 25 years Dobson total ozone data at Athens, Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.

    2015-02-01

    In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray-light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for airmass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray-light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the Athens Dobson instrument appears to have an insignificant stray-light error. The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south eastern Europe, may be assumed as a ground-truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.

  8. Comparison of Eight Years Total Column Ozone Retrievals form Brewer and Dobson Spectrophotometers in South Pole

    NASA Astrophysics Data System (ADS)

    Feng, K. H.; Moeini, O.; McElroy, C. T.; Evans, R. D.; Petropavlovskikh, I. V.

    2015-12-01

    Total column ozone measured by a Brewer Mark III spectrophotometer (#85) from 2008 to 2015 is compared to the data obtained from three different Dobson spectrophotometers (#80, #82 and #42) that have been operating in parallel with the Brewer at the Amundsen-Scott Station near the South Pole. Measurements are made using either direct sunlight or light from the moon (up to 2 weeks per month). The result of the comparison was used to assess the performance of the two instrument types and determine the stability of the measurement systems. Both instruments suffer from non-linearity due to the presence of instrumental stray light caused by the out-off-band radiations scattered from the optics within the instrument. Stray light results in an underestimated ozone column at large ozone path lengths. Since measurements made at the location of the station (Latitude 89.99o, Longitude -24.80o) have solar zenith angles of 66.5 degrees or greater, the issue of stray light is a particular concern.

  9. Scaled-model guidelines for formation-flying solar coronagraph missions.

    PubMed

    Landini, Federico; Romoli, Marco; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio; Galano, Damien; Kirschner, Volker

    2016-02-15

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a scaled model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

  10. Large-Format AlGaN PIN Photodiode Arrays for UV Images

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2010-01-01

    A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.

  11. Ghost analysis visualization techniques for complex systems: examples from the NIF Final Optics Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, G K; Hendrix, J L; Rowe, J

    1998-06-26

    The stray light or "ghost" analysis of the National Ignition Facility's (NIP) Final Optics Assembly (FOA) has proved to be one of the most complex ghost analyses ever attempted. The NIF FOA consists of a bundle of four beam lines that: 1) provides the vacuum seal to the target chamber, 2) converts 1ω to 3ω light, 3) focuses the light on the target, 4) separates a fraction of the 3ω beam for energy diagnostics, 5) separates the three wavelengths to diffract unwanted 1ω & 2ω light away from the target, 6) provides spatial beam smoothing, and 7) provides a debrismore » barrier between the target chamber and the switchyard mirrors. The three wavelengths of light and seven optical elements with three diffractive optic surfaces generate three million ghosts through 4 th order. Approximately 24,000 of these ghosts have peak fluence exceeding 1 J/cm 2. The shear number of ghost paths requires a visualization method that allows overlapping ghosts on optics and mechanical components to be summed and then mapped to the optical and mechanical component surfaces in 3D space. This paper addresses the following aspects of the NIF Final Optics Ghost analysis: 1) materials issues for stray light mitigation, 2) limitations of current software tools (especially in modeling diffractive optics), 3) computer resource limitations affecting automated coherent raytracing, 4) folding the stray light analysis into the opto-mechanical design process, 5) analysis and visualization tools from simple hand calculations to specialized stray light analysis computer codes, and 6) attempts at visualizing these ghosts using a CAD model and another using a high end data visualization software approach.« less

  12. Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Astrophysics Data System (ADS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-09-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  13. Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Technical Reports Server (NTRS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-01-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  14. The ASTRO-H SXT Performance to the Large Off-Set Angles

    NASA Technical Reports Server (NTRS)

    Sato, Toshiki; Iizuka, Ryo; Mori, Hideyuki; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; hide

    2016-01-01

    The X-ray astronomy satellite ASTRO-H, which is the 6th Japanese X-ray astronomy satellite and is renamed Hitomi after launch, is designed to observe celestial X-ray objects in a wide energy band from a few hundred eV to 600 keV. The Soft X-ray Telescopes (SXTs) onboard ASTRO-H play a role of collecting and imaging X-rays up to approximately 12 keV. Although the field of view of the SXT is approximately 15' (FWHM), due to the thin-foil-nested Wolter-I type optics adopted in the SXTs, X-rays out of the field of view can reach the focal plane without experiencing a normal double reflection. This component is referred to as 'stray light'. Owing to investigation of the stray light so far, 'secondary reflection' is now identified as the main component of the stray light, which is composed of X-rays reflected only by secondary reflectors. In order to cut the secondary reflections, a 'pre-collimator' is equipped on top of the SXTs. However, we cannot cut all the stray lights with the pre-collimator in some off-axis angle domain. In this study, we measure the brightness of the stray light of the SXTs at some representative off-axis angles by using the ISAS X-ray beam line. ASTRO-H is equipped with two modules of the SXT; one is for the Soft X-ray Spectrometer (SXS), an X-ray calorimeter, and the other is for the Soft X-ray Imager (SXI), an X-ray CCD camera. These SXT modules are called SXT-S and SXT-I, respectively. Of the two detector systems, the SXI has a large field of view, a square with 38' on a side. To cope with this, we have made a mosaic mapping of the stray light at a representative off-axis angle of 30' in the X-ray beam line at the Institute of Space and Astronautical Science. The effective area of the brightest secondary reflection is found of order approximately 0.1% of the on-axis effective area at the energy of 1.49 keV. The other components are not so bright (less than 5 x 10(exp -4) times smaller than the on-axis effective area). On the other hand, we have found that the effective area of the stray light in the SXS field of view (approximately 3' x 3') at large off-axis angles (greater than 15') are approximately 1(exp -4) times smaller than the on-axis effective area (approximately 590 sq cm at 1.49 keV).

  15. The influence of the earth radiation on space target detection system

    NASA Astrophysics Data System (ADS)

    Su, Xiaofeng; Chen, FanSheng; Cuikun, .; Liuyan, .

    2017-05-01

    In the view of space remote sensing such as satellite detection space debris detection etc. visible band is usually used in order to have the all-weather detection capability, long wavelength infrared (LWIR) detection is also an important supplement. However, in the tow wave band, the earth can be a very strong interference source, especially in the dim target detecting. When the target is close to the earth, especially the LEO target, the background radiation of the earth will also enter into the baffle, and became the stray light through reflection, the stray light can reduce the signal to clutter ratio (SCR) of the target and make it difficult to be detected. In the visible band, the solar albedo by the earth is the main clutter source while in the LWIR band the radiation of the earth is the main clutter source. So, in this paper, we establish the energy transformation from the earth background radiation to the detection system to assess the effects of the stray light. Firstly, we discretize the surface of the earth to different unit, and using MODTRAN to calculate the radiation of the discrete point in different light and climate conditions, then, we integral all the radiation which can reach the baffle in the same observation angles to get the energy distribution, finally, according the target energy and the non-uniformity of the detector, we can calculate the design requirement of the system stray light suppression, which provides the design basis for the optical system.

  16. System for the measurement of ultra-low stray light levels. [determining the adequacy of large space telescope systems

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.; Griner, D. B.; Hurd, W. A.; Shelton, G. B.; Hunt, G. H.; Fannin, B. B.; Brealt, R. P.; Hawkins, C. A. (Inventor)

    1978-01-01

    An apparatus is described for measuring the effectiveness of stray light suppression light shields and baffle arrangements used in optical space experiments and large space telescopes. The light shield and baffle arrangement and a telescope model are contained in a vacuum chamber. A source of short, high-powered light energy illuminates portions of the light shield and baffle arrangement and reflects a portion of same to a photomultiplier tube by virtue of multipath scattering. The resulting signal is transferred to time-channel electronics timed by the firing of the high energy light source allowing time discrimination of the signal thereby enabling the light scattered and suppressed by the model to be distinguished from the walls and holders around the apparatus.

  17. Application of new techniques in the calibration of the TROPOMI-SWIR instrument (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tol, Paul; van Hees, Richard; van Kempen, Tim; Krijger, Matthijs; Cadot, Sidney; Aben, Ilse; Ludewig, Antje; Dingjan, Jos; Persijn, Stefan; Hoogeveen, Ruud

    2016-10-01

    The Tropospheric Monitoring Instrument (TROPOMI) on-board the Sentinel-5 Precursor satellite is an Earth-observing spectrometer with bands in the ultraviolet, visible, near infrared and short-wave infrared (SWIR). It provides daily global coverage of atmospheric trace gases relevant for tropospheric air quality and climate research. Three new techniques will be presented that are unique for the TROPOMI-SWIR spectrometer. The retrieval of methane and CO columns from the data of the SWIR band requires for each detector pixel an accurate instrument spectral response function (ISRF), i.e. the normalized signal as a function of wavelength. A new determination method for Earth-observing instruments has been used in the on-ground calibration, based on measurements with a SWIR optical parametric oscillator (OPO) that was scanned over the whole TROPOMI-SWIR spectral range. The calibration algorithm derives the ISRF without needing the absolute wavelength during the measurement. The same OPO has also been used to determine the two-dimensional stray-light distribution for each SWIR pixel with a dynamic range of 7 orders. This was achieved by combining measurements at several exposure times and taking saturation into account. The correction algorithm and data are designed to remove the mean stray-light distribution and a reflection that moves relative to the direct image, within the strict constraints of the available time for the L01b processing. A third new technique is an alternative calibration of the SWIR absolute radiance and irradiance using a black body at the temperature of melting silver. Unlike a standard FEL lamp, this source does not have to be calibrated itself, because the temperature is very stable and well known. Measurement methods, data analyses, correction algorithms and limitations of the new techniques will be presented.

  18. Microtextured metals for stray-light suppression in the Clementine startracker

    NASA Technical Reports Server (NTRS)

    Johnson, E. A.

    1993-01-01

    Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.

  19. Characterizing the Noble Gas Isotopic Composition of the Barnett Shale and Strawn Group and Constraining the Source of Stray Gas in the Trinity Aquifer, North-Central Texas.

    PubMed

    Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Pinti, Daniele L; Mickler, Patrick; Darvari, Roxana; Larson, Toti

    2017-06-06

    This study presents the complete set of stable noble gases for Barnett Shale and Strawn Group production gas together with stray flowing gas in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like stray gas, Strawn gas is significantly more enriched in crustal 4 He*, 21 Ne*, and 40 Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22 Ne/ 36 Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  20. Barnett Shale or Strawn Group: Identifying the Source of Stray Gas through Noble Gases in the Trinity Aquifer, North-Central Texas

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Nicot, J. P.; Hall, C. M.; Pinti, D. L.; Mickler, P. J.; Darvari, R.; Larson, T. E.

    2017-12-01

    The complete set of stable noble gases (He, Ne, Ar, Kr, Xe) is presented for Barnett Shale and Strawn Group production gas together with that of stray flowing gas present in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like Trinity Aquifer stray gas, Strawn gas is significantly more enriched in crustal 4He*, 21Ne*, and 40Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22Ne/36Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  1. Carbon Nanotubes on Titanium Substrates for Stray Light Suppression

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2011-01-01

    A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nano tubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nano - tube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation. In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.

  2. Interaction between Stray Electrostatic Fields and a Charged Free-Falling Test Mass

    NASA Astrophysics Data System (ADS)

    Antonucci, F.; Cavalleri, A.; Dolesi, R.; Hueller, M.; Nicolodi, D.; Tu, H. B.; Vitale, S.; Weber, W. J.

    2012-05-01

    We present an experimental analysis of force noise caused by stray electrostatic fields acting on a charged test mass inside a conducting enclosure, a key problem for precise gravitational experiments. Measurement of the average field that couples to the test mass charge, and its fluctuations, is performed with two independent torsion pendulum techniques, including direct measurement of the forces caused by a change in electrostatic charge. We analyze the problem with an improved electrostatic model that, coupled with the experimental data, also indicates how to correctly measure and null the stray field that interacts with the test mass charge. Our measurements allow a conservative upper limit on acceleration noise, of 2(fm/s2)/Hz1/2 for frequencies above 0.1 mHz, for the interaction between stray fields and charge in the LISA gravitational wave mission.

  3. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Shott, John R.; Raqueno, Nina G.; Markham, Brian L.; Radocinski, Robert G.

    2014-01-01

    Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq m·sr·micrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq m·sr·micrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed the statistical assessment but indicate that the correction (particularly in band 11) is probably only valid for a subset of data. While the stray light effect is small enough in Band 10 to make the data useful across a wide array of applications, the effect in Band 11 is larger and the vicarious results suggest that Band 11 data should not be used where absolute calibration is required.

  4. Landsat-8 TIRS thermal radiometric calibration status

    USGS Publications Warehouse

    Barsi, Julia A.; Markham, Brian L.; Montanaro, Matthew; Gerace, Aaron; Hook, Simon; Schott, John R.; Raqueno, Nina G.; Morfitt, Ron

    2017-01-01

    The Thermal Infrared Sensor (TIRS) instrument is the thermal-band imager on the Landsat-8 platform. The initial onorbit calibration estimates of the two TIRS spectral bands indicated large average radiometric calibration errors, -0.29 and -0.51 W/m2 sr μm or -2.1K and -4.4K at 300K in Bands 10 and 11, respectively, as well as high variability in the errors, 0.87K and 1.67K (1-σ), respectively. The average error was corrected in operational processing in January 2014, though, this adjustment did not improve the variability. The source of the variability was determined to be stray light from far outside the field of view of the telescope. An algorithm for modeling the stray light effect was developed and implemented in the Landsat-8 processing system in February 2017. The new process has improved the overall calibration of the two TIRS bands, reducing the residual variability in the calibration from 0.87K to 0.51K at 300K for Band 10 and from 1.67K to 0.84K at 300K for Band 11. There are residual average lifetime bias errors in each band: 0.04 W/m2 sr μm (0.30K) and -0.04 W/m2 sr μm (-0.29K), for Bands 10 and 11, respectively.

  5. Photometric Characterization of the Dark Energy Camera

    DOE PAGES

    Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.; ...

    2018-04-02

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >10 7 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20''. On cloudless nights, any departures ofmore » the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6'' and 8'' diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. Here, we find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less

  6. Astrometric Calibration and Performance of the Dark Energy Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, G. M.; Armstrong, R.; Plazas, A. A.

    2017-05-30

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520~Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry ofmore » $>10^7$ stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the RMS variation in aperture magnitudes of bright stars on cloudless nights down to 2--3 mmag, with <1 mmag of correlated photometric errors for stars separated by $$\\ge20$$". On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding >1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6" and 8" diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2-degree field drifts over months by up to $$\\pm7$$ mmag, in a nearly-wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less

  7. Photometric Characterization of the Dark Energy Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >10 7 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20''. On cloudless nights, any departures ofmore » the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6'' and 8'' diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. Here, we find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less

  8. Photometric Characterization of the Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.; Burke, D. L.; Diehl, H. T.; Gruendl, R. A.; Johnson, M. D.; Li, T. S.; Rykoff, E. S.; Walker, A. R.; Wester, W.; Yanny, B.

    2018-05-01

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >107 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20″. On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6″ and 8″ diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.

  9. Interaction between stray electrostatic fields and a charged free-falling test mass.

    PubMed

    Antonucci, F; Cavalleri, A; Dolesi, R; Hueller, M; Nicolodi, D; Tu, H B; Vitale, S; Weber, W J

    2012-05-04

    We present an experimental analysis of force noise caused by stray electrostatic fields acting on a charged test mass inside a conducting enclosure, a key problem for precise gravitational experiments. Measurement of the average field that couples to the test mass charge, and its fluctuations, is performed with two independent torsion pendulum techniques, including direct measurement of the forces caused by a change in electrostatic charge. We analyze the problem with an improved electrostatic model that, coupled with the experimental data, also indicates how to correctly measure and null the stray field that interacts with the test mass charge. Our measurements allow a conservative upper limit on acceleration noise, of 2  (fm/s2)/Hz(1/2) for frequencies above 0.1 mHz, for the interaction between stray fields and charge in the LISA gravitational wave mission.

  10. A superior architecture of brightness enhancement for display backlighting

    NASA Astrophysics Data System (ADS)

    Dross, Oliver; Parkyn, William A.; Chaves, Julio; Falicoff, Waqidi; Miñano, Juan Carlos; Benitez, Pablo; Alvarez, Roberto

    2006-08-01

    Brightness enhancement of backlighting for displays is typically achieved via crossed micro prismatic films that are introduced between a backlight unit and a transmissive (LCD) display. Prismatic films let pass light only into a restricted angular range, while, in conjunction with other reflective elements below the backlight, all other light is recycled within the backlight unit, thereby increasing the backlight luminance. This design offers no free parameters to influence the resulting light distribution and suffers from insufficient stray light control. A novel strategy of light recycling is introduced, using a microlens array in conjunction with a hole array in a reflective surface, that can provide higher luminance, superior stray light control, and can be designed to meet almost any desired emission pattern. Similar strategies can be applied to mix light from different colored LEDs being mounted upside down to shine into a backlight unit.

  11. Stray-light analyses of the multielement telescope for imaging and spectroscopy coronagraph on Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sandri, Paolo; Fineschi, Silvano; Romoli, Marco; Taccola, Matteo; Landini, Federico; Da Deppo, Vania; Naletto, Giampiero; Morea, Danilo; Naughton, Denis; Antonucci, Ester

    2018-01-01

    The modeling of the scattering phenomena for the multielement telescope for imaging and spectroscopy (METIS) coronagraph on board the European Space Agency Solar Orbiter is reported. METIS is an inverted occultation coronagraph including two optical paths: the broadband imaging of the full corona in linearly polarized visible-light (580 to 640 nm) and the narrow-band imaging of the full corona in the ultraviolet Lyman-α (121.6 nm). METIS will have the unique opportunity of observing the solar outer atmosphere as close to the Sun as 0.28 AU and from up to 35 deg out-of-ecliptic. The stray-light simulations performed on the UV and VL channels of the METIS analyzing the contributors of surface microroughness, particulate contamination, cosmetic defects, and diffraction are reported. The results obtained with the nonsequential modality of Zemax OpticStudio are compared with two different approaches: the Monte Carlo ray trace with Advanced Systems Analysis Program (ASAP®) and a semianalytical model. The results obtained with the three independently developed approaches are in considerable agreement and show compliance to the requirement of stray-light level for both the UV and VL channels.

  12. Suppression of sun interference in the star sensor baffling stray light by total internal reflection

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Shimoji, Haruhiko; Yoshikawa, Shoji; Miyatake, Katsumasa; Hama, Kazumori; Nakamura, Shuji

    2005-09-01

    We have developed a star sensor as an experimental device onboard the SERVIS-1 satellite launched in October 2003. The in-orbit data have verified its fundamental performance. One of the advantages of our star sensor is that the baffle has a small length of 120 mm instead of 182 mm in the conventional two-stage baffle design. The key concepts for light shielding are total internal reflection phenomena inside a nearly half sphere (NHS) lens and scattering light control by gloss black paint. However, undesirable background noise by the sun outside of the field of view (FOV) was observed in the corner of the FOV in the orbital experiment. Ray trace simulations revealed that slight scattering light on the specular baffle wall entered the NHS lens and reached the corner of the image sensor through the multi-reflection path inside the lens. It was found that the stray light path can be shielded effectively if the diameter of the aperture under the NHS lens was reduced. We redesigned the baffle and evaluated the light shielding ability with our sun interference test facility on the ground, and confirmed that the stray light was reduced below the acceptable level. As a result, the light shielding technique which we have proposed was proved to be effective for a small-size baffle. The redesigned star sensor is planned to be installed as a main attitude sensor for the SERVIS-2 satellite scheduled to be launched in February 2008.

  13. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    PubMed

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  14. Radiometric and spectral stray light correction for the portable remote imaging spectrometer (PRISM) coastal ocean sensor

    NASA Astrophysics Data System (ADS)

    Haag, Justin M.; Van Gorp, Byron E.; Mouroulis, Pantazis; Thompson, David R.

    2017-09-01

    The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.

  15. Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica; Christe, Steven; Shih, Albert; Tennant, Allyn; Swartz, Doug; Kilaru, Kiranmayee; Elsner, Ron; Kolodziejczak, Jeff; Ramsey, Brian

    2014-01-01

    On September 21-22, 2013, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope, flew as a balloon payload from Ft. Sumner, N.M. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 hour flight. In this paper we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources, applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray-Light (SLF) Facility in Huntsville, AL, and using ray traces.

  16. Adaptive quantum computation in changing environments using projective simulation

    NASA Astrophysics Data System (ADS)

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-08-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks.

  17. Adaptive quantum computation in changing environments using projective simulation

    PubMed Central

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-01-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks. PMID:26260263

  18. Baseline design and requirements for the LSST rotating enclosure (dome)

    NASA Astrophysics Data System (ADS)

    Neill, D. R.; DeVries, J.; Hileman, E.; Sebag, J.; Gressler, W.; Wiecha, O.; Andrew, J.; Schoening, W.

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile. As a result of the wide field of view, its optical system is unusually susceptible to stray light; consequently besides protecting the telescope from the environment the rotating enclosure (Dome) also provides indispensible light baffling. All dome vents are covered with light baffles which simultaneously provide both essential dome flushing and stray light attenuation. The wind screen also (and primarily) functions as a light screen providing only a minimum clear aperture. Since the dome must operate continuously, and the drives produce significant heat, they are located on the fixed lower enclosure to facilitate glycol water cooling. To accommodate day time thermal control, a duct system channels cooling air provided by the facility when the dome is in its parked position.

  19. Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Evans, D. C.

    1983-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.

  20. Optical Design of the Camera for Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-01-01

    The optical design of the wide field of view refractive camera, 34 degrees diagonal field, for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75 C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, took advantage of Forbes aspheres to develop a hybrid design form. This maximized the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter was replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements were met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  1. The new design of final optics assembly on SG-III prototype facility

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhao, Runchang; Wang, Wei; Jia, Huaiting; Chen, Liangmin; Su, Jingqin

    2014-09-01

    To improve the performance of SG-III prototype facility (TIL-Technical Integration Line), final optics assembly (FOA) is re-designed. It contains that stray light and focusing ghosts are optimized, operational performance and environments are improved and the total thickness of optics is reduced. With the re-designed FOA, Some performance advantages are achieved. First, the optics damages are mitigated obviously, especially crystals and Focus lens; Second, stray light and focusing ghosts are controlled better that organic contamination sources inside FOA are eliminated; Third, maintenance and operation are more convenient for the atoms environment; Fourth, the focusable power on target is increased for lower B-integral.

  2. Optical design and stray light analysis for the JANUS camera of the JUICE space mission

    NASA Astrophysics Data System (ADS)

    Greggio, D.; Magrin, D.; Munari, M.; Zusi, M.; Ragazzoni, R.; Cremonese, G.; Debei, S.; Friso, E.; Della Corte, V.; Palumbo, P.; Hoffmann, H.; Jaumann, R.; Michaelis, H.; Schmitz, N.; Schipani, P.; Lara, L. M.

    2015-09-01

    The JUICE (JUpiter ICy moons Explorer) satellite of the European Space Agency (ESA) is dedicated to the detailed study of Jupiter and its moons. Among the whole instrument suite, JANUS (Jovis, Amorum ac Natorum Undique Scrutator) is the camera system of JUICE designed for imaging at visible wavelengths. It will conduct an in-depth study of Ganymede, Callisto and Europa, and explore most of the Jovian system and Jupiter itself, performing, in the case of Ganymede, a global mapping of the satellite with a resolution of 400 m/px. The optical design chosen to meet the scientific goals of JANUS is a three mirror anastigmatic system in an off-axis configuration. To ensure that the achieved contrast is high enough to observe the features on the surface of the satellites, we also performed a preliminary stray light analysis of the telescope. We provide here a short description of the optical design and we present the procedure adopted to evaluate the stray-light expected during the mapping phase of the surface of Ganymede. We also use the results obtained from the first run of simulations to optimize the baffle design.

  3. Improvements to the MST Thomson Scattering Diagnostic

    NASA Astrophysics Data System (ADS)

    Adams, D. T.; Borchardt, M. T.; den Hartog, D. J.; Holly, D. J.; Kile, T.; Kubala, S. Z.; Jacobson, C. M.; Thomas, M. A.; Wallace, J. P.; Young, W. C.; MST Thomson Scattering Team

    2017-10-01

    Multiple upgrades to the MST Thomson Scattering diagnostic have been implemented to expand capabilities of the system. In the past, stray laser light prevented electron density measurements everywhere and temperature measurements for -z/a >0.75. To mitigate stray light, a new laser beamline is being commissioned that includes a longer entrance flight tube, close-fitting apertures, and baffles. A polarizer has been added to the collection optics to further reduce stray light. An absolute density calibration using Rayleigh scattering in argon will be performed. An insertable integrating sphere will provide a full-system spectral calibration as well as maps optical fibers to machine coordinates. Reduced transmission of the collection optics due to coatings from plasma-surface interactions is regularly monitored to inform timely replacements of the first lens. Long-wavelength filters have been installed to better characterize non-Maxwellian electron distribution features. Previous work has identified residual photons not described by a Maxwellian distribution during m =0 magnetic bursts. Further effort to characterize the distribution function will be described. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences program under Award No. DE-FC02-05ER54814.

  4. Effects of stray lights on Faraday rotation measurement for polarimeter-interferometer system on EAST.

    PubMed

    Zou, Z Y; Liu, H Q; Ding, W X; Chen, J; Brower, D L; Lian, H; Wang, S X; Li, W M; Yao, Y; Zeng, L; Jie, Y X

    2018-01-01

    A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.

  5. Space optics; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.

    1979-01-01

    The seminar focused on infrared systems, the space telescope, new design for space astronomy, future earth resources systems, and planetary systems. Papers were presented on infrared astronomy satellite, infrared telescope on Spacelab 2, design alternatives for the Shuttle Infrared Telescope Facility, Spacelab 2 infrared telescope cryogenic system, geometrical theory of diffraction and telescope stray-light analysis, Space Telescope scientific instruments, faint-object spectrograph for the Space Telescope, light scattering from multilayer optics, bidirectional reflectance distribution function measurements of stray light suppression coatings for the Space Telescope, optical fabrication of a 60-in. mirror, interferogram analysis for space optics, nuclear-pumped lasers for space application, geophysical fluid flow experiment, coherent rays for optical astronomy in space, optical system with fiber-optical elements, and Pioneer-Venus solar flux radiometer.

  6. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum systemmore » through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.« less

  7. Flight Calibration of the LROC Narrow Angle Camera

    NASA Astrophysics Data System (ADS)

    Humm, D. C.; Tschimmel, M.; Brylow, S. M.; Mahanti, P.; Tran, T. N.; Braden, S. E.; Wiseman, S.; Danton, J.; Eliason, E. M.; Robinson, M. S.

    2016-04-01

    Characterization and calibration are vital for instrument commanding and image interpretation in remote sensing. The Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) takes 500 Mpixel greyscale images of lunar scenes at 0.5 meters/pixel. It uses two nominally identical line scan cameras for a larger crosstrack field of view. Stray light, spatial crosstalk, and nonlinearity were characterized using flight images of the Earth and the lunar limb. These are important for imaging shadowed craters, studying ˜1 meter size objects, and photometry respectively. Background, nonlinearity, and flatfield corrections have been implemented in the calibration pipeline. An eight-column pattern in the background is corrected. The detector is linear for DN = 600--2000 but a signal-dependent additive correction is required and applied for DN<600. A predictive model of detector temperature and dark level was developed to command dark level offset. This avoids images with a cutoff at DN=0 and minimizes quantization error in companding. Absolute radiometric calibration is derived from comparison of NAC images with ground-based images taken with the Robotic Lunar Observatory (ROLO) at much lower spatial resolution but with the same photometric angles.

  8. Proposal for a multilayer read-only-memory optical disk structure.

    PubMed

    Ichimura, Isao; Saito, Kimihiro; Yamasaki, Takeshi; Osato, Kiyoshi

    2006-03-10

    Coherent interlayer cross talk and stray-light intensity of multilayer read-only-memory (ROM) optical disks are investigated. From results of scalar diffraction analyses, we conclude that layer separations above 10 microm are preferred in a system using a 0.85 numerical aperture objective lens in terms of signal quality and stability in focusing control. Disk structures are optimized to prevent signal deterioration resulting from multiple reflections, and appropriate detectors are determined to maintain acceptable stray-light intensity. In the experiment, quadrilayer and octalayer high-density ROM disks are prepared by stacking UV-curable films onto polycarbonate substrates. Data-to-clock jitters of < or = 7% demonstrate the feasibility of multilayer disk storage up to 200 Gbytes.

  9. Burbank performs maintenance on the light cover for the MSG

    NASA Image and Video Library

    2012-01-16

    ISS030-E-155913 (16 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs in-flight maintenance on the front stray light cover for the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  10. Burbank performs maintenance on the light cover for the MSG

    NASA Image and Video Library

    2012-01-16

    ISS030-E-155912 (16 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs in-flight maintenance on the front stray light cover for the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  11. NASA's Black Marble Nighttime Lights Product Suite

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Sun, Qingsong; Seto, Karen C.; Oda, Tomohiro; Wolfe, Robert E.; Sarkar, Sudipta; Stevens, Joshua; Ramos Gonzalez, Olga M.; Detres, Yasmin; Esch, Thomas; hide

    2018-01-01

    NASA's Black Marble nighttime lights product suite (VNP46) is available at 500 meters resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF (Bidirectional Reflectance Distribution Function) effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.

  12. Hyperspectral radiometer for automated measurement of global and diffuse sky irradiance

    NASA Astrophysics Data System (ADS)

    Kuusk, Joel; Kuusk, Andres

    2018-01-01

    An automated hyperspectral radiometer for the measurement of global and diffuse sky irradiance, SkySpec, has been designed for providing the SMEAR-Estonia research station with spectrally-resolved solar radiation data. The spectroradiometer has been carefully studied in the optical radiometry laboratory of Tartu Observatory, Estonia. Recorded signals are corrected for spectral stray light as well as for changes in dark signal and spectroradiometer spectral responsivity due to temperature effects. Comparisons with measurements of shortwave radiation fluxes made at the Baseline Surface Radiation Network (BSRN) station at Tõravere, Estonia, and with fluxes simulated using the atmospheric radiative transfer model 6S and Aerosol Robotic Network (AERONET) data showed that the spectroradiometer is a reliable instrument that provides accurate estimates of integrated fluxes and of their spectral distribution. The recorded spectra can be used to estimate the amount of atmospheric constituents such as aerosol and column water vapor, which are needed for the atmospheric correction of spectral satellite images.

  13. [Distribution of corneal densitometry and its correlation with ocular stray light in healthy eyes].

    PubMed

    Wu, Zhiqing; Wang, Yan; Zhang, Lin; Wu, Di; Wei, Shengsheng; Su, Xiaolian

    2014-01-01

    To evaluate and investigate the distribution of corneal density and its Correlation with stray-light value in adult and healthy eyes. A prospective study. Human corneal specimens ranging in age between 20 and 49 years, 116 patients (232 eyes) in total, divided into three groups: 20-29, 30-39, 40-49. Pentacam was used to evaluate total corneal average density and corneal thickness at different diameter around the corneal apex, for corneal density were ≤ 2 mm, >2 mm and ≤ 6 mm, >6 mm and ≤ 10 mm, for corneal thickness were 2 mm, 6 mm and 10 mm, C-quant was used for the stray-light value. Software SPSS 17.0 was used for statistical analysis. Independent samples t testing method was applied to compare the corneal densitometry in different gender and between left eyes and right ones, One-way ANOVA was applied to analyze the differences of corneal density in different age groups and diameters. Pearson correlation analysis was applied to assess the correlation in corneal densitometry values of different diameters, between corneal density of different diameters and age, corneal density of different diameters and corneal thickness of different diameters, corneal density of different diameters and stray-light values. Corneal density for ≤ 2 mm, >2 mm and ≤ 6 mm, >6 mm and ≤ 10 mm diameter are 10.1 ± 1.5(8.2-16.7), 9.3 ± 1.3(7.9-14.2), 9.6 ± 1.7(7.3-16.2). Corneal density of >6 mm and ≤ 10 mm diameter in different age groups were 8.9 ± 1.1, 9.3 ± 1.2, 10.7 ± 2.1, there was a statistical difference in these values (F = 28.939, P = 0.000), and there was a positive correlation between corneal density of >6 mm and ≤ 10 mm diameter and age (r = 0.417, P = 0.000), There were no statistical differences in corneal density values of ≤ 2 mm and >2 mm and ≤ 6 mm in different age groups (F = 1.575, 1.436; P > 0.05), and they had no correlation with age (r = 0.002, 0.048; P > 0.05). There was no statistical difference in corneal density in different gender (t = 1.744, 1.647, -1.181; P > 0.05). Corneal density values of left eyes and right ones had positive relationships at the same diameter (r = 0.977, P = 0.000; r = 0.992, P = 0.000; r = 0.933, P = 0.000), and there were no statistical differences (t = 0.124, 0.199, -0.020;P > 0.05). Between corneal density values of different diameter, there are also some positive relationships, >6 mm and ≤ 10 mm and ≤ 2 mm (r = 0.710, P = 0.000), >6 mm and ≤ 10 mm and >2 mm and ≤ 6 mm (r = 0.748, P = 0.000), ≤ 2 mm and >2 mm and ≤ 6 mm (r = 0.973, P = 0.000), relationship between ≤ 2 mm and >2 mm and ≤ 6 mm, >2 mm and ≤ 6 mm and >6 mm and ≤ 10 mm was obvious, and there was statistical difference in them (F = 17.057, P = 0.000) . The ocular stray light value was 0.95 ± 0.19(0.48-1.38), Corneal density values of ≤ 2 mm, >2 mm and ≤ 6 mm and >6 mm and ≤ 10 mm diameter had positive relationships with the stray light value (r = 0.134,0.146,0.159, P = 0.042,0.026,0.016). Corneal density can be influenced by age, the influence from age infected the corneal density of peripheral more. There was no correlation between corneal density and corneal thickness. There were some influences of corneal density of healthy eyes to the ocular stray light.

  14. Typical effects of laser dazzling CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  15. METIS: the visible and UV coronagraph for solar orbiter

    NASA Astrophysics Data System (ADS)

    Romoli, M.; Landini, F.; Antonucci, E.; Andretta, V.; Berlicki, A.; Fineschi, S.; Moses, J. D.; Naletto, G.; Nicolosi, P.; Nicolini, G.; Spadaro, D.; Teriaca, L.; Baccani, C.; Focardi, M.; Pancrazzi, M.; Pucci, S.; Abbo, L.; Bemporad, A.; Capobianco, G.; Massone, G.; Telloni, D.; Magli, E.; Da Deppo, V.; Frassetto, F.; Pelizzo, M. G.; Poletto, L.; Uslenghi, M.; Vives, S.; Malvezzi, M.

    2017-11-01

    METIS coronagraph is designed to observe the solar corona with an annular field of view from 1.5 to 2.9 degrees in the visible broadband (580-640 nm) and in the UV HI Lyman-alpha, during the Sun close approaching and high latitude tilting orbit of Solar Orbiter. The big challenge for a coronagraph is the stray light rejection. In this paper after a description of the present METIS optical design, the stray light rejection design is presented in detail together with METIS off-pointing strategies throughout the mission. Data shown in this paper derive from the optimization of the optical design performed with Zemax ray tracing and from laboratory breadboards of the occultation system and of the polarimeter.

  16. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  17. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  18. A note on stray light in the Tübingen perimeter.

    PubMed Central

    Weale, R A; Wheeler, C

    1977-01-01

    Measurements were made of the relative intensity of light scattered in the neighbourhood of the large and small targets on the Tübingen perimeter. Two target intensities were studied. The scattered light fraction ranged from 0-1 to 25% and its effect was detected more readily by young than by older observers. PMID:843510

  19. Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica; Christe, Steven; Shih, Albert; Tennant, Allyn; Swartz, Doug; Kilaru, Kiranmayee; Elsner, Ron; Kolodziejczak, Jeff; Ramsey, Brian

    On 2013 September 21-22, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope flew as a balloon payload from Ft. Sumner, NM. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 h flight. In this paper, we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources and applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray Light Facility (SLF) in Huntsville, AL, and using ray traces. We describe the application of our calibration measurements to in-flight observations of the Crab Nebula.

  20. Optical probe with light fluctuation protection

    DOEpatents

    Da Silva, Luiz B.; Chase, Charles L.

    2003-11-11

    An optical probe for tissue identification includes an elongated body. Optical fibers are located within the elongated body for transmitting light to and from the tissue. Light fluctuation protection is associated with the optical fibers. In one embodiment the light fluctuation protection includes a reflective coating on the optical fibers to reduce stray light. In another embodiment the light fluctuation protection includes a filler with very high absorption located within the elongated body between the optical fibers.

  1. 46 CFR 160.021-4 - Approval and production tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stray daylight, the first test plate is illuminated by light from the specimen placed at a distance of about 1.5 m (5 ft.). The second test plate is illuminated only by light from an incandescent lamp... viewed directly, the second through combinations of Lovibond red, yellow, and blue glasses selected so as...

  2. 46 CFR 160.021-4 - Approval and production tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stray daylight, the first test plate is illuminated by light from the specimen placed at a distance of about 1.5 m (5 ft.). The second test plate is illuminated only by light from an incandescent lamp... viewed directly, the second through combinations of Lovibond red, yellow, and blue glasses selected so as...

  3. A new method to analyze UV stellar occultation data

    NASA Astrophysics Data System (ADS)

    Evdokimova, D.; Baggio, L.; Montmessin, F.; Belyaev, D.; Bertaux, J.-L.

    2017-09-01

    In this paper we present a new method of data processing and a classification of different types of stray light at SPICAV UV stellar occultations. The method was developed on a basis of Richardson-Lucy algorithm including: (a) deconvolution process of measured star light and (b) separation of extra emissions registered by the spectrometer.

  4. Literature survey for suppression of scattered light in large space telescopes

    NASA Technical Reports Server (NTRS)

    Tifft, W. G.; Fannin, B. B.

    1973-01-01

    A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.

  5. J-Black: a stray light coating for optical and infrared systems

    NASA Astrophysics Data System (ADS)

    Waddell, Patrick; Black, David S.

    2016-07-01

    A new stray light coating, called J-Black, has been developed for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). The coating is a layered composition of Nextel-Suede 3101 primers and top coats and silicon carbide grit. J-Black has been applied to large areas of the SOFIA airborne telescope and is currently operating within the open cavity environment of the Boeing 747. Over a series of discrete filter bands, from 0.4 to 21 microns, J-Black optical and infrared reflectivity performance is compared with other available coatings. Measured total reflectance values are less than 2% at the longest wavelengths, including at high incidence angles. Detailed surface structure characteristics are also compared via electron and ion microscopy. Environmental tests applicable for aerospace applications are presented, as well as the detailed steps required to apply the coating.

  6. Preliminary evaluation of the diffraction behind the PROBA 3/ASPIICS optimized occulter

    NASA Astrophysics Data System (ADS)

    Baccani, Cristian; Landini, Federico; Romoli, Marco; Taccola, Matteo; Schweitzer, Hagen; Fineschi, Silvano; Bemporad, Alessandro; Loreggia, Davide; Capobianco, Gerardo; Pancrazzi, Maurizio; Focardi, Mauro; Noce, Vladimiro; Thizy, Cédric; Servaye, Jean-Sébastien; Renotte, Etienne

    2016-07-01

    PROBA-3 is a technological mission of the European Space Agency (ESA), devoted to the in-orbit demon- stration of formation flying (FF) techniques and technologies. ASPIICS is an externally occulted coronagraph approved by ESA as payload in the framework of the PROBA-3 mission and is currently in its C/D phase. FF offers a solution to investigate the solar corona close the solar limb using a two-component space system: the external occulter on one spacecraft and the optical instrument on the other, separated by a large distance and kept in strict alignment. ASPIICS is characterized by an inter-satellite distance of ˜144 m and an external occulter diameter of 1.42 m. The stray light due to the diffraction by the external occulter edge is always the most critical offender to a coronagraph performance: the designer work is focused on reducing the stray light and carefully evaluating the residuals. In order to match this goal, external occulters are usually characterized by an optimized shape along the optical axis. Part of the stray light evaluation process is based on the diffraction calculation with the optimized occulter and with the whole solar disk as a source. We used the field tracing software VirtualLabTM Fusion by Wyrowski Photonics [1] to simulate the diffraction. As a first approach and in order to evaluate the software, we simulated linear occulters, through as portions of the flight occulter, in order to make a direct comparison with the Phase-A measurements [2].

  7. An assessment of the stray light in 25 years of Dobson total ozone data at Athens, Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.

    2015-07-01

    In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for air-mass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the measurements made by the Dobson instrument of the Athens station for air mass values up to 2.5, underestimates the total ozone content by 3.5 DU in average, or about 1 % of the station's mean total ozone content (TOC). The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south-eastern Europe, may be assumed as a ground truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.

  8. GASS: the Parkes Galactic all-sky survey. II. Stray-radiation correction and second data release

    NASA Astrophysics Data System (ADS)

    Kalberla, P. M. W.; McClure-Griffiths, N. M.; Pisano, D. J.; Calabretta, M. R.; Ford, H. Alyson; Lockman, F. J.; Staveley-Smith, L.; Kerp, J.; Winkel, B.; Murphy, T.; Newton-McGee, K.

    2010-10-01

    Context. The Parkes Galactic all-sky survey (GASS) is a survey of Galactic atomic hydrogen (H i) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release was published by McClure-Griffiths et al. (2009). Aims: We remove instrumental effects that affect the GASS and present the second data release. Methods: We calculate the stray-radiation by convolving the all-sky response of the Parkes antenna with the brightness temperature distribution from the Leiden/Argentine/Bonn (LAB) all sky 21-cm line survey, with major contributions from the 30-m dish of the Instituto Argentino de Radioastronomía (IAR) in the southern sky. Remaining instrumental baselines are corrected using the LAB data for a first guess of emission-free baseline regions. Radio frequency interference is removed by median filtering. Results: After applying these corrections to the GASS we find an excellent agreement with the Leiden/Argentine/Bonn (LAB) survey. The GASS is the highest spatial resolution, most sensitive, and is currently the most accurate H i survey of the Galactic H i emission in the southern sky. We provide a web interface for generation and download of FITS cubes.

  9. Optical imaging module for astigmatic detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei-Min; Cheng, Chung-Hsiang; Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan

    2016-05-15

    In this paper, an optical imaging module design for an astigmatic detection system (ADS) is presented. The module is based on a commercial optical pickup unit (OPU) and it contains a coaxial illuminant for illuminating a specimen. Furthermore, the imaging module facilitates viewing the specimen and the detection laser spot of the ADS with a lateral resolution of approximately 1 μm without requiring the removal of an element of the OPU. Two polarizers and one infrared filter are used to eliminate stray laser light in the OPU and stray light produced by the illuminant. Imaging modules designed for digital versatilemore » disks (DVDs) and Blu-ray DVDs were demonstrated. Furthermore, the module can be used for imaging a small cantilever with approximate dimensions of 2 μm (width) × 5 μm (length), and therefore, it has the potential to be used in high-speed atomic force microscopy.« less

  10. Propagation of spectral characterization errors of imaging spectrometers at level-1 and its correction within a level-2 recalibration scheme

    NASA Astrophysics Data System (ADS)

    Vicent, Jorge; Alonso, Luis; Sabater, Neus; Miesch, Christophe; Kraft, Stefan; Moreno, Jose

    2015-09-01

    The uncertainties in the knowledge of the Instrument Spectral Response Function (ISRF), barycenter of the spectral channels and bandwidth / spectral sampling (spectral resolution) are important error sources in the processing of satellite imaging spectrometers within narrow atmospheric absorption bands. The exhaustive laboratory spectral characterization is a costly engineering process that differs from the instrument configuration in-flight given the harsh space environment and harmful launching phase. The retrieval schemes at Level-2 commonly assume a Gaussian ISRF, leading to uncorrected spectral stray-light effects and wrong characterization and correction of the spectral shift and smile. These effects produce inaccurate atmospherically corrected data and are propagated to the final Level-2 mission products. Within ESA's FLEX satellite mission activities, the impact of the ISRF knowledge error and spectral calibration at Level-1 products and its propagation to Level-2 retrieved chlorophyll fluorescence has been analyzed. A spectral recalibration scheme has been implemented at Level-2 reducing the errors in Level-1 products below the 10% error in retrieved fluorescence within the oxygen absorption bands enhancing the quality of the retrieved products. The work presented here shows how the minimization of the spectral calibration errors requires an effort both for the laboratory characterization and for the implementation of specific algorithms at Level-2.

