Sample records for stream flow model

  1. Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model

    USGS Publications Warehouse

    Prudic, David E.

    1989-01-01

    Computer models are widely used to simulate groundwater flow for evaluating and managing the groundwater resource of many aquifers, but few are designed to also account for surface flow in streams. A computer program was written for use in the US Geological Survey modular finite difference groundwater flow model to account for the amount of flow in streams and to simulate the interaction between surface streams and groundwater. The new program is called the Streamflow-Routing Package. The Streamflow-Routing Package is not a true surface water flow model, but rather is an accounting program that tracks the flow in one or more streams which interact with groundwater. The program limits the amount of groundwater recharge to the available streamflow. It permits two or more streams to merge into one with flow in the merged stream equal to the sum of the tributary flows. The program also permits diversions from streams. The groundwater flow model with the Streamflow-Routing Package has an advantage over the analytical solution in simulating the interaction between aquifer and stream because it can be used to simulate complex systems that cannot be readily solved analytically. The Streamflow-Routing Package does not include a time function for streamflow but rather streamflow entering the modeled area is assumed to be instantly available to downstream reaches during each time period. This assumption is generally reasonable because of the relatively slow rate of groundwater flow. Another assumption is that leakage between streams and aquifers is instantaneous. This assumption may not be reasonable if the streams and aquifers are separated by a thick unsaturated zone. Documentation of the Streamflow-Routing Package includes data input instructions; flow charts, narratives, and listings of the computer program for each of four modules; and input data sets and printed results for two test problems, and one example problem. (Lantz-PTT)

  2. Resonance and streaming of armored microbubbles

    NASA Astrophysics Data System (ADS)

    Spelman, Tamsin; Bertin, Nicolas; Stephen, Olivier; Marmottant, Philippe; Lauga, Eric

    2015-11-01

    A new experimental technique involves building a hollow capsule which partially encompasses a microbubble, creating an ``armored microbubble'' with long lifespan. Under acoustic actuation, such bubble produces net streaming flows. In order to theoretically model the induced flow, we first extend classical models of free bubbles to describe the streaming flow around a spherical body for any known axisymmetric shape oscillation. A potential flow model is then employed to determine the resonance modes of the armored microbubble. We finally use a more detailed viscous model to calculate the surface shape oscillations at the experimental driving frequency, and from this we predict the generated streaming flows.

  3. Simple Scaling of Mulit-Stream Jet Plumes for Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2016-01-01

    When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more coannular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a best approximation determined and the shortcomings of the model highlighted.

  4. Simple Scaling of Multi-Stream Jet Plumes for Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2015-01-01

    When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more co-annular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV (Particle Image Velocimetry) data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a 'best' approximation determined and the shortcomings of the model highlighted.

  5. Study of Basin Recession Characteristics and Groundwater Storage Properties

    NASA Astrophysics Data System (ADS)

    Yen-Bo, Chen; Cheng-Haw, Lee

    2017-04-01

    Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage

  6. Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.

    2016-01-20

    Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.

  7. StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction

    NASA Astrophysics Data System (ADS)

    Gallice, Aurélien; Bavay, Mathias; Brauchli, Tristan; Comola, Francesco; Lehning, Michael; Huwald, Hendrik

    2016-12-01

    Climate change is expected to strongly impact the hydrological and thermal regimes of Alpine rivers within the coming decades. In this context, the development of hydrological models accounting for the specific dynamics of Alpine catchments appears as one of the promising approaches to reduce our uncertainty of future mountain hydrology. This paper describes the improvements brought to StreamFlow, an existing model for hydrological and stream temperature prediction built as an external extension to the physically based snow model Alpine3D. StreamFlow's source code has been entirely written anew, taking advantage of object-oriented programming to significantly improve its structure and ease the implementation of future developments. The source code is now publicly available online, along with a complete documentation. A special emphasis has been put on modularity during the re-implementation of StreamFlow, so that many model aspects can be represented using different alternatives. For example, several options are now available to model the advection of water within the stream. This allows for an easy and fast comparison between different approaches and helps in defining more reliable uncertainty estimates of the model forecasts. In particular, a case study in a Swiss Alpine catchment reveals that the stream temperature predictions are particularly sensitive to the approach used to model the temperature of subsurface flow, a fact which has been poorly reported in the literature to date. Based on the case study, StreamFlow is shown to reproduce hourly mean discharge with a Nash-Sutcliffe efficiency (NSE) of 0.82 and hourly mean temperature with a NSE of 0.78.

  8. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    USGS Publications Warehouse

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of record, generally would be considered to represent flow conditions better at a given site than flow estimates based on regionalized regression models. The geospatial datasets of modeled perennial streams are considered a first-cut estimate, and should not be construed to override site-specific flow data.

  9. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.

  10. Development of a comprehensive watershed model applied to study stream yield under drought conditions

    USGS Publications Warehouse

    Perkins, S.P.; Sophocleous, M.

    1999-01-01

    We developed a model code to simulate a watershed's hydrology and the hydraulic response of an interconnected stream-aquifer system, and applied the model code to the Lower Republican River Basin in Kansas. The model code links two well-known computer programs: MODFLOW (modular 3-D flow model), which simulates ground water flow and stream-aquifer interaction; and SWAT (soil water assessment tool), a soil water budget simulator for an agricultural watershed. SWAT represents a basin as a collection of subbasins in terms of soil, land use, and weather data, and simulates each subbasin on a daily basis to determine runoff, percolation, evaporation, irrigation, pond seepages and crop growth. Because SWAT applies a lumped hydrologic model to each subbasin, spatial heterogeneities with respect to factors such as soil type and land use are not resolved geographically, but can instead be represented statistically. For the Republican River Basin model, each combination of six soil types and three land uses, referred to as a hydrologic response unit (HRU), was simulated with a separate execution of SWAT. A spatially weighted average was then taken over these results for each hydrologic flux and time step by a separate program, SWBAVG. We wrote a package for MOD-FLOW to associate each subbasin with a subset of aquifer grid cells and stream reaches, and to distribute the hydrologic fluxes given for each subbasin by SWAT and SWBAVG over MODFLOW's stream-aquifer grid to represent tributary flow, surface and ground water diversions, ground water recharge, and evapotranspiration from ground water. The Lower Republican River Basin model was calibrated with respect to measured ground water levels, streamflow, and reported irrigation water use. The model was used to examine the relative contributions of stream yield components and the impact on stream yield and base flow of administrative measures to restrict irrigation water use during droughts. Model results indicate that tributary flow is the dominant component of stream yield and that reduction of irrigation water use produces a corresponding increase in base flow and stream yield. However, the increase in stream yield resulting from reduced water use does not appear to be of sufficient magnitude to restore minimum desirable streamflows.

  11. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange

    USGS Publications Warehouse

    Harvey, Judson W.; Wagner, Brian J.; Bencala, Kenneth E.

    1996-01-01

    Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reachscale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream tracer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL s−1 m−1), determined by hydrometric methods, was largest when stream base flow was low (10 L s−1); hyporheic exchange persisted when base flow was 10-fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward characterizing only a fast component of hyporheic exchange. Stream tracer models with multiple rate constants to consider both fast exchange with streambed gravel and slower exchange with deeper alluvium appear to be warranted.

  12. The Importance of Capturing Topographic Features for Modeling Groundwater Flow and Transport in Mountainous Watersheds

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gomez-Velez, J. D.; Wilson, J. L.

    2017-12-01

    Groundwater plays a key role in runoff generation and stream water chemistry from reach to watershed scales. The spatial distribution of ridges and streams can influence the spatial patterns of groundwater recharge and drainage, specially in mountainous terrains where these features are more prominent. However, typical modeling efforts simplify or ignore some of these features due to computational limitations without a systematic investigation of the implications for flow and transport within the watershed. In this study, we investigate the effect of capturing key topographic features on modeled groundwater flow and transport characteristics in a mountainous watershed. We build model scenarios of different topographic complexity levels (TCLs) to capture different levels of representation of streams and ridges in the model. Modeled baseflow and groundwater mean residence time (MRT) are used to quantify the differences among TCLs. Our results show that capturing the streams and ridges has a significant influence on simulated groundwater flow and transport patterns. Topographic complexity controls the proportion of baseflow generated from local, intermediate, and regional flow paths, thus influencing the amount and MRT of basefow flowing into streams of different Horton-Strahler orders. We further simulate the concentration of solute exported into streams from subsurface chemical weathering. The concentration of chemical weathering products in streams is less sensitive to model TCL due to the thermodynamic constraint on the equilibrium concentration of the chemical weathering. We also tested the influence of geology on the effect of TCL. The effect of TCL is consistent under different geological conditions; however, it is enhanced in models with low hydraulic conductivity because more of the flow is forced into shallow and local flow paths. All of these changes can affect our ability to interpret environmental tracer data and predict bio- and geo-chemical evolution of stream water in mountainous watersheds.

