Sample records for stream ecological condition

  1. A rapid method to score stream reaches based on the overall performance of their main ecological functions.

    PubMed

    Rowe, David K; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K; Maxted, John; Moore, Stephen

    2009-06-01

    A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types.

  2. Monitoring network-design influence on assessment of ecological condition in wadeable streams

    EPA Science Inventory

    We investigated outcomes of three monitoring networks for assessing ecological character and condition of wadeable streams in the Waikato region, New Zealand. Sites were selected 1) based on a professional judgment network, 2) within categories of stream and watershed characteris...

  3. Building spatially-explicit model predictions for ecological condition of streams in the Pacific Northwest: An assessment of landscape variables, models, endpoints and prediction scale

    EPA Science Inventory

    While large-scale, randomized surveys estimate the percentage of a region’s streams in poor ecological condition, identifying particular stream reaches or watersheds in poor condition is an equally important goal for monitoring and management. We built predictive models of strea...

  4. ECOLOGICAL ASSESSMENT OF ARIZONA'S STREAMS AND RIVERS, 2000-2004

    EPA Science Inventory

    The State of Arizona participated in a U.S. Environmental Protection Agency (EPA) ecological assessment of Western streams. One goal of the assessment was to report on the ecological condition of all Western perennial streams, except the `Great Rivers' such as the lower Columbi...

  5. LENGTH-HETEROGENEITY POLYMERASE CHAIN REACTION (LH-PCR) AS AN INDICATOR OF STREAM SANITARY AND ECOLOGICAL CONDITION: OPTIMAL SAMPLE SIZE AND HOLDING CONDITIONS

    EPA Science Inventory

    The use of coliform plate count data to assess stream sanitary and ecological condition is limited by the need to store samples at 4oC and analyze them within a 24-hour period. We are testing LH-PCR as an alternative tool to assess the bacterial load of streams, offering a cost ...

  6. Stream ecological condition modeling at the reach and the hydrologic unit (HUC) scale: A look at model performance and mapping

    EPA Science Inventory

    The National Hydrography and updated Watershed Boundary Datasets provide a ready-made framework for hydrographic modeling. Determining particular stream reaches or watersheds in poor ecological condition across large regions is an essential goal for monitoring and management. T...

  7. Annual report, 1966-67, stream ecology phase of the Caspar Creek project

    Treesearch

    John W. DeWitt

    1967-01-01

    During the 1966 - June 30, 1967 fiscal year, calibration work on the stream ecology phase of the project continued along about the lines of last year's work. The emphasis was on determining the importance of stream canopy, particulary as it affects the amount of solar radiation being received at the water surface and on stream conditions influenced by the amount...

  8. Predicting macroinvertebrate MMI for geographic targeting

    EPA Science Inventory

    The US Environmental Protection Agency surveys the ecological conditions of streams across broad regions. We wish to identify specific streams in poor condition, as well as their regional extent. To identify such streams in Idaho, Oregon and Washington we built multiple regress...

  9. DATA COLLECTION CONSTRAINTS FOR THE USE OF LENGTH HETEROGENEITY POLYMERASE CHAIN REACTION (LH-PCR) AS AN INDICATOR OF STREAM SANITARY AND ECOLOGICAL CONDITION

    EPA Science Inventory

    This study is part of a larger project for the development of bacterial indicators of stream sanitary and ecological condition. Here we report preliminary research on the use of Length Heterogeneity Polymerase Chain Reaction (LH-PCR), which discriminates among 16S rRNA genes bas...

  10. Perspectives on ecological research at the Outdoor StreamLab, a field-scale experimental stream

    NASA Astrophysics Data System (ADS)

    Merten, E. C.; Dieterman, D.; Kramarczuk, K.; Lightbody, A.; Orr, C. H.; Wellnitz, T.

    2009-12-01

    Artificial streams hold great promise for examining ecological processes. They lend themselves to manipulations of discharge, sediment load, water chemistry, and other parameters difficult or impossible to control in natural streams. However, artificial streams also have important limitations. In this presentation we describe insights gained from several ecological studies conducted at the St. Anthony Falls Laboratory’s Outdoor StreamLab, including, 1) short-term turbidity exposure effects on fish health, 2) macroinvertebrate grazing rates on periphyton as a function of velocity, 3) rates of macroinvertebrate colonization as related to velocity, and 4) fine-scale correlations of periphytic biomass with hydraulic conditions. Several lessons emerge from these initial attempts at ecological research in the Outdoor StreamLab. We have learned that the size, flow rate, substrate, water chemistry, and available colonization population of the artificial stream limit the kinds of organisms and types of ecological processes that can be examined and the types of experiments that can be run. We suggest that short-term biotic responses are best for study in a system of this type, and note that constant experiment maintenance is essential. Operating artificial streams to meet the needs of multiple researchers also presents challenges of scheduling, coordination, and conflict resolution. Although ecological research in artificial streams has considerable potential, the planning required is no less than that of traditional field studies.

  11. Urban Stormwater Runoff: A New Class of Environmental Flow Problem

    PubMed Central

    Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.

    2012-01-01

    Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257

  12. PROCESS TRANSFER FUNCTIONS TO RELATE STREAM ECOLOGICAL CONDITION METRICS TO NITRATE RETENTION

    EPA Science Inventory

    Ecologists have developed hydrological metrics to characterize the nutrient processing capability of streams. In most cases these are used qualitatively to draw inferences on ecological function. In this work, several of these metrics have been integrated in a nonsteady state adv...

  13. Spatial prediction models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability-based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  14. Random forest models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  15. Condition of stream ecosystem in the US: An overview of the first national assessment

    EPA Science Inventory

    The Wadeable Streams Assessment (WSA) provided the first statistically sound summary of the ecological condition of streams and small rivers in the US. Information provided in the assessment filled an important gap in meeting the requirements of the US Clean Water Act. The purpos...

  16. Supercharged Snails for Stream Ecology & Water-Quality Studies

    ERIC Educational Resources Information Center

    Stewart, Arthur J.; Ryon, Michael G.

    2003-01-01

    Gill-breathing freshwater snails (Family "Pleuroceridae") are ecologically important, abundant in many streams in the United States, and easy to collect and maintain under classroom conditions. These snails can be used in classroom tests to demonstrate effects of pollutants on aquatic organisms. In more advanced classes, students can cage the…

  17. FIELD OPERATIONS MANUAL FOR ASSESSING THE HYDROLOGIC PERMANENCE AND ECOLOGICAL CONDITION OF HEADWATER STREAMS

    EPA Science Inventory

    The purpose of this manual is to document procedures that were developed and used by the Ecological Exposure Research Division, NERL, ORD, for the assessment of the physical and biological characteristics of headwater streams; and to provide a catalog of procedures to other group...

  18. SETTING EXPECTATIONS FOR THE ECOLOGICAL CONDITION OF STREAMS: THE CONCEPT OF REFERENCE CONDITION

    EPA Science Inventory

    An important component of the biological assessment of stream condition is an evaluation of the direct or indirect effects of human activities or disturbances. The concept of a "reference condition" is increasingly used to describe the standard or benchmark against which current ...

  19. Development of diatom indicators of ecological conditions for streams of the western US

    EPA Science Inventory

    The species composition of benthic diatoms was related to environmental conditions in streams throughout the western US to develop diatom traits, indicators for assessment of biological condition and indicators for diagnosing stressors. We hypothesized that indicators based on sp...

  20. Ecological Condition of Streams in Northern Nevada EPA R-MAP Humboldt Basin Project

    EPA Science Inventory

    This report presents stream data on the Humboldt River Basin in northern Nevada using the R-EMAP Program. Water is of primary importance to both the economy and the ecology of the region. Many of the waters of Nevada have previously received relatively little attention in regar...

  1. SPATIAL PATTERNS AND ECOLOGICAL DETERMINANTS OF BENTHIC ALGAL ASSEMBLAGES IN MID-ATLANTIC STREAMS, USA

    EPA Science Inventory

    We attempted to identify spatial patterns and determinants for benthic algal assemblages in Mid-Atlantic streams. Periphyton, water chemistry, stream physical habitat, riparian conditions, and land cover/use in watersheds were characterized at 89 randomly selected stream sites i...

  2. Evaluating expected outcomes of acid remediation in an intensively mined Appalachian watershed.

    PubMed

    Watson, Andrew S; Merovich, George T; Petty, J Todd; Gutta, J Brady

    2017-07-01

    Assessments of watershed-based restoration efforts are rare but are essential for the science of stream restoration to advance. We conducted a watershed scale assessment of Abram Creek before and after implementation of a watershed-based plan designed to maximize ecological recovery from acid mine drainage (AMD) impairment. We surveyed water chemistry, physical habitat, benthic macroinvertebrates, and fish community structure in three stream types: AMD-impacted (14 streams), AMD-treated (13 streams), and unimpaired reference (4 streams). We used in-stream measurements to quantify ecological loss from AMD, the amount of ecological recovery expected through remediation, and the observed degree of post-treatment recovery. Sites impaired by AMD improved in water quality with AMD treatment. Dissolved metals and acidity declined significantly in treated streams, but sulfate and specific conductance did not. Likewise, sites impaired by AMD improved in bio-condition scores with AMD treatment. EPT genera increased significantly but were lower compared to unimpaired streams. We found fish at nine treated sites that had none before treatment. Community-level analyses indicated improved but altered assemblages with AMD treatment. Analysis of pre-treatment conditions indicated that only 30% of the historic fishery remained. Remediation was expected to recover 66% of the historic fishery value, and assessment of post-treatment conditions indicates that 52% of the historic fishery has been recovered after 3 years. Developing expected endpoints for restoration outcomes provides a tool to objectively evaluate successes and can guide adaptive management strategies.

  3. GEOMORPHIC CONTROLS ON CARBON AND NITROGEN PROCESSING IN A DEGRADED URBAN STREAM

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater pose human and ecological threats. Microbial denitrification removes nitrate from groundwater but requires anaerobic (saturated) conditions and adequate supply of dissolved organic carbon from detritus and organic soils. Condit...

  4. INNOVATIVE APPROACHES TO IMPROVE THE TMDL PROCESS: USING ALTERNATIVE WATERSHED SAMPLING DESIGNS TO MEASURE AND CLASSIFY EXPOSURE TO NATURAL AND ANTHROPOGENIC DETERMINANTS OF ECOLOGICAL CONDITION.

    EPA Science Inventory

    As a means to protect the Nation's rivers and streams, states have adopted biocriteria, a narrative or numeric standard for the biological condition of streams. When stream segments or whole watersheds do not meet a state's biocriteria, then that water body is considered impaired...

  5. Disentangling the responses of boreal stream assemblages to low stressor levels of diffuse pollution and altered channel morphology.

    PubMed

    Turunen, Jarno; Muotka, Timo; Vuori, Kari-Matti; Karjalainen, Satu Maaria; Rääpysjärvi, Jaana; Sutela, Tapio; Aroviita, Jukka

    2016-02-15

    Non-point diffuse pollution from land use and alteration of hydromorphology are among the most detrimental stressors to stream ecosystems. We explored the independent and interactive effects of morphological channel alteration (channelization for water transport of timber) and diffuse pollution on species richness and community structure of four organism groups in boreal streams: diatoms, macrophytes, macroinvertebrates, and fish. Furthermore, the effect of these stressors on stream condition was evaluated by Ecological Quality Ratios (EQR) from the national Water Framework Directive (WFD) assessment system. We grouped 91 study sites into four groups that were impacted by either diffuse pollution or hydromorphological alteration, by both stressors, or by neither one. Macroinvertebrate richness was reduced by diffuse pollution, whereas other biological groups were unaltered. Hydromorphological modification had no effect on taxon richness of any of the assemblages. Community structure of all groups was significantly affected by diffuse pollution but not by hydromorphology. Similarly, EQRs indicated negative response by diatoms, macroinvertebrates and fish to diffuse pollution, but not to hydromorphological alteration. Agricultural diffuse pollution thus affected species identities and abundances rather than taxonomic richness. Our results suggest that channelization of boreal streams for timber transport has not altered hydromorphological conditions sufficiently to have a strong impact on stream biota, whereas even moderate nutrient enrichment may be ecologically harmful. Controlling diffuse pollution and associated land use stressors should be prioritized over restoration of in-stream habitat structure to improve the ecological condition of boreal streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A catchment scale evaluation of multiple stressor effects in headwater streams.

    PubMed

    Rasmussen, Jes J; McKnight, Ursula S; Loinaz, Maria C; Thomsen, Nanna I; Olsson, Mikael E; Bjerg, Poul L; Binning, Philip J; Kronvang, Brian

    2013-01-01

    Mitigation activities to improve water quality and quantity in streams as well as stream management and restoration efforts are conducted in the European Union aiming to improve the chemical, physical and ecological status of streams. Headwater streams are often characterised by impairment of hydromorphological, chemical, and ecological conditions due to multiple anthropogenic impacts. However, they are generally disregarded as water bodies for mitigation activities in the European Water Framework Directive despite their importance for supporting a higher ecological quality in higher order streams. We studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchment scale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological quality in these streams. The SPEcies At Risk (SPEAR) index explained most of the variability in the macroinvertebrate community structure, and notably, SPEAR index scores were often very low (<10% SPEAR abundance). An extensive re-sampling of a subset of the streams provided evidence that especially insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in future management and mitigation plans. Catchment-based management is necessary because several anthropogenic stressors exceeded problematic thresholds, suggesting that more holistic approaches should be preferred. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Development of diatom indicators of ecological conditons for streams of the western US

    EPA Science Inventory

    The species composition of benthic diatoms was related to environmental conditions in streams throughout the western US to develop diatom traits, indicators for assessment of biological condition and indicators for diagnosing stressors. We hypothesized that indicators based on s...

  8. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration.

    PubMed

    Parkyn, Stephanie M; Smith, Brian J

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  9. Dispersal Constraints for Stream Invertebrates: Setting Realistic Timescales for Biodiversity Restoration

    NASA Astrophysics Data System (ADS)

    Parkyn, Stephanie M.; Smith, Brian J.

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  10. Ecological Assessment of Wadeable Streams on O`ahu, Hawai'i, 2006-2007: A Pilot Study

    USGS Publications Warehouse

    Wolff, Reuben H.; Koch, Linda A.

    2009-01-01

    In 2006-07, the U.S. Geological Survey (USGS) Pacific Islands Water Science Center (PIWSC), in cooperation with the Hawai'i Department of Health (HDOH), conducted a pilot study as a participant in the U.S. Environmental Protection Agency's (USEPA) Wadeable Streams Assessment (WSA) program. Forty randomly selected sites on perennial streams on O'ahu, Hawai'i, were surveyed for habitat characteristics, water chemistry, and benthic macroinvertebrate assemblages. Of the original sampling frame of approximately 505.2 miles of perennial stream, roughly 96.7 +or- 30.7 miles were found to be nonperennial or estuarine and another 200.5 +or- 64.7 miles were judged to be inaccessible. The scope of this report presents an assessment of the remaining 208 +or- 57.6 miles of accessible, wadeable, perennial stream length on O'ahu. Benthic macroinvertebrate assemblages were used to determine the ecological condition at each site. Components of the benthic macroinvertebrate assemblages were assessed using the multimetric Preliminary-Hawaiian Benthic Index of Biotic Integrity (P-HBIBI) developed by Wolff (2005). Based on the P-HBIBI scores, an estimated 5.8 +or- 5.8 percent of the island's total stream length is in most disturbed condition, 56 +or- 13.5 percent is in intermediately disturbed condition, and 38.2 +or- 13.2 percent is in least disturbed condition. Windward O'ahu had the highest percentage of stream length in least disturbed biological condition at 56.7 +or- 20.8 percent. Using the relative abundance of insects, one of the core metrics that make up the P-HBIBI, 43.4 +or- 14.2 percent of the islandwide stream length was classified in the most disturbed condition - 52 +or- 31.2 percent of the Honolulu region stream length and 51.4 +or- 23.3 percent of the windward O'ahu stream length. An analysis of total nitrogen (N) estimated approximately 41.1 +or- 13.7 percent of the stream length on O'ahu was in most disturbed condition. Regionally, the Honolulu region had the largest proportion, 61.3 +or- 28.6 percent, of most disturbed stream length in terms of total N. An analysis of total phosphorus (P) classified approximately 43.2 +or- 14 percent of the stream length on O'ahu as most disturbed. Regionally, windward O'ahu had the largest proportion, 78.4 +or- 19.5 percent, of stream length classified as most disturbed. An analysis of embeddedness classified 30.3 +or- 14.7 percent of O'ahu's stream length as most. Regionally, windward O'ahu had the largest proportion, 43.3 +or- 17.1 percent, of stream length classified as most disturbed as compared to the reference condition. An analysis of riparian disturbance, an index of the in-channel, riparian, and near-stream human activities, classified 43 +or- 13 percent of stream length on O'ahu as most disturbed. The Honolulu region had the largest proportion of stream length, 86.3 +or- 13.7 percent, classified as most disturbed. The information in this report is the first attempt in Hawai'i to assess the islandwide ecological condition of wadeable, perennial streams on O'ahu using the USEPA WSA probabilistic design. This study has demonstrated that such an assessment is practical and that it can provide information that may help the USEPA and HDOH in determining the status of aquatic ecosystems on O'ahu, Hawai'i. This study provides a baseline assessment of the current islandwide ecological condition and identifies potential environmental stressors. It can be used, with future WSA studies in Hawai'i, to measure the changes in those conditions and the effectiveness of management efforts to protect, restore, and maintain Hawai'i's aquatic environment.

  11. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management.

    PubMed

    Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R

    2016-05-01

    Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. A NATIONAL PROGRAM FOR MONITORING STREAM CONDITION IN THE WESTERN UNITED STATES

    EPA Science Inventory


    The U.S. Environmental Protection Agency recently initiated a four-year survey of streams in the Western United States as a component of the Environmental Monitoring and Assessment Program (EMAP). EMAP is developing indicators to monitor and assess the condition of ecological...

  13. Landscape characteristics affecting streams in urbanizing regions of the Delaware River Basin (New Jersey, New York, and Pennsylvania, U.S.)

    USGS Publications Warehouse

    Riva-Murray, K.; Riemann, R.; Murdoch, P.; Fischer, J.M.; Brightbill, R.

    2010-01-01

    Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In this study we investigate those specific landscape metrics which are functionally linked to indicators of stream ecological condition, and in particular, identify those characteristics that exacerbate or mitigate changes in ecological condition over and above impervious surface. The approach used addresses challenges associated with redundancy of landscape metrics, and links landscape pattern and composition to an indicator of stream ecological condition across a broad area of the eastern United States. Macroinvertebrate samples were collected during 2000-2001 from forty-two sites in the Delaware River Basin, and landscape data of high spatial and thematic resolution were obtained from photointerpretation of 1999 imagery. An ordination-derived 'biotic score' was positively correlated with assemblage tolerance, and with urban-related chemical characteristics such as chloride concentration and an index of potential pesticide toxicity. Impervious surface explained 56% of the variation in biotic score, but the variation explained increased to as high as 83% with the incorporation of a second land use, cover, or configuration metric at catchment or riparian scales. These include land use class-specific cover metrics such as percent of urban land with tree cover, forest fragmentation metrics such as aggregation index, riparian metrics such as percent tree cover, and metrics related to urban aggregation. Study results indicate that these metrics will be important to monitor in urbanizing areas in addition to impervious surface. ?? 2010 US Government.

  14. PARAMETRIC DISTANCE WEIGHTING OF LANDSCAPE INFLUENCE ON STREAMS

    EPA Science Inventory

    We present a parametric model for estimating the areas within watersheds whose land use best predicts indicators of stream ecological condition. We regress a stream response variable on the distance-weighted proportion of watershed area that has a specific land use, such as agric...

  15. National River and Stream Assessment Monitoring Design

    EPA Science Inventory

    The USEPA designed the National River and Stream Assessment (NRSA) in 2007 and field sampling was completed in 2008-9. The objective of the assessment is to estimate the ecological condition of river and streams nationally. This paper describes the national survey design and re...

  16. River restoration and biocoenoses improvement in two streams renaturated using bioengeneering.

    NASA Astrophysics Data System (ADS)

    Leoni, B.; Forasacco, E.; Dobner, R.; Cotta Ramusino, M.

    2003-04-01

    The Bioengineering is a constructive discipline having its own technical, ecological and environmental friendly scopes, by using living materials. The aim of this study is to assess the river restoration efficiency of Bioengineering. The basic goals of many management-concepts are the integrity of the river habitat, self-regulation and self-regeneration, the preservation of intact resources, to recreate the uniqueness, diversity and beauty of natural river landscape. From an ecological point of view the richness, diversity and age composition of the populations developing after restoration as a result of habitat improvement reveal the degree to which comprehensive concepts were applied (Jungwirth et al., 1995). The following results summarised an investigation on streams Boesio and Rancina in Valcuvia, (Varese, Northern Italy). These streams are characterised by human impacts like water pollution, river engineering and river bioengineering (palificata doppia viva). The samples of macrobenthic fauna were collected between August 2000 and July 2001 in 4 stations for each stream, where the 3rd station of Boesio and Rancina streams is characterised by bioengeneering measure, using a Surber sampler (0.125 m2, mesh size 0.45 mm). The zoobenthic communities of these pre-alpine streams are characterised by low richness and diversity and few families and genera were predominant. In Rancina stream, Ephemeroptera (genus Baetis), Trichoptera (families Hydropsychidae, Limnephilidae and Rhyacophilidae) and Diptera (families Chironomidae and Simuliidae) are present throughout the year with significant densities. The faunal composition of Boesio stream is similar. It differs, only, from stream Rancina to costant presence of Plecoptera with genus Leuctra. To evaluate the restoration of environmental quality two indices were applied: Indice Biotico Esteso (I.B.E.- Ghetti, 1995); Indice di Funzionalità Fluviale (I.F.F.- Siligardi, 2000). The E.B.I. scores of Boesio stream indicate that stations 1 and 2 are in good condition (Ecological status classification: II): therefore the level of diversity and abundance of macrobenthic taxa is slightly outside the range associated with the normal conditions and the most of the sensitive taxa of the type specific communities are present. The stations 3 and 4 are in moderate condition (Ecological status classification: III): the level of diversity and abundance of invertebrate taxa is moderately outside the normal condition range, the taxa indicative of pollution are present and many of the sensitive taxa of the type specific communities are absent. In the Rancina stream in all of the 4 stations the ecological status is indicated like moderate (Ecological status classification: III): there is a predominance of taxa more resistant at pollution and at changes in other biological components of the stream. The I.F.F. show that in Boesio stream the right shore score is moderate-good and the left shore score is moderate-poor. Differently, the Rancina stream presents the right shore with a value poor and the left shore with a wide gradient between good and poor-bad. In conclusion, we can affirm the low efficiency of Bioengineering to restore the Boesio and Rancina streams, because we cannot observe the habitat and aquatic biocoenoses improvement. An explication could be that the conversions are restricted to morphological measures, which are carried out on a small way of banks. Whereas, the restoration using the Bioengineering requires taking the entire catchment area into consideration.

  17. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness

    EPA Science Inventory

    Most studies dealing with the use of ecological indicators and other applied ecological research relies on some definition or concept of what constitutes least-, intermediate- and most-disturbed condition. Currently, most rigorous methodologies designed to define those conditions...

  18. Establishment of stream nutrient criteria by comparing reference conditions with ecological thresholds in a typical eutrophic lake basin.

    PubMed

    Cao, Xiaofeng; Wang, Jie; Jiang, Dalin; Sun, Jinhua; Huang, Yi; Luan, Shengji

    2017-12-13

    The establishment of numeric nutrient criteria is essential to aid the control of nutrient pollution and for protecting and restoring healthy ecological conditions. However, it's necessary to determine whether regional nutrient criteria can be defined in stream ecosystems with a poor ecological status. A database of periphytic diatom samples was collected in July and August 2011 and 2012. In total 172 samples were included in the database with matching environmental variables. Here, percentile estimates, nonparametric change-point analysis (nCPA) and Threshold Indicator Taxa ANalysis (TITAN) were conducted to detect the reference conditions and ecological thresholds along a total nitrogen (TN) and total phosphorus (TP) gradient and ammonia nitrogen (NH 3 -N) for the development of nutrient criteria in the streams of the Lake Dianchi basin. The results highlighted the possibility of establishing regional criteria for nutrient concentrations, which we recommended to be no more than 1.39 mg L -1 for TN, 0.04 mg L -1 for TP and 0.17 mg L -1 for NH 3 -N to prevent nuisance growths of tolerant taxa, and 0.38 mg L -1 for TN, 0.02 mg L -1 for TP and 0.02 mg L -1 for NH 3 -N to maintain high quality waters in streams. Additionally, the influence of excessive background nutrient enrichment on the threshold response, and the ecological interaction with other stressors (HQI, etc.) in the nutrient dynamic process need to be considered to establish the eventual nutrient criteria, regardless of which technique is applied.

  19. EFFECTS OF STREAM RESTORATION ON GROUND WATER NITRATE AT MINEBANK RUN, AN URBAN STREAM IN THE CHESAPEAKE BAY WATERSHED

    EPA Science Inventory

    Elevated nitrate levels in streams and ground water pose human and ecological threats. Microbial denitrification removes nitrate from ground water but requires anaerobic (saturated) conditions and adequate supply of dissolved organic carbon from detritus and organic soils. Con...

  20. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota

    NASA Astrophysics Data System (ADS)

    Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; De Girolamo, A. M.; Lo Porto, A.; Buffagni, A.; Erba, S.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Skoulikidis, N.; Gómez, R.; Sánchez-Montoya, M. M.; Froebrich, J.

    2012-09-01

    Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.

  1. Biological and physical conditions of macroinvertebrates in reference lowland streams

    NASA Astrophysics Data System (ADS)

    de Brouwer, Jan; Eekhout, Joris; Verdonschot, Piet

    2016-04-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Currently, stream restoration measures are being implemented in these degraded lowland streams, where design principles are often based on outdated relationships between biological and physical conditions. Little is known about the reference conditions in these streams. Therefore, the aim of this research is to quantify the relationships between biological and physical conditions of macroinvertebrates in reference lowland streams. The research was conducted in four near-natural lowland streams in Central Poland. Field data were obtained during a field campaign in 2011. The following data were obtained in a 50-m reach in each of the four streams: macroinvertebrate sampling, spatial habitat patterns, bathymetry, and flow-velocity. Furthermore, water level, light sensitivity and temperature sensors were installed to obtain the temporal dynamic of these streams. Macroinvertebrates were sampled in 9 different habitat types, i.e. sand, gravel, fine organic matter, stones, branches, leaves, silt, vegetation, and wood. Macroinvertebrates were determined to the highest taxonomic level possible. Data from the bathymetrical surveys were interpolated on a grid and bathymetrical metrics were determined. Flow velocity measurements were related to habitats and flow velocity metrics were determined. Analysis of the data shows that flow conditions vary among the different habitat, with a gradient from hard substrates towards soft substrates. Furthermore, the data show that stream as a unit best explains species composition, but also specific habitat conditions, such as substrate type and flow velocity, correlate with species composition. More specific, the data shows a strong effect of wood on species composition. These findings may have implications for stream restoration design, which mainly focus on large-scale reconstruction of channel planform, whereas this study shows that improvement of stream ecology should focus on the smaller habitat scale.

  2. The Stream-Catchment (StreamCat) and Lake-Catchment (LakeCat) Datasets: leveraging existing geospatial frameworks and data to characterize lotic and lentic ecosystems across the conterminous US for ecological and environmental modeling

    EPA Science Inventory

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditi...

  3. Judging a brook by its cover: The relation between ecological condition of a stream and urban land cover in new England

    USGS Publications Warehouse

    Coles, J.F.; Cuffney, T.F.; McMahon, G.; Rosiu, C.J.

    2010-01-01

    The US Geological Survey conducted an urban land-use study in the New England Coastal Basins (NECB) area during 2001 to determine how urbanization relates to changes in the ecological condition of streams. Thirty sites were selected that differed in their level of watershed development (low to high). An urban intensity value was calculated for each site from 24 landscape variables. Together, these 30 values reppresented a gradient of urban intensity. Among various biological, chemical, and physical factors surveyed at each site, benthic invertebrate assemblages were sampled from stream riffles and also from multiple habitats along the length of the sampling reach. We use some of the NECB data to derive a four-variable urbanintensity index (NECB-UII), where each variable represents a distinct component of urbanization: increasing human presence, expanding infrastructure, landscape development, and riparian vegetation loss. Using the NECB-UII as a characterization of urbanization, we describe how landscape fragmentation occurs with urbanization and how changes in the invertebrate assemblages, represented by metrics of ecological condition, are related to urbanization. Metrics with a strong linear response included EPT taxa richness, percentage richness of non-insect taxa, and pollution-tolerance values. Additionally, we describe how these relations can help in estimating the expected condition of a stream for its level of urbanization, thereby establishing a baseline for evaluating possible affects from specific point-source stressors.

  4. Ecological Status of Wyoming Streams, 2000-2003

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Wright, Peter R.; Zumberge, Jeremy R.

    2007-01-01

    The ecological status of perennial streams in Wyoming was determined and compared with the status of perennial streams throughout 12 States in the western United States, using data collected as part of the Western Pilot Environmental Monitoring and Assessment Program (EMAP-West). Results for Wyoming are compared and contrasted in the context of the entire EMAP-West study area (west-wide) and climatic regions (based on aggregated ecoregions) within Wyoming. In Wyoming, ecological status, estimated as the proportion of the perennial stream length in least disturbed, most disturbed, and intermediate disturbance condition, based on ecological indicators of vertebrate and invertebrate assemblages was similar, in many cases, to the status of those assemblages determined for EMAP-West. Ecological status based on chemical and physical habitat stressors also was similar in Wyoming to west-wide proportions in many cases. Riparian disturbance was one of the most common physical stressors west-wide and in Wyoming. The estimates of riparian disturbance indicated about 90 percent of the stream length in the xeric climatic region in Wyoming was rated most disturbed, compared to about 30 percent rated most disturbed in the mountain climatic region in Wyoming. Results from analyses using a macroinvertebrate multi-metric index (MMI) and macroinvertebrate ratio of observed to expected taxa (O/E) developed specifically for the west-wide EMAP study were compared to results using a macroinvertebrate MMI and O/E developed for Wyoming. Proportions of perennial stream length in various condition categories determined from macroinvertebrate MMIs often were similar in Wyoming to proportions observed west-wide. Differences were larger, but not extreme, between west-wide and Wyoming O/E models. An aquatic life use support decision matrix developed for interpreting the Wyoming MMI and O/E model data indicated about one-half of the stream length statewide achieves the State's narrative aquatic life use criteria, and the remainder of the stream length either exceeds the criteria, indicating partial or non-support of aquatic life Wyominguses, or is undetermined. These results provide initial estimates of aquatic life use support at a statewide basis as required for 305(b) reporting, and coupled with current and future State-level probability survey designs, a foundation for tracking conditions over time at multiple scales.

  5. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    PubMed

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  6. Regional assessments of stream ecological condition: Scientific challenges associated with the USA's national Wadeable Stream Assessment

    EPA Science Inventory

    In this special issue of J-NABS, we have compiled a series of papers that describe some of the major scientific challenges that were encountered during the national Wadeable Streams Assessment (WSA) and some of the lessons learned subsequent to the assessment. Our goal in produc...

  7. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and healthmore » of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing the health and condition of individual fish based on dissection and internal examination. It helped to determine whether contaminant concentrations were high enough to adversely affect the health of individual fish. The benthic macroinvertebrate multimetric index (HDMI), used in 1997 to 2000, is a method for assessing stream health based on macroinvertebrate data collected with Hester-Dendy artificial substrates. In 2003 it was replaced with the Multiple Habitat Sampling protocol, a SCDHEC method for collecting and analyzing benthic macroinvertebrate data from natural substrate. These two macroinvertebrate based methods were used in conjunction with the fish based IBI to provide a more comprehensive assessment of ecological conditions. Lastly, habitat data were collected from each stream to assist in determining whether ecological integrity was compromised by physical factors (e.g., erosion) or chemical factors (e.g., discharge of toxic materials). Fish from many SRS streams exhibited evidence of contamination as a result of current or former SRS operations. The most prevalent radiological contaminants were cesium-137 (highest in fish from Lower Three Runs followed by Steel Creek and Fourmile Branch), tritium (highest in fish from Fourmile Branch followed by Pen Branch, and the Savannah River swamp), and strontium (highest in fish from Fourmile Branch followed by Pen Branch). Radiological contaminants were also found in fish collected from the Savannah River near the mouths of contaminated SRS streams; however, contaminant levels were substantially lower than in fish from the streams themselves. Mercury levels were moderately elevated in fish from some streams, particularly Lower Three Runs, and in fish from the Savannah River. Despite the occurrence of contaminants, most SRS streams exhibited comparatively high biotic integrity (based on IBI, HDMI, and MHSP scores) and minimal levels of pathology among individual fish (e.g., presence of tumors or extreme thinness), indicating that contaminant levels were generally insufficient to cause significant ecological degradation.« less

  8. USING delta15N OF CHIRONOMIDAE TO HELP ASSESS CONDITION AND STRESSORS IN LAKES, RIVERS AND STREAMS OF THE UNITED STATES.

    EPA Science Inventory

    To assess large-scale ecological conditions efficiently, indicators that can be collected quickly at many sites need to be developed. We explore the utility of delta 15N from basal food chain organisms to provide information on N loading and processing in lakes, rivers and stream...

  9. Development and Demonstration of an Aerial Imagery Assessment Method to Monitor Changes in Restored Stream Condition

    NASA Astrophysics Data System (ADS)

    Fong, L. S.; Ambrose, R. F.

    2017-12-01

    Remote sensing is an excellent way to assess the changing condition of streams and wetlands. Several studies have measured large-scale changes in riparian condition indicators, but few have remotely applied multi-metric assessments on a finer scale to measure changes, such as those caused by restoration, in the condition of small riparian areas. We developed an aerial imagery assessment method (AIAM) that combines landscape, hydrology, and vegetation observations into one index describing overall ecological condition of non-confined streams. Verification of AIAM demonstrated that sites in good condition (as assessed on-site by the California Rapid Assessment Method) received high AIAM scores. (AIAM was not verified with poor condition sites.) Spearman rank correlation tests comparing AIAM and the field-based California Rapid Assessment Method (CRAM) results revealed that some components of the two methods were highly correlated. The application of AIAM is illustrated with time-series restoration trajectories of three southern California stream restoration projects aged 15 to 21 years. The trajectories indicate that the projects improved in condition in years following their restoration, with vegetation showing the most dynamic change over time. AIAM restoration trajectories also overlapped to different degrees with CRAM chronosequence restoration performance curves that demonstrate the hypothetical development of high-performing projects. AIAM has high potential as a remote ecological assessment method and effective tool to determine restoration trajectories. Ultimately, this tool could be used to further improve stream and wetland restoration management.

  10. Multistressor predictive models of invertebrate condition in the Corn Belt, USA

    USGS Publications Warehouse

    Waite, Ian R.; Van Metre, Peter C.

    2017-01-01

    Understanding the complex relations between multiple environmental stressors and ecological conditions in streams can help guide resource-management decisions. During 14 weeks in spring/summer 2013, personnel from the US Geological Survey and the US Environmental Protection Agency sampled 98 wadeable streams across the Midwest Corn Belt region of the USA for water and sediment quality, physical and habitat characteristics, and ecological communities. We used these data to develop independent predictive disturbance models for 3 macroinvertebrate metrics and a multimetric index. We developed the models based on boosted regression trees (BRT) for 3 stressor categories, land use/land cover (geographic information system [GIS]), all in-stream stressors combined (nutrients, habitat, and contaminants), and for GIS plus in-stream stressors. The GIS plus in-stream stressor models had the best overall performance with an average cross-validation R2 across all models of 0.41. The models were generally consistent in the explanatory variables selected within each stressor group across the 4 invertebrate metrics modeled. Variables related to riparian condition, substrate size or embeddedness, velocity and channel shape, nutrients (primarily NH3), and contaminants (pyrethroid degradates) were important descriptors of the invertebrate metrics. Models based on all measured in-stream stressors performed comparably to models based on GIS landscape variables, suggesting that the in-stream stressor characterization reasonably represents the dominant factors affecting invertebrate communities and that GIS variables are acting as surrogates for in-stream stressors that directly affect in-stream biota.

  11. Design and methods of the Midwest Stream Quality Assessment (MSQA), 2013

    USGS Publications Warehouse

    Garrett, Jessica D.; Frey, Jeffrey W.; Van Metre, Peter C.; Journey, Celeste A.; Nakagaki, Naomi; Button, Daniel T.; Nowell, Lisa H.

    2017-10-18

    During 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Project (NAWQA), in collaboration with the USGS Columbia Environmental Research Center, the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA), and the EPA Office of Pesticide Programs assessed stream quality across the Midwestern United States. This Midwest Stream Quality Assessment (MSQA) simultaneously characterized watershed and stream-reach water-quality stressors along with instream biological conditions, to better understand regional stressor-effects relations. The MSQA design focused on effects from the widespread agriculture in the region and urban development because of their importance as ecological stressors of particular concern to Midwest region resource managers.A combined random stratified selection and a targeted selection based on land-use data were used to identify and select sites representing gradients in agricultural intensity across the region. During a 14-week period from May through August 2013, 100 sites were selected and sampled 12 times for contaminants, nutrients, and sediment. This 14-week water-quality “index” period culminated with an ecological survey of habitat, periphyton, benthic macroinvertebrates, and fish at all sites. Sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing. Of the 100 sites, 50 were selected for the MSQA random stratified group from 154 NRSA sites planned for the region, and the other 50 MSQA sites were selected as targeted sites to more evenly cover agricultural and urban stressor gradients in the study area. Of the 50 targeted sites, 12 were in urbanized watersheds and 21 represented “good” biological conditions or “least disturbed” conditions. The remaining 17 targeted sites were selected to improve coverage of the agricultural intensity gradient or because of historical data collection to provide temporal context for the study.This report provides a detailed description of the MSQA study components, including surveys of ecological conditions, routine water sampling, deployment of passive polar organic compound integrative samplers, and stream sediment sampling at all sites. Component studies that were completed to provide finer scale temporal data or more extensive analysis at selected sites, included continuous water-quality monitoring, daily pesticide sampling, laboratory and in-stream water toxicity testing efforts, and deployment of passive suspended-sediment samplers.

  12. Landscape characteristics affecting streams in urbanizing regions of the Delaware River Basin (New Jersey, New York, and Pennsylvania, U.S.)

    Treesearch

    Karen Riva-Murray; Rachel Riemann; Peter Murdoch; Jeffrey M. Fischer; Robin. Brightbill

    2010-01-01

    Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In...

  13. Ecological condition of the East Fork of the Gila River and selected tributaries: Gila National Forest, New Mexico

    Treesearch

    Robert D. Ohmart

    1996-01-01

    Ecological condition of riparian habitats along the East Fork of the Gila River, Main Diamond Creek, lower South Diamond Creek, and Black Canyon Creek are all in very heavily degraded condition. Channel cross-sections show extensive entrenchment, high width-to-depth ratios, and numerous reaches where banks are sloughing into the stream, especially on the East Fork of...

  14. USING TWO-DIMENSIONAL HYDRODYNAMIC MODELS AT SCALES OF ECOLOGICAL IMPORTANCE. (R825760)

    EPA Science Inventory

    Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modelin...

  15. Environmental controls of wood entrapment in upper Midwestern streams

    USGS Publications Warehouse

    Merten, Eric C.; Finlay, Jacques; Johnson, Lucinda; Newman, Raymond; Stefan, Heinz; Vondracek, Bruce C.

    2011-01-01

    Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre-existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions.

  16. DEVELOPMENT OF A STREAM BENTHOS INTEGRITY INDEX (SBII) FOR THE MID-ATLANTIC HIGHLANDS REGION

    EPA Science Inventory

    A multimetric index using benthic macroinvertebrates was developed to evaluate the biological condition of wadeable streams in the MAHA region. Ecological concepts and biodiversity of macroinvertebrates were used to develop the SBII, and then a statistical approach was used to va...

  17. FIELD OPERATIONS AND METHODS FOR MEASURING THE ECOLOGICAL CONDITION OF WADEABLE STREAMS

    EPA Science Inventory

    The methods and instructions for field operations presented in this manual for surveys of wadeable streams were developed and tested during 5 years of pilot and demonstration projects (1993 through 1997). These projects were conducted under the sponsorship of the U.S. Environment...

  18. A novel approach for the development of tiered use biological criteria for rivers and streams in an ecologically diverse landscape.

    PubMed

    Bouchard, R William; Niemela, Scott; Genet, John A; Yoder, Chris O; Sandberg, John; Chirhart, Joel W; Feist, Mike; Lundeen, Benjamin; Helwig, Dan

    2016-03-01

    Water resource protection goals for aquatic life are often general and can result in under protection of some high quality water bodies and unattainable expectations for other water bodies. More refined aquatic life goals known as tiered aquatic life uses (TALUs) provide a framework to designate uses by setting protective goals for high quality water bodies and establishing attainable goals for water bodies altered by legally authorized legacy activities (e.g., channelization). Development of biological criteria or biocriteria typically requires identification of a set of least- or minimally-impacted reference sites that are used to establish a baseline from which goals are derived. Under a more refined system of stream types and aquatic life use goals, an adequate set of reference sites is needed to account for the natural variability of aquatic communities (e.g., landscape differences, thermal regime, and stream size). To develop sufficient datasets, Minnesota employed a reference condition approach in combination with an approach based on characterizing a stream's response to anthropogenic disturbance through development of a Biological Condition Gradient (BCG). These two approaches allowed for the creation of ecologically meaningful and consistent biocriteria within a more refined stream typology and solved issues related to small sample sizes and poor representation of minimally- or least-disturbed conditions for some stream types. Implementation of TALU biocriteria for Minnesota streams and rivers will result in consistent and protective goals that address fundamental differences among waters in terms of their potential for restoration.

  19. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America

    Treesearch

    Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty

    2013-01-01

    1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year.2. To more...

  20. Twenty-five years of ecological recovery of East Fork Poplar Creek: review of environmental problems and remedial actions.

    PubMed

    Loar, James M; Stewart, Arthur J; Smith, John G

    2011-06-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  1. Twenty-Five Years of Ecological Recovery of East Fork Poplar Creek: Review of Environmental Problems and Remedial Actions

    NASA Astrophysics Data System (ADS)

    Loar, James M.; Stewart, Arthur J.; Smith, John G.

    2011-06-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  2. An Overview of Stream Ecological Responses to Urban Effects and Management Practices in New England

    EPA Science Inventory

    Many recent studies have found large changes in ecological conditions related to small increases in watershed development. Future development and restoration practices will benefit from better documenting the effectiveness of management practices. We present (1) a brief summary o...

  3. Novel Insights Linking Ecological Health to Biogeochemical Hotspots across the Groundwater-Surface Water Interface in Mixed Land Use Stream Systems

    NASA Astrophysics Data System (ADS)

    McKnight, U. S.; Sonne, A. T.; Rasmussen, J. J.; Rønde, V.; Traunspurger, W.; Höss, S.; Bjerg, P. L.

    2017-12-01

    Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead to critical underestimations of the combined impact caused by interactions occurring between stressors not typically evaluated together, e.g. xenobiotic groundwater pollutants and trace metals. To address this issue, we identified sources and levels of chemical stressors along a 16-km groundwater-fed stream corridor (Grindsted, Denmark), representative for a mixed land use stream system. Potential pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas. Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities.The stream was substantially impaired by both geogenic and anthropogenic sources of metals throughout the investigated corridor, with concentrations close to or above threshold values for barium, copper, lead, nickel and zinc in the stream water, hyporheic zone and streambed sediment. The groundwater plume from the factory site caused elevated concentrations of chlorinated ethenes, benzene and pharmaceuticals in both the hyporheic zone and stream, persisting for several km downstream. Impaired ecological conditions, represented by a lower abundance of meiobenthic individuals, were found in zones where the groundwater plume discharges to the stream. The effect was only pronounced in areas characterized by high xenobiotic organic concentrations and elevated dissolved iron and arsenic levels - linked to the dissolution of iron hydroxides caused by the degradation of xenobiotic compounds in the plume. The results thus provide ecological evidence for the interaction of organic and inorganic chemical stressors, which may provide a missing link enabling the reconnection of chemical and ecological findings. This study highlights the importance of stream-aquifer interfaces for ecosystem functioning in terms of biological habitat, and that multiple stressor systems need to be tackled from a holistic perspective.

  4. Linking urbanization to the Biological Condition Gradient (BCG) for stream ecosystems in the Northeastern United States using a Bayesian network approach

    USGS Publications Warehouse

    Kashuba, Roxolana; McMahon, Gerard; Cuffney, Thomas F.; Qian, Song; Reckhow, Kenneth; Gerritsen, Jeroen; Davies, Susan

    2012-01-01

    In realization of the aforementioned advantages, a Bayesian network model was constructed to characterize the effect of urban development on aquatic macroinvertebrate stream communities through three simultaneous, interacting ecological pathways affecting stream hydrology, habitat, and water quality across watersheds in the Northeastern United States. This model incorporates both empirical data and expert knowledge to calculate the probabilities of attaining desired aquatic ecosystem conditions under different urban stress levels, environmental conditions, and management options. Ecosystem conditions are characterized in terms of standardized Biological Condition Gradient (BCG) management endpoints. This approach to evaluating urban development-induced perturbations in watersheds integrates statistical and mechanistic perspectives, different information sources, and several ecological processes into a comprehensive description of the system that can be used to support decision making. The completed model can be used to infer which management actions would lead to the highest likelihood of desired BCG tier achievement. For example, if best management practices (BMP) were implemented in a highly urbanized watershed to reduce flashiness to medium levels and specific conductance to low levels, the stream would have a 70-percent chance of achieving BCG Tier 3 or better, relative to a 24-percent achievement likelihood for unmanaged high urban land cover. Results are reported probabilistically to account for modeling uncertainty that is inherent in sources such as natural variability and model simplification error.

  5. An Integrated Ecological Modeling System for Assessing Impacts of Multiple Stressors on Stream and Riverine Ecosystem Services Within River Basins

    EPA Science Inventory

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat ...

  6. Hydrological, water-quality, and ecological data for streams in Independence, Missouri, June 2005 through September 2013

    USGS Publications Warehouse

    Niesen, Shelley L.; Christensen, Eric D.

    2015-01-01

    Water-quality, hydrological, and ecological data collected from June 2005 through September 2013 from the Little Blue River and smaller streams within the City of Independence, Missouri, are presented in this report. These data were collected as a part of an ongoing cooperative study between the U.S. Geological Survey and the City of Independence Water Pollution Control Department to characterize the water quality and ecological condition of Independence streams. The quantities, sources of selected constituents, and processes affecting water quality and aquatic life were evaluated to determine the resulting ecological condition of streams within Independence. Data collected for this study fulfill the municipal separate sewer system permit requirements for the City of Independence and can be used to provide a baseline with which city managers can determine the effectiveness of current (2014) and future best management practices within Independence. Continuous streamflow and water-quality data, collected during base flow and stormflow, included physical and chemical properties, inorganic constituents, common organic micro-constituents, pesticides in streambed sediment and surface water, fecal indicator bacteria and microbial source tracking data, and suspended sediment. Dissolved oxygen, pH, specific conductance, water temperature, and turbidity data were measured continuously at seven sites within Independence. Base-flow and stormflow samples were collected at eight gaged and two ungaged sites. Fecal sources samples were collected for reference for microbial source tracking, and sewage influent samples were collected as additional source samples. Dry-weather screening was done on 11 basins within Independence to identify potential contaminant sources to the streams. Benthic macroinvertebrate community surveys and habitat assessments were done on 10 stream sites and 2 comparison sites outside the city. Sampling and laboratory procedures and quality-assurance and quality-control methods used in data collection for this study are described in this report.

  7. Stream salamanders as indicators of stream quality in Maryland, USA

    USGS Publications Warehouse

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain regions comprised four metrics: number of species, number of salamanders, number of intolerant salamanders, and number of adult salamanders, producing classification efficiencies between 87% and 90%. Partial validation of these indices was obtained when a test of the number of salamanders metric produced an 82% correct classification of 618 MBSS sites surveyed in 1995-97. This study supports the use of stream salamander monitoring and a composite stream salamander index of biotic integrity (SS-IBI) to determine stream quality in Maryland.

  8. Influence of geomorphology on fish fauna of a small Mississippi bluffline stream

    USDA-ARS?s Scientific Manuscript database

    Fish were collected from 39 sites on the main channel and major tributaries of a highly erosive stream, Hotophia Creek, which cuts through the loess hills of northern Mississippi. Collections were part of a study to document ecological and environmental conditions of the creek before and during con...

  9. Comparison of Traditional and Modeled Fish Multimetric Indices for Rivers and Streams in the Western U.S.

    EPA Science Inventory

    The development of multimetric indices (MMIs) for use in assessing the ecological condition of rivers and streams has advanced in recent years with the use of various types of modeling approaches to factor out the influence of natural variability and improve performance. New mod...

  10. PREDICTING PRESENCE OF NUTRIENTS AND PESTICIDES IN BASE FLOW CONDITIONS OF FIRST ORDER STREAMS IN THE MID-ATLANTIC COASTAL PLAIN

    EPA Science Inventory

    Excess nutrients and pesticides in the environment can cause a variety of ecological and human-health effects. When nutrients are unused by plants, or pesticides remain after use on their intended target, these compounds can be transported to streams, either directly through over...

  11. FIELD OPERATIONS AND METHODS FOR MEASURING THE ECOLOGICAL CONDITION OF NON-WADEABLE RIVERS AND STREAMS

    EPA Science Inventory

    The methods and instructions for field operations presented in this manual for surveys of non-wadeable streams and rivers were developed and tested based on 55 sample sites in the Mid-Atlantic region and 53 sites in an Oregon study during two years of pilot and demonstration proj...

  12. Fish Assemblage Indicators for the National Rivers and Streams Assessment: Performance of model-based vs. traditionally constructed multimetric indices

    EPA Science Inventory

    The development of multimetric indices (MMIs) for use in assessing the ecological condition of rivers and streams has advanced in recent years with the use of various types of modeling approaches to factor out the influence of natural variability and improve the performance. Ass...

  13. The cascade construction of artificial ponds as a tool for urban stream restoration - The use of benthic diatoms to assess the effects of restoration practices.

    PubMed

    Żelazna-Wieczorek, Joanna; Nowicka-Krawczyk, Paulina

    2015-12-15

    A series of cascade artificial ponds were constructed to improve the ecological status of the stream. To evaluate the effects of restoration practices, a bioassessment, based on phytobenthic algae - the diatoms, was made. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) of diatom assemblages allowed for evaluating the influence of a series of cascade artificial ponds on stream integrity. To reveal which environmental factors had the greatest influence on shaping diatom assemblages, the BIO-ENV procedure was used, and in order to examine whether these factors had equal influence on diatoms along the stream, Redundancy Analysis (RDA) was used. The analysis of diatom assemblages allowed for the calculation of the diatom indices in order to assess the water quality and the ecological status of the stream. Artificial ponds constructed on the stream had significant effects on the integrity of the stream ecosystem. Diatom assemblages characteristic of stream habitats were disrupted by the species from ponds. HCA and PCA revealed that the stream was clearly divided into three sections: ponds, stream parts under the influence of ponds, and stream parts isolated from ponds. The ponds thus altered stream environmental conditions. Benthic diatom assemblages were affected by a combination of four environmental factors: the concentration of ammonium ions, dissolved oxygen, conductivity, and the amount of total suspended material in the water. These factors, together with water pH, had a diverse influence on diatom assemblages alongside the stream, which was caused by a series of cascade ponds. In theory, this restoration practice should restore the stream close to its natural state, but bioassessment of the stream ecosystem based on diatoms revealed that there was no improvement of the ecological status alongside the stream. The construction of artificial ponds disrupted stream continuity and altered the character of the stream ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive.

    PubMed

    Sánchez-Montoya, María del Mar; Arce, Maria Isabel; Vidal-Abarca, María Rosario; Suárez, María Luisa; Prat, Narcís; Gómez, Rosa

    2012-05-01

    Type-specific physico-chemical reference conditions are required for the assessment of ecological status in the Water Framework Directive context, similarly to the biological and hydro-morphological elements. This directive emphasises that natural variability of quality elements in high status (reference condition) needs to be quantified. Mediterranean streams often present a marked seasonal pattern in hydrological, biological and geochemical processes which could affect physico-chemical reference conditions. This study establishes general physico-chemical reference conditions (oxygenation, nutrient, salinity and acidification conditions) for different Mediterranean stream types. 116 potential reference sites located in 23 Mediterranean catchments in Spain were sampled in spring, summer and autumn in 2003. All sites were subjected to a screening method for the selection of reference sites in Mediterranean streams (Mediterranean Reference Criteria) and classified using a pre-established stream typology that establishes five different stream types (temporary streams, evaporite-calcareous at medium altitude, siliceous headwaters, calcareous headwaters and large watercourses). Reference conditions (reference value and reference threshold equivalents to high-good class boundary) were calculated using two different methods according to the availability of reference sites: the reference site 75th percentile approach of all reference sites and the 25th percentile of the population approach. The majority of the studied potential reference sites (76 out of 116) were selected as reference sites. Regarding type-specific reference conditions, only siliceous headwaters could be considered different from the rest of stream types because lower conductivity and pH. All reference stream types presented seasonal differences as regards some parameters, except for temporary streams due to the high natural variation of this stream type. For those parameters which presented seasonal differences in a specific stream type, the least restrictive values were proposed as reference conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. THE RELATIONSHIP BETWEEN TEMPERATURE, PHYSICAL HABITAT AND FISH ASSEMBLAGE DATA IN A STATE WIDE PROBABILITY SURVEY OF OREGON STREAMS

    EPA Science Inventory

    To assess the ecological condition of streams and rivers in Oregon, we sampled 146 sites
    in summer, 1997 as part of the U.S. EPA's Environmental Monitoring and Assessment Program.
    Sample reaches were selected using a systematic, randomized sample design from the blue-line n...