  11. Improved SOT (Hinode mission) high resolution solar imaging observations

    NASA Astrophysics Data System (ADS)

    Goodarzi, H.; Koutchmy, S.; Adjabshirizadeh, A.

    2015-08-01

    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing (i) the limb of the Sun and (ii) images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The normal non-magnetic granulation is compared to the abnormal granulation which we call magnetic. A new feature appearing for the first time at the extreme- limb of the disk (the last 100 km) is discussed in the context of the definition of the solar edge and of the solar diameter. A single sunspot is considered in order to illustrate how effectively the restoration works on the sunspot core. A set of 125 consecutive deconvolved images is assembled in a 45 min long movie illustrating the complexity of the dynamical behavior inside and around the sunspot.

  12. Solar glint suppression in compact planetary ultraviolet spectrographs

    NASA Astrophysics Data System (ADS)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  13. Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs

    NASA Technical Reports Server (NTRS)

    Frazin, Richard A.; Vasquez, Alberto M.; Thompson, William T.; Hewett, Russell J.; Lamy, Philippe; Llebaria, Antoine; Vourlidas, Angelos; Burkepile, Joan

    2012-01-01

    In order to assess the reliability and consistency of white-light coronagraph measurements, we report on quantitative comparisons between polarized brightness [pB] and total brightness [B] images taken by the following white-light coronagraphs: LASCO-C2 on SOHO, SECCHI-COR1 and -COR2 on STEREO, and the ground-based MLSO-Mk4. The data for this comparison were taken on 16 April 2007, when both STEREO spacecraft were within 3.1 deg. of Earth’s heliographic longitude, affording essentially the same view of the Sun for all of the instruments. Due to the difficulties of estimating stray-light backgrounds in COR1 and COR2, only Mk4 and C2 produce reliable coronal-hole values (but not at overlapping heights), and these cannot be validated without rocket flights or ground-based eclipse measurements. Generally, the agreement between all of the instruments’ pB values is within the uncertainties in bright streamer structures, implying that measurements of bright CMEs also should be trustworthy. Dominant sources of uncertainty and stray light are discussed, as is the design of future coronagraphs from the perspective of the experiences with these instruments.

  14. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  15. First Stars or Stray Stars? A Cosmic Infrared Mystery

    NASA Image and Video Library

    2014-11-06

    Our sky is filled with a diffuse background glow, known as the cosmic infrared background. Much of the light is from galaxies we know about, but previous Spitzer measurements have shown an extra component of unknown origin.

  16. Potential Zoonotic Trematodes Recovered in Stray Cats from Kuwait Municipality, Kuwait

    PubMed Central

    El-Azazy, Osama Mohamed ElShfei; Abdou, Nadra-Elwgoud Mohamed Ibrahim; Khalil, Amal Iskander; Al-Batel, Maha Khaled; Majeed, Qais Abdulrazak Habeeb; Henedi, Adawia Abdul-Ruhman; Tahrani, Laila Mohamed Azad

    2015-01-01

    Stray cats are a common feature roaming the streets and alleys of Kuwait; they could be a source of parasites, including trematodes, that affect humans. A survey was conducted to identify feline trematodes and throw the light on their public health significance in Kuwait. Out of 240 stray cats trapped from different localities of Kuwait from June 2011 to May 2012, 59 (24.6%) were found to be infected with 14 species of trematodes. The most common were trematodes of the genus Heterophyes, particularly H. heterophyes and H. dispar that were found in respectively 15.8% and 10.8% of the cats examined. Other trematodes recorded, with lower prevalences, were Heterophyes nocens (2.9%), Haplorchis taichui (3.8%), Stictodora sawakinensis (2.1%), Stellantchasmus falcatus (1.6%), Echinochasmus japonicus (1.6%), and Mesostephanus dottrensi (1.3%). Centrocestus cuspidatus, Galactosomum fregatae, Ascocotyle sp., Mesostephanus appendiculatus, Haplorchis yokogawai, and Pygidiopsis genata showed the lowest prevalence (0.4%) and intensity. The majority of the trematodes are recorded for the first time in Kuwait and even in the Gulf region. The study reveals that stray cats are good indicators of fish-borne trematodes in the environment. As all trematodes recovered are zoonotic, their significance to public health should be considred. PMID:26174821

  17. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted laser light. This improvement allows the iodine cell to block significantly more of the stray laser light in filtered Rayleigh scattering experiments. Examples are given of filtered Rayleigh scattering measurements showing the effect of the etalon on measurements taken in a Mach 3 flow in the NASA Lewis 4 inch by 10 inch supersonic wind tunnel.

  18. Detection of Hepatozoon canis in stray dogs and cats in Bangkok, Thailand.

    PubMed

    Jittapalapong, Sathaporn; Rungphisutthipongse, Opart; Maruyama, Soichi; Schaefer, John J; Stich, Roger W

    2006-10-01

    A rapidly increasing stray animal population in Bangkok has caused concern regarding transmission of vector-borne and zoonotic diseases. The purpose of this study was to determine if stray animals in Bangkok are a potential reservoir of Hepatozoon, a genus of tick-borne parasites that has received little attention in Thailand. Blood samples were collected from stray companion animals near monasteries in 42 Bangkok metropolitan districts. Both dogs and cats were sampled from 26 districts, dogs alone from 4 districts and cats alone from 12 districts. Samples were collected from a total of 308 dogs and 300 cats. Light microscopy and an 18 S rRNA gene-based PCR assay were used to test these samples for evidence of Hepatozoon infection. Gamonts were observed in blood smears for 2.6% of dogs and 0.7% of cats by microscopy. The PCR assay detected Hepatozoon in buffy coats from 11.4% of dogs and 32.3% of cats tested. The prevalence of infection was the same between male and female dogs or cats, and PCR-positive dogs and cats were found in 36.6% and 36.8% of the districts surveyed, respectively. There was an association between the percentages of PCR-positive dogs and cats in districts where both host species were sampled. Sequences of representative amplicons were closest to those reported for H. canis. These results represent the first molecular confirmation that H. canis is indigenous to Thailand. The unexpectedly high prevalence of Hepatozoon among stray cats indicates that their role in the epizootiology of hepatozoonosis should be investigated.

  19. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Q; Juang, T; Bache, S

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindricalmore » dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D dosimetry system shows promise, but further work is required to validate and investigate accuracy and artifacts. This work was supported by NIH R01CA100835.« less

  20. Fourier transform spectroscopy of cotton and cotton trash

    USDA-ARS?s Scientific Manuscript database

    Fourier Transform techniques have been shown to have higher signal-to-noise capabilities, higher throughput, negligible stray light, continuous spectra, and higher resolution. In addition, FT spectroscopy affords for frequencies in spectra to be measured all at once and more precise wavelength calib...

  1. Determination of the Performance Parameters of a Spectrophotometer: An Advanced Experiment.

    ERIC Educational Resources Information Center

    Cope, Virgil W.

    1978-01-01

    Describes an advanced analytical chemistry laboratory experiment developed for the determination of the performance parameters of a spectrophotometer. Among the parameters are the baseline linearity with wavelength, wavelength accuracy and respectability, stray light, noise level and pen response time. (HM)

  2. 65-nm full-chip implementation using double dipole lithography

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D.; Chen, J. Fung; Cororan, Noel; Knose, William T.; Van Den Broeke, Douglas J.; Laidig, Thomas L.; Wampler, Kurt E.; Shi, Xuelong; Hsu, Michael; Eurlings, Mark; Finders, Jo; Chiou, Tsann-Bim; Socha, Robert J.; Conley, Will; Hsieh, Yen W.; Tuan, Steve; Hsieh, Frank

    2003-06-01

    Double Dipole Lithography (DDL) has been demonstrated to be capable of patterning complex 2D patterns. Due to inherently high aerial imaging contrast, especially for dense features, we have found that it has a very good potential to meet manufacturing requirements for the 65nm node using ArF binary chrome masks. For patterning in the k1<0.35 regime without resorting to hard phase-shift masks (PSMs), DDL is one unique Resolution Enhancement Technique (RET) which can achieve an acceptable process window. To utilize DDL for printing actual IC devices, the original design data must be decomposed into "vertical (V)" and "horizontal (H)" masks for the respective X- and Y-dipole exposures. An improved two-pass, model-based, DDL mask data processing methodology has been established. It is capable of simultaneously converting complex logic and memory mask patterns into DDL compatible mask layout. To maximize the overlapped process window area, we have previously shown that the pattern-shielding algorithm must be intelligently applied together with both Scattering Bars (SBs) and model-based OPC (MOPC). Due to double exposures, stray light must be well-controlled to ensure uniform printing across the entire chip. One solution to minimize stray light is to apply large patches of solid chrome in open areas to reduce the background transmission during exposure. Unfortunately, this is not feasible for a typical clear-field poly gate masks to be patterned by a positive resist process. In this work, we report a production-worthy DDL mask pattern decomposition scheme for full-chip application. A new generation of DDL technology reticle set has been developed to verify the printing performance. Shielding is a critical part of the DDL. An innovative shielding scheme has been developed to protect the critical features and minimize the impact of stray light during double exposure.

  3. Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1993-01-01

    Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.

  4. Eliminating Unwanted Far-Field Excitation in Objective-Type TIRF. Part II. Combined Evanescent-Wave Excitation and Supercritical-Angle Fluorescence Detection Improves Optical Sectioning

    PubMed Central

    Brunstein, Maia; Hérault, Karine; Oheim, Martin

    2014-01-01

    Azimuthal beam scanning makes evanescent-wave (EW) excitation isotropic, thereby producing total internal reflection fluorescence (TIRF) images that are evenly lit. However, beam spinning does not fundamentally address the problem of propagating excitation light that is contaminating objective-type TIRF. Far-field excitation depends more on the specific objective than on cell scattering. As a consequence, the excitation impurities in objective-type TIRF are only weakly affected by changes of azimuthal or polar beam angle. These are the main results of the first part of this study (Eliminating unwanted far-field excitation in objective-type TIRF. Pt.1. Identifying sources of nonevanescent excitation light). This second part focuses on exactly where up beam in the illumination system stray light is generated that gives rise to nonevanescent components in TIRF. Using dark-field imaging of scattered excitation light we pinpoint the objective, intermediate lenses and, particularly, the beam scanner as the major sources of stray excitation. We study how adhesion-molecule coating and astrocytes or BON cells grown on the coverslip surface modify the dark-field signal. On flat and weakly scattering cells, most background comes from stray reflections produced far from the sample plane, in the beam scanner and the objective lens. On thick, optically dense cells roughly half of the scatter is generated by the sample itself. We finally show that combining objective-type EW excitation with supercritical-angle fluorescence (SAF) detection efficiently rejects the fluorescence originating from deeper sample regions. We demonstrate that SAF improves the surface selectivity of TIRF, even at shallow penetration depths. The coplanar microscopy scheme presented here merges the benefits of beam spinning EW excitation and SAF detection and provides the conditions for quantitative wide-field imaging of fluorophore dynamics at or near the plasma membrane. PMID:24606929

  5. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  6. Stray light rejection in giant externally-occulted solar coronagraphs: experimental developments

    NASA Astrophysics Data System (ADS)

    Venet, M.; Bazin, C.; Koutchmy, S.; Lamy, P.

    2017-11-01

    The advent of giant, formation-flight, externally-occulted solar coronagraphs such as ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire [1,2,3,4]) selected by the European Space Agency (ESA) for its third PROBA (Project for On-Board Autonomy) mission of formation flying demonstration (presently in phase B) and Hi-RISE proposed in the framework of ESA Cosmic Vision program, presents formidable challenges for the study and calibration of instrumental stray light. With distances between the external occulter (EO) and the optical pupil (OP) exceeding hundred meters and occulter sizes larger than a meter, it becomes impossible to perform tests at the real scale. The requirement to limit the over-occultation to less than 1.05 Rsun, orders of magnitude to what has been achieved so far in past coronagraphs, further adds to the challenge. We are approaching the problem experimentally using reduced scale simulators and present below a progress report of our work.

  7. Hemispherical Reflectance and Emittance Properties of Carbon Nanotubes Coatings at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Hagopian, John G.; Getty, Stephanie; Kinzer, Raymond (Robin) E., Jr.; Wollack, Edward

    2011-01-01

    Recent visible wavelength observations of Multiwalled Carbon Nanotubes (MWCNT) coatings have revealed that they represent the blackest materials known in nature with a Total Hemispherical Reflectance (THR) less than .25%. This makes them as exceptionally good absorbers, with the potential to provide order-of-magnitude improvement in stray-light suppression over current black surface treatments when used in an optical system. Here we extend the characterization of this class of materials into the infrared spectral region to further evaluate their potential for use on instrument baffles for stray-light suppression and to manage spacecraft thermal properties to dissipate heat through radiant heat transfer process. These characterizations will include the wavelength-dependent Total Hemispherical Reflectance properties in the mid-IR and far-infrared spectral regions (2-100 micrometers). Determination of the temperature-dependent emittance will be investigated in the temperature range of 20 to 300 K. These results will be compared against other more conventional black coatings such as Acktar Fractal Black or Z-306 coatings among others.

  8. Observational artifacts of Nuclear Spectroscopic Telescope Array: ghost rays and stray light

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin K.; Christensen, Finn E.; Craig, William W.; Forster, Karl W.; Grefenstette, Brian W.; Harrison, Fiona A.; Miyasaka, Hiromasa; Rana, Vikram

    2017-10-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) launched in June 2012, flies two conical approximation Wolter-I mirrors at the end of a 10.15-m mast. The optics are coated with multilayers of Pt/C and W/Si that operate from 3 to 80 keV. Since the optical path is not shrouded, aperture stops are used to limit the field of view (FoV) from background and sources outside the FoV. However, there is still a sliver of sky (˜1.0 deg to 4.0 deg) where photons may bypass the optics altogether and fall directly on the detector array. We term these photons stray light. Additionally, there are also photons that do not undergo the focused double reflections in the optics, and we term these ghost rays. We present detailed analysis and characterization of these two components and discuss how they impact observations. Finally, we discuss how they could have been prevented and should be in future observatories.

  9. Folded path LWIR system for SWAP constrained platforms

    NASA Astrophysics Data System (ADS)

    Fleet, Erin F.; Wilson, Michael L.; Linne von Berg, Dale; Giallorenzi, Thomas; Mathieu, Barry

    2014-06-01

    Folded path reflection and catadioptric optics are of growing interest, especially in the long wave infrared (LWIR), due to continuing demands for reductions in imaging system size, weight and power (SWAP). We present the optical design and laboratory data for a 50 mm focal length low f/# folded-path compact LWIR imaging system. The optical design uses 4 concentric aspheric mirrors, each of which is described by annular aspheric functions well suited to the folded path design space. The 4 mirrors are diamond turned onto two thin air-spaced aluminum plates which can be manually focused onto the uncooled LWIR microbolometer array detector. Stray light analysis will be presented to show how specialized internal baffling can be used to reduce stray light propagation through the folded path optical train. The system achieves near diffraction limited performance across the FOV with a 15 mm long optical train and a 5 mm back focal distance. The completed system is small enough to reside within a 3 inch diameter ball gimbal.

  10. Raman lidar characterization using a reference lamp

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

    2014-10-01

    The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

  11. 10 CFR 431.15 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Method With Indirect Measurement of the Stray-Load Loss and Direct Measurement of the Stator Winding (I2R), Rotor Winding (I2 R), Core and Windage-Friction Losses, IBR approved for §§ 431.12; 431.19; 431.20... with Loss Segregation, and the correction to the calculation at item (28) in Section 10.2 Form B-Test...

  12. A new approach to preparation of standard LEDs for luminous intensity and flux measurement of LEDs

    NASA Astrophysics Data System (ADS)

    Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2006-09-01

    This work presents an alternative approach for preparing photometric standard LEDs, which is based on a novel functional seasoning method. The main idea of our seasoning method is simultaneously monitoring the light output and the junction voltage to obtain quantitative information on the temperature dependence and the aging effect of the LED emission. We suggested a general model describing the seasoning process by taking junction temperature variation and aging effect into account and implemented a fully automated seasoning facility, which is capable of seasoning 12 LEDs at the same time. By independent measurements of the temperature dependence, we confirmed the discrepancy of the theoretical model to be less than 0.5 % and evaluate the uncertainty contribution of the functional seasoning to be less than 0.5 % for all the seasoned samples. To demonstrate assigning the reference value to a standard LED, the CIE averaged LED intensity (ALI) of the seasoned LEDs was measured with a spectroradiometer-based instrument and the measurement uncertainty was analyzed. The expanded uncertainty of the standard LED prepared by the new approach amounts to be 4 % ~ 5 % (k=2) depending on color without correction of spectral stray light in the spectroradiometer.

  13. Design of optical system for binocular fundus camera.

    PubMed

    Wu, Jun; Lou, Shiliang; Xiao, Zhitao; Geng, Lei; Zhang, Fang; Wang, Wen; Liu, Mengjia

    2017-12-01

    A non-mydriasis optical system for binocular fundus camera has been designed in this paper. It can capture two images of the same fundus retinal region from different angles at the same time, and can be used to achieve three-dimensional reconstruction of fundus. It is composed of imaging system and illumination system. In imaging system, Gullstrand Le Grand eye model is used to simulate normal human eye, and Schematic eye model is used to test the influence of ametropia in human eye on imaging quality. Annular aperture and black dot board are added into illumination system, so that the illumination system can eliminate stray light produced by corneal-reflected light and omentoscopic lens. Simulation results show that MTF of each visual field at the cut-off frequency of 90lp/mm is greater than 0.2, system distortion value is -2.7%, field curvature is less than 0.1 mm, radius of Airy disc is 3.25um. This system has a strong ability of chromatic aberration correction and focusing, and can image clearly for human fundus in which the range of diopters is from -10 D to +6 D(1 D = 1 m -1 ).

  14. Procedure for calibrating the Technicon Colorimeter I.

    PubMed

    Black, J C; Furman, W B

    1975-05-01

    We describe a rapid method for calibrating the Technicon AutoAnalyzer colorimeter I. Test solutions of bromphenol blue are recommended for the calibration, in preference to solutions of potassium dichromate, based on considerations of the instrument's working range and of the stray light characteristics of the associated filters.

  15. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    NASA Astrophysics Data System (ADS)

    Bohn, Birger; Lohse, Insa

    2017-09-01

    The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D), resulting in estimated detection limits of 5 × 10-7 and 1 × 10-7 s-1, respectively, derived from nighttime measurements on the ground (0.3 s integration time, 10 s averages). For j(O1D) the detection limit could be further reduced by setting spectral actinic flux densities to zero below atmospheric cutoff wavelengths. The accuracies of photolysis frequencies were determined from linear regressions with data from the double-monochromator reference instrument. The agreement was typically within ±5 %. Because optical-receiver aspects are not specific for the CCD spectroradiometers, they were widely excluded in this work and will be treated in a separate paper, in particular with regard to airborne applications.

  16. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

    NASA Astrophysics Data System (ADS)

    Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

    2017-09-01

    Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

  17. A Clinico-Pathological and Immunoparasitological Study on Toxocariasis in Egypt.

    DTIC Science & Technology

    1978-05-31

    Governorates. Similarly Toxocariasis in man at Dakahleya Governorate, Siwa Oasis, Qena and Asswan Governorates were done together with the determination of the...as being a cause of blindness in Egyptian children results interpreted on this light of the prevalence of infection in stray dogs and cats, the high

  18. Proton radiation effects on the optical properties of vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kuhnhenn, J.; Khavrus, V.; Leonhardt, A.; Eversheim, D.; Noll, C.; Hinderlich, S.; Dahl, A.

    2017-11-01

    This paper discusses proton-induced radiation effects in vertically aligned carbon nanotubes (VA-CNT). VACNTs exhibit extremely low optical reflectivity which makes them interesting candidates for use in spacecraft stray light suppression. Investigating their behavior in space environment is a precondition for the implementation on a satellite.

  19. Working session 4: Preventative and corrective measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.; Slama, G.

    1997-02-01

    The Preventive and Corrective Measures working session included 13 members from France, Germany, Japan, Spain, Slovenia, and the United States. Attendee experience included regulators, utilities, three steam generator vendors, consultants and researchers. Discussions centered on four principal topics: (1) alternate materials, (2) mechanical mitigation, (3) maintenance, and (4) water chemistry. New or replacement steam generators and original equipment steam generators were separately addressed. Four papers were presented to the session, to provide information and stimulate various discussion topics. Topics discussed and issues raised during the several meeting sessions are provided below, followed by summary conclusions and recommendations on which themore » group was able to reach a majority consensus. The working session was composed of individuals with diverse experience and varied areas of specialized expertise. The somewhat broad range of topics addressed by the group at times saw discussion participation by only a few individuals. As in any technical meeting where all are allowed the opportunity to speak their mind, straying from an Individual topic was not unusual. Where useful, these stray topics are also presented below within the context In which they occurred. The main categories of discussion were: minimize sludge; new steam generators; maintenance; mechanical mitigation; water chemistry.« less

  20. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

    PubMed

    Euser, Tijmen G; Harding, Philip J; Vos, Willem L

    2009-07-01

    We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.

  1. Is "good enough" good enough for portable visible and near-visible spectrometry?

    NASA Astrophysics Data System (ADS)

    Scheeline, Alexander

    2015-06-01

    Some uses of portable spectrometers require the same quality as laboratory instruments. Such quality is challenging because of temperature and humidity variation, dust, and vibration. Typically, one chooses materials and mechanical layout to minimize the influence of these noise and background sources. Mechanical stability is constrained by limits on instrument mass and ergonomics. An alternative approach is to make minimally adequate hardware, compensating for variability in software. We describe an instrument developed specifically to use software to compensate for marginal hardware. An initial instantiation of the instrument is limited to 430 - 700 nm. Simple changes will allow expansion to cover 315 - 1000 nm. Outside this range, costs are likely to increase significantly. Inherent wavelength calibration comes from knowing the peak emission wavelength of an LED light source, and fitting of instrument dispersion to a model of order placement with each measurement. Dynamic range is determined by the product of camera response and intentionally wide throughput variation among hundreds of diffraction orders. Resolution degrades gracefully at low light levels, but is limited to ~ 2 nm at high light levels as initially fabricated and ~ 1 nm in principle. Stray light may be measured in real-time. Diffuse stray light can be employed for turbidimetry fluorimetry, and to aid compensation of working curve nonlinearity. While unsuitable for, Raman spectroscopy, the instrument shows promise for absorption, fluorescence, reflectance, and surface plasmon resonance spectrometries. To aid non-expert users, real-time training, measurement sequencing, and outcome interpretation are programmed with QR codes or web-linked instructions.

  2. The LSST Dome final design

    NASA Astrophysics Data System (ADS)

    DeVries, J.; Neill, D. R.; Barr, J.; De Lorenzi, Simone; Marchiori, Gianpietro

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile 1. As a result of the Telescope wide field of view, the optical system is unusually susceptible to stray light 2. In addition, balancing the effect of wind induced telescope vibrations with Dome seeing is crucial. The rotating enclosure system (Dome) includes a moving wind screen and light baffle system. All of the Dome vents include hinged light baffles, which provide exceptional Dome flushing, stray light attenuation, and allows for vent maintenance access from inside the Dome. The wind screen also functions as a light screen, and helps define a clear optical aperture for the Telescope. The Dome must operate continuously without rotational travel limits to accommodate the Telescope cadence and travel. Consequently, the Azimuth drives are located on the fixed lower enclosure to accommodate glycol water cooling without the need for a utility cable wrap. An air duct system aligns when the Dome is in its parked position, and this provides air cooling for temperature conditioning of the Dome during the daytime. A bridge crane and a series of ladders, stairs and platforms provide for the inspection, maintenance and repair of all of the Dome mechanical systems. The contract to build the Dome was awarded to European Industrial Engineering in Mestre, Italy in May 2015. In this paper, we present the final design of this telescope and site sub-system.

  3. Broadband ultraviolet reflectance filters for space applications.

    NASA Technical Reports Server (NTRS)

    Osantowski, J. F.; Toft, A. R.

    1973-01-01

    It is shown that a simple metal-dielectric-metal filter for broadband ultraviolet (BUV) reflectance control can provide a stable and effective means for reducing stray visible radiation in UV reflective optical systems. The application of such a filter in a BUV instrument resulted in a reduction of scattered visible light by at least an order of magnitude. The instrument has been in orbit for 2.5 year without loss of sensitivity or an increase in scattered light background.-

  4. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, P. J.; Ennis, D. A.; Hartwell, G. J.; Kring, J. D.; Maurer, D. A.

    2017-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two-color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YAG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and routed via a fiber bundle through a Holospec f/1.8 spectrograph. The red-shifted scattered light from 533-563 nm will be collected by an array of Hamamatsu H11706-40 PMTs. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Stray light and calibration data for a single wavelength channel will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  5. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    NASA Astrophysics Data System (ADS)

    DeMarco, M.; Maggi, S.

    2006-07-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m-1 (E-field 400 V m-1). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy.

  6. Anti-glare LED lamps with adjustable illumination light field.

    PubMed

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  7. Initial Studies of the Bidirectional Reflectance Distribution Function of Multi-Walled Carbon Nanotube Structures for Stray Light Control Applications

    NASA Technical Reports Server (NTRS)

    Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.

    2010-01-01

    The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".

  8. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  9. Algorithm Updates for the Fourth SeaWiFS Data Reprocessing

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford, B. (Editor); Firestone, Elaine R. (Editor); Patt, Frederick S.; Barnes, Robert A.; Eplee, Robert E., Jr.; Franz, Bryan A.; Robinson, Wayne D.; Feldman, Gene Carl; Bailey, Sean W.

    2003-01-01

    The efforts to improve the data quality for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data products have continued, following the third reprocessing of the global data set in May 2000. Analyses have been ongoing to address all aspects of the processing algorithms, particularly the calibration methodologies, atmospheric correction, and data flagging and masking. All proposed changes were subjected to rigorous testing, evaluation and validation. The results of these activities culminated in the fourth reprocessing, which was completed in July 2002. The algorithm changes, which were implemented for this reprocessing, are described in the chapters of this volume. Chapter 1 presents an overview of the activities leading up to the fourth reprocessing, and summarizes the effects of the changes. Chapter 2 describes the modifications to the on-orbit calibration, specifically the focal plane temperature correction and the temporal dependence. Chapter 3 describes the changes to the vicarious calibration, including the stray light correction to the Marine Optical Buoy (MOBY) data and improved data screening procedures. Chapter 4 describes improvements to the near-infrared (NIR) band correction algorithm. Chapter 5 describes changes to the atmospheric correction and the oceanic property retrieval algorithms, including out-of-band corrections, NIR noise reduction, and handling of unusual conditions. Chapter 6 describes various changes to the flags and masks, to increase the number of valid retrievals, improve the detection of the flag conditions, and add new flags. Chapter 7 describes modifications to the level-la and level-3 algorithms, to improve the navigation accuracy, correct certain types of spacecraft time anomalies, and correct a binning logic error. Chapter 8 describes the algorithm used to generate the SeaWiFS photosynthetically available radiation (PAR) product. Chapter 9 describes a coupled ocean-atmosphere model, which is used in one of the changes described in Chapter 4. Finally, Chapter 10 describes a comparison of results from the third and fourth reprocessings along the US. Northeast coast.

  10. Testing and Characterization of a Prototype Telescope for the Evolved Laser Interferometer Space Antenna (eLISA)

    NASA Technical Reports Server (NTRS)

    Sankar, S.; Livas, J.

    2016-01-01

    We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.

  11. Development of a real-time reflectance and transmittance monitoring system for the manufacturing of metaldielectric light absorbers

    NASA Astrophysics Data System (ADS)

    Badoil, Bruno; Cathelinaud, Michel; Lemarchand, Fabien; Lemarquis, Frédéric; Lequime, Michel

    2017-11-01

    Metal-dielectric light absorbers are of great interest for suppressing stray light in optical systems. Such coatings can give an absorption level greater than 99.9% over a broad spectral range provided that the complex refractive index of metallic films is accurately known. For this purpose we developed a new real-time monitoring system that allows to measure in situ both reflectance and transmittance of the coating during manufacturing in the deposition chamber. This paper describes the system design and its characteristics and gives some preliminary results concerning metallic thin film characterizations.

  12. Stray-Light Correction of the Marine Optical Buoy

    NASA Technical Reports Server (NTRS)

    Brown, Steven W.; Johnson, B. Carol; Flora, Stephanie J.; Feinholz, Michael E.; Yarbrough, Mark A.; Barnes, Robert A.; Kim, Yong Sung; Lykke, Keith R.; Clark, Dennis K.

    2003-01-01

    In ocean-color remote sensing, approximately 90% of the flux at the sensor originates from atmospheric scattering, with the water-leaving radiance contributing the remaining 10% of the total flux. Consequently, errors in the measured top-of-the atmosphere radiance are magnified a factor of 10 in the determination of water-leaving radiance. Proper characterization of the atmosphere is thus a critical part of the analysis of ocean-color remote sensing data. It has always been necessary to calibrate the ocean-color satellite sensor vicariously, using in situ, ground-based results, independent of the status of the pre-flight radiometric calibration or the utility of on-board calibration strategies. Because the atmosphere contributes significantly to the measured flux at the instrument sensor, both the instrument and the atmospheric correction algorithm are simultaneously calibrated vicariously. The Marine Optical Buoy (MOBY), deployed in support of the Earth Observing System (EOS) since 1996, serves as the primary calibration station for a variety of ocean-color satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Japanese Ocean Color Temperature Scanner (OCTS) , and the French Polarization and Directionality of the Earth's Reflectances (POLDER). MOBY is located off the coast of Lanai, Hawaii. The site was selected to simplify the application of the atmospheric correction algorithms. Vicarious calibration using MOBY data allows for a thorough comparison and merger of ocean-color data from these multiple sensors.

  13. Ultraviolet Molecular Rayleigh Scattering Used to Measure Velocity in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1997-01-01

    Molecular Rayleigh scattering offers a means to measure gas flow parameters including density, temperature, and velocity. No seeding of the flow is necessary. The Rayleigh scattered power is proportional to the gas density, the spectral width is related to the gas temperature, and the shift in the frequency of the spectral peak is proportional to one component of the fluid velocity. Velocity measurements based on Rayleigh scattering are more suitable for high-speed flow, where the bulk fluid velocity is on the order of, or larger than, the molecular thermal velocities. Use of ultraviolet wavelengths for Rayleigh scattering diagnostics is attractive for two reasons. First, the Rayleigh scattering cross section is proportional to the inverse 4th power of the wavelength. And second, the reflectivity of metallic surfaces is generally less than it is at longer wavelengths. This is of particular interest in confined flow situations, such as in small wind tunnels and aircraft engine components, where the stray laser light scattered from the windows and internal surfaces in the test facility limits the application of Rayleigh scattering diagnostics. In this work at the NASA Lewis Research Center, molecular Rayleigh scattering of the 266-nm fourth harmonic of a pulsed, injection seeded Nd:YAG (neodymium:yttriumaluminum- garnet) laser was used to measure velocity in a supersonic free air jet with a 9.3- mm exit diameter. The frequency of the Rayleigh scattered light was analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode, with the images recorded on a cooled, high-quantum-efficiency charge-coupled discharge (CCD) camera. In addition, some unshifted light from the same laser pulse was imaged through the interferometer to generate a reference. Data were obtained with single laser pulses at velocities up to Mach 1.3. The measured velocities were in good agreement with velocities calculated from isentropic flow relations. Our conclusion from this study was that ultraviolet Rayleigh scattering is preferable in confined flow situations because of the increase in the ratio of Rayleigh scattering signal to stray laser light. On the other hand, in open flows, such as free jets and larger wind tunnels where stray laser light can be controlled, visible Rayleigh scattering is preferable.

  14. Rabies Vaccination Targets for Stray Dog Populations

    PubMed Central

    Leung, Tiffany; Davis, Stephen A.

    2017-01-01

    The role of stray dogs in the persistence of domestic dog rabies, and whether removal of such dogs is beneficial, remains contentious issues for control programs seeking to eliminate rabies. While a community might reach the WHO vaccination target of 70% for dogs that can be handled, the stray or neighborhood dogs that are too wary of humans to be held are a more problematic population to vaccinate. Here, we present a method to estimate vaccination targets for stray dogs when the dog population is made up of stray, free-roaming, and confined dogs, where the latter two types are considered to have an identifiable owner. The control effort required for stray dogs is determined by the type-reproduction number, T1, the number of stray dogs infected by one rabid stray dog either directly or via any chain of infection involving owned dogs. Like the basic reproduction number R0 for single host populations, T1 determines the vaccination effort required to control the spread of disease when control is targeted at one host type, and there is a mix of host types. The application of T1 to rabies in mixed populations of stray and owned dogs is novel. We show that the outcome is sensitive to the vaccination coverage in the owned dog population, such that if vaccination rates of owned dogs were too low then no control effort targeting stray dogs is able to control or eliminate rabies. The required vaccination level also depends on the composition of the dog population, where a high proportion of either stray or free-roaming dogs implies unrealistically high vaccination levels are required to prevent rabies. We find that the required control effort is less sensitive to continuous culling that increases the death rate of stray dogs than to changes in the carrying capacity of the stray dog population. PMID:28451589

  15. Stray energy transfer during endoscopy.

    PubMed

    Jones, Edward L; Madani, Amin; Overbey, Douglas M; Kiourti, Asimina; Bojja-Venkatakrishnan, Satheesh; Mikami, Dean J; Hazey, Jeffrey W; Arcomano, Todd R; Robinson, Thomas N

    2017-10-01

    Endoscopy is the standard tool for the evaluation and treatment of gastrointestinal disorders. While the risk of complication is low, the use of energy devices can increase complications by 100-fold. The mechanism of increased injury and presence of stray energy is unknown. The purpose of the study was to determine if stray energy transfer occurs during endoscopy and if so, to define strategies to minimize the risk of energy complications. A gastroscope was introduced into the stomach of an anesthetized pig. A monopolar generator delivered energy for 5 s to a snare without contacting tissue or the endoscope itself. The endoscope tip orientation, energy device type, power level, energy mode, and generator type were varied to mimic in vivo use. The primary outcome (stray current) was quantified as the change in tissue temperature (°C) from baseline at the tissue closest to the tip of the endoscope. Data were reported as mean ± standard deviation. Using the 60 W coag mode while changing the orientation of the endoscope tip, tissue temperature increased by 12.1 ± 3.5 °C nearest the camera lens (p < 0.001 vs. all others), 2.1 ± 0.8 °C nearest the light lens, and 1.7 ± 0.4 °C nearest the working channel. Measuring temperature at the camera lens, reducing power to 30 W (9.5 ± 0.8 °C) and 15 W (8.0 ± 0.8 °C) decreased stray energy transfer (p = 0.04 and p = 0.002, respectively) as did utilizing the low-voltage cut mode (6.6 ± 0.5 °C, p < 0.001). An impedance-monitoring generator significantly decreased the energy transfer compared to a standard generator (1.5 ± 3.5 °C vs. 9.5 ± 0.8 °C, p < 0.001). Stray energy is transferred within the endoscope during the activation of common energy devices. This could result in post-polypectomy syndrome, bleeding, or perforation outside of the endoscopist's view. Decreasing the power, utilizing low-voltage modes and/or an impedance-monitoring generator can decrease the risk of complication.

  16. Overview of the Design, Fabrication and Performance Requirements of Micro-Spec, an Integrated Submillimeter Spectrometer

    NASA Technical Reports Server (NTRS)

    Barrentine, Emily M.; Noroozian, Omid; Brown, Ari D.; Cataldo, Giuseppe; Ehsan, Negar; Hsieh, Wen-Ting; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey

    2015-01-01

    Micro-Spec is a compact submillimeter (350-700 GHz) spectrometer which uses low loss superconducting niobium microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a grating-analog spectrometer onto a single chip. Here we present details of the fabrication and design of a prototype Micro-Spec spectrometer with resolution, R64, where we use a high-yield single-flip wafer bonding process to realize instrument components on a 0.45 m single-crystal silicon dielectric. We discuss some of the electromagnetic design concerns (such as loss, stray-light, cross-talk, and fabrication tolerances) for each of the spectrometer components and their integration into the instrument as a whole. These components include a slot antenna with a silicon lens for optical coupling, a phase delay transmission line network, parallel plate waveguide interference region, and aluminum microstrip transmission line kinetic inductance detectors with extremely low cross-talk and immunity to stray light. We have demonstrated this prototype spectrometer with design resolution of R64. Given the optical performance of this prototype, we will also discuss the extension of this design to higher resolutions suitable for balloon-flight.

  17. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  18. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  19. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    NASA Astrophysics Data System (ADS)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  20. Identification of feline immunodeficiency virus subtype-B on St. Kitts, West Indies by quantitative PCR.

    PubMed

    Kelly, Patrick J; Stocking, Ruey; Gao, Dongya; Phillips, Nikol; Xu, Chuanling; Kaltenboeck, Bernhard; Wang, Chengming

    2011-07-04

    Although antibodies to the feline immunodeficiency virus (FIV) have been detected by SNAP assay in cats from St. Kitts, there have been no molecular studies to further confirm the infection and determine the FIV subtypes present. Total nucleic acids were extracted from EDTA whole blood specimens from 35 cats, followed by quantitative fluorescence resonance energy transfer (FRET) PCR under a six-channel LightCycler 2.0 Instrument with Software version 4.1. Four of 11 stray cats (36 %) but none of 24 owned cats were FIV positive by real-time PCR.  High-resolution melting curve analysis indicated that all four positive cats were infected with FIV subtype-B. This is the first molecular characterization of FIV subtypes on St. Kitts and the results confirm the high prevalence of FIV infection in stray cats on the island.

  1. Characterization of diffraction gratings scattering in uv and ir for space applications

    NASA Astrophysics Data System (ADS)

    Achour, Sakina; Kuperman-Le Bihan, Quentin; Etcheto, Pierre

    2017-09-01

    The use of Bidirectional Scatter Distribution Function (BSDF) in space industry and especially when designing telescopes is a key feature. Indeed when speaking about space industry, one can immediately think about stray light issues. Those important phenomena are directly linked to light scattering. Standard BSDF measurement goniophotometers often have a resolution of about 0.1° and are mainly working in or close to the visible spectrum. This resolution is far too loose to characterize ultra-polished surfaces. Besides, wavelength range of BSDF measurements for space projects needs to be done far from visible range. How can we measure BSDF of ultra-polished surfaces and diffraction gratings in the UV and IR range with high resolution? We worked on developing a new goniophometer bench in order to be able to characterize scattering of ultra-polished surfaces and diffraction gratings used in everyday space applications. This ten meters long bench was developed using a collimated beam approach as opposed to goniophotometer using focused beam. Sources used for IR characterization were CO2 (10.6?m) and Helium Neon (3.39?m) lasers. Regarding UV sources, a collimated and spatially filtered UV LED was used. The detection was ensure by a photomultiplier coupled with synchronous detection as well as a MCT InSb detector. The so-built BSDF measurement instrument allowed us to measure BSDF of ultra-polished surfaces as well as diffraction gratings with an angular resolution of 0.02° and a dynamic of 1013 in the visible range. In IR as well as in UV we manage to get 109 with same angular resolution of 0.02°. The 1m arm and translation stages allows us to measure samples up to 200mm. Thanks to such a device allowing ultra-polished materials as well as diffraction gratings scattering characterization, it is possible to implement those BSDF measurements into simulation software and predict stray light issues. This is a big help for space industry engineers to apprehend stray light due to surface finishes and to delete those effects before the whole project is done. We are now thinking of possible improvement on our optical bench to try to get dynamic in IR and UV similar to what we have in visible range (e.g. 1013).

  2. Eliminating Unwanted Far-Field Excitation in Objective-Type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light

    PubMed Central

    Brunstein, Maia; Teremetz, Maxime; Hérault, Karine; Tourain, Christophe; Oheim, Martin

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) achieves subdiffraction axial sectioning by confining fluorophore excitation to a thin layer close to the cell/substrate boundary. However, it is often unknown how thin this light sheet actually is. Particularly in objective-type TIRFM, large deviations from the exponential intensity decay expected for pure evanescence have been reported. Nonevanescent excitation light diminishes the optical sectioning effect, reduces contrast, and renders TIRFM-image quantification uncertain. To identify the sources of this unwanted fluorescence excitation in deeper sample layers, we here combine azimuthal and polar beam scanning (spinning TIRF), atomic force microscopy, and wavefront analysis of beams passing through the objective periphery. Using a variety of intracellular fluorescent labels as well as negative staining experiments to measure cell-induced scattering, we find that azimuthal beam spinning produces TIRFM images that more accurately portray the real fluorophore distribution, but these images are still hampered by far-field excitation. Furthermore, although clearly measureable, cell-induced scattering is not the dominant source of far-field excitation light in objective-type TIRF, at least for most types of weakly scattering cells. It is the microscope illumination optical path that produces a large cell- and beam-angle invariant stray excitation that is insensitive to beam scanning. This instrument-induced glare is produced far from the sample plane, inside the microscope illumination optical path. We identify stray reflections and high-numerical aperture aberrations of the TIRF objective as one important source. This work is accompanied by a companion paper (Pt.2/2). PMID:24606927

  3. Theory and Implementation of a VLSI Stray Insensitive Switched Capacitor Composite Operational Amplifier

    DTIC Science & Technology

    1994-06-01

    to the simulations, we get a proof of correct concept that matches the mathematical foundation of the microchip. 108 Vill. APPLICATIONS A. WHERE AND...ORGANIZATION (if applicable ) 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS Ivogru Elewwn No. Pro8a No. Task No. Wor Unit Acess L...necessary and identify by block number) ’ FIELD GROUP SUBGROUP Mathematical derivation of circuit transfer functions, Composite Operational Amplifiers

  4. Remote Detection of the Hydronium Ion

    DTIC Science & Technology

    1975-03-01

    and all three arrangements have been observed. Apparently, the overall attainment of minimum energy in the crystal lattice is influential in...commercially available Jarre11-Ash 1-meter double monochromator. This unit has excellent stray light rejection and high linear dispersion . The detector is...and that these measurements are directly related to quantification of acid content in the atmosphere. Efforts in the area of Raman Spectroscopy

  5. Fixing Stellarator Magnetic Surfaces

    NASA Astrophysics Data System (ADS)

    Hanson, James D.

    1999-11-01

    Magnetic surfaces are a perennial issue for stellarators. The design heuristic of finding a magnetic field with zero perpendicular component on a specified outer surface often yields inner magnetic surfaces with very small resonant islands. However, magnetic fields in the laboratory are not design fields. Island-causing errors can arise from coil placement errors, stray external fields, and design inadequacies such as ignoring coil leads and incomplete characterization of current distributions within the coil pack. The problem addressed is how to eliminate such error-caused islands. I take a perturbation approach, where the zero order field is assumed to have good magnetic surfaces, and comes from a VMEC equilibrium. The perturbation field consists of error and correction pieces. The error correction method is to determine the correction field so that the sum of the error and correction fields gives zero island size at specified rational surfaces. It is particularly important to correctly calculate the island size for a given perturbation field. The method works well with many correction knobs, and a Singular Value Decomposition (SVD) technique is used to determine minimal corrections necessary to eliminate islands.

  6. Note: Sensitive fluorescence detection through minimizing the scattering light by anti-reflective nanostructured materials

    NASA Astrophysics Data System (ADS)

    Xu, Supeng; Yin, Yanning; Gu, Ruoxi; Xia, Meng; Xu, Liang; Chen, Li; Xia, Yong; Yin, Jianping

    2018-04-01

    We demonstrate a new approach with fabrication of anti-reflective coating to substantially reduce the scattering light in an ultra-high vacuum during laser induced fluorescence (LIF) detection. To do so, the surface of the vacuum chamber in the detection region was blackened and coated with the special solar heat absorbing nanomaterials. We demonstrate that more than 97.5% of the stray light in the chamber spanning from near infrared to ultraviolet can be absorbed which effectively improves the signal to noise (S/N) ratio. With this technique, the LIF signal from the cold magnesium monofluoride molecules has been observed with an S/N ratio of ˜4 times better than without that.

  7. False color viewing device

    DOEpatents

    Kronberg, J.W.