  13. Detecting climate change oriented and human induced changes in stream temperature across the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.

    2017-12-01

    In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for multiple sectors of activities including electrical resources adequacy studies over the southeastern U.S.

  14. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  15. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams - A Modification to SFR1

    USGS Publications Warehouse

    Niswonger, Richard G.; Prudic, David E.

    2005-01-01

    Many streams in the United States, especially those in semiarid regions, have reaches that are hydraulically disconnected from underlying aquifers. Ground-water withdrawals have decreased water levels in valley aquifers beneath streams, increasing the occurrence of disconnected streams and aquifers. The U.S. Geological Survey modular ground-water model (MODFLOW-2000) can be used to model these interactions using the Streamflow-Routing (SFR1) Package. However, the approach does not consider unsaturated flow between streams and aquifers and may not give realistic results in areas with significantly deep unsaturated zones. This documentation describes a method for extending the capabilities of MODFLOW-2000 by incorporating the ability to simulate unsaturated flow beneath streams. A kinematic-wave approximation to Richards' equation was solved by the method of characteristics to simulate unsaturated flow beneath streams in SFR1. This new package, called SFR2, includes all the capabilities of SFR1 and is designed to be used with MODFLOW-2000. Unlike SFR1, seepage loss from the stream may be restricted by the hydraulic conductivity of the unsaturated zone. Unsaturated flow is simulated independently of saturated flow within each model cell corresponding to a stream reach whenever the water table (head in MODFLOW) is below the elevation of the streambed. The relation between unsaturated hydraulic conductivity and water content is defined by the Brooks-Corey function. Unsaturated flow variables specified in SFR2 include saturated and initial water contents; saturated vertical hydraulic conductivity; and the Brooks-Corey exponent. These variables are defined independently for each stream reach. Unsaturated flow in SFR2 was compared to the U.S. Geological Survey's Variably Saturated Two-Dimensional Flow and Transport (VS2DT) Model for two test simulations. For both test simulations, results of the two models were in good agreement with respect to the magnitude and downward progression of a wetting front through an unsaturated column. A third hypothetical simulation is presented that includes interaction between a stream and aquifer separated by an unsaturated zone. This simulation is included to demonstrate the utility of unsaturated flow in SFR2 with MODFLOW-2000. This report includes a description of the data input requirements for simulating unsaturated flow in SFR2.

  16. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1996-01-01

    Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream stages calculated by BRANCH, aquifer properties, and stresses. This process is repeated until convergence criteria are met for head and stage. Because time steps used in ground-water modeling can be much longer than time intervals used in surface- water simulations, provision has been made for handling multiple BRANCH time intervals within one MODFLOW time step. An option was also added to BRANCH to allow the simulation of channel drying and rewetting. Testing of the coupled model was verified by using data from previous studies; by comparing results with output from a simpler, four-point implicit, open-channel flow model linked with MODFLOW; and by comparison to field studies of L-31N canal in southern Florida.

  17. A comparative study of several compressibility corrections to turbulence models applied to high-speed shear layers

    NASA Technical Reports Server (NTRS)

    Viegas, John R.; Rubesin, Morris W.

    1991-01-01

    Several recently published compressibility corrections to the standard k-epsilon turbulence model are used with the Navier-Stokes equations to compute the mixing region of a large variety of high speed flows. These corrections, specifically developed to address the weakness of higher order turbulence models to accurately predict the spread rate of compressible free shear flows, are applied to two stream flows of the same gas mixing under a large variety of free stream conditions. Results are presented for two types of flows: unconfined streams with either (1) matched total temperatures and static pressures, or (2) matched static temperatures and pressures, and a confined stream.

  18. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  19. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data

    NASA Astrophysics Data System (ADS)

    Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.

    2018-04-01

    River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.

  20. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    PubMed

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  1. Predicting nitrate discharge dynamics in mesoscale catchments using the lumped StreamGEM model and Bayesian parameter inference

    NASA Astrophysics Data System (ADS)

    Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland

    2017-09-01

    The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.

  2. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  3. Multistream hydrodynamic modeling of interhemispheric plasma flow

    NASA Technical Reports Server (NTRS)

    Rasmussen, C. E.; Schunk, R. W.

    1988-01-01

    Interhemispheric plasma flow was simulated using one-stream and two-stream hydrodymic models in order to test the suggestion of Banks et al. (1971) and others that the collision of high-speed flows originating from the conjugate hemispheres will cause the formation of a pair of shocks. The single-fluid hydrodynamic equations were modified to include multiple ion streams, allowing for the possibility of counterstreaming flow. It was found that a counterstreaming of ion streams from conjugate hemispheres does occur during the early stages of the refilling of plamaspheric flux tubes, and that a pair of reverse shocks does form. These shocks form away from the equator, and their subsequent motion creates conditions similar to those predicted by the single-stream hydrodynamic models. The findings support the conclusion of earlier studies that the refilling of the plasmasphere occurs from the equatorial region downward.

  4. WASP7 Stream Transport - Model Theory and User's Guide: Supplement to Water Quality Analysis Simulation Program (WASP) User Documentation

    EPA Science Inventory

    The standard WASP7 stream transport model calculates water flow through a branching stream network that may include both free-flowing and ponded segments. This supplemental user manual documents the hydraulic algorithms, including the transport and hydrogeometry equations, the m...

  5. Approximate Model for Turbulent Stagnation Point Flow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near themore » stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.« less

  6. Modeling the relations between flow regime components, species traits, and spawning success of fishes in warmwater streams

    USGS Publications Warehouse

    Craven, S.W.; Peterson, J.T.; Freeman, Mary C.; Kwak, T.J.; Irwin, E.

    2010-01-01

    Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management. ?? 2010 US Government.

  7. Classification of ephemeral, intermittent, and perennial stream reaches using a TOPMODEL-based approach

    USGS Publications Warehouse

    Williamson, Tanja N.; Agouridis, Carmen T.; Barton, Christopher D.; Villines, Jonathan A.; Lant, Jeremiah G.

    2015-01-01

    Whether a waterway is temporary or permanent influences regulatory protection guidelines, however, classification can be subjective due to a combination of factors, including time of year, antecedent moisture conditions, and previous experience of the field investigator. Our objective was to develop a standardized protocol using publically available spatial information to classify ephemeral, intermittent, and perennial streams. Our hypothesis was that field observations of flow along the stream channel could be compared to results from a hydrologic model, providing an objective method of how these stream reaches can be identified. Flow-state sensors were placed at ephemeral, intermittent, and perennial stream reaches from May to December 2011 in the Appalachian coal basin of eastern Kentucky. This observed flow record was then used to calibrate the simulated saturation deficit in each channel reach based on the topographic wetness index used by TOPMODEL. Saturation deficit values were categorized as flow or no-flow days, and the simulated record of streamflow was compared to the observed record. The hydrologic model was more accurate for simulating flow during the spring and fall seasons. However, the model effectively identified stream reaches as intermittent and perennial in each of the two basins.

  8. The role of the geophysical template and environmental regimes in controlling stream-living trout populations

    USGS Publications Warehouse

    Penaluna, Brooke E.; Railsback, Steve F.; Dunham, Jason B.; Johnson, S.; Bilby, Richard E.; Skaugset, Arne E.

    2015-01-01

    The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.

  9. Scaling Stream Flow Response to Forest Disturbance: the SID Project

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.

    2004-05-01

    We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.

  10. Simulating Daily and Sub-daily Water Flow in Large, Semi-arid Watershed Using SWAT: A Case Study of Nueces River Basin, Texas

    NASA Astrophysics Data System (ADS)

    Bassam, S.; Ren, J.

    2015-12-01

    Runoff generated during heavy rainfall imposes quick, but often intense, changes in the flow of streams, which increase the chance of flash floods in the vicinity of the streams. Understanding the temporal response of streams to heavy rainfall requires a hydrological model that considers meteorological, hydrological, and geological components of the streams and their watersheds. SWAT is a physically-based, semi-distributed model that is capable of simulating water flow within watersheds with both long-term, i.e. annually and monthly, and short-term (daily and sub-daily) time scales. However, the capability of SWAT in sub-daily water flow modeling within large watersheds has not been studied much, compare to long-term and daily time scales. In this study we are investigating the water flow in a large, semi-arid watershed, Nueces River Basin (NRB) with the drainage area of 16950 mi2 located in South Texas, with daily and sub-daily time scales. The objectives of this study are: (1) simulating the response of streams to heavy, and often quick, rainfall, (2) evaluating SWAT performance in sub-daily modeling of water flow within a large watershed, and (3) examining means for model performance improvement during model calibration and verification based on results of sensitivity and uncertainty analysis. The results of this study can provide important information for water resources planning during flood seasons.