  16. ASSOCIATIONS AMONG WATERSHED- AND SITE-SCALE DISTURBANCES INDICATORS AND FISH ASSEMBLAGES AT LEAST- AND MOST-DISTURBED STREAM AND RIVER SITES IN WESTERN USA

    EPA Science Inventory

    At broad scales, the kinds and intensity of human disturbance to streams vary with natural gradients (e.g., elevation). While fish assemblages vary with both human and natural gradients, ecological condition assessments need to partition out the natural gradients to evaluate hum...

  17. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.

  18. Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management.

    PubMed

    Lane, Belize A; Sandoval-Solis, Samuel; Stein, Eric D; Yarnell, Sarah M; Pasternack, Gregory B; Dahlke, Helen E

    2018-06-22

    Balancing ecological and human water needs often requires characterizing key aspects of the natural flow regime and then predicting ecological response to flow alterations. Flow metrics are generally relied upon to characterize long-term average statistical properties of the natural flow regime (hydrologic baseline conditions). However, some key aspects of hydrologic baseline conditions may be better understood through more complete consideration of continuous patterns of daily, seasonal, and inter-annual variability than through summary metrics. Here we propose the additional use of high-resolution dimensionless archetypes of regional stream classes to improve understanding of baseline hydrologic conditions and inform regional environmental flows assessments. In an application to California, we describe the development and analysis of hydrologic baseline archetypes to characterize patterns of flow variability within and between stream classes. We then assess the utility of archetypes to provide context for common flow metrics and improve understanding of linkages between aquatic patterns and processes and their hydrologic controls. Results indicate that these archetypes may offer a distinct and complementary tool for researching mechanistic flow-ecology relationships, assessing regional patterns for streamflow management, or understanding impacts of changing climate.

  19. An Investigation of Estuary Gate Effect on Freshwater Fish Biotope and a Study on Ecological Scheduling

    NASA Astrophysics Data System (ADS)

    Zhang, H. W.; Hu, P.; Ni, G.; Jia, Y. W.; Ge, J. J.

    2017-12-01

    The presence of an estuary gate changes the existing hydrologic regime and produces a far-reaching and accumulated impact on river biotopes and fish stocks. This work investigates the estuary gate effect in the Yong River valley on the species Elopichthys bambusa (E. bambusa). By combininge hydrodynamic results from the MIKE FLOOD model with observations of the E. bambusa habitat indicators. After the establishment of the gate, the hydrological conditions required for spawning, egg hatching and oviposition stimulation, were analysed, and the corresponding strategies for ecological water demand were proposed. This study finds that satisfactory fish egg hatching hydrodynamic conditions are created when the Fenghua River flow reaches 120 m3/s in the spawning season. With Fenghua River, Yao River gate, and Yong River gate discharges at 120 m3/s, 90 m3/s, and 210 m3/s respectively, an average flow speed increase above 0.2 m/s/day may be generated for E. bambusa spawning sites and migration passages. This hydraulic condition stimulates spawning in natural streams. At the most suitable spawning season temperature, an ecological scheduling scheme that maintains a pulse flow for 5-7 days provides E. bambusa with the hydrodynamic conditions required for the whole process of reproduction, thereby maintaining healthy stream ecology. The flow rate scheduling rules, as provided in this paper, may serve as references in watershed ecological scheduling after gate installation.

  20. DETERMINING LEAST- AND MOST-IMPACTED STREAM CONDITIONS USING SURVEY DATA ACROSS THE RANGE OF NATURAL GRADIENTS

    EPA Science Inventory

    One of the challenges to developing indicators of ecological condition is to determine what reference conditions are for a given ecosystem. Because human activity often co-varies with natural gradients (e.g., elevation) one cannot simply extrapolate from, for example, small strea...

  1. The magnitude of lost ecosystem structure and function in urban streams and the effectiveness of watershed-based management (Invited)

    NASA Astrophysics Data System (ADS)

    Smucker, N. J.; Detenbeck, N. E.; Kuhn, A.

    2013-12-01

    Watershed development is a leading cause of stream impairment and increasingly threatens the availability, quality, and sustainability of freshwater resources. In a recent global meta-analysis, we found that measures of desirable ecological structure (e.g., algal, macroinvertebrate, and fish communities) and functions (e.g., metabolism, nutrient uptake, and denitrification) in streams with developed watersheds were only 23% and 34%, respectively, of those in minimally disturbed reference streams. As humans continue to alter watersheds in response to growing and migrating populations, characterizing ecological responses to watershed development and management practices is urgently needed to inform future development practices, decisions, and policy. In a study of streams in New England, we found that measures of macroinvertebrate and algal communities had threshold responses between 1-10% and 1-5% impervious cover, respectively. Macroinvertebrate communities had decreases in sensitive taxa and predators occurring from 1-3.5% and transitions in trophic and habitat guilds from 4-9% impervious cover. Sensitive algal taxa declined at 1%, followed by increases in tolerant taxa at 3%. Substantially altered algal communities persisted above 5% impervious cover and were dominated by motile taxa (sediment resistant) and those with high nutrient demands. Boosted regression tree analysis showed that sites with >65% and ideally >80% forest and wetland cover in near-stream buffers were associated with a 13-34% decrease in the effects of watershed impervious cover on algal communities. While this reduction is substantial, additional out-of-stream management efforts are needed to protect and restore stream ecosystems (e.g., created wetlands and stormwater ponds), but understanding their effectiveness is greatly limited by sparse ecological monitoring. Our meta-analysis found that restoration improved ecological structure and functions in streams by 48% and 14%, respectively, when compared to streams with developed watersheds and no management practices in place. However, ecosystem measures at restored sites were still only 53% of those in minimally disturbed reference streams. Some of our ongoing work further examines how watershed development and riparian condition affect stream ecosystem functions by altering the sources and delivery of nutrients and carbon. Our results can help inform management priorities and expectations, and they emphasize the importance of implementing mindful development and protective actions in a watershed context, especially in watersheds near impervious cover thresholds. Continued research on linked terrestrial-aquatic systems, improved BMP tracking, and ongoing monitoring will be essential to conserving and restoring the mechanisms that sustain valued ecological attributes and ecosystem services of streams.

  2. WATER QUALITY MONITORING FOR PUBLIC HEALTH AND ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    The applicability of using microbial population measures as indicators of aquatic condition has a rich history based primarily to study factors that affect the sanitary and ecological condition of fresh water streams. These studies are generally conducted by collecting water site...

  3. Urbanization and stream ecology: Diverse mechanisms of change

    USGS Publications Warehouse

    Roy, Allison; Capps, Krista A.; El-Sabaawi, Rana W.; Jones, Krista L.; Parr, Thomas B.; Ramirez, Alonso; Smith, Robert F.; Walsh, Christopher J.; Wenger, Seth J.

    2016-01-01

    The field of urban stream ecology has evolved rapidly in the last 3 decades, and it now includes natural scientists from numerous disciplines working with social scientists, landscape planners and designers, and land and water managers to address complex, socioecological problems that have manifested in urban landscapes. Over the last decade, stream ecologists have met 3 times at the Symposium on Urbanization and Stream Ecology (SUSE) to discuss current research, identify knowledge gaps, and promote future research collaborations. The papers in this special series on urbanization and stream ecology include both primary research studies and conceptual synthesis papers spurred from discussions at SUSE in May 2014. The themes of the meeting are reflected in the papers in this series emphasizing global differences in mechanisms and responses of stream ecosystems to urbanization and management solutions in diverse urban streams. Our hope is that this series will encourage continued interdisciplinary and collaborative research to increase the global understanding of urban stream ecology toward stream protection and restoration in urban landscapes.

  4. Integrating tidal and nontidal ecological assessments

    Treesearch

    Mark Southerland; Roberto Llanso

    2016-01-01

    The Maryland Department of Natural Resources (DNR) has a long history of conducting rigorous assessments of ecological conditions in both tidal and nontidal waters. The Long-Term Benthic (LTB) Monitoring Program and the Maryland Biological Stream Survey (MBSS) both use reference-based indicators of benthic invertebrate communities to provide areawide estimates of ...

  5. A Conceptual Model For Effluent-Dependent Riverine Environments

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.

    2001-12-01

    The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We structured the conceptual model around accepted riverine ecological models but with important departures signaling the unique characteristics of EDW communities. In many cases, in-stream habitat values were naturally limited by substrate, flow regimes, or other pre-discharge conditions. Our model is designed to give terrestrial habitat equal footing with in-stream resources in ecological assessment techniques. In the arid West, where in-stream water resources are becoming increasingly limited, EDWs offer important refugia and corridors for neotropical migratory birds and other habitat-limited wildlife species. These beneficial uses require different hydrological tools than in-stream systems for assessing habitat health.

  6. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    PubMed

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  7. Deforestation and Benthic Indicators: How Much Vegetation Cover Is Needed to Sustain Healthy Andean Streams?

    PubMed Central

    Iñiguez–Armijos, Carlos; Leiva, Adrián; Frede, Hans–Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments. PMID:25147941

  8. A recirculating stream aquarium for ecological studies.

    Treesearch

    Gordon H. Reeves; Fred H. Everest; Carl E. McLemore

    1983-01-01

    Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.

  9. Development of a socio-ecological environmental justice model for watershed-based management

    NASA Astrophysics Data System (ADS)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  10. National patterns in wetland water quality from the 2001 NWCA

    EPA Science Inventory

    Water quality (WQ) is central to understanding ecological condition of lakes, streams, and coastal waters but less often assessed in wetlands. The utility of national-scale wetland WQ data was examined in the 2011 National Wetland Condition Assessment, which covered 48 USA state...

  11. GENETIC DIVERSITY AS AN INDICATOR OF ECOSYSTEM CONDITION AND SUSTAINABILITY: UTILITY FOR REGIONAL ASSESSMENTS OF STREAM CONDITION IN THE EASTERN UNITED STATES

    EPA Science Inventory

    This report documents research undertaken to determine if the theoretical promise of genetic diversity as an ecological indicator is realized in real-world applications. Results of two case studies confirm that genetic diversity is a useful indicator of environmental condition. ...

  12. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams.

    PubMed

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-04-19

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.

  13. Spatial and seasonal variation in the ecological significance of nutrient recycling by larval salamanders in Appalachian headwater streams

    Treesearch

    S. Conor Keitzer; Reuben R. Goforth

    2013-01-01

    Salamanders are abundant consumers in many temperate streams and may be important recyclers of biologically essential nutrients, but their ecological role is poorly understood. The ecological significance of nutrient recycling by salamanders may vary spatially and seasonally because of their potentially patchy distribution in streams and the dynamic nature of stream...

  14. Significance of headwater streams and perennial springs in ecological monitoring in Shenandoah National Park

    USGS Publications Warehouse

    Snyder, Craig D.; Webb, James R.; Young, John A.; Johnson, Zane B.

    2013-01-01

    Shenandoah National Park has been monitoring water chemistry and benthic macroinvertebrates in stream ecosystems since 1979. These monitoring efforts were designed to assess the status and trends in stream condition associated with atmospheric deposition (acid rain) and changes in forest health due to gypsy moth infestations. The primary objective of the present research was to determine whether the current long-term macroinvertebrate and water-quality monitoring program in Shenandoah National Park was failing to capture important information on the status and trends in stream condition by not sufficiently representing smaller, headwater streams. The current benthic-macroinvertebrate and water-chemistry sampling designs do not include routine collection of data from streams with contributing watershed areas smaller than 100 hectares, even though these small streams represent the overwhelming proportion of total stream length in the park. In this study, we sampled headwater sites, including headwater stream reaches (contributing watershed area approximately 100 hectares (ha) and perennial springs, in the park for aquatic macroinvertebrates and water chemistry and compared the results with current and historical data collected at long-term ecological monitoring (LTEM) sites on larger streams routinely sampled as part of ongoing monitoring efforts. The larger purpose of the study was to inform ongoing efforts by park managers to evaluate the effectiveness and efficiency of the current aquatic monitoring program in light of other potential stressors (for example, climate change) and limited resources. Our results revealed several important findings that could influence management decisions regarding long-term monitoring of park streams. First, we found that biological indicators of stream condition at headwater sites and perennial springs generally were more indicative of lower habitat quality and were more spatially variable than those observed at sites on routinely monitored larger streams. We hypothesized that poorer stream condition observed in smaller streams was due to stream drying that occurs more frequently in headwater areas. We also found that biological and water-chemistry measures responded differently to landscape drivers. Variation in most biological endpoints was driven primarily by stream size and was only secondarily associated with bedrock geology. In contrast, water chemistry showed essentially the opposite pattern, with underlying geology explaining much of the variation and stream size being of secondary importance. Therefore, expanding the LTEM program to include headwater areas would yield substantially different biological information, whereas broad inferences regarding spatial patterns in water chemistry would probably not change. Although significant differences in community composition were observed among streams of different sizes, no taxa were unique to headwater sites. All taxa collected at the 45 headwater sites also had been collected at one or more LTEM sites during one or more years. This observation indicates that headwater sites in the park may be structured by biotic nestedness; consequently, focusing management efforts on preserving the species pool at the larger LTEM sites would likely result in the protection of most taxa parkwide. Finally, linkages (correlations) between water chemistry and biological measures of stream condition were signficantly stronger when assessed at the LTEM sites than when assessed at the springs or headwater sites, indicating that conditions at downstream sites may be better indicators of water-quality trends.

  15. Ecological characterization of streams, and fish-tissue analysis for mercury and lead at selected locations, Fort Gordon, Georgia, June 1999 to May 2000

    USGS Publications Warehouse

    Gregory, M. Brian; Stamey, Timothy C.; Wellborn, John B.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Ga., documented the ecological condition of selected water-bodies on the Fort Gordon military installation from June 1999 to May 2000. This study includes stream-habitat assessments, aquatic invertebrate and fish-community surveys in selected stream reaches, and analyses of mercury and lead concentrations in largemouth bass (Micropterous salmoides) muscle tissue from three impoundments. Assessment surveys indicate lower habitat value scores in some streams draining the more developed areas on Fort Gordon. A small tributary to Butler Creek--which drains parking lots associated with military motor pools and other impervious surfaces--is characterized by moderate levels of bank erosion and excess sediment in the stream channel compared to reference sites. Four other stream reaches are more similar to reference streams in respect to habitat conditions. Invertebrate communities in streams draining these urbanized watersheds are inhabited by 13 to 16 taxa per reach; whereas, 23 and 33 taxa were collected from the two reference stream reaches. Measures of invertebrate abundance, taxa richness, Ephemeroptera, Plecoptera, and Tricoptera Index are lower in streams draining urbanized watersheds. Measures of community similarity also indicate differences between streams draining urbanized areas and reference streams. Streams draining developed areas on Fort Gordon are inhabited by 3 to 10 fish species and included more species regarded as tolerant of degraded water-quality conditions; whereas, the two reference stream reaches support 4 and 10 species, respectively, including one species considered intolerant of degraded water-quality conditions. Mercury was detected in all largemouth bass collected from three impoundments on Fort Gordon. Wet-weight mercury concentrations in fish tissue analyzed from all sites range from 0.08 micrograms per gram to 1.33 micrograms per gram. Median mercury concentrations in fish tissue are 0.83 micrograms per gram at Soil Erosion Lake, 0.72 micrograms per gram at Lower Leitner Lake, and 0.22 micrograms per gram at Gordon Lake. Median mercury concentrations in fish tissue analyzed from Soil Erosion Lake and Lower Leitner Lake are more than two times higher than U.S. Environmental Protection Agency recommendation of 0.3 micrograms per gram for fish consumption. Lead concentrations are below the minimum reporting limit for all specimens analyzed from reservoirs sampled at Fort Gordon.

  16. Assessing the Ecological Condition of Streams in a Southeastern Brazilian Basin using a Probabilistic Monitoring Design

    EPA Science Inventory

    Prompt assessment and management actions are required if we are to reduce the current rapid loss of habitat and biodiversity worldwide. Statistically valid quantification of the biota and habitat condition in water bodies are prerequisites for rigorous assessment of aquatic biodi...

  17. PUBLIC HEALTH AND ECOLOGICAL INTERCONNECTIVITY: A CONDITIONAL PROBABILITY APPROACH ASSOCIATING DEGRADATION OF STREAMS AND INFANT MORTALITY

    EPA Science Inventory

    Effective public health policy should not be based solely on clinical, individualbased

    information, but requires a broad characterization of human health conditions

    across large geographic areas. For the most part, the necessary monitoring of human

    health to ...

  18. Developing a novel approach to analyse the regimes of temporary streams and their controls on aquatic biota

    NASA Astrophysics Data System (ADS)

    Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; de Girolamo, A. M.; Lo Porto, A.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Froebrich, J.

    2011-10-01

    Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. The use of the aquatic fauna structural and functional characteristics to assess the ecological quality of a temporary stream reach can not therefore be made without taking into account the controls imposed by the hydrological regime. This paper develops some methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: flood, riffles, connected, pools, dry and arid. We used the water discharge records from gauging stations or simulations using rainfall-runoff models to infer the temporal patterns of occurrence of these states using the developed aquatic states frequency graph. The visual analysis of this graph is complemented by the development of two metrics based on the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of the aquatic regimes of temporary streams in terms of their influence over the development of aquatic life is put forward, defining Permanent, Temporary-pools, Temporary-dry and Episodic regime types. All these methods were tested with data from eight temporary streams around the Mediterranean from MIRAGE project and its application was a precondition to assess the ecological quality of these streams using the current methods prescribed in the European Water Framework Directive for macroinvertebrate communities.

  19. The Midwest Stream Quality Assessment

    USGS Publications Warehouse

    ,

    2012-01-01

    In 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) and USGS Columbia Environmental Research Center (CERC) will be collaborating with the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA) to assess stream quality across the Midwestern United States. The sites selected for this study are a subset of the larger NRSA, implemented by the EPA, States and Tribes to sample flowing waters across the United States (http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm). The goals are to characterize water-quality stressors—contaminants, nutrients, and sediment—and ecological conditions in streams throughout the Midwest and to determine the relative effects of these stressors on aquatic organisms in the streams. Findings will contribute useful information for communities and policymakers by identifying which human and environmental factors are the most critical in controlling stream quality. This collaborative study enhances information provided to the public and policymakers and minimizes costs by leveraging and sharing data gathered under existing programs. In the spring and early summer, NAWQA will sample streams weekly for contaminants, nutrients, and sediment. During the same time period, CERC will test sediment and water samples for toxicity, deploy time-integrating samplers, and measure reproductive effects and biomarkers of contaminant exposure in fish or amphibians. NRSA will sample sites once during the summer to assess ecological and habitat conditions in the streams by collecting data on algal, macroinvertebrate, and fish communities and collecting detailed physical-habitat measurements. Study-team members from all three programs will work in collaboration with USGS Water Science Centers and State agencies on study design, execution of sampling and analysis, and reporting.

  20. Do priority effects outweigh environmental filtering in a guild of dominant freshwater macroinvertebrates?

    PubMed

    Little, Chelsea J; Altermatt, Florian

    2018-04-11

    Abiotic conditions have long been considered essential in structuring freshwater macroinvertebrate communities. Ecological drift, dispersal and biotic interactions also structure communities, and although these mechanisms are more difficult to detect, they may be of equal importance in natural communities. Here, we hypothesized that in 10 naturally replicated headwater streams in eastern Switzerland, locally dominant amphipod species would be associated with differences in environmental conditions. We conducted repeated surveys of amphipods and used a hierarchical joint species distribution model to assess the influence of different drivers on species co-occurrences. The species had unique environmental requirements, but a distinct spatial structure in their distributions was unrelated to habitat. Species co-occurred much less frequently than predicted by the model, which was surprising because laboratory and field evidence suggests they are capable of coexisting in equal densities. We suggest that niche preemption may limit their distribution and that a blocking effect related to the specific linear configuration of streams determines which species colonizes and dominates a given stream catchment, thus suggesting a new solution a long-standing conundrum in freshwater ecology. © 2018 The Author(s).

  1. The ecology and biogeochemistry of stream biofilms.

    PubMed

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  2. Predicting thermal reference conditions for USA streams and rivers

    USGS Publications Warehouse

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most DMs, setting SWAs to 0 resulted in biased estimates of thermal reference condition.

  3. Effects of Best Management Practice on Ecological Condition: Does Location Matter?

    NASA Astrophysics Data System (ADS)

    Holmes, Roger; Armanini, David G.; Yates, Adam G.

    2016-05-01

    Best management practices (BMPs) are increasingly being promoted as a solution to the potentially adverse effects agriculture can have on aquatic systems. However, the ability of BMPs to improve riverine systems continues to be questioned due to equivocal empirical evidence linking BMP use with improved stream conditions, particularly in regard to ecological conditions. Explicitly viewing BMP location in relation to hydrological pathways may, however, assist in establishing stronger ecological linkages. The goal of this study was to assess the association between water chemistry, benthic macroinvertebrate community structure, and the number and location of agricultural BMPs in a catchment. Macroinvertebrate and water samples were collected in 30 small (<12 km2) catchments exhibiting gradients of BMP use and location in the Grand River Watershed, Southern Ontario, Canada. Stepwise regression analysis revealed that concentrations of most stream nutrients declined in association with greater numbers of BMPs and particularly when BMPs were located in hydrologically connected areas. However, BMPs were significantly associated with only one metric (%EPT) describing macroinvertebrate community structure. Furthermore, variance partitioning analysis indicated that less than 5 % of the among site variation in the macroinvertebrate community could be attributed to BMPs. Overall, the implemented BMPs appear to be achieving water quality improvement goals but spatial targeting of specific BMP types may allow management agencies to attain further water quality improvements more efficiently. Mitigation and rehabilitation measures beyond the BMPs assessed in this study may be required to meet goals of enhanced ecological condition.

  4. Ecologically relevant geomorphic attributes of streams are impaired by even low levels of watershed effective imperviousness

    NASA Astrophysics Data System (ADS)

    Vietz, Geoff J.; Sammonds, Michael J.; Walsh, Christopher J.; Fletcher, Tim D.; Rutherfurd, Ian D.; Stewardson, Michael J.

    2014-02-01

    Urbanization almost inevitably results in changes to stream morphology. Understanding the mechanisms for such impacts is a prerequisite to minimizing stream degradation and achieving restoration goals. However, investigations of urban-induced changes to stream morphology typically use indicators of watershed urbanization that may not adequately represent degrading mechanisms and commonly focus on geomorphic attributes such as channel dimensions that may be of little significance to the ecological goals for restoration. We address these shortcomings by testing if a measure characterizing urban stormwater drainage system connections to streams (effective imperviousness, EI) is a better predictor of change to ecologically relevant geomorphic attributes than a more general measure of urban density (total imperviousness, TI). We test this for 17 sites in independent watersheds across a gradient of urbanization. We found that EI was a better predictor of all geomorphic variables tested than was TI. Bank instability was positively correlated with EI, while width/depth (a measure of channel incision), bedload sediment depth, and frequency of bars, benches, and large wood were negatively correlated. Large changes in all geomorphic variables were detected at very low levels of EI (< 2-3%). Excess urban stormwater runoff, as represented by EI, drives geomorphic change in urban streams, highlighting the dominant role of the stormwater drainage system in efficiently transferring stormwater runoff from impervious surfaces to the stream, as found for ecological indicators. It is likely that geomorphic condition of streams in urbanizing watersheds, particularly those attributes of ecological relevance, can only be maintained if excess urban stormwater flows are kept out of streams through retention and harvesting. The extent to which EI can be reduced within urban and urbanizing watersheds, through techniques such as distributed stormwater harvesting and infiltration, and the components of the hydrologic regime to be addressed, requires further investigation. Urbanization influences stream morphology more than any other land use (Douglas, 2011): it alters hydrology and sediment inputs leading to deepening and widening of streams (Chin, 2006). Concomitantly, urbanization often directly impairs stream morphology through channel and riparian zone interventions, e.g., culverts (Hawley et al., 2012), rock protection (Vietz et al., 2012b), and constricted floodplains (Gurnell et al., 2007). These changes to channel geomorphology in turn contribute to poor in-stream ecological condition (Morley and Karr, 2002; Walsh et al., 2005b; Gurnell et al., 2007; Elosegi et al., 2010).The common conception is that channels undergo gross morphologic alterations if > 10-20% of their watershed is covered by impervious surfaces (total imperviousness, TI; Bledsoe and Watson, 2001; Chin, 2006; Table 1). Many of these studies may, however, underestimate the influence of urbanization by using insensitive channel metrics and assessing streams in early stages of urbanization. Most importantly, TI, as a measure of urban density, may not adequately represent the way in which urbanization alters the master variables of flow and sediment within a watershed.Hydrologists have long recognized that, rather than the proportion of impervious cover within a watershed, it is the proportion that is directly connected to the stream through stormwater drainage systems that may be a better predictor of urban-induced hydrologic change (Leopold, 1968). Referred to as effective imperviousness (EI) the proportion of impervious cover directly connected to the stream through stormwater drainage systems may also be a better predictor of geomorphic response than is TI. Over the last decade a direct measure of EI has been found to be a better predictor of ecological response in urban streams (Walsh et al., 2012), but use of such a metric has not found its way into geomorphic studies even though TI has been found to be ineffective (e.g., Bledsoe et al., 2012). A direct measure of EI - one that specifically accounts for the drainage from each impervious surface rather than using a generic reduction factor (e.g., Booth and Jackson, 1997; Wang et al., 2001) - has not previously been used in geomorphic investigations. In this paper, we advance on past studies by testing if EI is a stronger predictor than TI for urban-induced channel change.A second limitation of previous studies of urban-induced morphologic change is the common focus on channel dimensions (Chin, 2006). These are important for infrastructure and flood protection but do not necessarily have a strong mechanistic link to stream ecosystems. While some notable exceptions exist (Finkenbine et al., 2000; McBride and Booth, 2005), other geomorphic attributes are rarely investigated.This study examines how urbanization of a watershed can result in the impairment of a suite of geomorphic attributes of relevance to aquatic ecosystem condition, such as large wood, sediment availability, and structural and hydraulic complexity (of the bed, bank, and water column), represented by the following variables:

  5. Baseline Q-values for streams in intensive agricultural catchments in Ireland

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Wall, David; Mellander, Per-Erik; Mechan, Sarah; Shortle, Ger

    2010-05-01

    The effectiveness of regulations introduced in Ireland in 2006 in response to the European Union Nitrates Directives for minimising nutrient loss to waterways from farms is being studied by Teagasc, the Irish Agriculture and Food Development Authority as part of an Agricultural Catchments Programme from 2008 - 2011. The regulations in Ireland require that during winter, green cover is established and maintained on arable farms, manure is stored and not spread, ploughing is not conducted and that chemical fertiliser is not spread. The regulations also require buffer zones between fields and water courses when applying organic or chemical fertilisers and that nutrient application rates and timing match crop requirements. An upper limit for livestock manure loading of 170 kg ha-1 organic N each year is also set. The biophysical research component of the Agricultural Catchments Programme is focussed on quantifying nutrient source availability, surface and subsurface transport pathways and stream chemical water quality. A baseline description of stream ecological quality was also sought. Stream ecology was measured in autumn 2009 at 3-5 locations within four surface water catchments and at the spring emergence of a catchment underlain by karst limestone. Landuse in each catchment is dominated by medium to high intensity grassland or cereal farming and annual average rainfall ranges from 900 - 1200 mm. Surveys were conducted in 1st to 3rd order streams throughout each catchment at locations which had minimal observed point source inputs for 100m upstream, incomplete shade, a hard streambed substrate and riffle conditions suitable for the sampling methods. Benthic macroinvertebrates were identified and quantified and used to calculate the biological indices Small Stream Risk Score, Q-value, Biological Monitoring Working Party (BMWP), Average Score Per Taxa (ASPT) and EQR (Observed Q-value/Reference Q-value). Diatom community assemblages were identified from samples collected by scraping submerged cobbles and a Trophic Diatom Index and EQR were calculated. Hydromorphology of each sample location was assessed using the River Hydromorphology Assessment Technique (RHAT). Stream water chemistry (nitrate-N, total N, total phosphorus, reactive phosphorus, electrical conductivity, suspended sediments, major cations, pH) was measured at monthly intervals near each ecological survey location. The ecology measurements will be repeated in summer and autumn 2010 to provide a baseline indication of Q-values in the catchments. A fish survey will also be conducted in 2010. The ecological surveys were conducted by the Aquatic Services Unit at University College Cork, Ireland. This paper describes the major farming and stream chemical characteristics of the five catchments and reports on results of the 2009 ecological surveys.

  6. Assessing the ecological base and peak flow of the alpine streams in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, C.; Yang, P. S.; Tian, P. L.

    2009-04-01

    The ecological base and peak flow are crucial for the assessment and design for habitat rehabilitation and recovery. The amount of discharge affects the aquatic creatures and may severely damage the existence and balance of the community under extreme conditions. Aquatic insects are selected as the target species in this study to evaluate the influence of the discharge and to estimate the ecological base and peak flow. The distribution of the number of species and abundance (density) versus discharge is assessed to define the critical discharge. Two streams located at the alpine area in central Taiwan are selected as the study area to evaluate the base and peak flow. From the preliminary data (Aug 2008 to Dec 2008) collected from one stream Creek C originating from Sitou Area in Central Taiwan shows that the abundance of several species varies with the discharge. The dominate family and genus of aquatic insects is Baetidae (Order Ephemeroptera) and Baetis spp. that accounts for 32.47% and 31.11%, respectively. The Hilsenhoff family biotic index (FBI) shows that the water quality is classified to "Good" and "Very Good" level while the river pollution index (RPI) indicates that the stream is non-polluted. The discharge of base flow interpreted from the 95% curve of duration for the daily discharge is 0.0234 cms. Consistent observations are yet to be collected to yield more accurate result and ecological peak flow in rainy and typhoon seasons.

  7. Assessing ecological integrity of Ozark rivers to determine suitability for protective status

    USGS Publications Warehouse

    Radwell, A.J.; Kwak, T.J.

    2005-01-01

    Preservation of extraordinary natural resources, protection of water quality, and restoration of impaired waters require a strategy to identify and protect least-disturbed streams and rivers. We applied two objective, quantitative methods to determine stream ecological integrity of headwater reaches of 10 Ozark rivers, 5 with Wild and Scenic River federal protective status. Thirty-four variables representing macroinvertebrate and fish assemblage characteristics, in-stream habitat, riparian vegetation, water quality, and watershed attributes were quantified for each river and analyzed using two multivariate approaches. The first approach, cluster and discriminant analyses, identified two groups of river with only one variable (% forested watershed) reliably distinguishing groups. Our second approach employed ordinal scaling to compare variables for each river to conceptually ideal conditions that were developed as a composite of optimal attributes among the 10 rivers. The composite distance of each river from ideal was then calculated using a unidimensional ranking technique. Two rivers without Wild and Scenic River designation ranked highest relative to ideal (highest ecological integrity), and two others, also without designation, ranked most distant from ideal (lowest ecological integrity). Fish density, number of intolerant fish species, and invertebrate density were influential biotic variables for scaling. Contributing physical variables included riparian forest cover, water nitrate concentration, water turbidity, percentage of forested watershed, percentage of private land ownership, and road density. These methods provide a framework for refinement and application in other regions to facilitate the process of establishing least-disturbed reference conditions and identifying rivers for protection and restoration. ?? 2005 Springer Science+Business Media, Inc.

  8. Identifying dissolved oxygen variability and stress in tidal freshwater streams of northern New Zealand.

    PubMed

    Wilding, Thomas K; Brown, Edmund; Collier, Kevin J

    2012-10-01

    Tidal streams are ecologically important components of lotic network, and we identify dissolved oxygen (DO) depletion as a potentially important stressor in freshwater tidal streams of northern New Zealand. Other studies have examined temporal DO variability within rivers and we build on this by examining variability between streams as a basis for regional-scale predictors of risk for DO stress. Diel DO variability in these streams was driven by: (1) photosynthesis by aquatic plants and community respiration which produced DO maxima in the afternoon and minima early morning (range, 0.6-4.7 g/m(3)) as a product of the solar cycle and (2) tidal variability as a product of the lunar cycle, including saline intrusions with variable DO concentrations plus a small residual effect on freshwater DO for low-velocity streams. The lowest DO concentrations were observed during March (early autumn) when water temperatures and macrophyte biomass were high. Spatial comparisons indicated that low-gradient tidal streams were at greater risk of DO depletions harmful to aquatic life. Tidal influence was stronger in low-gradient streams, which typically drain more developed catchments, have lower reaeration potential and offer conditions more suitable for aquatic plant proliferation. Combined, these characteristics supported a simple method based on the extent of low-gradient channel for identifying coastal streams at risk of DO depletion. High-risk streams can then be targeted for riparian planting, nutrient limits and water allocation controls to reduce potential ecological stress.

  9. Defining biophysical reference conditions for dynamics river systems: an Alaskan example

    NASA Astrophysics Data System (ADS)

    Pess, G. R.

    2008-12-01

    Defining reference conditions for dynamic river ecosystems is difficult for two reasons. First long-term, persistent anthropogenic influences such as land development, harvest of biological resources, and invasive species have resulted in degraded, reduced, and simplified ecological communities and associated habitats. Second, river systems that have not been altered through human disturbance rarely have a long-term dataset on ecological conditions. However there are exceptions which can help us define the dynamic nature of river ecosystems. One large-scale exception is the Wood River system in Bristol Bay, Alaska, where habitat and salmon populations have not been altered by anthropogenic influences such as land development, hatchery production, and invasive species. In addition, the one major anthropogenic disturbance, salmon (Oncorhynchus spp.) harvest, has been quantified and regulated since its inception. First, we examined the variation in watershed and stream habitat characteristics across the Wood River system. We then compared these stream habitat characteristics with data that was collected in the 1950s. Lastly, we examined the correlation between pink (Oncorhynchus gorbuscha), chum (O. keta), and Chinook (O. tshawytscha), and sockeye salmon (O. nerka), and habitat characteristics in the Wood River system using four decades of data on salmon. We found that specific habitat attributes such as stream channel wetted width, depth, cover type, and the proportion of spawnable area were similar to data collected in the 1950s. Greater stream habitat variation occurred among streams than over time. Salmon occurrence and abundance, however was more temporal and spatially variable. The occurrence of pink and chum salmon increased from the 1970's to the present in the Wood River system, while sockeye abundance has fluctuated with changes in ocean conditions. Pink, Chinook and chum salmon ranged from non-existent to episodic to abundantly perennial, while sockeye dominated all streams in the Wood River system. One main trend was the frequency of occurrence and abundance of pink, Chinook, and chum salmon increased with watershed drainage area and stream depth and, to a lesser extent, decreased with sockeye salmon density. Conversely, sockeye salmon densities decreased with watershed drainage area and stream depth. Wood river habitat was temporally stable and spatially variable, thus identifying the suite of stream channel types that occur and identifying reference states for each is critical to capture reference conditions. Wood River biological reference states need to be established over a longer time frame than physical attributes because of the large-scale temporal variability that is forced by climatic conditions and larger scale spatially- explicit trends. Thus biological reference states for the Wood River system need to be defined with multiple streams, similar to developing reference states for different stream channel types, in order to capture the range of biological variability.

  10. Stream Classification Tool User Manual: For Use in Applications in Hydropower-Related Evironmental Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Troia, Matthew J.; DeRolph, Christopher R.

    Stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystems. We developed a nested, layered, and spatially contiguous stream classification to characterize the biophysical settings of stream reaches within the Eastern United States (~ 900,000 reaches). The classification is composed of five natural characteristics (hydrology, temperature, size, confinement, and substrate) along with several disturbance regime layers, and each was selected because of their relevance to hydropower mitigation. We developed the classification at the stream reach levelmore » using the National Hydrography Dataset Plus Version 1 (1:100k scale). The stream classification is useful to environmental mitigation for hydropower dams in multiple ways. First, it creates efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. Secondly, the SCT addresses data gaps as it quickly provides an inventory of hydrology, temperature, morphology, and ecological communities for the immediate project area, but also surrounding streams. This includes identifying potential reference streams as those that are proximate to the hydropower facility and fall within the same class. These streams can potentially be used to identify ideal environmental conditions or identify desired ecological communities. In doing so, the stream provides some context for how streams may function, respond to dam regulation, and an overview of specific mitigation needs. Herein, we describe the methodology in developing each stream classification layer and provide a tutorial to guide applications of the classification (and associated data) in regulatory settings, such as hydropower (re)licensing.« less

  11. Comparison of hydromorphological assessment methods: Application to the Boise River, USA

    NASA Astrophysics Data System (ADS)

    Benjankar, Rohan; Koenig, Frauke; Tonina, Daniele

    2013-06-01

    Recent national and international legislation (e.g., the European Water Framework Directive) identified the need to quantify the ecological condition of river systems as a critical component for an integrated river management approach. An important defining driver of ecological condition is stream hydromorphology. Several methodologies have been proposed from simple table-based approaches to complex hydraulics-based models. In this paper, three different methods for river hydromorphological assessment are applied to the Boise River, United States of America (USA): (1) the German LAWA overview method (Bund/Laender Arbeitsgemeinschaft Wasser/German Working Group on water issues of the Federal States and the Federal Government represented by the Federal Environment Ministry), (2) a special approach for a hydromorphological assessment of urban rivers and (3) a hydraulic-based method. The hydraulic-based method assessed stream conditions from a statistical analysis of flow properties predicted with hydrodynamic modeling. The investigation focuses on comparing the three methods and defining the transferability of the methods among different contexts, Europe and West United States. It also provides comparison of the hydromorphological conditions of an urban and a rural reaches of the Boise River.

  12. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    PubMed

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  13. Species richness at the guild level: effects of species pool and local environmental conditions on stream macroinvertebrate communities.

    PubMed

    Grönroos, Mira; Heino, Jani

    2012-05-01

    1. A fundamental question in ecology is which factors determine species richness. Here, we studied the relative importance of regional species pool and local environmental characteristics in determining local species richness (LSR). Typically, this question has been studied using whole communities or a certain taxonomic group, although including species with widely varying biological traits in the same analysis may hinder the detection of ecologically meaningful patterns. 2. We studied the question above for whole stream macroinvertebrate community and within functional feeding guilds. We defined the local scale as a riffle site and the regional scale (i.e. representing the regional species pool) as a stream. Such intermediate-sized regional scale is rarely studied in this context. 3. We sampled altogether 100 sites, ten riffles (local scale) in each of ten streams (regional scale). We used the local-regional richness regression plots to study the overall effect of regional species pool on LSR. Variation partitioning was used to determine the relative importance of regional species pool and local environmental conditions for species richness. 4. The local-regional richness relationship was mainly linear, suggesting strong species pool effects. Only one guild showed some signs of curvilinearity. However, variation partitioning showed that local environmental characteristics accounted for a larger fraction of variance in LSR than regional species pool. Also, the relative importance of the fractions differed between the whole community and guilds, as well as among guilds. 5. This study indicates that the importance of the local and regional processes may vary depending on feeding guild and trophic level. We conclude that both the size of the regional species pool and local habitat characteristics are important in determining LSR of stream macroinvertebrates. Our results are in agreement with recent large-scale studies conducted in highly different study systems and complement the previous findings by showing that the interplay of regional and local factors is also important at intermediate regional scales. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  14. A Simulated Stream Ecology Study.

    ERIC Educational Resources Information Center

    Zampella, Robert A.

    1979-01-01

    Describes a simulated field experience to study stream ecology in the classroom. Secondary students determine the composition of the stream community, describe the distribution of the benthic invertebrates, and design a food web. (Author/MA)

  15. The quality of our Nation’s waters--ecological health in the Nation's streams, 1993-2005

    USGS Publications Warehouse

    Carlisle, Daren M.; Meador, Michael R.; Short, Terry M.; Tate, Cathy M.; Gurtz, Martin E.; Bryant, Wade L.; Falcone, James A.; Woodside, Michael D.

    2013-01-01

    This report summarizes a national assessment of the ecological health of streams done by the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA). Healthy functioning stream ecosystems provide society with many benefits, including water purification, flood control, nutrient recycling, waste decomposition, fisheries, and aesthetics. The value to society of many of these benefits is substantial; for example, sportfishing in the United States generates an estimated annual economic output of $125 billion, including more than 1 million jobs (National Research Council, 2005; American Sportfishing Association, 2008). Continued monitoring and assessment of the Nation’s streams is needed to support informed decisions that will safeguard this important natural and economic resource. The quality of streams and rivers is often assessed with measures of the chemical or physical properties of water. However, a more comprehensive perspective is obtained if resident biological communities are also assessed. Guidelines to protect human health and aquatic life have been established for specific physical and chemical properties of water and have become useful yardsticks with which to assess water quality. Biological communities provide additional crucial information because they live within streams for weeks to years and therefore integrate through time the effects of changes to their chemical or physical environment. In addition, biological communities are a direct measure of stream health—an indicator of the ability of a stream to support aquatic life. Thus, the condition of biological communities, integrated with key physical and chemical properties, provides a comprehensive assessment of stream health.

  16. Relationship of stream ecological conditions to simulated hydraulic metrics across a gradient of basin urbanization

    USGS Publications Warehouse

    Steuer, J.J.; Bales, J.D.; Giddings, E.M.P.

    2009-01-01

    The relationships among urbanization, stream hydraulics, and aquatic biology were investigated across a gradient of urbanization in 30 small basins in eastern Wisconsin, USA. Simulation of hydraulic metrics with 1-dimensional unsteady flow models was an effective means for mechanistically coupling the effects of urbanization with stream ecological conditions (i.e., algae, invertebrates, and fish). Urbanization, characterized by household, road, and urban land density, was positively correlated with the lowest shear stress for 2 adjacent transects in a reach for the low-flow summer (p < 0.001) and autumn (p < 0.01) periods. Urbanization also was positively correlated with Reynolds number and % exposed stream bed during months with moderate to low flows. Our study demonstrated the value of temporally and spatially explicit hydraulic models for providing mechanistic insight into the relationships between hydraulic variables and biological responses. For example, the positive correlation between filter-feeding invertebrate richness and minimum 2-transect shear stress observed in our study is consistent with a higher concentration of water-column particulates available for filtration. The strength of correlations between hydraulic and biological metrics is related to the time period (annual, seasonal, or monthly) considered. The hydraulic modeling approach, whether based on hourly or daily flow data, allowed documentation of the effects of a spatially variable response within a reach, and the results suggest that stream response to urbanization varies with hydraulic habitat type. ?? North American Benthological Society.

  17. Taxonomic and nontaxonomic responses to ecological changes in an urban lowland stream through the use of Chironomidae (Diptera) larvae.

    PubMed

    Cortelezzi, A; Paggi, A C; Rodríguez, M; Capítulo, A Rodrigues

    2011-03-01

    Biotic descriptors--both taxonomic (diversity indices, species richness, and indicator species) and nontaxonomic (biomass, oxygen consumption/production, and anatomical deformities)--are useful tools for measuring a stream's ecological condition. Nontaxonomic parameters detect critical effects not reflected taxonomically. We analyzed changes in Chironomidae populations as taxonomic parameters and mentum deformities as a nontaxonomic parameter for evaluating a South-American-plains stream (Argentina). We performed samplings seasonally (March, June, September, and December; 2005) and physical and chemical measurements at three sampling sites of the stream (DC1 at river source, through DC3 downstream). The specimens collected in sediment and vegetation were analyzed to investigate mouth deformities in Chironomidae larvae. We identified a total of 9 taxa from Chironomidae and Orthocladiinae subfamilies. Shannon's diversity index for Chironomidae decreased from 1.6 bits ind⁻¹ (DC1) to 0.3 bits ind⁻¹ (DC3). The total density of the Chironomidae exhibited a great increase in abundance at site DC3, especially that of Chironomus calligraphus. Chironomidae taxonomic composition also changed among the three sites despite their spatial proximity: C. calligraphus, Goeldichironomus holoprasinus, Parachironomus longistilus, and Polypedilum were present at all three; Corynoneura and Paratanytarsu at DC1 only; Cricotopus at DC1 and DC3; Apedilum elachistus notably at DC2 and DC3; and Parametriocnemus only at DC2. C. calligraphus individuals from DC1 showed no mentum deformities; only 2 from DC2 exhibited mouth-structure alterations; while specimens from DC3 presented the most abnormalities, especially during autumn and late winter. Type-II deformities (supernumerary teeth and gaps) were the most common. Anatomical deformities are sublethal effects representing an early alert to chemically caused environmental degradation. Mentum deformities in benthic-Chironomidae larvae constitute an effective biological-surveillance tool for detecting adverse conditions in sediments and evaluating sediment-quality-criteria compliance. Taxonomic (community composition) and nontaxonomic (condition of larval mouth parts) descriptors, used together, can indicate a stream's ecological state. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    PubMed

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems.

  19. Re-Meandering of Lowland Streams: Will Disobeying the Laws of Geomorphology Have Ecological Consequences?

    PubMed Central

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems. PMID:25264627

  20. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    NASA Astrophysics Data System (ADS)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused elevated concentrations of chlorinated ethenes, benzene and site specific pharmaceuticals in both the hyporheic zone and the stream water. Observed stream water vinyl chloride concentrations (up to 6 μg/L) are far above the Danish EQS (0.05 μg/L) for several km downstream of the discharge area. For heavy metals, comparison with EQS in stream water, the hyporheic zone and streambed showed concentrations around or above the threshold values for barium, copper, lead, nickel and zinc. The calculated TU was generally similar along the stream, but for arsenic and nickel higher values were observed where the groundwater plume discharges into the stream. Also, log TU sum values for organic contaminants were elevated in both the hyporheic zone and stream. Thus, the overall chemical stress in the main discharge area is much higher than upstream, while it gradually decreases downstream. In conclusion, this work clearly shows that groundwater contaminant plumes can impact stream water quality significantly in discharge areas, and extend far downstream. A surprisingly high impact of heavy metals with diffuse and/or biogenic origin on stream quality was identified. This work highlights the importance of a holistic assessment of stream water quality to identify and quantify the main contaminant sources and resulting chemical stream stressors leading to potential ecological impacts.

  1. Reach-scale land use drives the stress responses of a resident stream fish.

    PubMed

    Blevins, Zachary W; Wahl, David H; Suski, Cory D

    2014-01-01

    Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.

  2. ADDING THE THIRD DIMENSION TO LANDSCAPE ECOLOGY

    EPA Science Inventory

    Landscape indicator statistical models for water quality in streams are commonly developed using land use/land cover and elevation data. However, surficial soils and geologic conditions have many roles in controlling the occurrence and movement of chemicals into shallow ground wa...

  3. The influence of drought on flow‐ecology relationships in Ozark Highland streams

    USGS Publications Warehouse

    Lynch, Dustin T.; Leasure, D. R.; Magoulick, Daniel D.

    2018-01-01

    Drought and summer drying can have strong effects on abiotic and biotic components of stream ecosystems. Environmental flow‐ecology relationships may be affected by drought and drying, adding further uncertainty to the already complex interaction of flow with other environmental variables, including geomorphology and water quality.Environment–ecology relationships in stream communities in Ozark Highland streams, USA, were examined over two years with contrasting environmental conditions, a drought year (2012) and a flood year (2013). We analysed fish, crayfish and benthic macroinvertebrate assemblages using two different approaches: (1) a multiple regression analysis incorporating predictor variables related to habitat, water quality, geomorphology and hydrology and (2) a canonical ordination procedure using only hydrologic variables in which forward selection was used to select predictors that were most related to our response variables.Reach‐scale habitat quality and geomorphology were found to be the most important influences on community structure, but hydrology was also important, particularly during the flood year. We also found substantial between‐year variation in environment–ecology relationships. Some ecological responses differed significantly between drought and flood years, while others remained consistent. We found that magnitude was the most important flow component overall, but that there was a shift in relative importance from low flow metrics during the drought year to average flow metrics during the flood year, and the specific metrics of importance varied markedly between assemblages and years.Findings suggest that understanding temporal variation in flow‐ecology relationships may be crucial for resource planning. While some relationships show temporal variation, others are consistent between years. Additionally, different kinds of hydrologic variables can differ greatly in terms of which assemblages they affect and how they affect them. Managers can address this complexity by focusing on relationships that are temporally stable and flow metrics that are consistently important across groups, such as flood frequency and flow variability.

  4. Utilizing Local Stream Ecology to Produce a Long Term Data Set as AN Authentic Research Tool

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Janmaat, A.; Marsh, S. J.; Kanda, S.; Yakemchuk, A.; Peucker-Ehrenbrink, B.; Voss, B.

    2017-12-01

    Several streams in the Abbotsford region of the Fraser Valley, B.C., Canada, have been used as long term study sites for our ecology and geography courses. In collaboration with Woods Hole Oceanographic Institution we have been collecting water quality data from the Fraser River as part of the Global Rivers Observatory since 2009. The small stream sites are used for monitoring stream and river chemistry, physical characteristics, riparian influences, and using leaf litter bags to study decomposition rates and the macro-invertebrate community. In the introductory ecology course and the upper level independent freshwater ecology course, students conduct increasingly sophisticated experiments, such as: comparative stream chemistry and biological studies in one to several streams. These courses ladder into each other, students gain skills in the field and lab in their introductory course, such as preparing leaf litter bags, measuring dissolved phosphate and nitrate, and identifying invertebrates. In the introductory ecology course students begin applying statistics to their data and are encouraged to formulate their own hypothesis, and this is expanded upon in the upper level stream ecology course. In the upper level course, two to six students work as a team to conduct the field and laboratory studies, each student develops his/her own hypothesis and prepares a research report and poster. Students can analyze data collected for as long as 10 years from six different streams and the Fraser River. By investigating data from several years students are now able to observe trends.

  5. The Importance of Ambient Sound Level to Characterise Anuran Habitat

    PubMed Central

    Goutte, Sandra; Dubois, Alain; Legendre, Frédéric

    2013-01-01

    Habitat characterisation is a pivotal step of any animal ecology study. The choice of variables used to describe habitats is crucial and need to be relevant to the ecology and behaviour of the species, in order to reflect biologically meaningful distribution patterns. In many species, acoustic communication is critical to individuals’ interactions, and it is expected that ambient acoustic conditions impact their local distribution. Yet, classic animal ecology rarely integrates an acoustic dimension in habitat descriptions. Here we show that ambient sound pressure level (SPL) is a strong predictor of calling site selection in acoustically active frog species. In comparison to six other habitat-related variables (i.e. air and water temperature, depth, width and slope of the stream, substrate), SPL had the most important explanatory power in microhabitat selection for the 34 sampled species. Ambient noise was particularly useful in differentiating two stream-associated guilds: torrents and calmer streams dwelling species. Guild definitions were strongly supported by SPL, whereas slope, which is commonly used in stream-associated habitat, had a weak explanatory power. Moreover, slope measures are non-standardized across studies and are difficult to assess at small scale. We argue that including an acoustic descriptor will improve habitat-species analyses for many acoustically active taxa. SPL integrates habitat topology and temporal information (such as weather and hour of the day, for example) and is a simple and precise measure. We suggest that habitat description in animal ecology should include an acoustic measure such as noise level because it may explain previously misunderstood distribution patterns. PMID:24205070

  6. Assessing the accuracy and stability of variable selection ...

    EPA Pesticide Factsheets

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used, or stepwise procedures are employed which iteratively add/remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating dataset consists of the good/poor condition of n=1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p=212) of landscape features from the StreamCat dataset. Two types of RF models are compared: a full variable set model with all 212 predictors, and a reduced variable set model selected using a backwards elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors, and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substanti

  7. Validating alternative methodologies to estimate the hydrological regime of temporary streams when flow data are unavailable

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Gallart, Francesc; Latron, Jérôme; Cid, Núria; Rieradevall, Maria; Prat, Narcís

    2016-04-01

    Aquatic life in temporary streams is strongly conditioned by the temporal variability of the hydrological conditions that control the occurrence and connectivity of diverse mesohabitats. In this context, the software TREHS (Temporary Rivers' Ecological and Hydrological Status) has been developed, in the framework of the LIFE Trivers project, to help managers for adequately implement the Water Framework Directive in this type of water bodies. TREHS, using the methodology described in Gallart et al (2012), defines six temporal 'aquatic states', based on the hydrological conditions representing different mesohabitats, for a given reach at a particular moment. Nevertheless, hydrological data for assessing the regime of temporary streams are often non-existent or scarce. The scarcity of flow data makes frequently impossible the characterization of temporary streams hydrological regimes and, as a consequence, the selection of the correct periods and methods to determine their ecological status. Because of its qualitative nature, the TREHS approach allows the use of alternative methodologies to assess the regime of temporary streams in the lack of observed flow data. However, to adapt the TREHS to this qualitative data both the temporal scheme (from monthly to seasonal) as well as the number of aquatic states (from 6 to 3) have been modified. Two alternatives complementary methodologies were tested within the TREHS framework to assess the regime of temporary streams: interviews and aerial photographs. All the gauging stations (13) belonging to the Catalan Internal Catchments (NE, Spain) with recurrent zero flows periods were selected to validate both methodologies. On one hand, non-structured interviews were carried out to inhabitants of villages and small towns near the gauging stations. Flow permanence metrics for input into TREHS were drawn from the notes taken during the interviews. On the other hand, the historical series of available aerial photographs (typically 10) were examined. In this case, flow permanence metrics were estimated as the proportion of photographs presenting stream flow. Results indicate that for streams being more than 25% of the time dry, interviews systematically underestimated flow, but the qualitative information given by inhabitants was of great interest to understand river dynamics. On the other hand, the use of aerial photographs gave a good estimation of flow permanence, but the seasonality was conditioned to the capture date of the aerial photographs. For these reasons, we recommend to use both methodologies together.