    1992-10-20

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  8. False color viewing device

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  9. False color viewing device

    DOEpatents

    Kronberg, J.W.

    1991-05-08

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  10. Optimization of the occulter for the Solar Orbiter/METIS coronagraph

    NASA Astrophysics Data System (ADS)

    Landini, Federico; Vivès, Sébastien; Romoli, Marco; Guillon, Christophe; Pancrazzi, Maurizio; Escolle, Clement; Focardi, Mauro; Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele

    2012-09-01

    METIS (Multi Element Telescope for Imaging and Spectroscopy investigation), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona, by means of an integrated instrument suite located on a single optical bench and sharing the same aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. Coronagraphs history teaches that a particular attention must be dedicated to the occulter optimization. The METIS occulting system is of particular interest due to its innovative concept. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. A breadboard of the occulting assembly (BOA) has been manufactured in order to perform stray light tests in front of two solar simulators (in Marseille, France and in Torino, Italy). A first measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe the BOA design, the laboratory set-up and the preliminary results.

  11. Model Uncertainty and Test of a Segmented Mirror Telescope

    DTIC Science & Technology

    2014-03-01

    Optical Telescope project EOM: equation of motion FCA: fine control actuator FCD: Face-Centered Cubic Design FEA: finite element analysis FEM: finite...housed in a dark tent to isolate the telescope from stray light, air currents, or dust and other debris. However, the closed volume is prone to...is composed of six hexagonal segments that each have six coarse control actuators (CCA) for segment phasing control, three fine control actuators

  12. Determining coronal electron temperatures from observations with UVCS/SOHO

    NASA Technical Reports Server (NTRS)

    Fineschi, S.; Esser, R.; Habbal, S. R.; Karovska, M.; Romoli, M.; Strachan, L.; Kohl, J. L.; Huber, M. C. E.

    1995-01-01

    The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.

  13. System implications of aperture-shade design for the SIRTF Observatory

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Brooks, W. F.; Maa, S.

    1987-01-01

    The 1-m-aperture Space Infrared Telescope Facility (SIRTF) will operate with a sensitivity limited only by the zodiacal background. This sensitivity requirement places severe restrictions on the amount of stray light which can reach the focal plane from off-axis sources such as the sun or earth limb. In addition, radiation from these sources can degrade the lifetime of the telescope and instrument cryogenic system which is now planned for two years before the first servicing. Since the aperture of the telescope represents a break in the telescope insulation system and is effectively the first element in the optical train, the aperture shade is a key system component. The mass, length, and temperature of the shade should be minimized to reduce system cost while maximizing the telescope lifetime and stray light performance. The independent geometric parameters that characterize an asymmetrical shade for a 600 km, 28 deg orbit were identified, and the system sensitivity to the three most important shade parameters were explored. Despite the higher heat loads compared to previously studied polar orbit missions, the analysis determined that passive radiators of a reasonable size are sufficient to meet the system requirements. An optimized design for the SIRTF mission, based on the sensitivity analysis, is proposed.

  14. PARASITIC INTERFERENCE IN LONG BASELINE OPTICAL INTERFEROMETRY: REQUIREMENTS FOR HOT JUPITER-LIKE PLANET DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matter, A.; Lopez, B.; Lagarde, S.

    2009-12-01

    The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appearsmore » to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from lambda/500 to lambda/5 in the L band (lambda = 3.5 mum), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively lambda/500 approx 2 nm and lambda/30 approx 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to lambda/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a reference star, at this accuracy level, seems very difficult. Moreover, since parasitic phase is an object-dependent quantity, the use of a hypothetical phase abacus, directly giving the parasitic phase from a given parasitic flux level, is also impossible. Some instrumental solutions, implemented at the instrument design stage for limiting or preventing this parasitic interference, appear to be crucial and are presented in this paper.« less

  15. Navigator alignment using radar scan

    DOEpatents

    Doerry, Armin W.; Marquette, Brandeis

    2016-04-05

    The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.

  16. Analysis of stray radiation for infrared optical system

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Tingcheng; Liao, Zhibo; Mu, Shengbo; Du, Jianxiang; Wang, Xiangdong

    2016-10-01

    Based on the theory of radiation energy transfer in the infrared optical system, two methods for stray radiation analysis caused by interior thermal radiation in infrared optical system are proposed, one of which is important sampling method technique using forward ray trace, another of which is integral computation method using reverse ray trace. The two methods are discussed in detail. A concrete infrared optical system is provided. Light-tools is used to simulate the passage of radiation from the mirrors and mounts. Absolute values of internal irradiance on the detector are received. The results shows that the main part of the energy on the detector is due to the critical objects which were consistent with critical objects obtained by reverse ray trace, where mirror self-emission contribution is about 87.5% of the total energy. Corresponding to the results, the irradiance on the detector calculated by the two methods are in good agreement. So the validity and rationality of the two methods are proved.

  17. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    NASA Astrophysics Data System (ADS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-10-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.

  18. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  19. Investigating the Relation between Sunspots and Umbral Dots

    NASA Astrophysics Data System (ADS)

    Yadav, Rahul; Louis, Rohan E.; Mathew, Shibu K.

    2018-03-01

    Umbral dots (UDs) are transient, bright features observed in the umbral region of a sunspot. We study the physical properties of UDs observed in sunspots of different sizes. The aim of our study is to relate the physical properties of UDs with the large-scale properties of sunspots. For this purpose, we analyze high-resolution G-band images of 42 sunspots observed by Hinode/SOT, located close to disk center. The images were corrected for instrumental stray light and restored with the modeled point-spread function. An automated multilevel tracking algorithm was employed to identify the UDs located in selected G-band images. Furthermore, we employed Solar Dynamics Observatory/HMI, limb-darkening-corrected, full-disk continuum images to estimate the sunspot phase and epoch for the selected sunspots. The number of UDs identified in different umbrae exhibits a linear relation to the umbral size. The observed filling factor ranges from 3% to 7% and increases with the mean umbral intensity. Moreover, the filling factor shows a decreasing trend with the umbral size. We also found that the observed mean and maximum intensities of UDs are correlated with the mean umbral intensity. However, we do not find any significant relationship between the mean (and maximum) intensity and effective diameter of UDs and the sunspot area, epoch, and decay rate. We suggest that this lack of relation could be due to either the distinct transition of spatial scales associated with overturning convection in the umbra or the shallow depth associated with UDs, or both.

  20. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    PubMed

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  1. Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seaholtz, Richard G.; Buggele, Alvin E.

    1997-01-01

    A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.

  2. On-Orbit Calibration and Performance of S-NPP VIIRS DNB

    NASA Technical Reports Server (NTRS)

    Chen, H.; Sun, C.; Chen, X.; Chiang, K.; Xiong, X.

    2016-01-01

    The S-NPP VIIRS instrument has successfully operated since its launch in October 2011. The VIIRS Day-Night Band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 m that is capable of observing Earth scenes during both day and nighttime orbits at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low, mid, or high gain stages, and it uses an onboard solar diffuser (SD) for its low gain stage calibration. The SD observations also provide a means to compute gain ratios of low-to-mid and mid-to-high gain stages. This paper describes the DNB on-orbit calibration methodologies used by the VIIRS Characterization Support Team (VCST) in supporting the NASA earth science community with consistent VIIRS sensor data records (SDRs) made available by the Land Science Investigator-led Processing Systems (SIPS). It provides an assessment and update of DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, stray light contamination and its correction. Also presented in this paper are performance validations based on earth scenes and lunar observations.

  3. Telescope-optical system performance analysis for the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the Upper Atmospheric Research Satellite

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Forney, P. B.; Morrow, H. E.; Anapol, M.

    1983-01-01

    A first-order performance analysis of the CLAES telescope-optical system is presented. The experiment involves the passive measurement of earth-limb radiance over a 10-60 km tangent altitude range, and is based on a solid Fabry-Perot spectrometer which provides spectral resolution of 0.25/cm for atmospheric emission spectroscopy over the 3.5-12 micron IR range. The optical system is required to provide a high degree of off-axis rejection and stray-light control, primarily to suppress intense emission from the earth surface. The astigmatism and other geometric aberrations are corrected by a secondary mirror which produces an excellent image of the primary one, allowing for location of a diffraction control or Lyot stop. The off-axis scattering performance of the telescope is examined in terms of the mirror scatter coefficient and point source rejection ratio. A mirror bidirectional reflectance distribution function of 0.0001 at 1 deg with a 1/theta-squared roll-off between 1 and 0.2 deg is realizable based on recent measurements. This results in an off-axis radiance term that is generally small in comparison with the system-limiting NER.

  4. Advances in radiometry for ocean color

    USGS Publications Warehouse

    Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; Stone, T.C.; Yarbrough, M.A.; Kim, Y.S.; Barnes, R.A.; Mueller, J.L.

    2004-01-01

    We have presented a number of recent developments in radiometry that directly impact the uncertainties achievable in ocean-color research. Specifically, a new (2000) U. S. national irradiance scale, a new LASER-based facility for irradiance and radiance responsivity calibrations, and applications of the LASER facility for the calibration of sun photometers and characterization of spectrographs were discussed. For meaningful long-time-series global chlorophyll-a measurements, all instruments involved in radiometric measurements, including satellite sensors, vicarious calibration sensors, sensors used in the development of bio-optical algorithms and atmospheric characterization need to be fully characterized and corrected for systematic errors, including, but not limited to, stray light. A unique, solid-state calibration source is under development to reduce the radiometric uncertainties in ocean color instruments, in particular below 400 nm. Lunar measurements for trending of on-orbit sensor channel degradation were described. Unprecedented assessments, within 0.1 %, of temporal stability and drift in a satellite sensor's radiance responsivity are achievable with this approach. These developments advance the field of ocean color closer to the desired goal of reducing the uncertainty in the fundamental radiometry to a small component of the overall uncertainty in the derivation of remotely sensed ocean-color data products such as chlorophyll a.

  5. The Disturbing Effect of the Stray Magnetic Fields on Magnetoimpedance Sensors

    PubMed Central

    Wang, Tao; Zhou, Yong; Lei, Chong; Zhi, Shaotao; Guo, Lei; Li, Hengyu; Wu, Zhizheng; Xie, Shaorong; Luo, Jun; Pu, Huayan

    2016-01-01

    The disturbing effect of the stray magnetic fields of Fe-based amorphous ribbons on the giant magnetoimpedance (GMI) sensor has been investigated systematically in this paper. Two simple methods were used for examining the disturbing effect of the stray magnetic fields of ribbons on the GMI sensor. In order to study the influence of the stray magnetic fields on the GMI effect, the square-shaped amorphous ribbons were tested in front, at the back, on the left and on the top of a meander-line GMI sensor made up of soft ferromagnetic films, respectively. Experimental results show that the presence of ribbons in front or at the back of GMI sensor shifts the GMI curve to a lower external magnetic field. On the contrary, the presence of ribbons on the left or on the top of the GMI sensor shifts the GMI curve to a higher external magnetic field, which is related to the coupling effect of the external magnetic field and the stray magnetic fields. The influence of the area and angle of ribbons on GMI was also studied in this work. The GMI sensor exhibits high linearity for detection of the stray magnetic fields, which has made it feasible to construct a sensitive magnetometer for detecting the typical stray magnetic fields of general soft ferromagnetic materials. PMID:27763498

  6. Objective straylight assessment of the human eye with a novel device

    NASA Astrophysics Data System (ADS)

    Schramm, Stefan; Schikowski, Patrick; Lerm, Elena; Kaeding, André; Klemm, Matthias; Haueisen, Jens; Baumgarten, Daniel

    2016-03-01

    Forward scattered light from the anterior segment of the human eye can be measured by Shack-Hartmann (SH) wavefront aberrometers with limited visual angle. We propose a novel Point Spread Function (PSF) reconstruction algorithm based on SH measurements with a novel measurement devise to overcome these limitations. In our optical setup, we use a Digital Mirror Device as variable field stop, which is conventionally a pinhole suppressing scatter and reflections. Images with 21 different stop diameters were captured and from each image the average subaperture image intensity and the average intensity of the pupil were computed. The 21 intensities represent integral values of the PSF which is consequently reconstructed by derivation with respect to the visual angle. A generalized form of the Stiles-Holladay-approximation is fitted to the PSF resulting in a stray light parameter Log(IS). Additionaly the transmission loss of eye is computed. For the proof of principle, a study on 13 healthy young volunteers was carried out. Scatter filters were positioned in front of the volunteer's eye during C-Quant and scatter measurements to generate straylight emulating scatter in the lens. The straylight parameter is compared to the C-Quant measurement parameter Log(ISC) and scatter density of the filters SDF with a partial correlation. Log(IS) shows significant correlation with the SDF and Log(ISC). The correlation is more prominent between Log(IS) combined with the transmission loss and the SDF and Log(ISC). Our novel measurement and reconstruction technique allow for objective stray light analysis of visual angles up to 4 degrees.

  7. The application of magnetic resonance microimaging to the visible light curing of dental resins. 3. Stray-field nuclear magnetic resonance imaging (STRAFI).

    PubMed

    Lloyd, C H; Scrimgeour, S N; Lane, D M; Hunter, G; McDonald, P J

    2001-09-01

    To investigate the application of stray-field nuclear magnetic resonance imaging (STRAFI) to the visible light curing of dental restorative materials. STRAFI can overcome peak broadening associated with the conventional magnetic resonance microimaging (MRM) of glassy polymers, and has the potential to image dental restorative resins at both low and high degrees of conversion. Cylindrical composite specimens were light-cured from one end to produce some that were fully cured throughout their length and others that were fully cured at one end and uncured at the other. A one-dimensional probe was used to measure the magnetisation in 40 microm thick slices at 100 microm intervals along the length of the specimen. A quadrature pulse sequence was applied and the magnetisation decay recorded in a train of eight echoes. A value for T(2) could be obtained only for the polymer (59+/-16 microms), therefore the echoes were summed to give an approximate indication of the degree of conversion. The echo sum for the monomer was significantly higher than that for the polymer. Differences in composite shade and cure time produced changes in the cure profiles. STRAFI produced measurements for both monomer and polymer in all stages of conversion that allowed cure profiles to be produced. Summing the decay echoes produced a qualitative measure of the condition of the material in the selected slice. The same data can be used to calculate T(2), a quantitative parameter. This first investigation has demonstrated that STRAFI is well suited to polymerisation studies.

  8. Application of DuPont photopolymer films to automotive holographic display

    NASA Astrophysics Data System (ADS)

    Nakazawa, Norihito; Ono, Motoshi; Takeuchi, Shoichi; Sakurai, Hiromi; Hirano, Masahiro

    1998-03-01

    Automotive holographic head-up display (HUD) systems employing DuPont holographic photopolymer films are presented. Holographic materials for automotive application are exposed to severe environmental conditions and are required high performance. This paper describes the improvement of DuPont photopolymer films for the automotive use, critical technical issues such as optical design, external color and stray light. The holographic HUD combiner embedded in a windshield of an automobile has peculiar problems called external color. Diffraction light from holographic combiner makes its external color tone stimulative. We have introduced RGB three color recording and color simulation in order to improve the external color. A moderate external color tone was realized by the optimization in terms of wavelengths and diffraction efficiencies of the combiner hologram. The stray light called flare arises from a reflection by glass surface of windshield. We have developed two techniques to avoid the flare. First is a diffuser type trap beam guard hologram which reduces the intensity of the flare. Second is the optimization of the design of hologram so that the incident direction of flare is lower than the horizon line. As an example of automotive display a stand-alone type holographic HUD system attached on the dashboard of an automobile is demonstrated, which provides useful driving information such as route guidance. The display has a very simple optical system that consists of only a holographic combiner and a vacuum fluorescent display. Its thin body is only 35 mm high and does not obstruct driver's view. The display gives high contrast and wide image.

  9. Using parentage analysis to estimate rates of straying and homing in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Ford, Michael J; Murdoch, Andrew; Hughes, Michael

    2015-03-01

    We used parentage analysis based on microsatellite genotypes to measure rates of homing and straying of Chinook salmon (Oncorhynchus tshawytscha) among five major spawning tributaries within the Wenatchee River, Washington. On the basis of analysis of 2248 natural-origin and 11594 hatchery-origin fish, we estimated that the rate of homing to natal tributaries by natural-origin fish ranged from 0% to 99% depending on the tributary. Hatchery-origin fish released in one of the five tributaries homed to that tributary at a far lower rate than the natural-origin fish (71% compared to 96%). For hatchery-released fish, stray rates based on parentage analysis were consistent with rates estimated using physical tag recoveries. Stray rates among major spawning tributaries were generally higher than stray rates of tagged fish to areas outside of the Wenatchee River watershed. Within the Wenatchee watershed, rates of straying by natural-origin fish were significantly affected by spawning tributary and by parental origin: progeny of naturally spawning hatchery-produced fish strayed at significantly higher rates than progeny whose parents were themselves of natural origin. Notably, none of the 170 offspring that were products of mating by two natural-origin fish strayed from their natal tributary. Indirect estimates of gene flow based on FST statistics were correlated with but higher than the estimates from the parentage data. Tributary-specific estimates of effective population size were also correlated with the number of spawners in each tributary. Published [2015]. This article is a U.S. Government work and is in the public domain in the USA.

  10. Enhancement of switching stability of tunneling magnetoresistance system with artificial ferrimagnet

    NASA Astrophysics Data System (ADS)

    You, Chun-Yeol; Bader, Sam. D.; Scheinfein, M. R.

    2002-03-01

    In the study of spin dependent magnetic tunneling junctions, the switching stability of the magnetically hard layer is a crucial issue in magnetic random access memory applications[1]. After repeated cycling of the soft layer, the magnetization of the hard layer is demagnetized by the stray field from the domain wall created during the switching[2]. The magnitude of the stray field from the soft layer is large enough to switch a domain in the hard layer. Therefore, reducing this stray field is necessary to increase the switching stability. In this study, we explore an artificial ferrimagnet to replace the usual soft layer in order to reduce stray field. The ferrimagnet consists of an antiferromagnetically coupled trilayer that has two ferromagnetic layers of unequal thickness and opposite magnetization orientation. Since the sign of stray field of the two ferromagnetic layers is opposed, the total stray field is greatly reduced. [Supported by the US DOE, BES-MS, under Contract W-31-109-ENG-38.] [1] S. Gider et al. Science 281, 797 (1998). [2] L. Thomas et al. Phys. Rev. Lett. 84, 1816 (2000).

  11. Evaluation of Delamination of X80 Pipeline Steel Coating Under Alternating Stray Current Via Scanning Electrochemical Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xinhua; Liu, Qiang; Chun, Yingchun; Li, Yingchao; Wang, Zuquan

    2018-04-01

    The delamination of epoxy coating on X80 pipeline steel was evaluated under various stray alternating current (AC) interferences (0-300 A/m2). Qualitative and quantitative analyses were carried out using scanning electrochemical microscopy (SECM), electrochemical impedance spectroscopy (EIS), and three-dimensional digital microscopy. The results show that the SECM current is directly proportional to the soaking time and applied current density. The variation in SECM current curve shape indicates the delamination distance of epoxy coatings at the defect area. The depths of corrosion pits at 50, 100, and 300 A/m2 stray currents were 140, 160, and 240 μm, respectively. The corrosion pits also became wider with increasing current densities. With increasing stray AC densities, both the coating delamination and pit depth became more severe at the same soaking time. The EIS results show that the change in impedance was not significant without stray current, whereas the impedance first decreased and then increased when stray current was applied. These results are consistent with the SECM measurements.

  12. Ultranarrow bandwidth spectral filtering for long-range free-space quantum key distribution at daytime.

    PubMed

    Höckel, David; Koch, Lars; Martin, Eugen; Benson, Oliver

    2009-10-15

    We describe a Fabry-Perot-based spectral filter for free-space quantum key distribution (QKD). A multipass etalon filter was built, and its performance was studied. The whole filter setup was carefully optimized to add less than 2 dB attenuation to a signal beam but block stray light by 21 dB. Simulations show that such a filter might be sufficient to allow QKD satellite downlinks during daytime with the current technology.

  13. Magneto-optical visualization of three spatial components of inhomogeneous stray fields

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.

    2012-08-01

    The article deals with the physical principles of magneto-optical visualization (MO) of three spatial components of inhomogeneous stray fields with the help of FeCo metal indicator films in the longitudinal Kerr effect geometry. The inhomogeneous field is created by permanent magnets. Both p- and s-polarization light is used for obtaining MO images with their subsequent summing, subtracting and digitizing. As a result, the MO images and corresponding intensity coordinate dependences reflecting the distributions of the horizontal and vertical magnetization components in pure form have been obtained. Modeling of both the magnetization distribution in the indicator film and the corresponding MO images shows that corresponding to polar sensitivity the intensity is proportional to the normal field component, which permits normal field component mapping. Corresponding to longitudinal sensitivity, the intensity of the MO images reflects the angular distribution of the planar field component. MO images have singular points in which the planar component is zero and their movement under an externally homogeneous planar field permits obtaining of additional information on the two planar components of the field under study. The intensity distribution character in the vicinity of sources and sinks (singular points) remains the same under different orientations of the light incidence plane. The change of incident plane orientation by π/2 alters the distribution pattern in the vicinity of the saddle points.

  14. Cryo-Etched Black Silicon for Use as Optical Black

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.

    2011-01-01

    Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.

  15. Efficiency, dispersion and straylight performance tests of immersed gratings for high resolution spectroscopy in the near infrared

    NASA Astrophysics Data System (ADS)

    Fernandez-Saldivar, J.; Culfaz, F.; Angli, N.; Bhatti, I.; Lobb, D.; Baister, G.; Touzet, B.; Desserouer, F.; Guldimann, B.

    2017-11-01

    New immersed grating technology is needed particularly for use in imaging spectrometers that will be used in sensing the atmosphere O2A spectral band (750nm - 775 nm) at spectral resolution in the order of 0.1 nm whilst ensuring a high efficiency and maintaining low stray light. In this work, the efficiency, dispersion and stray light performance of an immersed grating are tested and compared to analytical models. The grating consists of an ion-beam etched grating in a fused-silica substrate of 120 mm x 120mm immersed on to a prism of the same material. It is designed to obtain dispersions > 0.30°/nm-1 in air and >70% efficiency. The optical performance of the immersed grating is modelled and methods to measure its wavefront, efficiency, dispersion and scattered radiance are described. The optical setup allows the measurement of an 80mm beam diameter to derive the bidirectional scatter distribution function (BSDF) from the immersed grating from a minimum angle of 0.1° from the diffracted beam with angular resolution of 0.05°. Different configurations of the setup allow the efficiency and dispersion measurements using a tuneable laser in the 750nm-775nm range. The results from the tests are discussed with the suitability of the immersed gratings in mind for future space based instruments for atmospheric monitoring.

  16. A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light

    NASA Astrophysics Data System (ADS)

    Sinha, Sudarson Sekhar; Verma, Pramod Kumar; Makhal, Abhinandan; Pal, Samir Kumar

    2009-05-01

    In this work we describe design and use of a fiber-optic based optical system for the spectroscopic studies on the samples under the presence of strong ambient light. The system is tested to monitor absorption, emission, and picosecond-resolved fluorescence transients simultaneously with a time interval of 500 ms for several hours on a biologically important sample (vitamin B2) under strong UV light. An efficient stray-light rejection ratio of the setup is achieved by the confocal geometry of the excitation and detection channels. It is demonstrated using this setup that even low optical signal from a liquid sample under strong UV-exposure for the picosecond-resolved fluorescence transient measurement can reliably be detected by ultrasensitive microchannel plate photomultiplier tube solid state detector. The kinetics of photodeterioration of vitamin B2 measured using our setup is consistent with that reported in the literature. Our present studies also justify the usage of tungsten light than the fluorescent light for the healthy preservation of food with vitamin B2.

  17. Assessment of a Targeted Trap-Neuter-Return Pilot Study in Auckland, New Zealand

    PubMed Central

    Zito, Sarah; Vigeant, Shalsee; Dale, Arnja

    2018-01-01

    Simple Summary It is generally accepted that stray cats need to be managed to minimise the associated negative impacts and there is a need for effective and humane management tools. One such potential tool is trap-neuter-return (TNR), which anecdotally has been used in New Zealand to manage stray cats, but no concerted and targeted implementation of this technique has been reported, nor any formal assessments conducted. A targeted TNR (TTNR) programme for urban stray cats was implemented and assessed in one Auckland suburb. Assessment was based on the number of incoming felines; stray, unsocialised cats euthanased; unsocialised, unowned cats sterilised and returned (independently of the TTNR programme); and neonatal/underage euthanasias. Incoming stray feline, underage euthanasia, and unsocialised stray cat euthanasia numbers all reduced for the targeted suburb when these outcome measures were compared for the years before and after the programme. These outcome measures had a greater reduction in the targeted suburb compared to the other Auckland suburbs not targeted by the TTNR programme, although causation cannot be inferred, as a variety of reasons could have contributed to the changes. This pilot programme suggests that TTNR could be a valuable humane cat management tool in urban New Zealand, and further assessment is warranted. Abstract There is a need for effective and humane management tools to manage urban stray cats and minimise negative impacts associated with stray cats. One such tool is targeted trap-neuter-return (TTNR), but no concerted implementation of this technique or formal assessments have been reported. To address this deficit, a TTNR programme was implemented and assessed in one Auckland suburb from May 2015 to June 2016; the programme sterilised and returned 348 cats (4.2 cats/1000 residents). Assessment was based on the number of incoming felines; stray, unsocialised cats euthanased; unsocialised, unowned cats sterilised and returned (independently of the TTNR programme); and neonatal/underage euthanasias. Incoming stray felines, underage euthanasias, and unsocialised stray cat euthanasias were all reduced for the targeted suburb when compared for the years before and after the programme (the percentage reduction in these parameters was −39, −17, −34, −7, and −47, respectively). These outcome measures had a greater reduction in the targeted suburb compared to the Auckland suburbs not targeted by the TTNR programme (p < 0.01), although causation cannot be inferred, as a variety of reasons could have contributed to the changes. This pilot programme suggests that TTNR could be a valuable, humane cat management tool in urban New Zealand, and further assessment is warranted. PMID:29757255

  18. Prevalence of external ear disorders in Belgian stray cats.

    PubMed

    Bollez, Anouck; de Rooster, Hilde; Furcas, Alessandra; Vandenabeele, Sophie

    2018-02-01

    Objectives Feline otitis externa is a multifactorial dermatological disorder about which very little is known. The objective of this study was to map the prevalence of external ear canal disorders and the pathogens causing otitis externa in stray cats roaming around the region of Ghent, Belgium. Methods One hundred and thirty stray cats were randomly selected during a local trap-neuter-return programme. All cats were European Shorthairs. This study included clinical, otoscopic and cytological evaluation of both external ears of each cat. Prospective data used as parameters in this study included the sex, age and body condition score of each cat, as well as the presence of nasal and/or ocular discharge, and the results of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) Snap tests. Results Remarkably, very few (sub)clinical problems of the external ear canal were found in the stray cat population. Malassezia species was by far the most common organism found in the external ear canals of the 130 stray cats. A total of 96/130 (74%) cats were found to have Malassezia species organisms present in one or both ears based on the cytological examination. No correlation was found between the parameters of sex, age, body condition score, the presence of nasal and/or ocular discharge and FIV and FeLV status, and the presence of parasites, bacteria or yeasts. Conclusions and relevance This study provides more information about the normal state of the external ear canal of stray cats. The ears of most stray cats are relatively healthy. The presence of Malassezia species organisms in the external ear canal is not rare among stray cats.

  19. Why HID headlights bother older drivers

    PubMed Central

    Mainster, M A; Timberlake, G T

    2003-01-01

    Driving requires effective coordination of visual, motor, and cognitive skills. Visual skills are pushed to their limit at night by decreased illumination and by disabling glare from oncoming headlights. High intensity discharge (HID) headlamps project light farther down roads, improving their owner’s driving safety by increasing the time available for reaction to potential problems. Glare is proportional to headlamp brightness, however, so increasing headlamp brightness also increases potential glare for oncoming drivers, particularly on curving two lane roads. This problem is worse for older drivers because of their increased intraocular light scattering, glare sensitivity, and photostress recovery time. An analysis of automobile headlights, intraocular stray light, glare, and night driving shows that brightness rather than blueness is the primary reason for the visual problems that HID headlights can cause for older drivers who confront them. The increased light projected by HID headlights is potentially valuable, but serious questions remain regarding how and where it should be projected. PMID:12488274

  20. Single-beam dielectric-microsphere trapping with optical heterodyne detection

    NASA Astrophysics Data System (ADS)

    Rider, Alexander D.; Blakemore, Charles P.; Gratta, Giorgio; Moore, David C.

    2018-01-01

    A technique to levitate and measure the three-dimensional position of micrometer-sized dielectric spheres with heterodyne detection is presented. The two radial degrees of freedom are measured by interfering light transmitted through the microsphere with a reference wavefront, while the axial degree of freedom is measured from the phase of the light reflected from the surface of the microsphere. This method pairs the simplicity and accessibility of single-beam optical traps to a measurement of displacement that is intrinsically calibrated by the wavelength of the trapping light and has exceptional immunity to stray light. A theoretical shot noise limit of 1.3 ×10-13 m /√{Hz } for the radial degrees of freedom, and 3.0 ×10-15 m /√{Hz } for the axial degree of freedom can be obtained in the system described. The measured acceleration noise in the radial direction is 7.5 ×10-5 (m /s2) /√{Hz } .

  1. Setting up a Rayleigh Scattering Based Flow Measuring System in a Large Nozzle Testing Facility

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Gomez, Carlos R.

    2002-01-01

    A molecular Rayleigh scattering based air density measurement system has been built in a large nozzle testing facility at NASA Glenn Research Center. The technique depends on the light scattering by gas molecules present in air; no artificial seeding is required. Light from a single mode, continuous wave laser was transmitted to the nozzle facility by optical fiber, and light scattered by gas molecules, at various points along the laser beam, is collected and measured by photon-counting electronics. By placing the laser beam and collection optics on synchronized traversing units, the point measurement technique is made effective for surveying density variation over a cross-section of the nozzle plume. Various difficulties associated with dust particles, stray light, high noise level and vibration are discussed. Finally, a limited amount of data from an underexpanded jet are presented and compared with expected variations to validate the technique.

  2. Laboratory and airborne techniques for measuring fluoresence of natural surfaces

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.; Hemphill, W. R.

    1972-01-01

    Techniques are described for obtaining fluorescence spectra from samples of natural surfaces that can be used to predict spectral regions in which these surfaces would emit solar-stimulated or laser-stimulated fluorescence detectable by remote sensor. Scattered or reflected stray light caused large errors in spectrofluorometer analysis or natural sample surfaces. Most spurious light components can be eliminated by recording successive fluorescence spectra for each sample, using identical instrument settings, first with an appropriate glass or gelatin filter on the excitation side of the sample, and subsequently with the same filter on the emission side of the sample. This technique appears more accurate than any alternative technique for testing the fluorescence of natural surfaces.

  3. A new method named as Segment-Compound method of baffle design

    NASA Astrophysics Data System (ADS)

    Qin, Xing; Yang, Xiaoxu; Gao, Xin; Liu, Xishuang

    2017-02-01

    As the observation demand increased, the demand of the lens imaging quality rising. Segment- Compound baffle design method was proposed in this paper. Three traditional methods of baffle design they are characterized as Inside to Outside, Outside to Inside, and Mirror Symmetry. Through a transmission type of optical system, the four methods were used to design stray light suppression structure for it, respectively. Then, structures modeling simulation with Solidworks, CAXA, Tracepro, At last, point source transmittance (PST) curve lines were got to describe their performance. The result shows that the Segment- Compound method can inhibit stay light more effectively. Moreover, it is easy to active and without use special material.

  4. Development of the CSNS Lambertson magnet with very low stray field

    NASA Astrophysics Data System (ADS)

    Wu, Yuwen; Kang, Wen; Chen, Yuan; Wu, Xi; Li, Shuai; Wang, Lei; Deng, Changdong; Li, Li; Zhou, Jianxin; Liu, Yiqin

    2018-02-01

    In this paper, the magnetic and mechanical design of Lambertson are studied, and then magnetic field measurements are introduced. The results show that the integral field uniformity and effective length meet the physical requirements. The shielding measures shield the stray field effectively and the stray field along the circulating beam orbit is at a very low level.

  5. A ratioing radiometer for use with a solar diffuser. [to monitor in-flight calibration of satellite sensors

    NASA Technical Reports Server (NTRS)

    Palmer, James M.; Slater, Philip N.

    1991-01-01

    The use of an on-board solar diffuser has been proposed to monitor the in-flight calibration of satellite sensors. This paper presents the preliminary specifications and design for a ratioing radiometer, to be used to determine the change in radiance of the solar diffuser. The issues involved in spectral channel selection are discussed and the effects of stray light are presented. An error analysis showing the benefit of the ratioing radiometer is included.

  6. Landsat science team meeting: Summer 2015

    USGS Publications Warehouse

    Schroeder, Todd; Loveland, Thomas; Wulder, Michael A.; Irons, James R.

    2015-01-01

    With over 60 participants in attendance, this was the largest LST meeting ever held. Meeting topics on the first day included Sustainable Land Imaging and Landsat 9 development, Landsat 7 and 8 operations and data archiving, the Landsat 8 Thermal Infrared Sensor (TIRS) stray-light issue, and the successful Sentinel-2 launch. In addition, on days two and three the LST members presented updates on their Landsat science and applications research. All presentations are available at landsat.usgs.gov/science_LST_Team_ Meetings.php.

  7. Interdisciplinary Studies on the Combat Readiness and Health Issues Faced by Military Personnel. Addendum

    DTIC Science & Technology

    2010-09-01

    modality, perceptual overlap and the go/no-go N2. Psychophysiology, 41, 157–160. Perner, J., Lang, B., & Kloo, D. (2002). Theory of mind and self-control...a single, narrowpeak at 60Hz. The spatial loading was peaked near the ground electrode, consistent with theory (Ferree et al., 2001). The time course...inhibition changes as tasks become conceptually more abstract: for example, knowing to stop the car for red lights, small children , or a stray dog, but not

  8. Health and Ecological Aspects of Stray Cats in Old San Juan, Puerto Rico: Baseline Information to Develop an Effective Control Program.

    PubMed

    Castro-Prieto, Jessica; Andrade-Núñez, Maria José

    2018-06-01

    The overpopulation of stray cats in urban areas represents a potential risk for humans, as stray cats may carry diseases, such as toxoplasmosis, and virus such as rabies, the feline immunodeficiency, and the feline leukemia. In Old San Juan, a historic neighborhood and one of the most touristic places in Puerto Rico, there is an overpopulation of stray cats. In this study, we generated baseline information fundamental to developing a successful control program by estimating the stray cat population size, density, and spatial distribution. Furthermore, we quantified the number of neutered cats and developed a spatial database to include information about the external physical condition of each individual. We estimated a population of 178 (±21) cats, with a density of 3.6 cats/ha. Overall, we observed 209 cats, from which 149 (71%) were identified as new and 60 (29%) were recaptured. We found stray cats had a significant non-random and clustered spatial distribution (z-score = -19.39 SD; ratio = 0.29; p<0.0001), with an observable larger abundance in residential zones where food was provided. A total of 105 (70%) cats were neutered, and 32 (21%) individuals exhibited very poor physical conditions, including skin problems, scars, underweight, and blindness. We concluded that the ecological and descriptive data generated in this study are essential for an effective control of stray cats and their potential impacts on humans living in this neighborhood.

  9. Calibrating the system dynamics of LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshksar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.

    2018-06-01

    LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.

  10. Simulation and modeling of silicon pore optics for the ATHENA x-ray telescope

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Christensen, F. E.; Bavdaz, M.; Civitani, M. M.; Conconi, P.; Della Monica Ferreira, D.; Knudsen, E. B.; Massahi, S.; Pareschi, G.; Salmaso, B.; Shortt, B.; Tayabaly, K.; Westergaard, N. J.; Wille, E.

    2016-07-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with more than 1000 mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. Even if the current baseline design fulfills the required effective area of 2 m2 at 1 keV on-axis, alternative design solutions, e.g., privileging the field of view or the off-axis angular resolution, are also possible. Moreover, the stringent requirement of a 5 arcsec HEW angular resolution at 1 keV entails very small profile errors and excellent surface smoothness, as well as a precise alignment of the 1000 mirror modules to avoid imaging degradation and effective area loss. Finally, the stray light issue has to be kept under control. In this paper we show the preliminary results of simulations of optical systems based on SPO for the ATHENA X-ray telescope, from pore to telescope level, carried out at INAF/OAB and DTU Space under ESA contract. We show ray-tracing results, including assessment of the misalignments of mirror modules and the impact of stray light. We also deal with a detailed description of diffractive effects expected in an SPO module from UV light, where the aperture diffraction prevails, to X-rays where the surface diffraction plays a major role. Finally, we analyze the results of X-ray tests performed at the BESSY synchrotron, we compare them with surface finishing measurements, and we estimate the expected HEW degradation caused by the X-ray scattering.

  11. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, Luca; Gröbner, Julian; Hülsen, Gregor; Bachmann, Luciano; Blumthaler, Mario; Dubard, Jimmy; Khazova, Marina; Kift, Richard; Hoogendijk, Kees; Serrano, Antonio; Smedley, Andrew; Vilaplana, José-Manuel

    2016-04-01

    The reliable quantification of ultraviolet (UV) radiation at the earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers (ASRMs) are small, light, robust and cost-effective instruments, and are increasingly used for spectral irradiance measurements. Within the European EMRP ENV03 project "Solar UV", new devices, guidelines and characterization methods have been developed to improve solar UV measurements with ASRMs, and support to the end user community has been provided. In order to assess the quality of 14 end user ASRMs, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the blind intercomparison revealed that ASRMs, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema-weighted UV index - in particular at large solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available ASRMs within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range of solar zenith angles. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 and 400 nm under all atmospheric conditions.

  12. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, L.; Gröbner, J.; Hülsen, G.; Bachmann, L.; Blumthaler, M.; Dubard, J.; Khazova, M.; Kift, R.; Hoogendijk, K.; Serrano, A.; Smedley, A. R. D.; Vilaplana, J.-M.

    2015-12-01

    The reliable quantification of ultraviolet (UV) radiation at the Earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers are small, light, robust and cost effective instruments and are increasingly used for spectral irradiance measurements. Within the European EMRP-ENV03 project "Solar UV", new devices, guidelines, and characterization methods have been developed to improve solar UV measurements with array spectroradiometers and support to the end-user community has been provided. In order to assess the quality of 14 end-user array spectroradiometers, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the intercomparison revealed that array spectroradiometers, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema weighted UV index - in particular at low solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available array spectroradiometer within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range or solar zenith angle. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 to 400 nm under all atmospheric conditions.

  13. Postlaunch Performance of the Suomi National Polar-Orbiting Partnership Ozone Mapping and Profiler Suite (OMPS) Nadir Sensors

    NASA Technical Reports Server (NTRS)

    Seftor, C. J.; Jaross, G.; Kowitt, M.; Haken, M.; Li, J.; Flynn, L. E.

    2014-01-01

    The prelaunch specifications for nadir sensors of the Ozone Mapping and Profiler Suite (OMPS) were designed to ensure that measurements from them could be used to retrieve total column ozone and nadir ozone profile information both for operational use and for use in long-term ozone data records. In this paper, we will show results from our extensive analysis of the performance of the nadir mapper (NM) and nadir profiler (NP) sensors during the first year and a half of OMPS nadir operations. In most cases, we determined that both sensors meet or exceed their prelaunch specifications. Normalized radiance (radiance divided by irradiance) measurements have been determined to be well within their 2% specification for both sensors. In the case of stray light, the NM sensor is within its 2% specification for all but the shortest wavelengths, while the NP sensor is within its 2% specification for all but the longest wavelengths. Artifacts that negatively impacted the sensor calibration due to diffuser features were reduced to less than 1% through changes made in the solar calibration sequence. Preliminary analysis of the disagreement between measurements made by the NM and NP sensors in the region where their wavelengths overlap indicates that it is due to shifts in the shared dichroic filter after launch and that it can be corrected. In general, our analysis indicates that both the NM and NP sensors are performing well, that they are stable, and that any deviations from nominal performance can be well characterized and corrected.

  14. Design of light concentrators for Cherenkov telescope observatories

    NASA Astrophysics Data System (ADS)

    Hénault, François; Petrucci, Pierre-Olivier; Jocou, Laurent; Khélifi, Bruno; Manigot, Pascal; Hormigos, Stéphane; Knödlseder, Jürgen; Olive, Jean-François; Jean, Pierre; Punch, Michael

    2013-09-01

    The Cherenkov Telescope Array (CTA) will be the largest cosmic gamma ray detector ever built in the world. It will be installed at two different sites in the North and South hemispheres and should be operational for about 30 years. In order to cover the desired energy range, the CTA is composed of typically 50-100 collecting telescopes of various sizes (from 6 to 24-m diameters). Most of them are equipped with a focal plane camera consisting of 1500 to 2000 Photomultipliers (PM) equipped with light concentrating optics, whose double function is to maximize the amount of Cherenkov light detected by the photo-sensors, and to block any stray light originating from the terrestrial environment. Two different optical solutions have been designed, respectively based on a Compound Parabolic Concentrator (CPC), and on a purely dioptric concentrating lens. In this communication are described the technical specifications, optical designs and performance of the different solutions envisioned for all these light concentrators. The current status of their prototyping activities is also given.

  15. Convergence of highly parallel stray field calculation using the fast multipole method on irregular meshes

    NASA Astrophysics Data System (ADS)

    Palmesi, P.; Abert, C.; Bruckner, F.; Suess, D.

    2018-05-01

    Fast stray field calculation is commonly considered of great importance for micromagnetic simulations, since it is the most time consuming part of the simulation. The Fast Multipole Method (FMM) has displayed linear O(N) parallelization behavior on many cores. This article investigates the error of a recent FMM approach approximating sources using linear—instead of constant—finite elements in the singular integral for calculating the stray field and the corresponding potential. After measuring performance in an earlier manuscript, this manuscript investigates the convergence of the relative L2 error for several FMM simulation parameters. Various scenarios either calculating the stray field directly or via potential are discussed.

  16. Salmon restoration in the Umatilla River: A study of straying and risk containment

    USGS Publications Warehouse

    Hayes, M.C.; Carmichael, R.W.

    2002-01-01

    The use of artificial propagation may produce unexpected results and the need for risk containment. Stray chinook salmon (Oncorhynchus tshawytscha) from Umatilla River releases put the threatened Snake River stock at risk, caused conflict between two plans, altered management, and greatly increased the costs for hatchery-based restoration. Stray Umatilla returns captured or observed in the Snake River averaged more than 200 fish annually and comprised up to 26% of the escapement. The risk to the threatened population stimulated a series of containment actions, including wire tagging 2-3 million fish annually, use of acclimation ponds, altering release locations, flow enhancement, and broodstock management changes. Actions for the use of artificial propagation where straying or unexpected results are a concern include marking or tagging most or all fish, limiting the number of fish initially released, recognizing environmental variables that influence straying, ensuring that funding for risk containment is available when undesirable results occur, and recognizing that unexpected results may not be manifested or identified immediately.

  17. Urban stray cats infested by ectoparasites with zoonotic potential in Greece.

    PubMed

    Lefkaditis, Menelaos A; Sossidou, Anna V; Panorias, Alexandros H; Koukeri, Smaragda E; Paştiu, Anamaria I; Athanasiou, Labrini V

    2015-10-01

    A large population of stray cats is encountered in many urban areas sharing the same environment with people, usually being in a close direct contact with them. A variety of ectoparasites can infest such cats, causing mild dermatological abnormalities to more severe systemic disorders. In order to determine the extent of which stray cats carry ectoparasites, particularly those of zoonotic potential, 341 stray cats originating from the urban area of Thessaloniki, Greece, were examined between 2012 and 2014. The signalment of each cat such as gender, hair length, and roughly estimated age were recorded. From a total of 341 examined stray cats, 127 (37.24%; 95% confidence interval (CI) 32.14-42.64) were infested with at least one of the following ectoparasites: mites-Otodectes cynotis (15.8%), Notoedres cati (2.35%), Cheyletiella blakei (2.05%); fleas-Ctenocephalides felis (24.3%); ticks-Rhipicephalus sanguineus (0.88%); and lice-Felicola subrostratus (0.59%). A significantly higher prevalence of ectoparasites was observed in long-haired individuals (p < 0.00001). The above ectoparasites may either cause or transmit diseases not only in cats but also in humans Therefore, antiparasitic control should be included in stray cat neutering campaigns while public health education for taking preventive measures will decrease the risk of transmission to humans.