  11. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Abdelaziz, Omar; Qu, Ming

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. Themore » model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.« less

  13. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    PubMed

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins could be self-sufficient units so long as the response of the main hydrological components to external forces that produce water scarcity, as climate change or human pressures, is appropriately considered in water resource planning. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    NASA Astrophysics Data System (ADS)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  15. Modeling stream temperature in the Anthropocene: An earth system modeling approach

    DOE PAGES

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu; ...

    2015-10-29

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  16. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  17. Full Equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures

    USGS Publications Warehouse

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures. A stream system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the stream system for which complete information on flow and depth are not required (dummy branches), and level-pool reservoirs. These components are connected by special features; that is, hydraulic control structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and pumps. The principles of conservation of mass and conservation of momentum are used to calculate the flow and depth throughout the stream system resulting from known initial and boundary conditions by means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic characteristics of (1) branches including top width, area, first moment of area with respect to the water surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater and (or) tail-water elevations, including the operation of variable-geometry structures) are stored in function tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs, and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution scheme for flow and depth throughout the stream system, an interpolation of the function tables corresponding to the computational nodes throughout the stream system is done in the model. FEQ can be applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow conditions, and special features. The accuracy and convergence of the numerical routines in the model are demonstrated for the case of laboratory measurements of unsteady flow in a sewer pipe. Verification of the routines in the model for field data on the Fox River in northeastern Illinois also is briefly discussed. The basic principles of unsteady-flow modeling and the relation between steady flow and unsteady flow are presented. Assumptions and the limitations of the model also are presented. The schematization of the stream system and the conversion of the physical characteristics of the stream reaches and a wide range of special features into function tables for model applications are described. The modified dynamic-wave equation used in FEQ for unsteady flow in curvilinear channels with drag on minor hydraulic structures and channel constrictions determined from an equivalent energy slope is developed. The matrix equation relating flows and depths at computational nodes throughout the stream system by the continuity (conservation of mass) and modified dynamic-wave equations is illustrated for four sequential examples. The solution of the matrix equation by Newton's method is discussed. Finally, the input for FEQ and the error messages and warnings issued are presented.

  18. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Cao, M.-H.; Jiang, H.-K.; Chin, J.-S.

    1982-04-01

    An improved flat-fan spray model is used for the semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow. The model assumes that, due to the aerodynamic force of the high-velocity cross air flow, the injected fuel immediately forms a flat-fan liquid sheet perpendicular to the cross flow. Once the droplets have been formed, the trajectories of individual droplets determine fuel distribution downstream. Comparison with test data shows that the proposed model accurately predicts liquid fuel distribution at any point downstream of a plain orifice injector under high-velocity, low-temperature uniform cross-stream air flow over a wide range of conditions.

  19. A framework to assess the impacts of climate change on stream health indicators in Michigan watersheds

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.

    2016-12-01

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of vulnerable stream ecosystems were developed, which can be used in the watershed management decision-making process.

  20. An evaluation of the relations between flow regime components, stream characteristics, species traits and meta-demographic rates of warmwater stream fishes: Implications for aquatic resource management

    USGS Publications Warehouse

    Peterson, James T.; Shea, C.P.

    2015-01-01

    Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta-demographic rates were influenced by streamflows, particularly short-term (10-day) flows. Flow effects on meta-demographic rates also varied with stream size, channel morphology, and fish species traits. Small-bodied species with generalized life-history characteristics were more resilient to flow variability than large-bodied species with specialized life-history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  2. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  3. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.

  4. InSTREAM: the individual-based stream trout research and environmental assessment model

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  5. The Shape of the Urine Stream — From Biophysics to Diagnostics

    PubMed Central

    Wheeler, Andrew P. S.; Morad, Samir; Buchholz, Noor; Knight, Martin M.

    2012-01-01

    We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation. PMID:23091609

  6. Influence of perched groundwater on base flow

    USGS Publications Warehouse

    Niswonger, Richard G.; Fogg, Graham E.

    2008-01-01

    Analysis with a three‐dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine‐sediment unit and the hydraulic conductivity of the fine‐sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000‐m stream reach. Generally, the rate of perched‐groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine‐sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine‐sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched‐groundwater discharge nearly 75%.

  7. Ambient groundwater flow diminishes nitrogen cycling in streams

    NASA Astrophysics Data System (ADS)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  8. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    PubMed

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  9. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    PubMed

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  10. Differences in aquatic habitat quality as an impact of one- and two-dimensional hydrodynamic model simulated flow variables

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.

    2013-12-01

    Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches

  11. Estimating natural monthly streamflows in California and the likelihood of anthropogenic modification

    USGS Publications Warehouse

    Carlisle, Daren M.; Wolock, David M.; Howard, Jeannette K.; Grantham, Theodore E.; Fesenmyer, Kurt; Wieczorek, Michael

    2016-12-12

    Because natural patterns of streamflow are a fundamental property of the health of streams, there is a critical need to quantify the degree to which human activities have modified natural streamflows. A requirement for assessing streamflow modification in a given stream is a reliable estimate of flows expected in the absence of human influences. Although there are many techniques to predict streamflows in specific river basins, there is a lack of approaches for making predictions of natural conditions across large regions and over many decades. In this study conducted by the U.S. Geological Survey, in cooperation with The Nature Conservancy and Trout Unlimited, the primary objective was to develop empirical models that predict natural (that is, unaffected by land use or water management) monthly streamflows from 1950 to 2012 for all stream segments in California. Models were developed using measured streamflow data from the existing network of streams where daily flow monitoring occurs, but where the drainage basins have minimal human influences. Widely available data on monthly weather conditions and the physical attributes of river basins were used as predictor variables. Performance of regional-scale models was comparable to that of published mechanistic models for specific river basins, indicating the models can be reliably used to estimate natural monthly flows in most California streams. A second objective was to develop a model that predicts the likelihood that streams experience modified hydrology. New models were developed to predict modified streamflows at 558 streamflow monitoring sites in California where human activities affect the hydrology, using basin-scale geospatial indicators of land use and water management. Performance of these models was less reliable than that for the natural-flow models, but results indicate the models could be used to provide a simple screening tool for identifying, across the State of California, which streams may be experiencing anthropogenic flow modification.

  12. Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2015-04-01

    Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.

  13. Empirical flow parameters - a tool for hydraulic model validity assessment.

    DOT National Transportation Integrated Search

    2013-08-01

    Data in Texas from the U.S. Geological Survey (USGS) physical stream flow and channel property measurements for gaging stations in the state of Texas were used to construct relations between observed stream flow, topographic slope, mean section veloc...

  14. Estimates of ground-water recharge, base flow, and stream reach gains and losses in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Risley, John C.

    2002-03-19

    Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.

  15. Incorporating seepage losses into the unsteady streamflow equations for simulating intermittent flow along mountain front streams

    USGS Publications Warehouse

    Niswonger, R.G.; Prudic, David E.; Pohll, G.; Constantz, J.

    2005-01-01

    Seepage losses along numerous mountain front streams that discharge intermittently onto alluvial fans and piedmont alluvial plains are an important source of groundwater in the Basin and Range Province of the Western United States. Determining the distribution of seepage loss along mountain front streams is important when assessing groundwater resources of the region. Seepage loss along a mountain front stream in northern Nevada was evaluated using a one-dimensional unsteady streamflow model. Seepage loss was incorporated into the spatial derivatives of the streamflow equations. Because seepage loss from streams is dependent on stream depth, wetted perimeter, and streambed properties, a two-dimensional variably saturated flow model was used to develop a series of relations between seepage loss and stream depth for each reach. This method works when streams are separated from groundwater by variably saturated sediment. Two periods of intermittent flow were simulated to evaluate the modeling approach. The model reproduced measured flow and seepage losses along the channel. Seepage loss in the spring of 2000 was limited to the upper reaches on the alluvial plain and totaled 196,000 m3, whereas 64% of the seepage loss in the spring of 2004 occurred at the base of the alluvial plain and totaled 273,000 m3. A greater seepage loss at the base of the piedmont alluvial plain is attributed to increased streambed hydraulic conductivity caused by less armoring of the channel. The modeling approach provides a method for quantifying and distributing seepage loss along mountain front streams that cross alluvial fans or piedmont alluvial plains. Copyright 2005 by the American Geophysical Union.