  8. MONITORING STREAM CONDITION IN THE WESTERN UNITED STATES

    EPA Science Inventory


    The U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program (EMAP) is a national research program to develop the tools necessary to monitor and assess the- status and trends of ecological resources. EMAP's goal is to develop the scientific underst...

  9. Flow effects on benthic stream invertebrates and ecological processes

    NASA Astrophysics Data System (ADS)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what is not enough to make a shelter for stream invertebrates. It serves as a shelter only for microorganisms, but the stream invertebrates have to avoid the swift flow or adapt to flow with adaptations described above. To understand what conditions are subject to aquatic organisms and how to adapt, it is essential. Both, knowledge of fluid dynamics in natural watercourses and ecology are needed to understand to what conditions the stream invertebrates are exposed and how they cope with them. Some investigations of near bed flow will be performed on the Glinšica stream. The acoustic Doppler velocimeter SonTek will be adapted to measure so close to the bed as possible. It is expected we should be able to measure the velocities just 0,5 cm above the bed surface. We intend to measure the velocities on a natural and on a regulated reach and then compare the results.

  10. Juvenile coho salmon growth and health in streams across an urbanization gradient

    USGS Publications Warehouse

    Spanjer, Andrew R.; Moran, Patrick W.; Larsen, Kimberly; Wetzel, Lisa; Hansen, Adam G.; Beauchamp, David A.

    2018-01-01

    Expanding human population and urbanization alters freshwater systems through structural changes to habitat, temperature effects from increased runoff and reduced canopy cover, altered flows, and increased toxicants. Current stream assessments stop short of measuring health or condition of species utilizing these freshwater habitats and fail to link specific stressors mechanistically to the health of organisms in the stream. Juvenile fish growth integrates both external and internal conditions providing a useful indicator of habitat quality and ecosystem health. Thus, there is a need to account for ecological and environmental influences on fish growth accurately. Bioenergetics models can simulate changes in growth and consumption in response to environmental conditions and food availability to account for interactions between an organism's environmental experience and utilization of available resources. The bioenergetics approach accounts for how thermal regime, food supply, and food quality affect fish growth. This study used a bioenergetics modeling approach to evaluate the environmental factors influencing juvenile coho salmon growth among ten Pacific Northwest streams spanning an urban gradient. Urban streams tended to be warmer, have earlier emergence dates and stronger early season growth. However, fish in urban streams experienced increased stress through lower growth efficiencies, especially later in the summer as temperatures warmed, with as much as a 16.6% reduction when compared to fish from other streams. Bioenergetics modeling successfully characterized salmonid growth in small perennial streams as part of a more extensive monitoring program and provides a powerful assessment tool for characterizing mixed life-stage specific responses in urban streams.

  11. Hydrologic connectivity in the McMurdo Dry Valleys of Antarctica: System function and changes over two decades

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Gooseff, M. N.; Bernzott, E. D.; McKnight, D. M.; Jaros, C.; Lyons, W.

    2013-12-01

    The McMurdo Dry Valleys of Antarctica is one of the coldest (average annual air temperature of -18°C) and driest (<10cm water equivalent of precip per year) places on earth. Despite the harsh climatic conditions of this landscape, a thriving microbial and invertebrate ecosystem exists, but is limited by the availability of liquid water. So, it is important to quantify temporal and spatial dynamics of hydrologic and ecological connections in the McMurdo Dry Valleys. Intermittent glacial meltwater streams connect glaciers to closed basin lakes and compose the most prominent hydrologic nexus in the valleys. This study uses of 20+ years of stream temperature, electrical conductivity (EC), and discharge data to enhance our quantitative understanding of the temporal dynamics of hydrologic connections along the glacier-stream-lake continuum. Annually, streamflow occurs for a relatively brief 10-12 week period of the austral summer. Longer streams are more prone to intermittent dry periods during the flow season, making for a harsher ecological environment than shorter streams. Diurnal streamflow variation occurs primarily as a result of changing solar postion relative to the source-glacier surfaces. Therfore, different streams predictably experience high flows and low flows at different times of the day. Electrical conductivity also exhibits diel variations, but the nature of EC-discharge relationships differs among streams throughout the valley. Longer streams have higher EC values and lower discharges than shorter streams, suggesting that hyporheic zones act as a significant solute source and hydrologic reservoir along longer streams. Water temperatures are consistently warmer in longer streams, relative to shorter streams, likely due to prolonged exposure to incident radiation with longer surface water residence times. Inter-annually, several shorter streams in the region show significant increases in Q10, Q30, Q50, Q70, Q90, and/or Q100 flows across the 20+ year record, indicating a long-term non-stationarity in hydrologic system dynamics. The tight coupling between surface waters and the glacier surface energy balance bring forth remarkably consistent hydrologic patterns on the daily and annual timescales, providing a model system for understanding fundamental hydro-ecological connectivity. We are beginning to understand long-term inter-annual changes in hydrologic connections in this thermodynamically sensitive landscape, with the aid of well-maintained long-term data sets.

  12. Establishing reference conditions for streams and measuring ecological responses to management actions using aquatic invertebrate biological assessments

    Treesearch

    David Herbst

    2004-01-01

    The Sierra Nevada Ecosystem Project provided the first comprehensive status report on the condition and history of natural resources of this mountain region (Centers for Water and Wildland Resources 1996). The report concluded that aquatic habitats were the most altered and impaired ecosystems, after exposure of Sierra watersheds to 150 years of landscape changes...

  13. Pre-restoration Assessment, Big Sunflower River, Mississippi: Where to Begin?

    USDA-ARS?s Scientific Manuscript database

    The Big Sunflower River in northwestern Mississippi drains about 8,000 km2, is a low-gradient slowly-moving stream, and has historically provided a valuable ecological, navigational and recreational resource. However, present conditions are characterized by depauperate physical habitat, depressed b...

  14. [Research advances in macroinvertebrate ecology of the stream hyporheic zone].

    PubMed

    Zhang, Yue-Wei; Yuan, Xing-Zhong; Liu, Hong; Ren, Hai-Qing

    2014-11-01

    The stream hyporheic zone is an ecotone of surface water-ground water interactions, which is rich in biodiversity, and is an important component of stream ecosystem. The macroinvertebrates, which are at the top of food webs in the hyporheic zone to directly influence the matter and energy dynamics of the hyporheic zone, and are potential indicators of river ecological health to adjust the function of environment purification and ecological buffer. The macroinvertebrates in the hyporheic zone are divided into three categories: stygoxenes, stygophiles and stygobites. The key factors which influenced macroinvertebrates distribution in the hyporheic zone are physical size of interstitial spaces, interstitial current velocity, dissolved oxygen (DO), water temperature, available organic matter, hydraulic conductivity and hydraulic retention time. A suitable sampling method should be used for diverse research purposes in the special ecological interface. In the future, some necessary researches should focus on the life-history and life history strategy of the macroinvertebrates in the hyporheic zone, the quantitative analysis on the matter and energy dynamics in the ecological system of stream, the assessment systems of river ecological health based on the macroinvertebrates of the stream hyporheic zone, and the ecological significance of the hyporheic zone as a refuge for distribution and evolution of the macroinvertebrates.

  15. Local adaptation in Trinidadian guppies alters stream ecosystem structure at landscape scales despite high environmental variability

    USGS Publications Warehouse

    Simon, Troy N.; Bassar, Ronald D.; Binderup, Andrew J.; Flecker, Alex S.; Freeman, Mary C.; Gilliam, James F.; Marshall, Michael C.; Thomas, Steve A.; Travis, Joseph; Reznick, David N.; Pringle, Catherine M.

    2017-01-01

    While previous studies have shown that evolutionary divergence alters ecological processes in small-scale experiments, a major challenge is to assess whether such evolutionary effects are important in natural ecosystems at larger spatial scales. At the landscape scale, across eight streams in the Caroni drainage, we found that the presence of locally adapted populations of guppies (Poecilia reticulata) is associated with reduced algal biomass and increased invertebrate biomass, while the opposite trends were true in streams with experimentally introduced populations of non-locally adapted guppies. Exclusion experiments conducted in two separate reaches of a single stream showed that guppies with locally adapted phenotypes significantly reduced algae with no effect on invertebrates, while non-adapted guppies had no effect on algae but significantly reduced invertebrates. These divergent effects of phenotype on stream ecosystems are comparable in strength to the effects of abiotic factors (e.g., light) known to be important drivers of ecosystem condition. They also corroborate the results of previous experiments conducted in artificial streams. Our results demonstrate that local adaptation can produce phenotypes with significantly different effects in natural ecosystems at a landscape scale, within a tropical watershed, despite high variability in abiotic factors: five of the seven physical and chemical parameters measured across the eight study streams varied by more than one order of magnitude. Our findings suggest that ecosystem structure is, in part, an evolutionary product and not simply an ecological pattern.

  16. Ecological health in the Nation's streams

    USGS Publications Warehouse

    Carlisle, Daren M.; Woodside, Michael D.

    2013-01-01

    Aquatic biological communities, which are collections of organisms, are a direct measure of stream health because they indicate the ability of a stream to support life. This fact sheet highlights selected findings of a national assessment of stream health by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The assessment was unique in that it integrated the condition of three biological communities—algae, macroinvertebrates, and fish—as well as measures of streamflow modification, pesticides, nutrients, and other factors. At least one biological community was altered at 83 percent of assessed streams, and the occurrence of altered communities was highest in urban streams. Streamflows were modified at 86 percent of assessed streams, and increasing severity of streamflow modification was associated with increased occurrence of altered biological communities. Agricultural and urban land use in watersheds may contribute pesticides and nutrients to stream waters, and increasing concentrations of these chemicals were associated with increased occurrence of altered biological communities.

  17. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams.

    PubMed

    Schuwirth, Nele; Reichert, Peter

    2013-02-01

    For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.

  18. Water quality and ecological condition of urban streams in Independence, Missouri, June 2005 through December 2008

    USGS Publications Warehouse

    Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.

    2010-01-01

    To identify the sources of selected constituents in urban streams and better understand processes affecting water quality and their effects on the ecological condition of urban streams and the Little Blue River in Independence, Missouri the U.S. Geological Survey in cooperation with the City of Independence Water Pollution Control Department initiated a study in June 2005 to characterize water quality and evaluate the ecological condition of streams within Independence. Base-flow and stormflow samples collected from five sites within Independence, from June 2005 to December 2008, were used to characterize the physical, chemical, and biologic effects of storm runoff on the water quality in Independence streams and the Little Blue River. The streams draining Independence-Rock Creek, Sugar Creek, Mill Creek, Fire Prairie Creek, and the Little Blue River-drain to the north and the Missouri River. Two small predominantly urban streams, Crackerneck Creek [12.9-square kilometer (km2) basin] and Spring Branch Creek (25.4-km2 basin), were monitored that enter into the Little Blue River between upstream and downstream monitoring sites. The Little Blue River above the upstream site is regulated by several reservoirs, but streamflow is largely uncontrolled. The Little Blue River Basin encompasses 585 km2 with about 168 km2 or 29 percent of the basin lying within the city limits of Independence. Water-quality samples also were collected for Rock Creek (24.1-km2 basin) that drains the western part of Independence. Data collection included streamflow, physical properties, dissolved oxygen, chloride, metals, nutrients, common organic micro-constituents, and fecal indicator bacteria. Benthic macroinvertebrate community surveys and habitat assessments were conducted to establish a baseline for evaluating the ecological condition and health of streams within Independence. Additional dry-weather screenings during base flow of all streams draining Independence were conducted to identify point-source discharges and other sources of potential contamination. Regression models were used to estimate continuous and annual flow-weighted concentrations, loadings, and yields for chloride, total nitrogen, total phosphorus, suspended sediment, and Escherichia coli bacteria densities. Base-flow and stormflow water-quality samples were collected at five sites within Independence. Base-flow samples for Rock Creek and two tributary streams to the Little Blue River exceeded recommended U.S. Environmental Protection Agency standards for the protection of aquatic life for total nitrogen and total phosphorus in about 90 percent of samples, whereas samples collected at two Little Blue River sites exceeded both the total nitrogen and total phosphorus standards less often, about 30 percent of the time. Dry-weather screening identified a relatively small number (14.0 percent of all analyses) of potential point-source discharges for total chlorine, phenols, and anionic surfactants. Stormflow had larger median measured concentrations of total common organic micro-constituents than base flow. The four categories of common organic micro-constituents with the most total detections in stormflow were pesticides (100 percent), polyaromatic hydrocarbons and combustion by-products (99 percent), plastics (93 percent), and stimulants (91 percent). Most detections of common organic micro-constituents were less than 2 micrograms per liter. Median instantaneous Escherichia coli densities for stormflow samples showed a 21 percent increase measured at the downstream site on the Little Blue River from the sampled upstream site. Using microbial source-tracking methods, less than 30 percent of Escherichia coli bacteria in samples were identified as having human sources. Base-flow and stormflow data were used to develop regression equations with streamflow and continuous water-quality data to estimate daily concentrations, loads, and yields of various water-quality contaminants.

  19. Sulfur and Nitrogen Deposition on Ecosystems in the United States

    EPA Science Inventory

    The ecological impacts of atmospheric sulfur and nitrogen deposition first gained attention in the United States in the early 1970s with reports of "acid rain" falling to earth, causing lakes and streams to become acidic and resulting in conditions that were unsuitable for repro...

  20. Natural Resource Considerations for Tactical Vehicle Training Areas.

    DTIC Science & Technology

    1981-06-01

    Farmland and Contruction Sites," Journal of Soil and Water Conservation, Vol 26, No. 5 (September-October 197M; and an examination of the published...especially if streams and streams that flow year-round. are intermittant. 5. The water or ecological value of 5. The water or ecological value of... ecological value of streams and ponds on or next to a proposed training area may be considered very good. Training activities near these water bodies would

  1. Classification of California streams using combined deductive and inductive approaches: Setting the foundation for analysis of hydrologic alteration

    USGS Publications Warehouse

    Pyne, Matthew I.; Carlisle, Daren M.; Konrad, Christopher P.; Stein, Eric D.

    2017-01-01

    Regional classification of streams is an early step in the Ecological Limits of Hydrologic Alteration framework. Many stream classifications are based on an inductive approach using hydrologic data from minimally disturbed basins, but this approach may underrepresent streams from heavily disturbed basins or sparsely gaged arid regions. An alternative is a deductive approach, using watershed climate, land use, and geomorphology to classify streams, but this approach may miss important hydrological characteristics of streams. We classified all stream reaches in California using both approaches. First, we used Bayesian and hierarchical clustering to classify reaches according to watershed characteristics. Streams were clustered into seven classes according to elevation, sedimentary rock, and winter precipitation. Permutation-based analysis of variance and random forest analyses were used to determine which hydrologic variables best separate streams into their respective classes. Stream typology (i.e., the class that a stream reach is assigned to) is shaped mainly by patterns of high and mean flow behavior within the stream's landscape context. Additionally, random forest was used to determine which hydrologic variables best separate minimally disturbed reference streams from non-reference streams in each of the seven classes. In contrast to stream typology, deviation from reference conditions is more difficult to detect and is largely defined by changes in low-flow variables, average daily flow, and duration of flow. Our combined deductive/inductive approach allows us to estimate flow under minimally disturbed conditions based on the deductive analysis and compare to measured flow based on the inductive analysis in order to estimate hydrologic change.

  2. Annotated Bibliography of Publications on Watershed Management and Ecological Studies at Coweeta Hydrologic Laboratory, 1934,1984

    Treesearch

    Julia W. Gaskin; James E. Douglass; Wayne T. Swank; [Compilers

    1984-01-01

    A collection of 470 citations and annotations for papers published by scientists associated with theCoweeta Hydrologic Laboratory. Major categories in a subject index include watershed management, hydrometeorology, plant-water relationships, soil relationships, stream-flow relationships, ground water, stream ecology, and terrestrial ecology.

  3. A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminata in oligotrophic streams

    NASA Astrophysics Data System (ADS)

    Cullis, James D. S.; Gillis, Carole-Anne; Bothwell, Max L.; Kilroy, Cathy; Packman, Aaron; Hassan, Marwan

    2012-06-01

    The benthic, mat-forming diatomDidymosphenia geminata has the unique ability to produce large amounts of algal biomass under oligotrophic conditions in cold, fast flowing streams and rivers. This presents an ecological paradox that challenges our current understanding of stream ecosystem dynamics. Our understanding of the drivers of D. geminata ecology is still limited. Here we present a conceptual model for the blooming behavior and persistence of this species to advance scientific understanding of strategies for life in fast flowing oligotrophic waters and support the design of future research and mitigation measures for nuisance algal blooms. The conceptual model is based on a synthesis of data and ideas from a range of disciplines including hydrology, geomorphology, biogeochemistry, and ecology. The conceptual model highlights the role of water chemistry, river morphology, and flow thresholds in defining the habitat window for D. geminata. We propose that bed disturbance is a primary control on accumulation and persistence of D. geminataand that the removal threshold can be determined by synthesizing site-specific information on hydrology and geomorphology. Further, we propose that a key to understanding the didymo paradox is the separation of cellular reproduction and mat morphology with specific controls acting in respect of the different processes.

  4. Effective discharge analysis of ecological processes in streams

    USGS Publications Warehouse

    Doyle, Martin W.; Stanley, Emily H.; Strayer, David L.; Jacobson, Robert B.; Schmidt, John C.

    2005-01-01

    Discharge is a master variable that controls many processes in stream ecosystems. However, there is uncertainty of which discharges are most important for driving particular ecological processes and thus how flow regime may influence entire stream ecosystems. Here the analytical method of effective discharge from fluvial geomorphology is used to analyze the interaction between frequency and magnitude of discharge events that drive organic matter transport, algal growth, nutrient retention, macroinvertebrate disturbance, and habitat availability. We quantify the ecological effective discharge using a synthesis of previously published studies and modeling from a range of study sites. An analytical expression is then developed for a particular case of ecological effective discharge and is used to explore how effective discharge varies within variable hydrologic regimes. Our results suggest that a range of discharges is important for different ecological processes in an individual stream. Discharges are not equally important; instead, effective discharge values exist that correspond to near modal flows and moderate floods for the variable sets examined. We suggest four types of ecological response to discharge variability: discharge as a transport mechanism, regulator of habitat, process modulator, and disturbance. Effective discharge analysis will perform well when there is a unique, essentially instantaneous relationship between discharge and an ecological process and poorly when effects of discharge are delayed or confounded by legacy effects. Despite some limitations the conceptual and analytical utility of the effective discharge analysis allows exploring general questions about how hydrologic variability influences various ecological processes in streams.

  5. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA

    EPA Science Inventory

    Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, U...

  6. SPATIAL PATTERN OF FUTURE VULNERABILITY OF STREAM EUTROPHICATION IN THE MID-ATLANTIC REGION OF THE UNITED STATES

    EPA Science Inventory

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the d...

  7. EFFECTS OF FLOW REGIME ON THE ECOLOGY OF EXPERIMENTAL CHANNELS SIMULATING PRE-DEVELOPMENT AND MANAGED POST-DEVELOPMENT CONDITIONS

    EPA Science Inventory

    Best management practices (BMPs) are placed in streams or watersheds to mitigate the effects of hydrological, chemical, or physical stressors resulting from anthropogenic activities. However, assessments of BMP effectiveness rarely consider the effects of BMP implementation on th...

  8. Application of a multipurpose unequal probability stream survey in the Mid-Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, S.W.; Olsen, A.R.; Pitchford, A.M.; Denver, J.M.

    2003-01-01

    A stratified, spatially balanced sample with unequal probability selection was used to design a multipurpose survey of headwater streams in the Mid-Atlantic Coastal Plain. Objectives for the survey include unbiased estimates of regional stream conditions, and adequate coverage of unusual but significant environmental settings to support empirical modeling of the factors affecting those conditions. The design and field application of the survey are discussed in light of these multiple objectives. A probability (random) sample of 175 first-order nontidal streams was selected for synoptic sampling of water chemistry and benthic and riparian ecology during late winter and spring 2000. Twenty-five streams were selected within each of seven hydrogeologic subregions (strata) that were delineated on the basis of physiography and surficial geology. In each subregion, unequal inclusion probabilities were used to provide an approximately even distribution of streams along a gradient of forested to developed (agricultural or urban) land in the contributing watershed. Alternate streams were also selected. Alternates were included in groups of five in each subregion when field reconnaissance demonstrated that primary streams were inaccessible or otherwise unusable. Despite the rejection and replacement of a considerable number of primary streams during reconnaissance (up to 40 percent in one subregion), the desired land use distribution was maintained within each hydrogeologic subregion without sacrificing the probabilistic design.

  9. Summary of Environmental Monitoring and Assessment Program (EMAP) activities in South Dakota, 2000-2004

    USGS Publications Warehouse

    Heakin, Allen J.; Neitzert, Kathleen M.; Shearer, Jeffrey S.

    2006-01-01

    The U.S. Environmental Protection Agency (USEPA) initiated data-collection activities for the Environmental Monitoring and Assessment Program-West (EMAP-West) in South Dakota during 2000. The objectives of the study were to develop the monitoring tools necessary to produce unbiased estimates of the ecological condition of surface waters across a large geographic area of the western United States, and to demonstrate the effectiveness of those tools in a large-scale assessment. In 2001, the U.S. Geological Survey (USGS) and the South Dakota Department of Game, Fish and Parks (GF&P) established a cooperative agreement and assumed responsibility for completing the remaining assessments for the perennial, wadable streams of the EMAP-West in the State. Stream assessment sites were divided into two broad categories-the first category of sites was randomly selected and assigned by the USEPA for South Dakota. The second category consisted of sites that were specifically selected because they appeared to have reasonable potential for representing the best available physical, chemical, and biological conditions in the State. These sites comprise the second category of assessment sites and were called 'reference' sites and were selected following a detailed evaluation process. Candidate reference site data will serve as a standard or benchmark for assessing the overall ecological condition of the randomly selected sites. During 2000, the USEPA completed 22 statewide stream assessments in South Dakota. During 2001-2003, the USGS and GF&P completed another 42 stream assessments bringing the total of randomly selected stream assessments within South Dakota to 64. In addition, 18 repeat assessments designed to meet established quality-assurance/quality-control requirements were completed at 12 of these 64 sites. During 2002-2004, the USGS in cooperation with GF&P completed stream assessments at 45 candidate reference sites. Thus, 109 sites had stream assessments completed in South Dakota for EMAP-West (2000-2004). Relatively early in the EMAP-West stream-assessment process, it became apparent that for some streams in south-central South Dakota, in-stream conditions varied considerably over relatively short distances of only a few miles. These changes appeared to be a result of geomorphic changes associated with changes in the underlying geology. For these streams, moving stream assessment sites short distances upstream or downstream had the potential to provide substantially different bioassessment data. In order to obtain a better understanding of how geology influences stream conditions, two streams located in south-central South Dakota were chosen for multiple stream sampling at sites located along their longitudinal profile at points where notable changes in geomorphology were observed. Subsequently, three sites on Bear-in-the-Lodge Creek and three sites on Black Pipe Creek were selected for multiple stream sampling using EMAP-West protocols so that more could be learned about geologic influences on stream conditions. Values for dissolved oxygen and specific conductance generally increased from upstream to downstream locations on Bear-in-the-Lodge Creek. Values for pH and water temperature generally decreased from upstream to downstream locations. Decreasing water temperature could be indicative of ground-water inflows. Values for dissolved oxygen, pH, and water temperature generally increased from upstream to downstream locations on Black Pipe Creek. The increase in temperature at the lower sites is a result of less dense riparian cover, and the warmer water also could account for the lower concentrations of dissolved oxygen found in the lower reaches of Black Pipe Creek. Values for specific conductance were more than three times greater at the lower site (1,342 microsiemens per centimeter (?S/cm)) than at the upper site (434 ?S/cm). The increase probably occurs when the stream transitions from contacting the underlying Ar

  10. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    PubMed

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  11. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin.

    PubMed

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dry Valley streams in Antarctica: Ecosystems waiting for water

    USGS Publications Warehouse

    McKnight, Diane M.; Niyogi, D.K.; Alger, A.S.; Bomblies, A.; Conovitz, P.A.; Tate, C.M.

    1999-01-01

    An axiom of ecology is: 'Where there is water, there is life.' In dry valley ecosystems of Antarctica, this axiom can be extended to: 'Where there has been and will be water, there is life.' Stream communities in the dry valleys can withstand desiccation on an annual basis and also for longer periods - as much as decades or even centuries. These intact ecosystems, consisting primarily of cyanobacteria and eukaryotic algae, spring back to life with the return of water. Soil organisms in the dry valleys also have remarkable survival capabilities (Virginia and Wall 1999), emerging from dormancy with the arrival of water. Streams in the dry valleys carry meltwater from a glacier or ice-field source to the lakes on the valley floors and generally flow for 4-10 weeks during the summer, depending on climatic conditions. Many of these streams contain abundant algal mats that are perennial in the sense that they are in a freeze-dried state during the winter and begin growing again within minutes of becoming wetted by the first flow of the season. The algal species present in the streams are mainly filamentous cyanobacteria (approximately 20 species of the genera Phormidium, Oscillatoria, and Nostoc), two green algal species of the genus Prasiola, and numerous diatom taxa that are characteristic of soil habitats and polar regions. Algal abundances are greatest in those streams in which periglacial processes, acting over periods of perhaps a century, have produced a stable stone pavement in the streambed. This habitat results in a less turbulent flow regime and limits sediment scour from the streambed. Because dry valley glaciers advance and retreat over periods of centuries and millennia and stream networks in the dry valleys evolve through sediment deposition and transport, some of the currently inactive stream channels may receive flow again in the future. Insights- into the process of algal persistence and reactivation will come from long-term experiments that study the effects of reintroducing water flow to channels in which flow has not occurred for decades or centuries. The present work of the McMurdo Dry Valleys LTER has led us to conclude that the legacy of past conditions constitutes a dominant influence on present-day ecosystem structure and function in the dry valleys (Moorhead et al. 1999). For example, Virginia-and Wall (1999) have found that soil nematodes are partly sustained by relict organic carbon from algae that grew during the high lake stands of 8000-10,000 years ago. Similarly, the growth of current algal populations in the lakes of the dry valleys is supported by diffusion of nutrients from relict nutrient pools in the deep bottom waters (Priscu et al. 1999). For the stream ecosystems, abundant algal mats are present in channels that have stable stone pavements, which formed through freeze-thaw cycles occurring over long periods, possibly hundreds of years. We hypothesize that these stone pavements are an important ecological legacy permitting the successful 'waiting for water' strategy. Similarly, the biodiversity of algal species that can survive the harsh conditions in the streams of the dry valleys may be stable for centuries or more, representing a second important ecological legacy.

  13. Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-12-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in air temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitats in freshwater systems is critical for predicting aquatic species' responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore the spatially and temporally varying changes in stream temperature for the late 21st century at the subbasin and ecological province scale for the Columbia River basin (CRB). On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil water flow, and groundwater inflow, are negatively correlated to increases in stream temperature depending on the ecological province and season. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa.

  14. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-06-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled General Circulation Model outputs to explore the spatially and temporally varying changes in stream temperature at the subbasin and ecological province scale for the Columbia River Basin. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil flow, and groundwater, are negatively correlated to increases in stream temperature depending on the season and ecological province. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by non-migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically-explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa.

  15. Caspar Creek ecology project: annual report, 1967-68

    Treesearch

    John W. DeWitt

    1968-01-01

    Two summers of calibration of the north and south fork Caspar Creek stream ecology study areas were completed in 1967. Clearing for logging road construction in the south fork watershed began in May, 1957. Bulldozer operations first reached the stream itself in July. Some calibration determinations were made during the period of road construction and stream clearance...

  16. Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments.

    PubMed

    Stubbington, Rachel; Chadd, Richard; Cid, Núria; Csabai, Zoltán; Miliša, Marko; Morais, Manuela; Munné, Antoni; Pařil, Petr; Pešić, Vladimir; Tziortzis, Iakovos; Verdonschot, Ralf C M; Datry, Thibault

    2018-03-15

    Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status. We report the results of a survey completed by representatives from 20 European countries to identify current challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that distinguish between contrasting IRES; 3. difficulties in defining the 'reference conditions' that represent unimpacted dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities. Despite these challenges, we recognize examples of innovative practice that can inform modification of current biomonitoring activity to promote effective IRES status classification. Priorities for future research include reconceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community composition, and modification of indices of ecosystem health to recognize both taxon-specific sensitivities to intermittence and dispersal abilities, within a landscape context. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.

    PubMed

    Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H

    2017-07-01

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.

  18. Dam operations may improve aquatic habitat and offset negative effects of climate change.

    PubMed

    Benjankar, Rohan; Tonina, Daniele; McKean, James A; Sohrabi, Mohammad M; Chen, Quiwen; Vidergar, Dmitri

    2018-05-01

    Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The consequences of landscape change on ecological resources: An assessment of the United States mid-Atlantic region, 1973-1993

    USGS Publications Warehouse

    Jones, K.B.; Neale, A.C.; Wade, T.G.; Wickham, J.D.; Cross, C.L.; Edmonds, C.M.; Loveland, Thomas R.; Nash, M.S.; Riitters, K.H.; Smith, E.R.

    2001-01-01

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have proven to be too costly and too inconsistent in their application to make estimates of ecological conditions over large areas. New spatial data derived from satellite imagery and other sources, the development of statistical models relating landscape composition and pattern to ecological endpoints, and geographic information systems (GIS) make it possible to evaluate ecological conditions at multiple scales over broad geographic regions. In this study, we demonstrate the application of spatially distributed models for bird habitat quality and nitrogen yield to streams to assess the consequences of landcover change across the mid-Atlantic region between the 1970s and 1990s. Moreover, we present a way to evaluate spatial concordance between models related to different environmental endpoints. Results of this study should help environmental managers in the mid-Atlantic region target those areas in need of conservation and protection.

  20. Comparisons of fish species traits from small streams to large rivers

    USGS Publications Warehouse

    Goldstein, R.M.; Meador, M.R.

    2004-01-01

    To examine the relations between fish community function and stream size, we classified 429 lotic freshwater fish species based on multiple categories within six species traits: (1) substrate preference, (2) geomorphic preference, (3) trophic ecology, (4) locomotion morphology, (5) reproductive strategy, and (6) stream size preference. Stream size categories included small streams, small, medium, and large rivers, and no size preference. The frequencies of each species trait category were determined for each stream size category based on life history information from the literature. Cluster analysis revealed the presence of covarying groups of species trait categories. One cluster (RUN) included the traits of planktivore and herbivore feeding ecology, migratory reproductive behavior and broadcast spawning, preferences for main-channel habitats, and a lack of preferences for substrate type. The frequencies of classifications for the RUN cluster varied significantly across stream size categories (P = 0.009), being greater for large rivers than for small streams and rivers. Another cluster (RIFFLE) included the traits of invertivore feeding ecology, simple nester reproductive behavior, a preference for riffles, and a preference for bedrock, boulder, and cobble-rubble substrate. No significant differences in the frequency of classifications among stream size categories were detected for the RIFFLE cluster (P = 0.328). Our results suggest that fish community function is structured by large-scale differences in habitat and is different for large rivers than for small streams and rivers. Our findings support theoretical predictions of variation in species traits among stream reaches based on ecological frameworks such as landscape filters, habitat templates, and the river continuum concept. We believe that the species trait classifications presented here provide an opportunity for further examination of fish species' relations to physical, chemical, and biological factors in lotic habitats ranging from small streams to large rivers.

  1. Rehabilitating agricultural streams in Australia with wood: a review.

    PubMed

    Lester, Rebecca E; Boulton, Andrew J

    2008-08-01

    Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.

  2. A global review on the influence of beavers (Castor fiber, Castor canadensis) on river and floodplain dynamics

    NASA Astrophysics Data System (ADS)

    Larsen, Annegret; Lane, Stuart; Larsen, Joshua

    2017-04-01

    Beavers (Castor fiber, Castor canadensis) have the ability to actively engineer their habitat, which they can do most effectively in lower order streams and their floodplains. Hence, this engineering has the potential to alter the hydrology, geomorphology, biogeochemistry, and ecology of river systems and the feedbacks between them. Thus, the beaver is often referred to as an 'ecosystem engineer' and is reflected in their recognition as a key species when restoring ecosystems. This capacity to engineer low order streams also shapes a range of positive and negative perceptions on their influence. On the one hand they may be perceived as capable of undermining existing river engineering schemes and the land use of associated floodplains, and on the other hand beavers may provide an alternative to traditional 'hard' engineering, potentially improving river restoration success. The aim of this review is to summarize research to date on the impacts of beavers on stream and floodplain hydrology, geomorphology, water-quality and ecology, and the feedbacks between them. Our review shows that: (1) research has been focused heavily on North American streams, with far less research outside this North American context; (2) there is a tendency to investigate beaver impacts from the perspective of individual disciplines, to the detriment of considering broader process feedbacks, notably at the interface of hydro-geomorphology and riparian ecology; (3) it remains unclear to which extent beavers genuinely engineered streams prior to human impact, pointing to the need for longer term (millennium scale) studies on how beavers have changed river-floodplain systems. Crucially, we conclude that the investigation of the effects of beavers on streams and floodplains, especially in a longer-term, and their use for river restoration can only be understood through the thorough investigation of antecedent hydro-geomorphic conditions which takes account of the ways in which beavers and humans have interacted together over many centuries.

  3. QUANTIFYING THE REGIONAL EFFECTS OF MINE DRAINAGE ON STREAM ECOLOGICAL CONDITION IN THE COLORADO ROCKIES FROM PROBABILITY SURVEY DATA

    EPA Science Inventory

    Runoff from both active and inactive metal mining has contaminated waters and sediments in the Southern Rockies Ecoregion. In 1994 and 1995, as part of its Regional Environmental Monitoring and Assessment Program (REMAP), the USEPA conducted a probability survey of wadeable stre...

  4. Developing management strategies for riparian areas.

    Treesearch

    D.E. Hibbs; S. Chan

    2001-01-01

    This talk outlines four principles that are critical to successful management of a riparian area. First, given problems both with defining historic conditions and with returning to them, attaining management goals based on restoration of ecological processes and functions will be far more successful. Second, the management goals for any stream reach must be placed in a...

  5. AN ECOLOGICAL ASSESSMENT OF WESTERN STREAMS AND RIVERS

    EPA Science Inventory

    In the 30 years since the passage of the Clean Water Act, Congress, the American Public and other interest parties have been asking the U.S. Environmental Protection Agency to describe the condition of the waters in the U.S. They want to know if there is a problem, how big the pr...

  6. Ecological Condition of Streams in Eastern and Southern NevadaEPA R-EMAP Muddy-Virgin River Project

    EPA Science Inventory

    The report presents data collected during a one year study period beginning in May of 2000. Sampling sites were selected using a probability-based design (as opposed to subjectively selected sites) using the USEPA River Reach File version 3 (RF3). About 37 sites were sampled. ...

  7. An ecological assessment of a bridge demolition.

    DOT National Transportation Integrated Search

    1975-01-01

    Bridge demolition has long been known to mobilize large amounts of stream sediment in the immediate area of the structure. An ecological assessment in terms of stream macroinvertebrate samples and suspended solids measurements was made shortly before...

  8. Direct and indirect effects of multiple stressors on stream invertebrates across watershed, reach and site scales: A structural equation modelling better informing on hydromorphological impacts.

    PubMed

    Villeneuve, B; Piffady, J; Valette, L; Souchon, Y; Usseglio-Polatera, P

    2018-01-15

    The purpose of our approach was to take into account the nested spatial scales driving stream functioning in the description of pressures/ecological status links by analysing the results of a hierarchical model. The development of this model has allowed us to answer the following questions: Does the consideration of the indirect links between anthropogenic pressures and stream ecological status modify the hierarchy of pressure types impacting benthic invertebrates? Do the different nested scales play different roles in the anthropogenic pressures/ecological status relationship? Does this model lead to better understanding of the specific role of hydromorphology in the evaluation of stream ecological status? To achieve that goal, we used the Partial Least Square (PLS) path modelling method to develop a structural model linking variables describing (i) land use and hydromorphological alterations at the watershed scale, (ii) hydromorphological alterations at the reach scale, (iii) nutrients-organic matter contamination levels at the site scale, and (iv) substrate characteristics at the sampling site scale, to explain variation in values of a macroinvertebrate-based multimetric index: the French I 2 M 2 . We have highlighted the importance of land use effects exerted on both hydromorphological and chemical characteristics of streams observed at finer scales and their subsequent indirect impact on stream ecological status. Hydromorphological alterations have an effect on the substrate mosaic structure and on the concentrations of nutrients and organic matter at site scale. This result implies that stream hydromorphology can have a major indirect effect on macroinvertebrate assemblages and that the hierarchy of impacts of anthropogenic pressures on stream ecological status generally described in the literature - often determining strategic restoration priorities - has to be re-examined. Finally, the effects of nutrients and organic matter on macroinvertebrate assemblages are lower than expected when all the indirect effects of land use and hydromorphological alterations are taken into account. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High nitrate concentrations in some Midwest United States streams in 2013 after the 2012 drought

    USGS Publications Warehouse

    Van Metre, Peter C.; Frey, Jeffrey W.; Musgrove, MaryLynn; Nakagaki, Naomi; Qi, Sharon L.; Mahler, Barbara J.; Wieczorek, Michael; Button, Daniel T.

    2016-01-01

    Nitrogen sources in the Mississippi River basin have been linked to degradation of stream ecology and to Gulf of Mexico hypoxia. In 2013, the USGS and the USEPA characterized water quality stressors and ecological conditions in 100 wadeable streams across the midwestern United States. Wet conditions in 2013 followed a severe drought in 2012, a weather pattern associated with elevated nitrogen concentrations and loads in streams. Nitrate concentrations during the May to August 2013 sampling period ranged from <0.04 to 41.8 mg L−1 as N (mean, 5.31 mg L−1). Observed mean May to June nitrate concentrations at the 100 sites were compared with May to June concentrations predicted from a regression model developed using historical nitrate data. Observed concentrations for 17 sites, centered on Iowa and southern Minnesota, were outside the 95% confidence interval of the regression-predicted mean, indicating that they were anomalously high. The sites with a nitrate anomaly had significantly higher May to June nitrate concentrations than sites without an anomaly (means, 19.8 and 3.6 mg L−1, respectively) and had higher antecedent precipitation indices, a measure of the departure from normal precipitation, in 2012 and 2013. Correlations between nitrate concentrations and watershed characteristics and nitrogen and oxygen isotopes of nitrate indicated that fertilizer and manure used in crop production, principally corn, were the dominant sources of nitrate. The anomalously high nitrate levels in parts of the Midwest in 2013 coincide with reported higher-than-normal nitrate loads in the Mississippi River.

  10. Quantitative assessment of the relationships among ecological, morphological and aesthetic values in a river rehabilitation initiative.

    PubMed

    McCormick, Ashlee; Fisher, Karen; Brierley, Gary

    2015-04-15

    Promoting community support in rehabilitation efforts through incorporation of aesthetic considerations is an important component of environmental management. This research utilised a small-scale survey methodology to explore relationships among the ecological and morphological goals of scientists and the aesthetic goals of the public using the Twin Streams Catchment, Auckland, New Zealand, as a case study. Analyses using a linear model and a generalised linear mixed model showed statistically significant relationships between perceived naturalness of landscapes and their aesthetic ratings, and among ratings of perceived naturalness and ecological integrity and morphological condition. Expert measures of health and the aesthetic evaluations of the public were well aligned, indicating public preferences for landscapes of high ecological integrity with good morphological condition. Further analysis revealed participants used 'cues to care' to rate naturalness. This suggests that environmental education endeavours could further align values with these cues in efforts to enhance approaches to landscape sustainability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. High rates of organic carbon processing in the hyporheic zone of intermittent streams.

    PubMed

    Burrows, Ryan M; Rutlidge, Helen; Bond, Nick R; Eberhard, Stefan M; Auhl, Alexandra; Andersen, Martin S; Valdez, Dominic G; Kennard, Mark J

    2017-10-16

    Organic carbon cycling is a fundamental process that underpins energy transfer through the biosphere. However, little is known about the rates of particulate organic carbon processing in the hyporheic zone of intermittent streams, which is often the only wetted environment remaining when surface flows cease. We used leaf litter and cotton decomposition assays, as well as rates of microbial respiration, to quantify rates of organic carbon processing in surface and hyporheic environments of intermittent and perennial streams under a range of substrate saturation conditions. Leaf litter processing was 48% greater, and cotton processing 124% greater, in the hyporheic zone compared to surface environments when calculated over multiple substrate saturation conditions. Processing was also greater in more saturated surface environments (i.e. pools). Further, rates of microbial respiration on incubated substrates in the hyporheic zone were similar to, or greater than, rates in surface environments. Our results highlight that intermittent streams are important locations for particulate organic carbon processing and that the hyporheic zone sustains this fundamental process even without surface flow. Not accounting for carbon processing in the hyporheic zone of intermittent streams may lead to an underestimation of its local ecological significance and collective contribution to landscape carbon processes.

  12. Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates

    PubMed Central

    Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.

    2012-01-01

    Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242

  13. Combining multiple approaches and optimized data resolution for an improved understanding of stream temperature dynamics of a forested headwater basin in the Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.

    2017-12-01

    Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (<0.1°C) were needed to adequately describe diel stream temperature patterns and capture the differences between paired 1st order and 4th order forest streams draining north and south facing slopes. This finding along with geospatial models of subcanopy solar radiation and channel morphology were used to develop hypotheses and guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.

  14. Multi-scale assessment of human-induced changes to ...

    EPA Pesticide Factsheets

    Context: Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.Objectives: Determine the degree to which physical and chemical characteristics of the instream habitat of low-order Amazonian streams change in response to past local- and catchment-level anthropogenic disturbances. Methods: To do so, we collected field instream habitat (i.e., physical habitat and water quality) and landscape data from 99 stream sites in two eastern Brazilian Amazon regions. We used random forest regression trees to assess the relative importance of different predictor variables in determining changes in instream habitat response variables. Adaptations the USEPA’s National Aquatic Resource Survey (NARS) designs, field methods, and approaches for assessing ecological condition have been applied in state and basin stream surveys throughout the U.S., and also in countries outside of the U.S. These applications not only provide valuable tests of the NARS approaches, but generate new understandings of natural and anthropogenic controls on biota and physical habitat in streams. Results from applications in Brazil, for example, not only aid interpretation of the condition of Brazilian streams, but also refine approaches for interpreting aquatic resource surveys in the U.S. and elsewhere. In this article, the authors des

  15. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    PubMed

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.

  16. A perspective on stream-catchment connections

    USGS Publications Warehouse

    Bencala, Kenneth E.

    1993-01-01

    Ecological study of the hyporheic zone is leading to recognition of a need for additional hydrologic understanding. Some of this understanding can be obtained by viewing the hyporheic zone as a succession of isolated boxes adjacent to the stream. Further understanding, particularly relevant to catchment-scale ecology, may come from studies focussed on the fluid mechanics of the flow-path connections between streams and their catchments.

  17. 78 FR 15012 - Request for Nominations of Experts for a Science Advisory Board Panel To Review EPA's Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... expertise in stream ecology or wetland ecology, particularly with respect to freshwater stream-wetland... address http://yosemite.epa.gov/sab/sabproduct.nsf/Web/ethics?OpenDocument . The approved policy under...

  18. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards

    USGS Publications Warehouse

    Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.

    2010-01-01

    The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the region are classified into a few distinctive flow regime types that are expected to have different ecological characteristics. These river types can be further subclassified according to important geomorphic features that define hydraulic habitat features. Third, the deviation of current-condition flows from baseline-condition flow is determined. Fourth, flow alteration-ecological response relationships are developed for each river type, based on a combination of existing hydroecological literature, expert knowledge and field studies across gradients of hydrologic alteration. 4. Scientific uncertainty will exist in the flow alteration-ecological response relationships, in part because of the confounding of hydrologic alteration with other important environmental determinants of river ecosystem condition (e.g. temperature). Application of the ELOHA framework should therefore occur in a consensus context where stakeholders and decision-makers explicitly evaluate acceptable risk as a balance between the perceived value of the ecological goals, the economic costs involved and the scientific uncertainties in functional relationships between ecological responses and flow alteration. 5. The ELOHA framework also should proceed in an adaptive management context, where collection of monitoring data or targeted field sampling data allows for testing of the proposed flow alteration-ecological response relationships. This empirical validation process allows for a fine-tuning of environmental flow management targets. The ELOHA framework can be used both to guide basic research in hydroecology and to further implementation of more comprehensive environmental flow management of freshwater sustainability on a global scale. ?? 2009 Blackwell Publishing Ltd.

  19. Ecological Model to Predict Potential Habitats of Oncomelania hupensis, the Intermediate Host of Schistosoma japonicum in the Mountainous Regions, China.

    PubMed

    Zhu, Hong-Ru; Liu, Lu; Zhou, Xiao-Nong; Yang, Guo-Jing

    2015-01-01

    Schistosomiasis japonica is a parasitic disease that remains endemic in seven provinces in the People's Republic of China (P.R. China). One of the most important measures in the process of schistosomiasis elimination in P.R. China is control of Oncomelania hupensis, the unique intermediate host snail of Schistosoma japonicum. Compared with plains/swamp and lake regions, the hilly/mountainous regions of schistosomiasis endemic areas are more complicated, which makes the snail survey difficult to conduct precisely and efficiently. There is a pressing call to identify the snail habitats of mountainous regions in an efficient and cost-effective manner. Twelve out of 56 administrative villages distributed with O. hupensis in Eryuan, Yunnan Province, were randomly selected to set up the ecological model. Thirty out of the rest of 78 villages (villages selected for building model were excluded from the villages for validation) in Eryuan and 30 out of 89 villages in Midu, Yunnan Province were selected via a chessboard method for model validation, respectively. Nine-year-average Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as well as Digital Elevation Model (DEM) covering Eryuan and Midu were extracted from MODIS and ASTER satellite images, respectively. Slope, elevation and the distance from every village to its nearest stream were derived from DEM. Suitable survival environment conditions for snails were defined by comparing historical snail presence data and remote sensing derived images. According to the suitable conditions for snails, environment factors, i.e. NDVI, LST, elevation, slope and the distance from every village to its nearest stream, were integrated into an ecological niche model to predict O. hupensis potential habitats in Eryuan and Midu. The evaluation of the model was assessed by comparing the model prediction and field investigation. Then, the consistency rate of model validation was calculated in Eryuan and Midu Counties, respectively. The final ecological niche model for potential O. hupensis habitats prediction comprised the following environmental factors, namely: NDVI (≥ 0.446), LST (≥ 22.70°C), elevation (≤ 2,300 m), slope (≤ 11°) and the distance to nearest stream (≤ 1,000 m). The potential O. hupensis habitats in Eryuan distributed in the Lancang River basin and O. hupensis in Midu shows a trend of clustering in the north and spotty distribution in the south. The consistency rates of the ecological niche model in Eryuan and Midu were 76.67% and 83.33%, respectively. The ecological niche model integrated with NDVI, LST, elevation, slope and distance from every village to its nearest stream adequately predicted the snail habitats in the mountainous regions.

  20. Ecological Realism of US EPA Experimental Stream Facility ...

    EPA Pesticide Factsheets

    The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run section (0.152 m W x 4.268 m L x 0.105 m D) that widens to a gravel riffle section (0.305 m W x 4.268 m L x 0.19 m D). They are intermediate size among studies reporting stream mesocosm results. Their set-up is unique for their size, with a high degree of engineering controls for continuous flow-through dose-response designs, yet fixed, chronic exposures to contaminants under conditions that quantifiably mimic real stream riffle/run habitat with consistent upstream renewal. With fifty standard operating procedures serving ESF studies, the background and boundary condition information is collected to determine the realism critical to the field relevance of the results. Parallel ex situ and in situ single species exposure formats including fish survival and fecundity metrics are also included. With this framework studies at ESF provide scientifically defensible evaluation of proposed aquatic life criteria. This presentation discusses the relevance and realism of USEPA's mesocosms studies conducted using the Experimental Stream Facility in Milford, OH within the context of understanding the role meso-scale results can play in validating aquatic life criteria for streams and, more generally, man

  1. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters

    NASA Astrophysics Data System (ADS)

    Kronvang, Brian; Jeppesen, Erik; Conley, Daniel J.; Søndergaard, Martin; Larsen, Søren E.; Ovesen, Niels B.; Carstensen, Jacob

    2005-03-01

    The Danish National Aquatic Monitoring and Assessment Programme (NOVA) was launched in 1988 following the adoption of the first Danish Action Plan on the Aquatic Environment in 1987 with the aim to reduce by 50% the nitrogen (N) loading and by 80% the phosphorus (P) loading to the aquatic environment. The 14 years of experience gathered from NOVA have shown that discharges of total N (TN) and P (TP) from point sources to the Danish Aquatic Environment have been reduced by 69% (N) and 82% (P) during the period 1989 2002. Consequently, the P concentration has decreased markedly in most Danish lakes and estuaries. Considerable changes in agricultural practice have resulted in a reduction of the net N-surplus from 136 to 88 kg N ha-1 yr-1 (41%) and the net P-surplus from 19 to 11 kg P ha-1 yr-1 (42%) during the period 1985 2002. Despite these efforts Danish agriculture is today the major source of both N (>80%) and P (>50%) in Danish streams, lakes and coastal waters. A non-parametric statistical trend analysis of TN concentrations in streams draining dominantly agricultural catchments has shown a significant (p<0.05) downward trend in 48 streams with the downward trend being stronger in loamy compared to sandy catchments, and more pronounced with increasing dominance of agricultural exploitation in the catchments. In contrast, a statistical trend analysis of TP concentrations in streams draining agricultural catchments did not reveal any significant trends. The large reduction in nutrient loading from point and non-point sources has in general improved the ecological conditions of Danish lakes in the form of increased summer Secchi depth, decreased chlorophyll a and reduced phytoplankton biomass. Major changes have also occurred in the fish communities in lakes, with positive cascading effects on water quality. In Danish estuaries and coastal waters only a few significant improvements in the ecological quality have been observed, although it is expected that the observed reduced nutrient concentrations are likely to improve the ecological quality of estuaries and coastal waters in Denmark in the long term.

  2. A Multimetric Benthic Macroinvertebrate Index for the Assessment of Stream Biotic Integrity in Korea

    PubMed Central

    Jun, Yung-Chul; Won, Doo-Hee; Lee, Soo-Hyung; Kong, Dong-Soo; Hwang, Soon-Jin

    2012-01-01

    At a time when anthropogenic activities are increasingly disturbing the overall ecological integrity of freshwater ecosystems, monitoring of biological communities is central to assessing the health and function of streams. This study aimed to use a large nation-wide database to develop a multimetric index (the Korean Benthic macroinvertebrate Index of Biological Integrity—KB-IBI) applicable to the biological assessment of Korean streams. Reference and impaired conditions were determined based on watershed, chemical and physical criteria. Eight of an initial 34 candidate metrics were selected using a stepwise procedure that evaluated metric variability, redundancy, sensitivity and responsiveness to environmental gradients. The selected metrics were number of taxa, percent Ephemeroptera-Plecoptera-Trichoptera (EPT) individuals, percent of a dominant taxon, percent taxa abundance without Chironomidae, Shannon’s diversity index, percent gatherer individuals, ratio of filterers and scrapers, and the Korean saprobic index. Our multimetric index successfully distinguished reference from impaired conditions. A scoring system was established for each core metric using its quartile range and response to anthropogenic disturbances. The multimetric index was classified by aggregating the individual metric ..scores and the value range was quadrisected to provide a narrative criterion (Poor, Fair, Good and Excellent) to describe the biological integrity of the streams in the study. A validation procedure showed that the index is an effective method for evaluating stream conditions, and thus is appropriate for use in future studies measuring the long-term status of streams, and the effectiveness of restoration methods. PMID:23202765

  3. Fuzzy Decision Analysis for Integrated Environmental Vulnerability Assessment of the Mid-Atlantic Region

    Treesearch

    Liem T. Tran; C. Gregory Knight; Robert V. O' Neill; Elizabeth R. Smith; Kurt H. Riitters; James D. Wickham

    2002-01-01

    A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams,...

  4. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel connections, process domains, physical and ecological roles of disturbance, and stream resilience.