  18. Spirocercosis in owned and stray dogs in Grenada.

    PubMed

    Chikweto, A; Bhaiyat, M I; Tiwari, K P; de Allie, C; Sharma, R N

    2012-12-21

    The aim of this retrospective study was to estimate the prevalence of Spirocerca lupi and its associated lesions in owned and stray dogs in Grenada. During 2001-2011 necropsies were carried out on 1022 owned and 450 stray dogs at the pathology diagnostic laboratory, School of Veterinary Medicine, St. George's University, Grenada. Lesions due to S. lupi characterized by focal to multifocal granulomatous esophagitis with aneurysms, mineralized plaques and nodules in the adjacent thoracic aorta were found in 90 (8.8%; 95% confidence interval, 7.1-10.5%) of owned dogs and 64 (14.2%; 95% CI, 11.2-17.6%) of stray dogs. Stray dogs were significantly more affected by spirocercosis than owned dogs (p=0.0022). Of the 90 owned dogs with spirocercosis, 3 dogs had aberrant migration to the thoracic vertebral column with resultant spondylitis; 1 dog each had aberrant migration involving the stomach and the lung. Two dogs had ruptured aorta with hemothorax. Among the 64 stray dogs with spirocercosis, one dog had an esophageal granuloma that transformed into a fibroblastic osteosarcoma; spondylitis due to aberrant migration of S. lupi and hypertrophic osteopathy. We report spirocercosis for the first time in the dogs from a tropical island of Grenada. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A Survey of Public Opinion on Cat (Felis catus) Predation and the Future Direction of Cat Management in New Zealand

    PubMed Central

    Walker, Jessica K.; Bruce, Stephanie J.; Dale, Arnja R.

    2017-01-01

    Simple Summary The need to balance the benefits of cat ownership with the prevention of wildlife predation in New Zealand evokes strong and opposing views. This paper evaluates public concern for wildlife predation by four categories of cats; owned cats, managed-stray cats, unmanaged-stray cats, and feral cats. In addition, public support for a National Cat Management Strategy and a range of management techniques are investigated. Although the participants expressed concern regarding wildlife predation by all four categories of cats, the highest levels of concern were predation by feral cats, followed by unmanaged stray cats, then managed stray cats, and finally owned cats. The large majority of participants were found to support the implementation of a National Cat Management Strategy. Management techniques for owned cats that obtained public support included; cat exclusion zones, limits on ownership numbers, microchipping, Council registration, and de-sexing. Trap-Neuter-Return (TNR) was the favoured management technique for managed stray cats, while TNR and lethal management techniques were equally favoured for unmanaged stray cats. Lethal control methods were favoured for feral cats. The findings presented in this paper will be useful to consider during the development of legislation relating to cat management and predation in New Zealand. Abstract Cat predation is a prominent issue in New Zealand that provokes strong and opposing views. We explored, via 1011 face-to-face questionnaires, public opinion on (a) support for a National Cat Management Strategy (78% support); (b) concern regarding predation of wildlife by owned and un-owned cats (managed stray, unmanaged stray, and feral cats); (c) the acceptability of management techniques for owned cats; and (d) the acceptability of population management techniques for un-owned cats. The highest concern was expressed regarding the predation of non-native and native wildlife by feral cats (60 and 86% repectively), followed by unmanaged stray cats (59 and 86% respectively), managed stray cats (54 and 82% respectively), and finally owned cats (38 and 69% repectively). Limits to the number of cats owned and cat restriction zones received high levels of support (>65%), and compulsory microchipping, Council registration, and de-sexing were supported by the majority (>58%). Public support of population control methods for unowned cats was explored, and the influence of participant demographic variables on responses is described. These findings provide insight into public opinion regarding the management of cats in New Zealand, which should be considered during the development of legislation in this area. PMID:28671609

  20. The impact of microwave stray radiation to in-vessel diagnostic components

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Oosterbeek, J.; Baldzuhn, J.; Biedermann, C.; v d Brand, H.; Cardella, A.; Erckmann, V.; Jimenez, R.; König, R.; Köppen, M.; Parquay, S.; Zhang, D.; W7-X Team

    2014-08-01

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m2 over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  1. Novel Design of Tunable Microlens with Lowered Driving Voltage and Iris with Conformal Antireflective Surface

    NASA Astrophysics Data System (ADS)

    Almoallem, Yousuf Dawood

    Miniaturizing camera systems as required in many new compact devices places a severe restriction on the device size and power consumption. In modern life nowadays, a daily used compact devices like mobile phones and tablets must have some essential components such as single or multiple tiny cameras, as a component of micro-optical systems. In fact, for most of the current miniaturized cameras, optical power is varied based on the traditional situation where the distances between the lenses are mechanically varied relying on old-fashioned voice coil motors or equivalent mechanical drivers. Spatial and power consumption could be scaled down drastically with much faster response time when the revolutionary alternative liquid tunable microlens is utilized after acquiring a good understanding of microfluidics. The influence of interfacial tension as a key metric in controlling microfluidics systems (e.g. liquid microlens) has drawn considerable attention in biomedical, industrial, military fields over the past decade. Tunable microlenses overcome aforementioned concerns of miniaturizing optical systems and present a viable solution by tuning the focal length of lenses via, for example, variation in the lens curvature. Here, a novel tunable dielectrophoretic (DEP)-based tunable lens is presented. Out of many other mechanisms of tuning the lenses, the dielectric mechanism is especially promising since having the capability to achieve a faster response and overcome the electrolysis issue. Nonetheless, DEP usually requires high driving voltage levels. The proposed design is operating with a lowered voltage level and is based on a tunable dielectric liquid lens with a double-sided electrode design, unlike in the conventional scheme with a single-sided electrode design. The design methodology, geometrical analysis, device fabrication, simulation, and testing are demonstrated. Furthermore, the design, simulation, fabrication and characterization of a black-silicon (BSi) based iris is discussed. Reducing undesirable light stray reflections from surfaces is desired in many 3D optical elements, such as supporting optomechanical mounts, irises, optical filters, solar cells, and photolithography underlying layers. BSi (as antireflective nanostructures) provides a potential economic solution which is highly absorptive across the visible spectrum to replace many currently used yet expensive coating materials. Si nanowires (SiNW) were formed using a metal-assisted chemical (MAC) etching process to get a conformal antireflective property on the iris 3D structure including sharp tips and sidewalls. A significant reduction in undesirable light stray reflections was achieved as a result of successful implementation of the conformal antireflective surface on all facets of fabricated irises to eliminate undesirable light stray reflections.

  2. Suomi-NPP VIIRS Day-Night Band On-Orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Chen, Hongda; Xiong, Xiaoxiong; Sun, Chengbo; Chen, Xuexia; Chiang, Kwofu

    2017-01-01

    The Suomi national polar-orbiting partnership Visible Infrared Imaging Radiometer Suite (VIIRS) instrument has successfully operated since its launch in October 2011. The VIIRS day-night band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 microns that is capable of observing Earth scenes during both daytime and nighttime at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low-, middle-, and high-gain stages, and it uses an on-board solar diffuser (SD) for its low-gain stage calibration. The SD observations also provide a means to compute the gain ratios of low-to-middle and middle-to-high gain stages. This paper describes the DNB on-orbit calibration methodology used by the VIIRS characterization support team in supporting the NASA Earth science community with consistent VIIRS sensor data records made available by the land science investigator-led processing systems. It provides an assessment and update of the DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, and stray-light contamination and its correction. Also presented in this paper are performance validations based on Earth scenes and lunar observations, and comparisons to the calibration methodology used by the operational interface data processing segment.

  3. HIGH-VELOCITY CLOUDS IN THE GALACTIC ALL SKY SURVEY. I. CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, V. A.; Kummerfeld, J. K.; McClure-Griffiths, N. M.

    2013-11-01

    We present a catalog of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern sky neutral hydrogen, which has 57 mK sensitivity and 1 km s{sup –1} velocity resolution and was obtained with the Parkes Telescope. Our catalog has been derived from the stray-radiation-corrected second release of GASS. We describe the data and our method of identifying HVCs and analyze the overall properties of the GASS population. We catalog a total of 1693 HVCs at declinations <0°, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalog also includes 295 anomalous velocity clouds (AVCs). Themore » cloud line-widths of our HVC population have a median FWHM of ∼19 km s{sup –1}, which is lower than that found in previous surveys. The completeness of our catalog is above 95% based on comparison with the HIPASS catalog of HVCs upon which we improve by an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalog will shed unprecedented light on the distribution and kinematic structure of southern sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Way.« less

  4. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  5. Coronagraphic and low-emissivity astronomical reflector (CLEAR): heat trap design

    NASA Astrophysics Data System (ADS)

    Siegmund, Walter A.

    1998-08-01

    The heat trap in a coronagraphic telescope is located at its prime focus and blocks the transmission of radiation from unwanted portions of the solar disk to subsequent optics in the telescope. This reduces light scattered and heat absorbed by these optics. For observations of the corona, the solar disk is completely blocked, whereas for observations of the disk, typically 90% or more of the disk is blocked. The proposed heat trap design is constructed largely of fused silica plates, partially coated with platinum, and cooled with air. It is robust and handles high irradiance, i.e., almost f megawatt/m(superscript 2) at f/3.75, without degrading the image quality of the telescope or contributing significant stray light to the focal surface.

  6. Stray electrical currents in laparoscopic instruments used in da Vinci® robot-assisted surgery: an in vitro study.

    PubMed

    Mendez-Probst, Carlos E; Vilos, George; Fuller, Andrew; Fernandez, Alfonso; Borg, Paul; Galloway, David; Pautler, Stephen E

    2011-09-01

    The da Vinci(®) surgical system requires the use of electrosurgical instruments. The re-use of such instruments creates the potential for stray electrical currents from capacitive coupling and/or insulation failure. We used objective measures to report the prevalence and magnitude of such stray currents. Thirty-seven robotic instruments were tested using an electrosurgical unit (ESU) at pure coagulation and cut waveforms at four different settings. Conductive gel-coated instruments were tested at 40W, 80W, and maximum ESU output (coagulation 120W, cut 300W). The magnitude of stray currents was measured by an electrosurgical analyzer. At coagulation waveform in open air, 86% of instruments leaked a mean of 0.4W. In the presence of gel-coated instruments, stray currents were detected in all instruments with means (and standard deviation) of 3.4W (± 2), 4.1W (± 2.3), and 4.1W (± 2.3) at 40W, 80W, and 120W, respectively. At cut waveform in open air, none of the instruments leaked current, while gel-coated instruments leaked a mean of 2.2W (± 1.3), 2.2W (± 1.9) and 3.2W (± 1.9) at 40W, 80W, and 300W, respectively. All tested instruments in our study demonstrated energy leakage. Stray currents were higher during coagulation (high voltage) waveforms, and the magnitude was not always proportionate to the ESU settings. Stray currents have the potential to cause electrical burns. We support the programmed end of life of da Vinci instruments on the basis of safety. Consideration should be given to alternate energy sources or the adoption of active electrode monitoring technology to all monopolar instruments.

  7. PCR-Based Molecular Characterization of Toxocara spp. Using Feces of Stray Cats: A Study from Southwest Iran

    PubMed Central

    Tavalla, Mahdi; Abdizadeh, Rahman; Hashemitabar, Mahmoud

    2013-01-01

    Feces of stray cat are potential sources of gastrointestinal parasites and play a crucial role in spreading and transmitting parasite eggs, larvae, and oocysts through contamination of soil, food, or water. In this study, we investigated the prevalence of Toxocara spp. infection in stray cats in Ahvaz city, southwest Iran. Eggs of Toxocara spp. in feces of stray cats were detected by the sucrose flotation method, and identification was conducted by polymerase chain reaction (PCR) and DNA sequencing. Of the 140 fecal samples that were randomly collected from public environments during the months of January to May 2012, 45% were found to harbour Toxocara spp. eggs. The highest prevalence of Toxocara spp. eggs was found in the central area of Ahvaz city (28.6%). T. canis eggs were found in 4 (6.34%) of the 63 positive samples. Stray cats are found in parks, playgrounds, and other public places and may be a potential contamination risk. Identification of Toxocara spp. using molecular methods is sufficiently sensitive to detect low levels of parasites and identify the different Toxocara spp. in feces. The relatively high prevalence of Toxocara spp. infection may continue to increase due to lack of effective environmental hygiene control in Iran. Consequently, there is a need to plan adequate programs to detect, identify, and control this infection as well as stray cats in the region. PMID:23755213

  8. PCR-based molecular characterization of Toxocara spp. using feces of stray cats: a study from Southwest Iran.

    PubMed

    Khademvatan, Shahram; Rahim, Fakher; Tavalla, Mahdi; Abdizadeh, Rahman; Hashemitabar, Mahmoud

    2013-01-01

    Feces of stray cat are potential sources of gastrointestinal parasites and play a crucial role in spreading and transmitting parasite eggs, larvae, and oocysts through contamination of soil, food, or water. In this study, we investigated the prevalence of Toxocara spp. infection in stray cats in Ahvaz city, southwest Iran. Eggs of Toxocara spp. in feces of stray cats were detected by the sucrose flotation method, and identification was conducted by polymerase chain reaction (PCR) and DNA sequencing. Of the 140 fecal samples that were randomly collected from public environments during the months of January to May 2012, 45% were found to harbour Toxocara spp. eggs. The highest prevalence of Toxocara spp. eggs was found in the central area of Ahvaz city (28.6%). T. canis eggs were found in 4 (6.34%) of the 63 positive samples. Stray cats are found in parks, playgrounds, and other public places and may be a potential contamination risk. Identification of Toxocara spp. using molecular methods is sufficiently sensitive to detect low levels of parasites and identify the different Toxocara spp. in feces. The relatively high prevalence of Toxocara spp. infection may continue to increase due to lack of effective environmental hygiene control in Iran. Consequently, there is a need to plan adequate programs to detect, identify, and control this infection as well as stray cats in the region.

  9. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran

    PubMed Central

    VAFAE ESLAHI, Aida; KIA, Eshrat Beigom; MOBEDI, Iraj; SHARIFDINI, Meysam; BADRI, Milad; MOWLAVI, Gholamreza

    2017-01-01

    Background: Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Methods: Fifty road killed carnivores including 27 stray dogs (Canis familiaris), 11 golden jackals (Canis aureus) and 12 stray cats (Felis catus) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. Results: About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum, Toxocara cati, Toxocara canis, Toxascaris leonine, Ancylostoma caninum, Ancylostoma tubaeforme, Dirofilaria immitis, Dioctophyma renale, Dipylidum caninum, Echinococcus granulosus, Mesocestoides spp., Taenia hydatigena, Taenia hydatigera, Joyuxiella spp., Spirometra spp. are reported herein. Conclusion: The prevalent occurrence of zoonotic helminthes such as T. canis, T. cati, T. leonina, E. granulosus, D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province. PMID:28761483

  10. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran.

    PubMed

    Vafae Eslahi, Aida; Kia, Eshrat Beigom; Mobedi, Iraj; Sharifdini, Meysam; Badri, Milad; Mowlavi, Gholamreza

    2017-01-01

    Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Fifty road killed carnivores including 27 stray dogs ( Canis familiaris ), 11 golden jackals ( Canis aureus ) and 12 stray cats ( Felis catus ) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum , Toxocara cati , Toxocara canis , Toxascaris leonine , Ancylostoma caninum , Ancylostoma tubaeforme , Dirofilaria immitis , Dioctophyma renale , Dipylidum caninum , Echinococcus granulosus , Mesocestoides spp ., Taenia hydatigena, Taenia hydatigera , Joyuxiella spp. , Spirometra spp. are reported herein. The prevalent occurrence of zoonotic helminthes such as T. canis , T. cati , T. leonina , E. granulosus , D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province.

  11. What's in a name? Perceptions of stray and feral cat welfare and control in Aotearoa, New Zealand.

    PubMed

    Farnworth, Mark J; Campbell, Joanna; Adams, Nigel J

    2011-01-01

    New Zealanders (n = 354) rated the acceptability of lethal and nonlethal cat control methods and the importance of conservation and welfare. Lethal control was more acceptable for feral cats than strays; for nonlethal control, the inverse was true. More than concern for the welfare of cats subjected to control, perceived conservation benefits, risk of disease transfer, and companion cat welfare dictated the acceptability of control measures. Similarly, the welfare consideration for groups of cats differed, transitioning from companion (highest) to feral (lowest). Differences in attitudes toward acceptability of control methods were evident. In particular, nonhuman animal professionals ranked lethal control as more acceptable than did nonanimal professionals. Cat caregivers (owners) considered both conservation and welfare issues of greater importance than did nonowners. Owners ranked the acceptability of nonlethal control methods higher for stray cats, but not feral, than did nonowners. This research indicates that the use of the terms stray and feral may have significant impact on cats in New Zealand. There is also a greater consideration of conservation values than of welfare in stray and feral cat control.

  12. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  13. Development of a EUV Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  14. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    PubMed

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  15. Wafer-scale aluminum nano-plasmonics

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric

    2014-09-01

    The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.

  16. A Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600-1000 nm region of the spectrum, successfully provided daytime aspect information of approximately 10 arcsecond resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models, but the daytime stellar magnitude limit was lower than expected due to dispersion of red light by the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  17. Phase Sensitive Demodulation in Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Fisher, Walt G.; Piston, David W.; Wachter, Eric A.

    2002-06-01

    Multiphoton laser scanning microscopy offers advantages in depth of penetration into intact samples over other optical sectioning techniques. To achieve these advantages it is necessary to detect the emitted light without spatial filtering. In this nondescanned (nonconfocal) approach, ambient room light can easily contaminate the signal, forcing experiments to be performed in absolute darkness. For multiphoton microscope systems employing mode-locked lasers, signal processing can be used to reduce such problems by taking advantage of the pulsed characteristics of such lasers. Specifically, by recovering fluorescence generated at the mode-locked frequency, interference from stray light and other ambient noise sources can be significantly reduced. This technology can be adapted to existing microscopes by inserting demodulation circuitry between the detector and data collection system. The improvement in signal-to-noise ratio afforded by this approach yields a more robust microscope system and opens the possibility of moving multiphoton microscopy from the research lab to more demanding settings, such as the clinic.

  18. Coronagraphic Observations of Lunar Sodium

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Sprague, A. L.

    1997-01-01

    The core of the proposed work was to observe the lunar sodium atmosphere with our classical Lyot coronagraph and specially-built grating spectrograph on Mount Lemmon, a 9400-foot peak about an hour's drive from Tucson. It is optimized for low scattered light and for observing from the Moon's limb to an altitude of approx. 1 lunar radius. The grating has 600 lines/mm and a blaze angle of 49 deg, and is used with a somewhat wide slit at a resolving power of about 5000. It is called DARRK for the initials of the people who designed it. The rejection of stray light from the Moon's disk is spectacularly good: when the sky is clear this light is absent right up to a few arcsec from the limb. We use an excellent 1024 by 1024 pixel CCD camera, operated at -100 C; the exposures are 10 to 30 min. Data reduction is done with ERAF running on a Sun Sparcstation.

  19. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  20. A prototype optical-CT system for PRESAGE 3D dosimeter readout

    NASA Astrophysics Data System (ADS)

    Miles, Devin; Yoon, Paul; Kodra, Jacob; Adamovics, John; Oldham, Mark

    2017-05-01

    This work introduces the Duke Integrated-lens Optical Scanner (DIOS), a prototype optical-CT system designed for convenient and low-cost readout of PRESAGE 3D dosimeters. A key novelty of the DIOS is the incorporation of a multi-purpose light-collimating tank (the LC-tank). The LC-tank collimates light from a point source, maintains parallel ray geometry through a dosimeter mounted inside the tank, and refocuses emergent light onto a CCD detector. A second purpose is to dramatically reduce the amount of refractive matched fluid required in prior optical-CT scanners. This is achieved by substituting large quantities of refractive-matched fluid with solid RI-matched polyurethane. The advantages of DIOS include eliminating the need for expensive telecentric lenses, and eliminating the impracticality of large volumes of RI matched fluid. The DIOS is potentially more susceptible to stray-light artifacts. Preliminary phantom testing shows promising agreement between PRESAGE/DIOS readout and prior commissioned optical-CT scanners, as well as with Eclipse dose calculations.

  1. SeaWiFS technical report series. Volume 19: Case studies for SeaWiFS calibration and validation, part 2

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Acker, James G. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Fraser, Robert S.; Mclean, James T.; Darzi, Michael; Firestone, James K.; Patt, Frederick S.; Schieber, Brian D.

    1994-01-01

    This document provides brief reports, or case studies, on a number of investigations and data set development activities sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 is a comparison with the atmospheric correction of Coastal Zone Color Scanner (CZCS) data using two independent radiative transfer formulations. Chapter 2 is a study on lunar reflectance at the SeaWiFS wavelengths which was useful in establishing the SeaWiFS lunar gain. Chapter 3 reports the results of the first ground-based solar calibration of the SeaWiFS instrument. The experiment was repeated in the fall of 1993 after the instrument was modified to reduce stray light; the results from the second experiment will be provided in the next case studies volume. Chapter 4 is a laboratory experiment using trap detectors which may be useful tools in the calibration round-robin program. Chapter 5 is the original data format evaluation study conducted in 1992 which outlines the technical criteria used in considering three candidate formats, the hierarchical data format (HDF), the common data format (CDF), and the network CDF (netCDF). Chapter 6 summarizes the meteorological data sets accumulated during the first three years of CZCS operation which are being used for initial testing of the operational SeaWiFS algorithms and systems and would be used during a second global processing of the CZCS data set. Chapter 7 describes how near-real time surface meteorological and total ozone data required for the atmospheric correction algorithm will be retrieved and processed. Finally, Chapter 8 is a comparison of surface wind products from various operational meteorological centers and field observations. Surface winds are used in the atmospheric correction scheme to estimate glint and foam radiances.

  2. The Impact of the Method of Gunshot Injury: War Injuries vs. Stray Bullets vs. Civilian Fighting.

    PubMed

    Mansor, Salah; Bodalal, Zuhir

    2015-04-01

    To analyze the impact of the method of Gunshot Injury (GSI) (i.e. war injuries, stray bullets, and civilian fighting) on patient morbidity and mortality. An observational study. Biostatistics Department of Al-Jalaa Hospital in Benghazi, Libya, from January to December 2011. Patients' records were analyzed with the method of gunshot injury as a classifying/comparative parameter. Age, gender, site of injury, receiving department, ICU admission, city of origin, length of stay, morbidity and mortality were determined and compared between the different methods of GSI. During the conflict, 1761 gunshot injuries were treated at the hospital. The method of injury was recorded for 62% (n=1096) of the cases and were classified under war injuries (72.2%, n=791), stray bullets (14.1%, n=155), and civilian fighting (13.7%, n=150). Nearly all the patients being treated for civilian fighting (98%, n=147) were males, (stray bullets, 82.6%, n=128, and war injuries 98.4%, n=778). Women were significantly less involved in a war injury (1.6%, n=13, p < 0.001). Stray bullets affected the younger age groups i.e. ² 19 years (26.5%, n=41) more than either fighting injuries (8%, n=12) or war injuries (11.8%, n=93, p < 0.001). Civilian fighting injuries (83.3%, n=125) mostly involved the 20-39 years age group (p < 0.001). Fighting wounds and stray bullets were more common in an urban (82.7%, n=124) rather than rural setting (p < 0.001); the same was true for stray bullets (76.8%, n = 119). The number of GSI's showed a close relationship with major events in society (i.e. military campaigns, celebration and civilian unrest). Significantly higher mortality rates were observed in civilian fighting injuries (7.7%, n=12, p=0.003) and stray bullets (10%, n=15, p=0.003) compared to general GSI's (5.2%, n=91) and war injuries (4.4%, n=35). Surgeons and general physicians need to be aware that GSI's differ in their salient features and outcome based on the method of injury.

  3. Positive and negative tropic curvature induced by microbeam irradiation of protonemal tip cells of the moss Ceratodon purpureus.

    PubMed

    Lamparter, T; Kagawa, T; Brücker, G; Wada, M

    2004-01-01

    The photoreceptor phytochrome mediates tropic responses in protonemata of the moss Ceratodon purpureus. Under standard conditions the tip cells grow towards unilateral red light, or perpendicular to the electrical vector of polarized light. In this study the response of tip cells to partial irradiation of the apical region was analysed using a microbeam apparatus. The fluence response curve gave an unexpected pattern: whereas a 15-min microbeam with light intensities around 3 micro mol m (-2) s (-1) induced a growth curvature towards the irradiated side, higher light intensities around 100 micro mol m (-2) s (-1) caused a negative response, the cells grew away from the irradiated side. This avoidance response is explained by two effects: the light intensity is high enough to induce photoconversion into the active Pfr form of phytochrome, not only on the irradiated but also on the non-irradiated side by stray light. At the same time, the strong light on the irradiated side acts antagonistically to Pfr. As a result of this inhibition, the growth direction is moved to the light-avoiding side. Such a Pfr-independent mechanism might be important for the phototropic response to distinguish between the light-directed and light-avoiding side under unilateral light.

  4. Trematodes Recovered in the Small Intestine of Stray Cats in the Republic of Korea

    PubMed Central

    Chai, Jong-Yil; Bahk, Young Yil

    2013-01-01

    In 2005, we reported the infection status of 438 stray cats with various species of intestinal helminths, including nematodes (4 species), trematodes (23 species), and cestodes (5 species) in the Republic of Korea. However, morphologic details of each helminth species have not been provided. In the present study, we intended to describe morphologic details of 13 trematode species which were either new fauna of cats (10 species) or new fauna of not only cats but also all animal hosts (3 species). The worms were fixed in 10% neutral buffered formalin under a cover slip pressure, stained with Semichon's acetocarmine, and then observed using a light microscope equipped with a micrometer. The 13 subjected species included members of the Heterophyidae (Stellantchasmus falcatus, Stictodora fuscata, Stictodora lari, Centrocestus armatus, Procerovum varium, and Cryptocotyle concava), Echinostomatidae (Echinostoma hortense, Echinostoma revolutum, Echinochasmus japonicus, and Stephanoprora sp.), Diplostomidae (Neodiplostomum seoulense), Plagiorchiidae (Plagiorchis muris), and Dicrocoeliidae (Eurytrema pancreaticum). By the present study, Cryptocotyle sp. and Neodiplostomum sp. recored in our previous study were identified as C. concava and N. seoulense, respectively. Three species, P. varium, C. concava, and Stephanoprora sp., are new trematode fauna in Korea. PMID:23467726

  5. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  6. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de; Laqua, H. P.; Marsen, S.

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up tomore » 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.« less

  8. Seroepidemiological survey of helminthic parasites of stray dogs in Sari City, northern Iran.

    PubMed

    Gholami, Ishirzad; Daryani, Ahmad; Sharif, Mehdi; Amouei, Afsaneh; Mobedi, Iraj

    2011-01-15

    The objective of this study was to determine the prevalence rate of helminthic parasites in stray dogs' population especially zoonotic infections and to identify potential risk factors in the different areas of Sari city in Caspian area, north of Iran. During the period from April to September 2007, 50 stray dogs were collected from urban areas of Sari city. Recovered parasites were fixed in alcohol and stained by carmine then observed by microscope. The taxonomic study was carried out by measuring different parts of the body of helminthes and statistical tests were performed using the Chi-square test. A total of 27 adult and 23 juvenile stray dogs were collected and the overall prevalence rate of infection was 90%. The three most common helminthes were Toxocara canis (60%), Ancylostoma caninum (46%) and Dipylidium caninum (36%). Other parasites were Uncinaria stenocephala (12%), Taenia hydatigena (6%), Spirocerca lupi (6%), Dirofilaria immitis (6%), Toxascaris leonina (2%), Rictularia sp. (2%), Taenia ovis (2%) and Taenia taeniformis (2%). Five species of zoonotic helminthes recovered were T. canis, A. caninum, U. stenocephala, D. caninum and D. immitis. Hookworm infections (58%) were more common significantly in the young stray dogs (p < 0.01). In regard to prevalence ofA. caninum, T. canis and U. stenocephala, there was significant difference between juvenile and adult dogs (p < 0.05). The results highlight the potential role of stray dogs for transmission of helminthic parasites particularly zoonotic parasites that are a significant risk to human health.

  9. Optical design of portable nonmydriatic fundus camera

    NASA Astrophysics Data System (ADS)

    Chen, Weilin; Chang, Jun; Lv, Fengxian; He, Yifan; Liu, Xin; Wang, Dajiang

    2016-03-01

    Fundus camera is widely used in screening and diagnosis of retinal disease. It is a simple, and widely used medical equipment. Early fundus camera expands the pupil with mydriatic to increase the amount of the incoming light, which makes the patients feel vertigo and blurred. Nonmydriatic fundus camera is a trend of fundus camera. Desktop fundus camera is not easy to carry, and only suitable to be used in the hospital. However, portable nonmydriatic retinal camera is convenient for patient self-examination or medical stuff visiting a patient at home. This paper presents a portable nonmydriatic fundus camera with the field of view (FOV) of 40°, Two kinds of light source are used, 590nm is used in imaging, while 808nm light is used in observing the fundus in high resolving power. Ring lights and a hollow mirror are employed to restrain the stray light from the cornea center. The focus of the camera is adjusted by reposition the CCD along the optical axis. The range of the diopter is between -20m-1 and 20m-1.

  10. [Design of a Component and Transmission Imaging Spectrometer].

    PubMed

    Sun, Bao-peng; Zhang, Yi; Yue, Jiang; Han, Jing; Bai, Lian-fa

    2015-05-01

    In the reflection-based imaging spectrometer, multiple reflection(diffraction) produces stray light and it is difficult to assemble. To address that, a high performance transmission spectral imaging system based on general optical components was developed. On the basis of simple structure, the system is easy to assemble. And it has wide application and low cost compared to traditional imaging spectrometers. All components in the design can be replaced according to different application situations, having high degree of freedom. In order to reduce the influence of stray light, a method based on transmission was introduced. Two sets of optical systems with different objective lenses were simulated; the parameters such as distortion, MTF and aberration.were analyzed and optimized in the ZEMAX software. By comparing the performance of system with different objective len 25 and 50 mm, it can be concluded that the replacement of telescope lens has little effect on imaging quality of whole system. An imaging spectrometer is developed successfully according design parameters. The telescope lens uses double Gauss structures, which is beneficial to reduce field curvature and distortion. As the craftsmanship of transmission-type plane diffraction grating is mature, it can be used without modification and it is easy to assemble, so it is used as beam-split. component of the imaging spectrometer. In addition, the real imaging spectrometer was tested for spectral resolution and distortion. The result demonstrates that the system has good ability in distortion control, and spectral resolution is 2 nm. These data satisfy the design requirement, and obtained spectrum of deuterium lamp through calibrated system are ideal results.

  11. UV spectroscopy with the CETUS multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Woodruff, Robert; Hull, Anthony; Heap, Sara; Kutyrev, Alexander; Purves, Lloyd; Danchi, William

    2018-01-01

    The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. The multiplexing will allow over 100,000 galaxies to be observed over a typical mission lifetime which greatly enhances the scientific yield. The MOS utilizes a next-generation micro-shutter array, an efficient aspheric Offner-like spectrometer design with a convex grating, and nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed for optimizing the UV throughput while minimizing out-of-band signal at the detector.

  12. Multiplexing in astrophysics with a UV multi-object spectrometer on CETUS, a probe-class mission study

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Kutyrev, Alexander; Danchi, William; Purves, Lloyd

    2017-09-01

    The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept1,2 is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. It utilizes a next-generation micro-shutter array, an efficient aspheric Offner spectrometer design with a convex grating, and carbon nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed to optimize the UV throughput while minimizing out-of-band signal at the detector. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. With this multiplexing, the scientific yield of both Probe and Great Observatories will be greatly enhanced.

  13. Testing for Stray Current Corrosion in Earth Covered Magazines with EOP

    DTIC Science & Technology

    2010-02-01

    potential for Stray Current Corrosion BUILDING STRONG® Plot of Current Measurements 0 0.2 0.4 0.6 0.8 1 1.2 0 10 20 30 40 50 60 70 80 90 100 % I to Rebar m...magnitude as more current was directed to the reinforcing steel.  Corrosion current was measured to the rebar probe placed above the location of...US Army Corps of Engineers BUILDING STRONG® Testing for Stray Current Corrosion in Earth Covered Magazines with EOP O. S. Marshall US Army

  14. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    PubMed Central

    Lancaster, Emily; Rand, Jacquie; Collecott, Sheila; Paterson, Mandy

    2015-01-01

    Simple Summary Microchip identification has become an important tool to reunite stray dogs and cats with their owners, and is now compulsory in most states of Australia. Improvement of the microchipping system in Australia is limited by a lack of published Australian data documenting the problems experienced by shelter staff when using microchip data to contact the owner of a stray animal. In this study we determine the character and frequency of inaccurate microchip data to identify weaknesses in the current microchipping system. This information could be used to develop strategies that increase the accuracy of microchip data that will increase the reclaiming of stray animals. Abstract A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258) and cats (n = 6950) entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37%) had problems with their data, including being registered to a previous owner or organisation (47%), all phone numbers incorrect/disconnected (29%), and the microchip not registered (14%). A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%). The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of microchip data to facilitate the reclaiming of stray dogs and cats. PMID:26479238

  15. Detection of Helminth Eggs and Identification of Hookworm Species in Stray Cats, Dogs and Soil from Klang Valley, Malaysia

    PubMed Central

    Mahmud, Rohela; Samsudin, Nur Izyan; Kek Heng, Chua; Ling, Lau Yee

    2015-01-01

    The present study was conducted to determine the prevalence of helminth eggs excreted in the faeces of stray cats, dogs and in soil samples. A total of 505 fresh samples of faeces (from 227 dogs and 152 cats) and soil were collected. The egg stage was detected via microscopy after the application of formalin–ether concentration technique. Genomic DNA was extracted from the samples containing hookworm eggs and used for further identification to the species level using real-time polymerase chain reaction coupled with high resolution melting analysis. Microscopic observation showed that the overall prevalence of helminth eggs among stray cats and dogs was 75.7% (95% CI = 71.2%–79.9%), in which 87.7% of dogs and 57.9% of cats were infected with at least one parasite genus. Five genera of heliminth eggs were detected in the faecal samples, including hookworms (46.4%), Toxocara (11.1%), Trichuris (8.4%), Spirometra (7.4%) and Ascaris (2.4%). The prevalence of helminth infections among stray dogs was significantly higher than that among stray cats (p < 0.001). Only three genera of helminths were detected in soil samples with the prevalence of 23% (95% CI = 15.1%–31%), consisting of hookworms (16.6%), Ascaris (4%) and Toxocara (2.4%). The molecular identification of hookworm species revealed that Ancylostoma ceylanicum was dominant in both faecal and soil samples. The dog hookworm, Ancylostoma caninum, was also detected among cats, which is the first such occurrence reported in Malaysia till date. This finding indicated that there was a cross-infection of A. caninum between stray cats and dogs because of their coexistent within human communities. Taken together, these data suggest the potential role of stray cats and dogs as being the main sources of environmental contamination as well as for human infections. PMID:26671680

  16. Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF:Mg,Ti.

    PubMed

    Hauri, Pascal; Schneider, Uwe

    2018-04-01

    Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. The response with radiation energy of TLD100 and TLD100H compared to 60 Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements. Copyright © 2017. Published by Elsevier GmbH.

  17. 43 CFR 4720.2-1 - Removal of strayed animals from private lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2-1 Removal of strayed animals from private...

  18. 43 CFR 4720.2-1 - Removal of strayed animals from private lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2-1 Removal of strayed animals from private...

  19. 43 CFR 4720.2-1 - Removal of strayed animals from private lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2-1 Removal of strayed animals from private...

  20. 43 CFR 4720.2 - Removal of strayed or excess animals from private lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2 Removal of strayed or excess...

  1. 43 CFR 4720.2 - Removal of strayed or excess animals from private lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2 Removal of strayed or excess...

  2. 43 CFR 4720.2-1 - Removal of strayed animals from private lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2-1 Removal of strayed animals from private...

  3. 43 CFR 4720.2 - Removal of strayed or excess animals from private lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2 Removal of strayed or excess...

  4. 43 CFR 4720.2 - Removal of strayed or excess animals from private lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2 Removal of strayed or excess...

  5. Experimental Determination of Ultra-Sharp Stray Field Distribution from a Magnetic Vortex Core Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Zhu, Y.; Zhong, H.

    2009-08-01

    The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less

  6. VizieR Online Data Catalog: Leiden/Argentine/Bonn (LAB) Survey of Galactic HI (Kalberla+ 2005)

    NASA Astrophysics Data System (ADS)

    Kalberla, P. M. W.; Burton, W. B.; Hartmann, D.; Arnal, E. M.; Bajaja, E.; Morras, R.; Poeppel, W. G. L.

    2005-07-01

    The LAB survey contains the final data release of observations of 21-cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Cat. VIII/54) of the sky north of -30{deg} with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000A&AS..142...35A and Bajaja et al. 2005, Cat. VIII/75) of the sky south of -25{deg}. The angular resolution of the combined material is HPBW ~ 0.6{deg}. The LSR velocity coverage spans the interval -450 km/s to +400 km/s, at a resolution of 1.3km/s. The data were corrected for stray radiation at the Institute for Radioastronomy of the University of Bonn, refining the original correction applied to the LDS. The rms brightness-temperature noise of the merged database is 0.07-0.09 K. Residual errors in the profile wings due to defects in the correction for stray radiation are for most of the data below a level of 20-40 mK. It would be necessary to construct a telescope with a main beam efficiency of {eta}MB>99% to achieve the same accuracy. The merged and refined material entering the LAB Survey of Galactic H I is intended to be a general resource useful to a wide range of studies of the physical and structural characteristices of the Galactic interstellar environment. The LAB Survey is the most sensitive Milky Way H I survey to date, with the most extensive coverage both spatially and kinematically. The Survey is available as 3-D maps, with or without Hanning smoothing, covering the whole +/-458km/s or limited to +/-250km/s range. The resolution of the 3-D maps is 0.5{deg} in galactic longitude and latitude, and up to 1km/s in velocity. The survey exists also as (b,v) maps at longitude intervals stepped by 0.5{deg} -- these files supersedes the FITS files given in the Hartmann and Burton Atlas (Cat. VIII/54) (1 data file).

  7. Cat admissions to RSPCA shelters in Queensland, Australia: description of cats and risk factors for euthanasia after entry.

    PubMed

    Alberthsen, C; Rand, J S; Bennett, P C; Paterson, M; Lawrie, M; Morton, J M

    2013-01-01

    A lack of information limits understanding of the excess cat problem and development of effective management strategies. This study describes cats entering Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland shelters and identifies risk factors for euthanasia. Data for cats entering relevant shelters (July 2006-June 2008) were obtained from the RSPCA's electronic database. Univariable and multivariable logistic regression analyses were conducted to identify risk factors for euthanasia. Of 33,736 cats admitted, 46% were adult cats (≥3 months) and 54% were kittens (<3 months). The most common reason for admission was stray (54%), followed by owner surrender (44%). Euthanasia was the most common outcome (65%), followed by adoption (30%). The odds of euthanasia were lower for kittens and for cats that were desexed prior to admission. Of the strays, 8% had been desexed. For cats of similar age, sex, desexed and feral status, stray cats were more likely to be adopted than owner-surrenders. Strategies are needed to reduce numbers of cats admitted and euthanased. Given the high proportion of admissions that were kittens, reducing the incidence of delayed sterilisation of owned cats may be an important strategy for reducing the number of unwanted kittens. Many cats admitted as strays were rehomable, but given the high proportion of admissions that are strays, further research on stray populations is needed. Future studies of cats entering shelters would be enhanced if data collection definitions, categories and methods were standardised. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.

  8. Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams

    PubMed Central

    Taddei, Phillip J; Mirkovic, Dragan; Fontenot, Jonas D; Giebeler, Annelise; Zheng, Yuanshui; Kornguth, David; Mohan, Radhe; Newhauser, Wayne D

    2014-01-01

    Proton beam radiotherapy unavoidably exposes healthy tissue to stray radiation emanating from the treatment unit and secondary radiation produced within the patient. These exposures provide no known benefit and may increase a patient's risk of developing a radiogenic cancer. The aims of this study were to calculate doses to major organs and tissues and to estimate second cancer risk from stray radiation following craniospinal irradiation (CSI) with proton therapy. This was accomplished using detailed Monte Carlo simulations of a passive-scattering proton treatment unit and a voxelized phantom to represent the patient. Equivalent doses, effective dose and corresponding risk for developing a fatal second cancer were calculated for a 10-year-old boy who received proton therapy. The proton treatment comprised CSI at 30.6 Gy plus a boost of 23.4 Gy to the clinical target volume. The predicted effective dose from stray radiation was 418 mSv, of which 344 mSv was from neutrons originating outside the patient; the remaining 74 mSv was caused by neutrons originating within the patient. This effective dose corresponds to an attributable lifetime risk of a fatal second cancer of 3.4%. The equivalent doses that predominated the effective dose from stray radiation were in the lungs, stomach and colon. These results establish a baseline estimate of the stray radiation dose and corresponding risk for a pediatric patient undergoing proton CSI and support the suitability of passively-scattered proton beams for the treatment of central nervous system tumors in pediatric patients. PMID:19305045

  9. Effects of media stray field on electromigration characteristics in current-perpendicular-to-plane giant magnetoresistance spin-valve read sensors

    NASA Astrophysics Data System (ADS)

    Gui Zeng, Ding; Lee, Kyoung-il; Chung, Kyung-Won; Bae, Seongtae

    2012-05-01

    Effects of magnetic stray field retrieved from both longitudinal and perpendicular magnetic recording media (denoted by "media stray field") on electromigration (EM) characteristics of current-perpendicular-to-plane (CPP) giant magnetoresistance spin-valve (GMR SV) read sensors have been numerically studied to explore the electrical and magnetic stability of the read sensor under real operation. The mean-time-to-failure (MTTF) of the CPP GMR SV read sensors was found to have a strong dependence on the physical parameters of the recording media and recorded information status, such as the pulse width of media stray field, the bit length, and the head moving velocity. According to the numerical calculation results, it was confirmed that in the longitudinal media, the shorter the stray field pulse width (i.e., the sharper the media transition) allows for the longer MTTF of the CPP GMR SV read sensors; while in the perpendicular media, the sharper the media transition gives rise to a shorter MTTF. Interestingly, it was also revealed that the MTTF could be improved by reducing the bit length as well as increasing the head velocity in both longitudinal and perpendicular media. Furthermore, the bit distribution patterns, especially the number of consecutive `0' bits strongly affected the MTTF of GMR SV read sensors. The strong dependences of MTTF on the media stray field during CPP GMR SV sensor operation are thought to be mainly attributed to the thermal cycling (temperature rise and fall) caused by the resistance change due to GMR effects.

  10. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Bude, J.; Miller, P. E.; Parham, T.; Whitman, P.; Monticelli, M.; Raman, R.; Cross, D.; Welday, B.; Ravizza, F.; Suratwala, T.; Davis, J.; Fischer, M.; Hawley, R.; Lee, H.; Matthews, M.; Norton, M.; Nostrand, M.; Vanblarcom, D.; Sommer, S.

    2017-11-01

    The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on absorbing glass armor at higher than expected fluences. We show that the composition of the particles is secondary to the energetics of their delivery, such that particles from either source are essentially benign if they arrive at the GDS with low temperatures and velocities.

  11. Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation: concept, design, fabrication, and test of prototype.

    PubMed

    Yu, Lei

    2017-06-26

    A novel UV-VIS-NIR imaging spectrometer prototype has been presented for the remote sensing of the coastal ocean by air. The concept is proposed for the needs of the observation. An advanced design has been demonstrated based on the Dyson spectrometer in details. The analysis and tests present excellent optical performances in the spectral broadband, easy and low cost fabrication and alignment, low inherent stray light, and high signal to noise ratio. The research provides an easy method for the coastal ocean observation.

  12. [Design and experiment of micro biochemical detector based on micro spectrometer].