  16. Computation of turbulent boundary layer flows with an algebraic stress turbulence model

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Chen, Yen-Sen

    1986-01-01

    An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.

  17. A model for evaluating stream temperature response to climate change scenarios in Wisconsin

    USGS Publications Warehouse

    Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven

    2010-01-01

    Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.

  18. Effects of groundwater pumping in the lower Apalachicola-Chattahoochee-Flint River basin

    USGS Publications Warehouse

    Jones, L. Elliott

    2012-01-01

    USGS developed a groundwater-flow model of the Upper Floridan aquifer in lower Apalachicola-Chattahoochee-Flint River basin in southwest Georgia and adjacent parts of Alabama and Florida to determine the effect of agricultural groundwater pumping on aquifer/stream flow within the basin. Aquifer/stream flow is the sum of groundwater outflow to and inflow from streams, and is an important consideration for water managers in the development of water-allocation and operating plans. Specifically, the model was used to evaluate how agricultural pumping relates to 7Q10 low streamflow, a statistical low flow indicative of drought conditions that would occur during seven consecutive days, on average, once every 10 years. Argus ONETM, a software package that combines a geographic information system (GIS) and numerical modeling in an Open Numerical Environment, facilitated the design of a detailed finite-element mesh to represent the complex geometry of the stream system in the lower basin as a groundwater-model boundary. To determine the effects on aquifer/stream flow of pumping at different locations within the model area, a pumping rate equivalent to a typical center-pivot irrigation system (50,000 ft3/d) was applied individually at each of the 18,951 model nodes in repeated steady-state simulations that were compared to a base case representing drought conditions during October 1999. Effects of nodal pumping on aquifer/stream flow and other boundary flows, as compared with the base-case simulation, were computed and stored in a response matrix. Queries to the response matrix were designed to determine the sensitivity of targeted stream reaches to agricultural pumping. Argus ONE enabled creation of contour plots of query results to illustrate the spatial variation across the model area of simulated aquifer/streamflow reductions, expressed as a percentage of the long-term 7Q10 low streamflow at key USGS gaging stations in the basin. These results would enable water managers to assess the relative impact of agricultural pumping and drought conditions on streamflow throughout the basin, and to develop mitigation strategies to conserve water resources and preserve aquatic habitat.

  19. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    USGS Publications Warehouse

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  20. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; Jaafar, Othman; Deo, Ravinesh C.; Kisi, Ozgur; Adamowski, Jan; Quilty, John; El-Shafie, Ahmed

    2016-11-01

    Monthly stream-flow forecasting can yield important information for hydrological applications including sustainable design of rural and urban water management systems, optimization of water resource allocations, water use, pricing and water quality assessment, and agriculture and irrigation operations. The motivation for exploring and developing expert predictive models is an ongoing endeavor for hydrological applications. In this study, the potential of a relatively new data-driven method, namely the extreme learning machine (ELM) method, was explored for forecasting monthly stream-flow discharge rates in the Tigris River, Iraq. The ELM algorithm is a single-layer feedforward neural network (SLFNs) which randomly selects the input weights, hidden layer biases and analytically determines the output weights of the SLFNs. Based on the partial autocorrelation functions of historical stream-flow data, a set of five input combinations with lagged stream-flow values are employed to establish the best forecasting model. A comparative investigation is conducted to evaluate the performance of the ELM compared to other data-driven models: support vector regression (SVR) and generalized regression neural network (GRNN). The forecasting metrics defined as the correlation coefficient (r), Nash-Sutcliffe efficiency (ENS), Willmott's Index (WI), root-mean-square error (RMSE) and mean absolute error (MAE) computed between the observed and forecasted stream-flow data are employed to assess the ELM model's effectiveness. The results revealed that the ELM model outperformed the SVR and the GRNN models across a number of statistical measures. In quantitative terms, superiority of ELM over SVR and GRNN models was exhibited by ENS = 0.578, 0.378 and 0.144, r = 0.799, 0.761 and 0.468 and WI = 0.853, 0.802 and 0.689, respectively and the ELM model attained lower RMSE value by approximately 21.3% (relative to SVR) and by approximately 44.7% (relative to GRNN). Based on the findings of this study, several recommendations were suggested for further exploration of the ELM model in hydrological forecasting problems.

  1. HOW WELL CAN YOU ESTIMATE LOW FLOW AND BANKFULL DISCHARGE FROM STREAM CHANNEL HABITAT DATA?

    EPA Science Inventory

    Modeled estimates of stream discharge are becoming more important because of reductions in the number of gauging stations and increases in flow alteration from land development and climate change. Field measurements of channel morphology are available at thousands of streams and...

  2. Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.

    2017-12-01

    Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.

  3. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  4. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  5. Low-flow characteristics for streams on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi

    USGS Publications Warehouse

    Cheng, Chui Ling

    2016-08-03

    Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.

  6. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation where hyporheic fluxes cannot be accurately estimated without considering multi-scale effects. Our modeling captures the dominance of small-scale features such as bedforms that drive the majority of hyporheic flow, but it also captures how hyporheic flow is substantially modified by relatively small changes in streamflow or groundwater flow. The additional field measurements add sensitivity and power to whole stream tracer additions by improving resolution of the relative importance of storage at different scales (e.g. bar-scale versus bedform-scale). This information is critical in identifying hot spots where important biogeochemical reactions occur. In summary, interpreting multi-scale interactions in streams requires models that are physically based and that incorporate non-linear process dynamics. Such models can take advantage of increasingly comprehensive field data to integrate transport processes across spatially variable flow and geomorphic conditions. The most useful field and modeling approaches will be those that are simple enough to be easily implemented by users from various disciplines but comprehensive enough to produce meaningful predictions for a wide range of flow and geomorphic scenarios. This capability is needed to support improved strategies for protecting stream ecological health in the face of accelerating land use and climate change.

  7. Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams

    NASA Astrophysics Data System (ADS)

    Azizian, Morvarid; Boano, Fulvio; Cook, Perran L. M.; Detwiler, Russell L.; Rippy, Megan A.; Grant, Stanley B.

    2017-05-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. Here we utilize a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N-cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damköhler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  8. Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed

    NASA Astrophysics Data System (ADS)

    Demisse, N. S.; Bitew, M. M.; Gebremichael, M.

    2012-12-01

    The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.

  9. Modeling sediment concentration of rill flow

    NASA Astrophysics Data System (ADS)

    Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen

    2018-06-01

    Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.

  10. Assessing effects of water abstraction on fish assemblages in Mediterranean streams

    USGS Publications Warehouse

    Benejam, Lluis; Angermeier, Paul L.; Munne, Antoni; García-Berthou, Emili

    2010-01-01

    1. Water abstraction strongly affects streams in arid and semiarid ecosystems, particularly where there is a Mediterranean climate. Excessive abstraction reduces the availability of water for human uses downstream and impairs the capacity of streams to support native biota. 2. We investigated the flow regime and related variables in six river basins of the Iberian Peninsula and show that they have been strongly altered, with declining flows (autoregressive models) and groundwater levels during the 20th century. These streams had lower flows and more frequent droughts than predicted by the official hydrological model used in this region. Three of these rivers were sometimes dry, whereas there were predicted by the model to be permanently flowing. Meanwhile, there has been no decrease in annual precipitation. 3. We also investigated the fish assemblage of a stream in one of these river basins (Tordera) for 6 years and show that sites more affected by water abstraction display significant differences in four fish metrics (catch per unit effort, number of benthic species, number of intolerant species and proportional abundance of intolerant individuals) commonly used to assess the biotic condition of streams. 4. We discuss the utility of these metrics in assessing impacts of water abstraction and point out the need for detailed characterisation of the natural flow regime (and hence drought events) prior to the application of biotic indices in streams severely affected by water abstraction. In particular, in cases of artificially dry streams, it is more appropriate for regulatory agencies to assign index scores that reflect biotic degradation than to assign ‘missing’ scores, as is presently customary in assessments of Iberian streams.

  11. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.

  12. A finite element computation of turbulent boundary layer flows with an algebraic stress turbulence model

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Chen, Yen-Sen

    1988-01-01

    An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.