  5. A Holistic Approach to Water Ecology.

    ERIC Educational Resources Information Center

    Koyama, Keith

    1980-01-01

    Outlined is a water ecology unit included within a one-semester field biology course for upper level high school students. Activities described include a visit to a water treatment plant, an abiotic stream study, a biotic stream study, interactions and questioning topics, and individual projects. (CS)

  6. The United South and Eastern Tribe (USET) Proper ...

    EPA Pesticide Factsheets

    The maintenance of wildlife and aquatic habitat is dependent on the development of a riparian area management strategy, which considers and adapts to certain basic ecological and economic relationships. These relationships are functions of riparian and terrestrial ecosystems, growth and reproduction of woody and herbaceous plant communities, hydrologic and geomorphic conditions and processes, soils, sediment, water quality and quantity, recovery rates, upland conditions, cultural, recreation and domestic uses. The class participants determined functional ratings, using the Proper Functioning Condition protocol for each field site visited. The methods used in this Workshop were found to work equally well in both eastern and western ecosystems in the United States. One of the many goals of a Tribe’s environmental and natural resource department is to maintain and restore functionality of stream and wetland riparian and upland areas, which could protect Tribal beneficial uses and values for those water bodies. Disturbances occurring within a watershed, or adjacent to a stream corridor, typically cause effects that may temporarily or permanently alter environmental and ecological risk factors. Focusing on where and how water moves and vegetation/soil trends in the riparian system can often determine if important Tribal goals and objectives are being met. It can then be determined what management changes are needed to move the environmental and ecosystem risk facto

  7. Fuzzy decision analysis for integrated environmental vulnerability assessment of the mid-Atlantic Region.

    PubMed

    Tran, Liem T; Knight, C Gregory; O'Neill, Robert V; Smith, Elizabeth R; Riitters, Kurt H; Wickham, James

    2002-06-01

    A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams, air pollution, and topography of the Mid-Atlantic region, we were able to point out areas that were in relatively poor condition and/or vulnerable to future deterioration. The method offered an easy and comprehensive way to combine the strengths of fuzzy set theory and the AHP for ecological assessment. Furthermore, the suggested method can serve as a building block for the evaluation of environmental policies.

  8. Design and methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015

    USGS Publications Warehouse

    Sheibley, Rich W.; Morace, Jennifer L.; Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Nakagaki, Naomi; Button, Daniel T.; Qi, Sharon L.

    2017-08-25

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project conducted the Pacific Northwest Stream Quality Assessment (PNSQA) to investigate stream quality across the western part of the Pacific Northwest. The goal of the PNSQA was to assess the health of streams in the region by characterizing multiple water-quality factors that are stressors to in-stream aquatic life and by evaluating the relation between these stressors and the condition of biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowland and Willamette Valley Level III Ecoregions were the focus of this regional study. Findings will help inform the public and policymakers about human and environmental factors that are the most critical in affecting stream quality and, thus, provide insights into possible strategies to protect or improve the health of streams in the region.Land-use data were used in the study to identify and select sites within the region that ranged in levels of urban and agricultural development. A total of 88 sites were selected across the region—69 were on streams that explicitly spanned a range of urban land use in their watersheds, 8 were on streams in agricultural watersheds, and 11 were reference sites with little or no development in their watersheds. Depending on the type of land use, sites were sampled for contaminants, nutrients, and sediment for either a 4- or 10-week period during April, May, and June 2015. This water-quality “index period” was immediately followed with an ecological survey of all sites that included stream habitat, benthic algae, benthic macroinvertebrates, and fish. Additionally, streambed sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing.This report provides a detailed description of the specific study components and methods of the PNSQA, including (1) surveys of stream habitat and aquatic biota, (2) discrete water sampling, (3) deployment of passive polar organic chemical integrative samplers for pesticides and pharmaceuticals, and (4) sampling of streambed sediment. At selected study sites, toxicity testing of streambed sediment, continuous water-quality monitoring, and daily pesticide sampling also were conducted and are described.

  9. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    USGS Publications Warehouse

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  10. Similarity of Stream Width Distributions Across Headwater Systems

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.; Barefoot, E. A.; Tashie, A.; Butman, D. E.

    2016-12-01

    The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, studies have used remote sensing to quantify river morphology, and have found that the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems (stream order 1-3), where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown, reducing the certainty of biogeochemical flux estimates. To constrain this uncertainty, we surveyed two components of stream morphology (wetted stream width and length) in seven physiographically contrasting stream networks in Kings Creek in Konza Prarie, KS; Sagehen Creek in the N. Sierra Nevada Mtns., CA; Elder Creek in Angelo Coast Range Preserve, CA; Caribou Creek in the Caribou Poker Creek Research Watershed, AK; V40 Stream, NZ; Blue Duck Creek, NZ; Stony Creek in Duke Forest, NC. To assess temporal variations, we also surveyed stream geometry in a subcatchment of Stony Creek six times over a range of moderate streamflow conditions (discharge less than 90 percentile of gauge record). Here we show a strikingly consistent gamma statistical distribution of stream width in all surveys and a characteristic most abundant stream width of 32±7 cm independent of flow conditions or basin size. This consistency is remarkable given the substantial physical diversity among the studied catchments. We propose a model that invokes network topology theory and downstream hydraulic geometry to show that, as active drainage networks expand and contract in response to changes in streamflow, the most abundant stream width remains approximately static. This framework can be used to better extrapolate stream size and abundance from large rivers to small headwater streams, with significant impact on understanding of the hydraulic, ecological, and biogeochemical functions of stream networks.

  11. Ecological Responses to Trout Habitat Rehabilitation in a Northern Michigan Stream

    NASA Astrophysics Data System (ADS)

    Rosi-Marshall, Emma J.; Moerke, Ashley H.; Lamberti, Gary A.

    2006-07-01

    Monitoring of stream restoration projects is often limited and success often focuses on a single taxon (e.g., salmonids), even though other aspects of stream structure and function may also respond to restoration activities. The Ottawa National Forest (ONF), Michigan, conducted a site-specific trout habitat improvement to enhance the trout fishery in Cook’s Run, a 3rd-order stream that the ONF determined was negatively affected by past logging. Our objectives were to determine if the habitat improvement increased trout abundances and enhanced other ecological variables (overall habitat quality, organic matter retention, seston concentration, periphyton abundance, sediment organic matter content, and macroinvertebrate abundance and diversity) following rehabilitation. The addition of skybooms (underbank cover structures) and k-dams (pool-creating structures) increased the relative abundance of harvestable trout (>25 cm in total length) as intended but not overall trout abundances. Both rehabilitation techniques also increased maximum channel depth and organic matter retention, but only k-dams increased overall habitat quality. Neither approach significantly affected other ecological variables. The modest ecological response to this habitat improvement likely occurred because the system was not severely degraded beforehand, and thus small, local changes in habitat did not measurably affect most physical and ecological variables measured. However, increases in habitat volume and in organic matter retention may enhance stream biota in the long term.

  12. ECOLOGICAL ENDPOINT MODELING FOR TMDLS: EFFECTS OF SEDIMENT ON FISH POPULATIONS

    EPA Science Inventory

    Sediment is one of the primary stressors of concern for Total Maximum Daily Loads (TMDLs) for streams, and often it is a concern because of its impact on ecological endpoints. A modeling approach relating sediment to stream fish population dynamics is presented. Equations are d...

  13. ECOLOGICAL SUSTAINABILITY IN RAPIDLY URBANIZING WATERSHEDS: EVALUATING STRATEGIES DESIGNED TO MITIGATE IMPACTS ON STREAM ECOSYSTEMS

    EPA Science Inventory

    Urbanization has profound impacts on the hydrology and ecology of streams via alteration in water temperatures, peak and base flows, and nutrient, sediment, and contaminant inputs. Storm water management (SWM) is commonly used to reduce these impacts; however, comprehensive w...

  14. Dispersal Limitations on Fish Community Recovery Following Long-term Water Quality Remediation

    DOE PAGES

    McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.; ...

    2016-02-22

    Holistic restoration approaches, such as water quality remediation, are likely to meet conservation objectives because they are typically implemented at watershed scales, as opposed to individual stream reaches. However, habitat fragmentation may impose constraints on the ecological effectiveness of holistic restoration strategies by limiting colonization following remediation. We questioned the importance of dispersal limitations to fish community recovery following long-term water quality remediation and species reintroductions across the White Oak Creek (WOC) watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness and biomass to water quality remediation were evaluated in light of habitat fragmentation andmore » population isolation from instream barriers, which varied in their passage potential. In addition, ordination techniques were used to determine the relative importance of habitat connectivity and water quality, in explaining variation fish communities relative to environmental fluctuations, i.e. streamflow. Ecological recovery (changes in richness) at each site was negatively related to barrier index, a measure of community isolation by barriers relative to stream distance. Following species reintroductions, dispersal by fish species was consistently in the downstream direction and upstream passage above barriers was non-existent. The importance of barrier index in explaining variation in fish communities was stronger during higher flow conditions, but decreased over time an indication of increasing community stability and loss of seasonal migrants. Compared to habitat fragmentation, existing water quality concerns (i.e., outfalls, point source discharges) were unrelated to ecological recovery, but explained relatively high variation in community dynamics. Our results suggest that habitat fragmentation limited the ecological effectiveness of intensive water quality remediation efforts and fish reintroduction efforts by impeding recolonization at isolated stream reaches.« less

  15. Dispersal Limitations on Fish Community Recovery Following Long-term Water Quality Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.

    Holistic restoration approaches, such as water quality remediation, are likely to meet conservation objectives because they are typically implemented at watershed scales, as opposed to individual stream reaches. However, habitat fragmentation may impose constraints on the ecological effectiveness of holistic restoration strategies by limiting colonization following remediation. We questioned the importance of dispersal limitations to fish community recovery following long-term water quality remediation and species reintroductions across the White Oak Creek (WOC) watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness and biomass to water quality remediation were evaluated in light of habitat fragmentation andmore » population isolation from instream barriers, which varied in their passage potential. In addition, ordination techniques were used to determine the relative importance of habitat connectivity and water quality, in explaining variation fish communities relative to environmental fluctuations, i.e. streamflow. Ecological recovery (changes in richness) at each site was negatively related to barrier index, a measure of community isolation by barriers relative to stream distance. Following species reintroductions, dispersal by fish species was consistently in the downstream direction and upstream passage above barriers was non-existent. The importance of barrier index in explaining variation in fish communities was stronger during higher flow conditions, but decreased over time an indication of increasing community stability and loss of seasonal migrants. Compared to habitat fragmentation, existing water quality concerns (i.e., outfalls, point source discharges) were unrelated to ecological recovery, but explained relatively high variation in community dynamics. Our results suggest that habitat fragmentation limited the ecological effectiveness of intensive water quality remediation efforts and fish reintroduction efforts by impeding recolonization at isolated stream reaches.« less

  16. ECOLOGY OF CLADOPHORA GLOMERATA (L.) KÜTZ IN SOUTHERN ONTARIO(1).

    PubMed

    Bellis, V J; McLarty, D A

    1967-06-01

    Cladophora glomerata (L.) Kütz. was the dominant attached alga in streams and along lake shores in southern Ontario. Maximum production occurred in summer and resulted from 2 short periods of intensive vegetative growth (June and September). Optimum habitat conditions consist of a firm substrate in shallow alkaline water. These conditions are provided by harbor facilities where man-made structures supplement naturally occurring rock outcrops or cobble beaches and where nutrients are available from tributaries draining agricultural and urban land areas. Periodicity appears to be related to temperature; the interval between the 2 periods of intensive growth during warm weather decreases at successively more northern locations. Frequent observation of Cladophora growing at a single stream station revealed that variations in thallus morphology and relative cell dimensions of C. glomerata are greater than has generally been recognized. These variations can be attributed to changes in environmental conditions and events in the annual life cycle of the alga.

  17. Habitat conditions of montane meadows associated with restored and unrestored stream channels of California

    Treesearch

    K. L. Pope; D. S. Montoya; J. N. Brownlee; J. Dierks; T. E. Lisle

    2015-01-01

    Mountain meadow habitats are valued for their ecological importance. They attenuate floods, improve water quality, and support high biodiversity. Many meadow habitats in the western US are degraded, and efforts are increasing to restore these montane meadow ecosystems. Rewatering projects such as pond-and-plug quickly raise the water table by blocking the existing...

  18. Geomorphic controls on Great Basin riparian vegetation at the watershed and process zone scales

    Treesearch

    Blake Meneken Engelhardt

    2009-01-01

    Riparian ecosystems supply valuable resources in all landscapes, but especially in semiarid regions such as the Great Basin of the western United States. Over half of Great Basin streams are thought to be in poor ecological condition and further deterioration is of significant concern to stakeholders. A thorough understanding of how physical processes acting at...

  19. Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale.

    PubMed

    O'Connor, Ben L; Hamada, Yuki; Bowen, Esther E; Grippo, Mark A; Hartmann, Heidi M; Patton, Terri L; Van Lonkhuyzen, Robert A; Carr, Adrianne E

    2014-11-01

    Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbance of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as high-resolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale. The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches.

  20. Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, Ben L.; Hamada, Yuki; Bowen, Esther E.

    2014-08-17

    Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbancemore » of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as highresolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale.The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches.« less

  1. How is a stream impacted by burial? Examining the spatial variation within urban buried streams in Cincinnati, OH

    EPA Science Inventory

    While the effects of urbanization on stream ecosystems have been well-documented, little is known regarding the impact of burying streams within culverts. Our project aims to explore the ecological impacts of stream burial at a fine spatial scale. Two culverted urban streams in C...

  2. Global perspectives on the urban stream syndrome

    USGS Publications Warehouse

    Roy, Allison; Booth, Derek B.; Capps, Krista A.; Smith, Benjamin

    2016-01-01

    Urban streams commonly express degraded physical, chemical, and biological conditions that have been collectively termed the “urban stream syndrome”. The description of the syndrome highlights the broad similarities among these streams relative to their less-impaired counterparts. Awareness of these commonalities has fostered rapid improvements in the management of urban stormwater for the protection of downstream watercourses, but the focus on the similarities among urban streams has obscured meaningful differences among them. Key drivers of stream responses to urbanization can vary greatly among climatological and physiographic regions of the globe, and the differences can be manifested in individual stream channels even through the homogenizing veneer of urban development. We provide examples of differences in natural hydrologic and geologic settings (within similar regions) that can result in different mechanisms of stream ecosystem response to urbanization and, as such, should lead to different management approaches. The idea that all urban streams can be cured using the same treatment is simplistic, but overemphasizing the tremendous differences among natural (or human-altered) systems also can paralyze management. Thoughtful integration of work that recognizes the commonalities of the urban stream syndrome across the globe has benefitted urban stream management. Now we call for a more nuanced understanding of the regional, subregional, and local attributes of any given urban stream and its watershed to advance the physical, chemical, and ecological recovery of these systems.

  3. Correspondence of biological condition models of California streams at statewide and regional scales.

    PubMed

    May, Jason T; Brown, Larry R; Rehn, Andrew C; Waite, Ian R; Ode, Peter R; Mazor, Raphael D; Schiff, Kenneth C

    2015-01-01

    We used boosted regression trees (BRT) to model stream biological condition as measured by benthic macroinvertebrate taxonomic completeness, the ratio of observed to expected (O/E) taxa. Models were developed with and without exclusion of rare taxa at a site. BRT models are robust, requiring few assumptions compared with traditional modeling techniques such as multiple linear regression. The BRT models were constructed to provide baseline support to stressor delineation by identifying natural physiographic and human land use gradients affecting stream biological condition statewide and for eight ecological regions within the state, as part of the development of numerical biological objectives for California's wadeable streams. Regions were defined on the basis of ecological, hydrologic, and jurisdictional factors and roughly corresponded with ecoregions. Physiographic and land use variables were derived from geographic information system coverages. The model for the entire state (n = 1,386) identified a composite measure of anthropogenic disturbance (the sum of urban, agricultural, and unmanaged roadside vegetation land cover) within the local watershed as the most important variable, explaining 56% of the variance in O/E values. Models for individual regions explained between 51 and 84% of the variance in O/E values. Measures of human disturbance were important in the three coastal regions. In the South Coast and Coastal Chaparral, local watershed measures of urbanization were the most important variables related to biological condition, while in the North Coast the composite measure of human disturbance at the watershed scale was most important. In the two mountain regions, natural gradients were most important, including slope, precipitation, and temperature. The remaining three regions had relatively small sample sizes (n ≤ 75 sites) and had models that gave mixed results. Understanding the spatial scale at which land use and land cover affect taxonomic completeness is imperative for sound management. Our results suggest that invertebrate taxonomic completeness is affected by human disturbance at the statewide and regional levels, with some differences among regions in the importance of natural gradients and types of human disturbance. The construction and application of models similar to the ones presented here could be useful in the planning and prioritization of actions for protection and conservation of biodiversity in California streams.

  4. Correspondence of biological condition models of California streams at statewide and regional scales

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.; Rehn, Andrew C.; Waite, Ian R.; Ode, Peter R; Mazor, Raphael D; Schiff, Kenneth C

    2015-01-01

    We used boosted regression trees (BRT) to model stream biological condition as measured by benthic macroinvertebrate taxonomic completeness, the ratio of observed to expected (O/E) taxa. Models were developed with and without exclusion of rare taxa at a site. BRT models are robust, requiring few assumptions compared with traditional modeling techniques such as multiple linear regression. The BRT models were constructed to provide baseline support to stressor delineation by identifying natural physiographic and human land use gradients affecting stream biological condition statewide and for eight ecological regions within the state, as part of the development of numerical biological objectives for California’s wadeable streams. Regions were defined on the basis of ecological, hydrologic, and jurisdictional factors and roughly corresponded with ecoregions. Physiographic and land use variables were derived from geographic information system coverages. The model for the entire state (n = 1,386) identified a composite measure of anthropogenic disturbance (the sum of urban, agricultural, and unmanaged roadside vegetation land cover) within the local watershed as the most important variable, explaining 56 % of the variance in O/E values. Models for individual regions explained between 51 and 84 % of the variance in O/E values. Measures of human disturbance were important in the three coastal regions. In the South Coast and Coastal Chaparral, local watershed measures of urbanization were the most important variables related to biological condition, while in the North Coast the composite measure of human disturbance at the watershed scale was most important. In the two mountain regions, natural gradients were most important, including slope, precipitation, and temperature. The remaining three regions had relatively small sample sizes (n ≤ 75 sites) and had models that gave mixed results. Understanding the spatial scale at which land use and land cover affect taxonomic completeness is imperative for sound management. Our results suggest that invertebrate taxonomic completeness is affected by human disturbance at the statewide and regional levels, with some differences among regions in the importance of natural gradients and types of human disturbance. The construction and application of models similar to the ones presented here could be useful in the planning and prioritization of actions for protection and conservation of biodiversity in California streams.

  5. An Integrated Ecological Modeling System for Assessing ...

    EPA Pesticide Factsheets

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for

  6. Functional Process Zones Characterizing Aquatic Insect Communities in Streams of the Brazilian Cerrado.

    PubMed

    Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G

    2016-04-01

    Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.

  7. Aquatic assemblages of the highly urbanized Santa Ana River Basin, California

    USGS Publications Warehouse

    Brown, Larry R.; Burton, Carmen; Belitz, Kenneth

    2005-01-01

    We assessed the structure of periphyton, benthic macroinvertebrate, and fish assemblages and their associations with environmental variables at 17 sites on streams of the highly urbanized Santa Ana River basin in Southern California. All assemblages exhibited strong differences between highly urbanized sites in the valley and the least-impacted sites at the transition between the valley and undeveloped mountains. Results within the urbanized area differed among taxa. Periphyton assemblages were dominated by diatoms (>75% of total taxa). Periphyton assemblages within the urbanized area were not associated with any of the measured environmental variables, suggesting that structure of urban periphyton assemblages might be highly dependent on colonization dynamics. The number of Ephemeroptera, Trichoptera, and Plecoptera (EPT) taxa included in macroinvertebrate assemblages ranged from 0 to 6 at urbanized sites. Benthic macroinvertebrate assemblages had significant correlations with several environmental variables within the urban area, suggesting that stream size and permanence were important determinants of distribution among the species able to survive conditions in urban streams. Only 4 of 16 fish species collected were native to the drainage. Fish assemblages of urbanized sites included two native species, arroyo chub Gila orcuttii and Santa Ana sucker Catostomus santaanae, at sites that were intermediate in coefficient of variation of bank-full width, depth, bed substrate, and water temperature. Alien species dominated urbanized sites with lesser or greater values for these variables. These results suggest that urban streams can be structured to enhance populations of native fishes. Continued study of urban streams in the Santa Ana River basin and elsewhere will contribute to the basic understanding of ecological principles and help preserve the maximum ecological value of streams in highly urbanized areas.

  8. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).

    PubMed

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco

    2011-05-01

    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  9. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface-benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.

  10. Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.

    2007-01-01

    The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.

  11. MINEBANK RUN PROJECT AS AN APPROACH FOR RESTORING DEGRADED URBAN WATERSHEDS AND RIPARIAN ECOSYSTEMS

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater pose human and ecological threats. Minebank Run, an urban stream in Baltimore MD, will be restored in 2004/2005 using various techniques including reshaping stream banks to reconnect stream channel to flood plain, stream bank r...

  12. USUING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  13. USING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  14. Influence of natural factors on the quality of midwestern streams and rivers

    USGS Publications Warehouse

    Porter, Stephen D.; Harris, Mitchell A.; Kalkhoff, Stephen J.

    2001-01-01

    Streams flowing through cropland in the Midwestern Corn Belt differ considerably in their chemical and ecological characteristics, even though agricultural land use is highly intensive throughout the entire region. These differences likely are attributable to differences in riparian vegetation, soil properties, and hydrology. This conclusion is based on results from a study of the upper Midwest region conducted during seasonally low-flow conditions in August 1997 by the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) Program. This report summarizes significant results from the study and presents some implications for the design and interpretation of water-quality monitoring and assessment studies based on these results.

  15. Using Algal Metrics and Biomass to Evaluate Multiple Ways of Defining Concentration-Based Nutrient Criteria in Streams and their Ecological Relevance

    EPA Science Inventory

    We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to cha...

  16. THE ECOLOGICAL AND HYDROLOGICAL SIGNIFICANCE OF EPHEMERAL AND INTERMITTENT STREAMS IN THE ARID AND SEMI-ARID AMERICAN SOUTHWEST

    EPA Science Inventory

    This report represents a state-of-the-art synthesis of current knowledge of the ecology and hydrology of ephemeral (dry washes) and intermittent streams in the American Southwest, and may have important bearing on establishing nexus to traditional navigable waters (TNW) and defin...

  17. Microhabitat and biology of Sphaerium striatinum in a central New York stream

    USGS Publications Warehouse

    Dittman, Dawn E.; Johnson, James H.; Nack, Christopher C.

    2018-01-01

    In many lotic systems, drastic declines in freshwater bivalve populations, including fingernail clams (Sphaeriidae), have created concerns about biodiversity and future ecosystem services. We examined the local occurrence of the historically common fingernail clam, Sphaerium striatinum, in a central New York stream. We sampled the density of sphaeriids and measured the associated habitat variables (substrate, depth, water flow) to test within-stream multivariate benthic microhabitat association. Size distribution, density, and diel feeding periodicity were measured as focal aspects of fingernail clam biology and ecology. S. striatinum tended to be found in microhabitats that had harder substrates and faster flow. The Labrador Creek fingernail clam local population had positive indicators (size distribution, density). There was significant diel periodicity in feeding behavior. The clams fed most actively during the 0400–0800 h periods. This kind of behavioral periodicity can indicate a significant ecological interaction between predators and bivalve prey. Increased understanding of the behavioral ecology of small native freshwater bivalves in an unimpacted headwater stream is a fundamental building block for development of overall ecological conservation goals for freshwater bivalves and their lotic habitats.

  18. From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome.

    PubMed

    Askarizadeh, Asal; Rippy, Megan A; Fletcher, Tim D; Feldman, David L; Peng, Jian; Bowler, Peter; Mehring, Andrew S; Winfrey, Brandon K; Vrugt, Jasper A; AghaKouchak, Amir; Jiang, Sunny C; Sanders, Brett F; Levin, Lisa A; Taylor, Scott; Grant, Stanley B

    2015-10-06

    Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality, and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of stormwater that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and preurban land cover. For all but the wettest regions of the world, a much larger volume of stormwater runoff should be harvested than infiltrated to maintain stream hydrology in a preurban state. Efforts to prevent or reverse hydrologic symptoms associated with the urban stream syndrome will therefore require: (1) selecting the right mix of LID technologies that provide regionally tailored ratios of stormwater harvesting and infiltration; (2) integrating these LID technologies into next-generation drainage systems; (3) maximizing potential cobenefits including water supply augmentation, flood protection, improved water quality, and urban amenities; and (4) long-term hydrologic monitoring to evaluate the efficacy of LID interventions.

  19. Representation of regional urban development conditions using a watershed-based gradient study design

    USGS Publications Warehouse

    Terziotti, Silvia; McMahon, Gerard; Bell, Amanda H.

    2012-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems (EUSE) have been intensively investigated in nine metropolitan areas in the United States, including Boston, Massachusetts; Atlanta, Georgia; Birmingham, Alabama; Raleigh, North Carolina; Salt Lake City, Utah; Denver, Colorado; Dallas–Fort Worth, Texas; Portland, Oregon; and Milwaukee–Green Bay, Wisconsin. Each of the EUSE study area watersheds was associated with one ecological region of the United States. This report evaluates whether each metropolitan area can be generalized across the ecological regions (ecoregions) within which the EUSE study watersheds are located. Seven characteristics of the EUSE watersheds that affect stream ecosystems were examined to determine the similarities in the same seven characteristics of the watersheds in the entire ecoregion. Land cover (percentage developed, forest and shrubland, and herbaceous and cultivated classes), average annual temperature, average annual precipitation, average surface elevation, and average percentage slope were selected as human-influenced, climate, and topography characteristics. Three findings emerged from this comparison that have implications for the use of EUSE data in models used to predict stream ecosystem condition. One is that the predominant or "background" land-cover type (either forested or agricultural land) in each ecoregion also is the predominant land-cover type within the associated EUSE study watersheds. The second finding is that in all EUSE study areas, the watersheds account for the range of developed land conditions that exist in the corresponding ecoregion watersheds. However, six of the nine EUSE study area watersheds have significantly different distributions of developed land from the ecoregion watersheds. Finally, in seven of the nine EUSE/ecoregion comparisons, the distributions of the values of climate variables in the EUSE watersheds are different from the distributions for watersheds in the corresponding ecoregions.

  20. Scale-dependent effects of land cover on water physico-chemistry and diatom-based metrics in a major river system, the Adour-Garonne basin (South Western France).

    PubMed

    Tudesque, Loïc; Tisseuil, Clément; Lek, Sovan

    2014-01-01

    The scale dependence of ecological phenomena remains a central issue in ecology. Particularly in aquatic ecology, the consideration of the accurate spatial scale in assessing the effects of landscape factors on stream condition is critical. In this context, our study aimed at assessing the relationships between multi-spatial scale land cover patterns and a variety of water quality and diatom metrics measured at the stream reach level. This investigation was conducted in a major European river system, the Adour-Garonne river basin, characterized by a wide range of ecological conditions. Redundancy analysis (RDA) and variance partitioning techniques were used to disentangle the different relationships between land cover, water-chemistry and diatom metrics. Our results revealed a top-down "cascade effect" indirectly linking diatom metrics to land cover patterns through water physico-chemistry, which occurred at the largest spatial scales. In general, the strength of the relationships between land cover, physico-chemistry, and diatoms was shown to increase with the spatial scale, from the local to the basin scale, emphasizing the importance of continuous processes of accumulation throughout the river gradient. Unexpectedly, we established that the influence of land cover on the diatom metric was of primary importance both at the basin and local scale, as a result of discontinuous but not necessarily antagonist processes. The most detailed spatial grain of the Corine land cover classification appeared as the most relevant spatial grain to relate land cover to water chemistry and diatoms. Our findings provide suitable information to improve the implementation of effective diatom-based monitoring programs, especially within the scope of the European Water Framework Directive. © 2013 Elsevier B.V. All rights reserved.

  1. Associations of stream geomorphic conditions and prevalence of alternative reproductive tactics among sockeye salmon populations

    USGS Publications Warehouse

    DeFilippo, L. B.; Schindler, D.E.; Carter, J.L.; Walsworth, Timothy E.; Cline, T. J.; Larson, Wesley; Buehrens, T.

    2018-01-01

    In many species, males may exhibit alternative life histories to circumvent the costs of intrasexual competition and female courtship. While the evolution and underlying genetic and physiological mechanisms behind alternative reproductive tactics are well studied, there has been less consideration of the ecological factors that regulate their prevalence. Here, we examine six decades of age composition records from thirty‐six populations of sockeye salmon (Oncorhynchus nerka) to quantify associations between spawning habitat characteristics and the prevalence of precocious sneakers known as ‘jacks’. Jack prevalence was independent of neutral genetic structure among stream populations, but varied among habitat types and as a function of continuous geomorphic characteristics. Jacks were more common in streams relative to beaches and rivers, and their prevalence was negatively associated with stream width, depth, elevation, slope and area, but positively related to bank cover. Behavioural observations showed that jacks made greater use of banks, wood and shallows than guard males, indicating that their reproductive success depends on the availability of such refuges. Our results emphasize the role of the physical habitat in shaping reproductive tactic frequencies among populations, likely through local adaptation in response to variable fitness expectations under different geomorphic conditions.

  2. Feeding periodicity, diet composition, and food consumption of subyearling rainbow trout in winter

    USGS Publications Warehouse

    Johnson, James H.; Chalupnicki, Marc; Abbett, Ross

    2016-01-01

    Although winter is a critically important period for stream salmonids, aspects of the ecology of several species are poorly understood. Consequently, we examined the diel feeding ecology of subyearling rainbow trout (Oncorhynchus mykiss) during winter in a central New York stream. Rainbow trout diet was significantly different during each 4-h interval and also differed from the drift and benthos. Feeding was significantly greater during darkness (i.e. 20:00 h – 04:00 h) than during daylight hours (i.e. 08:00 h – 16:00 h), peaking at 20:00 h. Daily food consumption (1.9 mg) and daily ration (3.4 %) during winter were substantially lower than previously reported for subyearling rainbow trout in the same stream during summer. These findings provide important new insights into the winter feeding ecology of juvenile rainbow trout in streams.

  3. Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania

    USGS Publications Warehouse

    Carline, R.F.; Walsh, M.C.

    2007-01-01

    Riparian treatments, consisting of 3- to 4-m buffer strips, stream bank stabilization, and rock-lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991-1992) and 3-5 years after (2001-2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel-structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47-87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics. ?? 2007 Society for Ecological Restoration International.

  4. Hydrology of Channelized and Natural Headwater Streams

    USDA-ARS?s Scientific Manuscript database

    Understanding hydrology is paramount for optimal ecologic function and management of headwater streams. The objective of this study was to characterize and compare headwater streams within the Upper Big Walnut Creek watershed in Ohio. Two channelized and two unchannelized streams were instrumented w...

  5. Ecological effects on streams from forest fertilization; literature review and conceptual framework for future study in the western Cascades

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2002-03-19

    Studies of the responses of stream biota to fertilization have been rare and have targeted either immediate, toxicity-based responses or used methods insensitive to ongoing ecological processes. This report reviews water-quality studies following forest fertilizations, emphasizing Cascade streams in the Pacific Northwest and documented biological responses in those streams. A conceptual model predicting potential ecological response to fertilization, which includes effects on algal growth and primary production, is presented. In this model, applied fertilizer nitrogen reaching streams is mostly exported during winter. However, some nitrogen retained in soils or stream and riparian areas may become available to aquatic biota during spring and summer. Biological responses may be minimal in small streams nearest to application because of light limitation, but may be elevated downstream where light is sufficient to allow algal growth. Ultimately, algal response could be greatest in downstream reaches, although ambient nutrient concentrations remain low due to uptake and benthic nutrient recycling. Ground-water flow paths and hyporheic processing could be critical in determining the fate of applied nitrogen. A framework is provided for testing this response in the Little River watershed, a tributary to the North Umpqua River, Oregon, at basic and intensive levels of investigation.

  6. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation where hyporheic fluxes cannot be accurately estimated without considering multi-scale effects. Our modeling captures the dominance of small-scale features such as bedforms that drive the majority of hyporheic flow, but it also captures how hyporheic flow is substantially modified by relatively small changes in streamflow or groundwater flow. The additional field measurements add sensitivity and power to whole stream tracer additions by improving resolution of the relative importance of storage at different scales (e.g. bar-scale versus bedform-scale). This information is critical in identifying hot spots where important biogeochemical reactions occur. In summary, interpreting multi-scale interactions in streams requires models that are physically based and that incorporate non-linear process dynamics. Such models can take advantage of increasingly comprehensive field data to integrate transport processes across spatially variable flow and geomorphic conditions. The most useful field and modeling approaches will be those that are simple enough to be easily implemented by users from various disciplines but comprehensive enough to produce meaningful predictions for a wide range of flow and geomorphic scenarios. This capability is needed to support improved strategies for protecting stream ecological health in the face of accelerating land use and climate change.

  7. Validation of a stream and riparian habitat assessment protocol using stream salamanders in the southwest Virginia coalfields

    USGS Publications Warehouse

    Sweeten, Sara E.; Ford, W. Mark

    2016-01-01

    Within the central Appalachia Coalfields, the aquatic impacts of large-scale land uses, such as surface mining, are of particular ecological concern. Identification and quantification of land use impacts to aquatic ecosystems are a necessary first step to aid in mitigation of negative consequences to biota. However, quantifying physical environmental quality such as stream and riparian habitat often can be quite difficult, particularly when there is time or fiscal limitations. As such, standard protocols such as the U.S. EPA’s Stream Habitat Rapid Bioassessment Protocol have been established to be cost- and time-effective. This protocol estimates ten different stream and riparian conditions on a scale of 0 to 20. Unfortunately, using estimations can be problematic because of large potential variation in the scoring depending on differences in training, experience, and opinion of the personnel doing the estimations. In order to help negate these biases and provide a simplified process, the U.S. Army Corps of Engineers (USACE) developed a functional assessment for streams that measures 11 stream and riparian variables along with watershed land use to calculate three different scores, a hydrology score, biogeochemical score, and habitat score. In our study, we examined the correlation of stream salamander presence and abundance to the three USACE scores. In the summer of 2013, we visited 70 sites in the southwest Virginia Coalfields multiple times to collect salamanders and quantify stream and riparian microhabitat parameters. Using occupancy and abundance analyses, we found strong relationships among three Desmognathus spp. and the USACE Habitat FCI score. Accordingly, the Habitat FCI score provides a reasonable assessment of physical instream and riparian conditions that may serve as a surrogate for understanding the community composition and integrity of aquatic salamander in the region.

  8. Freshwater Fish Communities

    EPA Science Inventory

    Freshwater fish are ecologically important in stream ecosystems, and they provide people with significant food, recreation, and conservation value as biological indicator of freshwater streams. Historically, the streams and rivers of southern New England supported moderately dive...

  9. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward

    NASA Astrophysics Data System (ADS)

    Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.

    2018-03-01

    Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.

  10. Geomorphic stream restoration as an approach for reducing nutrients in degraded urban watersheds

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater pose human and ecological threats. Stream restoration may improve the nutrient removal capacity of streams, yet few studies have investigated the effectiveness of restoration as a nutrient BMP despite significant national effort...

  11. Context-Specific Trophic and Functional Ecology of Fishes of Small Stream Ecosystems in the Ouachita National Forest

    Treesearch

    William J. Matthews; A. Maria Miller-Lemke; Melvin L. Warren; Donna Cobb; Jeffery G. Stewart; Betty Crump; Frances P. Gelwick

    2004-01-01

    Abstract - Fish play diverse and important roles in stream ecosystems, but details about ecosystem effects are poorly known for many freshwater fish species. A requisite first step to understanding functional roles of individual species is information on their trophic ecology in the context of particular environmental settings. Stomach contents were...

  12. Considerations of Scale and Processes in Stream Restoration and Ecological Response

    NASA Astrophysics Data System (ADS)

    Simon, A.; Shields, D.; Kuhnle, R.; Knight, S.

    2005-12-01

    Stream restoration as a means of controlling accelerated channel erosion and improving biological function in streams has become pervasive in the United States over the past twenty years. A broad range of practices often involving direct modifications to stream channels and adjacent floodplains, including alterations to morphology and pattern have been used for stream restoration. Because alluvial-channel processes and biological functioning operate as linked, open systems, any restoration project must be placed in the context of existing watershed and channel processes with a quantitative understanding of the rates of transfer of flow energy and materials. This is particularly true of reach-scale projects where local stabilization and habitat improvements may be completely overwhelmed by watershed or channel-system scale instabilities. In this regard, it is unlikely that a reach-scale project will be successful in an unstable alluvial system. This is analogous to constructing bank-stabilization measures in an actively incising channel. A conceptual model of channel response and evolution that marks systematic shifts in channel processes over time and space has been linked to fish-community structure in Mississippi streams. This link reflects changing habitat conditions and sediment-transport regimes over the course of fluvial adjustment. Suspended-sediment concentrations that can increase by orders of magnitude for a given discharge during the incision and mass-wasting phases abrade fish gills and reduce the ability of fish to hunt for food due to reduced water clarity. Similarly, durations of high suspended-sediment concentrations are shown to be inversely related to numbers of benthic macro invertebrates. Streambeds experiencing active incision (Stage III) may be too mobile for benthic macro invertebrate communities to thrive. Channels dominated by mass-wasting processes (Stages IV and V) lose riparian vegetative cover and shading which may result in higher stream temperatures. Aggradation processes typical of Stage V result in loss of interstitial spaces for spawning, de-oxygenation of substrate and may suffocate organisms. Perhaps most importantly, channel widening produces shallower depths at base flow and renders streams less retentive of large wood. Ecological characteristics recover in advanced stages of channel evolution as baseflow channels are narrowed and berms re-vegetate (Stage VI), but full recovery to pre-incision (Stage I) conditions has not been observed for both ecologic and sediment-transport systems. The processes reflected by stages of evolution can operate over entire fluvial networks and over time scales in the order of 100 years. Issues regarding effectiveness or benefit of stream restoration practices, therefore, must address scale. Furthermore, site and approach selection for reach-scale restoration projects should be guided by knowledge of watershed-scale processes. As an example, a grade control structure installed on Hotophia Creek, Mississippi successfully eliminated upstream-progressing incision and resulted in locally improved aquatic populations in the stilling basin. However, the trapping of hydraulically-controlled sediment on the upstream side of the structure resulted in streambed incision, de-stabilization of streambanks and degraded aquatic habitat in downstream reaches not protected by other grade-control structures.

  13. Predicting non-stationary algal dynamics following changes in hydrometeorological conditions using data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Kim, S.; Seo, D. J.

    2017-12-01

    When water temperature (TW) increases due to changes in hydrometeorological conditions, the overall ecological conditions change in the aquatic system. The changes can be harmful to human health and potentially fatal to fish habitat. Therefore, it is important to assess the impacts of thermal disturbances on in-stream processes of water quality variables and be able to predict effectiveness of possible actions that may be taken for water quality protection. For skillful prediction of in-stream water quality processes, it is necessary for the watershed water quality models to be able to reflect such changes. Most of the currently available models, however, assume static parameters for the biophysiochemical processes and hence are not able to capture nonstationaries seen in water quality observations. In this work, we assess the performance of the Hydrological Simulation Program-Fortran (HSPF) in predicting algal dynamics following TW increase. The study area is located in the Republic of Korea where waterway change due to weir construction and drought concurrently occurred around 2012. In this work we use data assimilation (DA) techniques to update model parameters as well as the initial condition of selected state variables for in-stream processes relevant to algal growth. For assessment of model performance and characterization of temporal variability, various goodness-of-fit measures and wavelet analysis are used.

  14. Macroinvertebrate community change associated with the severity of streamflow alteration

    USGS Publications Warehouse

    Carlisle, Daren M.; Eng, Kenny; Nelson, S.M.

    2014-01-01

    Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low-flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. 

  15. THE EMERGING USE OF LIDAR AS A TOOL FOR ASSESSING WATERSHED MORPHOLOGY

    EPA Science Inventory

    Stream channel morphology is an integral component of the stream fluvial process and is inherently related to the stability of stream aquatic ecology. Numerous studies have shown that changes in stream channel geometry are related to changes in biotic integrity. In urbanizing la...

  16. Multinomial N-mixture models improve the applicability of electrofishing for developing population estimates of stream-dwelling Smallmouth Bass

    USGS Publications Warehouse

    Mollenhauer, Robert; Brewer, Shannon K.

    2017-01-01

    Failure to account for variable detection across survey conditions constrains progressive stream ecology and can lead to erroneous stream fish management and conservation decisions. In addition to variable detection’s confounding long-term stream fish population trends, reliable abundance estimates across a wide range of survey conditions are fundamental to establishing species–environment relationships. Despite major advancements in accounting for variable detection when surveying animal populations, these approaches remain largely ignored by stream fish scientists, and CPUE remains the most common metric used by researchers and managers. One notable advancement for addressing the challenges of variable detection is the multinomial N-mixture model. Multinomial N-mixture models use a flexible hierarchical framework to model the detection process across sites as a function of covariates; they also accommodate common fisheries survey methods, such as removal and capture–recapture. Effective monitoring of stream-dwelling Smallmouth Bass Micropterus dolomieu populations has long been challenging; therefore, our objective was to examine the use of multinomial N-mixture models to improve the applicability of electrofishing for estimating absolute abundance. We sampled Smallmouth Bass populations by using tow-barge electrofishing across a range of environmental conditions in streams of the Ozark Highlands ecoregion. Using an information-theoretic approach, we identified effort, water clarity, wetted channel width, and water depth as covariates that were related to variable Smallmouth Bass electrofishing detection. Smallmouth Bass abundance estimates derived from our top model consistently agreed with baseline estimates obtained via snorkel surveys. Additionally, confidence intervals from the multinomial N-mixture models were consistently more precise than those of unbiased Petersen capture–recapture estimates due to the dependency among data sets in the hierarchical framework. We demonstrate the application of this contemporary population estimation method to address a longstanding stream fish management issue. We also detail the advantages and trade-offs of hierarchical population estimation methods relative to CPUE and estimation methods that model each site separately.

  17. Associations of benthic macroinvertebrate assemblages with environmental variables in the upper Clear Creek watershed, California

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.; Wulff, Marissa

    2012-01-01

    Benthic macroinvertebrates are integral components of stream ecosystems and are often used to assess the ecological integrity of streams. We sampled streams in the upper Clear Creek drainage in the Klamath—Siskiyou Ecoregion of northwestern California in fall 2004 (17 sites) and 2005 (original 17 plus 4 new sites) with the objectives of documenting the benthic macroinvertebrate assemblages supported by the streams in the area, determining how those assemblages respond to environmental variables, assessing the biological condition of the streams using a benthic index of biotic integrity (IBI), and understanding the assemblages in the context of biodiversity of the ecoregion. We collected both reach-wide (RW) and targeted-riffle (TR) macroinvertebrate samples at each site. The macroinvertebrate assemblages were diverse, with over 150 genera collected for each sampling protocol. The macroinvertebrate assemblages appeared to be most responsive to a general habitat gradient based on stream size, gradient, flow, and dominance of riffles. A second important habitat gradient was based on elevation and dominance of riffles. A gradient in water quality based on concentrations of dissolved ions and metals was also important. Models based on these 3 gradients had Spearman's rank correlations with macroinvertebrate taxonomic composition of 0.60 and 0.50 for the TR and RW samples, respectively. The majority (>50%) of the sites were in good or very good biological condition based on IBI scores. The diversity of macroinvertebrate assemblages is associated with the diversity of habitats available in the Klamath—Siskiyou Ecoregion. Maintaining the aquatic habitats in good condition is important in itself but is also vital to maintaining biodiversity in this diverse and unique ecoregion.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream inmore » Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.« less

  19. THE CONCEPT OF REFERENCE CONDITION, REVISITED ...

    EPA Pesticide Factsheets

    Ecological assessments of aquatic ecosystems depend on the ability to compare current conditions against some expectation of how they could be in the absence of significant human disturbance. The concept of a ‘‘reference condition’’ is often used to describe the standard or benchmark against which current condition is compared. If assessments are to be conducted consistently, then a common understanding of the definitions and complications of reference condition is necessary. A 2006 paper (Stoddard et al., 2006, Ecological Applications 16:1267-1276) made an early attempt at codifying the reference condition concept; in this presentation we will revisit the points raised in that paper (and others) and examine how our thinking has changed in a little over 10 years.Among the issues to be discussed: (1) the “moving target” created when reference site data are used to set thresholds in large scale assessments; (2) natural vs. human disturbance and their effects on reference site distributions; (3) circularity and the use of biological data to assist in reference site identification; (4) using site-scale (in-stream or in-lake) measurements vs. landscape-level human activity to identify reference conditions. Ecological assessments of aquatic ecosystems depend on the ability to compare current conditions against some expectation of how they could be in the absence of significant human disturbance. The concept of a ‘‘reference condition’’ is often use

  20. ECOLOGICAL ANALYSIS OF HYDROLOGIC DISTURBANCE REGIMES IN STREAMS OF NORTH AND SOUTH DAKOTA

    EPA Science Inventory

    Streamflow variability is an important component of physical disturbance in streams, and is likely to be a major organizing feature of habitat for stream fishes. The disturbance regime in streams is frequently described by the variability in streamflow from both floods and prolo...

  1. SIMULATION COASTAL PLAIN STREAM FISH COMMUNITY RESPONSE TO NONPOINT SOURCE POLLUTION USING LINKED HYDROLOGIC-ECOLOGICAL MODELS

    EPA Science Inventory

    Nonpoint source pollution is the primary stress in many streams. Characteristic declines in stream fish communities are recognized in streams influenced by nonpoint source pollution, but the processes by which these declines occur are not well understood. Here, predicted time s...

  2. A Clustering Algorithm for Ecological Stream Segment Identification from Spatially Extensive Digital Databases

    NASA Astrophysics Data System (ADS)

    Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.

    2005-05-01

    Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.

  3. Stream ecosystem response to limestone treatment in acid impacted watersheds of the allegheny plateau

    USGS Publications Warehouse

    McClurg, S.E.; Petty, J.T.; Mazik, P.M.; Clayton, J.L.

    2007-01-01

    Restoration programs are expanding worldwide, but assessments of restoration effectiveness are rare. The objectives of our study were to assess current acid-precipitation remediation programs in streams of the Allegheny Plateau ecoregion of West Virginia (USA), identify specific attributes that could and could not be fully restored, and quantify temporal trends in ecosystem recovery. We sampled water chemistry, physical habitat, periphyton biomass, and benthic macroinvertebrate and fish community structure in three stream types: acidic (four streams), naturally circumneutral (eight streams), and acidic streams treated with limestone sand (eight streams). We observed no temporal trends in ecosystem recovery in treated streams despite sampling streams that ranged from 2 to 20 years since initial treatment. Our results indicated that the application of limestone sand to acidic streams was effective in fully recovering some characteristics, such as pH, alkalinity, Ca2+, Ca:H ratios, trout biomass and density, and trout reproductive success. However, recovery of many other characteristics was strongly dependent upon spatial proximity to treatment, and still others were never fully recovered. For example, limestone treatment did not restore dissolved aluminum concentrations, macroinvertebrate taxon richness, and total fish biomass to circumneutral reference conditions. Full recovery may not be occurring because treated streams continue to drain acidic watersheds and remain isolated in a network of acidic streams. We propose a revised stream restoration plan for the Allegheny Plateau that includes restoring stream ecosystems as connected networks rather than isolated reaches and recognizes that full recovery of acidified watersheds may not be possible. ?? 2007 by the Ecological Society of America.

  4. Environmental Characteristics and Geographic Information System Applications for the Development of Nutrient Thresholds in Oklahoma Streams

    USGS Publications Warehouse

    Masoner, Jason R.; Haggard, Brian E.; Rea, Alan

    2002-01-01

    The U.S.Environmental Protection Agency has developed nutrient criteria using ecoregions to manage and protect rivers and streams in the United States. Individual states and tribes are encouraged by the U.S. Environmental Protection Agency to modify or improve upon the ecoregion approach. The Oklahoma Water Resources Board uses a dichotomous process that stratifies streams using environmental characteristics such as stream order and stream slope. This process is called the Use Support Assessment Protocols, subchapter15. The Use Support Assessment Protocols can be used to identify streams threatened by excessive amounts of nutrients, dependant upon a beneficial use designation for each stream. The Use Support Assessment Protocols, subchapter 15 uses nutrient and environmental characteristic thresholds developed from a study conducted in the Netherlands, but the Oklahoma Water Resources Board wants to modify the thresholds to reflect hydrologic and ecological conditions relevant to Oklahoma streams and rivers. Environmental characteristics thought to affect impairment from nutrient concentrations in Oklahoma streams and rivers were determined for 798 water-quality sites in Oklahoma. Nutrient, chlorophyll, water-properties, and location data were retrieved from the U.S. Environmental Protection Agency STORET database including data from the U.S. Geological Survey, Oklahoma Conservation Commission, and Oklahoma Water Resources Board. Drainage-basin area, stream order, stream slope, and land-use proportions were determined for each site using a Geographic Information System. The methods, procedures, and data sets used to determine the environmental characteristics are described.

  5. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  6. Convergence and non-convergence in ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback

    PubMed Central

    Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.

    2015-01-01

    Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537

  7. Dynamics of groundwater-surface water interactions in urban streams

    NASA Astrophysics Data System (ADS)

    Musolff, A.; Schmidt, C.; Fleckenstein, J. H.

    2010-12-01

    In industrialized countries the majority of streams and rivers have been subject to changes in the hydrological regime and alteration of the channel morphology. Urban streams are typically characterized by “flashier” hydrographs as a result of more direct runoff from impervious surfaces. Channel structure and complexity are often impaired compared to pristine streams. As a consequence the potential for bedform-driven water flow in the streambed is reduced. The downward transport of oxygen by advective flow in the streambed is known to be of great ecological importance for the hyporheic macro and micro fauna and facilitates nutrient cycling and the degradation of organic pollutants. We studied the dynamics of groundwater-surface water exchange of two anthropogenically impacted streams in urban areas to examine the effects of variable hydrologic boundary conditions on water flux and redox conditions in the streambed. The first stream is fed by groundwater as well as storm-water from a large industrial area. Here, we monitored the variability of vertical hydraulic gradients, streambed temperature and redox conditions in the streambed over the course of 5 months. The second stream is frequently polluted by combined sewer overflows (CSO) from an urban watershed. Here, we measured the vertical hydraulic gradients, streambed temperature and electrical conductivity (EC) in the stream, the streambed and in the adjacent aquifer. Both streams are characterized by strong variations in hydraulic gradients due to the dynamic hydrographs as well as the variations in total head in the shallow aquifer. Therefore, magnitude and direction of water flux through the streambed changed significantly over time. At the first site long-term variations of redox conditions in the shallow streambed (0.1 m) were related to the direction of water fluxes. Downward water flow resulted in increased redox potentials. However, the high short-term variability of redox conditions could not be directly attributed to changes in the hydraulic conditions. At the second site, increased EC in the shallow aquifer was related to seasonally losing conditions (associated with low water tables in summer) and the resulting groundwater recharge. Sudden increases in stream stage due to rain events and subsequent CSO resulted in altered streambed water fluxes, as evidenced by the disturbance of vertical streambed temperature profiles down to a depth of 0.3 m. Both, short-term and long-term variations in hydraulic gradients between the stream, the streambed and the groundwater were found to influence the magnitude and direction of water fluxes. Flashy flow events influence the water flux in the streambed very rapidly. However, changes in redox potential in the streambed require losing conditions over time scales longer than the duration of a typical high flow event. As a consequence, the complexity of water exchange in the streambed should be carefully monitored, both in space and time. Our results indicate that variable hydraulic gradients may induce intense exchange fluxes between the stream and streambed in urban streams and may compensate some of the negative consequences of degraded channels with limited bedform-driven flow.

  8. Challenges and Opportunities of Long-Term Continuous Stream Metabolism Measurements at the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Goodman, K. J.; Lunch, C. K.; Baxter, C.; Hall, R.; Holtgrieve, G. W.; Roberts, B. J.; Marcarelli, A. M.; Tank, J. L.

    2013-12-01

    Recent advances in dissolved oxygen sensing and modeling have made continuous measurements of whole-stream metabolism relatively easy to make, allowing ecologists to quantify and evaluate stream ecosystem health at expanded temporal and spatial scales. Long-term monitoring of continuous stream metabolism will enable a better understanding of the integrated and complex effects of anthropogenic change (e.g., land-use, climate, atmospheric deposition, invasive species, etc.) on stream ecosystem function. In addition to their value in the particular streams measured, information derived from long-term data will improve the ability to extrapolate from shorter-term data. With the need to better understand drivers and responses of whole-stream metabolism come difficulties in interpreting the results. Long-term trends will encompass physical changes in stream morphology and flow regime (e.g., variable flow conditions and changes in channel structure) combined with changes in biota. Additionally long-term data sets will require an organized database structure, careful quantification of errors and uncertainties, as well as propagation of error as a result of the calculation of metabolism metrics. Parsing of continuous data and the choice of modeling approaches can also have a large influence on results and on error estimation. The two main modeling challenges include 1) obtaining unbiased, low-error daily estimates of gross primary production (GPP) and ecosystem respiration (ER), and 2) interpreting GPP and ER measurements over extended time periods. The National Ecological Observatory Network (NEON), in partnership with academic and government scientists, has begun to tackle several of these challenges as it prepares for the collection and calculation of 30 years of continuous whole-stream metabolism data. NEON is a national-scale research platform that will use consistent procedures and protocols to standardize measurements across the United States, providing long-term, high-quality, open-access data from a connected network to address large-scale change. NEON infrastructure will support 36 aquatic sites across 19 ecoclimatic domains. Sites include core sites, which remain for 30 years, and relocatable sites, which move to capture regional gradients. NEON will measure continuous whole-stream metabolism in conjunction with aquatic, terrestrial and airborne observations, allowing researchers to link stream ecosystem function with landscape and climatic drivers encompassing short to long time periods (i.e., decades).