    PubMed

    Yu, Qing-hua; Wen, Zhi-yu; Chen, Gang; Dai, Wei-wei; Liu, Nian-ci; Wu, Xin

    2012-03-01

    According to the requirements of rapid detection of important life parameters for the sick and wounded, a new micro bio-chemical detection configuration was proposed utilizing continuous spectroscopy analysis, which was founded on MOEMS and embedded technology. The configuration was developed as so much research work was carried out on the detecting objects and methods. Important parameters such as stray light, absorbance linearity, absorbance ratability, stability and temperature accuracy of the instrument were tested, which are all in good agreement with the design requirements. Clinic tests show that it can detect multiple life parameters quickly (Na+, GLU, Hb eg.).

  13. At-wavelength metrology facility for soft X-ray reflection optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, A., E-mail: andrey.sokolov@helmholtz-berlin.de; Bischoff, P.; Eggenstein, F.

    2016-05-15

    A new Optics Beamline coupled to a versatile UHV reflectometer is successfully operating at BESSY-II. It is used to carry out at-wavelength characterization and calibration of in-house produced gratings and novel nano-optical devices as well as mirrors and multilayer systems in the UV and XUV spectral region. This paper presents most recent commissioning data of the beamline and shows their correlation with initial beamline design calculations. Special attention is paid to beamline key parameters which determine the quality of the measurements such as high-order suppression and stray light behavior. The facility is open to user operation.

  14. Using Microporous Polytetrafluoroethylene Thin Sheets as a Flexible Solar Diffuser to Minimize Sunlight Glint to Cameras in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2016-01-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  15. WFPC2 CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly Monitor

    NASA Astrophysics Data System (ADS)

    Gonzaga, Shireen

    2006-07-01

    Intflat observations will be taken to provide a linearity check: the linearity test consists of a series of intflats in F555W, in each gain and each shutter. A combination of intflats, visflats, and earthflats will be used to check the repeatability of filter wheel motions. {Intflat sequences tied to decons, visits 1-18 in prop 10363, have been moved to the cycle 15 decon proposal xxxx for easier scheduling.} Note: long-exposure WFPC2 intflats must be scheduled during ACS anneals to prevent stray light from the WFPC2 lamps from contaminating long ACS external exposures.

  16. Signal evaluations using singular value decomposition for Thomson scattering diagnostics.

    PubMed

    Tojo, H; Yamada, I; Yasuhara, R; Yatsuka, E; Funaba, H; Hatae, T; Hayashi, H; Itami, K

    2014-11-01

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (Te) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  17. Signal evaluations using singular value decomposition for Thomson scattering diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H., E-mail: tojo.hiroshi@jaea.go.jp; Yatsuka, E.; Hatae, T.

    2014-11-15

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  18. Thomson scattering at general fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, W. C., E-mail: william.young@generalfusion.com; Parfeniuk, D.

    2016-11-15

    This paper provides an overview of the Thomson scattering diagnostic in use at General Fusion, including recent upgrades and upcoming plans. The plasma experiment under examination produces temperatures in the 50-500 eV range with density on the order of 10{sup 20} m{sup −3}. A four spatial point collection optics scheme has been implemented, with plans to expand to six spatial points. Recent changes to the optics of the laser beamline have reduced stray light. The system employs a frequency doubled Nd:YAG laser (532 nm), a grating spectrometer, and a photomultiplier array based detector.

  19. BRDF measurements of sunshield and baffle materials for the IRAS telescope

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1982-01-01

    Measurements of the far-infrared bidirectional reflectance distribution functions (BRDF) of four samples of Martin Black coating and one sample of gold coated aluminum from the telescope to be flown on the Infrared Astronomy Satellite (IRAS) are presented. At incidence angles near 35 deg Martin Black is a diffuse reflector at wavelengths as long as 36 microns. The gold coated aluminum sample from the IRAS sunshield has a visible grain which causes a strong diffraction enhancement of the BRDF at large nonspecular angles. This enhancement from the sunshield will increase the stray light level inside the telescope.

  20. Using microporous polytetrafluoroethylene thin sheets as a flexible solar diffuser to minimize sunlight glint to cameras in space

    NASA Astrophysics Data System (ADS)

    Choi, Michael K.

    2016-09-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  1. Gastrointestinal parasites in stray and shelter cats in the municipality of Rio de Janeiro, Brazil.

    PubMed

    Pereira, Pâmela Figueiredo; Barbosa, Alynne da Silva; Moura, Ana Paula Pereira de; Vasconcellos, Marcelo Leitão; Uchôa, Claudia Maria Antunes; Bastos, Otílio Machado Pereira; Amendoeira, Maria Regina Reis

    2017-01-01

    The increasingly urban nature of the population has led many people to choose independent pets, such as cats. This situation has also made it possible for these animals to be abandoned, thus increasing the numbers of cats on the streets and in shelters. These animals can act as a source of infection for other hosts. Between 2014 and 2015, the frequency of gastrointestinal parasites in captive and stray cats in the municipality of Rio de Janeiro was analyzed. Ninety-one fecal samples were collected from captive cats and 172 from stray cats. Centrifugal sedimentation and flotation techniques were used. The frequency of parasites among the stray cats was 77.3%, and this was significantly higher than the frequency observed in captive cats (49.5%). Helminths were detected more frequently, and hookworms were the parasites most detected. Toxocara cati, Cystoisospora sp. and Dipylidium caninum were also detected. No statistical difference in the frequency of parasites was observed between the sexes among the captive cats. However, among the stray cats, males (85.5%) presented higher positivity than females (71.8%). The high frequency of hookworms, which are the agent for "cutaneous larva migrans" in humans, shows the need to control parasitic infections among the cats studied.

  2. Co thickness dependence of structural and magnetic properties in spin quantum cross devices utilizing stray magnetic fields

    NASA Astrophysics Data System (ADS)

    Kaiju, H.; Kasa, H.; Komine, T.; Mori, S.; Misawa, T.; Abe, T.; Nishii, J.

    2015-05-01

    We investigate the Co thickness dependence of the structural and magnetic properties of Co thin-film electrodes sandwiched between borate glasses in spin quantum cross (SQC) devices that utilize stray magnetic fields. We also calculate the Co thickness dependence of the stray field between the two edges of Co thin-film electrodes in SQC devices using micromagnetic simulation. The surface roughness of Co thin films with a thickness of less than 20 nm on borate glasses is shown to be as small as 0.18 nm, at the same scanning scale as the Co film thickness, and the squareness of the hysteresis loop is shown to be as large as 0.96-1.0. As a result of the establishment of polishing techniques for Co thin-film electrodes sandwiched between borate glasses, we successfully demonstrate the formation of smooth Co edges and the generation of stray magnetic fields from Co edges. Theoretical calculation reveals that a strong stray field beyond 6 kOe is generated when the Co thickness is greater than 10 nm at a junction gap distance of 5 nm. From these experimental and calculation results, it can be concluded that SQC devices with a Co thickness of 10-20 nm can be expected to function as spin-filter devices.

  3. Assessment of a Targeted Trap-Neuter-Return Pilot Study in Auckland, New Zealand.

    PubMed

    Zito, Sarah; Aguilar, Glenn; Vigeant, Shalsee; Dale, Arnja

    2018-05-13

    There is a need for effective and humane management tools to manage urban stray cats and minimise negative impacts associated with stray cats. One such tool is targeted trap-neuter-return (TTNR), but no concerted implementation of this technique or formal assessments have been reported. To address this deficit, a TTNR programme was implemented and assessed in one Auckland suburb from May 2015 to June 2016; the programme sterilised and returned 348 cats (4.2 cats/1000 residents). Assessment was based on the number of incoming felines; stray, unsocialised cats euthanased; unsocialised, unowned cats sterilised and returned (independently of the TTNR programme); and neonatal/underage euthanasias. Incoming stray felines, underage euthanasias, and unsocialised stray cat euthanasias were all reduced for the targeted suburb when compared for the years before and after the programme (the percentage reduction in these parameters was −39, −17, −34, −7, and −47, respectively). These outcome measures had a greater reduction in the targeted suburb compared to the Auckland suburbs not targeted by the TTNR programme ( p < 0.01), although causation cannot be inferred, as a variety of reasons could have contributed to the changes. This pilot programme suggests that TTNR could be a valuable, humane cat management tool in urban New Zealand, and further assessment is warranted.

  4. Stray Current Corrosion in Electrified Rail Systems - Final Report

    DOT National Transportation Integrated Search

    1995-05-01

    The objectives of this study were (1)to assess the scope of stray-current corrosion on electrified rail systems based upon information in the literature and from interviews with selected transit system operators, and (2)to determine whether new or ad...

  5. Prevalence of filarial parasites in domestic and stray cats in Selangor State, Malaysia.

    PubMed

    Al-Abd, Nazeh M; Nor, Zurainee Mohamed; Kassim, Mustafa; Mansor, Marzida; Al-Adhroey, Abdulelah H; Ngui, Romano; Sivanandam, Sinnadurai

    2015-09-01

    To determine the prevalence of the filarial parasites,ie.,Brugia malayi, Brugia, Brugia pahangi(B. pahangi), Dirofilaria immitisandDirofilaria repens (D. repens) in domestic and stray cats. A total of 170 blood sample were collected from domestic and stray cats and examined for filarial worm parasites in two localities, Pulau Carey and Bukit Gasing, Selangor State, Malaysia. The overall prevalence of infection was 23.5% (40/170; 95% CI = 17.4-30.6). Of this, 35% (14/40; 95% CI = 22.1-50.5) and 50% (20/40; 95% CI = 35.2-64.8) were positive for single B. pahangi nd D. repens, respectively. The remaining of 15% (6/40; 95% CI = 7.1-29.1) were positive for mixed B. pahangi and D. repens. In addition, 75% of the infected cats were domestic, and 25% were strays. No Brugia malayi and Dirofilaria immitis was detected. Eighty-four cats were captured at Pulau Carey, of which 35.7% (30/84) were infected. Among the cats determined to be infected, 93% (28/30; 95% CI = 78.7-98.2) were domestic, and only 6.7% (2/30; 95% CI = 19.0-21.3) were strays. Conversely, the number of infected cats was three times lower in Bukit Gasing than in Pulau Carey, and most of the cats were stray. B. pahangi and D. repens could be the major parasites underlying filariasis in the study area. Adequate prophylactic plans should be administrated in the cat population in study area. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  6. Probes for measuring noise current in an electronic cable

    NASA Technical Reports Server (NTRS)

    Lundy, C. C.

    1974-01-01

    Electromagnetic interference in deep-space network receiver is often caused by stray coupling from power lines. These stray signals create potential differences between ground terminals, which leads to excessive noise in receiver circuits. Pair of probes detect and measure noise currents in conductors.

  7. Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers.

    PubMed

    Mitin, D; Kovacs, A; Schrefl, T; Ehresmann, A; Holzinger, D; Albrecht, M

    2018-08-31

    Magnetic stray fields generated by domain walls (DWs) have attracted significant attention as they might be employed for precise positioning and active control of micro- and nano-sized magnetic objects in fluids or in the field of magnonics. The presented work intends to investigate the near-field response of magnetic stray field landscapes above generic types of charged DWs as occurring in thin films with in-plane anisotropy and preferential formation of Néel type DWs when disturbed by external magnetic fields. For this purpose, artificial magnetic stripe domain patterns with three defined domain configurations, i.e. head-to-head (tail-to-tail), head-to-side, and side-by-side, were fabricated via ion bombardment induced magnetic patterning of an exchange-biased IrMn/CoFe bilayer. The magnetic stray field landscapes as well as the local magnetization reversal of the various domain configurations were analyzed in an external magnetic field by scanning magnetoresistive microscopy and compared to micromagnetic simulations.

  8. First genetic characterization of Toxoplasma gondii in stray cats from Algeria.

    PubMed

    Yekkour, Feriel; Aubert, Dominique; Mercier, Aurélien; Murat, Jean-Benjamin; Khames, Mammar; Nguewa, Paul; Ait-Oudhia, Khatima; Villena, Isabelle; Bouchene, Zahida

    2017-05-30

    Toxoplasmosis is a parasitic disease with worldwide distribution and a major public health problem. In Algeria, no data are currently available about genotypes of Toxoplasma gondii isolated from animals or humans. The present study assesses for the first time the seroprevalence of toxoplasmosis in stray cats, and provides molecular characterization of T. gondii strains circulating in this feline population in Algiers, the capital city of Algeria. Sera from 96 stray cats were tested for the presence of antibodies against T. gondii using the modified agglutination test. The seroprevalence was 50% (48/96) using 1:6 as the positivity cut-off. Different organs samples from stray cats, including heart samples, were tested for the presence of Toxoplasma DNA using real-time PCR. T. Gondii DNA was detected in 90.6% (87/96) of hearts. Of these parasitic DNAs, 22 were submitted to genotyping through the analysis of 15 microsatellite markers. The identified genotypes (12 of 22) mainly belonged to the type II lineage. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A novel, cost-effective, multi-point Thomson scattering system on the Pegasus Toroidal Experiment (invited)

    DOE PAGES

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...

    2016-09-16

    Here, a novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fastmore » shutter. This –10 3 reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot T e(R) for n e > 5 × 10 18 m –3.« less

  10. Diverse Electron-Induced Optical Emissions from Space Observatory Materials at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Dennison, J.R.; Jensen, Amberly Evans; Wilson, Gregory; Dekany, Justin; Bowers, Charles W.; Meloy, Robert

    2013-01-01

    Electron irradiation experiments have investigated the diverse electron-induced optical and electrical signatures observed in ground-based tests of various space observatory materials at low temperature. Three types of light emission were observed: (i); long-duration cathodoluminescence which persisted as long as the electron beam was on (ii) short-duration (<1 s) arcing, resulting from electrostatic discharge; and (iii) intermediate-duration (100 s) glow-termed "flares". We discuss how the electron currents and arcing-as well as light emission absolute intensity and frequency-depend on electron beam energy, power, and flux and the temperature and thickness of different bulk (polyimides, epoxy resins, and silica glasses) and composite dielectric materials (disordered SiO2 thin films, carbon- and fiberglass-epoxy composites, and macroscopically-conductive carbon-loaded polyimides). We conclude that electron-induced optical emissions resulting from interactions between observatory materials and the space environment electron flux can, in specific circumstances, make significant contributions to the stray light background that could possibly adversely affect the performance of space-based observatories.

  11. Optical design of the STAR-X telescope

    NASA Astrophysics Data System (ADS)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-08-01

    Top-level science objectives of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these objectives, the STAR-X telescope requires a field of view of about 1 square-degree, an angular resolution of 5 arc-seconds or better across large part of the field of view. The on-axis effective area at 1 keV should be about 2,000 cm2 . Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center. The telescope mirror shells are divided into segments. Individual shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 keV range. We consider Wolter-Schwarzschild, and Modified-WolterSchwarzschild telescopes. These designs offer an excellent PSF over a large field of view. Nested shells are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the mirror assembly. Large numbers of internal and external baffles are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  12. Design of the STAR-X Telescope

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  13. Optical Design of the STAR-X Telescope

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  14. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to < 3 mm throughout the collection region. Inter-shot beam alignment is adjustable with less than a 0.01 mm spatial resolution in the collection region. A custom lens system collects scattered photons at radii 15 cm to 85 cm from the machine's center, at ~ F/6 with 14 mm radial resolution. The initial configuration provides scattering measurements at 12 spatial locations and 12 simultaneous background measurements at adjacent locations. If plasma background subtraction proves to be insignificant, these background channels will be used as viewing channels. Each spectrometer supports 8 spatial channels and can provide 8 or more spectral bins each. The spectrometers use high-efficiency VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  15. AsteroidFinder - the space-borne telescope to search for NEO Asteroids

    NASA Astrophysics Data System (ADS)

    Hartl, M.; Mosebach, H.; Schubert, J.; Michaelis, H.; Mottola, S.; Kührt, E.; Schindler, K.

    2017-11-01

    This paper presents the mission profile as well as the optical configuration of the space-borne AsteroidFinder telescope. Its main objective is to retrieve asteroids with orbits interior to the earth's orbit. The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5mag (V-Band) and astrometric accuracy of 1arcsec (1σ). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak > 90%) and very low noise, which is only limited by zodiacal background. The telescope will observe the sky between 30° and 60° in solar elongation. The telescope optics is based on a Cook type TMA. An effective 2°×2° field of view (FOV) is achieved by a fast F/3.4 telescope with near diffraction-limited performance. The absence of centre obscuration or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. Design drivers for the telescope are the required point spread function (PSF) values, an extremely efficient stray light suppression (due to the magnitude requirement mentioned above), the detector performance, and the overall optical and mechanical stability for all orientations of the satellite. To accommodate the passive thermal stabilization scheme and the necessary structural stability, the materials selection for the telescope main structure and the mirrors are of vital importance. A focal plane with four EMCCD detectors is envisaged. The EMCCD technology features shorter integration times, which is in favor regarding the pointing performance of the satellite. The launch of the mission is foreseen for the year 2013 with a subsequent mission lifetime of at least 1 year.

  16. Landsat 9: Status and Plans

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Jenstrom, Del; Masek, Jeffrey G.; Dabney, Phil; Pedelty, Jeffrey A.; Barsi, Julia A.; Montanaro, Matthew

    2016-01-01

    The Landsat 9 mission, currently under development and proceeding towards a targeted launch in late 2020, will be very similar to the Landsat 8 mission, launched in 2013. Like Landsat 8, Landsat 9 is a joint effort between NASA and USGS with two sensors, the Operational Land Imager 2 (OLI-2), essentially a copy of the OLI on Landsat 8 and the Thermal Infrared Sensor 2 (TIRS-2), very similar to the TIRS on Landsat 8. The OLI-2, like OLI, provides 14-bit image data, though for Landsat 9, all 14 bits will be retained and transmitted to the ground. The focal plane modules to be used for OLI-2 were flight spares for OLI and are currently being retested by Ball Aerospace. Results indicate radiometric performance comparable to OLI. The TIRS was a class C instrument, with a 3-year design lifetime, and therefore had limited redundancy. TIRS-2 will be a class B instrument, with a 5-year design lifetime, like OLI (and OLI-2), necessitating design changes to increase redundancy. The stray light and Scene Select Mechanism (SSM) encoder problems observed on orbit with TIRS have also instigated a few design changes to TIRS-2. Stray light analysis and testing have indicated that additional baffles in the TIRS-2 optical system will suppress the out-of-field response. The SSM encoder problems have not been definitively traced to a route cause, though conductive anodic filament growth in the circuit boards is suspected. Improved designs for the encoder are being considered for TIRS-2. The spare Focal Plane Array (FPA) from TIRS is planned for use in TIRS-2; FPA spectral and radiometric performance testing is scheduled for September of this year at NASA's Goddard Space Flight Center.

  17. Solar off-limb line widths: Alfvén waves, ion-cyclotron waves, and preferential heating

    NASA Astrophysics Data System (ADS)

    Dolla, L.; Solomon, J.

    2008-05-01

    Context: Alfvén waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). Aims: We propose a method to constrain both the Alfvén wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. Methods: The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfvén wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 Å line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. Results: The effect of stray light explains the apparent decrease with height in the width of several spectral lines, this decrease usually starting about 0.1-0.2 R_⊙ above the limb. This result rules out any direct evidence of damping of the Alfvén waves, often suggested by other authors. We also find that the ions with the smallest charge-to-mass ratios are the hottest ones at a fixed altitude and that they are subject to a stronger heating, as compared to the others, between 57´´ and 102´´ above the limb. This constitutes a serious clue to ion-cyclotron preferential heating.

  18. Measurement of optical coupling between adjacent bi-material microcantilevers.

    PubMed

    Canetta, Carlo; Narayanaswamy, Arvind

    2013-10-01

    Low thermal conductance bi-material microcantilevers are fabricated with a pad area near the free end to accommodate a focused laser spot. A pair of such cantilevers are proposed as a configuration for measuring thermal conductance of a nanostructure suspended between the two. We determine the resolution of such a device by measuring the stray conductance it would detect in the absence of any nanostructure. Stray conductance, primarily due to optical coupling, is measured for cantilevers with varying pad size and found to be as low as 0.05 nW K(-1), with cantilevers with larger pad size yielding the smallest stray conductance.

  19. Zoonotic Parasites of Sheltered and Stray Dogs in the Era of the Global Economic and Political Crisis.

    PubMed

    Otranto, Domenico; Dantas-Torres, Filipe; Mihalca, Andrei D; Traub, Rebecca J; Lappin, Michael; Baneth, Gad

    2017-10-01

    Sheltered and stray dogs, exposed to zoonotic parasites, including protozoa, helminths, and arthropods, may represent a major threat to public health. Resources for addressing health problems in these animals are not on the priority list of veterinary and public health authorities. Thus, dogs continue to represent an important reservoir for zoonotic parasites. In this article, we review the importance of sheltered and stray dogs as reservoirs of zoonotic parasites in different parts of the world, especially in the context of the current global political and economic crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    PubMed

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  1. Extremely low frequency (ELF) stray magnetic fields of laboratory equipment: a possible co-exposure conducting experiments on cell cultures.

    PubMed

    Gresits, Iván; Necz, Péter Pál; Jánossy, Gábor; Thuróczy, György

    2015-09-01

    Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3 µT, 20 µT and 75 µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.

  2. Matrix light and pixel light: optical system architecture and requirements to the light source

    NASA Astrophysics Data System (ADS)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  3. Transmission Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS).

    PubMed

    Strange, K Alicia; Paul, Kelly C; Angel, S Michael

    2017-02-01

    A spatial heterodyne Raman spectrometer (SHRS) was used to measure transmission Raman spectra of highly scattering compounds. Transmission Raman spectral intensities of ibuprofen were only 2.4 times lower in intensity than backscatter Raman spectra. The throughput was about eight times higher than an f/1.8 dispersive spectrometer, and the width of the area viewed was found to be seven to nine times higher, using 50.8 mm and 250 mm focal length collection lenses. However, the signal-to-noise (S/N) ratio was two times lower for the SHRS than the f/1.8 dispersive spectrometer, apparently due to high levels of stray light.

  4. Diffuse-direct ultraviolet ratios with a compact double monochromator

    NASA Technical Reports Server (NTRS)

    Garrison, L. M.; Murray, L. E.; Doda, D. D.; Green, A. E. S.

    1978-01-01

    An improved system has been implemented for measuring the ratio of the diffuse skylight to the direct sunlight in the biologically active region of the UV near the atmospheric limit. It combines a double monochromator employing holographic gratings for reduction of stray light with a cooled photomultiplier tube to provide a greatly improved SNR below 300 nm. Data may be obtained in either a scan mode or a narrowband photometry mode; in the latter mode accurate ratios have been obtained near 290 nm. Representative data are discussed along with a theoretical model of the ratio. The system is compact enough for use in a mobile monitoring system.

  5. Trade-off between TMA and RC configurations for JANUS camera

    NASA Astrophysics Data System (ADS)

    Greggio, D.; Magrin, D.; Munari, M.; Paolinetti, R.; Turella, A.; Zusi, M.; Cremonese, G.; Debei, S.; Della Corte, V.; Friso, E.; Hoffmann, H.; Jaumann, R.; Michaelis, H.; Mugnuolo, R.; Olivieri, A.; Palumbo, P.; Ragazzoni, R.; Schmitz, N.

    2016-07-01

    JANUS (Jovis Amorum Ac Natorum Undique Scrutator) is a high-resolution visible camera designed for the ESA space mission JUICE (Jupiter Icy moons Explorer). The main scientific goal of JANUS is to observe the surface of the Jupiter satellites Ganymede and Europa in order to characterize their physical and geological properties. During the design phases, we have proposed two possible optical configurations: a Three Mirror Anastigmat (TMA) and a Ritchey-Chrétien (RC) both matching the performance requirements. Here we describe the two optical solutions and compare their performance both in terms of achieved optical quality, sensitivity to misalignment and stray light performances.

  6. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light.

    PubMed

    Tan, Jiubin; Lu, Zhengang

    2007-02-05

    This paper presents the experimental study on an inductive mesh composed of contiguous metallic rings fabricated using UV-lithography on quartz glass. Experimental results indicate that, at the same period and linewidth as square mesh, ring mesh has better transmissivity for its higher obscuration ratio, stronger electromagnetic shielding performance for its smaller maximum aperture, and less degradation of imaging quality for its lower ratio and uniform distribution of high order diffraction energy. It is therefore concluded that this kind of ring mesh can be used as high-pass filters to provide electromagnetic shielding of optical transparent elements.

  7. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  8. A new telescope concept for space communication

    NASA Astrophysics Data System (ADS)

    Henneberg, Peter; Schubert, Hermann

    1990-07-01

    The design concept of an optical transmit-receive antenna telescope developed in the framework of the ESA SILEX program is presented. SILEX involves optical communication between satellites in GEO, using semiconductor laser diodes operating at 825 nm as the light source. The telescope requirements include entrance diameter 250 mm, exit pupil 8 mm, acquisition FOV 8500 microrad, communication FOV 2000 microrad, angular magnification -31.25, retroreflection 3 microW/sq m nm or less, stray light 1.05 microW/sq m nm or less, and alignment stability 10 years with no refocusing in orbit. The present compact two-mirror configuration employs the glass-ceramic Zerodur for all of the major components (primary mirror/baseplate, secondary mirror, tube, front ring, and ocular) for a total mass of only 5760 g. The prototype manufacturing process gave surface errors of 25 nm rms-WF for the primary and 15 nm rms-WF for the secondary.

  9. Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.

    2002-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40 km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600- to 1000-nm region of the spectrum, successfully provides daytime aspect information of approx. 10 arcsec resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models used to design the camera, but the daytime stellar magnitude limit was lower than expected due to longitudinal chromatic aberration in the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  10. High-speed laser anemometry based on spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1991-01-01

    Laser anemometry in unseeded flows based on the measurement of the spectrum of Rayleigh scattered laser light is reviewed. The use of molecular scattering avoids the well known problems (particle lag, biasing effects, seed generation, seed injection) of seeded flows. The fundamental limits on velocity measurement accuracy are determined using maximum likelihood methods. Measurement of the Rayleigh spectrum with scanning Fabry-Perot interferometers is analyzed and accuracy limits are established for both single pass and multipass configurations. Multipass configurations have much higher selectivity and are needed for measurements where there is a large amount of excess noise caused by stray laser light. It is shown that Rayleigh scattering is particularly useful for supersonic and hypersonic flows. The results of the analysis are compared with measurements obtained with a Rayleigh scattering diagnostic developed for study of the exhaust plume of a small hydrogen-oxygen rocket, where the velocities are in the range of 1000 to 5000 m/sec.

  11. Pinhole X-ray/coronagraph optical systems concept definition study

    NASA Technical Reports Server (NTRS)

    Zehnpfenning, T. F.; Rappaport, S.; Wattson, R. B.

    1980-01-01

    The Pinhole X-ray/Coronagraph Concept utilizes the long baselines possible in Earth orbit with the space transportation system (shuttle) to produce observations of solar X-ray emission features at extremely high spatial resolution (up to 0.1 arc second) and high energy (up to 100 keV), and also white light and UV observations of the inner and outer corona at high spatial and/or spectral resolution. An examination of various aspects of a preliminary version of the X-ray Pinhole/Coronagraph Concept is presented. For this preliminary version, the instrument package will be carried in the shuttle bay on a mounting platform, and will be connected to the occulter with a deployable boom such as an Astromast. Generally, the spatial resolution, stray light levels, and minimum limb observing angles improve as the boom length increases. However, the associated engineering problems also become more serious with greater boom lengths.

  12. Indwelling Stent Embedded with Light-Emitting Diodes for Photodynamic Therapy of Malignant Biliary Obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baran, Timothy M., E-mail: timothy.baran@rochester.edu; Mironov, Oleg, E-mail: oleg.mironov@uhn.ca; Sharma, Ashwani K., E-mail: Ashwani-Sharma@URMC.Rochester.edu

    PurposeWe describe the design and preliminary characterization of a stent incorporating light-emitting diodes (LEDs) for photodynamic therapy (PDT) of malignant biliary obstruction.MethodsA prototype was constructed with red (640 nm) LEDs embedded in a 14.5 French polyurethane tube. The device was evaluated for optical power and subjected to physical and electrical tests. PDT-induced reactive oxygen species were imaged in a gel phantom.ResultsThe stent functioned at a 2.5-cm bend radius and illuminated for 6 months in saline. No stray currents were detected, and it was cool after 30 minutes of operation. Optical power of 5–15 mW is applicable to PDT. Imaging of a reactivemore » oxygen indicator showed LED-stent activation of photosensitizer.ConclusionsThe results motivate biological testing and design optimization.« less

  13. Molecular detection of Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli in stray dogs in Mahasarakham province, Thailand.

    PubMed

    Piratae, Supawadee; Pimpjong, Kiattisak; Vaisusuk, Kotchaphon; Chatan, Wasupon

    2015-01-01

    Canine tick borne diseases showing distribution worldwide have caused morbidity and mortality in dogs. This study observed the mainly tick borne pathogens described for dogs in Thailand, Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli. From May to July 2014, blood samples were collected from 79 stray dogs from 7 districts of Mahasarakham province to molecular surveyed for 16s rRNA gene of E. canis and 18s rRNA gene of H. canis and B. canis vogeli. Twenty eight (35.44%) of stray dogs showed the infection with tick borne pathogens. The prevalence of E. canis infection was the highest with 21.5% (17/79). DNA of H. canis and B. canis vogeli were detected at the prevalence of 10.1% (8/79) and 6.3% (5/79), respectively. Co-infection between E. canis and B. canis vogeli were identified in 2 (2.5%) dogs. The results indicated that a wide range of tick borne pathogens are circulation in the canine population in Mahasarakham province. This study is the first report on prevalence of E. canis, H. canis and B. canis vogeli in stray dogs in Mahasarakham, a province in northern part of Thailand. This data providing is important to understand the prevalence of E. canis, H. canis and B. canis vogeli infection in stray dogs in this region, which will assist in the management of these blood parasite.

  14. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  15. Stray Cats Gastrointestinal Parasites and its Association With Public Health in Ahvaz City, South Western of Iran

    PubMed Central

    Khademvatan, Shahram; Abdizadeh, Rahman; Rahim, Fakher; Hashemitabar, Mahamoud; Ghasemi, Mohammad; Tavalla, Mahdi

    2014-01-01

    Background: Cats are the hosts for some zoonotic parasites such as Toxoplasma gondii and Toxocara spp. which are important in medicine and veterinary. Studies on the prevalence of intestinal parasites of cats have received little attention in south west of Iran. Objectives: The current study aimed to investigate the prevalence of parasites in stray cats in Ahvaz. Materials and Methods: Random sampling was carried out from January to May 2012. One hundred and forty fecal samples from stray cats were examined using sucrose flotation method. Results: Gastrointestinal parasites were found in 121 of the 140 (86.4%) examined samples. The parasites detected in stray cats were Toxocara spp. (45%, 63/140), Isospora spp. (21.4%, 30/140), nematode larvae (21.4%, 30/140), Taenia spp. (18.6%, 26/140), Sarcocystis spp. (17.1%, 24/140), Eimeria spp. (15%, 21/140), Blastocystis spp. (14.3%, 20/140), Giardia spp, (10.7%, 15/140), Physaloptera spp. (7.1%, 10/140), and amoeba cyst (5.7%, 8/140) respectively. The prevalence of infection by Joyexiella spp. and hook worms (4.3%, 6/140), for example, Dipylidium caninum (2.9%, 4/140) was similar; and the prevalence of infection by T. gondii and Dicrocoelium dendriticum was similar (1.4%, 2/140). Conclusions: Since the prevalence of zoonotic gastrointestinal parasites such as Toxocara spp. in stray cats is high, there is a need to plan adequate programs to control these zoonotic parasites. PMID:25485047

  16. Size and spatial distribution of stray dog population in the University of São Paulo campus, Brazil.

    PubMed

    Dias, Ricardo Augusto; Guilloux, Aline Gil Alves; Borba, Mauro Riegert; Guarnieri, Maria Cristina de Lourdes; Prist, Ricardo; Ferreira, Fernando; Amaku, Marcos; Neto, José Soares Ferreira; Stevenson, Mark

    2013-06-01

    A longitudinal study was carried out to describe the size and spatial distribution of the stray dog population in the University of São Paulo campus, Brazil from November 2010 to November 2011. The campus is located within the urban area of São Paulo, the largest city of Brazil, with a population over 11 million. The 4.2 km(2) that comprise the university grounds are walled, with 10 access gates, allowing stray dogs to move in and out freely. Over 100,000 people and 50,000 vehicles circulate in the campus daily. Five observations were made during the study period, using a mark-resight method. The same route was performed in all observations, being traveled twice on each observation day. Observed animals were photographed and the sight coordinates were obtained using a GPS device. The estimated size of the stray dog population varied from 32 (CI 95% 23-56) to 56 (CI 95% 45-77) individuals. Differences between in- and outward dog movements influenced dog population estimates. Overlapping home ranges of docile dogs were observed in areas where most people circulate. An elusive group was observed close to a protected rain forest area and the estimated home range for this group did not overlap with the home ranges for other dogs within the campus. A kernel density map showed that higher densities of stray dog sighting is associated with large organic matter generators, such as university restaurants. We conclude that the preferred source of food of the stray dogs on the University of São Paulo campus was leftover food deliberately offered by restaurant users. The population was stable during the study period and the constant source of food was the main reason to retain this population within the campus. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Genetic characterization of Toxoplasma gondii isolates and toxoplasmosis seroprevalence in stray cats of İzmir, Turkey.

    PubMed

    Can, Hüseyin; Döşkaya, Mert; Ajzenberg, Daniel; Özdemir, H Gökhan; Caner, Ayşe; İz, Sultan Gülce; Döşkaya, Aysu Değirmenci; Atalay, Esra; Çetinkaya, Çağdaş; Ürgen, Saygun; Karaçalı, Sabire; Ün, Cemal; Dardé, Marie-Laure; Gürüz, Yüksel

    2014-01-01

    Currently, some Toxoplasma gondii genotypes are being associated with serious clinical presentations. A recent report showing the Africa 1 genotype in two local congenital toxoplasmosis cases acquired in Turkey formed the basis of this study because atypical Africa 1 genotype is most frequently detected in animals and patients from sub-Saharan Africa. Since stray cats are considered as the linkage between wild life and urban life in T. gondii transmission, the present study aimed to isolate and characterize T. gondii strains circulating in stray cats of İzmir (Western Turkey). A secondary objective was to determine toxoplasmosis seroprevalence in this cat population. Tissues obtained from 100 deceased stray cats were bioassayed and isolated strains were genotyped using 15 microsatellite markers. In addition, toxoplasmosis seroprevalence was analyzed in 1121 cat sera collected from several large veterinary clinics in İzmir. Among the 22 isolates, 19 were Type II (86.3%), two were Type III (9%) and one was Africa 1 genotype (4.5%). The overall seropositivity rates in cats were 42-48% and 33.4-34.4% according to IFA and ELISA, respectively. Seroprevalence in deceased cats was significantly higher than in healthy cats (P = 0.0033). Finding both the major clonal Type II lineage together with the Type III lineage also found in Middle East, and an atypical genotype, Africa 1 appears consistent with the specific geographic location of Turkey between three continents and raises the possibility of transportation of these strains between continents through trade routes or long distance migratory birds. In addition, the first large study of toxoplasma seroprevalence in a stray cat population was also reported. The relatively high seropositivity rates and the variety of T. gondii genotypes confirm the local stray cat population as a risk factor for human toxoplasmosis in İzmir.

  18. Genetic Characterization of Toxoplasma gondii Isolates and Toxoplasmosis Seroprevalence in Stray Cats of İzmir, Turkey

    PubMed Central

    Can, Hüseyin; Döşkaya, Mert; Ajzenberg, Daniel; Özdemir, H. Gökhan; Caner, Ayşe; İz, Sultan Gülce; Döşkaya, Aysu Değirmenci; Atalay, Esra; Çetinkaya, Çağdaş; Ürgen, Saygun; Karaçalı, Sabire; Ün, Cemal; Dardé, Marie-Laure; Gürüz, Yüksel

    2014-01-01

    Currently, some Toxoplasma gondii genotypes are being associated with serious clinical presentations. A recent report showing the Africa 1 genotype in two local congenital toxoplasmosis cases acquired in Turkey formed the basis of this study because atypical Africa 1 genotype is most frequently detected in animals and patients from sub-Saharan Africa. Since stray cats are considered as the linkage between wild life and urban life in T. gondii transmission, the present study aimed to isolate and characterize T. gondii strains circulating in stray cats of İzmir (Western Turkey). A secondary objective was to determine toxoplasmosis seroprevalence in this cat population. Tissues obtained from 100 deceased stray cats were bioassayed and isolated strains were genotyped using 15 microsatellite markers. In addition, toxoplasmosis seroprevalence was analyzed in 1121 cat sera collected from several large veterinary clinics in İzmir. Among the 22 isolates, 19 were Type II (86.3%), two were Type III (9%) and one was Africa 1 genotype (4.5%). The overall seropositivity rates in cats were 42–48% and 33.4–34.4% according to IFA and ELISA, respectively. Seroprevalence in deceased cats was significantly higher than in healthy cats (P = 0.0033). Finding both the major clonal Type II lineage together with the Type III lineage also found in Middle East, and an atypical genotype, Africa 1 appears consistent with the specific geographic location of Turkey between three continents and raises the possibility of transportation of these strains between continents through trade routes or long distance migratory birds. In addition, the first large study of toxoplasma seroprevalence in a stray cat population was also reported. The relatively high seropositivity rates and the variety of T. gondii genotypes confirm the local stray cat population as a risk factor for human toxoplasmosis in İzmir. PMID:25127360

  19. Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka.

    PubMed

    Bett, N N; Hinch, S G; Kaukinen, K H; Li, S; Miller, K M

    2018-04-16

    Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory-mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing. © 2018 The Fisheries Society of the British Isles.

  20. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

    NASA Technical Reports Server (NTRS)

    Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

    2015-01-01

    In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the alpha-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned following four steps in order to reduce standing time alignment me. 1: is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm). 2: The mirror structure CLASP before mounting unit standing, dummy slit and camera standing prescribed position in leading frame is, to complete the internal alignment adjustment. 3: CLASP structure F mirror unit and by attaching the visible light filter, as will plague the focus is carried out in standing position adjustment visible flight products camera. 4: Replace the Lyman alpha transmission filter, it is confirmed by Lyman alpha wavelength (under vacuum) the requested optical performance have come. Currently, up to 3 of the steps completed, it was confirmed in the visible light optical performance that satisfies the required value sufficiently extended. Also, put in Slit-jaw optical system the sunlight through the telescope of CLASP, it is also confirmed that and that stray light rejection no vignetting is in the field of view meets request standing.

  1. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

    NASA Technical Reports Server (NTRS)

    Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

    2015-01-01

    In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the a-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned 'following four steps in order to reduce standing time alignment me. 1. is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm).2. The mirror structure CLASP before mounting unit standing, dummy slit and camera standing prescribed position in leading frame is, to complete the internal alignment adjustment. 3. CLASP structure F mirror unit and by attaching the visible light filter, as will plague the focus is carried out in standing position adjustment visible flight products camera. 4. Replace the Lyman alpha transmission filter, it is confirmed by Lyman alpha wavelength (under vacuum) the requested optical performance have come. Currently, up to 3 of the steps completed, it was confirmed in the visible light optical performance that satisfies the required value sufficiently extended. Also, put in Slit-jaw optical system the sunlight through the telescope of CLASP, it is also confirmed that and that stray light rejection no vignetting is in the field of view meets request standing.

  2. Feline immunodeficiency virus testing in stray, feral, and client-owned cats of Ottawa

    PubMed Central

    2005-01-01

    Abstract Feline immunodeficiency virus (FIV) seroprevalence is evaluated in 3 groups of cats. Seventy-four unowned urban strays were tested, as well as 20 cats from a small feral cat colony, and 152 client-owned cats. Of the 246 cats tested, 161 (65%) were male and 85 (35%) were female. Seroprevalence for FIV was 23% in the urban strays, 5% in the feral cat colony, and 5.9% in the client-owned cats. Ten cats (4%) were also positive for Feline leukemia virus (FeLV) antigen, including 2 cats coinfected with FeLV and FIV. Seroprevalence for FIV in cats from Ottawa is similar to that found in other nonrandom studies of cats in North America. PMID:16454381

  3. Feline immunodeficiency virus testing in stray, feral, and client-owned cats of Ottawa.

    PubMed

    Little, Susan E

    2005-10-01

    Feline immunodeficiency virus (FIV) seroprevalence is evaluated in 3 groups of cats. Seventy-four unowned urban strays were tested, as well as 20 cats from a small feral cat colony, and 152 client-owned cats. Of the 246 cats tested, 161 (65%) were male and 85 (35%) were female. Seroprevalence for FIV was 23% in the urban strays, 5% in the feral cat colony, and 5.9% in the client-owned cats. Ten cats (4%) were also positive for Feline leukemia virus (FeLV) antigen, including 2 cats coinfected with FeLV and FIV. Seroprevalence for FIV in cats from Ottawa is similar to that found in other nonrandom studies of cats in North America.

  4. Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, Dmitry; Laqua, Heinrich; Marsen, Stefan; Stange, Torsten; Braune, Harald; Erckmann, Volker; Gellert, Florian; Oosterbeek, Johann Wilhelm; Wenzel, Uwe

    2017-07-01

    Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes.

  5. Design, optimization and characterization of the light concentrators of the single-mirror small size telescopes of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Basili, A.; Boccone, V.; Cadoux, F.; Christov, A.; della Volpe, D.; Montaruli, T.; Płatos, Ł.; Rameez, M.

    2015-01-01

    The focal-plane cameras of γ -ray telescopes frequently use light concentrators in front of the light sensors. The purpose of these concentrators is to increase the effective area of the camera as well as to reduce the stray light coming at large incident angles. These light concentrators are usually based on the Winston cone design. In this contribution we present the design of a hexagonal hollow light concentrator with a lateral profile optimized using a cubic Bézier function to achieve a higher collection efficiency in the angular region of interest. The design presented here is optimized for a Davies-Cotton telescope with a primary mirror of about 4 m in diameter and a focal length of 5.6 m. The described concentrators are part of an innovative camera made up of silicon-photomultiplier sensors, although a similar approach can be used for other sizes of single-mirror telescopes with different camera sensors, including photomultipliers. The challenge of our approach is to achieve a cost-effective design suitable for standard industrial production of both the plastic concentrator substrate and the reflective coating. At the same time we maximize the optical performance. In this paper we also describe the optical set-up to measure the absolute collection efficiency of the light concentrators and demonstrate our good understanding of the measured data using a professional ray-tracing simulation.

  6. Toward Microsatellite Based Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Scott, L.; Wallace, B.; Sale, M.; Thorsteinson, S.

    2013-09-01

    The NEOSSat microsatellite is a dual mission space telescope which will perform asteroid detection and Space Situational Awareness (SSA) observation experiments on deep space, earth orbiting objects. NEOSSat was launched on 25 February 2013 into a 800 dawn-dusk sun synchronous orbit and is currently undergoing satellite commissioning. The microsatellite consists of a small aperture optical telescope, GPS receiver, high performance attitude control system, and stray light rejection baffle designed to reject stray light from the Sun while searching for asteroids with elongations 45 degrees along the ecliptic. The SSA experimental mission, referred to as HEOSS (High Earth Orbit Space Surveillance), will focus on objects in deep space orbits. The HEOSS mission objective is to evaluate the utility of microsatellites to perform catalog maintenance observations of resident space objects in a manner consistent with the needs of the Canadian Forces. The advantages of placing a space surveillance sensor in low Earth orbit are that the observer can conduct observations without the day-night interruption cycle experienced by ground based telescopes, the telescope is insensitive to adverse weather and the system has visibility to deep space resident space objects which are not normally visible from ground based sensors. Also, from a photometric standpoint, the microsatellite is able to conduct observations on objects with a rapidly changing observer position. The possibility of spin axis estimation on geostationary satellites may be possible and an experiment characterize spin axis of distant resident space objects is being planned. Also, HEOSS offers the ability to conduct observations of satellites at high phase angles which can potentially extend the trackable portion of space in which deep space objects' orbits can be monitored. In this paper we describe the HEOSS SSA experimental data processing system and the preliminary findings of the catalog maintenance experiments. The placement of a space based space surveillance sensor in low Earth orbit introduces tasking and image processing complexities such as cosmic ray rejection, scattered light from Earth's limb and unique scheduling limitations due to the observer's rapid positional change and we describe first-look microsatellite space surveillance lessons from this unique orbital vantage point..