  13. Influence of geomorphological properties and stage on in-stream travel time

    NASA Astrophysics Data System (ADS)

    Åkesson, Anna; Wörman, Anders

    2014-05-01

    The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream networks (representing catchments of the spatial scale of a few hundred km2) in different geographic regions in Sweden displaying different geomorphological properties. Results show that the geomorphological properties (data that is often available in the form of maps and/or DEMs) of individual stream networks have major influence on the stream network travel times. By coupling the geomorphological information to general expressions for stage dependency, catchment-specific relationships of how the travel times within stream networks can be determined. Basing the parameterisation procedure of a hydrological model in physical catchment properties and process understanding rather than statistical parameterisation (based in how a catchment has responded in the past) - is believed to lead to more reliable hydrological predictions - during extreme conditions as well as during changing conditions such as climate change and landscape modifications, and/or when making predictions in ungauged basins.

  14. USGS tethered ACP platforms: New design means more safety and accuracy

    USGS Publications Warehouse

    Morlock, S.E.; Stewart, J.A.; Rehmel, M.S.

    2004-01-01

    The US Geological Survey has developed an innovative tethered platform that supports an Acoustic Current Profiler (ACP) in making stream-flow measurements (use of the term ACP in this article refers to a class of instruments and not a specific brand name or model). The tethered platform reduces the hazards involved in conventional methods of stream-flow measurement. The use of the platform reduces or eliminates time spent by personnel in streams and boats or on bridges and cableway and stream-flow measurement accuracy is increased.

  15. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    USGS Publications Warehouse

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  16. Estimating Locations of Perennial Streams in Idaho Using a Generalized Least-Squares Regression Model of 7-Day, 2-Year Low Flows

    USGS Publications Warehouse

    Wood, Molly S.; Rea, Alan; Skinner, Kenneth D.; Hortness, Jon E.

    2009-01-01

    Many State and Federal agencies use information regarding the locations of streams having intermittent or perennial flow when making management and regulatory decisions. For example, the application of some Idaho water quality standards depends on whether streams are intermittent. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 ft3/s. However, there is a general recognition that the cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not as accurate or consistent as desirable from one map to another, which makes broad management and regulatory assessments difficult and inconsistent. To help resolve this problem, the USGS has developed a methodology for predicting the locations of perennial streams based on regional generalized least-squares (GLS) regression equations for Idaho streams for the 7Q2 low-flow statistic. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams in most areas in Idaho. The use of these equations in conjunction with a geographic information system (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along stream reaches. The USGS has developed a GIS-based map of the locations of streams in Idaho with perennial flow based on a 7Q2 of 0.1 ft3/s and a transition zone of plus or minus 1 standard error. Idaho State cooperators plan to use this information to make regulatory and water-quality management decisions. Originally, 7Q2 equations were developed for eight regions of similar hydrologic characteristics in the study area, using long-term data from 234 streamflow-gaging stations. Equations in five of the regions were revised based on spatial patterns observed in the initial perennial streams map and unrealistic behavior of the equations in extrapolation. The standard errors of prediction for the final equations ranged from a minimum of +75.0 to -42.9 percent in the central part of the study area to a maximum of +277 to -73.5 percent in the southern part of the study area. The equations are applicable only to unregulated, naturally-flowing streams and may produce unreliable results outside the range of explanatory variables used for equation development. Extrapolation outside the range of available data was necessary, however, to predict perennial flow initiation points and transition zones along stream reaches. The map of perennial streams was evaluated by comparing predicted stream classifications with four independent datasets, including field observations by other government agencies. Overall, 81 percent of the comparison data points agreed with the USGS perennial streams model. Regions with the highest number of disagreements had a high percentage of mountainous and forested area with potential mountain front recharge zones, and regions with the highest agreements had a high percentage of low gradient, low elevation area. As a whole, the USGS model predicted a higher number of perennial streams than predictions made with the independent datasets. Some disagreements were due to poor site location coordinates, timing of the comparison site visits during unusually wet or dry years, discrepancies in classification criteria, and variable ground water contributions to flow in some areas. The Idaho Department of Environmental Quality Beneficial Use Reconnaissance Program (BURP) dataset is considered the most representative dataset for comparison because it covered a range of climate conditions and the number of sites visited were consistent from year to year during the study period. Eighty-five percent of BURP comparison data points agreed with the USGS perennial streams model. Although site-specific flow data may be needed to correctly classify streams in some areas, this information rarely is available and is not always practical to o

  17. Predicting streamflow regime metrics for ungauged streamsin Colorado, Washington, and Oregon

    NASA Astrophysics Data System (ADS)

    Sanborn, Stephen C.; Bledsoe, Brian P.

    2006-06-01

    Streamflow prediction in ungauged basins provides essential information for water resources planning and management and ecohydrological studies yet remains a fundamental challenge to the hydrological sciences. A methodology is presented for stratifying streamflow regimes of gauged locations, classifying the regimes of ungauged streams, and developing models for predicting a suite of ecologically pertinent streamflow metrics for these streams. Eighty-four streamflow metrics characterizing various flow regime attributes were computed along with physical and climatic drainage basin characteristics for 150 streams with little or no streamflow modification in Colorado, Washington, and Oregon. The diverse hydroclimatology of the study area necessitates flow regime stratification and geographically independent clusters were identified and used to develop separate predictive models for each flow regime type. Multiple regression models for flow magnitude, timing, and rate of change metrics were quite accurate with many adjusted R2 values exceeding 0.80, while models describing streamflow variability did not perform as well. Separate stratification schemes for high, low, and average flows did not considerably improve models for metrics describing those particular aspects of the regime over a scheme based on the entire flow regime. Models for streams identified as 'snowmelt' type were improved if sites in Colorado and the Pacific Northwest were separated to better stratify the processes driving streamflow in these regions thus revealing limitations of geographically independent streamflow clusters. This study demonstrates that a broad suite of ecologically relevant streamflow characteristics can be accurately modeled across large heterogeneous regions using this framework. Applications of the resulting models include stratifying biomonitoring sites and quantifying linkages between specific aspects of flow regimes and aquatic community structure. In particular, the results bode well for modeling ecological processes related to high-flow magnitude, timing, and rate of change such as the recruitment of fish and riparian vegetation across large regions.

  18. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy

    2015-01-01

    Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.

  19. A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA.

    Treesearch

    Michael N. Gooseff; Justin K. Anderson; Steven M. Wondzell; Justin LaNier; Roy Haggerty

    2005-01-01

    Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the...

  20. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  1. Simulated effects of development on regional ground-water/surface-water interactions in the northern Coastal Plain of New Jersey

    NASA Astrophysics Data System (ADS)

    Pucci, Amleto A.; Pope, Daryll A.

    1995-05-01

    Stream flow in the Coastal Plain of New Jersey is primarily controlled by ground-water discharge. Ground-water flow in a 400 square mile area (1035 km 2) of the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey was simulated to examine development effects on water resources. Simulations showed that historical development caused significant capture of regional ground-water discharge to streams and wetlands. The Cretaceous PRMA primarily is composed of fine to coarse sand, clays and silts which form the Upper and Middle aquifers and their confining units. The aquifer outcrops are the principal areas of recharge and discharge for the regional flow system and have many traversing streams and surface-water bodies. A quasi-three-dimensional numerical model that incorporated ground-water/surface-water interactions and boundary flows from a larger regional model was used to represent the PRMA. To evaluate the influence of ground-water development on interactions in different areas, hydrogeologically similar and contiguous model stream cells were aggregated as 'stream zones'. The model representation of surface-water and ground-water interaction was limited in the areas of confining unit outcrops and because of this, simulated ground-water discharge could not be directly compared with base flow. Significant differences in simulated ground-water and surface-water interactions between the predevelopment and developed system, include; (1) redistribution of recharge and discharge areas; (2) reduced ground-water discharge to streams. In predevelopment, the primary discharge for the Upper and Middle aquifers is to low-lying streams and wetlands; in the developed system, the primary discharge is to ground-water withdrawals. Development reduces simulated ground-water discharge to streams in the Upper Aquifer from 61.4 to 10% of the Upper Aquifer hydrologic budget (28.9%, if impounded stream flow is included). Ground-water discharge to streams in the Middle Aquifer decreases from 80.0 to 22% of the Middle Aquifer hydrologic budget. The utility of assessing ground-water/surface-water interaction in a regional hydrogeologic system by simulation responses to development is demonstrated and which can compensate for lack of long-term stream-gaging data in determining management decisions.

  2. Physical and biogeochemical controls on polymictic behavior in Sierra Nevada stream pools

    NASA Astrophysics Data System (ADS)

    Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.