  9. Spatiotemporal variability of stream habitat and movement of three species of fish

    USGS Publications Warehouse

    Roberts, J.H.; Angermeier, P.L.

    2007-01-01

    Relationships between environmental variability and movement are poorly understood, due to both their complexity and the limited ecological scope of most movement studies. We studied movements of fantail (Etheostoma flabellare), riverweed (E. podostemone), and Roanoke darters (Percina roanoka) through two stream systems during two summers. We then related movement to variability in measured habitat attributes using logistic regression and exploratory data plots. We indexed habitat conditions at both microhabitat (i.e., patches of uniform depth, velocity, and substrate) and mesohabitat (i.e., riffle and pool channel units) spatial scales, and determined how local habitat conditions were affected by landscape spatial (i.e., longitudinal position, land use) and temporal contexts. Most spatial variability in habitat conditions and fish movement was unexplained by a site's location on the landscape. Exceptions were microhabitat diversity, which was greater in the less-disturbed watershed, and riffle isolation and predator density in pools, which were greater at more-downstream sites. Habitat conditions and movement also exhibited only minor temporal variability, but the relative influences of habitat attributes on movement were quite variable over time. During the first year, movements of fantail and riverweed darters were triggered predominantly by loss of shallow microhabitats; whereas, during the second year, microhabitat diversity was more strongly related (though in opposite directions) to movement of these two species. Roanoke darters did not move in response to microhabitat-scale variables, presumably because of the species' preference for deeper microhabitats that changed little over time. Conversely, movement of all species appeared to be constrained by riffle isolation and predator density in pools, two mesohabitat-scale attributes. Relationships between environmental variability and movement depended on both the spatiotemporal scale of consideration and the ecology of the species. Future studies that integrate across scales, taxa, and life-histories are likely to provide greater insight into movement ecology than will traditional, single-season, single-species approaches. ?? 2006 Springer-Verlag.

  10. Riparian communities associated with pacific northwest headwater streams: assemblages, processes, and uniqueness.

    Treesearch

    John S. Richardson; Robert J. Naiman; Frederick J. Swanson; David E. Hibbs

    2005-01-01

    Riparian areas of large streams provide important habitat to many species and control many instream processes - but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from...

  11. Testing ecological tradeoffs of a new tool for removing fine sediment in a spring-fed stream

    USGS Publications Warehouse

    Sepulveda, Adam; Sechrist, Juddson D.; Marczak, Laurie B

    2014-01-01

    Excessive fine sediment is a focus of stream restoration work because it can impair the structure and function of streams, but few methods exist for removing sediment in spring-fed streams. We tested a novel method of sediment removal with the potential to have minimal adverse effects on the biological community during the restoration process. The Sand Wand system, a dredgeless vacuum developed by Streamside Technologies, was used to experimentally remove fine sediment from Kackley Springs, a spring creek in southeastern Idaho. We assessed the effects of the Sand Wand on stream physical habitat and macroinvertebrate composition for up to 60 days after the treatment. We documented changes in multiple habitat variables, including stream depth, median particle size, and the frequency of embedded substrate in stream reaches that were treated with the Sand Wand. We also found that macroinvertebrate composition was altered even though common macroinvertebrate metrics changed little after the treatment. Our results suggest that the Sand Wand was effective at removing fine sediments in Kackley Springs and did minimal harm to macroinvertebrate function, but the Sand Wand was not ultimately effective in improving substrate composition to desired conditions. Additional restoration techniques are still needed to decrease the amount of fine sediment.

  12. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome

    NASA Astrophysics Data System (ADS)

    Grant, S. B.

    2015-12-01

    Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of storm water that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and pre-urban land cover. For all but the wettest regions of the world, the water balance predicts a much larger volume of storm water runoff should be harvested than infiltrated to restore stream hydrology to a pre-urban state. Efforts to prevent or reverse hydrologic symptoms associated with the urban stream syndrome will therefore require: (1) selecting the right mix of LID technologies that provide regionally tailored ratios of storm water harvesting and infiltration; (2) integrating these LID technologies into next-generation drainage systems; (3) maximizing potential co-benefits including water supply augmentation, flood protection, improved water quality, and urban amenities; and (4) long-term hydrologic monitoring to evaluate the efficacy of LID interventions.

  13. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity

    PubMed Central

    dos Reis, Deusiano Florêncio; Salazar, Ayala Eduardo; Machado, Mayana Mendes Dias; Couceiro, Sheyla Regina Marques; de Morais, Paula Benevides

    2017-01-01

    Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge) and the Index of Habitat Integrity (HII). The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP), total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness), only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the riparian zone such as HII is recommended for the monitoring and control of anthropic impacts on aquatic communities. PMID:28085090

  14. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity.

    PubMed

    Reis, Deusiano Florêncio Dos; Salazar, Ayala Eduardo; Machado, Mayana Mendes Dias; Couceiro, Sheyla Regina Marques; Morais, Paula Benevides de

    2017-01-12

    Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge) and the Index of Habitat Integrity (HII). The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP), total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness), only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the riparian zone such as HII is recommended for the monitoring and control of anthropic impacts on aquatic communities.

  15. Field Validation of a Conservation Network on the Eastern Shore of Maryland, USA, Using Breeding Birds as Bio-Indicators

    NASA Astrophysics Data System (ADS)

    Weber, Theodore C.; Blank, Peter J.; Sloan, Anne

    2008-04-01

    Maryland’s Green Infrastructure (GI) is a network of large, intact natural areas (hubs), interconnected by linear swaths of riparian or upland vegetation (corridors). The GI serves significant ecological functions and provides the bulk of the state’s natural support system. This study examined whether the GI as mapped does, in fact, identify Maryland’s most ecologically valuable forested lands, using forest interior dwelling birds (hereafter called “forest birds”) as bio-indicators. We conducted bird point counts within forest both inside and outside of hubs on Maryland’s Eastern Shore. We also collected a wide variety of habitat data. We found that both the condition of a forest and its surrounding landscape influenced the bird communities. On average, forest bird richness was significantly higher within hubs; furthermore, almost all sites with at least five forest bird species present were in hubs. Forest bird richness and abundance were highest in undisturbed, mature broadleaf forest with wetlands and streams nearby. We detected a significant relationship between forest bird richness and the ecological score of a finer-scale landscape assessment, focused on “cells” of about 0.1 ha in size. This field study also validated the Rapid Field Assessment (RFA) protocol developed in 2001 to assess, on the ground, the relative condition of individual sites or properties within the GI. Forest bird richness and abundance were positively correlated with the RFA community scores. Our results underscore the importance of maintaining regional biological diversity by retaining large blocks of forest, especially mature forest containing streams and wetlands.

  16. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    USGS Publications Warehouse

    Constantz, James; Naranjo, Ramon C.; Niswonger, Richard G.; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.

    2016-01-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  17. Landscape approaches to stream fish mechanistic aspects of habitat selection and behavioral ecology. Introduction and commentary

    Treesearch

    Pedro A. Rincón; N.F. Hughes; Gary D. Grossman

    2000-01-01

    The Ecology of Stream Fish Symposium (Lobón-Cerviá & Mortensen 1999) was structured as a number sessions destined to showcase the latest developments and prospects for the future in areas of research that, in the opinion of the meeting's Steering Committee and organizers, held particular interest. Convinced of the benefits of research that integrates across...

  18. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    USGS Publications Warehouse

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle; Mahler, Barbara J.; Van Metre, Peter C.

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  19. Bifenthrin Causes Trophic Cascade and Altered Insect Emergence in Mesocosms: Implications for Small Streams.

    PubMed

    Rogers, Holly A; Schmidt, Travis S; Dabney, Brittanie L; Hladik, Michelle L; Mahler, Barbara J; Van Metre, Peter C

    2016-11-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC 50 's ranged from 197.6 to 233.5 ng bifenthrin/g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  20. Pesticides in agricultural headwater streams in southwestern Germany and effects on macroinvertebrate populations.

    PubMed

    Weber, Gero; Christmann, Nicole; Thiery, Ann-Cathrin; Martens, Dieter; Kubiniok, Jochen

    2018-04-01

    Pesticides are a major burden for stream ecosystems in the central European cultivated landscape. The objective of the present study was to investigate the applicability of ecological indicator methods in relation to toxicity of pesticides under the specific hydro-morphological conditions in small water bodies. Thus, an association of toxicity evaluating methods with different ecological indicators was to be attempted. Based on three random samples taken within the 2016 vegetation period, 23 headwater areas in the Saarland were investigated to test for pesticides and their metabolites. The macroinvertebrate population was also surveyed in 16 of these streams. Evidence was found of 41 substances in total. Most dominant substances include atrazine, isoproturone, quinmerac and tebuconazol as well as metabolites of dimethenamid, chloridazon and metazachlor. At 9 of the 23 sampling points, over 10 plant protection products and metabolites were found. Only 17% of the water bodies investigated contained fewer than 5 substances. Around half of the bodies of water investigated show noticeably high concentrations of metabolites of plant protection products. Maximum concentrations exceeding environmental quality standards or the Health-oriented Guideline Values were measured for 13 substances at individual sampling points. Analysis of the biological data for only 4 of the water bodies investigated resulted in the Ecological Status Class (ESC) "good". All others fell short of the quality target, although they were classified as "good" or "very good" according to the Saprobic index. SPEAR pesticides as a measurement of the sensitivity of the biocoenosis to pesticides shows their influence in a few water bodies. Likewise, high toxic unit values have also been calculated, indicating the presence of toxic substances at relevant concentrations. However, an actual correlation between SPEAR pesticides and toxic unit could not be derived. Clearly in these very headwater streams other habitat-determining hydromorphological factors overlay the toxic impact of pesticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Curricula without Boundaries: Developing an Ecological Connection for Higher Education Curricula

    ERIC Educational Resources Information Center

    Wang, Chia-Ling

    2014-01-01

    This study was conducted to address the concept of higher education curricula and its practice from an ecological perspective. First, the significance of ecology is investigated based on two streams of thought; the ecological concept of the university proposed by Ronald Barnett; and the text, "The Three Ecologies" authored by the Italian…

  2. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    NASA Astrophysics Data System (ADS)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  3. Associations of stream geomorphic conditions and prevalence of alternative reproductive tactics among sockeye salmon populations.

    PubMed

    DeFilippo, L B; Schindler, D E; Carter, J L; Walsworth, T E; Cline, T J; Larson, W A; Buehrens, T

    2018-02-01

    In many species, males may exhibit alternative life histories to circumvent the costs of intrasexual competition and female courtship. While the evolution and underlying genetic and physiological mechanisms behind alternative reproductive tactics are well studied, there has been less consideration of the ecological factors that regulate their prevalence. Here, we examine six decades of age composition records from thirty-six populations of sockeye salmon (Oncorhynchus nerka) to quantify associations between spawning habitat characteristics and the prevalence of precocious sneakers known as 'jacks'. Jack prevalence was independent of neutral genetic structure among stream populations, but varied among habitat types and as a function of continuous geomorphic characteristics. Jacks were more common in streams relative to beaches and rivers, and their prevalence was negatively associated with stream width, depth, elevation, slope and area, but positively related to bank cover. Behavioural observations showed that jacks made greater use of banks, wood and shallows than guard males, indicating that their reproductive success depends on the availability of such refuges. Our results emphasize the role of the physical habitat in shaping reproductive tactic frequencies among populations, likely through local adaptation in response to variable fitness expectations under different geomorphic conditions. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  4. Relationship Between Watershed Land Use and Denitrification Enzyme Activity in Headwater Streams

    EPA Science Inventory

    Headwater streams are the dominant land-water interface across much of the landscape. Denitrification is an important ecological service provided by headwater streams. Anthropogenic inputs of N to terrestrial ecosystems largely result from agricultural practices. Animal agricultu...

  5. Towards generalised reference condition models for environmental assessment: a case study on rivers in Atlantic Canada.

    PubMed

    Armanini, D G; Monk, W A; Carter, L; Cote, D; Baird, D J

    2013-08-01

    Evaluation of the ecological status of river sites in Canada is supported by building models using the reference condition approach. However, geography, data scarcity and inter-operability constraints have frustrated attempts to monitor national-scale status and trends. This issue is particularly true in Atlantic Canada, where no ecological assessment system is currently available. Here, we present a reference condition model based on the River Invertebrate Prediction and Classification System approach with regional-scale applicability. To achieve this, we used biological monitoring data collected from wadeable streams across Atlantic Canada together with freely available, nationally consistent geographic information system (GIS) environmental data layers. For the first time, we demonstrated that it is possible to use data generated from different studies, even when collected using different sampling methods, to generate a robust predictive model. This model was successfully generated and tested using GIS-based rather than local habitat variables and showed improved performance when compared to a null model. In addition, ecological quality ratio data derived from the model responded to observed stressors in a test dataset. Implications for future large-scale implementation of river biomonitoring using a standardised approach with global application are presented.

  6. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates.

    PubMed

    Rasmussen, Jes J; McKnight, Ursula S; Sonne, Anne Th; Wiberg-Larsen, Peter; Bjerg, Poul L

    2016-02-01

    Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown ecotoxicity, but they are continuously discharged into the stream by way of a long-lasting source generating long-term chronic exposure of the stream biota. Our results show that taxonomical density and diversity of especially sediment dwelling taxa were reduced by >50 % at the sampling sites situated in the primary inflow zone of the contaminated GW. Moreover, macroinvertebrate communities at these sampling sites could be distinguished from those at upstream control sites and sites situated along a downstream dilution gradient using multidimensional scaling. Importantly, macroinvertebrate indices currently used did not identify this impairment, thus underpinning an urgent need for developing suitable tools for the assessment of ecological effects of contaminated sites in streams.

  7. Modelling dendritic ecological networks in space: anintegrated network perspective

    USGS Publications Warehouse

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    the context of stream ecology. Within this context, we summarise the key innovations of a new family of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how different network analyses may be combined to address more complex and novel research questions. While our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns in both network and 2-D space can be used to explore the influence of multi-scale processes on biota and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or road corridors).

  8. Multi-Scale, Direct and Indirect Effects of the Urban Stream Syndrome on Amphibian Communities in Streams

    PubMed Central

    Canessa, Stefano; Parris, Kirsten M.

    2013-01-01

    Urbanization affects streams by modifying hydrology, increasing pollution and disrupting in-stream and riparian conditions, leading to negative responses by biotic communities. Given the global trend of increasing urbanization, improved understanding of its direct and indirect effects at multiple scales is needed to assist management. The theory of stream ecology suggests that the riverscape and the surrounding landscape are inextricably linked, and watershed-scale processes will also affect in-stream conditions and communities. This is particularly true for species with semi-aquatic life cycles, such as amphibians, which transfer energy between streams and surrounding terrestrial areas. We related measures of urbanization at different scales to frog communities in streams along an urbanization gradient in Melbourne, Australia. We used boosted regression trees to determine the importance of predictors and the shape of species responses. We then used structural equation models to investigate possible indirect effects of watershed imperviousness on in-stream parameters. The proportion of riparian vegetation and road density surrounding the site at the reach scale (500-m radius) had positive and negative effects, respectively, on species richness and on the occurrence of the two most common species in the area ( Crinia signifera and Limnodynastesdumerilii ). Road density and local aquatic vegetation interacted in influencing species richness, suggesting that isolation of a site can prevent colonization, in spite of apparently good local habitat. Attenuated imperviousness at the catchment scale had a negative effect on local aquatic vegetation, indicating possible indirect effects on frog species not revealed by single-level models. Processes at the landscape scale, particularly related to individual ranging distances, can affect frog species directly and indirectly. Catchment imperviousness might not affect adult frogs directly, but by modifying hydrology it can disrupt local vegetation and prove indirectly detrimental. Integrating multiple-scale management actions may help to meet conservation targets for streams in the face of urbanization. PMID:23922963

  9. The use of ecological classification in management

    Treesearch

    Constance A. Carpenter; Wolf-Dieter Busch; David T. Cleland; Juan Gallegos; Rick Harris; ray Holm; Chris Topik; Al Williamson

    1999-01-01

    Ecological classificafion systems range over a variety of scales and reflect a variety of scientific viewpoints. They incorporate or emphasize varied arrays of environmental factors. Ecological classifications have been developed for marine, wetland, lake, stream, and terrestrial ecosystems. What are the benefits of ecological classification for natural resource...

  10. Land use and the structure of western US stream invertebrate assemblages: Predictive models and ecological traits

    USGS Publications Warehouse

    Carlisle, D.M.; Hawkins, C.P.

    2008-01-01

    Inferences drawn from regional bioassessments could be strengthened by integrating data from different monitoring programs. We combined data from the US Geological Survey National Water-Quality Assessment (NAWQA) program and the US Environmental Protection Agency Wadeable Streams Assessment (WSA) to expand the scope of an existing River InVertebrate Prediction and Classification System (RIVPACS)-type predictive model and to assess the biological condition of streams across the western US in a variety of landuse classes. We used model-derived estimates of taxon-specific probabilities of capture and observed taxon occurrences to identify taxa that were absent from sites where they were predicted to occur (decreasers) and taxa that were present at sites where they were not predicted to occur (increasers). Integration of 87 NAWQA reference sites increased the scope of the existing WSA predictive model to include larger streams and later season sampling. Biological condition at 336 NAWQA test sites was significantly (p < 0.001) associated with basin land use and tended to be lower in basins with intensive landuse modification (e.g., mixed, urban, and agricultural basins) than in basins with relatively undisturbed land use (e.g., forested basins). Of the 437 taxa observed among reference and test sites, 180 (41%) were increasers or decreasers. In general, decreasers had a different set of ecological traits (functional traits or tolerance values) than did increasers. We could predict whether a taxon was a decreaser or an increaser based on just a few traits, e.g., desiccation resistance, timing of larval development, habit, and thermal preference, but we were unable to predict the type of basin land use from trait states present in invertebrate assemblages. Refined characterization of traits might be required before bioassessment data can be used routinely to aid in the diagnoses of the causes of biological impairment. ?? 2008 by The North American Benthological Society.

  11. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  12. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  13. THE URBAN STREAM SYNDROME: CURRENT KNOWLEDGE AND THE SEARCH FOR A CURE

    EPA Science Inventory

    The term "urban stream syndrome" describes the consistently observed ecological degradation of streams draining urban land. This paper reviews recent literature to describe symptoms of the syndrome, explores mechanisms driving the syndrome, and identifies appropriate goals and me...

  14. INVERTEBRATE ASSEMBLAGES FROM HEADWATER STREAMS WITH DIFFERENT FLOW PERMANENCE

    EPA Science Inventory

    Headwater streams are the most abundant and widespread of our nation's surface waters, yet few ecological assessments are specifically targeting these resources. Natural drying has a strong influence on the biological communities and can confound the use of traditional stream as...

  15. Developing Ecological Indicators for Nutrients and Urban Impacts to Streams in Coastal Watersheds

    EPA Science Inventory

    Increased nutrient loads associated with human activities are among leading causes of impairment to streams and receiving waterbodies. For streams draining to the environmentally and economically important Narragansett Bay estuary, we developed indicators based on (1) nitrogen an...

  16. The precision problem in conservation and restoration

    USGS Publications Warehouse

    Hiers, J. Kevin; Jackson, Stephen T.; Hobbs, Richard J.; Bernhardt, Emily S.; Valentine, Leonie E.

    2016-01-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world.

  17. Preliminary simulation study on regional climate change in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yuan, Chunqiong; Guo, Qingyu; Xie, Hongbing; Pan, Xiaoling; Anabiek, Subai

    2004-01-01

    Under the conditions of global warming, the degenerated ecological environment has threatened human survival. Therefore, people will gradually pay more attention to the environmental problem of climate change. This paper analyzes the distribution features of air temperature, relative humidity (precipitation), and the horizontal stream field in Xinjiang for July 1997. In order to do the integration of one month (July, 1997) we ran the model NCAP/PENN MM5V3. Data from WLCCD (the latest World Land Cover Characteristics Database) was used to relate the two research domains of the model, and also to replace the vegetation in the MM5. The data in the WWLCD depends on the actual land surface characteristics. It was found that the general law of air temperature, relative humidity (precipitation) and the horizontal stream field of 1000hPa in Xinjiang in July of 1997 by means of the model. The mean regional data for July helped prefect the theory that humans are controlling the ecological environment in order to prevent and control desertification. Among these results, the simulated air temperature was the best.

  18. A Foraging Cost of Migration for a Partially Migratory Cyprinid Fish

    PubMed Central

    Chapman, Ben B.; Eriksen, Anders; Baktoft, Henrik; Brodersen, Jakob; Nilsson, P. Anders; Hulthen, Kaj; Brönmark, Christer; Hansson, Lars-Anders; Grønkjær, Peter; Skov, Christian

    2013-01-01

    Migration has evolved as a strategy to maximise individual fitness in response to seasonally changing ecological and environmental conditions. However, migration can also incur costs, and quantifying these costs can provide important clues to the ultimate ecological forces that underpin migratory behaviour. A key emerging model to explain migration in many systems posits that migration is driven by seasonal changes to a predation/growth potential (p/g) trade-off that a wide range of animals face. In this study we assess a key assumption of this model for a common cyprinid partial migrant, the roach Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems. PMID:23723967

  19. Methods to characterize environmental settings of stream and groundwater sampling sites for National Water-Quality Assessment

    USGS Publications Warehouse

    Nakagaki, Naomi; Hitt, Kerie J.; Price, Curtis V.; Falcone, James A.

    2012-01-01

    Characterization of natural and anthropogenic features that define the environmental settings of sampling sites for streams and groundwater, including drainage basins and groundwater study areas, is an essential component of water-quality and ecological investigations being conducted as part of the U.S. Geological Survey's National Water-Quality Assessment program. Quantitative characterization of environmental settings, combined with physical, chemical, and biological data collected at sampling sites, contributes to understanding the status of, and influences on, water-quality and ecological conditions. To support studies for the National Water-Quality Assessment program, a geographic information system (GIS) was used to develop a standard set of methods to consistently characterize the sites, drainage basins, and groundwater study areas across the nation. This report describes three methods used for characterization-simple overlay, area-weighted areal interpolation, and land-cover-weighted areal interpolation-and their appropriate applications to geographic analyses that have different objectives and data constraints. In addition, this document records the GIS thematic datasets that are used for the Program's national design and data analyses.

  20. Design and methods of the Southeast Stream Quality Assessment (SESQA), 2014

    USGS Publications Warehouse

    Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Button, Daniel T.; Garrett, Jessica D.; Nakagaki, Naomi; Qi, Sharon L.; Bradley, Paul M.

    2015-07-15

    This report provides a detailed description of the SESQA study components, including surveys of ecological conditions, routine water sampling, deployment of passive polar organic compound integrative samplers for pesticides and contaminants of emerging concern, and synoptic sediment sampling and toxicity testing at all urban, confined animal feeding operation, and reference sites. Continuous water-quality monitoring and daily pesticide sampling efforts conducted at a subset of urban sites are also described.

  1. Method to support Total Maximum Daily Load development using hydrologic alteration as a surrogate to address aquatic life impairment in New Jersey streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Riskin, Melissa L.; Reilly, Pamela A.; Colarullo, Susan J.

    2013-01-01

    More than 300 ambient monitoring sites in New Jersey have been identified by the New Jersey Department of Environmental Protection (NJDEP) in its integrated water-quality monitoring and assessment report (that is, the 305(b) Report on general water quality and 303(d) List of waters that do not support their designated uses) as being impaired with respect to aquatic life; however, no unambiguous stressors (for example, nutrients or bacteria) have been identified. Because of the indeterminate nature of the broad range of possible impairments, surrogate measures that more holistically encapsulate the full suite of potential environmental stressors need to be developed. Streamflow alteration resulting from anthropogenic changes in the landscape is one such surrogate. For example, increases in impervious surface cover (ISC) commonly cause increases in surface runoff, which can result in “flashy” hydrology and other changes in the stream corridor that are associated with streamflow alteration. The NJDEP has indicated that methodologies to support a hydrologically based Total Maximum Daily Load (hydro-TMDL) need to be developed in order to identify hydrologic targets that represent a minimal percent deviation from a baseline condition (“minimally altered”) as a surrogate measure to meet criteria in support of designated uses. The primary objective of this study was to develop an applicable hydro-TMDL approach to address aquatic-life impairments associated with hydrologic alteration for New Jersey streams. The U.S. Geological Survey, in cooperation with the NJDEP, identified 51 non- to moderately impaired gaged streamflow sites in the Raritan River Basin for evaluation. Quantile regression (QR) analysis was used to compare flow and precipitation records and identify baseline hydrographs at 37 of these sites. At sites without an appropriately long period of record (POR) or where a baseline hydrograph could not be identified with QR, a rainfall-runoff model was used to develop simulated baseline hydrographs. The hydro-TMDL approach provided an opportunity to evaluate proportional differences in flow attributes between observed and baseline hydrographs and to develop complementary flow-ecology response relations at a subset of Raritan River Basin sites where available flow and ecological information overlapped. The New Jersey Stream Classification Tool (NJSCT) was used to determine the stream class of all 51 study sites by using either an observed or a simulated baseline hydrograph. Two New Jersey stream classes (A and C) were evaluated to help characterize the unique hydrology of the Raritan River Basin. In general, class C streams (1.99–40.7 square miles) had smaller drainage areas than class A streams (0.7–785 square miles). Many of the non-impaired and moderately impaired class A and C streams in the Raritan River Basin were found to have significant hydrologic alteration as indicated by numerous flow values that fell outside the established 25th-to-75th- and the more conservative 40th-to-60th-percentile boundaries. However, percent deviations for the class C streams (defined as moderately stable streams with moderately high base-flow contributions) were, in general, much larger than those for the class A streams (defined as semiflashy streams characterized by moderately low base flow). The greater deviations for class C streams in the hydro-TMDL assessments likely resulted from comparisons that were based solely on simulated baseline hydrographs, which were developed without considering any anthropogenic influences in the basin. In contrast, comparisons for many of the class A streams were made by using an observed baseline, which already includes an implicit level of ISC and other human influences on the landscape. By using the hydro-TMDL approach, numerous flow deviations were identified that were indicative of streams that are highly regulated by reservoirs or dams, streams that are affected by increasing amounts of surface runoff resulting from ISC, and streams that are affected by water abstraction (that is, groundwater or surface-water withdrawals used for agricultural and human supply). Eight of the reservoir- and (or) dam-affected sites showed flow deviations that are indicative of flow-managed systems. For example, indices that account for the timing and magnitude of high and low flows were often found to fall outside the 25th-to-75th-percentile range. In general, at regulated class C streams, annual summer low flows are arriving later and tend to be lower, and high flows are arriving earlier with higher magnitudes of longer duration. At class A streams, high and low flows are arriving later with an overall increase in discharge with respect to the prereservoir baseline conditions. The drainage basins of eight of the study sites had large values of ISC (>10 percent), most likely as a result of expanding urban development. In general, the magnitude and frequency of high flows at class A and C sites with high ISC are increasing and were commonly found to fall outside the 25th-to-75th-percentile range. Additionally, magnitudes of low flows are becoming lower and, although the timing of high flows was highly variable, low-flow events appeared to be arriving earlier than would be expected under normal low-flow conditions. Three of the study sites appeared to be affected by hydrologic changes associated with water abstraction. At these sites, the timing of flows appeared to be altered. For example, low flows tended to arrive earlier and high flows arrived later at two of the three sites. Additionally, the magnitude and duration of low flows were commonly less than the 25th-percentile value and the duration of high flows appeared to increase. A reduced set of hydrologic and ecological variables was used to develop univariate and multivariate flow-ecology response models for the aquatic-invertebrate assemblage. Many hydrologic variables accounting for the duration, magnitude, frequency, and timing of flows were significantly correlated with ecological response. Multiple linear regression (MLR) models were developed to provide a more holistic evaluation of the combined effects of hydrologic alteration and to identify models with two or three hydrologic variables that account for a significant proportion of the variability in invertebrate-assemblage condition as represented by assemblage metric scores. MLR models, derived on the basis of hydrologic attributes, accounted for 35 to 75 percent of the variability in assemblage condition. The hydro-TMDL method developed herein for non- to moderately impaired Raritan River Basin streams utilizes a “surrogate” approach in place of the traditional “pollutant of concern” approach commonly used for TMDL development. Managers can use the results obtained by using the hydro-TMDL method to offset the effects of impervious-surface runoff and altered streamflow and to implement measures designed to achieve the necessary load reductions for the “pollutant of concern” (that is, percentage deviations of stream-class-specific flow-index values outside the established 25th-to-75th-percentile range). In this case, such deviations could represent all or a subset of the altered flow indices that prevent the stream from meeting designated aquatic-life criteria. This hydro-TMDL uses a reference, or attainment stream approach for developing the TMDL endpoint. That is, either observed or simulated baseline hydrographs were selected as appropriate reference conditions on the basis of results of QR analysis and watershed modeling procedures, respectively. For any stream in the Raritan River Basin evaluated as part of this study, the hydro-TMDL can be expressed as the greatest amount of deviation in flow a stream can exhibit without violating the stream’s designated aquatic-life criteria. Use of this surrogate approach is appropriate because flows that fall outside the established percentile ranges are ultimately a function of many anthropogenic modifications of the landscape, including the amount of stormwater runoff generated from impervious surfaces within a given basin, the presence of manmade structures designed to retain or divert water, the magnitude of ground- and surface-water abstraction, and the presence of water-supply processes implemented to support human needs. In addition, the stream-type-specific flow indices used as the basis for the hydro-TMDL approach are useful for representing the hydrologic conditions of class A and C streams/basins because they incorporate the full spectrum of flow conditions (very low to very high) that occur in the stream system over a long period of time, as well as those flow properties that change as a result of seasonal variation. Ultimately, an estimate of the maximum percentage flow reduction that could be allowed will be needed to address the aquatic-life impairments in many of the study streams in the Raritan River Basin and will be necessary for identifying appropriate target flow conditions for hydro-TMDL implementation. As described in this report, a target flow value equal to the 25th- or 75th-percentile flow rate could be selected as the point useful for setting specific hydrologic targets. This selection, however, is a management decision that could vary depending on the designated use of the stream or other regulatory factors (for example, water-supply protection, trout production, antidegradation policies, or special protection designations). In New Jersey streams where no unambiguous stressors can be identified, State monitoring agencies, such as the NJDEP, could choose to require the implementation of a flow-based TMDL that not only supports designated uses, but meets the regulatory requirements under the Clean Water Act, and represents a balance between water supply intended to meet human needs and the conservation of ecosystem integrity.

  2. Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.

    2010-01-01

    Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a "prescribed fire regime" of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.

  3. Fish relationships with large wood in small streams

    Treesearch

    C. Andrew Dolloff; Melvin L. Warren

    2003-01-01

    Many ecological processes are associated with large wood in streams, such as forming habitat critical for fish and a host of other organisms. Wood loading in streams varies with age and species of riparian vegetation, stream size, time since last disturbance, and history of land use. Changes in the landscape resulting from homesteading, agriculture, and logging have...

  4. Bat reproduction declines when conditions mimic climate change projections for western North America.

    PubMed

    Adams, Rick A

    2010-08-01

    Climate change models predict that much of western North America is becoming significantly warmer and drier, resulting in overall reductions in availability of water for ecosystems. Herein, I demonstrate that significant declines in the reproductive success of female insectivorous bats occur in years when annual environmental conditions mimic the long-term predictions of regional climate change models. Using a data set gathered on bat populations from 1996 through 2008 along the Front Range of Colorado, I compare trends in population numbers and reproductive outcomes of six species of vespertilionid bats with data on mean annual high temperature, precipitation, snow pack, and stream discharge rates. I show that levels of precipitation and flow rates of small streams near maternity colonies is fundamentally tied to successful reproduction in female bats, particularly during the lactation phase. Across years that experienced greater than average mean temperatures with less than average precipitation and stream flow, bat populations responded by slight to profound reductions in reproductive output depending on the severity of drought conditions. In particular, reproductive outputs showed profound declines (32-51%) when discharge rates of the largest stream in the field area dropped below 7 m3/s, indicating a threshold response. Such sensitivity to environmental change portends severe impacts to regional bat populations if current scenarios for climate change in western North America are accurate. In addition, bats act as early-warning indicators of large-scale ecological effects resulting from further regional warming and drying trends currently at play in western North America.

  5. Morphological assessment of reconstructed lowland streams in the Netherlands

    NASA Astrophysics Data System (ADS)

    Eekhout, Joris P. C.; Hoitink, Antonius J. F.; de Brouwer, Jan H. F.; Verdonschot, Piet F. M.

    2015-07-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three reconstructed streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realise water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.

  6. Morphological Assessment of Reconstructed Lowland Streams in the Netherlands

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Eekhout, J.; de Brouwer, J.; Verdonschot, P.

    2014-12-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three lowland streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realize water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.

  7. Use of dynamic occupancy models to assess the response of Darters (Teleostei: Percidae) to varying hydrothermal conditions in a southeastern United States tailwater

    USGS Publications Warehouse

    Shea, C.P.; Bettoli, Phillip William; Potoka, K. M.; Saylor, C. F.; Shute, P. W.

    2015-01-01

    During the past 100 years, most large rivers in North America have been altered for flood control, hydropower, navigation or water supply development. Although these activities clearly provide important human services, their associated environmental disturbances can profoundly affect stream-dwelling organisms. We used dynamic multi-species occupancy models combined with a trait-based approach to estimate the influence of site-level and species-level characteristics on patch dynamic rates for 15 darter species native to the Elk River, a large, flow-regulated Tennessee River tributary in Tennessee and Alabama. Dynamic occupancy modelling results indicated that for every 2.5 °C increase in stream temperature, darters were 3.94 times more likely to colonize previously unoccupied stream reaches. Additionally, large-bodied darter species were 3.72 times more likely to colonize stream reaches compared with small-bodied species, but crevice-spawning darter species were 5.24 times less likely to colonize previously unoccupied stream reaches. In contrast, darters were 2.21 times less likely to become locally extinct for every 2.5 °C increase in stream temperature, but high stream discharge conditions elevated the risk of local extinction. Lastly, the presence of populations in neighbouring upstream study reaches contributed to a lower risk of extinction, whereas the presence of populations in neighbouring downstream study reaches contributed to higher rates of colonization. Our study demonstrates the application of a trait-based approach combined with a metapopulation framework to assess the patch dynamics of darters in a regulated river. Results from our study will provide a baseline for evaluating the ecological consequences of alternative dam operations.

  8. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm-water energy characteristics in urbanized watersheds resulting in channel widening and bank failure. Thus, bank stabilization, channel restoration, and/or storm water management to attenuate stream energy may improve the ecological condition of these waterbodies.

  9. Environmental Control on Microbial Turnover of Leaf Carbon in Streams – Ecological Function of Phototrophic-Heterotrophic Interactions

    PubMed Central

    Fabian, Jenny; Zlatanović, Sanja; Mutz, Michael; Grossart, Hans-Peter; van Geldern, Robert; Ulrich, Andreas; Gleixner, Gerd; Premke, Katrin

    2018-01-01

    In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photo-heterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a 13C-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems.

  10. Ecological Exposure Research: Water

    EPA Pesticide Factsheets

    Overview of ecological exposure water research, including invasive species, Functional Process Zones (FPZs), biomarkers, pharmaceuticals in water, headwater streams, DNA barcoding, wetland ecosystem services, and sediment remediation.

  11. Ecological Realism of U.S. EPA Experimental Stream Facility Studies

    EPA Science Inventory

    The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run sectio...

  12. Determination of biologically significant hydrologic condition metrics in urbanizing watersheds: an empirical analysis over a range of environmental settings

    USGS Publications Warehouse

    Steuer, Jeffrey J.; Stensvold, Krista A.; Gregory, Mark B.

    2010-01-01

    We investigated the relations among 83 hydrologic condition metrics (HCMs) and changes in algal, invertebrate, and fish communities in five metropolitan areas across the continental United States. We used a statistical approach that employed Spearman correlation and regression tree analysis to identify five HCMs that are strongly associated with observed biological variation along a gradient of urbanization. The HCMs related to average flow magnitude, high-flow magnitude, high-flow event frequency, high-flow duration, and rate of change of stream cross-sectional area were most consistently associated with changes in aquatic communities. Although our investigation used an urban gradient design with short hydrologic periods of record (≤1 year) of hourly cross-sectional area time series, these five HCMs were consistent with previous investigations using long-term daily-flow records. The ecological sampling day often was included in the hydrologic period. Regression tree models explained up to 73, 92, and 79% of variance for specific algal, invertebrate, and fish community metrics, respectively. National models generally were not as statistically significant as models for individual metropolitan areas. High-flow event frequency, a hydrologic metric found to be transferable across stream type and useful for classifying habitat by previous research, was found to be the most ecologically relevant HCM; transformation by precipitation increased national-scale applicability. We also investigated the relation between measures of stream flashiness and land-cover indicators of urbanization and found that land-cover characteristic and pattern variables, such as road density, percent wetland, and proximity of developed land, were strongly related to HCMs at both a metropolitan and national scale and, therefore, may be effective land-use management options in addition to wholesale impervious-area reduction.

  13. Critical role of seasonal tributaries for native fish and aquatic biota in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Marchetti, M.

    2016-12-01

    We examined the ecology of seasonal tributaries in California in terms of native fishes and aquatic macroinvertebrates. This talk summarizes data from five individual studies. Studying juvenile Chinook growth using otolith microstructure we find that fish grow faster and larger in seasonal tributaries. In a four-year study on the abundance of native fish larvae in tributaries of the Sacramento River we find certain tributaries produce an order of magnitude more native fish larvae than nearby permanent streams. In a study comparing the distribution and abundance of aquatic macroinvertebrates in a seasonal tributary with a permanent stream we find the seasonal tributary contains unique taxa, higher drift densities and ecologically distinct communities. In a cross-watershed comparison of larval fish drift we find that a seasonal tributary produces more larvae than all other streams/rivers we examined. In a comparison of juvenile Chinook growth morphology between seasonal and permanent streams using geometric morphometrics we find that salmon show phenotypic plasticity and their growth is characteristically different in seasonal tributaries. Taken together, this body of work highlights the critical ecological importance of this habitat.

  14. Downstream variation in bankfull width of wadeable streams across the conterminous United States

    EPA Science Inventory

    Bankfull channel width is a fundamental measure of stream size and a key parameter of interest for many applications in hydrology, fluvial geomorphology, and stream ecology. We developed downstream hydraulic geometry relationships for bankfull channel width w as a function of dra...

  15. Stream Hydrology and Water Quality Impacts of Contrasting Urban Stormwater Mitigation Strategies: Centralized Versus Distributed

    EPA Science Inventory

    Urban land cover is commonly associated with degraded stream habitat including flashier hydrology, increased pollutant export, and lower ecological health , collectively termed “urban stream syndrome.” Pollutant export from urban areas can also contribute to water quality issues...

  16. TREHS (Temporary Rivers Ecological and Hydrological Status): new software for investigating the degree of hydrologic alteration of temporary streams.

    NASA Astrophysics Data System (ADS)

    Gallart, Francesc; Llorens, Pilar; Cid, Núria; latron, Jérôme; Bonada, Núria; Prat, Narcís

    2017-04-01

    The evaluation of the hydrological alteration of a stream due to human activities is a first step to assess its overall quality and to design management strategies for its potential restoration. This task is currently made comparing impacted against unimpacted hydrographs, with the help of software tools, such as the IHA (Indicators of Hydrologic Alteration). Then, the environmental evaluation of the hydrological alteration is to be made in terms of its expectable menace for the original biological communities and/or its help for the spread of invasive species. However, when the regime of the target stream is not perennial, there are four main difficulties for implementing methods for assessing hydrological alteration: i) the main hydrological features relevant for biological communities in a temporary stream are not quantitative (discharges) but qualitative (temporal patterns of states such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, which act as refugees for many species during the cessation of flow, iii) as most of the temporary streams are ungauged, the evaluation of their regime must be determined by using alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must be conducted following a sampling schedule adapted to the flow regime and using adequate reference conditions. In order to overcome these challenges using an operational approach, the TREHS freely available software tool has been developed within the EU LIFE TRIVERS project (LIFE13 ENV/ES/000341). This software allows for the input of information coming from flow simulations obtained using any rainfall-runoff model (to set an unimpacted reference stream regime) and compares them with the information obtained from flow gauging records, interviews made to local citizens, instantaneous observations made by individuals, and by interpretation of aerial photographs. Up to six metrics defining the permanence of water flow, the presence of stagnant pools and their temporal patterns of occurrence are used to determine the natural and observed river regime, and to assess the degree of hydrological alteration. Here, given the lack of agreed standards to evaluate the ecological relevance of the observed alterations, the thresholds that define quality class boundaries are provisional and may be updated using expert knowledge. Finally, the software characterizes the differences between the natural and actual regimes, performs a diagnosis of the hydrological status (degree of hydrologic alteration) along with an assessment of the significance and robustness of the diagnosis, and recommends the best period for biological quality samplings.

  17. Meta-analysis: abundance, behavior, and hydraulic energy shape biotic effects on sediment transport in streams.

    PubMed

    Albertson, L K; Allen, D C

    2015-05-01

    An increasing number of studies have emphasized the need to bridge the disciplines of ecology and geomorphology. A large number of case studies show that organisms can affect erosion, but a comprehensive understanding of biological impacts on sediment transport conditions is still lacking. We use meta-analysis to synthesize published data to quantify the effects of the abundance, body size, and behavior of organisms on erosion in streams. We also explore the influence of current velocity, discharge, and sediment grain size on the strength of biotic effects on erosion. We found that species that both increase erosion (destabilizers) and decrease erosion (stabilizers) can alter incipient sediment motion, sediment suspension, and sediment deposition above control conditions in which the organisms were not present. When abundance was directly manipulated, these biotic effects were consistently stronger in the higher abundance treatment, increasing effect sizes by 66%. Per capita effect size and per capita biomass were also consistently positively correlated. Fish and crustaceans were the most studied organisms, but aquatic insects increased the effect size by 550 x compared to other types of organisms after accounting for biomass. In streams with lower discharge and smaller grain sizes, we consistently found stronger biotic effects. Taken collectively, these findings provide synthetic evidence that biology can affect physical processes in streams, and these effects can be mediated by hydraulic energy. We suggest that future studies focus on understudied organisms, such as biofilms, conducting experiments under realistic field conditions, and developing hypotheses for the effect of biology on erosion and velocity currents in the context of restoration to better understand the forces that mediate physical disturbances in stream ecosystems.

  18. Long-Term Impacts on Macroinvertebrates Downstream of Reclaimed Mountaintop Mining Valley Fills in Central Appalachia

    NASA Astrophysics Data System (ADS)

    Pond, Gregory J.; Passmore, Margaret E.; Pointon, Nancy D.; Felbinger, John K.; Walker, Craig A.; Krock, Kelly J. G.; Fulton, Jennifer B.; Nash, Whitney L.

    2014-10-01

    Recent studies have documented adverse effects to biological communities downstream of mountaintop coal mining and valley fills (VF), but few data exist on the longevity of these impacts. We sampled 15 headwater streams with VFs reclaimed 11-33 years prior to 2011 and sampled seven local reference sites that had no VFs. We collected chemical, habitat, and benthic macroinvertebrate data in April 2011; additional chemical samples were collected in September 2011. To assess ecological condition, we compared VF and reference abiotic and biotic data using: (1) ordination to detect multivariate differences, (2) benthic indices (a multimetric index and an observed/expected predictive model) calibrated to state reference conditions to detect impairment, and (3) correlation and regression analysis to detect relationships between biotic and abiotic data. Although VF sites had good instream habitat, nearly 90 % of these streams exhibited biological impairment. VF sites with higher index scores were co-located near unaffected tributaries; we suggest that these tributaries were sources of sensitive taxa as drifting colonists. There were clear losses of expected taxa across most VF sites and two functional feeding groups (% scrapers and %shredders) were significantly altered. Percent VF and forested area were related to biological quality but varied more than individual ions and specific conductance. Within the subset of VF sites, other descriptors (e.g., VF age, site distance from VF, the presence of impoundments, % forest) had no detectable relationships with biological condition. Although these VFs were constructed pursuant to permits and regulatory programs that have as their stated goals that (1) mined land be reclaimed and restored to its original use or a use of higher value, and (2) mining does not cause or contribute to violations of water quality standards, we found sustained ecological damage in headwaters streams draining VFs long after reclamation was completed.

  19. Approaches to resource recovery in controlled ecological life support systems

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Wydeven, T.

    1994-01-01

    Recovery of resources from waste streams in a space habitat is essential to minimize the resupply burden and achieve self sufficiency. The ultimate goal of a Controlled Ecological Life Support System (CELSS) is to achieve the greatest practical level of mass recycle and provide self sufficiency and safety for humans. Several mission scenarios leading to the ultimate application could employ CELSS component technologies or subsystems with initial emphasis on recycle of the largest mass components of the waste stream. Candidate physical/chemical and biological processes for resource recovery from liquid and solid waste streams are discussed and the current fundamental recovery potentials are estimated.

  20. Caspar Creek project stream ecology phase progress report, July 1, 1965 - June 30, 1966

    Treesearch

    Richard L. Ridenhour

    1966-01-01

    A preliminary progress report of the research on the stream ecology of Caspar Creek by Humboldt State College was submitted by Dr. John DeWitt in December,1965, (DeWitt 1965). Further analyses of data collected during the summer of 1965 allows a more complete report to be made at this time. Although the contract was for the period July 1, 1965 to June 30, 1966, field...

  1. Rivers and streams: Physical setting and adapted biota

    USGS Publications Warehouse

    Wilzbach, Margaret A.; Cummins, K.W.

    2008-01-01

    Streams and rivers are enormously important, with their ecological, and economic value, greatly outweighing their significance on the landscape. Lotic ecology began in Europe with a focus on the distribution, abundance, and taxonomic composition of aquatic organisms and in North American with a focus on fishery biology. Since 1980, stream/river research has been highly interdisciplinary, involving fishery biologists, aquatic entomologists, algologists, hydrologists, geomorphologists, microbiologists, and terrestrial plant ecologists. Stream and river biota evolved in response to, and in concert with, the physical and chemical setting. Streams/rivers transport water and move sediments to the sea as part of the hydrologic cycle that involves evaporation, plant evapotranspiration, and precipitation. Ephemeral streams flow only in the wettest year, intermittent streams flow predictably every year during capture of surface runoff, and perennial streams flow continuously during wet and dry periods, receiving both stormflow and groundwater baseflow. The lotic biota, for example, algae, macrophytes, benthic invertebrates, and fishes, have evolved adaptations to their running-water setting. Dominant physical features of this setting are current, substrate, and temperature. Key chemical constituents are dissolved gases, dissolved inorganic ions and compounds, particulate inorganic material, particulate organic material, and dissolved organic ions (nitrogen and phosphorus) and compounds.

  2. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review

    USGS Publications Warehouse

    Nimick, David A.; Gammons, Christopher H.; Parker, Stephen R.

    2011-01-01

    This review summarizes biogeochemical processes that operate on diel, or 24-h, time scales in streams and the changes in aqueous chemistry that are associated with these processes. Some biogeochemical processes, such as those producing diel cycles of dissolved O2 and pH, were the first to be studied, whereas processes producing diel concentration cycles of a broader spectrum of chemical species including dissolved gases, dissolved inorganic and organic carbon, trace elements, nutrients, stable isotopes, and suspended particles have received attention only more recently. Diel biogeochemical cycles are interrelated because the cyclical variations produced by one biogeochemical process commonly affect another. Thus, understanding biogeochemical cycling is essential not only for guiding collection and interpretation of water-quality data but also for geochemical and ecological studies of streams. Expanded knowledge of diel biogeochemical cycling will improve understanding of how natural aquatic environments function and thus lead to better predictions of how stream ecosystems might react to changing conditions of contaminant loading, eutrophication, climate change, drought, industrialization, development, and other factors.

  3. Prevalance and consequences of the most frequently observed alien molluse in US wadeable stream ecosystems

    EPA Science Inventory

    Alien molluscs are widely distributed in U.S. streams. While some raise economic concerns on the order of billions of dollars, documentation of widespread ecological effects has, in some instances, been more elusive. A probability survey of wadeable streams of the coterminous U.S...

  4. THE EFFECTS OF ECOSYSTEM RESTORATION ON NITROGEN PROCESSING IN AN URBAN MID-ATLANTIC PIEDMONT STREAM

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater pose human and ecological threats. The US EPA, USGS, Institute of Ecosystem Studies, and Baltimore County Dept. of Environmental Protection are collaborating on a multi-year study of the impacts of stream restoration on nitrogen...

  5. Twenty-six key research questions in urban stream ecology: an assessment of the state of the science

    EPA Science Inventory

    Although urban streams have been the focus of much research activity in recent years, there remain many unanswered questions about the mechanisms driving the “urban stream syndrome.” Identification of these key research questions is an important step toward effective, efficient ...

  6. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low-gradient stream network

    USGS Publications Warehouse

    Smith, Joseph M.; Mather, Martha E.

    2013-01-01

    In summary, within a stream network, beaver dams maintained fish biodiversity by altering in-stream habitat and increasing habitat heterogeneity. Understanding the relationship between habitat heterogeneity and biodiversity can advance basic freshwater ecology and provide science-based support for applied aquatic conservation

  7. Legacy effects of wildfire on stream thermal regimes and rainbow trout ecology: an integrated analysis of observation and individual-based models

    USGS Publications Warehouse

    Rosenberger, Amanda E.; Dunham, Jason B.; Neuswanger, Jason R.; Railsback, Steven F.

    2015-01-01

    Management of aquatic resources in fire-prone areas requires understanding of fish species’ responses to wildfire and of the intermediate- and long-term consequences of these disturbances. We examined Rainbow Trout populations in 9 headwater streams 10 y after a major wildfire: 3 with no history of severe wildfire in the watershed (unburned), 3 in severely burned watersheds (burned), and 3 in severely burned watersheds subjected to immediate events that scoured the stream channel and eliminated streamside vegetation (burned and reorganized). Results of a previous study of this system suggested the primary lasting effects of this wildfire history on headwater stream habitat were differences in canopy cover and solar radiation, which led to higher summer stream temperatures. Nevertheless, trout were present throughout streams in burned watersheds. Older age classes were least abundant in streams draining watersheds with a burned and reorganized history, and individuals >1 y old were most abundant in streams draining watersheds with an unburned history. Burned history corresponded with fast growth, low lipid content, and early maturity of Rainbow Trout. We used an individual-based model of Rainbow Trout growth and demographic patterns to determine if temperature interactions with bioenergetics and competition among individuals could lead to observed phenotypic and ecological differences among populations in the absence of other plausible mechanisms. Modeling suggested that moderate warming associated with wildfire and channel disturbance history leads to faster individual growth, which exacerbates competition for limited food, leading to decreases in population densities. The inferred mechanisms from this modeling exercise suggest the transferability of ecological patterns to a variety of temperature-warming scenarios.

  8. Shallow groundwater systems in a polar desert, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, Michael N.; Barrett, John E.; Levy, Joseph S.

    2013-02-01

    The McMurdo Dry Valleys (MDVs), Antarctica, exist in a hyperarid polar desert, underlain by deep permafrost. With an annual mean air temperature of -18 °C, the MDVs receive <10 cm snow-water equivalent each year, collecting in leeward patches across the landscape. The landscape is dominated by expansive ice-free areas of exposed soils, mountain glaciers, permanently ice-covered lakes, and stream channels. An active layer of seasonally thawed soil and sediment extends to less than 1 m from the surface. Despite the cold and low precipitation, liquid water is generated on glaciers and in snow patches during the austral summer, infiltrating the active layer. Across the MDVs, groundwater is generally confined to shallow depths and often in unsaturated conditions. The current understanding and the biogeochemical/ecological significance of four types of shallow groundwater features in the MDVs are reviewed: local soil-moisture patches that result from snow-patch melt, water tracks, wetted margins of streams and lakes, and hyporheic zones of streams. In general, each of these features enhances the movement of solutes across the landscape and generates soil conditions suitable for microbial and invertebrate communities.

  9. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.

  10. Bacterial aggregation and biofilm formation in a vortical flow

    PubMed Central

    Yazdi, Shahrzad; Ardekani, Arezoo M.