  7. State of the art in silicon immersed gratings for space

    NASA Astrophysics Data System (ADS)

    van Amerongen, Aaldert; Krol, Hélène; Grèzes-Besset, Catherine; Coppens, Tonny; Bhatti, Ianjit; Lobb, Dan; Hardenbol, Bram; Hoogeveen, Ruud

    2017-11-01

    We present the status of our immersed diffraction grating technology, as developed at SRON and of their multilayer optical coatings as developed at CILAS. Immersion means that diffraction takes place inside the medium, in our case silicon. The high refractive index of the silicon medium boosts the resolution and the dispersion. Ultimate control over the groove geometry yields high efficiency and polarization control. Together, these aspects lead to a huge reduction in spectrometer volume. This has opened new avenues for the design of spectrometers operating in the short-wave-infrared wavelength band. Immersed grating technology for space application was initially developed by SRON and TNO for the short-wave-infrared channel of TROPOMI, built under the responsibility of SSTL. This space spectrometer will be launched on ESA's Sentinel 5 Precursor mission in 2015 to monitor pollution and climate gases in the Earth atmosphere. The TROPOMI immersed grating flight model has technology readiness level 8. In this program CILAS has qualified and implemented two optical coatings: first, an anti-reflection coating on the entrance and exit facet of the immersed grating prism, which reaches a very low value of reflectivity for a wide angular range of incidence of the transmitted light; second, a metal-dielectric absorbing coating for the passive facet of the prism to eliminate stray light inside the silicon prism. Dual Ion Beam Sputtering technology with in-situ visible and infrared optical monitoring guarantees the production of coatings which are nearly insensitive to temperature and atmospheric conditions. Spectral measurements taken at extreme temperature and humidity conditions show the reliability of these multi-dielectric and metal-dielectric functions for space environment. As part of our continuous improvement program we are presently developing new grating technology for future missions, hereby expanding the spectral range, the blaze angles and grating size, while optimizing performance parameters like stray light and wavefront error. The program aims to reach a technology readiness level of 5 for the newly developed technologies by the end of 2012. An outlook will be presented.

  8. New light-shielding technique for shortening the baffle length of a star sensor

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sato, Yukio; Mitani, Kenji; Kanai, Hiroshi; Hama, Kazumori

    2002-10-01

    We have developed a star sensor with a short baffle of 140 mm. Our baffle provides a Sun rejection angle of 35 degrees with stray light attenuation less than the intensity level of a visual magnitude of Mv = +5 for a wide field of view lens of 13x13 degrees. The application of a new light shielding technique taking advantage of total internal reflection phenomena enables us to reduce the baffle length to about three fourths that of the conventional two-stage baffle. We have introduced two ideas to make the baffle length shorter. The one is the application of a nearly half sphere convex lens as the first focusing lens. The bottom surface reflects the scattering rays with high incident angles of over 50 degrees by using the total internal reflection phenomena. The other is the painting of the surface of the baffle with not frosted but gloss black paint. The gloss black paint enables most of the specular reflection rays to go back to outer space without scattering. We confirm the baffle performance mentioned above by scattering ray tracing simulation and a light attenuation experiment in a darkroom on the ground.

  9. Testing light concentrators prototypes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Hénault, François; Petrucci, Pierre-Olivier; Jocou, Laurent; Arezki, Brahim; Magnard, Yves; Khélifi, Bruno; Manigot, Pascal; Olive, Jean-François; Jean, Pierre; Punch, Michael

    2017-09-01

    With more than 30 Medium-Size Telescopes (MST) located in both North and South hemispheres, the Cherenkov Telescope Array (CTA) shall be the largest cosmic gamma ray detector ever built. Each MST focal plane consists in an array of some 1800 photomultipliers equipped with their own light concentrating optics in order to maximizing the amount of Cherenkov radiation collected by the telescope and to block stray light originating from ground environment. Within the CTA Consortium, the Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) is in charge of designing, subcontracting the realization to industry, and testing the MST light concentrators. Two different optical solutions were pre-selected, respectively based on CPCs (Winston cones) and non-imaging concentrating lenses. Prototypes were manufactured by different industrial companies and tested in our laboratory on a test bench specifically built for the project. After shortly describing both optical designs, this communication is essentially focused at experimental results. Each type of concentrator has been submitted to extensive performance measurements, including radiometric efficiency at different wavelengths, rejection curves, and qualitative shape error test. The final selected concentrator is the CPC, although non-imaging lenses exhibit interesting properties in terms of radiometric performance.

  10. The Webb Telescope's 'Golden Spider'

    NASA Image and Video Library

    2017-12-08

    NASA image release August 23, 2012 What looks like a giant golden spider weaving a web of cables and cords, is actually ground support equipment, including the Optical Telescope Simulator (OSIM), for the James Webb Space Telescope. OSIM's job is to generate a beam of light just like the one that the real telescope optics will feed into the actual flight instruments. Because the real flight instruments will be used to test the real flight telescope, their alignment and performance first have to be verified by using the OSIM. Engineers are thoroughly checking out OSIM now in preparation for using it to test the flight science instruments later. This photo was taken from inside a large thermal-vacuum chamber called the Space Environment Simulator (SES), at NASA's Goddard Space Flight Center in Greenbelt, Md. Engineers have blanketed the structure of the OSIM with special insulating material to help control its temperature while it goes into the deep freeze testing that mimics the chill of space that Webb will ultimately experience in its operational orbit over 1 million miles from Earth. The golden-colored thermal blankets are made of aluminized kapton, a polymer film that remains stable over a wide range of temperatures. The structure that looks like a silver and black cube underneath the "spider" is a set of cold panels that surround OSIM's optics. During testing, OSIM's temperature will drop to 100 Kelvin (-280 F or -173 C) as liquid nitrogen flows through tubes welded to the chamber walls and through tubes along the silver panels surrounding OSIM's optics. These cold panels will keep the OSIM optics very cold, but the parts covered by the aluminized kapton blankets will stay warm. "Some blankets have silver facing out and gold facing in, or inverted, or silver on both sides, etc.," says Erin Wilson, a Goddard engineer. "Depending on which side of the blanket your hardware is looking at, the blankets can help it get colder or stay warmer, in an environmental test." Another reason for thermal blankets is to shield the cold OSIM optics from unwanted stray infrared light. When the OSIM is pointing its calibrated light beam at Webb's science instruments, engineers don't want any stray infrared light, such as "warm photons" from warm structures, leaking into the instruments' field of view. Too much of this stray light would raise the background too much for the instruments to "see" light from the OSIM—it would be like trying to photograph a lightning bug flying in front of car headlights. To get OSIM's optics cold, the inside of the chamber has to get cold, and to do that, all the air has to be pumped out to create a vacuum. Then liquid nitrogen has to be run though the plumbing along the inner walls of the chamber. Wilson notes that's why the blankets have to have vents in them: "That way, the air between all the layers can be evacuated as the chamber pressure drops, otherwise the blankets could pop," says Wilson. The most powerful space telescope ever built, Webb is the successor to NASA's Hubble Space Telescope. Webb's four instruments will reveal how the universe evolved from the Big Bang to the formation of our solar system. Webb is a joint project of NASA, the European Space Agency and the Canadian Space Agency. Credit: NASA/GSFC/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Honecker, F.; Monaco, F.; Schmid-Lorch, D.; Schütz, H.; Stober, J.; Wagner, D.

    2012-09-01

    Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG) is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  12. Development of a neutron spectrometer using multi-wire spark chambers for the measurement of the spectra of stray neutrons in the vicinity of high energy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chun Bin

    A method of neutron spectrometry which measures the energy spectra of the stray neutrons around the high energy accelerators, roughly between 50 MeV and 300 MeV has been developed using a series of multi-wire spark chambers and polyethylene n-p converters.

  13. Horse impoundments under Control of Horses legislation in the Munster region of Ireland: factors affecting euthanasia.

    PubMed

    Cullinane, M; O'Sullivan, E; Collins, D M; Byrne, A W; More, S J

    2015-01-24

    Recently, considerable international attention has been paid to the problem of unwanted horses. In Ireland, stray horses, particularly in urban areas, are a further problem. The Control of Horses Act 1996 was enacted in response to an ongoing problem of uncontrolled horses in public places. As yet, no research work has been conducted focusing on stray horses in Ireland. This paper describes horses impounded under the Act in the Munster region of Ireland during 2005-2012 and the factors influencing decisions regarding their disposal. A logistic regression model was developed to investigate factors influencing the probability that a horse was euthanised during impoundment. In total, 3625 seizure events were recorded, most towards the end of the study period. Predictors for euthanasia during 2010-2012 included seizure location, sex, age, colour, body condition score and year. This study highlights the problem of stray horses in Ireland, particularly in urban areas. There is a need for rigorous enforcement of newly enacted horse identification legislation, allowing a fully integrated traceability system. More is required to manage the long-established societal problems of stray horses in urban settings, with a uniform approach by all Local Authorities being long overdue. British Veterinary Association.

  14. Toxoplasmosis, leptospirosis and brucellosis in stray dogs housed at the shelter in Umuarama municipality, Paraná, Brazil

    PubMed Central

    2013-01-01

    Background Leptospirosis, toxoplasmosis and brucellosis are diseases with worldwide distribution. Among stray dogs, these zoonoses are facilitated by direct contact with other animal species, by the habit of scavenging garbage and hunting in search of food, drinking standing water, smelling other animals’ urine, licking female genitalia and the sexual act itself. The objective of this study was to detect antibodies anti-Toxoplasma gondii, anti-Leptospira spp., anti-Brucella canis and anti-Brucella abortus in stray dogs housed in shelters at Umuarama city, Paraná, Brazil. In order to detect toxoplasmosis, indirect immunofluorescence assay (IFA) was performed, agglutination microscopic (MAT) test for leptospirosis and agar gel immunodiffusion (AGID) and buffered acidified antigen (BAA) tests for brucellosis. Results Of the 175 serum samples analyzed, 70.85% were considered positive for toxoplasmosis by IFA, 20% by MAT for leptospirosis and 2.85% by AGID for Brucella canis. Conclusions The serological results of this study showed that stray dogs housed at the private shelter are potential carriers of these three different zoonoses and contribute to the spread and maintenance of these etiologic agents in the urban area of Umuarama (PR), Brazil. PMID:24066949

  15. Effect of stray electric fields on cooling of center of mass motion of levitated graphite flakes

    NASA Astrophysics Data System (ADS)

    Nagornykh, Pavel; Coppock, Joyce; Kane, Bruce

    2015-03-01

    Levitation of charged multilayer graphene flakes in a quadrupole ion trap provides a unique way to study graphene in isolated conditions. Cooling of a flake in such a setup is necessary for high vacuum measurements of the flake and is achieved by using a parametric feedback scheme. We present data showing the strong dependence of the cooling of the flake's center of mass motion on the stray electric fields. We achieve this by using auxiliary electrodes to shift the position of the trap center in space. Once the point of minimum interaction between the stray fields and the particle is found (leading to cooling of the flake motion to temperatures below 20K at pressure of 10-7 Torr), we can estimate charge and mass of the flake by observing quantized discharge of the particle and measure transient dynamics of the center of mass motion by turning the cooling off and on. As an additional benefit, the behavior of the flake away from the optimum trap position can be used to quantify stray fields' effect on the particle motion by measuring its spinning orientation and frequency dependence on offset from the optimum position.

  16. Use of Cold Radiometers in Several Thermal/Vacuum Tests

    NASA Technical Reports Server (NTRS)

    DiPirro, M.; Tuttle, J.; Canavan, E.; Shirron, P.

    2011-01-01

    We have developed a low cost low temperature broadband radiometer for use with low temperature tests as a diagnostic tool for measuring stray thermal radiation and remote measurement of material properties. So far these radiometers have been used in two large thermal/vacuum tests for the James Webb Space Telescope (JWST) Project. In the first test the radiometers measured stray radiation in a test of part of the JWST sunshield, and in the second test the radiometers were used to measure the reflectivity and specularity of black Z307 painted aluminum walls on a 25 K cooled shroud. These results will be presented as well as plans for future tests to measure the residual energy through a baffled aperture in the shroud and other stray thermal energy measurements.

  17. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like geostationary telecom platforms.

  18. Airmass dependence of the Dobson total ozone measurements

    NASA Technical Reports Server (NTRS)

    Degorska, M.; Rajewska-Wiech, B.

    1994-01-01

    For many years the airmass dependence of total ozone measurements at Belsk has been observed to vary noticeably from one day to another. Series of AD wavelength pairs measurements taken out to high airmass were analyzed and compared with the two parameter stray light model presented by Basher. The analysis extended to the series of CD measurements indicates the role of atmospheric attenuation in appearing the airmass dependence. The minor noon decline of total ozone has been observed in the CD measurement series similarly as in those of the AD wavelength pairs. Such errors may seriously affect the accuracy of CD measurements at high latitude stations and the observations derived in winter at middle latitude stations.

  19. Method of absorbance correction in a spectroscopic heating value sensor

    DOEpatents

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  20. Investigation of structure in the modular light pipe component for LED automotive lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  1. Analysis methods for polarization state and energy transmission of rays propagating in optical systems

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Qiangsheng; Cen, Zhaofeng; Li, Xiaotong

    2010-11-01

    Polarization state of only completely polarized light can be analyzed by some software, ZEMAX for example. Based on principles of geometrical optics, novel descriptions of the light with different polarization state are provided in this paper. Differential calculus is well used for saving the polarization state and amplitudes of sampling rays when ray tracing. The polarization state changes are analyzed in terms of several typical circumstances, such as Brewster incidence, total reflection. Natural light and partially polarized light are discussed as an important aspect. Further more, a computing method including composition and decomposition of sampling rays at each surface is also set up to analyze the energy transmission of the rays for optical systems. Adopting these analysis methods mentioned, not only the polarization state changes of the incident rays can be obtained, but also the energy distributions can be calculated. Since the energy distributions are obtained, the surface with the most energy loss will be found in the optical system. The energy value and polarization state of light reaching the image surface will also be available. These analysis methods are very helpful for designing or analyzing optical systems, such as analyzing the energy of stray light in high power optical systems, researching the influences of optical surfaces to rays' polarization state in polarization imaging systems and so on.

  2. What Do They Have That We Don't Have? Local Libraries and Distance Students: Why Do Students Stray and Can We Get Them Back?

    ERIC Educational Resources Information Center

    Behr, Michele; LaDell-Thomas, Julie

    2014-01-01

    A significant number of distance students report they "stray" from their home universities by using local libraries, despite the fact that distance education librarians work hard to provide customized resources and services tailored to their programs and needs. Are public libraries and special libraries able to meet the research needs of…

  3. A rare case of acute toxoplasmosis in a stray dog due to infection of T. gondii clonal type I: public health concern in urban settings with stray animals?

    PubMed

    Migliore, Sergio; La Marca, Salvatore; Stabile, Cristian; Di Marco Lo Presti, Vincenzo; Vitale, Maria

    2017-08-17

    Typing of Toxoplasma gondii strains is important in epidemiological surveys, to understand the distribution and virulence of different clones of the parasite among human and animal populations. Stray dogs can be consider sentinel animals for contaminated environments playing an important but probably under- evaluated role in the epidemiology of T. gondii. We reported a rare case of acute toxoplasmosis in a stray dog due to clonal type I infection. The clonal type I, sporadic in Europe, is frequently associated with severe toxoplasmosis in humans and the control of its circulation is particularly relevant for public health. The symptomatology suggested a potential infection with the high similar parasite Neospora caninum but differential diagnosis showed that only T. gondii was involved highlighting the importance of multiple diagnostic methods beyond the clinical signs. A female stray dog approximately six-month of age presented muscular atrophy of the femoral region and hyperextension of hind limbs. Body condition score (BCS) was 20% below ideal weight, ribs had almost no fat and the sensor state was depressed. Haematological values were normal and the dog did not show any neurological abnormalities. Serological analysis showed a positive response for T. gondii immunoglobulin G (IgG) antibodies and exclude N. caninum infection. To confirm T. gondii infection, a muscle biopsy was performed and genomic DNA was extracted. PCR analysis resulted positive to T. gondii and strain genotyping reveals clonal type I infection. The dog recovered after 4 weeks of treatment with clindamycin hydrochloride and aquatic physiotherapy. Our study reports a rare and severe case of T. gondii clonal type I infection in a stray dog feeding in garbage containers. The data confirm the importance of an in vivo early diagnosis for toxoplasmosis in dog. Clinical signs are often related to specific T. gondii genotype and parasite genotyping is important in the epidemiological survey of toxoplasmosis in public health. The detection of parasitic DNA in the tissue could be an useful diagnostic method in facilitating early treatment of the disease, which is important for a timely clinical recovery.

  4. SU-E-T-598: Parametric Equation for Quick and Reliable Estimate of Stray Neutron Doses in Proton Therapy and Application for Intracranial Tumor Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfrate, A; Farah, J; Sayah, R

    2015-06-15

    Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volumemore » was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.« less

  5. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system

    NASA Astrophysics Data System (ADS)

    Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno

    2017-12-01

    The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.

  6. Gastrointestinal Helminths and Ectoparasites in the Stray Cats (Felidae: Felis catus) of Ahar Municipality, Northwestern Iran

    PubMed Central

    YAKHCHALI, Mohammad; HAJIPOUR, Nasser; MALEKZADEH-VIAYEH, Reza; ESMAEILNEJAD, Bijan; NEMATI-HARAVANI, Taher; FATHOLLAHZADEH, Mohammad; JAFARI, Rasool

    2017-01-01

    Background: The stray cats are considered as the sources of emerging humans and domestic livestock pathogens and the zoonoses of public health importance. The present study was aimed to elucidate intestinal helminth infections and infestation with ectoparasites of the stray cats of Ahar City, northwestern Iran. Methods: Totally, 51 stray cats were randomly trapped from different parts of the city between Mar and Nov 2013. The cats were assessed for ectoparasites by hair brushing, skin scraping, acetate tape preparation and othic swabs. They were euthanized and inspected for helminths infection. Results: Overall prevalence of helminths and flea were 44/51 (86.3%) and 31/51 (60.78%), respectively. The infection rates were significantly different among different age groups (P<0.05). Of the 282 isolated helminths, three species of nematodes (Toxocara cati (86.3%), T. leonina (11.77%), Ancylostoma tubaeforme (5.9%)) and four species of cestodes (Taenia taeniaeformis (64.7%), Mesocestoides lineatus (49.02%), Dipylidium caninum (29.41%), T. hydatigena (19.6%)) were identified. The predominant infectious helminths in all the infected cats were T. cati (86.3% with egg per gram of feces 27.75±9). Of the 270 collected fleas, two species of Ctenocephalides felis (80%) and C. canis (20%) were notably frequent in the cats aged 2-3-year-old. The average number of fleas per each infected cat was recorded as 5.29, with no incidence of cross-infection. Conclusion: The results indicated the high rate of helminths infections and flea infestation in the urban stray cats of which Toxocara cati and Ctenocephalides felis may play important roles as zoonotic agents in the region. PMID:28761492

  7. Gastrointestinal and ectoparasites from urban stray dogs in Fortaleza (Brazil): high infection risk for humans?

    PubMed

    Klimpel, Sven; Heukelbach, Jörg; Pothmann, David; Rückert, Sonja

    2010-08-01

    Dogs are important definite or reservoir hosts for zoonotic parasites. However, only few studies on the prevalence of intestinal parasites in urban areas in Brazil are available. We performed a comprehensive study on parasites of stray dogs in a Brazilian metropolitan area. We included 46 stray dogs caught in the urban areas of Fortaleza (northeast Brazil). After euthanization, dogs were autopsied. Ectoparasites were collected, and the intestinal content of dogs were examined for the presence of parasites. Faecal samples were collected and analysed using merthiolate iodine formaldehyde concentration method. A total of nine different parasite species were found, including five endoparasite (one protozoan, one cestode and three nematode species) and four ectoparasite species (two flea, one louse and one tick species). In the intestinal content, 3,162 specimens of four helminth species were found: Ancylostoma caninum (prevalence, 95.7%), Dipylidium caninum (45.7%), Toxocara canis (8.7%) and Trichuris vulpis (4.3%). A total of 394 ectoparasite specimens were identified, including Rhipicephalus sanguineus (prevalence, 100.0%), Heterodoxus spiniger (67.4%), Ctenocephalides canis (39.1%) and Ctenocephalides felis (17.4%). In the faeces, intestinal parasites were detected in 38 stray dogs (82.6%), including oocysts of Giardia sp. (2.2%) and eggs of the nematode A. caninum (82.6%). Neither eggs nor larval stages of D. caninum, T. canis or T. vulpis were detected in dog faeces. Sensitivity of faecal examination for A. caninum was 86.4% (95% confidence interval, 72.0-94.3) but zero percentage for the other intestinal helminth species. Our data show that stray dogs in northeast Brazil carry a multitude of zoonotic ecto- and endoparasites, posing a considerable risk for humans. With the exception of A. caninum, sensitivity of faecal examination was negligible.

  8. Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining

    NASA Astrophysics Data System (ADS)

    Wang, Dengyong; Zhu, Zengwei; Wang, Ningfeng; Zhu, Di

    2016-09-01

    Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 mm. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.

  9. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  10. Multi-objective inverse design of sub-wavelength optical focusing structures for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Bhargava, Samarth; Yablonovitch, Eli

    2014-09-01

    We report using Inverse Electromagnetic Design to computationally optimize the geometric shapes of metallic optical antennas or near-field transducers (NFTs) and dielectric waveguide structures that comprise a sub-wavelength optical focusing system for practical use in Heat Assisted Magnetic Recording (HAMR). This magnetic data-recording scheme relies on focusing optical energy to locally heat the area of a single bit, several hundred square nanometers on a hard disk, to the Curie temperature of the magnetic storage layer. There are three specifications of the optical system that must be met to enable HAMR as a commercial technology. First, to heat the media at scan rates upward of 10 m/s, ~1mW of light (<1% of typical laser diode output power) must be focused to a 30nm×30nm spot on the media. Second, the required lifetime of many years necessitates that the nano-scale NFT must not over-heat from optical absorption. Third, to avoid undesired erasing or interference of adjacent tracks on the media, there must be minimal stray optical radiation away from the hotspot on the hard disk. One cannot design the light delivery system by tackling each of these challenges independently, because they are governed by coupled electromagnetic phenomena. Instead, we propose multiobjective optimization using Inverse Electromagnetic Design in conjunction with a commercial 3D FDTD Maxwell's equations solver. We computationally generated designs of a metallic NFT and a high-index waveguide grating that meet the HAMR specifications simultaneously. Compared to a mock industry design, our proposed design has a similar optical coupling efficiency, ~3x improved suppression of stray optical radiation, and a 60% (280°C) reduction in NFT temperature rise. We also distributed the Inverse Electromagnetic Design software online so that industry partners can use it as a repeatable design process.

  11. Super-global distortion correction for a rotational C-arm x-ray image intensifier.

    PubMed

    Liu, R R; Rudin, S; Bednarek, D R

    1999-09-01

    Image intensifier (II) distortion changes as a function of C-arm rotation angle because of changes in the orientation of the II with the earth's or other stray magnetic fields. For cone-beam computed tomography (CT), distortion correction for all angles is essential. The new super-global distortion correction consists of a model to continuously correct II distortion not only at each location in the image but for every rotational angle of the C arm. Calibration bead images were acquired with a standard C arm in 9 in. II mode. The super-global (SG) model is obtained from the single-plane global correction of the selected calibration images with given sampling angle interval. The fifth-order single-plane global corrections yielded a residual rms error of 0.20 pixels, while the SG model yielded a rms error of 0.21 pixels, a negligibly small difference. We evaluated the accuracy dependence of the SG model on various factors, such as the single-plane global fitting order, SG order, and angular sampling interval. We found that a good SG model can be obtained using a sixth-order SG polynomial fit based on the fifth-order single-plane global correction, and that a 10 degrees sampling interval was sufficient. Thus, the SG model saves processing resources and storage space. The residual errors from the mechanical errors of the x-ray system were also investigated, and found comparable with the SG residual error. Additionally, a single-plane global correction was done in the cylindrical coordinate system, and physical information about pincushion distortion and S distortion were observed and analyzed; however, this method is not recommended due to a lack of calculational efficiency. In conclusion, the SG model provides an accurate, fast, and simple correction for rotational C-arm images, which may be used for cone-beam CT.

  12. Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging

    DTIC Science & Technology

    2013-01-01

    different crystallographic orientation. Single crystal thin films should thus minimize the stray electric fields by reducing the number of grain ...from epitaxial Ag films, rather than polycrystalline Ag films. It is thought that grain boundaries in polycrystalline metal films give rise to stray...electric fields near the surface of the film. The electric fields are produced as a consequence of the work func- tion difference between grains of

  13. A Survey of Public Opinion on Cat (Felis catus) Predation and the Future Direction of Cat Management in New Zealand.

    PubMed

    Walker, Jessica K; Bruce, Stephanie J; Dale, Arnja R

    2017-07-03

    Cat predation is a prominent issue in New Zealand that provokes strong and opposing views. We explored, via 1011 face-to-face questionnaires, public opinion on (a) support for a National Cat Management Strategy (78% support); (b) concern regarding predation of wildlife by owned and un-owned cats (managed stray, unmanaged stray, and feral cats); (c) the acceptability of management techniques for owned cats; and (d) the acceptability of population management techniques for un-owned cats. The highest concern was expressed regarding the predation of non-native and native wildlife by feral cats (60 and 86% repectively), followed by unmanaged stray cats (59 and 86% respectively), managed stray cats (54 and 82% respectively), and finally owned cats (38 and 69% repectively). Limits to the number of cats owned and cat restriction zones received high levels of support (>65%), and compulsory microchipping, Council registration, and de-sexing were supported by the majority (>58%). Public support of population control methods for unowned cats was explored, and the influence of participant demographic variables on responses is described. These findings provide insight into public opinion regarding the management of cats in New Zealand, which should be considered during the development of legislation in this area.

  14. 3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field.

    PubMed

    Huber, Christian; Abert, Claas; Bruckner, Florian; Groenefeld, Martin; Schuschnigg, Stephan; Teliban, Iulian; Vogler, Christoph; Wautischer, Gregor; Windl, Roman; Suess, Dieter

    2017-08-25

    Additive manufacturing of polymer-bonded magnets is a recently developed technique, for single-unit production, and for structures that have been impossible to manufacture previously. Also, new possibilities to create a specific stray field around the magnet are triggered. The current work presents a method to 3D print polymer-bonded magnets with a variable magnetic compound fraction distribution. This means the saturation magnetization can be adjusted during the printing process to obtain a required external field of the manufactured magnets. A low-cost, end-user 3D printer with a mixing extruder is used to mix permanent magnetic filaments with pure polyamide (PA12) filaments. The magnetic filaments are compounded, extruded, and characterized for the printing process. To deduce the quality of the manufactured magnets with a variable magnetic compound fraction, an inverse stray field framework is developed. The effectiveness of the printing process and the simulation method is shown. It can also be used to manufacture magnets that produce a predefined stray field in a given region. This opens new possibilities for magnetic sensor applications. This setup and simulation framework allows the design and manufacturing of polymer-bonded permanent magnets, which are impossible to create with conventional methods.

  15. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  16. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  17. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  18. Calibrating the SNfactory Integral Field Spectrograph (SNIFS) with SCALA

    NASA Astrophysics Data System (ADS)

    Küsters, Daniel; Lombardo, Simona; Kowalski, Marek; Aldering, Greg; Nordin, Jakob; Rigault, Mickael

    2016-08-01

    The SNIFS CALibration Apparatus (SCALA), a device to calibrate the Supernova Integral Field Spectrograph on the University Hawaii 2.2m telescope, was developed and installed in Spring 2014. SCALA produces an artificial planet with a diameter of 1° and a constant surface brightness. The wavelength of the beam can be tuned between 3200 Å and 10000 Å and has a bandwidth of 35 Å. The amount of light injected into the telescope is monitored with NIST calibrated photodiodes. SCALA was upgraded in 2015 with a mask installed at the entrance pupil of the UH88 telescope, ensuring that the illumination of the telescope by stars is similar to that of SCALA. With this setup, a first calibration run was performed in conjunction with the spectrophotometric observations of standard stars. We present first estimates for the expected systematic uncertainties of the in-situ calibration and discuss the results of tests that examine the influence of stray light produced in the optics.

  19. Canine transmissible venereal tumour: a review.

    PubMed

    Ganguly, B; Das, U; Das, A K

    2016-03-01

    Canine transmissible venereal tumour (CTVT) is a contagious venereal tumour of dogs, commonly observed in dogs that are in close contact with one another, or in stray and wild dogs that exhibit unrestrained sexual activity. CTVT represents a unique, naturally transmissible, contagious tumour, where the mutated tumour cell itself is the causative agent and perpetuates as a parasitic allograft in the host. Clinical history, signalment and cytological features are often obvious for establishing a diagnosis though biopsy and histological examination may be needed in atypical cases. Most cases are curable with three intravenous injections of vincristine sulphate at weekly intervals. The role of stray and wild dogs makes the disease difficult to control and necessitates sustained animal birth control in stray dogs along with prompt therapy of the affected dogs. This review captures the manifold developments in different areas embracing this fascinating tumour, including its biology, diagnosis and therapeutic alternatives. © 2013 John Wiley & Sons Ltd.

  20. Stray cats are more frequently infected with zoonotic protists than pet cats.

    PubMed

    Kvac, Martin; Hofmannova, Lada; Ortega, Ynes; Holubova, Nikola; Horcickova, Michaela; Kicia, Marta; Hlaskova, Lenka; Kvetonova, Dana; Sak, Bohumil; McEvoy, John

    2017-12-06

    Faecal samples were collected from cats kept as pets (n = 120) and stray cats (n = 135) in Central Europe (Czech Republic, Poland and Slovakia) and screened for the presence of Cryptosporidium spp., Giardia intestinalis (Kunstler, 1882), Encephalitozoon spp. and Enterocytozoon bieneusi Desportes, Le Charpentier, Galian, Bernard, Cochand-Priollet, Lavergne, Ravisse et Modigliani, 1985 by PCR analysis of the small-subunit of rRNA (Cryptosporidium spp. and G. intestinalis) and ITS (microsporidia) genes. Sequence analysis of targeted genes revealed the presence of C. felis Iseki, 1979, G. intestinalis assemblage F, E. cuniculi Levaditi, Nicolau et Schoen, 1923 genotype II, and E. bieneusi genotype D. There was no correlation between the occurrence of detected parasites and sex, presence of diarrhoea or drug treatment (drug containing pyrantel and praziquantel). Compared to pet cats (7%), stray cats (30%) were statistically more frequently infected with protist parasites and overall may present a greater risk to human health.

  1. Bartonella and Toxoplasma Infections in Stray Cats from Iraq

    PubMed Central

    Switzer, Alexandra D.; McMillan-Cole, Audrey C.; Kasten, Rickie W.; Stuckey, Matthew J.; Kass, Philip H.; Chomel, Bruno B.

    2013-01-01

    Because of overpopulation, stray/feral cats were captured on military bases in Iraq as part of the US Army Zoonotic Disease Surveillance Program. Blood samples were collected from 207 cats, mainly in Baghdad but also in North and West Iraq, to determine the prevalence of Bartonella and Toxoplasma infections. Nine (4.3%) cats, all from Baghdad, were bacteremic with B. henselae type I. Seroprevalence was 30.4% for T. gondii, 15% for B. henselae, and 12.6% for B. clarridgeiae. Differences in Bartonella prevalence by location were statistically significant, because most of the seropositive cats were from Baghdad. There was no association between T. gondii seropositivity and either of the two Bartonella species surveyed. This report is the first report on the prevalence of Bartonella and T. gondii among stray cats in Iraq, which allows for better evaluation of the zoonotic risk potential to the Iraqi people and deployed military personnel by feral cat colonies. PMID:24062480

  2. Genital mycoplasmas of healthy bitches.

    PubMed

    Maksimović, Zinka; Maksimović, Alan; Halilbašić, Anis; Rifatbegović, Maid

    2018-05-01

    Little is known about the presence of mycoplasmas in the genital tracts of domestic and stray bitches or in the vaginas of ovariohysterectomized (OHE) bitches. Moreover, to our knowledge, there has been no research to investigate the presence of canine vaginal mycoplasmas during the different stages of the reproductive cycle. We investigated the occurrence of mycoplasmas in the vaginas of healthy domestic and stray intact bitches, to correlate their presence with specific stages of the reproductive cycle, and to compare them with those in OHE bitches. We also investigated the presence of uterine mycoplasmas. Mycoplasmas were isolated from 41 of 122 vaginal swabs (34%) from domestic (27%) and stray (39%) bitches. Mycoplasma canis was the most commonly identified species ( n = 26; 63%), and was detected in both intact (60%) and OHE (73%) bitches. Mycoplasma isolates from the vaginas of healthy bitches did not vary during the various stages of the estrous cycle. Mycoplasmas were not detected in uterine samples.

  3. A Survey Study on Gastrointestinal Parasites of Stray Cats in Northern Region of Nile Delta, Egypt

    PubMed Central

    Khalafalla, Reda E.

    2011-01-01

    A survey study on gastrointestinal parasites in 113 faecal samples from stray cats collected randomly from Kafrelsheikh province, northern region of Nile delta of Egypt; was conducted in the period between January and May 2010. The overall prevalence was 91%. The results of this study reported seven helminth species: Toxocara cati (9%), Ancylostoma tubaeforme (4%), Toxascaris leonina (5%), Dipylidium caninum (5%), Capillaria spp. (3%), Taenia taeniformis (22%) and Heterophyes heterophyes (3%), four protozoal species: Toxoplasma gondii (9%), Sarcocyst spp. (1%), Isospora spp. (2%) and Giardia spp. (2%) and two arthropod species; Linguatula serrata (2%) and mites eggs (13%). The overall prevalence of intestinal parasites may continue to rise due to lack of functional veterinary clinics for cat care in Egypt. Therefore, there is a need to plan adequate control programs to diagnose, treat and control gastrointestinal parasites of companion as well as stray cats in the region. PMID:21760884

  4. Transparent Flexible Active Faraday Cage Enables In Vivo Capacitance Measurement in Assembled Microsensor.

    PubMed

    Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar

    2017-10-01

    Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.

  5. Pulse-compression ghost imaging lidar via coherent detection.

    PubMed

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-14

    Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

  6. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic fieldmore » of 200 G.« less

  7. Recent developments with the Mars Observer Camera graphite/epoxy structure

    NASA Astrophysics Data System (ADS)

    Telkamp, Arthur R.

    1992-09-01

    The Mars Observer Camera (MOC) is one of the instruments aboard the Mars Observer Spacecraft to be launched not later than September 1992, whose mission is to geologically and climatologically map the Martian surface and atmosphere over a period of one Martian year. This paper discusses the events in the development of MOC that took place in the past two years, with special attention given to the implementation of thermal blankets, shields, and thermal control paints to limit solar absorption while controlling stray light; vibration testing of Flight Unit No.1; and thermal expansion testing. Results are presented of thermal-vac testing Flight Unit No. 1. It was found that, although the temperature profiles were as predicted, the thermally-induced focus displacements were not.

  8. Characterisation of spectrophotometers used for spectral solar ultraviolet radiation measurements.

    PubMed

    Gröbner, J

    2001-01-01

    Spectrophotometers used for spectral measurements of the solar ultraviolet radiation need to be well characterised to provide accurate and reliable data. Since the characterisation and calibration are usually performed in the laboratory under conditions very different from those encountered during solar measurements, it is essential to address all issues concerned with the representativity of the laboratory characterisation with respect to the solar measurements. These include among others the instrument stability, the instrument linearity, the instrument responsivity, the wavelength accuracy, the spectral resolution, stray light rejection and the instrument dependence on ambient temperature fluctuations. These instrument parameters need to be determined often enough so that the instrument changes only marginally in the period between successive characterisations and therefore provides reliable data for the intervening period.

  9. Toward a Next Generation Solar Coronagraph: Diffracted Light Simulation and Test Results for a Cone Occulter with Tapered Surface

    NASA Astrophysics Data System (ADS)

    Yang, Heesu; Bong, Su-Chan; Cho, Kyung-Suk; Choi, Seonghwan; Park, Jongyeob; Kim, Jihun; Baek, Ji-Hye; Nah, Jakyoung; Sun, Mingzhe; Gong, Qian

    2018-04-01

    In a solar coronagraph, the most important component is an occulter to block the direct light from the disk of the sun Because the intensity of the solar outer corona is 10-6 to 10-10 times of that of the solar disk (\\ir), it is necessary to minimize scattering at the optical elements and diffraction at the occulter. Using a Fourier optic simulation and a stray light test, we investigated the performance of a compact coronagraph that uses an external truncated-cone occulter without an internal occulter and Lyot stop. In the simulation, the diffracted light was minimized to the order of 7.6×10-10 \\ir when the cone angle θc was about 0.39°. The performance of the cone occulter was then tested by experiment. The level of the diffracted light reached the order of 6×10-9 \\ir at θc=0.40°. This is sufficient to observe the outer corona without additional optical elements such as a Lyot stop or inner occulter. We also found the manufacturing tolerance of the cone angle to be 0.05°, the lateral alignment tolerance was 45 \\um, and the angular alignment tolerance was 0.043°. Our results suggest that the physical size of coronagraphs can be shortened significantly by using a cone occulter.

  10. Environmental contamination with Toxocara eggs: a quantitative approach to estimate the relative contributions of dogs, cats and foxes, and to assess the efficacy of advised interventions in dogs.

    PubMed

    Nijsse, Rolf; Mughini-Gras, Lapo; Wagenaar, Jaap A; Franssen, Frits; Ploeger, Harm W

    2015-07-28

    Environmental contamination with Toxocara eggs is considered the main source of human toxocariasis. The contribution of different groups of hosts to this contamination is largely unknown. Current deworming advices focus mainly on dogs. However, controversy exists about blind deworming regimens for >6-month-old dogs, as most of them do not actually shed Toxocara eggs. We aim to estimate the contribution of different non-juvenile hosts to the environmental Toxocara egg contamination and to assess the effects of different Toxocara-reducing interventions for dogs. A stochastic model was developed to quantify the relative contribution to the environmental contamination with Toxocara eggs of household dogs, household cats, stray cats, and foxes, all older than 6 months in areas with varying urbanization degrees. The model was built upon an existing model developed by Morgan et al. (2013). We used both original and published data on host density, prevalence and intensity of infection, coprophagic behaviour, faeces disposal by owners, and cats' outdoor access. Scenario analyses were performed to assess the expected reduction in dogs' egg output according to different deworming regimens and faeces clean-up compliances. Estimates referred to the Netherlands, a country free of stray dogs. Household dogs accounted for 39% of the overall egg output of >6-month-old hosts in the Netherlands, followed by stray cats (27%), household cats (19%), and foxes (15%). In urban areas, egg output was dominated by stray cats (81%). Intervention scenarios revealed that only with a high compliance (90%) to the four times a year deworming advice, dogs' contribution would drop from 39 to 28%. Alternatively, when 50% of owners would always remove their dogs' faeces, dogs' contribution would drop to 20%. Among final hosts of Toxocara older than 6 months, dogs are the main contributors to the environmental egg contamination, though cats in total (i.e. both owned and stray) transcend this contribution. A higher than expected compliance to deworming advice is necessary to reduce dogs' egg output meaningfully. Actions focusing solely on household dogs and cats are unlikely to sufficiently reduce environmental contamination with eggs, as stray cats and foxes are also important contributors.

  11. Coronagraphic Observations of Lunar Sodium

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Sprague, A. L.

    1997-01-01

    This grant supported an investigation of lunar sodium by our coronagraph and spectrograph on nearby Mount Lemmon. We report successful operation and data analysis during International Lunar Atmosphere Week, September 15 - 22, 1995, and submittal of a paper to Icarus. The core of the proposed work was to observe the lunar sodium atmosphere with our classical Lyot coronagraph and specially-built grating spectrograph on Mount Lemmon, a 9400-foot peak about an hour's drive from Tucson. It is optimized for low scattered light and for observing from the Moon's limb to an altitude of approx.1 lunar radius. The grating has 600 lines/mm and a blaze angle of 49 deg., and is used with a somewhat wide slit at a resolving power of about 5000. It is called DARRK for the initials of the people who designed it. The rejection of stray light from the Moon's disk is spectacularly good: when the sky is clear this light is absent right up to a few arcsec from the limb. We use an excellent 1024 by 1024 pixel CCD camera, operated at -100 C; the exposures are 10 to 30 min. Data reduction is done with IRAF running on a Sun Sparcstation.

  12. Radiometric characterization of Landsat Collection 1 products

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-01-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  13. Comparison of the optical depth of total ozone and atmospheric aerosols in Poprad-Gánovce, Slovakia

    NASA Astrophysics Data System (ADS)

    Hrabčák, Peter

    2018-06-01

    The amount of ultraviolet solar radiation reaching the Earth's surface is significantly affected by atmospheric ozone along with aerosols. The present paper is focused on a comparison of the total ozone and atmospheric aerosol optical depth in the area of Poprad-Gánovce, which is situated at the altitude of 706 m a. s. l. in the vicinity of the highest mountain in the Carpathian mountains. The direct solar ultraviolet radiation has been measured here continuously since August 1993 using a Brewer MKIV ozone spectrophotometer. These measurements have been used to calculate the total amount of atmospheric ozone and, subsequently, its optical depth. They have also been used to determine the atmospheric aerosol optical depth (AOD) using the Langley plot method. Results obtained by this method were verified by means of comparison with a method that is part of the Brewer operating software, as well as with measurements made by a Cimel sun photometer. Diffuse radiation, the stray-light effect and polarization corrections were applied to calculate the AOD using the Langley plot method. In this paper, two factors that substantially attenuate the flow of direct ultraviolet solar radiation to the Earth's surface are compared. The paper presents results for 23 years of measurements, namely from 1994 to 2016. Values of optical depth were determined for the wavelengths of 306.3, 310, 313.5, 316.8 and 320 nm. A statistically significant decrease in the total optical depth of the atmosphere was observed with all examined wavelengths. Its root cause is the statistically significant decline in the optical depth of aerosols.

  14. Radiometric characterization of Landsat Collection 1 products

    NASA Astrophysics Data System (ADS)

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-09-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  15. Molecular and Serological Evidence of Leishmania Infection in Stray Dogs from Visceral Leishmaniasis-Endemic Areas of Bangladesh.

    PubMed

    Akter, Shirin; Alam, Mohammad Zahangir; Nakao, Ryo; Yasin, Golam; Kato, Hirotomo; Katakura, Ken

    2016-10-05

    Visceral leishmaniasis (VL), or kala-azar, is mainly caused by two closely related Leishmania species, Leishmania infantum and Leishmania donovani Leishmania infantum is responsible for zoonotic VL, with dogs as the main reservoir host in the Mediterranean, the Middle East, Asia, and South America. In the Indian subcontinent, VL is caused by L. donovani and is considered anthroponotic, although the only known vector, the sand fly, is zoophilic in nature. The role of domestic and stray dogs in VL transmission is still unclear in this area. We screened 50 stray dogs from VL-endemic areas of Bangladesh for serological and molecular evidence of Leishmania infection. We detected anti-Leishmania antibodies in six (12%) dog serum samples using rK39 immunochromatographic tests. We observed Leishmania kinetoplast DNA in 10 (20%) buffy coat DNA samples by real-time polymerase chain reaction (PCR), five of which were positive based on internal transcribed spacer 1-PCR. A sequencing analysis of the amplified products confirmed that the parasitic DNA was derived from L. donovani Our findings support the hypothesis that stray dogs are an animal reservoir for L. donovani in this endemic region. Further studies are required to determine the precise role of dogs in the epidemiology of VL in Bangladesh. © The American Society of Tropical Medicine and Hygiene.