    2011-12-01

    We observed polymictic behavior in stream pools in a low gradient montane meadow in the southern Sierra Nevada mountains, California. Thermal stratification in stream pools has been observed in various environments; stratification generally persists where the buoyancy forces created by a variation in water density, as a function of water temperature, are able to overcome turbulent forces resulting from stream flow. Because the density gradient creates a relatively weak buoyancy force, low flow conditions are generally required in order to overcome the turbulent forces. In some studies, a cold water source in to the pool bottoms can help to increase the density gradient and perpetuate thermal stratification. Our study took place in Long Meadow, Sequoia National Park, California. Long Meadow lies in the Wolverton Creek watershed and is part of the Southern Sierra Critical Zone Observatory. The 1-4 m diameter and 1-2 m deep pools in our study stratified thermally during the day and mixed completely at night. The low gradient of the meadow provided low stream flows. Piezometers in the meadow indicated groundwater discharge into the meadow in the months during which stratification was observed. Radon 222 activity measured in the pools also indicated groundwater influx to the pool bottoms. We used Fluent, a computational fluid dynamics equation solver, to construct a model of one of the observed pools. Initially we attempted to model the physical mechanisms controlling thermal stratification in the pool including stream flow, groundwater discharge, solar radiation, wind speed, and air, stream and ground water temperatures. Ultimately we found the model best agreed with our observed pool temperatures when we considered the light attenuation coefficients as a function of the dissolve organic carbon (DOC) concentration. Elevated DOC concentrations are expected in low stream flow regimes associated with highly organic soils such as a montane meadow. DOC concentrations measured in samples collected from the meadow stream, pools, and ground water wells ranged from 3.09 to 5.25 mg/L. We used a power equation taken from the literature to vary the visible light attenuation with DOC values measured in the meadow system. Light attenuation coefficients determined from measured DOC concentrations ranged from 0.507 m-1 to 0.899 m-1. The results from our modeling efforts indicate that in low flow streams and rivers elevated concentrations of DOC can increase the potential for thermal stratification in stream pools.

  3. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  4. Hydrogeology of a Danish Riparian Lowland: the Importance of Groundwater Upwelling on Nitrate Removal

    NASA Astrophysics Data System (ADS)

    Steiness, M.; van't Veen, S. G. W.; Jessen, S.; Engesgaard, P. K.

    2016-12-01

    Riparian zones are critical interfaces between streams and uplands with many of the characteristics for being key areas for nitrate removal. The hydrogeology is a controlling factor for the source, flow paths, magnitude of groundwater discharge to the stream, nitrate loading, and therefore the occurrence of "hot spots" with increased denitrification. A riparian lowland was investigated through field studies (geophysics, hydrogeology), water quality assessment, and flow and reactive transport modelling. One of the objectives was to understand the role of the landscape and hydrogeology on diffusive versus focused groundwater discharge and also nitrate removal. The investigated riparian zone is characterized by diffusive flow of groundwater to the stream from the northern bank (from a maize field) and groundwater upwelling in several places with overland flow to the stream from south (wetland area). Nitrate is effectively removed by pyrite oxidation (as shown by the reactive transport model high sulphate concentrations) on the northern side, whereas the groundwater-fed springs carry up to 74 mg/L nitrate. Groundwater flow modeling shows that upwelling may account for almost 25 % of the flow to the stream. Two other riparian zones were subsequently included and, on the catchment scale, the occurrence of diffusive and focused discharge is found to be common suggesting that riparian zones in this area are only partly effective in removing nitrate.

  5. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  6. Impact of meander geometry and stream flow events on residence times and solute transport in the intra-meander flow

    NASA Astrophysics Data System (ADS)

    Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico

    2017-04-01

    Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the unsaturated zone to evaluate the effect of transient flow conditions on solute mobilization. Our preliminary results indicate that residence times ranging from 0.5 to 250 hours are influenced by meander geometry, as well as the size of the intra-meander area. In general, we found that larger intra-meander areas lead to longer flow paths and higher mean intra-meander residence times (MRTs). The shortest RTs were observed near the meander neck in all scenarios, a feature most predominant in more developed meander resulting shorter MRTs. Transient modelling results show that fluctuations in stream hydraulic head influence the transport and zonation of the solute concentration in the intra-meander area with higher and longer stream discharge events leading to stronger mobilization and removal of solutes dominated mainly around meander neck area.

  7. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  8. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Treesearch

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  9. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    USGS Publications Warehouse

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a stream reach is based on a mass-balance approach and accounts for exchanges with (inputs from or losses to) ground-water systems. Two test examples are used to illustrate some of the capabilities of the SFR1 Package. The first test simulation was designed to illustrate how pumping of ground water from an aquifer connected to streams can affect streamflow, depth, width, and streambed conductance using the different options. The second test simulation was designed to illustrate solute transport through interconnected lakes, streams, and aquifers. Because of the need to examine time series results from the model simulations, the Gage Package first described in the LAK3 documentation was revised to include time series results of selected variables (streamflows, stream depth and width, streambed conductance, solute concentrations, and solute loads) for specified stream reaches. The mass-balance or continuity approach for routing flow and solutes through a stream network may not be applicable for all interactions between streams and aquifers. The SFR1 Package is best suited for modeling long-term changes (months to hundreds of years) in ground-water flow and solute concentrations using averaged flows in streams. The Package is not recommended for modeling the transient exchange of water between streams and aquifers when the objective is to examine short-term (minutes to days) effects caused by rapidly changing streamflows.

  10. Regional-scale, fully coupled modelling of stream aquifer interaction in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Werner, Adrian D.; Gallagher, Mark R.; Weeks, Scott W.

    2006-09-01

    SummaryThe planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance.

  11. Speciation and equilibrium relations of soluble aluminum in a headwater stream at base flow and during rain events

    USGS Publications Warehouse

    Burns, Douglas A.

    1989-01-01

    In a small watershed in the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. Available chemical evidence indicates that acidic soil water was the primary source of dissolved aluminum. As flow increased, the Al(OH)3 saturation index in the stream water increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3− at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. A soil water/stream water mixing model was developed based on measured changes of stream water alkalinity, silica concentration, and charge imbalance during the rain events. Model results indicate that a small amount of soil water (3–11%) was present in the stream at peak stage.

  12. Dynamic behaviour of ice streams: the North East Greenland Ice Stream

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Schaufler, Svenja; de Riese, Tamara; Sachau, Till; Weikusat, Ilka

    2017-04-01

    The flow of ice towards the margins of ice sheets is far from homogeneous. Ice streams show much higher flow velocities than their surroundings and may extend, for example the North East Greenland Ice Stream (NEGIS), towards the centre of the sheet. The elevated flow velocity inside an ice stream causes marginal shearing and convergent flow, which in turn leads to folding of ice layers. Such folding was documented in the Petermann Glacier in northern Greenland (Bons et al., 2016). 3-dimensional structural modelling using radargrams shows that folding is more intense adjacent to NEGIS than inside it, despite the strong flow perturbation at NEGIS. Analysis of fold amplitude as a function of stratigraphic level indicates that folding adjacent to NEGIS ceased in the early Holocene, while it is currently active inside NEGIS. The presence of folds adjacent of NEGIS, but also at other sites far in the interior of the Greenland Ice Sheet with no direct connection to the present-day surface velocity field, indicates that ice flow is not only heterogeneous in space (as the present-day flow velocity field shows), but also in time. The observations suggest that ice streams are dynamic, ephemeral structures that emerge and die out, and may possibly shift during their existence, but leave traces within the stratigraphic layering of the ice. The dynamic nature of ice streams such as NEGIS speaks against deterministic models for their accelerated flow rates, such as bedrock topography or thermal perturbations at their base. Instead, we suggest that ice streams can also result from strain localisation induced inside the ice sheet by the complex coupling of rheology, anisotropy, grain-size changes and possibly shear heating. Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.-G, Steinbach, F., Steinhage, D. & Weikusat, I. 2016. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications 7:11427, DOI: 10.1038/ncomms11427.

  13. sedFlow - an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2014-07-01

    Especially in mountainuous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats, and understanding geomorphic evolution. We present the new modelling tool sedFlow for simulating fractional bedload transport dynamics in mountain streams. The model can deal with the effects of adverse slopes and uses state of the art approaches for quantifying macro-roughness effects in steep channels. Local grain size distributions are dynamically adjusted according to the transport dynamics of each grain size fraction. The tool sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2014).

  14. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    USGS Publications Warehouse

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine

    2016-01-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  15. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.

    2016-05-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  16. A streaming birefringence study of the flow at the junction of the aorta and the renal arteries

    NASA Astrophysics Data System (ADS)

    Rankin, G. W.; Sabbah, H. N.; Stein, P. D.