    2012-01-01

    Bacterial aggregation and patchiness play an important role in a variety of ecological processes such as competition, adaptation, epidemics, and succession. Here, we demonstrate that hydrodynamics of their environment can lead to their aggregation. This is specially important since microbial habitats are rarely at rest (e.g., ocean, blood stream, flow in porous media, and flow through membrane filtration processes). In order to study the dynamics of bacterial collection in a vortical flow, we utilize a microfluidic system to mimic some of the important microbial conditions at ecologically relevant spatiotemporal scales. We experimentally demonstrate the formation of “ring”-shaped bacterial collection patterns and subsequently the formation of biofilm streamers in a microfluidic system. Acoustic streaming of a microbubble is used to generate a vortical flow in a microchannel. Due to bacteria's finite-size, the microorganisms are directed to closed streamlines and trapped in the vortical flow. The collection of bacteria in the vortices occurs in a matter of seconds, and unexpectedly, triggers the formation of biofilm streamers within minutes. Swimming bacteria have a competitive advantage to respond to their environmental conditions. In order to investigate the role of bacterial motility on the rate of collection, two strains of Escherichia coli bacteria with different motilities are used. We show that the bacterial collection in a vortical flow is strongly pronounced for high motile bacteria. PMID:24339847

  11. Urban Stream Ecology

    EPA Science Inventory

    Urban watersheds characteristically have high impervious surface cover, resulting in high surface runoff and low infiltration following storms. In response, urban streams experience “flashy” stormflows, reduced baseflows, bank erosion, channel widening, and sedimentation. Urban ...

  12. Shape up or ship out: migratory behaviour predicts morphology across spatial scale in a freshwater fish.

    PubMed

    Chapman, Ben B; Hulthén, Kaj; Brönmark, Christer; Nilsson, P Anders; Skov, Christian; Hansson, Lars-Anders; Brodersen, Jakob

    2015-09-01

    1. Migration is a widespread phenomenon, with powerful ecological and evolutionary consequences. Morphological adaptations to reduce the energetic costs associated with migratory transport are commonly documented for migratory species. However, few studies have investigated whether variation in body morphology can be explained by variation in migratory strategy within a species. 2. We address this question in roach Rutilus rutilus, a partially migratory freshwater fish that migrates from lakes into streams during winter. We both compare body shape between populations that differ in migratory opportunity (open vs. closed lakes), and between individuals from a single population that vary in migratory propensity (migrants and residents from a partially migratory population). Following hydrodynamic theory, we posit that migrants should have a more shallow body depth, to reduce the costs associated with migrating into streams with higher flow conditions than the lakes the residents occupy all year round. 3. We find evidence both across and within populations to support our prediction, with individuals from open lakes and migrants from the partially migratory population having a more slender, shallow-bodied morphology than fish from closed lakes and all-year residents. 4. Our data suggest that a shallow body morphology is beneficial to migratory individuals and our study is one of the first to link migratory strategy and intraspecific variation in body shape. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  13. Context-specific parasitism in Tubifex tubifex in geothermally influenced stream reaches in Yellowstone National Park

    USGS Publications Warehouse

    Alexander, Julie D.; Kerans, Billie L.; Koel, Todd M.; Rasmussen, Charlotte

    2011-01-01

    Parasites can regulate host abundance and influence the composition and structure of communities. However, host-parasite interactions might be context-specific if environmental conditions can alter the outcome of parasitism and disease. An understanding of how host-parasite interactions might change in different contexts will be useful for predicting and managing disease against a background of anthropogenic environmental change. We examined the ecology of Myxobolus cerebralis, the parasite that causes whirling disease in salmonids, and its obligate host, Tubifex tubifex, in geothermally variable stream reaches in Yellowstone National Park. We identified reaches in 4 categories of geothermal influence, which were characterized by variable substrates, temperatures, specific conductivities, and pH. In each reach, we measured aspects of host ecology (abundance, relative abundance, size, and genotype of T. tubifex), parasite ecology (infection prevalence in T. tubifex and abundance of M. cerebralis-infected T. tubifex), and risk to fish of contracting whirling disease. Tubifex tubifex abundance was high all in reaches characterized by geothermal influence, whereas abundance of M. cerebralis-infected T. tubifex was high only in reaches characterized by intermediate geothermal influence. We suggest that habitat had a contextual effect on parasitism in the oligochaete host. Abundance of infected hosts appeared to depend on host abundance in all reach types except those with high geothermal influence, where abundance of infected hosts depended on environmental factors.

  14. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution.

    PubMed

    Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R

    2008-01-01

    Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.

  15. Associations between conservation practices and ecology: ecological responses of agricultural streams and lakes

    USDA-ARS?s Scientific Manuscript database

    The Conservation Effects Assessment Program (CEAP) Watershed Assessment Study goals are to quantify the environmental benefits of conservation practices at the watershed scale. Currently, a critical knowledge gap exists in linking conservation practices and their ecological effects on aquatic ecosy...

  16. Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes

    Treesearch

    Janine Ruegg; Walter K. Dodds; Melinda D. Daniels; Ken R. Sheehan; Christina L. Baker; William B. Bowden; Kaitlin J. Farrell; Michael B. Flinn; Tamara K. Harms; Jeremy B. Jones; Lauren E. Koenig; John S. Kominoski; William H. McDowell; Samuel P. Parker; Amy D. Rosemond; Matt T. Trentman; Matt Whiles; Wilfred M. Wollheim

    2016-01-01

    ContextSpatial scaling of ecological processes is facilitated by quantifying underlying habitat attributes. Physical and ecological patterns are often measured at disparate spatial scales limiting our ability to quantify ecological processes at broader spatial scales using physical attributes.

  17. The Precision Problem in Conservation and Restoration.

    PubMed

    Hiers, J Kevin; Jackson, Stephen T; Hobbs, Richard J; Bernhardt, Emily S; Valentine, Leonie E

    2016-11-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Riparian and Associated Habitat Characteristics Related to Nutrient Concentrations and Biological Responses of Small Streams in Selected Agricultural Areas, United States, 2003-04

    USGS Publications Warehouse

    Zelt, Ronald B.; Munn, Mark D.

    2009-01-01

    Physical factors, including both in-stream and riparian habitat characteristics that limit biomass or otherwise regulate aquatic biological condition, have been identified by previous studies. However, linking the ecological significance of nutrient enrichment to habitat or landscape factors that could allow for improved management of streams has proved to be a challenge in many regions, including agricultural landscapes, where many ecological stressors are strong and the variability among watersheds typically is large. Riparian and associated habitat characteristics were sampled once during 2003-04 for an intensive ecological and nutrients study of small perennial streams in five contrasting agricultural landscapes across the United States to determine how biological communities and ecosystem processes respond to varying levels of nutrient enrichment. Nutrient concentrations were determined in stream water at two different sampling times per site and biological samples were collected once per site near the time of habitat characterization. Data for 141 sampling sites were compiled, representing five study areas, located in parts of the Delmarva Peninsula (Delaware and Maryland), Georgia, Indiana, Ohio, Nebraska, and Washington. This report examines the available data for riparian and associated habitat characteristics to address questions related to study-unit contrasts, spatial scale-related differences, multivariate correlation structure, and bivariate relations between selected habitat characteristics and either stream nutrient conditions or biological responses. Riparian and associated habitat characteristics were summarized and categorized into 22 groups of habitat variables, with 11 groups representing land-use and land-cover characteristics and 11 groups representing other riparian or in-stream habitat characteristics. Principal components analysis was used to identify a reduced set of habitat variables that describe most of the variability among the sampled sites. The habitat characteristics sampled within the five study units were compared statistically. Bivariate correlations between riparian habitat variables and either nutrient-chemistry or biological-response variables were examined for all sites combined, and for sites within each study area. Nutrient concentrations were correlated with the extent of riparian cropland. For nitrogen species, these correlations were more frequently at the basin scale, whereas for phosphorus, they were about equally frequent at the segment and basin scales. Basin-level extents of riparian cropland and reach-level bank vegetative cover were correlated strongly with both total nitrogen and dissolved inorganic nitrogen (DIN) among multiple study areas, reflecting the importance of agricultural land-management and conservation practices for reducing nitrogen delivery from near-stream sources. When sites lacking segment-level wetlands were excluded, the negative correlation of riparian wetland extent with DIN among 49 sites was strong at the reach and segment levels. Riparian wetland vegetation thus may be removing dissolved nutrients from soil water and shallow groundwater passing through riparian zones. Other habitat variables that correlated strongly with nitrogen and phosphorus species included suspended sediment, light availability, and antecedent water temperature. Chlorophyll concentrations in seston were positively correlated with phosphorus concentrations for all sites combined. Benthic chlorophyll was correlated strongly with nutrient concentrations in only the Delmarva study area and only in fine-grained habitats. Current velocity or hydraulic scour could explain correlation patterns for benthic chlorophyll among Georgia sites, whereas chlorophyll in seston was correlated with antecedent water temperature among Washington and Delmarva sites. The lack of any consistent correlation pattern between habitat characteristics and organic material density (ash-free dry mass)

  19. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation.

    PubMed

    May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B

    2015-08-01

    Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2-3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char.

  20. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation

    PubMed Central

    May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B

    2015-01-01

    Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2–3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char. PMID:26356310

  1. The association of feeding behaviour with the resistance and tolerance to parasites in recently diverged sticklebacks.

    PubMed

    Anaya-Rojas, Jaime M; Brunner, Franziska S; Sommer, Nina; Seehausen, Ole; Eizaguirre, Christophe; Matthews, Blake

    2016-11-01

    Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human-mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three-spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition and diet. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  2. A Mesoscale Total Dissolved Solids Quantity and Quality Study Integrating Responses of Multiple Biological Components in Small Stream Communities

    EPA Science Inventory

    A 42-day dosing test with ions comprising an excess TDS was run using mesocosms colonized with natural stream water fed continuously. In gridded gravel beds biota from microbes through macroinvertebrates are measured and interact in a manner realistic of stream riffle/run ecology...

  3. Damming Tropical Island Streams: Problems, Solutions, and Alternatives.

    Treesearch

    JAMES G. MARCH; JONATHAN P. BENSTEAD; CATHERINE M. PRINGLE; FREDERICK N. SCATENA

    2003-01-01

    The combination of human population growth, increased water usage, and limited groundwater resources often leads to extensive damming of rivers and streams on tropical islands. Ecological effects of dams on tropical islands can be dramatic, because the vast majority of native stream faunas (fishes, shrimps, and snails) migrate between freshwater and saltwater during...

  4. An Ecological Study on the Introduction of the Banded Sculpin Into a Coal Flyash Impacted Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrico, B.A.; Ryon, M.G.

    1996-02-01

    A number of banded sculpins [Cottus carolinae (Gill)] were obtained from a population in a reference stream, marked with subcutaneous acrylic paint injections, and introduced into McCoy Branch, a small second-order stream located on the Oak Ridge Reservation in eastern Tennessee, which was inhabited by only a few banded sculpins prior to the study. McCoy Branch had received deposits of coal ash slurry for a prolonged period, however, there were some indications of recovery in the macroinvertebrate community due to improvements in water quality. Stream habitat characteristics and water chemistry parameters were monitored in McCoy Branch and a reference streammore » for a three-year period. Feeding patterns and reproductive activities of the banded sculpins were also monitored during the study. Sculpin population parameters including density, condition factor, and young-of-year (YOY) abundance and survival were studied. The results of the study show that the introduced fish have survived and appear to be in good condition. The sculpins have maintained a density of approximately 0.12 fish per square meter of stream, a figure similar to that found in other headwater streams located in the region. Colonization rates and sculpin densities in McCoy Branch were lower than expected, perhaps due to physical habitat degradation and reduced macroinvertebrate abundance. Evidence of sculpin reproduction in McCoy Branch was seen in the presence of gravid female sculpins (1994 and 1995) and YOY fish (1993 through 1995 year classes). This study indicates that McCoy Branch continues to recover from past perturbations to the point where it can now support a viable population of banded sculpins.« less

  5. An industrial ecology approach to municipal solid waste management: I. Methodology

    EPA Science Inventory

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  6. Geomorphic and vegetative recovery processes along modified stream channels of West Tennessee

    USGS Publications Warehouse

    Simon, Andrew; Hupp, C.R. Tennessee

    1992-01-01

    Hundreds of miles of streams in West Tennessee have been channelized or otherwise modt@ed since the turn of century. After all or parts of a stream are straightened, dredged, or cleared, systematic hydrologic, geomorphic, and ecologic processes collectively begin to reduce energy conditions towards the premodified state. One hundred and five sites along 15 streams were studied in the Obion, Forked Deer, Hatchie, and Wolf River basins. All studied streams, except the Hatchie River, have had major channel modi@cation along all or parts of their courses. Bank material shear-strength properties were determined through drained borehole-shear testing (168 tests) and used to interpret present critical bank conditions and factors of safety, and to estimate future channel-bank stability. Mean values of cohesive strength and angle of internal friction were 1.26 pounds per square inch and 30.1 degrees, respectively. Dendrogeomorphic analyses were made using botanical evidence of channel-bank failures to determine rates of channel widening; buried riparian stems were analyzed to determine rates of bank accretion. Channel bed-level changes through time and space were represented by a power equation. Plant ecological analyses were ma& to infer relative bank stability, to identify indicator species of the stage of bank recovery, and to determine patterns of vegetation development through the course of channel evolution. Quantitative data on morphologic changes were used with previously developed six-stage models of channel evolution and bank-slope development to estimate trends of geomorphic and ecologic processes and forms through time. Immediately after channel modr@cations, a 10- to 1%yearperiod of channel-bed degradation ensues at and upstream from the most recent modifications (area of maximum disturbance). Channel-bed lowering by &gradation was as much as 20 feet along some stream reaches. Downstream from the area of maximum disturbance, the bed was aggraded by the deposition of sediment supplied by knickpoint migration upstream; aggradation also occurred in initially degraded sites with time. Additionally, if degradation caused an increase in bank height beyond the critical limits of the bank material, a period of channel widening by mass wasting followed. Degradation knickpoints migrated upstream at rates greater than 1 mile per year; the rates attenuated with distance above the area of maximum disturbance. Channel widening rates of up to 16 feet per year were documented along some severely degraded reaches. Planar failures were generally more frequent but rotational failures dominated the most rapidly widening reaches. Total volumes of bank erosion may represent 75percent or more of the total material eroded from the channel, but this material generally exits the drainage basin. Mean factors of safety vary with the stage of channel evolution with the lowest values for planar and rotational failures occurring during the threshold stage (stage IV) 1.00 and 1.15, respectively. As channel gradients decrease, degradation ceases and then a period of ?secondary aggradation ? (at lesser rates than degradation) and bank accretion begins that may fill the channel to near floodplain level. This shift@ in process represents an oscillation in channel bed-level adjustment. Streams in basins underlain by loess may require an order of magnitude more time than sand-bed streams to stabilize due to a lack of coarse-grained material (sand) for aggradation. A systematic progression of riparian species that reflects the six-stage model of channel evolution has been identified. This progression can be used to infer ambient channel stability and hydrogeomorphic conditions. Woody vegetation establishes on low- and mid-bank surfaces (the slough line, initially) at about the same time that bank accretion begins. This slough line forms at a mean temporary stability angle of 24 degrees and expands upslope with time by the accretion of sediments. Species involve

  7. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases.

    PubMed

    Null, Sarah E; Mouzon, Nathaniel R; Elmore, Logan R

    2017-07-15

    Environmental water purchases are increasingly used for ecological protection. In Nevada's Walker Basin (western USA), environmental water purchases augment streamflow in the Walker River and increase lake elevation of terminal Walker Lake. However, water quality impairments like elevated stream temperatures and low dissolved oxygen concentrations also limit ecosystems and species, including federally-threatened Lahontan cutthroat trout. In this paper, we prioritize water volumes and locations that most enhance water quality for riverine habitat from potential environmental water rights purchases. We monitored and modeled streamflows, stream temperatures, and dissolved oxygen concentrations using River Modeling System, an hourly, physically-based hydrodynamic and water quality model. Modeled environmental water purchases ranged from average daily increases of 0.11-1.41 cubic meters per second (m 3 /s) during 2014 and 2015, two critically dry years. Results suggest that water purchases consistently cooled maximum daily stream temperatures and warmed nightly minimum temperatures. This prevented extremely low dissolved oxygen concentrations below 5.0 mg/L, but increased the duration of moderate conditions between 5.5 and 6.0 mg/L. Small water purchases less than approximately 0.71 m 3 /s per day had little benefit for Walker River habitat. Dissolved oxygen concentrations were affected by upstream environmental conditions, where suitable upstream water quality improved downstream conditions and vice versa. Overall, this study showed that critically dry water years degrade environmental water quality and habitat, but environmental water purchases of at least 0.71 m 3 /s were promising for river restoration. Published by Elsevier Ltd.

  8. Fish assemblages and environmental correlates in least-disturbed streams of the upper Snake River basin

    USGS Publications Warehouse

    Maret, T.R.; Robinson, C.T.; Minshall, G.W.

    1997-01-01

    Fish assemblages and environmental variables were evaluated from 37 least-disturbed, 1st- through 6th-order streams and springs in the upper Snake River basin, western USA. Data were collected as part of the efforts by the U.S. Geological Survey National Water Quality Assessment Program and the Idaho State University Stream Ecology Center to characterize aquatic biota and associated habitats in least-disturbed coldwater streams. Geographically, the basin comprises four ecoregions. Environmental variables constituting various spatial scales, from watershed characteristics to in stream habitat measures, were used to examine distribution patterns in fish assemblages. Nineteen fish species in the families Salmonidae, Cottidae, Cyprinidae, and Catostemidae were collected. Multivariate analyses showed high overlap in stream fish assemblages among the ecoregions. Major environmental factors determining species distributions in the basin were stream gradient, watershed size, conductivity, and percentage of the watershed covered by forest. Lowland streams (below 1,600 m in elevation), located mostly in the Snake River Basin/High Desert ecoregion, displayed different fish assemblages than upland streams (above 2,000 m elevation) in the Northern Rockies, Middle Rockies, and Northern Basin and Range ecoregions. For example, cotrids were not found in streams above 2,000 m in elevation. In addition, distinct fish assemblages were found in tributaries upstream and downstream from the large waterfall, Shoshone Falls, on the Snake River. Fish metrics explaining most of the variation among sites included the total number of species, number of native species, number of salmonid species, percent introduced species, percent cottids, and percent salmonids. Springs also exhibited different habitat conditions and fish assemblages than streams. The data suggest that the evolutionary consequences of geographic features and fish species introductions transcend the importance of ecoregion boundaries on fish distributions in the upper Snake River basin.

  9. Sustainable Strategies for the Dynamic Equilibrium of the Urban Stream, Cheonggyecheon

    NASA Astrophysics Data System (ADS)

    Seo, D.; Kwon, Y.

    2018-04-01

    Cheonggyecheon, which had been transformed into a 14-lane urban highway and a large underground sewer system, was finally converted back to an urban stream again. Its transformation has been praised as a successful example of urban downtown regeneration and beautification. It is, however, obvious that there have not been prudent ecological considerations since the project’s principal goals were to provide public recreational use and achieve maximum flood control capacity via the use of embankments. For a healthier and sustainable stream environment, Cheonggyecheon should be ecologically re-restored again, based on a dynamic equilibrium model. It must primarily establish a corridor of vegetation, an aquatic transitional zone, and install constructed wetlands nearby which support the water source. The upper streams of Cheonggyecheon should be further restored and supply natural waters. Furthermore, there ultimately needs to be de-channelization for hydrological sustainability. This would vary from merely increasing the sinuosity to thoroughly reconstruct a naturalized stream. Complete dynamic equilibrium of Cheonggyecheon can be accomplished through more fundamental sustainable strategies.

  10. Landscape characteristics of a stream and wetland mitigation banking program.

    PubMed

    BenDor, Todd; Sholtes, Joel; Doyle, Martin W

    2009-12-01

    In the United States, stream restoration is an increasing part of environmental and land management programs, particularly under the auspices of compensatory mitigation regulations. Markets and regulations surrounding stream mitigation are beginning to mirror those of the well-established wetland mitigation industry. Recent studies have shown that wetland mitigation programs commonly shift wetlands across space from urban to rural areas, thereby changing the functional characteristics and benefits of wetlands in the landscape. However, it is not yet known if stream mitigation mirrors this behavior, and if so, what effects this may have on landscape-scale ecological and hydrological processes. This project addresses three primary research questions. (1) What are the spatial relationships between stream and wetland impact and compensation sites as a result of regulations requiring stream and wetland mitigation in the State of North Carolina? (2) How do stream impacts come about due to the actions of different types of developers, and how do the characteristics of impacts sites compare with compensation sites? (3) To what extent does stream compensation relocate high-quality streams within the river network, and how does this affect localized (intrawatershed) loss or gain of aquatic resources? Using geospatial data collected from the North Carolina Division of Water Quality and the Army Corps of Engineers' Wilmington District, we analyzed the behavior of the North Carolina Ecosystem Enhancement Program in providing stream and wetland mitigation for the State of North Carolina. Our results suggest that this program provides mitigation (1) in different ways for different types of permittees; (2) at great distances (both Euclidean and within the stream network) from original impacts; (3) in significantly different places than impacts within watersheds; and (4) in many cases, in different watersheds from original impacts. Our analysis also reveals problems with regulator data collection, storage, and quality control. These results have significant implications given new federal requirements for ecological consistency within mitigation programs. Our results also indicate some of the landscape-scale implications of using market-based approaches to ecological restoration in general.

  11. Freshwater resources in the Hoosier-Shawnee ecological assessment area

    Treesearch

    Matt R. Whiles; James E. Garvey

    2004-01-01

    The Hoosier-Shawnee Ecological Assessment Area contains 40 major watersheds with unique hydrological, ecological, and socioeconomic features. Depending on the watershed, major groundwater resources are a combination of sandstone, carbonate, and semiconsolidated or unconsolidated sand/gravel aquifers. Approximately 69,000 miles of streams flow through the assessment...

  12. A generalized watershed disturbance-invertebrate relation applicable in a range of environmental settings across the continental United States

    USGS Publications Warehouse

    Steuer, Jeffrey J.

    2010-01-01

    It is widely recognized that urbanization can affect ecological conditions in aquatic systems; numerous studies have identified impervious surface cover as an indicator of urban intensity and as an index of development at the watershed, regional, and national scale. Watershed percent imperviousness, a commonly understood urban metric was used as the basis for a generalized watershed disturbance metric that, when applied in conjunction with weighted percent agriculture and percent grassland, predicted stream biotic conditions based on Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness across a wide range of environmental settings. Data were collected in streams that encompassed a wide range of watershed area (4.4-1,714 km), precipitation (38-204 cm/yr), and elevation (31-2,024 m) conditions. Nevertheless the simple 3-landcover disturbance metric accounted for 58% of the variability in EPT richness based on the 261 nationwide sites. On the metropolitan area scale, relationship r ranged from 0.04 to 0.74. At disturbance values 15. Future work may incorporate watershed management practices within the disturbance metric, further increasing the management applicability of the relation. Such relations developed on a regional or metropolitan area scale are likely to be stronger than geographically generalized models; as found in these EPT richness relations. However, broad spatial models are able to provide much needed understanding in unmonitored areas and provide initial guidance for stream potential.

  13. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    PubMed

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  14. A Fish-Based Index of Biotic Integrity for the Assessment of Streams Located in a Sugarcane-Dominated Landscape in Southeastern Brazil.

    PubMed

    dos Santos, Fernanda Bastos; Esteves, Katharina Eichbaum

    2015-08-01

    A multimetric, fish-based Index of Biotic Integrity (IBI) was developed and tested to assess the ecological status of streams with different riparian conditions in the Piracicaba River Basin. Nine streams with three categories of riparian zone preservation were selected: native forest (NF) with preserved forest, secondary forest (SF) with forest in an advanced state of regeneration and surrounded by sugarcane plantations, and sugarcane (SC) without riparian vegetation and surrounded by SC crops. A continuous scoring system was employed, and candidate metrics were tested for range, responsiveness, and redundancy, resulting in the selection of eight metrics to compose the index. The final IBI score was positively correlated with an Environmental Index both in the dry (Spearman's rho = 0.76; P = 0.01) and rainy seasons (Spearman's rho = 0.66; P = 0.04), suggesting that this IBI is a suitable tool for the assessment of the biological conditions of these streams. The highest IBI values were observed in the rainy season at the NF and SF sites, with significant differences between the NF and SC sites (Kruskal-Wallis test: P = 0.03). The results indicated some variability in the biological integrity at SF and SC sites, suggesting a relationship with the intensity of the management of this crop. Patterns were consistent with other studies that have shown the effects of agriculture on the environmental quality of streams, which indicate the importance of the riparian zone to the maintenance of ecosystem integrity and supports the use of the IBI for biological monitoring in similar regions.

  15. A Fish-Based Index of Biotic Integrity for the Assessment of Streams Located in a Sugarcane-Dominated Landscape in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    dos Santos, Fernanda Bastos; Esteves, Katharina Eichbaum

    2015-08-01

    A multimetric, fish-based Index of Biotic Integrity (IBI) was developed and tested to assess the ecological status of streams with different riparian conditions in the Piracicaba River Basin. Nine streams with three categories of riparian zone preservation were selected: native forest (NF) with preserved forest, secondary forest (SF) with forest in an advanced state of regeneration and surrounded by sugarcane plantations, and sugarcane (SC) without riparian vegetation and surrounded by SC crops. A continuous scoring system was employed, and candidate metrics were tested for range, responsiveness, and redundancy, resulting in the selection of eight metrics to compose the index. The final IBI score was positively correlated with an Environmental Index both in the dry (Spearman's rho = 0.76; P = 0.01) and rainy seasons (Spearman's rho = 0.66; P = 0.04), suggesting that this IBI is a suitable tool for the assessment of the biological conditions of these streams. The highest IBI values were observed in the rainy season at the NF and SF sites, with significant differences between the NF and SC sites (Kruskal-Wallis test: P = 0.03). The results indicated some variability in the biological integrity at SF and SC sites, suggesting a relationship with the intensity of the management of this crop. Patterns were consistent with other studies that have shown the effects of agriculture on the environmental quality of streams, which indicate the importance of the riparian zone to the maintenance of ecosystem integrity and supports the use of the IBI for biological monitoring in similar regions.

  16. Restoring hydrological and biogeochemical ecosystem services in streams: how can science inform practice?

    NASA Astrophysics Data System (ADS)

    Lautz, L.; Gordon, R.; Daniluk, T.; Zimmer, M. A.; Endreny, T. A.; McGrath, K.

    2014-12-01

    Society is increasingly recognizing the value of stream ecosystem functions, as evidenced by the enormous economic investment being made in stream restoration across the United States. Stream restoration projects have a variety of goals, including improvement in water quality and in-stream habitat. Popular approaches to restoration (such as Natural Channel Design, or NCD) aim to move degraded streams along a trajectory toward a dynamic ecological endpoint that represents natural conditions. Project designs primarily focus on channel form and function, but stream-groundwater exchanges of water and solutes are not typically a design consideration, although a primary component of fully functioning stream ecosystems. Here, we synthesize results from field investigations of the impact of NCD stream restoration on stream-groundwater exchanges by (1) comparing restored sites to reference reaches, which serve as the basis for the restoration design, (2) characterizing multiple restored sites to determine universal characteristics of streams restored by NCD, and (3) monitoring a stream pre- and post- restoration. NCD restoration creates hot spots of rapid hyporheic exchange upstream of channel spanning structures, with water fluxes across the bed interface up to an order of magnitude higher than at pre-restoration or reference reaches. Elevated flux rates result in short hyporheic residence times, which are not sufficiently long to generate net changes in nutrient concentrations. Hot spots of biogeochemical transformations are instead located around secondary bedforms, such as pool-riffle sequences, where gross water exchange rates are more moderate. Reference reaches show greater evidence of groundwater discharge to the hyporheic zone relative to restored reaches, although observations before and after restoration suggest NCD can modify the spatial extent of groundwater discharge zones. Gross water exchange across the streambed interface along restored reaches is a small percentage of stream discharge, suggesting the primary impact of restoration on stream-groundwater exchange is promoting biochemical heterogeneity in the subsurface, rather than longitudinal net changes in stream solute concentrations. Results inform future design to achieve restoration goals.

  17. Combined use of meio- and macrobenthic indices to assess complex chemical impacts on a stream ecosystem

    NASA Astrophysics Data System (ADS)

    McKnight, Ursula S.; Sonne, Anne T.; Rasmussen, Jes J.; Traunspurger, Walter; Höss, Sebastian; Bjerg, Poul L.

    2016-04-01

    Ecosystem dynamics (e.g. temperature, inorganic nutrients) and properties (e.g. resilience, robustness), and ecological functions and services depend on the structure and diversity of biological communities, and the fluxes of energy and materials occurring within and across abiotic and biotic boundaries. The close interchange, i.e. multiple feedback loops, between hydrologic and biologic controls is also becoming increasingly evident. Holistic approaches are thus necessary for a robust understanding of ecosystem functioning and subsequent implementation of effective management practices across multiple spatial scales. Groundwater and surface water resources are under pressure from increasing global exploitation and anthropogenic impacts such as contamination by chemicals, leading to a severe degradation of essential ecological functions. Many of the environmental problems we face today have existed for decades; what has changed is our understanding of the key drivers, processes and impacts. The first reporting by European Member States (MS) on the status of their water bodies found that rivers and transitional waters were often in worse condition than lakes and coastal waters. This is not surprising considering that streams integrate all of the diverse stressors found within a catchment (e.g. contaminated sites; diffuse source pollution; water abstraction). The chemical status of a water body is relatively straightforward to assess, defined partly by environmental quality standards on priority substances and partly by additional regulations imposed by individual MS. However, the biological quality elements used for the classification of ecological status are only loosely defined, leaving MS free to develop their own assessment tools. Although useful for the individual MS, it impedes methodological standardization across different ecoregions, thus contributing to inconsistencies and data gaps across Europe. Moreover, despite the unambiguous importance of benthic habitats for overall ecosystem health, many biological indices tend only to reflect the ecological quality of surface water, rather than of the sedimentary zones where the accumulation of pollutants is often highest. To address this issue, we monitored meiobenthic (i.e. nematodes) and macrobenthic invertebrate communities along a pollution gradient in order to assess the impact of multiple stressors on a groundwater-fed stream, and thus quantify the link between chemical and ecological status. The studied stressors included point source pollutants originating from contaminated groundwater and aquaculture, and diffuse source pollutants originating from conventional agriculture and urban areas. The use of macrofauna is now well-accepted for assessing ecological integrity in aquatic ecosystems, but less is known about the application of meiofaunal community indicators. High abundance and ubiquitous distribution are two potential advantages for including meiofaunal indicators, and notably - for the case of groundwater-surface water interactions - they are particularly suitable for identifying changes in environmental conditions over smaller spatial scales. The results indicate a change in community composition for both meio- and macrobenthic fauna, pointing towards the presence of a local impact resulting from the discharging contaminated groundwater, which extends downstream along a dilution gradient of the groundwater contaminants. Ecological impacts could be linked to xenobiotic compounds coming from groundwater (both chlorinated solvents and pharmaceuticals), as well as the presence of trace metals of diffuse and/or biogenic origin.

  18. Why are marine adaptive radiations rare in Hawai'i?

    PubMed

    Wainwright, Peter C

    2015-02-01

    Islands can be sites of dynamic evolutionary radiations, and the Hawaiian Islands have certainly given us a bounty of insights into the processes and mechanisms of diversification. Adaptive radiations in silverswords and honeycreepers have inspired a generation of biologists with evidence of rapid diversification that resulted in exceptional levels of ecological and morphological diversity. In this issue of Molecular Ecology, tiny waterfall-climbing gobies make a case for their place among Hawaiian evolutionary elite. Moody et al. (2015) present an analysis of gene flow and local adaptation in six goby populations on Kaua'i and Hawai'i measured in three consecutive years to try to disentangle the relative role of local adaptation and gene flow in shaping diversity within Sicyopterus stimpsoni. Their study shows that strong patterns of local selection result in streams with gobies adapted to local conditions in spite of high rates of gene flow between stream populations and no evidence for significant genetic population structure. These results help us understand how local adaptation and gene flow are balanced in gobies, but these fishes also offer themselves as a model that illustrates why adaptive diversification in Hawai'i's marine fauna is so different from the terrestrial fauna. © 2015 John Wiley & Sons Ltd.

  19. Low thermal tolerances of stream amphibians in the Pacific Northwest: Implications for riparian and forest management

    USGS Publications Warehouse

    Bury, R.B.

    2008-01-01

    Temperature has a profound effect on survival and ecology of amphibians. In the Pacific Northwest, timber harvest is known to increase peak stream temperatures to 24??C or higher, which has potential to negatively impact cold-water stream amphibians. I determined the Critical Thermal Maxima (CT max) for two salamanders that are endemic to the Pacific Northwest. Rhyacotriton variegatus larvae acclimated at 10??C had mean CTmax of 26.7 ?? 0.7 SD??C and adults acclimated at 11??C had mean CT max of 27.9 ?? 1.1??C. These were among the lowest known values for any amphibian. Values were significantly higher for larval Dicamptodon tenebrosus acclimated at 14??C (x = 29.1 ?? 0.2??C). Although the smallest R. variegatus had some of the lowest values, size of larvae and adults did not influence CTmax in this species. Current forest practices retain riparian buffers along larger fish-bearing streams; however, such buffers along smaller headwaters and non-fish bearing streams may provide favorable habitat conditions for coldwater-associated species in the Pacific Northwest. The current study lends further evidence to the need for protection of Northwest stream amphibians from environmental perturbations. Forest guidelines that include riparian buffer zones and configurations of upland stands should be developed, while monitoring amphibian responses to determine their success. ?? 2008 Brill Academic Publishers.

  20. EVALUATION OF ECONOMIC INCENTIVES FOR DECENTRALIZED STORMWATER RUNOFF MANAGEMENT

    EPA Science Inventory

    Impervious surfaces in urban and suburban areas can lead to excess stormwater runoff throughout a watershed, typically resulting in widespread hydrologic and ecological alteration of receiving streams. Decentralized stormwater management may improve stream ecosystems by reducing ...

  1. HARSHNESS: CHARACTERIZATION OF INTERMITTENT STREAM HABITAT OVER SPACE AND TIME

    EPA Science Inventory

    Frequently disturbed environments, such as intermittent streams, are ecologically useful for studying how disturbance characteristics (e.g., frequency, magnitude) affect community structure and succession. A harshness index summarizing spatial and temporal characteristics of pra...

  2. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis

    USDA-ARS?s Scientific Manuscript database

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to asse...

  3. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Treesearch

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  4. Defining acceptable levels for ecological indicators: an approach for considering social values.

    PubMed

    Smyth, Robyn L; Watzin, Mary C; Manning, Robert E

    2007-03-01

    Ecological indicators can facilitate an adaptive management approach, but only if acceptable levels for those indicators have been defined so that the data collected can be interpreted. Because acceptable levels are an expression of the desired state of the ecosystem, the process of establishing acceptable levels should incorporate not just ecological understanding but also societal values. The goal of this research was to explore an approach for defining acceptable levels of ecological indicators that explicitly considers social perspectives and values. We used a set of eight indicators that were related to issues of concern in the Lake Champlain Basin. Our approach was based on normative theory. Using a stakeholder survey, we measured respondent normative evaluations of varying levels of our indicators. Aggregated social norm curves were used to determine the level at which indicator values shifted from acceptable to unacceptable conditions. For seven of the eight indicators, clear preferences were interpretable from these norm curves. For example, closures of public beaches because of bacterial contamination and days of intense algae bloom went from acceptable to unacceptable at 7-10 days in a summer season. Survey respondents also indicated that the number of fish caught from Lake Champlain that could be safely consumed each month was unacceptably low and the number of streams draining into the lake that were impaired by storm water was unacceptably high. If indicators that translate ecological conditions into social consequences are carefully selected, we believe the normative approach has considerable merit for defining acceptable levels of valued ecological system components.

  5. Defining Acceptable Levels for Ecological Indicators: An Approach for Considering Social Values

    NASA Astrophysics Data System (ADS)

    Smyth, Robyn L.; Watzin, Mary C.; Manning, Robert E.

    2007-03-01

    Ecological indicators can facilitate an adaptive management approach, but only if acceptable levels for those indicators have been defined so that the data collected can be interpreted. Because acceptable levels are an expression of the desired state of the ecosystem, the process of establishing acceptable levels should incorporate not just ecological understanding but also societal values. The goal of this research was to explore an approach for defining acceptable levels of ecological indicators that explicitly considers social perspectives and values. We used a set of eight indicators that were related to issues of concern in the Lake Champlain Basin. Our approach was based on normative theory. Using a stakeholder survey, we measured respondent normative evaluations of varying levels of our indicators. Aggregated social norm curves were used to determine the level at which indicator values shifted from acceptable to unacceptable conditions. For seven of the eight indicators, clear preferences were interpretable from these norm curves. For example, closures of public beaches because of bacterial contamination and days of intense algae bloom went from acceptable to unacceptable at 7-10 days in a summer season. Survey respondents also indicated that the number of fish caught from Lake Champlain that could be safely consumed each month was unacceptably low and the number of streams draining into the lake that were impaired by storm water was unacceptably high. If indicators that translate ecological conditions into social consequences are carefully selected, we believe the normative approach has considerable merit for defining acceptable levels of valued ecological system components.

  6. Effects of Recent Debris Flows on Stream Ecosystems and Food Webs in Small Watersheds in the Central Klamath Mountains, NW California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; de La Fuente, J.

    2008-12-01

    Debris flows are common erosional processes in steep mountain areas throughout the world, but little is known about the long-term ecological effects of debris flows on stream ecosystems. Based on debris flow histories that were developed for each of ten tributary basins, we classified channels as having experienced recent (1997) or older (pre-1997) debris flows. Of the streams classified as older debris flow streams, three streams experienced debris flows during floods in 1964 or 1974, while two streams showed little or no evidence of debris flow activity in the 20th century. White alder (Alnus rhombifolia) was the dominant pioneer tree species in recent debris flow streams, forming localized dense patches of canopy cover. Maximum temperatures and daily temperature ranges were significantly higher in recent debris flow streams than in older debris flow streams. Debris flows resulted in a shift in food webs from allochthonous to autochthonous energy sources. Primary productivity, as measured by oxygen change during the day, was greater in recent debris flow streams, resulting in increased abundances of grazers such as the armored caddisfly Glossosoma spp. Detritivorous stoneflies were virtually absent in recent debris flow streams because of the lack of year-round, diverse sources of leaf litter. Rainbow trout (Oncorhynchus mykiss) were abundant in four of the recent debris flow streams. Poor recolonizers, such as the Pacific giant salamander (Dicamptodon tenebrosus), coastal tailed frog (Ascaphus truei), and signal crayfish (Pacifistacus leniusculus), were virtually absent in recent debris flow streams. Forest and watershed managers should consider the role of forest disturbances, such as road networks, on debris flow frequency and intensity, and the resulting ecological effects on stream ecosystems.

  7. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams.

    PubMed

    Holitzki, Tara M; MacKenzie, Richard A; Wiegner, Tracy N; McDermid, Karla J

    2013-09-01

    Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (sigmaNO3(-) = NO3(-) + NO2(-)), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5x higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for developing and implementing effective eradication and restoration strategies.

  8. Modeling fecal contamination in the Aljezur coastal stream (Portugal)

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marta; Oliveira, Anabela; Guerreiro, Martha; Fortunato, André Bustorff; Menaia, José; David, Luís Mesquita; Cravo, Alexandra

    2011-06-01

    This study aims at understanding the fecal contamination behavior in a small coastal stream (Aljezur, Portugal), which has significant economic and ecological values. Like in most small coastal systems, circulation and water renewal in the Aljezur stream exhibit a strong variability due to their dependence on tides, waves, intermittent river flows, and a highly variable morphology. Hence, the problem was approached through a combination of field surveys and the development and application of a hard-coupled three-dimensional hydrodynamic and fecal contamination model. Salinity and temperature results have shown that mixing and transport in the stream are very sensitive to the river flow and wind forcing. The model is able to represent the main patterns and trends observed in Escherichia coli and fecal enterococcus concentrations along the stream, for different environmental and contamination conditions, suggesting die-off rates on the order of 0.50-0.55 day-1. Die-off rate and the representation of the sediment-associated processes were identified as the major remaining sources of uncertainty in the model. Results show that, owing to the processes that occur along the stream, fecal bacteria reach the beaches water in numbers that comply with the European Bathing Waters Directive, even during the summer periods when the upstream concentrations are larger. In particular, results suggest a direct relation between the tidal propagation upstream and the reduction of the fecal bacteria concentrations along the stream that can be relevant for the development of a strategy for the management of the system's water safety.

  9. High value of ecological information for river connectivity restoration

    USGS Publications Warehouse

    Sethi, Suresh; O'Hanley, Jesse R.; Gerken, Jonathon; Ashline, Joshua; Bradley, Catherine

    2017-01-01

    ContextEfficient restoration of longitudinal river connectivity relies on barrier mitigation prioritization tools that incorporate stream network spatial structure to maximize ecological benefits given limited resources. Typically, ecological benefits of barrier mitigation are measured using proxies such as the amount of accessible riverine habitat.ObjectivesWe developed an optimization approach for barrier mitigation planning which directly incorporates the ecology of managed taxa, and applied it to an urbanizing salmon-bearing watershed in Alaska.MethodsA novel river connectivity metric that exploits information on the distribution and movement of managed taxon was embedded into a barrier prioritization framework to identify optimal mitigation actions given limited restoration budgets. The value of ecological information on managed taxa was estimated by comparing costs to achieve restoration targets across alternative barrier prioritization approaches.ResultsBarrier mitigation solutions informed by life history information outperformed those using only river connectivity proxies, demonstrating high value of ecological information for watershed restoration. In our study area, information on salmon ecology was typically valued at 0.8–1.2 M USD in costs savings to achieve a given benefit level relative to solutions derived only from stream network information, equating to 16–28% of the restoration budget.ConclusionsInvesting in ecological studies may achieve win–win outcomes of improved understanding of aquatic ecology and greater watershed restoration efficiency.

  10. Ecological resistance in urban streams: the role of natural and legacy attributes

    USGS Publications Warehouse

    Utz, Ryan M.; Hopkins, Kristina G.; Beesley, Leah; Booth, Derek B.; Hawley, Robert J.; Baker, Matthew E.; Freeman, Mary C.; Jones, Krista L.

    2016-01-01

    Urbanization substantially changes the physicochemical and biological characteristics of streams. The trajectory of negative effect is broadly similar around the world, but the nature and magnitude of ecological responses to urban growth differ among locations. Some heterogeneity in response arises from differences in the level of urban development and attributes of urban water management. However, the heterogeneity also may arise from variation in hydrologic, biological, and physicochemical templates that shaped stream ecosystems before urban development. We present a framework to develop hypotheses that predict how natural watershed and channel attributes in the pre-urban-development state may confer ecological resistance to urbanization. We present 6 testable hypotheses that explore the expression of such attributes under our framework: 1) greater water storage capacity mitigates hydrologic regime shifts, 2) coarse substrates and a balance between erosive forces and sediment supply buffer morphological changes, 3) naturally high ionic concentrations and pH pre-adapt biota to water-quality stress, 4) metapopulation connectivity results in retention of species richness, 5) high functional redundancy buffers trophic function from species loss, and 6) landuse history mutes or reverses the expected trajectory of eutrophication. Data from past comparative analyses support these hypotheses, but rigorous testing will require targeted investigations that account for confounding or interacting factors, such as diversity in urban infrastructure attributes. Improved understanding of the susceptibility or resistance of stream ecosystems could substantially strengthen conservation, management, and monitoring efforts in urban streams. We hope that these preliminary, conceptual hypotheses will encourage others to explore these ideas further and generate additional explanations for the heterogeneity observed in urban streams.

  11. Metrics for assessing freshwater fish in Narragansett Bay

    EPA Science Inventory

    Freshwater fish are ecologically important in stream ecosystems, and they provide significant value to humans. Historically, the streams and rivers of southern New England supported moderately diverse and abundant assemblages of native fishes. Currently, these habitats are impact...

  12. POTENTIAL AQUATIC COMMUNITY IMPROVEMENT THROUGH A MULTIDISCIPLINARY STORMWATER MANAGEMENT EXPERIMENT

    EPA Science Inventory

    Small-scale urban stream restoration efforts (e.g., riparian planting and in-stream habitat structures) often fail to improve ecological structure and function due the continuous hydrologic and chemical disturbances posed by impervious surfaces upstream. Decentralized stormwater...

  13. Oregon hydrologic landscape regions

    EPA Science Inventory

    Individuals who spend time working with streams intuitively come to understand that stream hydrologic and ecological characteristics are related to the attributes of the watersheds in which they occur. This is easy to see in Oregon with its large climatic and geologic variations ...

  14. Assessing the ecological base flow in an experimental watershed of Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, Chiang; Yang, Ping-Shih; Tian, Pei-Ling

    2010-05-01

    The ecological base flow is crucial for the assessment and design for habitat rehabilitation and recovery. The amount of discharge affects the aquatic creatures and may damage the existence and balance of the community under extreme low conditions. Aquatic insect is selected as the target species in this study to evaluate the influence of the discharge and to estimate the ecological base flow. The distribution of the number of species and abundance (density) versus discharge is assessed to define the critical discharge. A stream located at the alpine area in central Taiwan is selected as the study area to evaluate the base flow. From the preliminary data (Aug 2008 to May 2009) collected from Creek C of Sitou watershed (area: 1.3 km^2) shows that the abundance of several species varies with the discharge. The dominate family and genus of aquatic insects is Baetidae (Order Ephemeroptera) and Baetis spp. that accounts for 26.3 and 17.2 %, respectively. The Hilsenhoff family biotic index (FBI) shows that the water quality is classified to "Excellent" and "Good" level while the EPT Index (Index of three orders: Ephemeroptera, Plecoptera, and Trichoptera) indicates that the stream is non-polluted. The discharge of base flow interpreted from the 90%, 95% and 96% curve of duration for the daily discharge is 0.1582, 0.0476 and 0.0378 cms; the threshold value evaluated by curve of abundance vs. discharge is 0.0154 cms. Consistent observations are yet to be collected to yield more accurate results.

  15. Ecological speciation by temporal isolation in a population of the stonefly Leuctra hippopus (Plecoptera, Leuctridae).

    PubMed

    Boumans, Louis; Hogner, Silje; Brittain, John; Johnsen, Arild

    2017-03-01

    Stream dwelling invertebrates are ideal candidates for the study of ecological speciation as they are often adapted to particular environmental conditions within a stream and inhabit only certain reaches of a drainage basin, separated by unsuitable habitat. We studied an atypical population of the stonefly Leuctra hippopus at a site in central Norway, the Isterfoss rapids, in relation to three nearby and two remote conspecific populations. Adults of this population emerge about a month earlier than those of nearby populations, live on large boulders emerging from the rapids, and are short-lived. This population also has distinct morphological features and was studied earlier during the period 1975-1990. We reassessed morphological distinctness with new measurements and added several analyses of genetic distinctness based on mitochondrial and nuclear sequence markers, as well as AFLP fingerprinting and SNPs mined from RAD sequences. The Isterfoss population is shown to be most closely related to its geographical neighbors, yet clearly morphologically and genetically distinct and homogeneous. We conclude that this population is in the process of sympatric speciation, with temporal isolation being the most important direct barrier to gene flow. The shift in reproductive season results from the particular temperature and water level regime in the Isterfoss rapids. The distinct adult body shape and loss of flight are hypothesized to be an adaptation to the unusual habitat. Ecological diversification on small spatial and temporal scales is one of the likely causes of the high diversity of aquatic insects.

  16. Natural flow regimes of the Ozark-Ouachita Interior Highlands region

    USGS Publications Warehouse

    Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.

    2016-01-01

    Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  17. Southwest Region Threatened, Endangered, and At-Risk Species Workshop: Managing Within Highly Variable Environments Hydrology and Ecology of Intermittent Stream and Dry Wash Ecosystems

    EPA Science Inventory

    Ephemeral (dry washes) and intermittent streams make up approximately 59% of all streams in the U.S. (excluding Alaska), and over 81% in the arid and semi-arid Southwest (Arizona, New Mexico, Nevada, Utah, Colorado and California) according to the National Hydrography Dataset. T...

  18. Activities and Ecological Role of Adult Aquatic Insects in the Riparian Zone of Streams

    Treesearch

    John K. Jackson; Vincent H. Resh

    1989-01-01

    Most adult aquatic insects that emerge from streams live briefly in the nearby riparian zone. Adult activities, such as mating, dispersal, and feeding, influence their distribution in the terrestrial habitat. A study at Big Sulphur Creek, California, has shown that both numbers and biomass of adult aquatic insects are greatest in the near-stream vegetation; however,...

  19. Effects of exposure to agricultural drainage ditch water on survivorship, distribution, and abundnance of riffle beetles (Coleoptera: Elmidae) in headwater streams of the Cedar Creek watershed, Indiana

    USDA-ARS?s Scientific Manuscript database

    Riffle Beetles (Coleoptera: Elmidae) require very good water quality, mature streams with riffle habitat, and high dissolved oxygen content. As such, they prove to be good indicators of ecological health in agricultural headwater streams. We conducted static renewal aquatic bioassays using water fro...

  20. Ecoregion and land-use influence invertebrate and detritus transport from headwater streams

    Treesearch

    Christopher A. Binckley; Mark S. Wipfli; R. Bruce Medhurst; Karl Polivka; Paul Hessburg; R. Brion Salter; Joshua Y. Kill

    2010-01-01

    We quantified the downstream transport of invertebrates, organic matter and inorganic sediment from 60 fishless headwater streams in the Wenatchee River Basin located on the eastern slope of the Cascade Range in Washington, U.S.A. Streams were classified into four groups (each n = 15) based on their position within two ecological subregions (wet and dry) and the extent...

  1. Development and Application of Flow Duration Curves for Stream Restoration

    DTIC Science & Technology

    2016-02-01

    hydrograph (TNC 2009). Colorado State University’s GeoTools offers an FDC computation focusing on the geomorphic implications of hydrology (Bledsoe...processes • Assessment of changes in stream metabolism using temperature duration curves • Evaluation of pollutant or contaminant transport using...major concern associated with stream restoration projects, due to the many chemical, ecological, and geomorphic advantages a robust riparian buffer

  2. Tailed frogs: distribution, ecology, and association with timber harvest in northeastern Oregon.

    Treesearch

    Evelyn L. Bull; Bernie E. Carter

    1996-01-01

    Tailed frogs (Ascaphus truei) were found in 42 of 80 streams surveyed in Union, Umatilla, Wallowa, and Baker Counties in 1992. At least three size classes of larvae were identified in seven of the streams, thereby suggesting that larvae transform after spending 3 or more years in the streams. The amount of cobble and fines in the streambed best...

  3. Assessing the chemical contamination dynamics in a mixed land use stream system.

    PubMed

    Sonne, Anne Th; McKnight, Ursula S; Rønde, Vinni; Bjerg, Poul L

    2017-11-15

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The results emphasize that future investigations should include multiple compounds and stream compartments, and highlight the need for holistic approaches when risk assessing these dynamic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of stream topology on ecological community results from neutral models

    EPA Science Inventory

    While neutral theory and models have stimulated considerable literature, less well investigated is the effect of topology on neutral metacommunity model simulations. We implemented a neutral metacommunity model using two different stream network topologies, a widely branched netw...

  5. Identifying Critical Ephemeral Streams and Reducing Impacts Associated with Utility-Scale Solar Energy Development in the Southwest United States

    NASA Astrophysics Data System (ADS)

    O'Connor, B. L.; Carr, A.; Patton, T.; Hamada, Y.

    2011-12-01

    The Bureau of Land Management (BLM) and the Department of Energy are preparing a joint programmatic environmental impact statement (PEIS) assessing the potential impacts of utility-scale solar energy development on BLM-administered lands in six southwestern states. One of the alternatives considered in the PEIS involves development within identified solar energy zones (SEZs) that individually cover approximately 10 to 1,000 km2, located primarily in desert valleys of the Basin and Range physiographic region. Land-disturbing activities in these alluvium-filled valleys have the potential to adversely affect ephemeral streams with respect to their hydrologic, geomorphic, and ecologic functions. Regulation and management of ephemeral streams typically falls under the spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. The PEIS analysis attempts to identify critical ephemeral streams by evaluating the integral functions of flood conveyance, sediment transport, groundwater recharge, and supporting ecological habitats. The initial approach to classifying critical ephemeral streams involved identifying large, erosional features using available flood hazards mapping, historical peak discharges, and aerial photographs. This approach identified ephemeral features not suitable for development (based primarily on the likelihood of damaging floods and debris flows) to address flood conveyance and sediment transport functions of ephemeral streams. Groundwater recharge and the maintenance of riparian vegetation and wildlife habitats are other functions of ephemeral streams. These functions are typically associated with headwater reaches rather than large-scale erosional features. Recognizing that integral functions of ephemeral streams occur over a range of spatial scales and are driven by varying climatic-hydrologic events, the PEIS analysis assesses ephemeral streams according to their position in the basin, stream order, and the recurrence intervals of runoff events in the basin. A key constraint on this approach is the lack of high-resolution hydrologic, geomorphic, and ecological data for ephemeral streams in remote desert basins of the southwest United States. Consultation with stakeholders and management agencies is an additional component to assist with our analysis where data limitations exist. Results from these analyses identify critical ephemeral stream reaches to be avoided during development activities based on a mix of quantitative and qualitative measures. Long-term monitoring of these systems is needed to assess the avoidance criteria and to help advance development of the tools needed to help manage and protect the integral functions of ephemeral stream networks in arid environments.