  16. An epidemiological survey on intestinal helminths of stray dogs in Mashhad, North-east of Iran.

    PubMed

    Emamapour, Seyed Rasoul; Borji, Hassan; Nagibi, Abolghasem

    2015-06-01

    This research was conducted to determine the prevalence of gastrointestinal helminths in stray dogs in the northeast of Iran, with special attention to those parasites that can be transmitted to human. In this experiment, a total of 72 adult and 18 juvenile stray dogs were collected and necropsied for the presence of helminth parasites from October 2011 to August 2012. The overall prevalence of gastrointestinal helminths was 86 % (95 % CI: 79.2-92.8 %). The observed helminths of the gastrointestinal tract were listed as follows: Toxocara canis (29 %), Toxascaris leonina (7 %), Ancylostoma caninum (2 %), Taenia hydatigena (43 %), Dipylidium caninum (39 %), Echinococcus granulosus (38 %), Mesocestoides lineatus (16 %), Taenia multiceps (11 %), Taenia ovis (3 %). There were no significant differences for the prevalence of gastrointestinal helminths between female (83.6 %) and male (89.7 %) and between young (89 %) and adult (72.2 %) animals. However, the prevalence of E. granulosus, T. hydatigena and D. caninum showed an increasing trend with increasing host age, significantly. Based on our data, it is important to point out the presence of zoonotic agents, namely E. granulosus and T. canis in stray dogs in the investigated area. Due to its impact on public health, appropriate control measures should be taken and it is recommended to determine the most appropriate preventive methods.

  17. Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne

    2008-03-01

    Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.

  18. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea.

    PubMed

    Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook

    2013-12-30

    In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.

  19. Prevalence of zoonotic intestinal parasites in household and stray dogs in rural areas of Hamadan, Western Iran.

    PubMed

    Sardarian, K; Maghsood, A H; Ghiasian, S A; Zahirnia, A H

    2015-06-01

    Zoonotic parasitic infections are a major global public and veterinary health problem and widespread among dogs. The objective of this study was to assess the prevalence of intestinal parasites in stray and household dogs in the rural areas of Hamadan district. During 2012, 1,500 fresh fecal samples from 243 household and 1,257 stray dogs were examined by using direct wet mount, simple zinc sulfate flotation, and Lugol's solution staining. Of 1,500 dogs, 20.4% were positive for intestinal parasites. Helminthes eggs were more frequently found in fecal samples than protozoan cysts or trophozoites (15.9% vs. 4.5%, respectively). Toxocara canis was the most frequently detected parasite, with a prevalence of 6.3%, followed by Taenia/Echinococcus spp. (2.9%), Isospora spp. (2.7%), and Toxascaris leonina (2.6%). Helminthes and protozoa were significantly more prevalent in household dogs than in stray dogs (P<0.001). There were significant differences in the prevalence of Isospora spp., T. canis and D. caninum among three age groups (P<0.05). The wide range of isolated parasites indicated that people residing in this area are at risk of exposure to these potentially hazardous zoonotic pathogens. Mass education of the general population is highly recommended to increase awareness of the potential for horizontal transmission of these parasitic infections from dogs to humans.

  20. Apparatus and method for temperature correction and expanded count rate of inorganic scintillation detectors

    DOEpatents

    Ianakiev, Kiril D [Los Alamos, NM; Hsue, Sin Tao [Santa Fe, NM; Browne, Michael C [Los Alamos, NM; Audia, Jeffrey M [Abiquiu, NM

    2006-07-25

    The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.

  1. Prevalence, risk factors and genetic characterization of Toxoplasma gondii in sick pigs and stray cats in Jiangsu Province, eastern China.

    PubMed

    Hou, Zhao-Feng; Su, Shi-Jie; Liu, Dan-Dan; Wang, Le-le; Jia, Chuan-Li; Zhao, Zhen-Xing; Ma, Yi-Fei; Li, Qiao-Qiao; Xu, Jin-Jun; Tao, Jian-Ping

    2018-06-01

    Toxoplasma gondii is an obligate intracellular parasitic protozoan with a worldwide distribution. The parasites in edible tissues of pigs and oocysts from cats are the major sources of T. gondii infection in humans. However, there are no data from sick pigs in veterinary clinics or from stray cats in Jiangsu Province, eastern China. In total, biological samples from 141 sick pigs and 64 stray cats were collected from this region. The rate of T. gondii infection in sick pigs was 46.81% using a polymerase chain reaction (PCR), and the overall prevalence of toxoplasmosis in stray cats was 34.38% by PCR and an enzyme-linked immunosorbent assay (ELISA). T. gondii was significantly more prevalent in lungs and heart than in liver and spleen (P < 0.05). Age and geographic region were considered to be the main risk factors associated with T. gondii infection in these pigs. The DNA samples from 17 sick pigs and seven stray cats, were successfully genotyped by multilocus PCR-restriction fragment length polymorphism (PCR-RFLP) with 10 genetic markers [SAG1, SAG2 (5'-3'SAG2, alt. SAG2), SAG3, GRA6, PK1, c22-8, c29-2, BTUB, L358 and Apico]. Six distinct genotypes were found, which were designated ToxoDB PCR-RFLP genotypes #9 (Chinese I), #10 (Type I), #213, and #89, and New 1 and New 2. Chinese I is the most prevalent T. gondii genotype in this region. The two new genotypes (designated New 1 and New 2) are reported and the ToxoDB PCR-RFLP genotype #89 is found for the first time in China. Such information will be useful for the prevention, diagnosis and treatment of porcine toxoplasmosis in Jiangsu Province, eastern China. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. How to Collect National Institute of Standards and Technology (NIST) Traceable Fluorescence Excitation and Emission Spectra.

    PubMed

    Gilmore, Adam Matthew

    2014-01-01

    Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling.

  3. On the matter of building high-frequency amplifiers minimally influenced by interstage stray reactances

    NASA Astrophysics Data System (ADS)

    A, Volkov Y.

    2017-01-01

    The expedience of building wideband multistage amplifiers, the stages of which are connected with each other so, that the “modes of impedance mismatch” are realized, is justified. Those modes allow us to reduce considerably the sensitivity of amplifier transfer factors to the stray (constructional) capacitances and inductances of interstage circuits. The procedure of synthesizing the schematics of such amplifiers is proposed, the efficiency and clarity of which are provided by using the method of signal graphs.

  4. A compact integrated device for spatially selective optogenetic neural stimulation based on the Utah Optrode Array

    NASA Astrophysics Data System (ADS)

    Scharf, Robert; Reiche, Christopher F.; McAlinden, Niall; Cheng, Yunzhou; Xie, Enyuan; Sharma, Rohit; Tathireddy, Prashant; Rieth, Loren; Mathieson, Keith; Blair, Steve

    2018-02-01

    Optogenetics is a powerful tool for neural control, but controlled light delivery beyond the superficial structures of the brain remains a challenge. For this, we have developed an optrode array, which can be used for optogenetic stimulation of the deep layers of the cortex. The device consists of a 10×10 array of penetrating optical waveguides, which are predefined using BOROFLOAT® wafer dicing. A wet etch step is then used to achieve the desired final optrode dimensions, followed by heat treatment to smoothen the edges and the surface. The major challenge that we have addressed is delivering light through individual waveguides in a controlled and efficient fashion. Simply coupling the waveguides in the optrode array to a separately-fabricated μLED array leads to low coupling efficiency and significant light scattering in the optrode backplane and crosstalk to adjacent optrodes due to the large mismatch between the μLED and waveguide numerical aperture and the working distance between them. We mitigate stray light by reducing the thickness of the glass backplane and adding a silicon interposer layer with optical vias connecting the μLEDs to the optrodes. The interposer additionally provides mechanical stability required by very thin backplanes, while restricting the unwanted spread of light. Initial testing of light output from the optrodes confirms intensity levels sufficient for optogenetic neural activation. These results pave the way for future work, which will focus on optimization of light coupling and adding recording electrodes to each optrode shank to create a bidirectional optoelectronic interface.

  5. Spurious Grain Formation at Cross-Sectional Expansion During Directional Solidification: Influence of Thermosolutal Convection

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Lauer, M.; Upadhyay, S. R.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2018-04-01

    Formation of spurious grains during directional solidification (DS) of Al-7 wt.% Si and Al-19 wt.% Cu alloys through an abrupt increase in cross-sectional area has been examined by experiments and by numerical simulations. Stray grains were observed in the Al-19 wt.% Cu samples and almost none in the Al-7 wt.% Si. The locations of the stray grains correlate well where numerical solutions indicate the solute-rich melt to be flowing up the thermal gradient faster than the isotherm velocity. It is proposed that the spurious grain formation occurred by fragmentation of slender tertiary dendrite arms was enhanced by thermosolutal convection. In Al-7 wt.% Si, the dendrite fragments sink in the surrounding melt and get trapped in the dendritic array growing around them, and therefore they do not grow further. In the Al-19 wt.% Cu alloy, on the other hand, the dendrite fragments float in the surrounding melt and some find conducive thermal conditions for further growth and become stray grains.

  6. Genetic evidence of enzootic leishmaniasis in a stray canine and Texas mouse from sites in west and central Texas

    PubMed Central

    Kipp, Evan J; Mariscal, Jacqueline; Armijos, Rodrigo X; Weigel, Margaret; Waldrup, Kenneth

    2016-01-01

    We detected Leishmania mexicana in skin biopsies taken from a stray canine (Canis familiaris) and Texas mouse (Peromyscus attwateri) at two ecologically disparate sites in west and central Texas using polymerase chain reaction (PCR). A single PCR-positive dog was identified from a sample of 96 stray canines and was collected in a peri-urban area in El Paso County, Texas. The PCR-positive P. attwateri was trapped at a wildlife reserve in Mason County, Texas, from a convenience sample of 20 sylvatic mammals of different species. To our knowledge, this represents the first description of L. mexicana in west Texas and extends the known geographic range of the parasite to an area that includes the arid Chihuahuan Desert. Our finding of L. mexicana in P. attwateri represents a new host record and is the first description of the parasite in a wild peromyscid rodent in the United States. PMID:27759765

  7. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  8. A PARASITOLOGIC AND MOLECULAR SURVEY OF HEPATOZOON CANIS INFECTION IN STRAY DOGS IN NORTHEAST OF IRAN.

    PubMed

    Barati, Ali; Razmi, Gholamreza

    2018-05-15

    Canine hepatozoonosis, caused by H. canis, is a tick-borne disease in domestic and wild dogs that is transmitted by ingestion of Rhipicephalus sanguineus ticks. The aim of the study was to detect H. canis in stray dogs in Iran using blood smear examination and molecular techniques. From October 2014 to September 2015, 150 EDTA blood samples were collected from stray dogs in the northeast region of Iran. Blood smears were microscopically examined for the presence of Hepatozoon gamonts; whole blood was evaluated by PCR, with subsequent sequencing and phylogenetic analysis. Hepatozoon spp. Gamonts were observed in the neutrophils of 5/150 (3.3%) blood smears, whereas Hepatozoon spp. 18S rDNA was detected in 12/150 (8.0%) blood samples from stray dogs. There was a good agreement between microscopy and PCR methods. (Kappa= 0.756). The highest rate of infection was seasonally detected in the summer (p<0.05). The difference of frequency of Hepatozoon spp infection was not significant by gender and age factors (p>0.05). The alignment analysis of the sequenced samples showed ≥99% similarity with other nucleotide sequences of Hepatozoon spp. in GenBank. The phylogenetic tree also revealed that the nucleotide sequences in this study were clustered in the H. canis clade and different from the H. felis and H. americanum clades. According to the results, it is concluded that H. canis infection is present among dogs in northeastern region of Iran.

  9. Toxocara nematodes in stray cats from shiraz, southern iran: intensity of infection and molecular identification of the isolates.

    PubMed

    Mikaeili, Fattaneh; Mirhendi, Hossein; Hosseini, Mostafa; Asgari, Qasem; Kia, Eshrat Beigom

    2013-10-01

    Toxocara is a common nematode of cats in different parts of Iran. Despite the close association of cats with human, no attempt has been done so far for molecular identification of this nematode in the country. Therefore, current study was performed on identification of some isolates of Toxocara from stray cats in Shiraz, Fars Province, Southern Iran, based on morphological and molecular approaches, and also determination of intensity of infection. This cross-sectional study was carried out on 30 stray cats trapped from different geographical areas of Shiraz in 2011. Adult male and female worms were recovered from digestive tract after dissection of cats. Morphological features using existing keys and PCR-sequencing of ITS-rDNA region and pcox1 mitochondrial l gene were applied for the delineating the species of the parasites. Eight out of 30 cats (26.7%) were found infected with Toxocara nematodes. All the isolates were confirmed as Toxocara cati based on morphological features and the sequence of ribosomal and mitochondrial targets. Intensity of infection ranged from one to a maximum of 39 worms per cat, with a mean of 10.25±12.36, and higher abundance of female nematodes. The most prevalent ascaridoid nematode of stray cats in the study area was T. cati and female nematodes were more abundant than that of males. This issue has important role in spreading of eggs in the environment and impact on human toxocariasis.

  10. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  11. An Overview of the HST Advanced Camera for Surveys' On-orbit Performance

    NASA Astrophysics Data System (ADS)

    Hartig, G. F.; Ford, H. C.; Illingworth, G. D.; Clampin, M.; Bohlin, R. C.; Cox, C.; Krist, J.; Sparks, W. B.; De Marchi, G.; Martel, A. R.; McCann, W. J.; Meurer, G. R.; Sirianni, M.; Tsvetanov, Z.; Bartko, F.; Lindler, D. J.

    2002-05-01

    The Advanced Camera for Surveys (ACS) was installed in the HST on 7 March 2002 during the fourth servicing mission to the observatory, and is now beginning science operations. The ACS provides HST observers with a considerably more sensitive, higher-resolution camera with wider field and polarimetric, coronagraphic, low-resolution spectrographic and solar-blind FUV capabilities. We review selected results of the early verification and calibration program, comparing the achieved performance with the advertised specifications. Emphasis is placed on the optical characteristics of the camera, including image quality, throughput, geometric distortion and stray-light performance. More detailed analyses of various aspects of the ACS performance are presented in other papers at this meeting. This work was supported by a NASA contract and a NASA grant.

  12. Opto-mechanical architecture of the LISA instrument

    NASA Astrophysics Data System (ADS)

    Weise, Dennis; Marenaci, Pierangelo; Weimer, Peter; Berger, Marcel; Schulte, Hans R.; Gath, Peter; Johann, Ulrich

    2017-11-01

    We report on the latest iteration of the baseline opto-mechanical architecture of the LISA instru- ment, which has been developed within the current LISA Mission Formulation study under ESA con- tract. The collective features of the current architec- ture have been consolidated in an extensive trade of various alternative payload configurations, including variants with only one active proof mass per space- craft and the application of "In-Field Pointing" for accommodation of constellation breathing. With respect to the original configuration [1], the newly established architecture most notably distin- guishes itself by the use of an off-axis telescope and a "non-frequency-swap" science interferometer for stray light mitigation, as well as the implementa- tion of ancillary pathlength metrology in terms of an "Optical Truss" and Point Ahead Angle sensing.

  13. Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Editor); Depaula, Ramon P. (Editor)

    1993-01-01

    Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.

  14. Fully reflective deep ultraviolet to near infrared spectrometer and entrance optics for resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulz, B.; Bäckström, J.; Budelmann, D.; Maeser, R.; Rübhausen, M.; Klein, M. V.; Schoeffel, E.; Mihill, A.; Yoon, S.

    2005-07-01

    We present the design and performance of a new triple-grating deep ultraviolet to near-infrared spectrometer. The system is fully achromatic due to the use of reflective optics. The minimization of image aberrations by using on- and off- axis parabolic mirrors as well as elliptical mirrors yields a strong stray light rejection with high resolution over a wavelength range between 165 and 1000nm. The Raman signal is collected with a reflective entrance objective with a numerical aperture of 0.5, featuring a Cassegrain-type design. Resonance Raman studies on semiconductors and on correlated compounds, such as LaMnO3, highlight the performance of this instrument, and show diverse resonance effects between 1.96 and 5.4eV.

  15. High Absorptance Coatings for THz Applications

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2012-01-01

    High absorptance materials find application throughout the electromagnetic spectrum as radiation terminations, calibration standards, and glint reduction coatings. Successful use of materials at millimeter through submillimeter wavelengths requires an accurate knowledge and control over their thermal, mechanical, and electromagnetic properties in order to achieve the desired response while minimizing mass and volume. In practice, the achieved blackness is intimately linked to the material properties and geometry. Here, we summarize the characteristics of a variety of tunable artificial dielectric mixtures appropriate for THz applications at room and cryogenic temperatures. Theoretical guidelines for their application will be provided in the context of the effective-medium mean-field-approximation. The performance of these coatings as elements of reflectance standards, radiometric flux calibrators, passive thermal radiators, and stray light suppression baffles for imaging systems will be reviewed.

  16. Spectrometry and filtering with high rejection of stray light

    DOEpatents

    Ferrell, Thomas L.; Thundat, Thomas G.

    2004-12-14

    A microoptoelectromechanical integrated spectrometer with a photonic element assembly having metal foil removably disposed on a first transparent substrate surface, the substrate having no foil on any other surface. A means is provided for directing source photons that are reflected from or transmitted through a sample, over a range of angles of incidence, into the transparent substrate and onto the metal foil such that source photons are incident at the Brewsters angle. A means is also provided for detecting an induced exponential field in the metal foil. A means is also provided for relating the induced exponential field to a known exponential field for the sample and determining the identity of the sample. The spectrometer performs ultraviolet-to-visible-to-infrared spectroscopy using photon tunneling and surface plasmon excitation.

  17. Circular-polarization-sensitive metamaterial based on triple-quantum-dot molecules.

    PubMed

    Kotetes, Panagiotis; Jin, Pei-Qing; Marthaler, Michael; Schön, Gerd

    2014-12-05

    We propose a new type of chiral metamaterial based on an ensemble of artificial molecules formed by three identical quantum dots in a triangular arrangement. A static magnetic field oriented perpendicular to the plane breaks mirror symmetry, rendering the molecules sensitive to the circular polarization of light. By varying the orientation and magnitude of the magnetic field one can control the polarization and frequency of the emission spectrum. We identify a threshold frequency Ω, above which we find strong birefringence. In addition, Kerr rotation and circular-polarized lasing action can be implemented. We investigate the single-molecule lasing properties for different energy-level arrangements and demonstrate the possibility of circular-polarization conversion. Finally, we analyze the effect of weak stray electric fields or deviations from the equilateral triangular geometry.

  18. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOEpatents

    Sawicki, R.H.; Sweatt, W.

    1985-11-21

    A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and provides for adjustably bending the light reflecting surface into one of different curvatures depending upon the astigmatism to be corrected and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.

  19. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawicki, R.H.; Sweatt, W.

    1985-11-21

    A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and provides for adjustably bending the light reflecting surface into one of different curvatures depending upon the astigmatism to be corrected and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment tomore » the reinforced side edges of the light reflecting surface.« less

  20. High-resolution recording of particle tracks with in-line holography in a large cryogenic bubble chamber

    NASA Astrophysics Data System (ADS)

    Harigel, Gert G.

    2000-10-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at the Fermi National Accelerator Laboratory (FNAL), during a physics run in a high energy neutrino beam. The innovative system combined the reference beam with the object beam, irradiating a conical volume of approx1.5m3. Bubble tracks from neutrino interactions with a width of approx 120 micrometers have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio (BBR). We obtained in our experiment an exceedingly small minimum- observable ration of BBR = (0.54 divided by 0.21) x 107. The technology has the potential for a wide range of applications. This paper describes the various difficulties in achieving the success. It required the development of laser pulse stretching via enhanced closed loop control with slow Q- switching, to overcome excessive heating of the cryogenic liquid by the powerful laser beam. A sophisticated system of light-absorbing baffles had to be installed to avoid stray light reaching the holographic film. Optical decoupling of classical and holographic illumination systems was required. Real and virtual image replay machines for holograms were built, tailored to our illumination technique.

  1. Methods of dark signal determination for CCD array spectroradiometers used in solar UVR measurements.

    PubMed

    Baczynska, K A; Khazova, M

    2015-02-01

    The methods of the dark signal determination by direct contemporaneous measurements using a light spectrum and modelling of the dark signal based on the dark signal characterisation data were discussed. These techniques were tested with two charge-couple detectors (CCD) array spectroradiometers used in solar UVR measurements. The sensitivity of both instruments was significantly reduced when shutters were used; the measured signal varied by up to 12% depending on the orientation of the shutter. The shutters should be permanently attached to the SSR, so that the orientation cannot be changed to prevent an increase in uncertainty. The method of using blind pixels from the optically inactive part of the CCD array in a light spectrum could be used to derive the dark signal with some limitations for integration times <10 s for the QE65000. An alternative method of deriving the dark signal from light measurements using out-of-range pixels has been proved impossible due to out-of-range stray light in both instruments. The dark signal was characterised for the range of integration times and ambient temperatures of 15-35°C. Based on these data, the model of the dark signal was developed so that a single value of the dark signal can be subtracted over the whole spectral range if the instrument temperature is known. © Crown copyright 2014.

  2. Directly polished lightweight aluminum mirror

    NASA Astrophysics Data System (ADS)

    ter Horst, Rik; Tromp, Niels; de Haan, Menno; Navarro, Ramon; Venema, Lars; Pragt, Johan

    2017-11-01

    During the last ten years, Astron has been a major contractor for the design and manufacturing of astronomical instruments for Space- and Earth based observatories, such as VISIR, MIDI, SPIFFI, X-Shooter and MIRI. Driven by the need to reduce the weight of optically ultra-stiff structures, two promising techniques have been developed in the last years: ASTRON Extreme Lightweighting [1][2] for mechanical structures and an improved Polishing Technique for Aluminum Mirrors. Using one single material for both optical components and mechanical structure simplifies the design of a cryogenic instrument significantly, it is very beneficial during instrument test and verification, and makes the instrument insensitive to temperature changes. Aluminum has been the main material used for cryogenic optical instruments, and optical aluminum mirrors are generally diamond turned. The application of a polishable hard top coating like nickel removes excess stray light caused by the groove pattern, but limits the degree of lightweighting of the mirrors due to the bi-metal effect. By directly polishing the aluminum mirror surface, the recent developments at Astron allow for using a non-exotic material for light weighted yet accurate optical mirrors, with a lower surface roughness ( 1nm RMS), higher surface accuracy and reduced light scattering. This paper presents the techniques, obtained results and a global comparison with alternative lightweight mirror solutions. Recent discussions indicate possible extensions of the extreme light weight technology to alternative materials such as Zerodur or Silicon Carbide.

  3. Stray field signatures of Néel textured skyrmions in Ir/Fe/Co/Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Yagil, A.; Almoalem, A.; Soumyanarayanan, Anjan; Tan, Anthony K. C.; Raju, M.; Panagopoulos, C.; Auslaender, O. M.

    2018-05-01

    Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Néel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to model their stray field signatures and applying it to magnetic force microscopy images. Furthermore, the demonstrated sensitivity to inhomogeneity in skyrmion properties, coupled with a unique capability to estimate the pinning force governing dynamics, portend broad applicability in the burgeoning field of topological spin textures.

  4. Solar rejection for an orbiting telescope

    NASA Technical Reports Server (NTRS)

    Rehnberg, J. D.

    1975-01-01

    The present work discusses some of the constraints that the optical designer must deal with in optimizing spaceborne sensors that must look at or near the sun. Analytical techniques are described for predicting the effects of stray radiation from sources such as mirror scatter, baffle scatter, diffraction, and ghost images. In addition, the paper describes a sensor design that has been flown on the Apollo Telescope Mount (Skylab) to aid astronauts in locating solar flares. In addition to keeping stray radiation to a minimum, the design had to be nondegradable by the direct solar heat load.

  5. Common but unappreciated sources of error in one, two, and multiple-color pyrometry

    NASA Technical Reports Server (NTRS)

    Spjut, R. Erik

    1988-01-01

    The most common sources of error in optical pyrometry are examined. They can be classified as either noise and uncertainty errors, stray radiation errors, or speed-of-response errors. Through judicious choice of detectors and optical wavelengths the effect of noise errors can be minimized, but one should strive to determine as many of the system properties as possible. Careful consideration of the optical-collection system can minimize stray radiation errors. Careful consideration must also be given to the slowest elements in a pyrometer when measuring rapid phenomena.

  6. A fast finite-difference algorithm for topology optimization of permanent magnets

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter

    2017-09-01

    We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.

  7. Controlled laser delivery into biological tissue via thin-film optical tunneling and refraction

    NASA Astrophysics Data System (ADS)

    Whiteside, Paul J. D.; Goldschmidt, Benjamin S.; Curry, Randy; Viator, John A.

    2015-02-01

    Due to the often extreme energies employed, contemporary methods of laser delivery utilized in clinical dermatology allow for a dangerous amount of high-intensity laser light to reflect off a multitude of surfaces, including the patient's own skin. Such techniques consistently represent a clear and present threat to both patients and practitioners alike. The intention of this work was therefore to develop a technique that mitigates this problem by coupling the light directly into the tissue via physical contact with an optical waveguide. In this manner, planar waveguides cladded in silver with thin-film active areas were used to illuminate agar tissue phantoms with nanosecond-pulsed laser light at 532nm. The light then either refracted or optically tunneled through the active area, photoacoustically generating ultrasonic waves within the phantom, whose peak-to-peak intensity directly correlated to the internal reflection angle of the beam. Consequently, angular spectra for energy delivery were recorded for sub-wavelength silver and titanium films of variable thickness. Optimal energy delivery was achieved for internal reflection angles ranging from 43 to 50 degrees, depending on the active area and thin film geometries, with titanium films consistently delivering more energy across the entire angular spectrum due to their relatively high refractive index. The technique demonstrated herein therefore not only represents a viable method of energy delivery for biological tissue while minimizing the possibility for stray light, but also demonstrates the possibility for utilizing thin films of high refractive index metals to redirect light out of an optical waveguide.

  8. Impact of long-pass interferential filters on dark current and background light rejection in Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Libertino, S.; Lombardo, S.; Fallica, G.

    2018-02-01

    There is an increasing interest in using Silicon Photomultipliers (SiPMs) in emerging applications where the detectors have to operate in ambient environment with high sensitivity and fast timing response in combination with narrow bandwidth light emitting sources like LEDs or VCSELs. The need to use large area detectors for optimizing the light collection efficiency, due to the low optical fluxes to be usually detected, imposes the optimization of the SiPM performance in specific wavelength ranges (usually visible or near infrared), to fully exploit the single photon sensitivity of these detectors and not to reduce at the same time their dynamic range. The use of proper optical long-pass filters on the detector's package can represent a suitable way to reach both these targets, through the reduction of environmental light absorption. Here we present the preliminary results obtained from the characterization of n+-p SiPMs with commercial long-pass filters with increasing cut-on wavelength in the range 500 nm-900 nm glued on the top side of the detector's package. The performance of the detectors has been evaluated in terms of dark current variation induced by the use of the filters and background light rejection under the illumination of white fluorescent lamps. The relevant reduction observed in the dark current (up to 90% at 13 V overvoltage) and the consistent reduction of stray light absorption (up to 90% at 3 V overvoltage with a 900 nm cut-on wavelength long-pass filter) are the main characterization results obtained and shown in this paper.

  9. The spatially resolved characterisation of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging.

    PubMed

    Verri, G

    2009-06-01

    The photo-induced luminescence properties of Egyptian blue, Han blue and Han purple were investigated by means of near-infrared digital imaging. These pigments emit infrared radiation when excited in the visible range. The emission can be recorded by means of a modified commercial digital camera equipped with suitable glass filters. A variety of visible light sources were investigated to test their ability to excite luminescence in the pigments. Light-emitting diodes, which do not emit stray infrared radiation, proved an excellent source for the excitation of luminescence in all three compounds. In general, the use of visible radiation emitters with low emission in the infrared range allowed the presence of the pigments to be determined and their distribution to be spatially resolved. This qualitative imaging technique can be easily applied in situ for a rapid characterisation of materials. The results were compared to those for Egyptian green and for historical and modern blue pigments. Examples of the application of the technique on polychrome works of art are presented.

  10. OmegaWINGS: OmegaCAM-VST observations of WINGS galaxy clusters

    NASA Astrophysics Data System (ADS)

    Gullieuszik, M.; Poggianti, B.; Fasano, G.; Zaggia, S.; Paccagnella, A.; Moretti, A.; Bettoni, D.; D'Onofrio, M.; Couch, W. J.; Vulcani, B.; Fritz, J.; Omizzolo, A.; Baruffolo, A.; Schipani, P.; Capaccioli, M.; Varela, J.

    2015-09-01

    Context. Wide-field observations targeting galaxy clusters at low redshift are complementary to field surveys and provide the local benchmark for detailed studies of the most massive haloes in the local Universe. The Wide-field Nearby Galaxy-cluster Survey (WINGS) is a wide-field multi-wavelength survey of X-ray selected clusters at z = 0.04-0.07. The original 34' × 34' WINGS field of view has now been extended to cover a 1 deg2 field with both photometry and spectroscopy. Aims: We present the Johnson B- and V-band OmegaCAM at the VST observations of 46 WINGS clusters together with the data reduction, data quality, and Sextractor photometric catalogues. Methods: The data reduction was carried out with a modified version of the ESO-MVM (also known as ALAMBIC) reduction package, adding a cross-talk correction, the gain harmonisation, and a control procedure for problematic CCDs. The stray-light component was corrected for by employing our own observations of populated stellar fields. Results: With a median seeing of 1″ in both bands, our 25-min exposures in each band typically reach the 50% completeness level at V = 23.1 mag. The quality of the astrometric and photometric accuracy has been verified by comparison with the 2MASS and SDSS astrometry, and SDSS and previous WINGS imaging. Star-to-galaxy separation and sky-subtraction procedure were tested comparing them with previous WINGS data. Conclusions: The Sextractor photometric catalogues are publicly available at the CDS and will be included in the next release of the WINGS database on the Virtual Observatory together with the OmegaCAM reduced images. These data form the basis for a large ongoing spectroscopic campaign with AAOmega at the AAT and are being employed for a variety of studies. Based on observations made with VST at ESO Paranal Observatory under program ID 88.A-4005, 089.A-0023, 090.A-0074, 091.A-0059, and 093.A-0041.The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A41

  11. Iron mineralogy of the surface of Mars from the 1 μm band spectral properties

    NASA Astrophysics Data System (ADS)

    Carrozzo, F. G.; Altieri, F.; Bellucci, G.; Poulet, F.; D'Aversa, E.; Bibring, J.-P.

    2012-10-01

    We study the 1 μm absorption from OMEGA/MEX spectra to map Martian iron mineralogy at a global scale. This band is covered on the left by the VNIR (visible and near infrared) OMEGA channel and on the right by the SWIR (short wavelengths infrared) one. We first perform a systematic spatial coregistration of the two channels after an improvement of the VNIR radiometric calibration. The update of the VNIR Instrumental Transfer Function (ITF) and the internal stray-light estimation is based on the spectra of the Phobos red units and of the water ice north polar cap of Mars, which have been fitted according to an iterative process. The level of the signal in the blue wavelength range, previously systematically overestimated due to a stray-light residual and the general shape of the spectrum for λ > 0.7 μm are improved . Global maps of the 1 μm signature have been derived from 9 new spectral indices. The largest values of the 1 μm band integral are found in Noachian terrains and in the dunes around the north polar cap. In the south polar region, an area centered at ˜155°W and ˜83°S is mapped as a distinctive spectral unit, dominated by pyroxene. The northern lowlands of Mars together with other dark terrains located in the northern hemisphere show very low values of some spectral indices due to the negative spectral slope in the NIR. This behavior is consistent with the presence of weathered basalts with a possible glassy or amorphous component. Among the hydrated terrains, the only ones that can be isolated by studying the 1 μm band are those located in Terra Meridiani, Aram Chaos and Capri Chasma, enriched in sulfate and hematite. On the other hand, the sulfates of the dark dunes surrounding the northern polar cap and the phyllosilicates of the bright hydrated deposits of Mawrth Vallis cannot be isolated combining the parameters used in this study. This suggests that their distinctive mineralogy does not affect the 1 μm band, remaining similar to the global Martian average shape.

  12. Initial inflight calibration for Hayabusa2 optical navigation camera (ONC) for science observations of asteroid Ryugu

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Yamada, M.; Kouyama, T.; Tatsumi, E.; Kameda, S.; Honda, R.; Sawada, H.; Ogawa, N.; Morota, T.; Honda, C.; Sakatani, N.; Hayakawa, M.; Yokota, Y.; Yamamoto, Y.; Sugita, S.

    2018-01-01

    Hayabusa2, the first sample return mission to a C-type asteroid was launched by the Japan Aerospace Exploration Agency (JAXA) on December 3, 2014 and will arrive at the asteroid in the middle of 2018 to collect samples from its surface, which may contain both hydrated minerals and organics. The optical navigation camera (ONC) system on board the Hayabusa2 consists of three individual framing CCD cameras, ONC-T for a telescopic nadir view, ONC-W1 for a wide-angle nadir view, and ONC-W2 for a wide-angle slant view will be used to observe the surface of Ryugu. The cameras will be used to measure the global asteroid shape, local morphologies, and visible spectroscopic properties. Thus, image data obtained by ONC will provide essential information to select landing (sampling) sites on the asteroid. This study reports the results of initial inflight calibration based on observations of Earth, Mars, Moon, and stars to verify and characterize the optical performance of the ONC, such as flat-field sensitivity, spectral sensitivity, point-spread function (PSF), distortion, and stray light of ONC-T, and distortion for ONC-W1 and W2. We found some potential problems that may influence our science observations. This includes changes in sensitivity of flat fields for all bands from those that were measured in the pre-flight calibration and existence of a stray light that arises under certain conditions of spacecraft attitude with respect to the sun. The countermeasures for these problems were evaluated by using data obtained during initial in-flight calibration. The results of our inflight calibration indicate that the error of spectroscopic measurements around 0.7 μm using 0.55, 0.70, and 0.86 μm bands of the ONC-T can be lower than 0.7% after these countermeasures and pixel binning. This result suggests that our ONC-T would be able to detect typical strength (∼3%) of the serpentine absorption band often found on CM chondrites and low albedo asteroids with ≥ 4σ confidence.

  13. A spectrally tunable solid-state source for radiometric, photometric, and colorimetric applications

    NASA Astrophysics Data System (ADS)

    Fryc, Irena; Brown, Steven W.; Eppeldauer, George P.; Ohno, Yoshihiro

    2004-10-01

    A spectrally tunable light source using a large number of LEDs and an integrating sphere has been designed and being developed at NIST. The source is designed to have a capability of producing any spectral distributions mimicking various light sources in the visible region by feedback control of individual LEDs. The output spectral irradiance or radiance of the source will be calibrated by a reference instrument, and the source will be used as a spectroradiometric as well as photometric and colorimetric standard. The use of the tunable source mimicking spectra of display colors, for example, rather than a traditional incandescent standard lamp for calibration of colorimeters, can reduce the spectral mismatch errors of the colorimeter measuring displays significantly. A series of simulations have been conducted to predict the performance of the designed tunable source when used for calibration of colorimeters. The results indicate that the errors can be reduced by an order of magnitude compared with those when the colorimeters are calibrated against Illuminant A. Stray light errors of a spectroradiometer can also be effectively reduced by using the tunable source producing a blackbody spectrum at higher temperature (e.g., 9000 K). The source can also approximate various CIE daylight illuminants and common lamp spectral distributions for other photometric and colorimetric applications.

  14. Epidemiological role of dogs since the human leishmaniosis outbreak in Madrid.

    PubMed

    Miró, Guadalupe; Müller, Aurora; Montoya, Ana; Checa, Rocía; Marino, Valentina; Marino, Eloy; Fuster, Fernando; Escacena, Cristina; Descalzo, Miguel Angel; Gálvez, Rosa

    2017-04-26

    Canine leishmaniosis (CanL) has been in the spotlight since the 2009 outbreak of human leishmaniosis in Madrid. In the framework of the Leishmaniosis Surveillance Programme set up in Madrid, this study examines Leishmania-specific seroprevalences in stray dogs for the outbreak area and rest of the Madrid region over the period spanning from the outbreak to the present (2009-2016). These data are of interest because stray dogs could be sentinels for disease surveillance in endemic areas. Since 2011, we have also been monitoring owned dogs in the outbreak area. Over the study period, Leishmania infantum seroprevalence was determined in 2,123 stray dogs from the outbreak and non-outbreak areas. A serological study was also performed for owned dogs in the outbreak area: high-risk dogs such as hunting or farm dogs (n = 1,722) and pets (n = 1372). All dogs were examined and blood was collected. The variables recorded for each animal were: breed, age, sex, and clinical history indicating if the animal was healthy or clinically suspected of having any disease, and if they showed a clinical picture compatible with CanL. Seroprevalences of L. infantum in stray dogs were similar in the two areas examined: 4.7% (20 out of 346) in the outbreak area and 5.4% (96 out of 1,777) in the remaining Madrid region (χ 2  = 0.080, P = 0.777). A significant association was found between seroprevalence and age (z = -6.319; P < 0.001). Seroprevalence in owned dogs in the outbreak area was 2.1% in high-risk dogs (37 out of 1,722) and 1.2% in pets (17 out of 1,372) (χ 2  = 3.561, P = 0.0591). Both stray and owned dogs do not seem to play an important role in maintaining the transmission cycle of L. infantum in the Madrid outbreak area. The stable seroprevalence of infection observed in sentinel dogs suggests the good clinical management and prevention of CanL by local practitioners in owned dogs.

  15. Real-time intraoperative fluorescence imaging system using light-absorption correction.

    PubMed

    Themelis, George; Yoo, Jung Sun; Soh, Kwang-Sup; Schulz, Ralf; Ntziachristos, Vasilis

    2009-01-01

    We present a novel fluorescence imaging system developed for real-time interventional imaging applications. The system implements a correction scheme that improves the accuracy of epi-illumination fluorescence images for light intensity variation in tissues. The implementation is based on the use of three cameras operating in parallel, utilizing a common lens, which allows for the concurrent collection of color, fluorescence, and light attenuation images at the excitation wavelength from the same field of view. The correction is based on a ratio approach of fluorescence over light attenuation images. Color images and video is used for surgical guidance and for registration with the corrected fluorescence images. We showcase the performance metrics of this system on phantoms and animals, and discuss the advantages over conventional epi-illumination systems developed for real-time applications and the limits of validity of corrected epi-illumination fluorescence imaging.

  16. Zoonotic Intestinal Trematodes in Stray Cats (Felis catus) from Riverside Areas of the Republic of Korea

    PubMed Central

    Shin, Sung-Shik; Oh, Dae-Sung; Ahn, Kyu-Sung; Cho, Shin-Hyeong; Lee, Won-Ja; Na, Byoung-Kuk; Sohn, Woon-Mok

    2015-01-01

    The present study was performed to survey the infection status of zoonotic intestinal trematode (ZIT) in stray cats from 5 major riverside areas in the Republic of Korea. Total 400 stray cats were captured with live-traps in riverside areas of Seomjingang (‘gang’ means river) (203 cats) from June to October 2010, and of Yeongsangang (41), Nakdonggang (57), Geumgang (38), and Hangang (61 cats) from June to October 2011, respectively. Small intestines resected from cats were opened with a pair of scissors in a beaker with 0.85% saline and examined with naked eyes and under a stereomicroscope. More than 16 ZIT species were detected in 188 (92.6%) cats from Seomjingang areas, and the number of worms recovered was 111 per cat infected. In cats from riverside areas of Yeongsangang, Nakdonggang, Geumgang, and Hangang, more than 9, 8, 3, and 5 ZIT species were recovered, and the worm burdens were 13, 42, 11, and 56 specimens per infected cat, respectively. As the members of family Heterophyidae, more than 10 species, i.e., Metagonimus spp., Pygidiopsis summa, Heterophyes nocens, Stellantchasmus falcatus, Heterophyopsis continua, Acanthotrema felis, Centrocestus armatus, Procerovum varium, Cryptocotyle concava, and Stictodora lari, were recovered. More than 5 species of echinostomes, i.e., Echinostoma hortense, Echinochasmus japonicus, Echinochasmus sp., Echinoparyphium sp., and unidentified larval echinostomes, were collected. Plagiorchis spp. were detected in cats from areas of Seomjin-gang and Yeongsangang. From the above results, it has been confirmed that stray cats in 5 major riverside areas of Korea are highly infected with various species of ZITs. PMID:25925180

  17. A simple hand‐held magnet array for efficient and reproducible SABRE hyperpolarisation using manual sample shaking

    PubMed Central

    Richardson, Peter M.; Jackson, Scott; Parrott, Andrew J.; Nordon, Alison; Duckett, Simon B.

    2018-01-01

    Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H2, to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand‐held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF‐dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. PMID:29193324

  18. Vector-Borne Pathogens in Stray Dogs in Northeastern Turkey.

    PubMed

    Guven, Esin; Avcioglu, Hamza; Cengiz, Seyda; Hayirli, Armagan

    2017-08-01

    This experiment was carried out to attain prevalence and molecular characterization of pathogens causing canine vector-borne diseases (CVBDs) including babesiosis, hepatozoonosis, leishmaniasis, filariosis (Dirofilaria immitis, Dirofilaria repens, and Acanthocheilonema reconditum), ehrlichiosis (Ehrlichia canis), and anaplasmosis (Anaplasma platys) in stray dogs. The study material consisted of 133 asymptomatic female (n = 96) and male (n = 37) stray dogs (≤1 year old, n = 16 and 1-6 years old, n = 117) housed in the Animal Care and Rehabilitation Center, Erzurum, Northeastern Turkey. Conventional and nested PCR were performed on blood samples to detect Babesia spp., Leishmania spp., Hepatozoon spp., D. immitis, D. repens, A. reconditum, E. canis, and A. platys. Sex and age association with the pathogen prevalence was determined using X 2 statistics. The positivity rate for at least one CVBD pathogen was 48.9% (65/133). DNA of B. canis, Hepatozoon spp., H. canis, D. immitis, and E. canis were detected in 5.3% (7/133), 27.1% (36/133), 5.3% (7/133), 1.5% (2/133), and 9.8% (13/133) of the dogs, respectively. Leishmania spp., D. repens, A. reconditum, and A. platys DNA were not detected. Mixed pathogens were determined in seven (10.8%) of the infected dogs, with predominant involvement of Hepatozoon spp. or H. canis. The pathogen prevalence did not vary by sex or age. Nucleotide blast analysis of Erzurum isolates showed 99.8-100% identities with the corresponding reference isolates. This study indicates presence of five CVB pathogens, including the first report of E. canis, in stray dogs in Erzurum, Turkey.

  19. Poster – 13: Evaluation of an in-house CCD camera film dosimetry imaging system for small field deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, Michel; Alexander, Kevin; Olding, Tim

    Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and alsomore » benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV{sub MET}) and whole brain plus metastases (WB+PTV{sub MET}) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV{sub MET} structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV{sub MET} iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV{sub MET} delivery. But, film doses for PTV{sub MET} only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.« less

  20. High Precision, Absolute Total Column Ozone Measurements from the Pandora Spectrometer System: Comparisons with Data from a Brewer Double Monochromator and Aura OMI

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader

    2012-01-01

    We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.

  1. Measurement of stray EC radiation on W7-AS

    NASA Astrophysics Data System (ADS)

    Gandini, F.; Hirsch, M.; Cirant, S.; Erckmann, V.; Granucci, G.; Kasparek, W.; Laqua, H. P.; Muzzini, V.; Nowak, S.; Radau, S.

    2001-10-01

    In the framework of a collaboration between IFP-CNR Milano, IPP Garching/Greifswald and IPF Stuttgart, a set of four millimeterwave probes has been installed in W7-AS stellarator at selected positions of the inner vessel wall. Their purpose is to observe RF stray radiation during operation in presence of strong level of Electron Cyclotron (EC) waves, used for plasma start-up, heating and current drive. The aim of these measurements is to benchmark two complementary theoretical models for the distribution of the stray radiation in the vessel. From these codes, quantitative predictions are expected for the spatial distribution of the RF wall load and the RF-impact on in-vessel components in large future devices such as W7-X and, possibly, ITER. This input is important to optimize the wall armour and select rf-compatible in-vessel materials. We present first measurements from different heating and startup scenarios, with up to 800 kW of injected power at 140 GHz and different launching geometries. An analysis of measurements performed on FTU using a previous version of sniffer probe is also presented.

  2. The legal status of cats in New Zealand: a perspective on the welfare of companion, stray, and feral domestic cats (Felis catus).