    1989-11-01

    Streaming birefringence with an organic dye (Milling Yellow) was used to investigate the flow near the junction of the renal arteries and the descending aorta in a model of human vessels. The dye concentration was adjusted to give fluid rheological properties, typical of blood. Steady and pulsatile flow were investigated at branch-to-trunk flow ratios of 0.050 0.350. The flow ratio range over which flow separation and simple secondary flows were identified during systole near the renal ostia are reported. Streaming birefringence has the advantage of allowing visualization of the entire flow field. Also, the fluid rather than suspended particles are observed. An important disadvantage, however, is that three-dimensional flows make interpretation difficult.

  17. Spatial Dynamic Optimization of Groundwater Use with Ecological Standards for Instream Flow

    NASA Astrophysics Data System (ADS)

    Brozovic, N.; Han, J.; Speir, C.

    2011-12-01

    Instream flow requirements for protected species in arid and semi-arid regions have created the need to reduce groundwater use adjacent to streams. We present an integrated hydrologic-economic model that optimizes agricultural groundwater use next to streams with flow standards. Policies to meet instream flow standards should aim to minimize the welfare losses to irrigated agriculture due to reduced pumping. Previous economic studies have proposed spatially targeted water allocations between groundwater irrigators and instream demands. However, these studies focused on meeting aggregate instream flow goals on a seasonal or yearly basis rather than meeting them on a continuous basis. Temporally aggregated goals ignore important intra-seasonal hydrologic effects and may not provide sufficient habitat quality for species of concern. We present an optimization model that solves for groundwater pumping allocations across space in a stream-aquifer system with instream flow goals that must be met on a daily basis. We combine an analytical model of stream depletion with a farm profit maximization model that includes cumulative crop yield damages from water stress. The objective is the minimization of agricultural losses from reduced groundwater use while minimum instream flow requirements for ecological needs are met on a daily basis. As a case study, we apply our model to the Scott River Basin in northern California. This is a region where stream depletion resulting from extensive irrigation has degraded habitat for Coho salmon, a species protected under the U.S. Endangered Species Act. Our results indicate the importance of considering the lag between the time at which pumping occurs and the time at which stream depletion related to that pumping occurs. In general, we find that wells located farther from the stream should be allocated more water in most hydrologic scenarios. However, we also find that the spatial and temporal distribution of optimal groundwater pumping can differ dramatically depending on the level of streamflow and instream flow targets. In particular, we find that in drought years wells located closer to the stream might be allocated more water than wells farther from the stream. This counterintuitive result is driven by spatial variability in the time lag associated with the stream depletion externality following pumping. Any period of time during the year with extreme water scarcity requires a cessation of pumping in advance of that period so that stream depletion impacts can adequately dissipate before the start of the period. Wells that are farther away from the stream cause higher stream depletion impacts following the cessation of pumping, so they may need to cease pumping earlier in advance of the period of extreme water scarcity. The analysis also suggests that in our case study area, the Scott River Basin, policies that are spatially and temporally targeted may lead to welfare costs that are 30 percent less than welfare losses under uniform pumping restrictions. The relative welfare gains of the targeted policy over the uniform reduction policy increase as the scarcity of the instream water supply increases.

  18. Stream temperature investigations: field and analytic methods

    USGS Publications Warehouse

    Bartholow, J.M.

    1989-01-01

    Alternative public domain stream and reservoir temperature models are contrasted with SNTEMP. A distinction is made between steady-flow and dynamic-flow models and their respective capabilities. Regression models are offered as an alternative approach for some situations, with appropriate mathematical formulas suggested. Appendices provide information on State and Federal agencies that are good data sources, vendors for field instrumentation, and small computer programs useful in data reduction.

  19. 3D Numerical simulation of bed morphological responses to complex in-streamstructures

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liu, X.

    2017-12-01

    In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.

  20. Availability and Distribution of Base Flow in Lower Honokohau Stream, Island of Maui

    USGS Publications Warehouse

    Fontaine, Richard A.

    2003-01-01

    Honokohau Stream is one of the few perennial streams in the Lahaina District of West Maui. Current Honokohau water-use practices often lead to conflicts among water users, which are most evident during periods of base flow. To better manage the resource, data are needed that describe the availability and distribution of base flow in lower Honokohau Stream and how base flow is affected by streamflow diversion and return-flow practices. Flow-duration discharges for percentiles ranging from 50 to 95 percent were estimated at 13 locations on lower Honokohau Stream using data from a variety of sources. These sources included (1) available U.S. Geological Survey discharge data, (2) published summaries of Maui Land & Pineapple Company, Inc. diversion and water development-tunnel data, (3) seepage run and low-flow partial-record discharge measurements made for this study, and (4) current (2003) water diversion and return-flow practices. These flow-duration estimates provide a detailed characterization of the distribution and availability of base flow in lower Honokohau Stream. Estimates of base-flow statistics indicate the significant effect of Honokohau Ditch diversions on flow in the stream. Eighty-six percent of the total flow upstream from the ditch is diverted from the stream. Immediately downstream from the diversion dam there is no flow in the stream 91.2 percent of the time, except for minor leakage through the dam. Flow releases at the Taro Gate, from Honokohau Ditch back into the stream, are inconsistent and were found to be less than the target release of 1.55 cubic feet per second on 9 of the 10 days on which measurements were made. Previous estimates of base-flow availability downstream from the Taro Gate release range from 2.32 to 4.6 cubic feet per second (1.5 to 3.0 million gallons per day). At the two principal sites where water is currently being diverted for agricultural use in the valley (MacDonald's and Chun's Dams), base flows of 2.32 cubic feet per second (1.5 million gallons per day) are available more than 95 percent of the time at MacDonald's Dam and 80 percent of the time at Chun's Dam. Base flows of 4.6 cubic feet per second (3.0 million gallons per day) are available 65 and 56 percent of the time, respectively. A base-flow water-accounting model was developed to estimate how flow-duration discharges for 13 sites on Honokohau Stream would change in response to a variety of flow release and diversion practices. A sample application of the model indicates that there is a 1 to 1 relation between changes in flow release rates at the Taro Gate and base flow upstream from MacDonald's Dam. At Chun's Dam the relation between Taro Gate releases and base flow varies with flow-duration percentiles. At the 95th and 60th percentiles, differences in base flow at Chun's Dam would equal about 50 and 90 percent of the change at the Taro Gate.

  1. A semi-automated tool for reducing the creation of false closed depressions from a filled LIDAR-derived digital elevation model

    USGS Publications Warehouse

    Waller, John S.; Doctor, Daniel H.; Terziotti, Silvia

    2015-01-01

    Closed depressions on the land surface can be identified by ‘filling’ a digital elevation model (DEM) and subtracting the filled model from the original DEM. However, automated methods suffer from artificial ‘dams’ where surface streams cross under bridges and through culverts. Removal of these false depressions from an elevation model is difficult due to the lack of bridge and culvert inventories; thus, another method is needed to breach these artificial dams. Here, we present a semi-automated workflow and toolbox to remove falsely detected closed depressions created by artificial dams in a DEM. The approach finds the intersections between transportation routes (e.g., roads) and streams, and then lowers the elevation surface across the roads to stream level allowing flow to be routed under the road. Once the surface is corrected to match the approximate location of the National Hydrologic Dataset stream lines, the procedure is repeated with sequentially smaller flow accumulation thresholds in order to generate stream lines with less contributing area within the watershed. Through multiple iterations, artificial depressions that may arise due to ephemeral flow paths can also be removed. Preliminary results reveal that this new technique provides significant improvements for flow routing across a DEM and minimizes artifacts within the elevation surface. Slight changes in the stream flow lines generally improve the quality of flow routes; however some artificial dams may persist. Problematic areas include extensive road ditches, particularly along divided highways, and where surface flow crosses beneath road intersections. Limitations do exist, and the results partially depend on the quality of data being input. Of 166 manually identified culverts from a previous study by Doctor and Young in 2013, 125 are within 25 m of culverts identified by this tool. After three iterations, 1,735 culverts were identified and cataloged. The result is a reconditioned elevation dataset, which retains the karst topography for further analysis, and a culvert catalog.

  2. Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.