  6. Macroinvertebrate and diatom metrics as indicators of water-quality conditions in connected depression wetlands in the Mississippi Alluvial Plain

    USGS Publications Warehouse

    Justus, Billy; Burge, David; Cobb, Jennifer; Marsico, Travis; Bouldin, Jennifer

    2016-01-01

    Methods for assessing wetland conditions must be established so wetlands can be monitored and ecological services can be protected. We evaluated biological indices compiled from macroinvertebrate and diatom metrics developed primarily for streams to assess their ability to indicate water quality in connected depression wetlands. We collected water-quality and biological samples at 24 connected depressions dominated by water tupelo (Nyssa aquatica) or bald cypress (Taxodium distichum) (water depths = 0.5–1.0 m). Water quality of the least-disturbed connected depressions was characteristic of swamps in the southeastern USA, which tend to have low specific conductance, nutrient concentrations, and pH. We compared 162 macroinvertebrate metrics and 123 diatom metrics with a water-quality disturbance gradient. For most metrics, we evaluated richness, % richness, abundance, and % relative abundance values. Three of the 4 macroinvertebrate metrics that were most beneficial for identifying disturbance in connected depressions decreased along the disturbance gradient even though they normally increase relative to stream disturbance. The negative relationship to disturbance of some taxa (e.g., dipterans, mollusks, and crustaceans) that are considered tolerant in streams suggests that the tolerance scale for some macroinvertebrates can differ markedly between streams and wetlands. Three of the 4 metrics chosen for the diatom index reflected published tolerances or fit the usual perception of metric response to disturbance. Both biological indices may be useful in connected depressions elsewhere in the Mississippi Alluvial Plain Ecoregion and could have application in other wetland types. Given the paradoxical relationship of some macroinvertebrate metrics to dissolved O2 (DO), we suggest that the diatom metrics may be easier to interpret and defend for wetlands with low DO concentrations in least-disturbed conditions.

  7. Vector ecology of human schistosomiasis in south India and description of a new species of the genus Ferrissia (Mollusca: Gastropoda: Planorbidae).

    PubMed

    Sankarappan, Anbalagan; Chellapandian, Balachandran; Vimalanathan, Arun Prasanna; Mani, Kannan; Sundaram, Dinakaran; Muthukalingan, Krishnan

    2015-09-01

    Vector ecology and taxonomy of snails is a prerequisite for controlling schistosomiasis in the tropics. The ecology of the freshwater limpet genus Ferrissia was investigated for detection of cercariae larvae in them, and taxonomic description of a new species of the genus Ferrissia. This study was conducted in 15 perennial streams from five different hills of south India. To study the seasonal patterns, a stream from each hill was selected and sampled in three seasons. In each study site, triplicate sampling was done and specimens were collected from stream substrates as well as waste material submerged in stream. Microscopic examination was carried out for detecting cercariae larvae in limpets. Three freshwater limpets (F. tenuis, F. verruca and F. fivefallsiensis) were observed. Seasonality influenced the abundance of limpets. The highest abundance was observed during post-monsoon (December and January). The distribution of Ferrissia was observed at riffle in pebbles, leaf litter and wastes (polyethylene bags and snacks cover) submerged in water. No cercariae larvae were found from the body of limpets. In this study, we described a new species of Ferrissia fivefallsiensis. Our results showed the distribution, habitat preference and seasonality of limpets, and recommend the detection of Schistosoma from limpets as well as human samples by use of molecular tools.

  8. Management of surface water and groundwater withdrawals to maintain environmental stream flows in Michigan

    USGS Publications Warehouse

    Reeves, Howard W.; Seelbach, Paul W.; Nicholas, James R.; Hamilton, David A.; Potter, Kenneth W.; Frevert, Donald K.

    2010-01-01

    In 2008, the State of Michigan enacted legislation requiring that new or increased high-capacity withdrawals (greater than 100,000 gallons per day) from either surface water or groundwater be reviewed to prevent Adverse Resource Impacts (ARI). Science- based guidance was sought in defining how groundwater or surface-water withdrawals affect streamflow and in quantifying the relation between reduced streamflow and changes in stream ecology. The implementation of the legislation led to a risk-based system based on a gradient of risk, ecological response curves, and estimation of groundwater-surface water interaction. All Michigan streams are included in the legislation, and, accordingly, all Michigan streams were classified into management types defined by size of watershed, stream-water temperature, and predicted fish assemblages. Different streamflow removal percentages define risk-based thresholds allowed for each type. These removal percentages were informed by ecological response curves of characteristic fish populations and finalized through a legislative workgroup process. The assessment process includes an on-line screening tool that may be used to evaluate new or increased withdrawals against the risk-based zones and allows withdrawals that are not likely to cause an ARI to proceed to water-use registration. The system is designed to consider cumulative impacts of high-capacity withdrawals and to promote user involvement in water resource management by the establishment of water-user committees as cumulative withdrawals indicate greater potential for ARI in the watershed.

  9. Instream wood recruitment, channel complexity, and their relationship to stream ecology in forested headwater streams under alternative stable states

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2015-12-01

    Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.

  10. Modelling dendritic ecological networks in space: An integrated network perspective

    Treesearch

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  11. Estimation of daily mean streamflow for ungaged stream locations in the Delaware River Basin, water years 1960–2010

    USGS Publications Warehouse

    Stuckey, Marla H.

    2016-06-09

    The ability to characterize baseline streamflow conditions, compare them with current conditions, and assess effects of human activities on streamflow is fundamental to water-management programs addressing water allocation, human-health issues, recreation needs, and establishment of ecological flow criteria. The U.S. Geological Survey, through the National Water Census, has developed the Delaware River Basin Streamflow Estimator Tool (DRB-SET) to estimate baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) and altered streamflow at a daily time step for ungaged stream locations in the Delaware River Basin for water years 1960–2010. Daily mean baseline streamflow is estimated by using the QPPQ method to equate streamflow expressed as a percentile from the flow-duration curve (FDC) for a particular day at an ungaged stream location with the percentile from a FDC for the same day at a hydrologically similar gaged location where streamflow is measured. Parameter-based regression equations were developed for 22 exceedance probabilities from the FDC for ungaged stream locations in the Delaware River Basin. Water use data from 2010 is used to adjust the baseline daily mean streamflow generated from the QPPQ method at ungaged stream locations in the Delaware River Basin to reflect current, or altered, conditions. To evaluate the effectiveness of the overall QPPQ method contained within DRB-SET, a comparison of observed and estimated daily mean streamflows was performed for 109 reference streamgages in and near the Delaware River Basin. The Nash-Sutcliffe efficiency (NSE) values were computed as a measure of goodness of fit. The NSE values (using log10 streamflow values) ranged from 0.22 to 0.98 (median of 0.90) for 45 streamgages in the Upper Delaware River Basin and from -0.37 to 0.98 (median of 0.79) for 41 streamgages in the Lower Delaware River Basin.

  12. New insights into the ecology of Phytophthora ramorum in streams

    Treesearch

    Kamyar Aram; David M. Rizzo

    2013-01-01

    Many Phytophthora species, including Phytophthora ramorum, have been reported from surface waters such as canals, streams, rivers, ponds, and reservoirs, often in association with infested agricultural or natural landscapes (Hong and Moorman 2005). Phytophthora species are recovered with regularity and...

  13. HYDROLOGY OF CENTRAL GREAT BASIN MEADOW ECOSYSTEMS – EFFECTS OF STREAM INCISION

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. Our interdisciplinary group has investigated 1) the interrelationships of geomorphology, hydrology, and vegetation; and 2) ...

  14. ON THE HYDRAULICS OF STREAM FLOW ROUTING WITH BANK STORAGE

    EPA Science Inventory

    Bank storage is a process in which volumes of water are temporally retained by alluvial stream banks during flood events, and gradually released to partially sustain baseflow. This process has important hydrologic and ecological implications. In this paper, analytical solutions a...

  15. Influence of woody debris on channel structure in old growth and managed forest streams in central Sweden.

    PubMed

    Dahlström, Niklas; Nilsson, Christer

    2004-03-01

    Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.

  16. Ecological and ecotoxicological responses in the assessment of the ecological status of freshwater systems: A case-study of the temporary stream Brejo of Cagarrão (South of Portugal).

    PubMed

    Palma, P; Matos, C; Alvarenga, P; Köck-Schulmeyer, M; Simões, I; Barceló, D; López de Alda, M J

    2018-09-01

    The objective of the study was to assess the integrated use of macroinvertebrate indexes and ecotoxicological parameters in the evaluation of the ecological status of a temporary stream with a strong agricultural influence. Water quality was analysed at two sampling sites along the stream, considering: chemical supporting parameters; hazardous substances (pesticides); benthic macroinvertebrate communities, through quality (Iberian Biological Monitoring Working Party and Iberian Average Score Per Taxon) and multi-metric indices (Southern Portuguese Index of Invertebrates and Ecological Quality Ratio); and ecotoxicological responses using lethal and sub-lethal bioassays. The water chemical characterization showed high levels of organic matter and nutrients, mainly in the dry period ((biochemical oxygen demand (BOD 5 ): 18.5-25.5mgL -1 , chemical oxygen demand (COD): 60.8-193.7mgL -1 ; total phosphorus (TP): 0.17-0.33mgL -1 )), which may compromise the support of biological life. In accordance with the physicochemical results, the stream had an ecological status less than good. Of the 25 pesticides analysed, only five, namely terbuthylazine, 2-methyl-chlorophenoxyacetic acid, bentazone, mecoprop and metolachlor were quantified. In general, the concentrations of pesticides detected were low, except at the source of the stream in January 2012 (sum of pesticides 2.29μgL -1 ), mainly due to the concentration of bentazone (1.77μgL -1 ), both values surpassing the European Commission threshold values. The analysis of benthic macroinvertebrates showed low levels of abundance and family diversity, with communities dominated by resistant groups to organic pollution and pesticides, such as the Chironomidae family. In general, the reproduction ecotoxicological results showed a very marked decrease in the number of juveniles per female. The Spearman correlation identified pesticides, namely MCPA (R=-0.89; p<0.05), as the main responsible for the observed effect. The results showed the linearity and complementarity of the two groups of biological responses, allowing to cover the interactions between the ecosystem's species and the different types of pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Hydromorphological parameters of natural channel behavior in conditions of the Hercynian System and the flysch belt of the Western Carpathians on the territory of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Kujanová, Kateřina; Matoušková, Milada; Kliment, Zdeněk

    2016-04-01

    A fundamental prerequisite for assessing the current ecological status of streams is the establishment of reference conditions for each stream type that serve as a benchmark. The hydromorphological reference conditions reflect the natural channel behavior, which is extremely variable. Significant parameters of natural channel behavior were determined using a combination of four selected statistical methods: Principal Component Analysis, Agglomerative Hierarchical Clustering, correlation, and regression. Macroscale analyses of data about altitude, stream order, channel slope, valley floor slope, sinuosity, and characteristics of the hydrological regime were conducted for 3197 reaches of major rivers in the Czech Republic with total length of 15,636 km. On the basis of selected significant parameters and their threshold values, channels were classified into groups of river characteristics based on shared behaviors. The channel behavior within these groups was validated using hydromorphological characteristics of natural channels determined during field research at reference sites. Classification of channels into groups confirmed the fundamental differences between channel behavior under conditions of the Hercynian System and the flysch belt of the Western Carpathians in the Czech Republic and determined a specific group in the flattened high areas of mountains in the Bohemian Massif. Validating confirmed the distinctions between groups of river characteristics and the uniqueness of each one; it also emphasized the benefits of using qualitative data and riparian zone characteristics for describing channel behavior. Channel slope, entrenchment ratio, bed structure, and d50 were determined as quantitative characteristics of natural channel behavior.

  18. Stable isotopes of C and S as indicators of habitat use by fish in small oregon Coast range streams

    EPA Science Inventory

    We are using stable isotopes of C, N, O and S (H planned) to study the ecology of coho salmon in streams of the Oregon Coast Range. We have found isotopes of C and, surprisingly, S to be very useful in discriminating rearing habitats in our small streams. We found 13C values ...

  19. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis

    Treesearch

    Ying Ouyang; Prem B. Parajuli; Yide Li; Theodor D. Leininger; Gary Feng

    2017-01-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature...

  20. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels

    USGS Publications Warehouse

    Wipfli, M.S.; Richardson, J.S.; Naiman, R.J.

    2007-01-01

    Headwater streams make up a large proportion of the total length and watershed area of fluvial networks, and are partially characterized by the large volume of organic matter (large wood, detritus, and dissolved organic matter) and invertebrate inputs from the riparian forest, relative to stream size. Much of those inputs are exported to downstream reaches through time where they potentially subsidize river communities. The relative rates, timing, and conversion processes that carry inputs from small streams to downstream reaches are reasonably well quantified. For example, larger particles are converted to smaller particles, which are more easily exported. Also, dissolved organic matter and surface biofilms are converted to larger particles which can be more easily intercepted by consumers. However, the quality of these materials as it affects biological activity downstream is not well known, nor is the extent to which timing permits biological use of those particles. These ecological unknowns need to be resolved. Further, land uses may disrupt and diminish material transport to downstream reaches by removing sources (e.g., forest harvest), by affecting transport and decomposition processes (e.g., flow regulation, irrigation, changes in biotic communities), and by altering mechanisms of storage within headwaters (e.g., channelization). We present conceptual models of energy and nutrient fluxes that outline small stream processes and pathways important to downstream communities, and we identify informational gaps that, if filled, could significantly advance the understanding of linkages between headwater streams and larger rivers. The models, based on empirical evidence and best professional judgment, suggest that navigable waters are significantly influenced by headwater streams through hydrological and ecological connectivities, and land use can dramatically influence these natural connectivities, impacting downstream riverine ecosystems. ?? 2007 American Water Resources Association.

  1. Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Diplas, Panayiotis

    2008-01-01

    SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The research suggests ways of improving the modeling practices for ecosystem management studies.

  2. FishVis, A regional decision support tool for identifying vulnerabilities of riverine habitat and fishes to climate change in the Great Lakes Region

    USGS Publications Warehouse

    Stewart, Jana S.; Covert, S. Alex; Estes, Nick J.; Westenbroek, Stephen M.; Krueger, Damon; Wieferich, Daniel J.; Slattery, Michael T.; Lyons, John D.; McKenna, James E.; Infante, Dana M.; Bruce, Jennifer L.

    2016-10-13

    Climate change is expected to alter the distributions and community composition of stream fishes in the Great Lakes region in the 21st century, in part as a result of altered hydrological systems (stream temperature, streamflow, and habitat). Resource managers need information and tools to understand where fish species and stream habitats are expected to change under future conditions. Fish sample collections and environmental variables from multiple sources across the United States Great Lakes Basin were integrated and used to develop empirical models to predict fish species occurrence under present-day climate conditions. Random Forests models were used to predict the probability of occurrence of 13 lotic fish species within each stream reach in the study area. Downscaled climate data from general circulation models were integrated with the fish species occurrence models to project fish species occurrence under future climate conditions. The 13 fish species represented three ecological guilds associated with water temperature (cold, cool, and warm), and the species were distributed in streams across the Great Lakes region. Vulnerability (loss of species) and opportunity (gain of species) scores were calculated for all stream reaches by evaluating changes in fish species occurrence from present-day to future climate conditions. The 13 fish species included 4 cold-water species, 5 cool-water species, and 4 warm-water species. Presently, the 4 cold-water species occupy from 15 percent (55,000 kilometers [km]) to 35 percent (130,000 km) of the total stream length (369,215 km) across the study area; the 5 cool-water species, from 9 percent (33,000 km) to 58 percent (215,000 km); and the 4 warm-water species, from 9 percent (33,000 km) to 38 percent (141,000 km).Fish models linked to projections from 13 downscaled climate models projected that in the mid to late 21st century (2046–65 and 2081–2100, respectively) habitats suitable for all 4 cold-water species and 4 of 5 cool-water species under present-day conditions will decline as much as 86 percent and as little as 33 percent, and habitats suitable for all 4 warm-water species will increase as much as 33 percent and as little as 7 percent. This report documents the approach and data used to predict and project fish species occurrence under present-day and future climate conditions for 13 lotic fish species in the United States Great Lakes Basin. A Web-based decision support mapping application termed “FishVis” was developed to provide a means to integrate, visualize, query, and download the results of these projected climate-driven responses and help inform conservation planning efforts within the region.

  3. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    USGS Publications Warehouse

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds. Invertebrate taxa richness, pollution tolerance, and trophic interactions at riffle and nonriffle sites responded differently to environmental variables.Fish communities were assessed in relation to the designated beneficial use for aquatic life for each site. Fish-community sites in basins where agriculture and urbanization were prevalent consistently had poorer conditions than sites with forest and rangeland uses. Warm temperatures appear to be limiting most native fish species, and more introduced, warm-water fish species were present at sites with warmer temperatures. Ranges of environmental conditions where native species were present or absent were identified.The farthest-upstream site in each of the three basins had better ecological condition overall, as indicated by the integrity of habitat and the presence of more sensitive algae, invertebrate, and fish species than were observed at sites downstream. The farthest-downstream site in each of the three basins showed the poorest ecological condition, with more tolerant organisms present, degraded habitat and water-quality conditions, and a high degree of effects from agriculture, grazing, and urbanization. Of the mid-basin sites, the site most affected by urbanization had more degraded biological condition than the agricultural indicator site of similar basin size.

  4. Long-term monitoring of stream bank stability under different vegetation cover

    NASA Astrophysics Data System (ADS)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  5. Linking river management to species conservation using dynamic landscape scale models

    USGS Publications Warehouse

    Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.

    2013-01-01

    Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.

  6. Microbial biodiversity in glacier-fed streams

    PubMed Central

    Wilhelm, Linda; Singer, Gabriel A; Fasching, Christina; Battin, Tom J; Besemer, Katharina

    2013-01-01

    While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams. PMID:23486246

  7. Terrestrial laser scanning for delineating in-stream boulders and quantifying habitat complexity measures

    USDA-ARS?s Scientific Manuscript database

    Accurate stream topography measurement is important for many ecological applications such as hydraulic modeling and habitat characterization. Habitat complexity measures are often made using total station surveying or visual approximation, which can be subjective and have spatial resolution limitati...

  8. Ecological consequences of antibiotic exposure to periphyton in naturally colonizing stream mesocosms

    EPA Science Inventory

    Tetracycline and its derivatives are extensively used human and animal antibiotics, and enter stream ecosystems via point and non-point sources. Laboratory studies indicate that microbial organisms are more sensitive to antibiotics than invertebrates or fish, and may indicate t...

  9. Environmental chemical mixtures: Assessing ecological exposure and effects in streams

    EPA Science Inventory

    This product is a USGS fact sheet that describes a collaborative effort between USGS and US EPA to characterize exposures to chemical mixtures and associated biological effects for a diverse range of US streams representing varying watershed size, land-use patterns, and ecotypes.

  10. THE EFFECTS OF ECOSYSTEM RESTORATION ON NITROGEN PROCESSING IN AN URBAN MID-ATLANTIC PIEDMONT STREAM

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater pose human and ecological threats. The US Environmental Protection Agency, US Geological Survey, Institute of Ecosystem Studies, and Baltimore County Dept. of Environmental Protection and Resource Management are collaborating on...

  11. Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes

    NASA Astrophysics Data System (ADS)

    Artigas, Joan; García-Berthou, Emili; Bauer, Delia E.; Castro, Maria I.; Cochero, Joaquín; Colautti, Darío C.; Cortelezzi, Agustina; Donato, John C.; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Gómez, Nora; Leggieri, Leonardo; Muñoz, Isabel; Rodrigues-Capítulo, Alberto; Romaní, Anna M.; Sabater, Sergi

    2013-03-01

    We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6-4-fold following a before-after control-impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2-77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9-48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure.

  12. Selected Field Parameters from Streams and Analytical Data from Water and Macroinvertebrate Samples, Central Colorado Assessment Project, Environmental Assessment Task, 2004 and 2005

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.; Schmidt, Travis S.; Wanty, Richard B.; Verplanck, Philip L.; Lamothe, Paul J.; Adams, Monique; Anthony, Michael W.

    2007-01-01

    The U.S. Geological Survey (USGS) Central Colorado Assessment Project (CCAP) began in October 2003 and is planned to last through September 2008. One major goal of this project is to compare the relationships between surface-water chemistry and aquatic fauna in mined and unmined areas. To accomplish this goal, we are conducting a State-scale reconnaissance sampling program, in which we are collecting water and macroinvertebrate samples. Selected results from the first two years of project analyses are reported here. We plan to develop statistical models and use geographic information system (GIS) technology to quantify the relationships between ecological indicators of metal contamination in Rocky Mountain streams and water quality, landscape and land-use characteristics (for example, mine density, geology, geomorphology, vegetation, topography). Our research will test the hypothesis that physicochemical variables and ecological responses to metal concentrations in stream water in Rocky Mountain streams are ultimately determined largely by historical land uses.

  13. A terrain-based paired-site sampling design to assess biodiversity losses from eastern hemlock decline

    USGS Publications Warehouse

    Young, J.A.; Smith, D.R.; Snyder, C.D.; Lemarie, D.P.

    2002-01-01

    Biodiversity surveys are often hampered by the inability to control extraneous sources of variability introduced into comparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noise can weaken comparisons between sites, and can make it difficult to draw inferences about specific ecological processes. We developed a terrain-based, paired-site sampling design to analyze differences in aquatic biodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixed hardwood forests in Delaware Water Gap National Recreation Area (USA). The goal of this design was to minimize variance due to terrain influences on stream communities, while representing the range of hemlock dominated stream environments present in the park. We used geographic information systems (GIS) and cluster analysis to define and partition hemlock dominated streams into terrain types based on topographic variables and stream order. We computed similarity of forest stands within terrain types and used this information to pair hemlock-dominated streams with hardwood counterparts prior to sampling. We evaluated the effectiveness of the design through power analysis and found that power to detect differences in aquatic invertebrate taxa richness was highest when sites were paired and terrain type was included as a factor in the analysis. Precision of the estimated difference in mean richness was nearly doubled using the terrain-based, paired site design in comparison to other evaluated designs. Use of this method allowed us to sample stream communities representative of park-wide forest conditions while effectively controlling for landscape variability.

  14. Macroinvertebrate biomonitoring in intermittent coastal plain streams impacted by animal agriculture.

    PubMed

    Davis, Stephanie; Golladay, Stephen W; Vellidis, George; Pringle, Catherine M

    2003-01-01

    Little attention has been given to the ecology of intermittent coastal plain streams in the southeastern United States, and it is not known whether available macroinvertebrate biomonitoring methods reliably detect degradation in these streams. This study compared differences in biomonitoring metrics between reference and agricultural streams, and between the flow period (January-April) and the intermittent flow period (May-December). Percentages of crustaceans, isopods, and Ephemeroptera-Plecoptera-Trichoptera (EPT) were significantly higher at the reference site than the two most impacted sites during the flow period, probably resulting from the abundance of leaf litter and lower temperatures. During this same period, the agriculturally impacted sites had a significantly higher percentage of dipterans--a group that thrives in the silty, nutrient-rich waters. Four metrics (percent Crustacea, Isopoda, Diptera, and EPT) had no overlap between values for the most impacted and the least impacted sites during the flow period, but no metrics were able to detect more discrete differences among sites. Sites were physically and biologically similar during the intermittent period when natural stresses (i.e., stagnant water, high temperatures, low dissolved oxygen) were high, with many metrics, such as percentages of dominant family, burrowers, chironomids, and dipterans becoming similar at all sites. Our findings indicate that development of a better understanding of invertebrate fauna in reference conditions and of the natural variation in intermittent streams is necessary to develop effective biomonitoring programs for these systems.

  15. Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals.

    PubMed

    Briggs, Martin A; Johnson, Zachary C; Snyder, Craig D; Hitt, Nathaniel P; Kurylyk, Barret L; Lautz, Laura; Irvine, Dylan J; Hurley, Stephen T; Lane, John W

    2018-09-15

    Streams strongly influenced by groundwater discharge may serve as "climate refugia" for sensitive species in regions of increasingly marginal thermal conditions. The main goal of this study is to develop paired air and stream water annual temperature signal analysis techniques to elucidate the relative groundwater contribution to stream water and the effective groundwater flowpath depth. Groundwater discharge to streams attenuates surface water temperature signals, and this attenuation can be diagnostic of groundwater gaining systems. Additionally, discharge from shallow groundwater flowpaths can theoretically transfer lagged annual temperature signals from aquifer to stream water. Here we explore this concept using multi-year temperature records from 120 stream sites located across 18 mountain watersheds of Shenandoah National Park, VA, USA and a coastal watershed in Massachusetts, USA. Both areas constitute important cold-water habitat for native brook trout (Salvelinus fontinalis). Observed annual temperature signals indicate a dominance of shallow groundwater discharge to streams in the National Park, in contrast to the coastal watershed that has strong, apparently deeper, groundwater influence. The average phase lag from air to stream signals in Shenandoah National Park is 11 d; however, extended lags of approximately 1 month were observed in a subset of streams. In contrast, the coastal stream has pronounced attenuation of annual temperature signals without notable phase lag. To better understand these observed differences in signal characteristics, analytical and numerical models are used to quantify mixing of the annual temperature signals of surface and groundwater. Simulations using a total heat budget numerical model indicate groundwater-induced annual temperature signal phase lags are likely to show greater downstream propagation than the related signal amplitude attenuation. The measurement of multi-seasonal paired air and water temperatures offers great promise toward understanding catchment processes and informing current cold-water habitat management at ecologically-relevant scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Larval aquatic insect responses to cadmium and zinc in experimental streams

    USGS Publications Warehouse

    Mebane, Christopher A.; Schmidt, Travis S.; Balistrieri, Laurie S.

    2017-01-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration–response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pKa bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams.

  17. Climate-induced glacier and snow loss imperils alpine stream insects

    USGS Publications Warehouse

    Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.

    2017-01-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine streams. Though progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects – the meltwater stonefly Lednia tumana and the glacier stonefly Zapada glacier – were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (20 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions.

  18. Fine particle retention within stream storage areas at base flow and in response to a storm event

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, J. W.

    2017-07-01

    Fine particles (1-100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  19. Breeding habitat preference of preimaginal black flies (Diptera: Simuliidae) in Peninsular Malaysia.

    PubMed

    Ya'cob, Zubaidah; Takaoka, Hiroyuki; Pramual, Pairot; Low, Van Lun; Sofian-Azirun, Mohd

    2016-01-01

    To investigate the breeding habitat preference of black flies, a comprehensive black fly survey was conducted for the first time in Peninsular Malaysia. Preimaginal black flies (pupae and larvae) were collected manually from 180 stream points encompassing northern, southern, central and east coast of the Peninsular Malaysia. A total of 47 black fly species were recorded in this study. The predominant species were Simulium trangense (36.7%) and Simulium angulistylum (33.3%). Relatively common species were Simulium cheongi (29.4%), Simulium tani (25.6%), Simulium nobile (16.2%), Simulium sheilae (14.5%) and Simulium bishopi (10.6%). Principal Component Analysis (PCA) of all stream variables revealed four PCs that accounted for 69.3% of the total intersite variance. Regression analysis revealed that high species richness is associated with larger, deeper, faster and higher discharge streams with larger streambed particles, more riparian vegetation and low pH (F=22.7, d.f.=1, 173; P<0.001). Relationship between species occurrence of seven common species (present in >10% of the sampling sites) was assessed. Forward logistic regression analysis indicated that four species were significantly related to the stream variables. S. nobile and S. tani prefer large, fast flowing streams with higher pH, large streambed particles and riparian trees. S. bishopi was commonly found at high elevation with cooler stream, low conductivity, higher conductivity and more riparian trees. In contrast, S. sheilae was negatively correlated with PC-2, thus, this species commonly found at low elevation, warmer stream with low conductivity and less riparian trees. The results of this study are consistent with previous studies from other geographic regions, which indicated that both physical and chemical stream conditions are the key factors for black fly ecology. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Fine particle retention within stream storage areas at base flow and in response to a storm event

    USGS Publications Warehouse

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, Judson

    2017-01-01

    Fine particles (1–100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  1. Faunal assemblages and multi-scale habitat patterns in headwater tributaries of the South Fork Trinity River - an unregulated river embedded within a multiple-use landscape

    USGS Publications Warehouse

    Welsh, H.H.; Hodgson, G.R.; Duda, J.J.; Emlen, J.M.

    2010-01-01

    Headwaters can represent 80% of stream kilometers in a watershed, and they also have unique physical and biological properties that have only recently been recognized for their importance in sustaining healthy functioning stream networks and their ecological services. We sampled 60 headwater tributaries in the South Fork Trinity River, a 2,430 km2, mostly forested, multiple-use watershed in northwestern California. Our objectives were: (1) to differentiate unique headwater types using 69 abiotic and vegetation variables measured at three spatial scales, and then to reduce these to informative subsets; (2) determine if distinct biota occupied the different tributary types; (3) determine the environmental attributes associated with the presence and abundance of these biotic assemblages; and (4) using niche modeling, determine key attribute thresholds to illustrate how these biota could be employed as metrics of system integrity and ecological services. Several taxa were sufficiently abundant and widespread to use as bio-indicators: the presence and abundance of steelhead trout (Oncorhynchus mykiss), herpetofauna (reptile and amphibian) species richness, and signal crayfish (Pacifastacus leniusculus) represented different trophic positions, value as commercial resources (steelhead), sensitivity to environmental stress (amphibians), and indicators of biodiversity (herpetofauna species richness). Herpetofauna species richness did not differ, but abundances of steelhead trout, signal crayfish, and amphibian richness all differed significantly among tributary types. Niche models indicated that distribution and abundance patterns in both riparian and aquatic environments were associated with physical and structural attributes at multiple spatial scales, both within and around reaches. The bio-indicators responded to unique sets of attributes, reflecting the high environmental heterogeneity in headwater tributaries across this large watershed. These niche attributes represented a wide range of headwater environments, indicating responses to a number of natural and anthropogenic conditions, and demonstrated the value of using a suite of bio-indicators to elucidate watershed conditions, and to examine numerous disturbances that may influence ecological integrity.

  2. Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications.

    PubMed

    Mykrä, Heikki; Heino, Jani; Muotka, Timo

    2004-09-01

    Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters.

  3. Water pollution and distribution of the black fly (Diptera: Simuliidae) in the Atlantic Forest, Brazil.

    PubMed

    Docile, Tatiana N; Figueiró, Ronaldo; Gil-Azevedo, Leonardo H; Nessimian, Jorge L

    2015-09-01

    Black flies have medical importance because some species are vectors of the unenocerciasis and Mansonelosis, nevertheless, their ecology and potential use as bioindicators is still poorly studied in the Neotropical Region. In Brazil, bioindicators use is strongly focused in a multimetrical ecological index approach; this way, we investigated the black fly spatial distribution, in relation to abiotic factors correlated to water quality, to provide baseline information for their utilization as standalone indicators of lotic systems integrity. We have tested the hypothesis that environmental changes related to urbanization, lead to decreased abundance and loss in the number of species of the black fly fauna. The sampling was conducted in 10 urban and 10 preserved streams during the dry season (August-September) of 2012, in the mountainous region of Teres6polis, State of Rio de Janeiro, Brazil. The streams were characterized for their environmental integrity conditions and physico-chemical properties of water. In each stream, five different rapid points were sampled in a section of 50 meters, 10 meters apart from each other. The black flies were sampled with a kick-net sampler on rocky substrates. The material was separated and the larvae were sorted in morphotypes, and later, the final instar specimens were dissected and identified with the help of taxonomical literature at species level. A total abundance of 488 larvae from nine species were collected, 5 (1.02 %) in extremely impacted streams, 470 (96.31 %) in intermediate streams and 13 (2.66 %) in preserved streams. The visual evaluation (HII) differed in relation to the water physico-chemical evaluation, in which more variation in the characterization of the sampling sites was observed. In Canonical Correspondence Analysis Simulium subpallidum, S. inscrustatum and S. pertinax were significantly associated with intermediate values of most of the variables, and then to intermediate impacted sites. On the other hand, Lutzsimulium hirticosta, S. subnigrzm and Simulium sp. A were associated to low values of chemical variables, and then to more preserved sites. Most studies on the bioindicator potential of Simuliidae have suggested an approach to agricultural impacts, while our results, on the other hand, showed that Simuliidae species were present in streams with intermediate urban pollution impacts, but absent in heavily impacted sites. Thus, our data suggested that some species are associated to more pristine breeding sites, such as L. hirticosta and Simulium sp. A, while others may be good bioindicators of moderately impacted streams, such as S. nertinax. S. subnigrum and S. subpallidum.

  4. Development of a local-scale urban stream assessment method using benthic macroinvertebrates: An example from the Santa Clara Basin, California

    USGS Publications Warehouse

    Carter, J.L.; Purcell, A.H.; Fend, S.V.; Resh, V.H.

    2009-01-01

    Research that explores the biological response to urbanization on a site-specific scale is necessary for management of urban basins. Recent studies have proposed a method to characterize the biological response of benthic macroinvertebrates along an urban gradient for several climatic regions in the USA. Our study demonstrates how this general framework can be refined and applied on a smaller scale to an urbanized basin, the Santa Clara Basin (surrounding San Jose, California, USA). Eighty-four sampling sites on 14 streams in the Santa Clara Basin were used for assessing local stream conditions. First, an urban index composed of human population density, road density, and urban land cover was used to determine the extent of urbanization upstream from each sampling site. Second, a multimetric biological index was developed to characterize the response of macroinvertebrate assemblages along the urban gradient. The resulting biological index included metrics from 3 ecological categories: taxonomic composition ( Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (shredder richness), and habit ( clingers). The 90th-quantile regression line was used to define the best available biological conditions along the urban gradient, which we define as the predicted biological potential. This descriptor was then used to determine the relative condition of sites throughout the basin. Hierarchical partitioning of variance revealed that several site-specific variables (dissolved O2 and temperature) were significantly related to a site's deviation from its predicted biological potential. Spatial analysis of each site's deviation from its biological potential indicated geographic heterogeneity in the distribution of impaired sites. The presence and operation of local dams optimize water use, but modify natural flow regimes, which in turn influence stream habitat, dissolved O2, and temperature. Current dissolved O2 and temperature regimes deviate from natural conditions and appear to affect benthic macroinvertebrate assemblages. The assessment methods presented in our study provide finer-scale assessment tools for managers in urban basins. ?? North American Benthological Society.

  5. Ecological restoration

    Treesearch

    Christopher D. Barton; John I. Blake; Donald W. Imm

    2005-01-01

    The long history of human settlement, agriculture, and industry at the Savannah River Site (SRS) has created extensive opportunities for ecological restoration. Two hundred years of farming, drainage, dam construction, stream channeling, fire protection, subsistence hunting and fishing, exotic animal and plant introduction, and selective timber harvesting have caused...

  6. ECOLOGICAL AND SOCIALECONOMIC BENEFITS OF RESTORING AND-IMPAIRED STREAMS: EMERGY-BASED VALUATION

    EPA Science Inventory

    Sound environmental decisions require an integrated, systemic method of valuation that accurately accounts for environmental and social, as well as economic, costs and benefits. More inclusive methods are particularly needed for assessing ecological benefits because these are so...

  7. Performance of National Maps of Watershed Integrity at Watershed Scales

    EPA Science Inventory

    Watershed integrity, the capacity of a watershed to support and maintain ecological processes essential to the sustainability of services provided to society, can be influenced by a range of landscape and in-stream factors. Ecological response data from four intensively monitored...

  8. Rivers and streams in the media: a content analysis of ecosystem services

    EPA Science Inventory

    While ecosystem services research has become common, few efforts are directed toward in-depth understanding of the specific ecological quantities people value. Environmental communications as well as ecological monitoring and analysis efforts could be enhanced by such information...

  9. Ecological functions of riparian zones in Oregon hydrological landscapes

    EPA Science Inventory

    The ecological functions of streams and associated riparian zones are strongly influenced by the hydrological attributes of watersheds and landscapes in which they occur. Oregon hydrologic landscape regions (HLRs) have been defined based on four types of GIS data: 1) climate, 2) ...

  10. Functional Objectives for Stream Restoration

    DTIC Science & Technology

    2006-09-01

    Gorman, O. T ., and Karr, J. R . (1978) “Habitat structure and stream fish communities,” Ecology, 59-3, 507-515. Increasing community and habitat...frequency and density. Comparison of above- and below- ground biomass R /S ratio. Biomass production of stream- dependant species. Biomass profile...M., Hauer, F. R ., Lee, L. C., Nutter, W. L., Rheinhardt, R . D., Smith, R . D., and Whigham, D. (1995) “A guidebook for application of

  11. Rehabilitation and Flood Management Planning in a Steep, Boulder-Bedded Stream

    NASA Astrophysics Data System (ADS)

    Caruso, Brian S.; Downs, Peter W.

    2007-08-01

    This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.

  12. Factors affecting low summer dissolved oxygen concentrations in Mississippi Delta bayous

    USDA-ARS?s Scientific Manuscript database

    Streams in watersheds supporting intensive row-crop agriculture are vulnerable to ecological degradation due to non-point source pollutants such as nutrients. Low gradient streams such as bayous are especially susceptible to pollutants due to increased water residence time, and they often exhibit po...

  13. Targeting Urban Watershed Stressor Gradients: Stream Survey Design, Ecological Responses, and Implications of Land Cover Resolution

    EPA Science Inventory

    We conducted a stream survey in the Narragansett Bay Watershed designed to target a gradient of development intensity, and to examine how associated changes in nutrients, carbon, and stressors affect periphyton and macroinvertebrates. Concentrations of nutrients, cations, and ani...

  14. LARGE-SCALE PATTERNS OF STREAMFLOW DISTURBANCE AND FISH ASSEMBLAGES IN UPPER MISSOURI RIVER BASIN, USA

    EPA Science Inventory

    Patterns of streamflow variability are likely to be a major organizing feature of the habitat template for stream fishes. Ecological organization of stream communities has been linked to streamflow, especially to patterns of flow variability that describe the physical disturbanc...

  15. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    EPA Science Inventory

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  16. INFLUENCE OF STREAM NETWORK-SCALE HABITAT OF A COASTAL OREGON WATERSHED ON COHO SALMON AND OTHER NATIVE FISH

    EPA Science Inventory

    EPA's Western Ecology Division is undertaking research addressing catchment-scale dynamics of freshwater habitat productivity for native fishes. Through partnerships with state and federal agencies and private landowners, current field efforts focus on linkages among stream chemi...

  17. Assessment of flow forces on large wood in rivers

    USDA-ARS?s Scientific Manuscript database

    Large wood (LW) exerts an important influence on the geomorphology and ecology of streams and rivers. LW management activities are diverse, including placement in streams for restoring habitats or controlling bank erosion and mitigation of LW-related hazards to bridges and other structures. Flow f...

  18. URBANIZATION ALTERS FATTY ACID CONCENTRATIONS OF STREAM FOOD WEBS IN THE NARRAGANSETT BAY WATERSHED

    EPA Science Inventory

    Urbanization and associated human activities negatively affect stream algal and invertebrate assemblages, likely altering food webs. Our goal was to determine if urbanization affects food web essential fatty acids (EFAs) and if EFAs could be useful ecological indicators in monito...

  19. Influence of multi-scale hydrologic controls on river network connectivity and riparian function

    EPA Science Inventory

    The ecological functions of rivers and streams and their associated riparian zones are strongly influenced by surface and subsurface hydrologic routing of water within river basins and river networks. Hydrologic attributes of the riparian area for a given stream reach are typica...

  20. Compensatory stream and wetland mitigation in North Carolina: an evaluation of regulatory success.

    PubMed

    Hill, Tammy; Kulz, Eric; Munoz, Breda; Dorney, John R

    2013-05-01

    Data from a probability sample were used to estimate wetland and stream mitigation success from 2007 to 2009 across North Carolina (NC). "Success" was defined as whether the mitigation site met regulatory requirements in place at the time of construction. Analytical results were weighted by both component counts and mitigation size. Overall mitigation success (including preservation) was estimated at 74 % (SE = 3 %) for wetlands and 75 % (SE = 4 %) for streams in NC. Compared to the results of previous studies, wetland mitigation success rates had increased since the mid-1990s. Differences between mitigation providers (mitigation banks, NC Ecosystem Enhancement Program's design-bid-build and full-delivery programs, NC Department of Transportation and private permittee-responsible mitigation) were generally not significant although permittee-responsible mitigation yielded higher success rates in certain circumstances. Both wetland and stream preservation showed high rates of success and the stream enhancement success rate was significantly higher than that of stream restoration. Additional statistically significant differences when mitigation size was considered included: (1) the Piedmont yielded a lower stream mitigation success rate than other areas of the state, and (2) recently constructed wetland mitigation projects demonstrated a lower success rate than those built prior to 2002. Opportunities for improvement exist in the areas of regulatory record-keeping, understanding the relationship between post-construction establishment and long-term ecological trajectories of stream and wetland restoration projects, incorporation of numeric ecological metrics into mitigation monitoring and success criteria, and adaptation of stream mitigation designs to achieve greater success in the Piedmont.

  1. Detecting the influence of best management practices on vegetation near ephemeral streams with Landsat data

    USGS Publications Warehouse

    Rigge, Matthew B.; Smart, Alexander; Wylie, Bruce K.; de Van Kamp, Kendall

    2014-01-01

    Various best management practices (BMPs) have been implemented on rangelands with the goals of controlling nonpoint source pollution, reducing the impact of livestock in ecologically important riparian areas, and improving grazing distribution. Providing off-stream water sources to livestock in pastures, cross-fencing, and rotational grazing are common rangeland BMPs that have demonstrated success in drawing livestock grazing pressure away from streams. We evaluated the effects of rangeland BMP implementation with six commercial-scale pastures in the northern mixed-grass prairie. Four pastures received a BMP suite consisting of off-stream water, cross-fencing, and deferred-rotation grazing, and two pastures did not receive BMPs. We hypothesized that the BMPs increased the quantity of riparian vegetation cover relative to the conditions in these pastures during the pre-BMP period and to the two pastures that did not receive BMPs. We used a series of 30-m Landsat normalized difference vegetation index (NDVI) images to track the spatial and temporal changes (1984–2010, n = 24) in vegetation cover, to which NDVI has been well correlated. Validation indicated that the remotely sensed signal from in-channel vegetation was representative of ground conditions. The BMP suite was associated with a 15% increase in the in-channel NDVI (0–30 m from stream centerline) and 18% increase in the riparian NDVI (30–180 m from stream center line). Conversely, the in-channel and riparian NDVI of non-BMP pastures declined 30% and 18% over the study period. The majority of change occurred within 2 yr of BMP implementation. The patterns of in-channel NDVI among pastures suggested that BMP implementation likely altered grazing distribution by decreasing the preferential use of riparian and in-channel areas. We demonstrated that satellite imagery time series are useful in retrospectively evaluating the efficacy of conservation practices, providing critical information to guide adaptive management and decision makers.

  2. Threshold values and management options for nutrients in a catchment of a temperate estuary with poor ecological status

    NASA Astrophysics Data System (ADS)

    Hinsby, K.; Markager, S.; Kronvang, B.; Windolf, J.; Sonnenborg, T. O.; Thorling, L.

    2012-08-01

    Intensive farming has severe impacts on the chemical status of groundwater and streams and consequently on the ecological status of dependent ecosystems. Eutrophication is a widespread problem in lakes and marine waters. Common problems are hypoxia, algal blooms, fish kills, and loss of water clarity, underwater vegetation, biodiversity and recreational value. In this paper we evaluate the nitrogen (N) and phosphorus (P) concentrations of groundwater and surface water in a coastal catchment, the loadings and sources of N and P, and their effect on the ecological status of an estuary. We calculate the necessary reductions in N and P loadings to the estuary for obtaining a good ecological status, which we define based on the number of days with N and P limitation, and the corresponding stream and groundwater threshold values assuming two different management options. The calculations are performed by the combined use of empirical models and a physically based 3-D integrated hydrological model of the whole catchment. The assessment of the ecological status indicates that the N and P loads to the investigated estuary should be reduced to levels corresponding to 52 and 56% of the current loads, respectively, to restore good ecological status. Model estimates show that threshold total N (TN) concentrations should be in the range of 2.9 to 3.1 mg l-1 in inlet freshwater (streams) to Horsens estuary and 6.0 to 9.3 mg l-1 in shallow aerobic groundwater (∼ 27-41 mg l-1 of nitrate), depending on the management measures implemented in the catchment. The situation for total P (TP) is more complex, but data indicate that groundwater threshold values are not needed. The stream threshold value for TP to Horsens estuary for the selected management options is 0.084 mg l-1. Regional climate models project increasing winter precipitation and runoff in the investigated region resulting in increasing runoff and nutrient loads to the Horsens estuary and many other coastal waters if present land use and farming practices continue. Hence, lower threshold values are required in many coastal catchments in the future to ensure good status of water bodies and ecosystems.

  3. A watershed approach to ecosystem monitoring in Denali National Park and preserve, Alaska

    USGS Publications Warehouse

    Thorsteinson, L.K.; Taylor, D.L.

    1997-01-01

    The National Park Service and the National Biological Service initiated research in Denali National Park and Preserve, a 2.4 million-hectare park in southcentral Alaska, to develop ecological monitoring protocols for national parks in the Arctic/Subarctic biogeographic area. We are focusing pilot studies on design questions, on scaling issues and regionalization, ecosystem structure and function, indicator selection and evaluation, and monitoring technologies. Rock Creek, a headwater stream near Denali headquarters, is the ecological scale for initial testing of a watershed ecosystem approach. Our conceptual model embraces principles of the hydrological cycle, hypotheses of global climate change, and biological interactions of organisms occupying intermediate, but poorly studied, positions in Alaskan food webs. The field approach includes hydrological and depositional considerations and a suite of integrated measures linking key aquatic and terrestrial biota, environmental variables, or defined ecological processes, in order to establish ecological conditions and detect, track, and understand mechanisms of environmental change. Our sampling activities include corresponding measures of physical, chemical, and biological attributes in four Rock Creek habitats believed characteristic of the greater system diversity of Denali. This paper gives examples of data sets, program integration and scaling, and research needs.

  4. Principles for urban stormwater management to protect stream ecosystems

    USGS Publications Warehouse

    Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela

    2016-01-01

    Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly insurmountable historical constraints, which guarantee future, ongoing degradation.

  5. ECOLOGICALLY-RELEVANT QUANTIFICATION OF STREAMFLOW REGIMES IN WESTERN STREAMS

    EPA Science Inventory

    This report describes the rationale for and application of a protocol for estimation of ecologically-relevant streamflow metrics that quantify streamflow regime for ungaged sites subject to a range of human impact. The analysis presented here is focused on sites sampled by the U....

  6. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA

    USGS Publications Warehouse

    Hupp, C.R.; Pierce, Aaron R.; Noe, G.B.

    2009-01-01

    Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.

  7. Habitat restoration as a means of controlling non-native fish in a Mojave desert Oasis

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.; Gourley, C.; Martinez, C.

    2005-01-01

    Non-native fish generally cause native fish decline, and once non-natives are established, control or elimination is usually problematic. Because non-native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non-native fish control. In this investigation we identified habitats favoring native over non-native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25-32??C) stream and spring-pool habitat, whereas non-natives predominated in cool water (???23??C) spring-pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non-native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non-natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non-native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non-native fish invasion and proliferation. ?? 2005 Society for Ecological Restoration International.

  8. Factors affecting low summer dissolved oxygen concentrations in Mississippi Delta bayous

    USDA-ARS?s Scientific Manuscript database

    Streams in watersheds supporting intensive row-crop agriculture are vulnerable to ecological degradation due to non-point source discharge of pollutants such as nutrients. Low gradient streams such as bayous are especially susceptible due to increased water residence time, and often result in poor w...

  9. A decade of evaluating the ecological effects of grass filter strips on channelized agricultural headwater streams

    USDA-ARS?s Scientific Manuscript database

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Previous studies have documented the effectiveness of grass filter strips in reducing the input of agricultural pollutants, bu...

  10. Stream Studies.

    ERIC Educational Resources Information Center

    Hamilton City Board of Education (Ontario).

    This manual provides teachers with some knowledge of ecological study methods and techniques used in collecting data when plants and animals are studied in the field. Most activities deal with the interrelatedness of plant and animal life to the structure and characteristics of a stream and pond. Also included in this unit plan designed for the…

  11. Headwater fish population responses to planting grass filter strips adjacent to channelized agricultural headwater streams

    USDA-ARS?s Scientific Manuscript database

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Only a limited amount of information is available on the ecological effects of planting grass filter strips adjacent to channe...

  12. Meta-Analysis of Lost Ecosystem Attributes in Urban Streams and the Effectiveness of Out-of-Channel Management Practices

    EPA Science Inventory

    Watershed development is a leading cause of stream impairment, and it increasingly threatens the availability, quality, and sustainability of freshwater resources as human populations continue to grow and migrate. Most efforts have focused on trying to improve ecological conditio...

  13. RED SHINER INVASION OF SOUTHEASTERN STREAMS: DYNAMICS AND ECOLOGICAL CONSEQUENCES

    EPA Science Inventory

    Red shiners, a minnow species native to streams of the central U.S., are spreading to other regions due to their widespread use as a bait-fish. Their expansion into new habitats comes at the expense of their native relatives. Red shiners are aggressive competitors for food and ...

  14. The Magnitude of Lost Ecosystem Structure and Function in Urban Streams and the Effectiveness of Watershed-Based Management

    EPA Science Inventory

    Watershed development is a leading cause of stream impairment and increasingly threatens the availability, quality, and sustainability of freshwater resources. In a recent global meta-analysis, we found that measures of desirable ecological structure (e.g., algal, macroinvertebra...

  15. Landscapes of facilitation: how self-organized patchiness of aquatic macrophytes promotes diversity in streams.

    PubMed

    Cornacchia, Loreta; van de Koppel, Johan; van der Wal, Daphne; Wharton, Geraldene; Puijalon, Sara; Bouma, Tjeerd J

    2018-04-01

    Spatial heterogeneity plays a crucial role in the coexistence of species. Despite recognition of the importance of self-organization in creating environmental heterogeneity in otherwise uniform landscapes, the effects of such self-organized pattern formation in promoting coexistence through facilitation are still unknown. In this study, we investigated the effects of pattern formation on species interactions and community spatial structure in ecosystems with limited underlying environmental heterogeneity, using self-organized patchiness of the aquatic macrophyte Callitriche platycarpa in streams as a model system. Our theoretical model predicted that pattern formation in aquatic vegetation - due to feedback interactions between plant growth, water flow and sedimentation processes - could promote species coexistence, by creating heterogeneous flow conditions inside and around the plant patches. The spatial plant patterns predicted by our model agreed with field observations at the reach scale in naturally vegetated rivers, where we found a significant spatial aggregation of two macrophyte species around C. platycarpa. Field transplantation experiments showed that C. platycarpa had a positive effect on the growth of both beneficiary species, and the intensity of this facilitative effect was correlated with the heterogeneous hydrodynamic conditions created within and around C. platycarpa patches. Our results emphasize the importance of self-organized patchiness in promoting species coexistence by creating a landscape of facilitation, where new niches and facilitative effects arise in different locations. Understanding the interplay between competition and facilitation is therefore essential for successful management of biodiversity in many ecosystems. © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  16. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  17. Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer

    USGS Publications Warehouse

    Wesner, Jeff S.; Kraus, Johanna M.; Schmidt, Travis S.; Walters, David M.; Clements, William H.

    2014-01-01

    The response of larval aquatic insects to stressors such as metals is used to assess the ecological condition of streams worldwide. However, nearly all larval insects metamorphose from aquatic larvae to winged adults, and recent surveys indicate that adults may be a more sensitive indicator of stream metal toxicity than larvae. One hypothesis to explain this pattern is that insects exposed to elevated metal in their larval stages have a reduced ability to successfully complete metamorphosis. To test this hypothesis we exposed late-instar larvae of the mayfly, Centroptilum triangulifer, to an aqueous Zn gradient (32–476 μg/L) in the laboratory. After 6 days of exposure, when metamorphosis began, larval survival was unaffected by zinc. However, Zn reduced wingpad development at concentrations above 139 μg/L. In contrast, emergence of subimagos and imagos tended to decline with any increase in Zn. At Zn concentrations below 105 μg/L (hardness-adjusted aquatic life criterion), survival between the wingpad and subimago stages declined 5-fold across the Zn gradient. These results support the hypothesis that metamorphosis may be a survival bottleneck, particularly in contaminated streams. Thus, death during metamorphosis may be a key mechanism explaining how stream metal contamination can impact terrestrial communities by reducing aquatic insect emergence.

  18. Fragmentation alters stream fish community structure in dendritic ecological networks.

    PubMed

    Perkin, Joshuah S; Gido, Keith B

    2012-12-01

    Effects of fragmentation on the ecology of organisms occupying dendritic ecological networks (DENs) have recently been described through both conceptual and mathematical models, but few hypotheses have been tested in complex, real-world ecosystems. Stream fishes provide a model system for assessing effects of fragmentation on the structure of communities occurring within DENs, including how fragmentation alters metacommunity dynamics and biodiversity. A recently developed habitat-availability measure, the "dendritic connectivity index" (DCI), allows for assigning quantitative measures of connectivity in DENs regardless of network extent or complexity, and might be used to predict fish community response to fragmentation. We characterized stream fish community structure in 12 DENs in the Great Plains, USA, during periods of dynamic (summer) and muted (fall) discharge regimes to test the DCI as a predictive model of fish community response to fragmentation imposed by road crossings. Results indicated that fish communities in stream segments isolated by road crossings had reduced species richness (alpha diversity) relative to communities that maintained connectivity with the surrounding DEN during summer and fall. Furthermore, isolated communities had greater dissimilarity (beta diversity) to downstream sites notisolated by road crossings during summer and fall. Finally, dissimilarity among communities within DENs decreased as a function of increased habitat connectivity (measured using the DCI) for summer and fall, suggesting that communities within highly connected DENs tend to be more homogeneous. Our results indicate that the DCI is sensitive to community effects of fragmentation in riverscapes and might be used by managers to predict ecological responses to changes in habitat connectivity. Moreover, our findings illustrate that relating structural connectivity of riverscapes to functional connectivity among communities might aid in maintaining metacommunity dynamics and biodiversity in complex dendritic ecosystems.