    PubMed

    Farnworth, Mark J; Dye, Nicholson G; Keown, Natasha

    2010-01-01

    Pinpointing and safeguarding the welfare status of domestic cats is problematic, especially in New Zealand where cats are introduced predators with significant impact on indigenous fauna. Usually the identification of welfare status depends on conservational, legal, and public attitudes that are often contrasting. Cats may rapidly transgress definitions placed on them, confounding attempts to categorize them. In 1 generation, cats can move from a human-dependent state ("stray" or "companion") to wild ("feral"). Often this categorization uses arbitrary behavioral and or situational parameters; consequent treatment and welfare protection for these cats are similarly affected. Terminology used to describe cats is not equitable across research. However, the New Zealand Animal Welfare (Companion Cats) Code of Welfare 2007 seeks to create a new definition of the terms companion, stray, and feral. It distinguishes between cats who live within and without human social constructs. This legislation mandates that cats in human environments or indirectly dependent on humans cannot be classified as feral. Such definitions may prove vital when safeguarding the welfare of free-living domestic cats and cat colonies.

  3. Model of inter-cell interference phenomenon in 10 nm magnetic tunnel junction with perpendicular anisotropy array due to oscillatory stray field from neighboring cells

    NASA Astrophysics Data System (ADS)

    Ohuchida, Satoshi; Endoh, Tetsuo

    2018-06-01

    In this paper, we propose a new model of inter-cell interference phenomenon in a 10 nm magnetic tunnel junction with perpendicular anisotropy (p-MTJ) array and investigated the interference effect between a program cell and unselected cells due to the oscillatory stray field from neighboring cells by Landau–Lifshitz–Gilbert micromagnetic simulation. We found that interference brings about a switching delay in a program cell and excitation of magnetization precession in unselected cells even when no programing current passes through. The origin of interference is ferromagnetic resonance between neighboring cells. During the interference period, the precession frequency of the program cell is 20.8 GHz, which synchronizes with that of the theoretical precession frequency f = γH eff in unselected cells. The disturbance strength of unselected cells decreased to be inversely proportional to the cube of the distance from the program cell, which is in good agreement with the dependence of stray field on the distance from the program cell calculated by the dipole approximation method.

  4. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOEpatents

    Sawicki, Richard H.; Sweatt, William

    1987-01-01

    A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique utilizes first means which defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and second means acting on the first means for adjustably bending the light reflecting surface into a particular selected one of the different curvatures depending upon the astigmatism to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Naizhuo; Zhou, Yuyu; Samson, Eric L.

    The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multi-year quantitative research. In this study we extend and improve previous studies on inter-calibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time series (NLT) image data for China and the United States (US) through four steps: inter-calibration, geometric correction, steady increase adjustment, andmore » population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008 respectively and the US suffered from nighttime lights decay in large areas after 2001.« less

  6. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  7. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  8. The application of laser Rayleigh scattering to gas density measurements in hypersonic helium flows

    NASA Technical Reports Server (NTRS)

    Hoppe, J. C.; Honaker, W. C.

    1979-01-01

    Measurements of the mean static free-stream gas density have been made in two Langley Research Center helium facilities, the 3-inch leg of the high-Reynolds-number helium complex and the 22-inch hypersonic helium tunnel. Rayleigh scattering of a CW argon ion laser beam at 514.5 nm provided the basic physical mechanism. The behavior of the scattered signal was linear, confirmed by a preliminary laboratory study. That study also revealed the need to introduce baffles to reduce stray light. A relatively simple optical system and associated photon-counting electronics were utilized to obtain data for densities from 10 to the 23rd to 10 to the 25th per cu m. The major purpose, to confirm the applicability of this technique in the hypersonic helium flow, was accomplished.

  9. A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies

    NASA Astrophysics Data System (ADS)

    Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme

    2018-05-01

    Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.

  10. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    PubMed

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  11. Note: Wide band amplifier for quartz tuning fork sensors with digitally controlled stray capacitance compensation.

    PubMed

    Peng, Ping; Hao, Lifeng; Ding, Ning; Jiao, Weicheng; Wang, Qi; Zhang, Jian; Wang, Rongguo

    2015-11-01

    We presented a preamplifier design for quartz tuning fork (QTF) sensors in which the stray capacitance is digitally compensated. In this design, the manually controlled variable capacitor is replaced by a pair of varicap diodes, whose capacitance could be accurately tuned by a bias voltage. A tuning circuit including a single side low power operational amplifier, a digital-to-analog converter, and a microprocessor is also described, and the tuning process can be conveniently carried out on a personal computer. For the design, the noise level was investigated experimentally.

  12. Humoral immune response to Dipylidium caninum infection of stray dogs in Taiwan.

    PubMed

    Shin, J W; Liao, W T

    2002-04-02

    Two kinds of homogeneous proglottid, mature and gravid, of Dipylidium caninum were used as the antigens for immunodiagnosis of canine dipylidiosis in stray dogs in Tainan, Taiwan. The ELISA was performed on 30 serum samples; 24 from dipylidiosis, four from ancylostomosis and two from toxocariosis. The ELISA have specificity and sensitive of 100 and 50% for mature proglottid extract, and 75 and 100%, respectively, for gravid proglottid extract. EITB technique showed two major peptide bands of 94.8 and 97.9kDa were recognized in the sera pool of infected dogs.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Hwan; Hong, Suk-Ho; National Fusion Research Institute

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliabilitymore » of the method.« less

  14. Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes.

    PubMed

    Wighton, Paul; Lee, Tim K; Lui, Harvey; McLean, David; Atkins, M Stella

    2011-08-01

    We present a method for calibrating low-cost digital dermoscopes that corrects for color and inconsistent lighting and also corrects for chromatic aberration. Chromatic aberration is a form of radial distortion that often occurs in inexpensive digital dermoscopes and creates red and blue halo-like effects on edges. Being radial in nature, distortions due to chromatic aberration are not constant across the image, but rather vary in both magnitude and direction. As a result, distortions are not only visually distracting but could also mislead automated characterization techniques. Two low-cost dermoscopes, based on different consumer-grade cameras, were tested. Color is corrected by imaging a reference and applying singular value decomposition to determine the transformation required to ensure accurate color reproduction. Lighting is corrected by imaging a uniform surface and creating lighting correction maps. Chromatic aberration is corrected using a second-order radial distortion model. Our results for color and lighting calibration are consistent with previously published results, while distortions due to chromatic aberration can be reduced by 42-47% in the two systems considered. The disadvantages of inexpensive dermoscopy can be quickly substantially mitigated with a suitable calibration procedure. © 2011 John Wiley & Sons A/S.

  15. Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado

    PubMed Central

    Sherwood, Owen A.; Rogers, Jessica D.; Lackey, Greg; Burke, Troy L.; Osborn, Stephen G.; Ryan, Joseph N.

    2016-01-01

    Unconventional oil and gas development has generated intense public concerns about potential impacts to groundwater quality. Specific pathways of contamination have been identified; however, overall rates of contamination remain ambiguous. We used an archive of geochemical data collected from 1988 to 2014 to determine the sources and occurrence of groundwater methane in the Denver-Julesburg Basin of northeastern Colorado. This 60,000-km2 region has a 60-y-long history of hydraulic fracturing, with horizontal drilling and high-volume hydraulic fracturing beginning in 2010. Of 924 sampled water wells in the basin, dissolved methane was detected in 593 wells at depths of 20–190 m. Based on carbon and hydrogen stable isotopes and gas molecular ratios, most of this methane was microbially generated, likely within shallow coal seams. A total of 42 water wells contained thermogenic stray gas originating from underlying oil and gas producing formations. Inadequate surface casing and leaks in production casing and wellhead seals in older, vertical oil and gas wells were identified as stray gas migration pathways. The rate of oil and gas wellbore failure was estimated as 0.06% of the 54,000 oil and gas wells in the basin (lower estimate) to 0.15% of the 20,700 wells in the area where stray gas contamination occurred (upper estimate) and has remained steady at about two cases per year since 2001. These results show that wellbore barrier failure, not high-volume hydraulic fracturing in horizontal wells, is the main cause of thermogenic stray gas migration in this oil- and gas-producing basin. PMID:27402747

  16. A simple hand-held magnet array for efficient and reproducible SABRE hyperpolarisation using manual sample shaking.

    PubMed

    Richardson, Peter M; Jackson, Scott; Parrott, Andrew J; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-07-01

    Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H 2 , to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand-held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF-dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. © 2017 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  17. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system.

    PubMed

    Mojżeszek, N; Farah, J; Kłodowska, M; Ploc, O; Stolarczyk, L; Waligórski, M P R; Olko, P

    2017-02-01

    To measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique. Measurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100-220MeV), field sizes ((2×2)-(20×20)cm 2 ) and modulation widths (0-15cm). For pristine proton peak irradiations, large variations of neutron H ∗ (10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H ∗ (10)/D for pristine proton pencil beams varied between 0.04μSvGy -1 at beam energy 100MeV and a (2×2)cm 2 field at 2.25m distance and 90° angle with respect to the beam axis, and 72.3μSvGy -1 at beam energy 200MeV and a (20×20) cm 2 field at 1m distance along the beam axis. The obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Influence of beam incidence and irradiation parameters on stray neutron doses to healthy organs of pediatric patients treated for an intracranial tumor with passive scattering proton therapy.

    PubMed

    Bonfrate, A; Farah, J; De Marzi, L; Delacroix, S; Hérault, J; Sayah, R; Lee, C; Bolch, W E; Clairand, I

    2016-04-01

    In scattering proton therapy, the beam incidence, i.e. the patient's orientation with respect to the beam axis, can significantly influence stray neutron doses although it is almost not documented in the literature. MCNPX calculations were carried out to estimate stray neutron doses to 25 healthy organs of a 10-year-old female phantom treated for an intracranial tumor. Two beam incidences were considered in this article, namely a superior (SUP) field and a right lateral (RLAT) field. For both fields, a parametric study was performed varying proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and air gap size. Using a standard beam line configuration for a craniopharyngioma treatment, neutron absorbed doses per therapeutic dose of 63μGyGy(-1) and 149μGyGy(-1) were found at the heart for the SUP and the RLAT fields, respectively. This dose discrepancy was explained by the different patient's orientations leading to changes in the distance between organs and the final collimator where external neutrons are mainly produced. Moreover, investigations on neutron spectral fluence at the heart showed that the number of neutrons was 2.5times higher for the RLAT field compared against the SUP field. Finally, the influence of some irradiation parameters on neutron doses was found to be different according to the beam incidence. Beam incidence was thus found to induce large variations in stray neutron doses, proving that this parameter could be optimized to enhance the radiation protection of the patient. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Modular packaging concept for MEMS and MOEMS

    NASA Astrophysics Data System (ADS)

    Stenchly, Vanessa; Reinert, Wolfgang; Quenzer, Hans-Joachim

    2017-11-01

    Wherever technical systems detect objects in their environment or interact with people, optical devices may play an important role. Light can be relatively easily produced and spatially and temporally modulated. Laser can project sharp images over long distances or cut materials in short distances. Depending on the wavelength an invisible scanning in near infrared for gesture recognition is possible as well as a projection of brilliant colour images. For several years, the Fraunhofer ISIT develops Opto-Packaging processes based on the viscous reshaping of glass wafers: First, hermetically sealed laser micro-mirror scanners WLP with inclined windows deflect in the central light reflex of the window out of the image area. Second, housing with lateral light exit permits hermetic sealing of edge-emitting lasers for highest reliability and durability. Such systems are currently experiencing an extremely high interest of the industry in all segments, from consumer to automotive through to materials processing. Our modular Opto-Packaging platform enables fast product developments. Housing for opto mechanical MEMS devices are equipped with inclined windows to minimize distortion, stray light and reflection losses. The hot viscous glass forming technology is also applied to functionalized substrate wafers which possess areas with high heat dissipation in addition to thermally insulating areas. Electrical contacts may be realized with metal filled vias or TGV (Through Glass Vias). The modular system reduces the development times for new, miniaturized optical systems so that manufacturers can focus on the essentials in their development, namely their product functionalities.

  20. Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.

    PubMed

    Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong

    2018-05-01

    In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Apparatus for and method of correcting for aberrations in a light beam

    DOEpatents

    Sawicki, Richard H.

    1996-01-01

    A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface.

  2. Apparatus for and method of correcting for aberrations in a light beam

    DOEpatents

    Sawicki, R.H.

    1996-09-17

    A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface. 8 figs.

  3. Prevalence of Toxocara canis infection in dogs in the Warszawa area.

    PubMed

    Borecka, A; Gawor, J

    2000-01-01

    The evaluation of Toxocara canis infection in stray dogs from two shelters and private owners dogs in the Warszawa district was the aim of this study. In 1998 five hundred faecal samples were examined. The homeless dogs were found more infected than those kept as pets. T. canis was recorded in 3.4% and 8.8% of stray dogs from the shelters and in 0.4% of animals from flats. The higher prevalence of infection in homeless dogs was due to high density of dogs population, worse environmental condition and irregular anthelmintic treatment in the shelters when compare with housed dogs.

  4. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    NASA Astrophysics Data System (ADS)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  5. Sensitization of a stray-field NMR to vibrations: a potential for MR elastometry with a portable NMR sensor.

    PubMed

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Factors affecting the prevalence of mange-mite infestations in stray dogs of Yucatán, Mexico.

    PubMed

    Rodriguez-Vivas, R I; Ortega-Pacheco, A; Rosado-Aguilar, J A; Bolio, G M E

    2003-07-10

    The aim of the present study was to determine the factors affecting the prevalence of mange-mite infestations in stray dogs of Yucatán, Mexico. The study was carried out in 200 stray dogs of Mérida capital city of Yucatán, Mexico. Four samples (head, thoracic-abdominal area, extremities and ear) were taken from each animal by skin scraping and examined microscopically in 10% KOH solution to detect the presence of mites. Mites were also collected from the external ear canal of dogs using cotton-tipped swabs. The prevalence of different mite species was calculated. A primary screening was performed using 2xK contingency tables of exposure variables. All variables with P< or =0.20 were analyzed by a logistic-binomial regression. The overall prevalence was 34%. Demodex canis (23.0%) was the most frequent mite, followed by Sarcoptes scabei var. canis (7.0%) and Otodectes cynotis (3.5%). The following factors were found: body condition (bad, OR: 5.35, CI 95%: 1.66-17.3; regular, OR: 3.72, CI 95%: 1.39-9.99) and the presence of macroscopic lesions of dermatosis (OR: 42.80, CI 95%: 13.65-134.24).

  7. Community perception regarding rabies prevention and stray dog control in urban slums in India.

    PubMed

    Herbert, Mrudu; Riyaz Basha, S; Thangaraj, Selvi

    2012-12-01

    The lack of community awareness about rabies control is a major issue that thwarts efforts to prevent human deaths caused by rabies. The objectives of this study were (1) to assess community knowledge and attitudes about rabies, rabies prevention and stray dog control in an urban slum community and (2) to determine the factors that influence rabies awareness in urban slums. Using a systematic random sampling strategy, 185 participants were selected from 8 urban slums. The data were collected by direct interview using a pre-tested, structured questionnaire. In the study population, 74.1% of the participants had heard about rabies, and 54.1% knew that rabies is a fatal disease. Only 33.5% of the interviewees felt that people in the community had a role to play in controlling the stray dog population. Gender, age and educational status were significantly associated with rabies awareness. Our study indicates that there are gaps in the knowledge and attitudes of individuals living in urban slums regarding rabies prevention and control. Efforts to promote awareness should be targeted at men, older people and uneducated individuals. Copyright © 2012 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  8. Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment?

    USGS Publications Warehouse

    Adkison, Milo D.

    1995-01-01

    Morphological, behavioral, and life-history differences between Pacific salmon (Oncorhynchus spp.) populations are commonly thought to reflect local adaptation, and it is likewise common to assume that salmon populations separated by small distances are locally adapted. Two alternatives to local adaptation exist: random genetic differentiation owing to genetic drift and founder events, and genetic homogeneity among populations, in which differences reflect differential trait expression in differing environments. Population genetics theory and simulations suggest that both alternatives are possible. With selectively neutral alleles, genetic drift can result in random differentiation despite many strays per generation. Even weak selection can prevent genetic drift in stable populations; however, founder effects can result in random differentiation despite selective pressures. Overlapping generations reduce the potential for random differentiation. Genetic homogeneity can occur despite differences in selective regimes when straying rates are high. In sum, localized differences in selection should not always result in local adaptation. Local adaptation is favored when population sizes are large and stable, selection is consistent over large areas, selective diffeentials are large, and straying rates are neither too high nor too low. Consideration of alternatives to local adaptation would improve both biological research and salmon conservation efforts.

  9. A serological study of Leishmania infantum in dogs of Khorasan Razavi province, Iran.

    PubMed

    Sabzevari, S; Razmi, G R; Naghibi, A; Khoshnegah, J

    2013-10-01

    Leishmania infantum is the principal agent of visceral leishmaniosis (kala-azar) in all areas of Iran. The disease is endemic in Fars, Ardabil, East Azerbaijan and Bushehr provinces while it is sporadic in other parts of the country. Dog as a member of canidae family is the main animal reservoir host of kala-azar. The present study was carried out to determine the sero-prevalence of canine leishmaniosis in Mashhad, the capital city of Khorasan Razavi Province, in the north east of Iran. Two-hundred and nine dogs in two different classes including stray and sheepdogs were selected for this cross-sectional study. The blood samples were collected and tested by indirect immunofluorescent antibody test for detection of anti-Leishmania infantum antibodies. The results showed that 16/209 (7.6 %) of blood samples were positive. The sero-prevalence rates in stray and sheepdogs were 11/94 (11.7 %) and 5/115 (4.3 %), respectively (p < 0.05). Based on the results obtained, it is concluded that visceral leishmaniosis is distributed among dogs of this area, also sero-prevalence of canine leishmaniosis in stray dogs higher than sheepdogs.

  10. Current status of L. infantum infection in stray cats in the Madrid region (Spain): implications for the recent outbreak of human leishmaniosis?

    PubMed

    Miró, Guadalupe; Rupérez, Cristina; Checa, Rocío; Gálvez, Rosa; Hernández, Leticia; García, Manuel; Canorea, Isabel; Marino, Valentina; Montoya, Ana

    2014-03-24

    Since 2009, the incidence of human leishmaniosis in the SW of the Madrid region has been unusually high. Although dogs are the main reservoir for this disease, a role played by dogs in this outbreak has been ruled out and investigators are now considering other hosts (eg. cats, rabbits, hares) as possible alternative reservoirs.This study was designed to examine the Leishmania infantum status of stray cats in Madrid to assess its possible implications in the human leishmaniosis outbreak. 346 captured stray cats were tested for antibodies against L. infantum by the indirect fluorescent antibody technique (IFAT) and nested-PCR methods were used to detect Leishmania DNA in blood samples of cats testing seropositive for L. infantum and/or retroviruses infection. Cats were also tested for Toxoplasma gondii using the direct agglutination test (DAT) and feline leukemia virus (FeLV) antigen and feline immunodeficiency virus (FIV) antibodies (PetChek* FIV/FeLV). The presence of intestinal parasites was determined using a routine coprological method. The seroprevalence of L. infantum infection (cut off ≥ 1/100) was 3.2% (11/346). However, it was not possible to amplify Leishmania DNA in any of the blood samples. Seropositivity was not associated with sex, age, capture site, clinical status, retrovirus infection or T. gondii seropositivity. Of the 11 cats seropositive for L. infantum, 3 also tested positive for FIV, none for FeLV and 6 for T. gondii. It should be mentioned that the prevalence of FeLV p27 antigen was 4% and of FIV antibody was 9.2%. Although the seroprevalence of T. gondii was quite high at 53.5%, no T. gondii oocysts were found in any of the faeces samples analysed (n = 287). In contrast, intestinal parasites were detected in 76 (26.5%) samples, Toxocara cati being the most prevalent. Our results suggest a stable L. infantum infection situation among the stray cats of the Madrid area; the disease is uncommon and no clinical cases have been reported to date. The detection of other zoonotic parasites such as T. gondii and T. cati in stray cats indicates a need to adopt strict control measures in this population.

  11. Improving Focal Photostimulation of Cortical Neurons with Pre-derived Wavefront Correction

    PubMed Central

    Choy, Julian M. C.; Sané, Sharmila S.; Lee, Woei M.; Stricker, Christian; Bachor, Hans A.; Daria, Vincent R.

    2017-01-01

    Recent progress in neuroscience to image and investigate brain function has been made possible by impressive developments in optogenetic and opto-molecular tools. Such research requires advances in optical techniques for the delivery of light through brain tissue with high spatial resolution. The tissue causes distortions to the wavefront of the incoming light which broadens the focus and consequently reduces the intensity and degrades the resolution. Such effects are detrimental in techniques requiring focal stimulation. Adaptive wavefront correction has been demonstrated to compensate for these distortions. However, iterative derivation of the corrective wavefront introduces time constraints that limit its applicability to probe living cells. Here, we demonstrate that we can pre-determine and generalize a small set of Zernike modes to correct for aberrations of the light propagating through specific brain regions. A priori identification of a corrective wavefront is a direct and fast technique that improves the quality of the focus without the need for iterative adaptive wavefront correction. We verify our technique by measuring the efficiency of two-photon photolysis of caged neurotransmitters along the dendrites of a whole-cell patched neuron. Our results show that encoding the selected Zernike modes on the excitation light can improve light propagation through brain slices of rats as observed by the neuron's evoked excitatory post-synaptic potential in response to localized focal uncaging at the spines of the neuron's dendrites. PMID:28507508

  12. Measurements of magnetic spin excitations in Permalloy microstructures using nitrogen-vacancy magnetometry

    NASA Astrophysics Data System (ADS)

    Liu, H. J. Jason; Yoon, Seungha; McMichael, Robert

    The magnetic properties of nitrogen-vacancy (NV) centers in diamond have enabled emerging applications in fields ranging from cell biology to quantum computing. An NV center is a lattice defect, which behaves like a spin-1 system. NV centers can be prepared in the mz = 0 state by excitation with green light, and the spin state can be detected by the center's fluorescence of red light. The Zeeman splitting of the mz = +/-1 state, combined with a spin coherence time that can approach 1 ms, makes the NV center a sensitive, atom-sized magnetometer. Recently, NV centers have been used to measure spin wave excitations and vortex core dynamics in a Permalloy microdisk. In this talk, we present current NV center measurements on Permalloy micro and nanostructures that build on previous work. Permalloy structures were fabricated on top of a microstrip antenna and the measurements were conducted on a home-built confocal microscope. Preliminary measurements show photoluminescence contrast of ~12% and field detectivity on the order of µT/Hz1/2. This allows for fine field mapping of stray magnetic fields produced by micro and nanostructures, which are typically a few milliteslas in magnitude. Maryland Nanocenter, University of Maryland.

  13. Scaled model guidelines for solar coronagraphs' external occulters with an optimized shape.

    PubMed

    Landini, Federico; Baccani, Cristian; Schweitzer, Hagen; Asoubar, Daniel; Romoli, Marco; Taccola, Matteo; Focardi, Mauro; Pancrazzi, Maurizio; Fineschi, Silvano

    2017-12-01

    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs' geometry.

  14. SeaWiFS technical report series. Volume 27: Case studies for SeaWiFS calibration and validation, part 3

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Mueller, J. L.; Fraser, R. S.; Biggar, S. F.; Thome, K. J.; Slater, P. N.; Holmes, A. W.; Barnes, R. A.

    1995-01-01

    This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter I describes a comparison of the irradiance immersion coefficients determined for several different marine environmental radiometers (MERs). Chapter 2 presents an analysis of how light absorption by atmospheric oxygen will influence the radiance measurements in band 7 of the SeaWiFS instrument. Chapter 3 gives the results of the second ground-based solar calibration of the instrument, which was undertaken after the sensor was modified to reduce the effects of internal stray light. (The first ground-based solar calibration of SeaWiFS is described in Volume 19 in the SeaWiFS Technical Report Series.) Chapter 4 evaluates the effects of ship shadow on subsurface irradiance and radiance measurements deployed from the deck of the R/V Weatherbird 11 in the Atlantic Ocean near Bermuda. Chapter 5 illustrates the various ways in which a single data day of SeaWiFS observations can be defined, and why the spatial definition is superior to the temporal definition for operational usage.

  15. Lenslet Array to Further Suppress Star Light for Direct Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Gong, Qian; McElwain, Michael; Shiri, Ron

    2016-01-01

    Direct imaging plays a key role in the detection and characterization of exoplanets orbiting within its host star's habitable zone. Many innovative ideas for starlight suppression and wavefront control have been proposed and developed over the past decade. However, several technological challenges still lie ahead to achieve the required contrast, including controlling the observatory pointing performance, fabricating occulting masks with tight optical tolerances, developing wavefront control algorithms, controlling stray light, advancing single photon detecting detectors, and integrated system-level issues. This paper explores how a lenslet array and pinhole mask may be implemented to further suppress uncorrected starlight that leaks through the occulting mask. An external occulter, or star shade, is simulated to demonstrate this concept, although this approach can be implemented for internal coronagraphs as well. We describe how to use simple relay optics to control the scene near the inner working angle and the level of the suppression expected. Furthermore, if the lenslet array is the input to an integral field spectrograph, as planned for the WFIRST mission, the spectral content of the exoplanet atmospheres can be obtained to determine if the observed planet is habitable and ultimately, if it is inhabited.

  16. Overview on grating developments at ESA

    NASA Astrophysics Data System (ADS)

    Guldimann, B.; Deep, A.; Vink, R.; Harnisch, B.; Kraft, S.; Sierk, B.; Bazalgette, G.; Bézy, J.-L.

    2017-11-01

    In the frame of recent studies and missions, ESA has been performing various pre-developments of optical gratings for instruments operating at wavelengths from the UV up to the SWIR. The instrument requirements of Sentinel-4, Sentinel-5, CarbonSat and FLEX are driving the need for advanced designs and technologies leading to gratings with high efficiency, high spectral resolution, low stray light and low polarization sensitivities. Typical ESA instruments (e.g. Sciamachy, GOME, MERIS, OLCI, NIRSpec) were and are based on ruled gratings or gratings manufactured with one holographic photoresist mask layer which is transferred to an optical substrate (e.g. glass, glass ceramic) with dry etching methods and subsequently either coated with a reflective coating or used as a mold for replication. These manufacturing methods lead to blazed grating profiles with a metallic reflective surface. The vast majority of spectrometers on ground are still based on such gratings. In general, gratings based on grooved metallic surfaces tend for instance to polarize the incoming light significantly and are therefore not always suitable for ESA's needs of today. Gratings made for space therefore evolved to many other designs and concepts which will be reported in this paper.

  17. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  18. Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.

    2007-01-01

    The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.

  19. Seroprevalence of Leishmania infection and molecular detection of Leishmania tropica and Leishmania infantum in stray cats of İzmir, Turkey.

    PubMed

    Can, Hüseyin; Döşkaya, Mert; Özdemir, H Gökhan; Şahar, Esra Atalay; Karakavuk, Muhammet; Pektaş, Bayram; Karakuş, Mehmet; Töz, Seray; Caner, Ayşe; Döşkaya, Aysu Değirmenci; İz, Sultan Gülce; Özbel, Yusuf; Gürüz, Yüksel

    2016-08-01

    Leishmaniasis caused by more than 20 species of genus Leishmania is transmitted by the bite of infected phlebotomine sand flies. The studies on Leishmania infection in cats is very few in Turkey and therefore we aimed to screen stray cats living in city of İzmir located in western Turkey using nested PCR targeting kinetoplast DNA and serological techniques (ELISA and IFA). Leishmania DNA positive samples were also studied by ITS1 real time PCR. Whole blood and serum samples were obtained from stray cats (n: 1101) living in different counties of İzmir. In serological assays, a serum sample was considered positive in 1:40 dilution in IFA and for ELISA a serum sample was accepted positive when the absorbance value (AV) exceeded the mean AV + Standard Deviation (SD) of the negative control serum samples. According to the results, the seropositivity rates were 10.8% (119/1101) and 15.2% (167/1101) by in house ELISA and IFA, respectively. Among serology coherent samples, the seropositivity rate was 11.1% (116/1047) as detected by both assays after discordant samples (n: 54) were discarded. Of the 1101 stray cats, six (0.54%) were positive by nested PCR while only one of these six samples was positive by ITS1 real time PCR. During PCR, three controls designated as Leishmania infantum, Leishmania tropica, and Leishmania major were used for species identification. According to nested PCR results, L. tropica was identified in two cats (no.76 and 95). In another cat (no. 269), there were two bands in which one of them was well-matched with L. infantum and the other band had ∼850 bp size which does not match with any controls. Remaining three cats (no. 86, 514, and 622) also had the ∼850 bp atypical band size. ITS1 real time PCR detected L. tropica in only one cat (no. 622) which showed an atypical band size in nested PCR. These results indicated that three cats with only one atypical band (no. 86, 514, and 622) and the cat with mixed infection (no. 269) were infected with L. tropica. Altogether, L. tropica was detected in all six DNA positive cats and L. infantum was detected in one cat with mixed infection. In conclusion, although the reservoir role of cats in nature is still unclear the high seroprevalence rate against Leishmania parasites and detecting parasite DNA in stray cats in İzmir indicates that the stray cats are frequently bitten by infected sand flies. Further research activities are required to reveal the frequency of leishmaniasis in cats in different regions of Turkey where Leishmania species are endemic. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. An astronomy camera for low background applications in the 1. 0 to 2. 5. mu. m spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaki, S.A.; Bailey, G.C.; Hagood, R.W.

    1989-02-01

    A short wavelength (1.0-2.5 ..mu..m) 128 x 128 focal plane array forms the heart of this low background astronomy camera system. The camera is designed to accept either a 128 x 128 HgCdTe array for the 1-2.5 ..mu..m spectral region or an InSb array for the 3-5 ..mu..m spectral region. A cryogenic folded optical system is utilized to control excess stray light along with a cold eight-position filter wheel for spectral filtering. The camera head and electronics will also accept a 256 x 256 focal plane. Engineering evaluation of the complete system is complete along with two engineering runs atmore » the JPL Table Mountain Observatory. System design, engineering performance, and sample imagery are presented in this paper.« less

  1. Thermal Design of the Instrument for the Transiting Exoplanet Survey Satellite

    NASA Technical Reports Server (NTRS)

    Allen, Gregory D.

    2016-01-01

    TESS observatory is a two year NASA Explorer mission which will use a set of four cameras to discover exoplanets. It will be placed in a high-earth orbit with a period of 13.7 days and will be unaffected by temperature disturbances caused by environmental heating from the Earth. The cameras use their stray-light baffles to passively cool the cameras and in turn the CCD's in order to maintain operational temperatures. The design has been well thought out and analyzed to maximize temperature stability. The analysis shows that the design keeps the cameras and their components within their temperature ranges which will help make it a successful mission. It will also meet its survival requirement of sustaining exposure to a five hour eclipse. Official validation and verification planning is underway and will be performed as the system is built up. It is slated for launch in 2017.

  2. Nearby Dwarf Stars: Duplicity, Binarity, and Masses

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.; Hartkopf, William I.; Henry, Todd J.; Jao, Wei-Chun; Subasavage, John; Riedel, Adric; Winters, Jennifer

    2010-02-01

    Double stars have proven to be both a blessing and a curse for astronomers since their discovery over two centuries ago. They remain the only reliable source of masses, the most fundamental parameter defining stars. On the other hand, their sobriquet ``vermin of the sky'' is well-earned, due to the complications they present to both observers and theoreticians. These range from non-linear proper motions to stray light in detectors, to confusion in pointing of instruments due to non-symmetric point spread functions, to angular momentum conservation in multiple stars which results in binaries closer than allowed by evolution of two single stars. This proposal is primarily focused on targets where precise astrophysical information is sorely lacking: white dwarfs, red dwarfs, and subdwarfs. The proposed work will refine current statistics regarding duplicity (chance alignments of nearby point sources) and binarity (actual physical relationships), and improve the precisions and accuracies of stellar masses. Several targets support Riedel's and Winters' theses.

  3. Nearby Dwarf Stars: Duplicity, Binarity, and Masses

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.; Hartkopf, William I.; Henry, Todd J.; Jao, Wei-Chun; Subasavage, John; Riedel, Adric; Winters, Jennifer

    2009-08-01

    Double stars have proven to be both a blessing and a curse for astronomers since their discovery over two centuries ago. They remain the only reliable source of masses, the most fundamental parameter defining stars. On the other hand, their sobriquet ``vermin of the sky'' is well-earned, due to the complications they present to both observers and theoreticians. These range from non-linear proper motions to stray light in detectors, to confusion in pointing of instruments due to non-symmetric point spread functions, to angular momentum conservation in multiple stars which results in binaries closer than allowed by evolution of two single stars. This proposal is primarily focused on targets where precise astrophysical information is sorely lacking: white dwarfs, red dwarfs, and subdwarfs. The proposed work will refine current statistics regarding duplicity (chance alignments of nearby point sources) and binarity (actual physical relationships), and improve the precisions and accuracies of stellar masses. Several targets support Riedel's and Winters' theses.

  4. Ensuring long-term stability of infrared camera absolute calibration.

    PubMed

    Kattnig, Alain; Thetas, Sophie; Primot, Jérôme

    2015-07-13

    Absolute calibration of cryogenic 3-5 µm and 8-10 µm infrared cameras is notoriously instable and thus has to be repeated before actual measurements. Moreover, the signal to noise ratio of the imagery is lowered, decreasing its quality. These performances degradations strongly lessen the suitability of Infrared Imaging. These defaults are often blamed on detectors reaching a different "response state" after each return to cryogenic conditions, while accounting for the detrimental effects of imperfect stray light management. We show here that detectors are not to be blamed and that the culprit can also dwell in proximity electronics. We identify an unexpected source of instability in the initial voltage of the integrating capacity of detectors. Then we show that this parameter can be easily measured and taken into account. This way we demonstrate that a one month old calibration of a 3-5 µm camera has retained its validity.

  5. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    NASA Technical Reports Server (NTRS)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  6. How to manipulate magnetic states of antiferromagnets

    NASA Astrophysics Data System (ADS)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  7. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Chandrasekaran, Saravan Kumar; Crawford, Anthony

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and tomore » keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.« less

  8. Large aperture and wide field of view space telescope for the detection of ultra high energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Mazzinghi, Piero; Bratina, Vojko; Gambicorti, Lisa; Simonetti, Francesca; Zuccaro Marchi, Alessandro

    2017-11-01

    New technologies are proposed for large aperture and wide Field of View (FOV) space telescopes dedicated to detection of Ultra High Energy Cosmic Rays and Neutrinos flux, through observation of fluorescence traces in atmosphere and diffused Cerenkov signals. The presented advanced detection system is a spaceborne LEO telescope, with better performance than ground-based observatories, detecting up to 103 - 104 events/year. Different design approaches are implemented, all with very large FOV and focal surface detectors with sufficient segmentation and time resolution to allow precise reconstructions of the arrival direction. In particular, two Schmidt cameras are suggested as an appropriate solution to match most of the optical and technical requirements: large FOV, low f/#, reduction of stray light, optionally flat focal surface, already proven low-cost construction technologies. Finally, a preliminary proposal of a wideFOV retrofocus catadioptric telescope is explained.

  9. Temperature dependent BRDF facility

    NASA Astrophysics Data System (ADS)

    Airola, Marc B.; Brown, Andrea M.; Hahn, Daniel V.; Thomas, Michael E.; Congdon, Elizabeth A.; Mehoke, Douglas S.

    2014-09-01

    Applications involving space based instrumentation and aerodynamically heated surfaces often require knowledge of the bi-directional reflectance distribution function (BRDF) of an exposed surface at high temperature. Addressing this need, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed a BRDF facility that features a multiple-port vacuum chamber, multiple laser sources covering the spectral range from the longwave infrared to the ultraviolet, imaging pyrometry and laser heated samples. Laser heating eliminates stray light that would otherwise be seen from a furnace and requires minimal sample support structure, allowing low thermal conduction loss to be obtained, which is especially important at high temperatures. The goal is to measure the BRDF of ceramic-coated surfaces at temperatures in excess of 1000°C in a low background environment. Most ceramic samples are near blackbody in the longwave infrared, thus pyrometry using a LWIR camera can be very effective and accurate.

  10. Quality of vision in refractive and cataract surgery, indirect measurers: review article.

    PubMed

    Parede, Taís Renata Ribeira; Torricelli, André Augusto Miranda; Mukai, Adriana; Vieira Netto, Marcelo; Bechara, Samir Jacob

    2013-01-01

    Visual acuity is the measurement of an individual's ability to recognize details of an object in a space. Visual function measurements in clinical ophthalmology are limited by factors such as maximum contrast and so it might not adequately reflect the real vision conditions at that moment as well as the subjective aspects of the world perception by the patient. The objective of a successful vision-restoring surgery lies not only in gaining visual acuity lines, but also in vision quality. Therefore, refractive and cataract surgeries have the responsibility of achieving quality results. It is difficult to define quality of vision by a single parameter, and the main functional-vision tests are: contrast sensitivity, disability glare, intraocular stray light and aberrometry. In the current review the different components of the visual function are explained and the several available methods to assess the vision quality are described.

  11. Calibration-free optical chemical sensors

    DOEpatents

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  12. A microprocessor-based one dimensional optical data processor for spatial frequency analysis

    NASA Technical Reports Server (NTRS)

    Collier, R. L.; Ballard, G. S.

    1982-01-01

    A high degree of accuracy was obtained in measuring the spatial frequency spectrum of known samples using an optical data processor based on a microprocessor, which reliably collected intensity versus angle data. Stray light control, system alignment, and angle measurement problems were addressed and solved. The capabilities of the instrument were extended by the addition of appropriate optics to allow the use of different wavelengths of laser radiation and by increasing the travel limits of the rotating arm to + or - 160 degrees. The acquisition, storage, and plotting of data by the computer permits the researcher a free hand in data manipulation such as subtracting background scattering from a diffraction pattern. Tests conducted to verify the operation of the processor using a 25 mm diameter pinhole, a 39.37 line pairs per mm series of multiple slits, and a microscope slide coated with 1.091 mm diameter polystyrene latex spheres are described.

  13. Coupled thermo-elastic and optical performance analyses of a reflective baffle for the BepiColombo laser altimeter (BELA) receiver

    NASA Astrophysics Data System (ADS)

    Heesel, E.; Weigel, T.; Lochmatter, P.; Rugi Grond, E.

    2017-11-01

    For the BepiColombo mission, the extreme thermal environment around Mercury requires good heat shields for the instruments. The BepiColombo Laser altimeter (BELA) Receiver will be equipped with a specular reflective baffle in order to limit the solar power impact. The design uses a Stavroudis geometry with alternating elliptical and hyperbolic vanes to reflect radiation at angles >38° back into space. The thermal loads on the baffle lead to deformations, and the resulting changes in the optical performance can be modeled by ray-tracing. Conventional interfaces, such as Zernike surface fitting, fail to provide a proper import of the mechanical distortions into optical models. We have studied alternative models such as free form surface representations and compared them to a simple modeling approach with straight segments. The performance merit is presented in terms of the power rejection ratio and the absence of specular stray-light.

  14. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery.

    PubMed

    Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2016-10-01

    In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Relativistic theory of the falling retroreflector gravimeter

    NASA Astrophysics Data System (ADS)

    Ashby, Neil

    2018-02-01

    We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.

  16. Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.

    PubMed

    Ripple, Dean C; Hu, Zhishang

    2016-03-01

    Industry and regulatory bodies desire more accurate methods for counting and characterizing particles. Measurements of proteinaceous-particle concentrations by light obscuration and flow imaging can differ by factors of ten or more. We propose methods to correct the diameters reported by light obscuration and flow imaging instruments. For light obscuration, diameters were rescaled based on characterization of the refractive index of typical particles and a light scattering model for the extinction efficiency factor. The light obscuration models are applicable for either homogeneous materials (e.g., silicone oil) or for chemically homogeneous, but spatially non-uniform aggregates (e.g., protein aggregates). For flow imaging, the method relied on calibration of the instrument with silica beads suspended in water-glycerol mixtures. These methods were applied to a silicone-oil droplet suspension and four particle suspensions containing particles produced from heat stressed and agitated human serum albumin, agitated polyclonal immunoglobulin, and abraded ethylene tetrafluoroethylene polymer. All suspensions were measured by two flow imaging and one light obscuration apparatus. Prior to correction, results from the three instruments disagreed by a factor ranging from 3.1 to 48 in particle concentration over the size range from 2 to 20 μm. Bias corrections reduced the disagreement from an average factor of 14 down to an average factor of 1.5. The methods presented show promise in reducing the relative bias between light obscuration and flow imaging.

  17. Robust, open-source removal of systematics in Kepler data

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Parviainen, H.; Roberts, S.; Reece, S.; Evans, T.

    2017-10-01

    We present ARC2 (Astrophysically Robust Correction 2), an open-source python-based systematics-correction pipeline, to correct for the Kepler prime mission long-cadence light curves. The ARC2 pipeline identifies and corrects any isolated discontinuities in the light curves and then removes trends common to many light curves. These trends are modelled using the publicly available co-trending basis vectors, within an (approximate) Bayesian framework with 'shrinkage' priors to minimize the risk of overfitting and the injection of any additional noise into the corrected light curves, while keeping any astrophysical signals intact. We show that the ARC2 pipeline's performance matches that of the standard Kepler PDC-MAP data products using standard noise metrics, and demonstrate its ability to preserve astrophysical signals using injection tests with simulated stellar rotation and planetary transit signals. Although it is not identical, the ARC2 pipeline can thus be used as an open-source alternative to PDC-MAP, whenever the ability to model the impact of the systematics removal process on other kinds of signal is important.

  18. Presearch Data Conditioning in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.

  19. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawicki, R.H.; Sweatt, W.

    1987-03-03

    An apparatus is described for correcting for astigmatism in a light beam reflected off of a light reflecting surface, comprising: (a) a first means defining a flat, rectangular light reflecting surface which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis. The first means is configured so that the light reflecting surface can be adjustably bent into the selected cylindrical curvature by applying a particular bending moment to the first means with respect to the surface, depending upon the curvature desired. The first means includes an integrally formed body member havingmore » a main plate-like segment including a front fact defining the light reflecting surface and a pair of spaced-apart flange segments extending rearwardly of the main segment; and (b) second means acting on the first means for adjustably bending the light reflecting surface into a particular selected one of the different cylindrical curvatures, depending upon the astigmatism to be corrected for.« less

  20. Magnetic profiling of the San Andreas Fault using a dual magnetometer UAV aerial survey system.

    NASA Astrophysics Data System (ADS)

    Abbate, J. A.; Angelopoulos, V.; Masongsong, E. V.; Yang, J.; Medina, H. R.; Moon, S.; Davis, P. M.

    2017-12-01

    Aeromagnetic survey methods using planes are more time-effective than hand-held methods, but can be far more expensive per unit area unless large areas are covered. The availability of low cost UAVs and low cost, lightweight fluxgate magnetometers (FGMs) allows, with proper offset determination and stray fields correction, for low-cost magnetic surveys. Towards that end, we have developed a custom multicopter UAV for magnetic mapping using a dual 3-axis fluxgate magnetometer system: the GEOphysical Drone Enhanced Survey Instrument (GEODESI). A high precision sensor measures the UAV's position and attitude (roll, pitch, and yaw) and is recorded using a custom Arduino data processing system. The two FGMs (in-board and out-board) are placed on two ends of a vertical 1m boom attached to the base of the UAV. The in-board FGM is most sensitive to stray fields from the UAV and its signal is used, after scaling, to clean the signal of the out-board FGM from the vehicle noise. The FGMs record three orthogonal components of the magnetic field in the UAV body coordinates which are then transformed into a north-east-down coordinate system using a rotation matrix determined from the roll-pitch-yaw attitude data. This ensures knowledge of the direction of all three field components enabling us to perform inverse modeling of magnetic anomalies with greater accuracy than total or vertical field measurements used in the past. Field tests were performed at Dragon's Back Pressure Ridge in the Carrizo Plain of California, where there is a known crossing of the San Andreas Fault. Our data and models were compared to previously acquired LiDAR and hand-held magnetometer measurements. Further tests will be carried out to solidify our results and streamline our processing for educational use in the classroom and student field training.

Top