  19. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.

    PubMed

    Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz

    2016-07-01

    Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.

  20. StreamStats in North Carolina: a water-resources Web application

    USGS Publications Warehouse

    Weaver, J. Curtis; Terziotti, Silvia; Kolb, Katharine R.; Wagner, Chad R.

    2012-01-01

    A statewide StreamStats application for North Carolina was developed in cooperation with the North Carolina Department of Transportation following completion of a pilot application for the upper French Broad River basin in western North Carolina (Wagner and others, 2009). StreamStats for North Carolina, available at http://water.usgs.gov/osw/streamstats/north_carolina.html, is a Web-based Geographic Information System (GIS) application developed by the U.S. Geological Survey (USGS) in consultation with Environmental Systems Research Institute, Inc. (Esri) to provide access to an assortment of analytical tools that are useful for water-resources planning and management (Ries and others, 2008). The StreamStats application provides an accurate and consistent process that allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and user-selected ungaged sites. In the North Carolina application, users can compute 47 basin characteristics and peak-flow frequency statistics (Weaver and others, 2009; Robbins and Pope, 1996) for a delineated drainage basin. Selected streamflow statistics and basin characteristics for data-collection sites have been compiled from published reports and also are immediately accessible by querying individual sites from the web interface. Examples of basin characteristics that can be computed in StreamStats include drainage area, stream slope, mean annual precipitation, and percentage of forested area (Ries and others, 2008). Examples of streamflow statistics that were previously available only through published documents include peak-flow frequency, flow-duration, and precipitation data. These data are valuable for making decisions related to bridge design, floodplain delineation, water-supply permitting, and sustainable stream quality and ecology. The StreamStats application also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that may affect streamflow conditions. This functionality can be accessed through a map-based interface with the user’s Web browser, or individual functions can be requested remotely through Web services (Ries and others, 2008).

  1. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    NASA Astrophysics Data System (ADS)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  2. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2012-03-01

    A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.

  3. Designing ecological flows to gravely braided rivers in alpine environments

    NASA Astrophysics Data System (ADS)

    Egozi, R.; Ashmore, P.

    2009-04-01

    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  4. Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps.

    PubMed

    Lencioni, Valeria

    2018-05-01

    The aim of this work was to highlight the main ecological predictors driving invertebrate distribution in eight glacier-fed streams in the Southern Alps. Thirty-five sites belonging to four stream types were sampled monthly during the ablation season of one, two or three years between 1996 and 2014. Taxa from glacial (kryal and glacio-rhithral) and non-glacial (kreno-rhithral and lake outlet) sites were separated by canonical correspondence analysis (CCA) along a glacial influence gradient and a hydrological-altitudinal gradient. High glacial influence was associated mainly with low maximum water temperature (Tmax), high Glacial Index (calculated as a function of glacier area and distance from the glacier), and the abundance of Diamesa species (D. steinboecki, D. goetghebueri, D. zernyi, and D. latitarsis). Change-point analysis and Threshold Indicator Taxa Analysis confirmed the CCA results in identifying these Diamesa species as the taxa with the strongest preference for high percent glacier cover in the catchment (change point~30%) and low Tmax (change point~6°C). Temporal changes in community structure were highlighted in seven sites fed by glaciers under different retreat rates. Where the rate was faster and the remaining glacier smaller (≪1km 2 ), the most cold-stenothermal kryal inhabitant, D. steinboecki, almost disappeared or survived only as brachypterous populations, whereas other Diamesinae (Pseudokiefferiella parva), Orthocladiinae (e.g. Eukiefferiella, Orthocladius), Limoniidae, Baetidae, Nemouridae, and non-insect taxa (e.g. Oligochaeta, Hydracarina) became more abundant. Upstream migration was observed in Diamesa spp. which conquered new stream reaches left free by the retreating glacier, and euriecious taxa which colonized reaches with ameliorated environmental conditions, no longer the exclusive habitat of Diamesa spp. Co-occurrence of stochastic and deterministic assembly processes seem to drive spatio-temporal changes in these invertebrate communities. Long-term ecological studies on the adaptive biology of kryal species will be useful to predict the fate of Alpine biodiversity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification and Prediction of Fish Assemblages in Streams of the Albemarle-Pamlico Basin, USA

    EPA Science Inventory

    Set within the Ecological Services Research Program (ESRP) of USEPA’s Office of Research and Development, a multi-disciplinary research collaborative (MEERT –Multimedia Ecological Exposure Research Team) has taken on a challenge to develop a regional assessment of several ecosyst...

  6. Spatial and Temporal Patterns of Impervious Cover Relative to Watershed Stream Location

    EPA Science Inventory

    The influence of spatial pattern on ecological processes is a guiding principle of landscape ecology. The guiding principle of spatial pattern was used for a U.S. nationwide assessment of impervious cover (IC). Spatial pattern was measured by comparing IC concentration near strea...

  7. Melding Classroom Instruction With Real-World Problem-Solving.

    ERIC Educational Resources Information Center

    Gannon, John E.; Fairchild, G. Winfield

    1983-01-01

    Describes a course used to teach freshwater ecology to graduate and undergraduate students at the University of Michigan Biological Station. Explains how students receive an introduction to lake ecology and work on applied resource management questions concerning local lakes and streams. Gives case study examples. (SB)

  8. Exploring the Realized Niche: Simulated Ecological Mapping with a Microcomputer.

    ERIC Educational Resources Information Center

    Kent, J. W.

    1983-01-01

    Describes a computer program based upon field observations of littoral zonation modified by a small stream. The program employs user-defined color graphic characters to display simulated ecological maps representing the patterning of organisms in response to local values of niche limiting factors. (Author/JN)

  9. Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon

    USGS Publications Warehouse

    Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.

    1999-01-01

    We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may be viewed as an ecological warning sign, thermal patchiness in streams also should be recognized for its biological potential to provide habitat for species existing at the margin of their environmental tolerances.

  10. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America

    USGS Publications Warehouse

    Arismendi, Ivan; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy

    2013-01-01

    1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year. 2. To more completely describe thermal regimes, we developed several descriptors of magnitude, variability, frequency, duration and timing of thermal events throughout a year. We evaluated how these descriptors change over time using long-term (1979–2009), continuous temperature data from five relatively undisturbed cold-water streams in western Oregon, U.S.A. In addition to trends for each descriptor, we evaluated similarities among them, as well as patterns of spatial coherence, and temporal synchrony. 3. Using different groups of descriptors, we were able to more fully capture distinct aspects of the full range of variability in thermal regimes across space and time. A subset of descriptors showed both higher coherence and synchrony and, thus, an appropriate level of responsiveness to examine evidence of regional climatic influences on thermal regimes. Most notably, daily minimum values during winter–spring were the most responsive descriptors to potential climatic influences. 4. Overall, thermal regimes in streams we studied showed high frequency and low variability of cold temperatures during the cold-water period in winter and spring, and high frequency and high variability of warm temperatures during the warm-water period in summer and autumn. The cold and warm periods differed in the distribution of events with a higher frequency and longer duration of warm events in summer than cold events in winter. The cold period exhibited lower variability in the duration of events, but showed more variability in timing. 5. In conclusion, our results highlight the importance of a year-round perspective in identifying the most responsive characteristics or descriptors of thermal regimes in streams. The descriptors we provide herein can be applied across hydro-ecological regions to evaluate spatial and temporal patterns in thermal regimes. Evaluation of coherence and synchrony of different components of thermal regimes can facilitate identification of impacts of regional climate variability or local human or natural influences.

  11. A Day in the Life of the Suwannee River: Lagrangian Sampling of Process Rates Along the River Continuum

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Hensley, R. T.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    A key organizing idea in stream ecology is the river continuum concept (RCC) which makes testable predictions about network-scale variation in metabolic and community attributes. Using high resolution (ca. 0.1 Hz) Lagrangian sampling of a wide suite of solutes - including nitrate, fDOM, dissolved oyxgen and specific conductance, we sampled the river continuum from headwaters to the sea in the Suwannee River (Florida, USA). We specifically sought to test two predictions that follow from the RCC: first, that changes in metabolism and hydraulics lead to progressive reduction in total N retention but greater diel variation with increasing stream order; and second, that variation in metabolic and nutrient processing rates is larger across stream orders than between low order streams. In addition to providing a novel test of theory, these measurements enabled new insights into the evolution of water quality through a complex landscape, in part because main-stem profiles were obtained for both high and historically low flow conditions. We observed strong evidence of metabolism and nutrient retention at low flow. Both the rate of uptake velocity and the mass retention per unit area declined with increasing stream order, and declined dramatically at high flow. Clear evidence for time varying retention (i.e., diel variation) was observed at low flow, but was masked or absent at high flow. In this geologically complex river - with alluvial, spring-fed, and blackwater headwater streams - variation across low-order streams was large, suggesting the presence of many river continuua across the network. This application of longitudinal sampling and inference underscores the utility of changing reference frames to draw new insights, but also highlights some of the challenges that need to be considered and, where possible, controlled.

  12. Evidence of Adaptive Evolutionary Divergence during Biological Invasion

    PubMed Central

    Lucek, Kay; Sivasundar, Arjun; Seehausen, Ole

    2012-01-01

    Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickleback populations to test for a genetic basis of adaptation. Our populations are from two very different habitats, lake and stream, of a recently invaded range in Switzerland and differ in ecologically relevant morphological traits. We found that in a lake-like food treatment lake fish grow faster than stream fish, resembling the difference among wild type individuals. In contrast, in a stream-like food treatment individuals from both populations grow similarly. Our experimental data suggest that genetically determined diversification has occurred within less than 140 years after the arrival of stickleback in our studied region. PMID:23152900

  13. Describing spatial pattern in stream networks: A practical approach

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  14. A geostatistical approach for describing spatial pattern in stream networks

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  15. Retention and Migration of Fine Organic Particles within an Agricultural Stream: Toenepi, Waikato, New Zealand

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Davies-Colley, R.; Stott, R.; Sukias, J.; Nagels, J.; Sharp, A.; Packman, A. I.

    2013-12-01

    Fine organic particle dynamics are important to stream biogeochemistry, ecology, and transport of contaminant microbes. These particles migrate downstream through a series of deposition and resuspension events, which results in a wide range of residence times. This retention influences biogeochemical processing and in-stream stores of contaminant microbes that may mobilize during flood events and present a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into organic particle dynamics in streams, with a campaign of experiments and modeling. The results should improve understanding of nutrient (C, N, P) spiraling and fine sediment movement in streams, and have particular application to microbial hazards. We directly measure microbial transport by including the indicator organism, E. coli, as a tracer, which is compared to a fluorescent inert particle tracer and conservative solute to gain insight on both microbial ecology and waterborne disease transmission. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through porewaters, and reversible filtration within the streambed. Because fine particles are only episodically transported in streams, with intervening periods at rest in the bed, this transport process violates conventional advection-dispersion assumptions. Instead we adopt a stochastic mobile-immobile model formulation to describe fine particle transport. We apply this model to measurements of particle transport from multiple tracer experiments in an agricultural stream in the Waikato dairy region of New Zealand, and use the model to improve interpretation of baseflow particle dynamics. Our results show the importance of the benthic and hyporheic regions and in-stream vegetation as a reservoir for fine organic particles in streams.

  16. Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas.

    PubMed

    Godoy, B S; Queiroz, L L; Lodi, S; Oliveira, L G

    2017-04-01

    The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.

  17. Freshwater Ecology. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    Freshwater ecosystems include lakes, ponds, streams, rivers, and certain types of wetlands. This literature and resources guide is not intended to be a comprehensive bibliography on freshwater ecology; the guide is designed--as the name of the series implies--to put the reader or student "on target." Other literature guides related to…

  18. UNDERSTANDING ECOLOGICAL RISK IN RURAL WATERSHEDS THROUGH MEASURMENTS OF STREAM COMMUNITY METABOLISM, NUTRIENT AND SEDIMENT DYNAMICS

    EPA Science Inventory

    The goal of this project, and associated research, is to establish thresholds for ecological response to watershed disturbance and to develop tools and insights that will help us manage risks and evaluate best management practice (BMP) effectiveness. Changes in the amount and typ...

  19. The illuminating role of laser scanning digital elevation models in precision agriculture experimental designs - an agro-ecology perspective

    USDA-ARS?s Scientific Manuscript database

    Laser scanning data streams, when linked with multi-spectral, hyperspectral, apparent soil electro-conductivity (ECa), or other kinds of geo-referenced data streams, aid in the creation of maps that allow useful applications in agricultural systems. These combinations of georeferenced information p...

  20. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  1. The effects of flow and stream characteristics on the variation in freshwater mussel growth in a Southeast US river basin

    USGS Publications Warehouse

    Dycus, Justin C.; Wisniewski, Jason M.; Peterson, James T.

    2015-01-01

    This study provides insight to the factors affecting the growth of stream-dwelling freshwater mussels. Although hierarchical von Bertalanffy growth models are rarely used for freshwater mussel age and growth studies, this approach can provide important information regarding the ecology of freshwater mussels.

  2. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys

    Treesearch

    T.J. Voltz; M.N. Gooseff; A.S. Ward; K. Singha; M. Fitzgerald; T. Wagener

    2013-01-01

    Patterns of riparian hydraulic gradients and stream-groundwater exchange in headwater catchments provide the hydrologic context for important ecological processes. Although the controls are relatively well understood, their dynamics during periods of hydrologic change is not. We investigate riparian hydraulic gradients over three different time scales in two steep,...

  3. Geochemistry and microbial community composition across a range of acid mine drainage impact and implications for the Neoarchean-Paleoproterozoic transition

    NASA Astrophysics Data System (ADS)

    Havig, Jeff R.; Grettenberger, Christen; Hamilton, Trinity L.

    2017-06-01

    Streams impacted by acid mine drainage (AMD, also known as acid rock drainage) represent local environmental and ecological disasters; however, they may also present an opportunity to study microbial communities in environments analogous to past conditions. Neoarchean continents had streams and rivers replete with detrital pyrites. Following the emergence of oxygenic photosynthesis, Cyanobacteria colonized streams and rivers on continental surfaces. The combination of labile detrital pyrite grains and locally produced O2 generated by Cyanobacteria produced ideal conditions for pyrite oxidation similar to that found at modern AMD-impacted sites. To explore the connection of modern sites to ancient conditions, we sampled sites that exhibited a range of AMD-impact (e.g., pH from 2.1 to 7.9 [Fe2+] up to 5.2 mmol/L [SO42-] from 0.3 to 52.4 mmol/L) and found (i) nearly all analytes correlated to sulfate concentration; (ii) all sites exhibited the predominance of a single taxon most closely related to Ferrovum myxofaciens, an Fe-oxidixing betaproteoabacterium capable of carbon and nitrogen fixation, and (iii) signs of potential inorganic carbon limitation and nitrogen cycling. From these findings and building on the work of others, we present a conceptual model of continental surfaces during the Neoarchean and Paleoproterozoic linking local O2 production to pyrite oxidation on continental surfaces to sulfate production and delivery to nearshore environments. The delivery of sulfate drives sulfate reduction and euxinia—favoring anoxygenic photosynthesis over cyanobacterial O2 generation in near-continent/shelf marine environments.

  4. Landscape ecological assessment of the Chesapeake Bay watershed.

    PubMed

    Weber, Ted

    2004-06-01

    The Chesapeake Bay Watershed, located in the Mid-Atlantic Region of the United States, is experiencing rapid habitat loss and fragmentation from sprawling low-density development. The bay itself is heavily stressed by excess sediment and nutrient runoff. Three states, the District of Columbia, and the federal government signed an agreement in 2000 to address these problems. The commitments included an assessment of the watershed's resource lands, and targeting the most valued lands for protection. As part of this task, the Resource Lands Assessment identified an ecological network comprised of large contiguous blocks (hubs) of forests, wetlands, and streams, interconnected by corridors to allow animal and plant propagule dispersal and migration. Hubs were prioritized by ecoregion, by analyzing a variety of ecological parameters, including: rare species presence, rarity and population viability; vegetation and vertebrate richness; habitat area, condition, and diversity; intactness and remoteness; connectivity potential; and the nature of the surrounding landscape. I found that much of the watershed was still fairly intact, although this varied dramatically by ecoregion. Current protection also varied, and an assessment of vulnerability will help focus protection efforts among the most valuable hubs and corridors.

  5. Effects of Surface-Water Diversions on Habitat Availability for Native Macrofauna, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Wolff, Reuben H.

    2005-01-01

    Effects of surface-water diversions on habitat availability for native stream fauna (fish, shrimp, and snails) are described for 21 streams in northeast Maui, Hawaii. Five streams (Waikamoi, Honomanu, Wailuanui, Kopiliula, and Hanawi Streams) were chosen as representative streams for intensive study. On each of the five streams, three representative reaches were selected: (1) immediately upstream of major surface-water diversions, (2) midway to the coast, and (3) near the coast. This study focused on five amphidromous native aquatic species (alamoo, nopili, nakea, opae, and hihiwai) that are abundant in the study area. The Physical Habitat Simulation (PHABSIM) System, which incorporates hydrology, stream morphology and microhabitat preferences to explore relations between streamflow and habitat availability, was used to simulate habitat/discharge relations for various species and life stages, and to provide quantitative habitat comparisons at different streamflows of interest. Hydrologic data, collected over a range of low-flow discharges, were used to calibrate hydraulic models of selected transects across the streams. The models were then used to predict water depth and velocity (expressed as a Froude number) over a range of discharges up to estimates of natural median streamflow. The biological importance of the stream hydraulic attributes was then assessed with the statistically derived suitability criteria for each native species and life stage that were developed as part of this study to produce a relation between discharge and habitat availability. The final output was expressed as a weighted habitat area of streambed for a representative stream reach. PHABSIM model results are presented to show the area of estimated usable bed habitat over a range of streamflows relative to natural conditions. In general, the models show a continuous decrease in habitat for all modeled species as streamflow is decreased from natural conditions. The PHABSIM modeling results from the intensively studied streams were normalized to develop relations between the relative amount of diversion from a stream and the resulting relative change in habitat in the stream. These relations can be used to estimate changes in habitat for diverted streams in the study area that were not intensively studied. The relations indicate that the addition of even a small amount of water to a dry stream has a significant effect on the amount of habitat available. Equations relating stream base-flow changes to habitat changes can be used to provide an estimate of the relative habitat change in the study area streams for which estimates of diverted and natural median base flow have been determined but for which detailed habitat models were not developed. Stream water temperatures, which could have an effect on stream ecology and taro cultivation, were measured in five streams in the study area. In general, the stream temperatures measured at any of the monitoring sites were not elevated enough, based on currently available information, to adversely effect the growth or mortality of native aquatic macrofauna or to cause wetland taro to be susceptible to fungi and associated rotting diseases.

  6. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels.

    PubMed

    Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R

    2015-03-01

    The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.

  7. Modeling Alpine Meadow Restoration Techniques and their Effects on Stream Stage Regimes

    NASA Astrophysics Data System (ADS)

    Moore, C. E.; Lundquist, J. D.; Loheide, S. P.

    2010-12-01

    Meadow ecosystems in the Sierra Nevada of California often suffer from negative anthropogenic impacts, resulting in stream incision and meadow aridification. Groundwater dependent ecosystems, such as meadows, are especially vulnerable to channel degradation because alteration of stream stage propagates through the groundwater system to affect riparian vegetation. Restoration aimed at raising water table elevation of degraded meadow systems is becoming a salient and viable option as managers recognize the importance of intact headwaters. Stream stage controls groundwater levels and thus, vegetation communities, more dramatically than stream discharge in groundwater dependent ecosystems. Here we use a one dimensional hydraulic model, Hydraulic Engineering Center - River Analysis System (HEC-RAS) to model stream stage along the Tuolumne River, given a time series of stream discharge. Extensive hydroclimatic monitoring since 2001, and groundwater monitoring since 2006, make Tuolumne Meadows, in Yosemite National Park, California a prime location for a validated case study, applicable to other snow dominated basins. In order to determine the most plausible, efficient and effective strategy of restoring impacted meadows, different management scenarios are modeled. HEC-RAS modeling provides critical stream stage boundary conditions for groundwater modeling. Scenarios are chosen that are most effective at increasing stream stage and therefore water table levels. The effectiveness is quantified by modeling how each scenario changes the rating curve for a particular channel. Additionally, surface stage modeling allows decision makers to see under what flow conditions and what time period of the hydrograph is affected by restoration. Quantification of stream stage alterations is key for understanding restoration impacts during the short growing season in alpine meadows. Results of HEC-RAS modeling at Tuolumne Meadows are presented in the following formats to highlight the ways in which this work can be used as a vital tool in management decisions regarding meadow restoration. First, direct changes to the resulting stream stage time series are used to illustrate the magnitude of change among scenarios. Second, synthetic rating curves are compared so that the flow regimes which are highly sensitive to a particular restoration strategy can be readily identified. Third, an empirical probability density function describing the stream stage regime will be provided for each scenario to illustrate the overall effectiveness of each restoration technique in changing water levels. Finally, the probability of exceedance for bankfull stage, the depth associated with the onset of oxygen stress, and the depth associated with the onset of water stress will be presented to demonstrate changes to stream levels that are believed to have ecological significance. Investigation of multiple scenarios allows an informed decision based on sound science that will help achieve restoration goals in the future.

  8. Spatio-temporal dynamics in phytobenthos structural properties reveal insights into agricultural catchment dynamics and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Snell, M. A.; Barker, P. A.; Aftab, A.; Barber, N. J.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Quinn, P. F.; Surridge, B.

    2016-12-01

    Low order streams are spatially extensive, temporally dynamic, systems within the agricultural landscape. This dynamism extends to the aquatic communities within these streams, including the phytobentos, which demonstrates considerable resilience to diffuse anthropogenic nutrient pressures and changing climate dynamics. The phytobenthos community can substantially contribute to the food web, in particular diatoms, which dominate photo-autotrophic assemblages in low order streams. Diatoms are widely used in ecological monitoring because of their high sensitivity to environmental condition, but knowledge is limited on the ecological effects of winter disturbances and variance introduced by multiple and interacting pressures (N, P, sediment), introducing bias in understanding temporal dynamics in benthic diatom communities. Using the environmental time series data from long term monitoring within the River Eden Demonstration Test Catchment programme, we assess the impact of multiple hydro-chemical stressors on phytobenthic community resilience, and synthesize the impact of an extreme winter event. Monthly data from diatom communities collected in the Eden DTC from March 2011 to present show that river flow, strongly coupled to precipitation, is a key driver of these communities. Discharge has a direct effect on communities through scouring, but is also tightly correlated to nutrient delivery, such that 80% of the annual TP load arrives in 10% of the time. Trophic Diatom Index (TDI) values demonstrated considerable resilience by the stability of inter-monthly TDI scores over 5 seasonal cycles against the characterised highly variable hydrological regime. This research demonstrates that well characterised winter disturbances are critical to understanding drivers of aquatic dynamics. This has implications for catchment diffuse pollution policy, farm management and economics, given the climate projections of increases in frequency and intensity of extreme winter events, which may alter instream nutrient fluxes.

  9. Biological Assessment to Support Ecological Recovery of a Degraded Headwater System

    NASA Astrophysics Data System (ADS)

    Longing, Scott D.; Haggard, Brian E.

    2010-09-01

    An assessment of the benthic macroinvertebrate community was conducted to characterize the ecological recovery of a channelized main stem and two small tributaries at the Watershed Research and Education Center (WREC, Arkansas, USA). Three other headwater streams in the same basin were also sampled as controls and for biological reference information. A principal components analysis produced stream groupings along an overall gradient of physical habitat integrity, with degraded reaches showing lower RBP habitat scores, reduced flow velocities, smaller substrate sizes, greater conductivity, and higher percentages of sand and silt substrate. The benthic macroinvertebrate assemblage at WREC was dominated by fast-reproducing dipteran larvae (midge and mosquito larvae) and physid snails, which comprised 71.3% of the total macroinvertebrate abundance over three sampling periods. Several macroinvertebrate assemblage metrics should provide effective targets for monitoring overall improvements in the invertebrate assemblage including recovery towards a more complex food web (e.g., total number of taxa, number of EPT taxa, percent 2 dominant taxa). However, current habitat conditions and the extent of existing degradation, system isolation and surrounding urban or agricultural land-uses might affect the level of positive change to the system. We therefore suggest a preliminary restoration strategy involving the addition of pool habitats in the system. At one pool we collected a total of 29 taxa (dominated by water beetle predators), which was 59% of total number of taxa collected at WREC. Maintaining water-retentive pools to collect flows and maintain water permanence focuses on enhancing known biology and habitat, thus reducing the effects of abiotic filters on macroinvertebrate assemblage recovery. Furthermore, biological assessment prior to restoration supports a strategy primarily focused on improving the existing macroinvertebrate community in the current context of the system, thereby reducing costs associated with active channel restoration. Monitoring future biological recovery and determining the contribution of changing assemblages to specific ecological processes would provide a critical underpinning for adaptive management and ecologically-effective restoration.

  10. Macroscale hydrologic modeling of ecologically relevant flow metrics

    NASA Astrophysics Data System (ADS)

    Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.

    2010-09-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.

  11. A macroinvertebrate assessment of Ozark streams located in lead-zinc mining areas of the Viburnum Trend in southeastern Missouri, USA

    USGS Publications Warehouse

    Poulton, Barry C.; Allert, Ann L.; Besser, John M.; Schmitt, Christopher J.; Brumbaugh, William G.; Fairchild, James F.

    2010-01-01

    The Viburnum Trend lead-zinc mining subdistrict is located in the southeast Missouri portion of the Ozark Plateau. In 2003 and 2004, we assessed the ecological effects of mining in several watersheds in the region. We included macroinvertebrate surveys, habitat assessments, and analysis of metals in sediment, pore water, and aquatic biota. Macroinvertebrates were sampled at 21 sites to determine aquatic life impairment status (full, partial, or nonsupport) and relative biotic condition scores. Macroinvertebrate biotic condition scores were significantly correlated with cadmium, nickel, lead, zinc, and specific conductance in 2003 (r = -0.61 to -0.68) and with cadmium, lead, and pore water toxic units in 2004 (r = -0.55 to -0.57). Reference sites were fully supporting of aquatic life and had the lowest metals concentrations and among the highest biotic condition scores in both years. Sites directly downstream from mining and related activities were partially supporting, with biotic condition scores 10% to 58% lower than reference sites. Sites located greater distances downstream from mining activities had intermediate scores and concentrations of metals. Results indicate that elevated concentrations of metals originating from mining activities were the underlying cause of aquatic life impairment in several of the streams studied. There was general concurrence among the adversely affected sites in how the various indicators responded to mining activities during the overall study.

  12. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.

    PubMed

    Delmail, David; Labrousse, Pascal; Hourdin, Philippe; Larcher, Laure; Moesch, Christian; Botineau, Michel

    2013-01-01

    Nowadays, submersed aquatic macrophytes play a key role in stream ecology and they are often used as biomonitors of freshwater quality. So, these plants appear as natural candidates to stream rehabilitation experiments. Among them, the stream macrophyte Myriophyllum alterniflorum is used recently as biomonitor and is potentially useful for the restoration of heavy-metal contaminated localities. The best way to obtain a mass production of watermilfoil plants is micropropagation. We developed in vitro culture of M. alterniflorum and the effects of five media on the plant development were assessed. Five morphological and four physiological endpoints were examined leading to the recommendation of the Murashige and Skoog medium for ecotoxicological studies on chlorophyllous parts, and of the Gaudet medium for root cytotoxicity and phytoremediation studies. Micropropagated clones were acclimatized in a synthetic medium and in situ reintroduction was performed efficiently. This is the first report of micropropagated plants transplantation in streams. The successful establishment of watermilfoil beds even in polluted areas strongly suggested that ecological restoration using micropropagated watermilfoil is a promising biotechnology for phytoremediation and rehabilitation of degraded areas. Moreover, high bioconcentration factors evidenced that watermilfoil hyperaccumulates Cd and Cu, and could be potentially used in phytoremediation studies.

  13. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water.

    PubMed

    Besser, John M; Brumbaugh, William G; Allert, Ann L; Poulton, Barry C; Schmitt, Christopher J; Ingersoll, Christopher G

    2009-02-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  14. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.

    2009-01-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  15. Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes.

    PubMed

    Meyer, Lars A; Sullivan, S Mazeika P

    2013-09-01

    Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1-0.5 lux; moderate, 0.6-2.0 lux; high, 2.1-4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10-12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic-terrestrial fluxes of invertebrates.

  16. Ecological research and management of intermittent rivers: an ...

    EPA Pesticide Factsheets

    Rivers and streams that do not flow permanently (herein intermittent rivers; IRs) make up a large proportion of the world's inland waters and are gaining widespread attention. We review the research on IRs from its early focus on natural history through to current application in management and policy.The few early studies of the ecology of IRs were largely descriptive. Nevertheless, in the 1970s, synthesis of this sparse research complemented work on temporary standing waters to found a powerful framework for much of the subsequent research on IRs.Research on the ecology and biogeochemistry of IRs continues to fuel our understanding of resistance and resilience to drying and flooding as disturbances. Syntheses of the growing literature, including cross-continental and cross-climate comparisons, are revealing the generality and individuality of ecological and ecosystem responses to flow cessation and surface water loss. Meanwhile, increasing numbers of experiments test the causality of these responses.Much of the increased consideration of IRs in research, management and policy is driven by the observed and projected shifts in flow regimes from perennial to intermittent associated with changes in land and water use and climate, superimposed on the high incidence of natural intermittency. The need to protect and better manage IRs is prompting researchers to develop new or modified methods to monitor flow status and assess the ecological condition of these systems.

  17. Users' manual for the Hydroecological Integrity Assessment Process software (including the New Jersey Assessment Tools)

    USGS Publications Warehouse

    Henriksen, James A.; Heasley, John; Kennen, Jonathan G.; Nieswand, Steven

    2006-01-01

    Applying the Hydroecological Integrity Assessment Process involves four steps: (1) a hydrologic classification of relatively unmodified streams in a geographic area using long-term gage records and 171 ecologically relevant indices; (2) the identification of statistically significant, nonredundant, hydroecologically relevant indices associated with the five major flow components for each stream class; and (3) the development of a stream-classification tool and a hydrologic assessment tool. Four computer software tools have been developed.

  18. Character, quality and bioavailability of Dissolved Organic Carbon (DOC) in a boreal stream network (Invited)

    NASA Astrophysics Data System (ADS)

    Laudon, H.; Berggren, M.; Agren, A.; Jansson, M.

    2010-12-01

    The conceptual understanding of the role of terrestrially derived dissolved organic carbon (DOC) in freshwaters has been changing rapidly. While it was once considered mainly a pool of recalcitrant compounds, DOC is now better known for its interactivity and ability to affect both the biogeochemistry and ecology of streams, rivers and lakes. Here we summarize the recent work from the multi-investigatory project conducted in the Krycklan Catchment Study in Sweden with an emphasis on the spatial and temporal variability of the character and bioavailability of DOC. In total, 15 streams and their adjacent soils have been investigated. The streams cover a forest-wetland gradient, spanning from 0% to 69% wetland coverage (hence with a 100% to 31% forest cover). Lower values of the ratio between absorbance measured at 254 nm and 365 nm (A254/A365), in both soil plots and streams, indicated that wetland-derived DOC has a higher average molecular weight than forest DOC. Higher SUVA254 (DOC specific ultraviolet absorption at 254 nm) in wetland runoff indicated more aromatic DOC from wetlands than forests. In accordance, low molecular weight non-aromatic compounds such as free organic acids (OA), amino acids (AA) and carbohydrates (CH) had higher quantities in the forested streams. We have shown that a variety of the OA, AA and CH compounds can be significantly assimilated by bacteria, meeting 15-100% of the bacterial carbon demand and explaining most of the observed variance in bacterial growth efficiency. We can now also show that in small homogenous catchments, the hydrological functioning provides a first order control on the temporal variability of stream water DOC and its quality. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment of 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions whereas the major source of DOC originates from forested areas of the catchment during high flow resulting in dramatic shifts in the character and bioavailability of DOC during different flow conditions. By connecting knowledge about the sources and quality of DOC with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. This work also illustrates that the sensitivity of stream water DOC in the boreal landscape ultimately depends on how individual landscape elements are affected, the proportion of these landscape elements and how these changes are propagated downstream.

  19. EML, VEGA, ODM, LTER, GLEON - considerations and technologies for building a buoy information system at an LTER site

    NASA Astrophysics Data System (ADS)

    Gries, C.; Winslow, L.; Shin, P.; Hanson, P. C.; Barseghian, D.

    2010-12-01

    At the North Temperate Lakes Long Term Ecological Research (NTL LTER) site six buoys and one met station are maintained, each equipped with up to 20 sensors producing up to 45 separate data streams at a 1 or 10 minute frequency. Traditionally, this data volume has been managed in many matrix type tables, each described in the Ecological Metadata Language (EML) and accessed online by a query system based on the provided metadata. To develop a more flexible information system, several technologies are currently being experimented with. We will review, compare and evaluate these technologies and discuss constraints and advantages of network memberships and implementation of standards. A Data Turbine server is employed to stream data from data logger files into a database with the Real-time Data Viewer being used for monitoring sensor health. The Kepler work flow processor is being explored to introduce quality control routines into this data stream taking advantage of the Data Turbine actor. Kepler could replace traditional database triggers while adding visualization and advanced data access functionality for downstream modeling or other analytical applications. The data are currently streamed into the traditional matrix type tables and into an Observation Data Model (ODM) following the CUAHSI ODM 1.1 specifications. In parallel these sensor data are managed within the Global Lake Ecological Observatory Network (GLEON) where the software package Ziggy streams the data into a database of the VEGA data model. Contributing data to a network implies compliance with established standards for data delivery and data documentation. ODM or VEGA type data models are not easily described in EML, the metadata exchange standard for LTER sites, but are providing many advantages from an archival standpoint. Both GLEON and CUAHSI have developed advanced data access capabilities based on their respective data models and data exchange standards while LTER is currently in a phase of intense technology developments which will eventually provide standardized data access that includes ecological data set types currently not covered by either ODM or VEGA.

  20. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less

  1. Impact of Mountaintop Mining/Valley Fill on the Stable Carbon Isotopic Composition and Concentration of Dissolved Organic Carbon and Dissolved Inorganic Carbon in Headwater Streams

    EPA Science Inventory

    Headwater streams are the dominant land-water interface across much of the landscape and provide many important ecological services. Cycling and transport of various carbon fractions, which serve as important food sources for downstream aquatic ecosystems, are among the important...

  2. Invertabrates Associated with Woody Debris in a Southeastern U.S. Forested Floodplain Wetland

    Treesearch

    Amy Braccia; Darold P. Batzer

    2001-01-01

    Woody debris is an ecologically important resource in upland forests and stream ecosystems. Although much is known about invertebrate-woody debris interactions in forests and streams, little information exists for forested wetlands. In this study, invertebrates associated with woody debris in a Southeastern U. S. forested floodplain are described and factors that shape...

  3. How much dead wood in channels is enough?

    Treesearch

    T. E. Lisle

    2002-01-01

    Abstract - Private forest managers often seek guidelines on how much dead wood should be retained in streams in order to adequately fulfill ecosystem functions. There are three approaches to answering this question for a particular reach of channel. The first approach uses an understanding of ecologic functions of dead wood in streams to determine the amount needed to...

  4. Influence of Land Use on the Stable Carbon Isotopic Composition and Concentration of Dissolved Organic Carbon and Dissolved Inorganic Carbon in Georgia Piedmont Headwater Streams

    EPA Science Inventory

    Headwater streams are the dominant land-water interface across much of the landscape and provide many important ecological services. Cycling and transport of various carbon fractions, which serve as important food sources for downstream aquatic ecosystems, are among the important...

  5. Coarse Woody Debris Ecology in a Second-Growth Sequoia sempervirens Forest Stream

    Treesearch

    Matthew D. O' Connor; Robert R. Ziemer

    1989-01-01

    Coarse woody debris (CWD) contributes to high quality habitat for anadromous fish. CWD volume, species, and input mechanisms was inventoried in North Fork Caspar Creek to assess rates of accumulation and dominant sources of CWD in a 100-year-old second-growth redwood (Sequoia sempervirens) forest. CWD accumulation in the active stream channel and in...

  6. Effects and Non-effects of Stream Drying on Stonefly(Plecoptera) Assemblages in two Ouachita Mountains,AR, Catchments

    NASA Astrophysics Data System (ADS)

    Sheldon, A. L.; Warren, M. L.

    2005-05-01

    Streams integrate landscape change. To establish baseline conditions and predictive relationships in two experimental catchments, we collected adult stoneflies at 38 sites for a year. We used a stratified random sampling design and regular collections of adults, which are identifiable to species level, to ensure thorough coverage. We collected 43 species (1-27 per site). We characterized sites by two descriptors: stream size as drainage AREA, and DRY, a time-weighted average of absence of surface water in measured sections. Sites ranged from continuous surface flow to partial or total drying for months. Species composition (NMS ordination) was influenced strongly by DRY. Richness of species and genera were well described (R2>85%) by multiple regressions on AREA and DRY. However, species richness was related strongly to AREA (P<0.001) but independent of DRY (P>0.45). Generic richness, in contrast, was related significantly(P<0.001)to both descriptors but the negative effect of DRY was stronger. Seasonal drying is common in the Ouachita region and part of the fauna is resistant to drying. Our results have implications for diversity-stress relationships and taxonomic resolution in community ecology and monitoring.

  7. Evaluating Effects of Pump-Storage Water Withdrawals Using an Individual-Based Metapopulation Model of a Benthic Fish Species

    DTIC Science & Technology

    2011-04-01

    Bunn S. E. and Arthington A.H. 2002. Basic principles and ecological consequences of altered flow regimes on aquatic biodiversity . Environmental...cycling in streams: can fish create biogeochemical hotspots ? Ecology 89: 2335-2346. Matthews W.J. and Marsh-Matthews E. 2003. Effects of drought on

  8. Role of the fish astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient neotropical streams

    USGS Publications Warehouse

    Small, G.E.; Pringle, C.M.; Pyron, M.; Duff, J.H.

    2011-01-01

    Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels. In high-P conditions (135 ??g/L soluble reactive phosphorus, SRP), most species fed on P-enriched diets and P excretion rates were high across species. In low-P conditions (3 ??g/L SRP), aquatic food resources were depleted in P, and species with higher body P content showed low rates of P recycling. However, fishes that were subsidized by terrestrial inputs were decoupled from aquatic P availability and therefore excreted P at disproportionately high rates. One of these species, Astyanax aeneus (Characidae), represented 12% of the total population and 18% of the total biomass of the fish assemblage in our focal low-P study stream but had P excretion rates >10-fold higher than other abundant fishes. As a result, we estimated that P excretion by A. aeneus accounted for 90% of the P recycled by this fish assemblage and also supplied ???90% of the stream P demand in this P-limited ecosystem. Nitrogen excretion rates showed little variation among species, and the contribution of a given species to ecosystem N recycling was largely dependent upon the total biomass of that species. Because of the high variability in P excretion rates among fish species, ecosystem-level P recycling could be particularly sensitive to changes in fish community structure in P-limited systems. ?? 2011 by the Ecological Society of America.

  9. Quantitative Assessment of Temperature Sensitivity of the ...

    EPA Pesticide Factsheets

    The Total Maximum Daily Load (TMDL) program, established by the Clean Water Act, is used to establish limits on loading of pollutants from point and nonpoint sources necessary to achieve water quality standards. One important use of a temperature TMDL is to allocate thermal loads to achieve water temperature criteria established for the protection of cold water fisheries. The pollutant in this case is thermal load and allocations to reduce the load often involve restoration of stream shading, which reduces the solar input. While many temperature TMDLs have been established, the supporting analyses have generally assumed a stationary climate under which historical data on flow and air temperature can serve as an adequate guide to future conditions. Projected changes in climate over the 21st century contradict this assumption. Air temperature is expected to increase in most parts of the US, accompanied in many areas by seasonal shifts in the timing and amount of precipitation, which in turn will alter stream flow. This study evaluates the implications of climate change for the water temperature TMDL developed for the South Fork Nooksack River in northwest Washington by the Department of Ecology, where multiple water body segments exceed temperature criteria established for the protection of cold water salmonid populations (Ecology, 2016). The purpose of this report is to provide a “companion technical methods manual” as documentation for the draft SFNR tempera

  10. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    USGS Publications Warehouse

    Rieman, Bruce; Dunham, Jason B.; Clayton, James

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions. Two solutions have been proposed to guide management in the face of that uncertainty: the use of “natural variability” in key environmental patterns, processes, or disturbance as a reference; and the retention of some areas as essentially unmanaged reserves to conserve and represent as much biological diversity as possible. Both concepts are scale dependent because dominant processes or patterns that might be referenced will change with scale. Context and linkages across scales may be as important in structuring biological systems as conditions within habitats used by individual organisms. Both ideas view the physical environment as a template for expression, maintenance, and evolution of ecological diversity. To conserve or restore a diverse physical template it will be important to recognize the ecologically important differences in physical characteristics and processes among streams or watersheds that we might attempt to mimic in management or represent in conservation or restoration reserves.

  11. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.

    PubMed

    Verberk, Wilco C E P; Durance, Isabelle; Vaughan, Ian P; Ormerod, Steve J

    2016-05-01

    Aquatic ecological responses to climatic warming are complicated by interactions between thermal effects and other environmental stressors such as organic pollution and hypoxia. Laboratory experiments have demonstrated how oxygen limitation can set heat tolerance for some aquatic ectotherms, but only at unrealistic lethal temperatures and without field data to assess whether oxygen shortages might also underlie sublethal warming effects. Here, we test whether oxygen availability affects both lethal and nonlethal impacts of warming on two widespread Eurasian mayflies, Ephemera danica, Müller 1764 and Serratella ignita (Poda 1761). Mayfly nymphs are often a dominant component of the invertebrate assemblage in streams, and play a vital role in aquatic and riparian food webs. In the laboratory, lethal impacts of warming were assessed under three oxygen conditions. In the field, effects of oxygen availability on nonlethal impacts of warming were assessed from mayfly occurrence in 42 293 UK stream samples where water temperature and biochemical oxygen demand were measured. Oxygen limitation affected both lethal and sublethal impacts of warming in each species. Hypoxia lowered lethal limits by 5.5 °C (±2.13) and 8.2 °C (±0.62) for E. danica and S. ignita respectively. Field data confirmed the importance of oxygen limitation in warmer waters; poor oxygenation drastically reduced site occupancy, and reductions were especially pronounced under warm water conditions. Consequently, poor oxygenation lowered optimal stream temperatures for both species. The broad concordance shown here between laboratory results and extensive field data suggests that oxygen limitation not only impairs survival at thermal extremes but also restricts species abundance in the field at temperatures well below upper lethal limits. Stream oxygenation could thus control the vulnerability of aquatic ectotherms to global warming. Improving water oxygenation and reducing pollution can provide key facets of climate change adaptation for running waters. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  12. Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies

    DOE PAGES

    Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.

    2014-05-26

    Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends amongmore » streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.« less

  13. Effects of grade control structures on fish passage, biological assemblages, and hydraulic environments in western Iowa streams: a multidisciplinary review

    USGS Publications Warehouse

    Thomas, J.T.; Culler, M.E.; Dermisis, D.C.; Pierce, Clay; Papanicolaou, A.N.; Stewart, T.W.; Larson, C.J.

    2011-01-01

    Land use changes and channelization of streams in the deep loess region of western Iowa have led to stream channel incision, altered flow regimes, increased sediment inputs, decreased habitat diversity and reduced lateral connectivity of streams and floodplains. Grade control structures (GCSs) are built in streams to prevent further erosion, protect infrastructure and reduce sediment loads. However, GCS can have a detrimental impact on fisheries and biological communities. We review three complementary biological and hydraulic studies on the effects of GCS in these streams. GCS with steep (≥1:4 rise : run) downstream slopes severely limited fish passage, but GCS with gentle slopes (≤1:15) allowed greater passage. Fish assemblages were dominated by species tolerant of degradation, and Index of Biotic Integrity (IBI) scores were indicative of fair or poor biotic integrity. More than 50% of fish species had truncated distributions. After modification of GCS to reduce slopes and permit increased passage, IBI scores increased and several species were detected further upstream than before modification. Total macroinvertebrate density, biomass and taxonomic diversity and abundance of ecologically sensitive taxa were greater at GCS than in reaches immediately upstream, downstream or ≥1 km from GCS. A hydraulic study confirmed results from fish passage studies; minimum depths and maximum current velocities at GCS with gentle slopes (≤1:15) were more likely to meet minimum criteria for catfish passage than GCS with steeper slopes. Multidisciplinary approaches such as ours will increase understanding of GCS-associated factors influencing fish passage, biological assemblage structure and other ecological relationships in streams.

  14. Relationships between indicators of acid-base chemistry and fish assemblages in streams of the Great Smoky Mountains National Park

    USGS Publications Warehouse

    Baldigo, Barry P.; Kulp, Matt A.; Schwartz, John S.

    2018-01-01

    The acidity of many streams in the Great Smoky Mountains National Park (GRSM) has increased significantly since pre-industrial (∼1850) times due to the effects of highly acidic atmospheric deposition in poorly buffered watersheds. Extensive stream-monitoring programs since 1993 have shown that fish and macroinvertebrate assemblages have been adversely affected in many streams across the GRSM. Matching chemistry and fishery information collected from 389 surveys performed at 52 stream sites over a 22-year period were assessed using logistic regression analysis to help inform the U.S. Environmental Protection Agency’s assessment of the environmental impacts of emissions of oxides of nitrogen (NOx) and sulfur (SOx). Numerous logistic equations and associated curves were derived that defined the relations between acid neutralizing capacity (ANC) or pH and different levels of community richness, density, and biomass; and density and biomass of brook trout, rainbow trout, and small prey (minnow) populations in streams of the GRSM. The equations and curves describe the status of fish assemblages in the GRSM under contemporary emission levels and deposition loads of nitrogen (N) and sulfur (S) and provide a means to estimate how newly proposed (and various alternative) target deposition loads, which strongly influence stream ANC, might affect key ecological indicators. Several examples using ANC, community richness, and brook trout density are presented to illustrate the steps needed to predict how future changes in stream chemistry (resulting from different target deposition loads of N and S) will affect the probabilities of observing specific levels of selected biological indicators in GRSM streams. The implications of this study to the regulation of NOx and SOx emissions, water quality, and fisheries management in streams of the GRSM are discussed, but also qualified by the fact that specific examples provided need to be further explored before recommendations concerning their use as ecological indicators could be proposed.

  15. Climate-induced glacier and snow loss imperils alpine stream insects.

    PubMed

    Giersch, J Joseph; Hotaling, Scott; Kovach, Ryan P; Jones, Leslie A; Muhlfeld, Clint C

    2017-07-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snow melt-driven alpine streams. Although progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects - the meltwater stonefly (Lednia tumana) and the glacier stonefly (Zapada glacier) - were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (24 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions. © 2016 Published by John Wiley & Sons, Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  16. Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.

    2017-12-01

    Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.

  17. Distribution of oligochaetes in a stream in the Atlantic Forest in southeastern Brazil.

    PubMed

    Rosa, B F J V; Martins, R T; Alves, R G

    2015-01-01

    The oligochaetes are considered good indicators of ecological conditions and specific types of habitats. Among the factors that influence the distribution of these invertebrates are the water flow and the nature of the substrate. The aim of this study is to describe the composition and distribution of oligochaete species in a first-order stream in Atlantic Forest and try to identify if some species are associated with characteristics of particular types of habitats. In the dry season and in the rainy season, sand and litter samples in two riffle areas and two pool areas were collected in different parts along the stream using a hand net. The greatest observed richness and abundance occurred in sand in the pool, however the greatest estimated richness was obtained for litter in the pool. The Kruskal-Wallis analysis showed effect of the different types of habitat on the abundance and richness of oligochaetes. The Nonmetric Multidimensional Scaling (NMDS) and Multiresponse Permutation Procedure analysis (MRPP) indicated that the variation in the fauna composition had relation with different types of substrates. The indicator species analysis showed that Limnodrilus. hoffmeisteri was an indicator species in both the riffle sand and pool sand and Pristina americana was only an indicator in the pool sand. The high organic matter content in both sandy habitats probably favored the greater abundance of oligochaetes. The results showed that the substrate constitutes an important factor for the local distribution of these invertebrates in streams. The variation of the community structure among mesohabitats and the presence of indicator species of specific types of habitats in the stream demonstrate the importance of environmental heterogeneity for the oligochaetes fauna in forested streams.

  18. Thermal tolerances of fishes occupying groundwater and surface-water dominated streams

    USGS Publications Warehouse

    Farless, Nicole; Brewer, Shannon K.

    2017-01-01

    A thermal tolerance study mimicking different stream environments could improve our ecological understanding of how increasing water temperatures affect stream ectotherms and improve our ability to predict organism responses based on river classification schemes. Our objective was to compare the thermal tolerances of stream fishes of different habitat guilds among 3 exposure periods: critical thermal maximum (CTmax, increase of 2°C/h until loss of equilibrium [LOE] and death [D]), and 2 longer-term treatments (net daily increase of 1°C) that mimicked spring-fed (SF; 4°C daily increase) and non-spring-fed (NSF; 8°C daily increase) conditions. Fishes in the pelagic habitat guild had a 1°C higher average CTmax than benthic fishes. Thermal responses of species depended on exposure period with higher and increased variation in tolerances associated with the SF and NSF exposure periods. Logperch, Orangebelly Darter, Orangethroat Darter, and Southern Redbelly Dace were more sensitive to thermal increases regardless of SF or NSF treatment than were the 3 remaining species (Brook Silverside, Central Stoneroller, and Redspot Chub), which represented average thermal responses among the species tested. The 3 species that had a higher thermal response to CTmax-D (lethal endpoint of death) also were able to increase their tolerances more than other species in both SF and NSF treatments. Our data indicate finer guild designations may be useful for predicting thermal-response patterns. A diel thermal refuge increases the thermal responses of ectotherms to daily maxima, but the patterns across our SF and NSF treatments were similar suggesting minimum refuge temperatures may be more important than maximums. Nonetheless, stream temperature cooling over a 24-h period is important to ectotherm thermal tolerances, a result suggesting that sources of cooler water to streams might benefit from protection.

  19. Salmon carcasses increase stream productivity more than inorganic fertilizer pellets: A test on multiple trophic levels in streamside experimental channels

    USGS Publications Warehouse

    Wipfli, Mark S.; Hudson, John P.; Caouette, John P.; Mitchell, N.L.; Lessard, Joanna L.; Heintz, Ron A.; Chaloner, D.T.

    2010-01-01

    Inorganic nutrient amendments to streams are viewed as possible restoration strategies for re-establishing nutrients and stream productivity throughout the western coast of North America, where salmon runs and associated marine-derived nutrient subsidies have declined. In a mesocosm experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets and salmon carcasses, alone (low and high amounts) and in combination, on stream food webs. Response variables included dissolved nutrient concentrations, biofilm ash-free dry mass (AFDM) and chlorophyll-alevels, macroinvertebrate density, growth and body condition of juvenile coho salmon Oncorhynchus kisutch, and whole-body lipid content of invertebrates and juvenile coho salmon. Most of the response variables were significantly influenced by carcass treatment; the only response variable significantly influenced by fertilizer pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration was the only response variable affected by both (low and high) levels of carcass treatment; all others showed no significant response to the two carcass treatment levels. Significant treatment × time interactions were observed for all responses except nitrate; for most responses, significant treatment effects were detected at certain time periods and not others. For example, significantly higher SRP concentrations were recorded earlier in the experiment, whereas significant fish responses were observed later. These results provide evidence that inorganic nutrient additions do not have the same ecological effects in streams as do salmon carcasses, potentially because inorganic nutrient additions lack carbon-based biochemicals and macromolecules that are sequestered directly or indirectly by consumers. Salmon carcasses, preferably deposited naturally during spawning migrations, appear to be far superior to inorganic nutrient amendments for sustaining and restoring stream productivity, including fish production, and should be chosen over artificial nutrient additions when feasible and practical.

  20. Ecoregion and land-use influence invertebrate and detritus transport from headwater streams

    USGS Publications Warehouse

    Binckley, Christopher A.; Wipfli, Mark S.; Medhurst, R. Bruce; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion; Kill, Joshua Y.

    2010-01-01

    4. Understanding the quantity and variation of headwater subsidies across climate and disturbance gradients is needed to appreciate the significance of ecological linkages between headwaters and associated downstream habitats. This will enable the accurate assessment of resource management impacts on stream ecosystems. Predicting the consequences of natural and anthropogenic disturbances on headwater stream transport rates will require knowledge of how both local and regional factors influence these potential subsidies. Our results suggest that resources transported from headwater streams reflect both the meso-scale land-use surrounding these areas and the constraints imposed by the ecoregion in which they are embedded.

Top