    2012-12-01

    Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in representative live-bed meandering waterways and simulated numerically to systematically investigate the sensitivity of various design and installation parameters on structure performance and reliability. Waterway geometries are selected by a statistical classification of rivers and streams to represent typical sand-bed and gravel-bed systems found in nature. Results will be presented for rock vanes, J-hook vanes and bendway weirs. Our findings provide novel physical insights into the effects of various in-stream structures on turbulent flow and sediment transport processes in meandering rivers, underscore these effects for different stream-bed materials, and demonstrate how such physics-based analysis can yield design guidelines that often challenge what is commonly done in practice today. To our knowledge, our work is the first systematic attempt to employ advanced numerical modeling coupled with massively parallel supercomputers to design hydraulic structures for stream restoration. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, National Cooperative Highway Research Program Grant NCHRP-HR 24-33.

  3. Eddy Viscosity for Variable Density Coflowing Streams,

    DTIC Science & Technology

    EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.

  4. A Statistical Weather-Driven Streamflow Model: Enabling future flow predictions in data-scarce headwater streams

    NASA Astrophysics Data System (ADS)

    Rosner, A.; Letcher, B. H.; Vogel, R. M.

    2014-12-01

    Predicting streamflow in headwaters and over a broad spatial scale pose unique challenges due to limited data availability. Flow observation gages for headwaters streams are less common than for larger rivers, and gages with records lengths of ten year or more are even more scarce. Thus, there is a great need for estimating streamflows in ungaged or sparsely-gaged headwaters. Further, there is often insufficient basin information to develop rainfall-runoff models that could be used to predict future flows under various climate scenarios. Headwaters in the northeastern U.S. are of particular concern to aquatic biologists, as these stream serve as essential habitat for native coldwater fish. In order to understand fish response to past or future environmental drivers, estimates of seasonal streamflow are needed. While there is limited flow data, there is a wealth of data for historic weather conditions. Observed data has been modeled to interpolate a spatially continuous historic weather dataset. (Mauer et al 2002). We present a statistical model developed by pairing streamflow observations with precipitation and temperature information for the same and preceding time-steps. We demonstrate this model's use to predict flow metrics at the seasonal time-step. While not a physical model, this statistical model represents the weather drivers. Since this model can predict flows not directly tied to reference gages, we can generate flow estimates for historic as well as potential future conditions.

  5. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions

    NASA Astrophysics Data System (ADS)

    Beskow, Samuel; de Mello, Carlos Rogério; Vargas, Marcelle M.; Corrêa, Leonardo de L.; Caldeira, Tamara L.; Durães, Matheus F.; de Aguiar, Marilton S.

    2016-10-01

    Information on stream flows is essential for water resources management. The stream flow that is equaled or exceeded 90% of the time (Q90) is one the most used low stream flow indicators in many countries, and its determination is made from the frequency analysis of stream flows considering a historical series. However, stream flow gauging network is generally not spatially sufficient to meet the necessary demands of technicians, thus the most plausible alternative is the use of hydrological regionalization. The objective of this study was to couple the artificial intelligence techniques (AI) K-means, Partitioning Around Medoids (PAM), K-harmonic means (KHM), Fuzzy C-means (FCM) and Genetic K-means (GKA), with measures of low stream flow seasonality, for verification of its potential to delineate hydrologically homogeneous regions for the regionalization of Q90. For the performance analysis of the proposed methodology, location attributes from 108 watersheds situated in southern Brazil, and attributes associated with their seasonality of low stream flows were considered in this study. It was concluded that: (i) AI techniques have the potential to delineate hydrologically homogeneous regions in the context of Q90 in the study region, especially the FCM method based on fuzzy logic, and GKA, based on genetic algorithms; (ii) the attributes related to seasonality of low stream flows added important information that increased the accuracy of the grouping; and (iii) the adjusted mathematical models have excellent performance and can be used to estimate Q90 in locations lacking monitoring.

  6. Dam operations may improve aquatic habitat and offset negative effects of climate change.

    PubMed

    Benjankar, Rohan; Tonina, Daniele; McKean, James A; Sohrabi, Mohammad M; Chen, Quiwen; Vidergar, Dmitri

    2018-05-01

    Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa

    NASA Astrophysics Data System (ADS)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.

    2009-05-01

    Stream barbs (a type of submerged groyne or spur dike) are low-profile linear rock structures that prevent the erosion of stream banks by redirecting high velocity flow away from the bank. Stream barbs are becoming a popular method for stream bank protection as they can be built at a relatively low cost and provide added ecological benefit. The design and construction of stream barbs in Sawmill Creek, a small urban stream in the city of Ottawa, Canada, will serve as a demonstration project for the use of barbs as a bank stabilization technique that will contribute to the rehabilitation of urban creeks while reducing erosion threats to property and infrastructure. As well as providing bank protection, these structures promote vegetated stream banks, create resting pools and scour holes for fish habitat, and increase bio-diversity for aquatic species. Despite these benefits, stream barbs are not a common means of stream bank protection in Canada, due largely to a lack of suitable design guidelines. The overall goal of stream habitat restoration in incising channel systems should be to accelerate natural processes of channel equilibrium recovery, riparian re-vegetation, and stream-floodplain interaction. Incorporating stream barbs, instead of traditional bank protection measures, attempts to achieve these goals. A three-dimensional numerical model: 'Simulation in Intakes with Multiblock option' (SSIIM), was used to model the effects of placing a series of stream barbs along an unstable section of Sawmill Creek. The average bankfull depth, width, and discharge of the creek are 1.2 m, 7.5 m, and 9 m3/s respectively. The model was used to assess various design alternatives for a series of seven stream barbs at two consecutive channel bends requiring stabilization measures along their outer banks. Design criteria were principally based on the reduction of velocity, shear stress and subsequent erosion at the outside bank of each bend, and on the relocation of a new thalweg towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).

  8. Modeling a Change in Flowrate through Detention or Additional Pavement on the Receiving Stream : Final Report

    DOT National Transportation Integrated Search

    2017-11-01

    The addition or removal of flow from a stream affects the water surface downstream and possibly upstream. The extent of such effects is generally determined by modeling the receiving stream. Guidance that concisely describes how far up/downstream a h...

  9. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA.

    Treesearch

    Steven M. Wondzell

    2006-01-01

    Stream-tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach-integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS-P. Transient...

  10. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    USGS Publications Warehouse

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by intercepted recharge.

  11. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Little Laughery Creek, Ripley and Franklin counties, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)

  12. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions : An integrated modeling approach

    USGS Publications Warehouse

    Huntington, Justin L.; Niswonger, Richard G.

    2012-01-01

    Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic models in climate change studies.

  13. Climate-induced seasonal changes in smallmouth bass growth rate potential at the southern range extent

    USGS Publications Warehouse

    Middaugh, Christopher R.; Kessinger, Brin; Magoulick, Daniel D.

    2018-01-01

    Temperature increases due to climate change over the coming century will likely affect smallmouth bass (Micropterus dolomieu) growth in lotic systems at the southern extent of their native range. However, the thermal response of a stream to warming climate conditions could be affected by the flow regime of each stream, mitigating the effects on smallmouth bass populations. We developed bioenergetics models to compare change in smallmouth bass growth rate potential (GRP) from present to future projected monthly stream temperatures across two flow regimes: runoff and groundwater-dominated. Seasonal differences in GRP between stream types were then compared. The models were developed for fourteen streams within the Ozark–Ouachita Interior Highlands in Arkansas, Oklahoma and Missouri, USA, which contain smallmouth bass. In our simulations, smallmouth bass mean GRP during summer months decreased by 0.005 g g−1 day−1 in runoff streams and 0.002 g g−1 day−1 in groundwater streams by the end of century. Mean GRP during winter, fall and early spring increased under future climate conditions within both stream types (e.g., 0.00019 g g−1 day−1 in runoff and 0.0014 g g−1 day−1 in groundwater streams in spring months). We found significant differences in change in GRP between runoff and groundwater streams in three seasons in end-of-century simulations (spring, summer and fall). Potential differences in stream temperature across flow regimes could be an important habitat component to consider when investigating effects of climate change as fishes from various flow regimes that are relatively close geographically could be affected differently by warming climate conditions.

  14. Management of adverse effects of a public water supply well field on the aquatic habitat of a stratified drift stream in eastern Connecticut.

    PubMed

    Nadim, Farhad; Bagtzoglou, Amvrossios C; Baun, Sandrine A; Warner, Glenn S; Ogden, Fred; Jacobson, Richard A; Parasiewicz, Piotr

    2007-01-01

    A study was conducted to determine the effect of water withdrawals from the University of Connecticut's (Storrs) water supply wells on the fisheries habitat of the Fenton River adjacent to the well field. The study was designed to investigate the relationships between in-stream flow and selected fish habitat in the section of the Fenton River situated in the main zone of influence of the pumping field. With the aid of historical data, new data collection, and mathematical simulation modeling, the relation between the magnitude and timing of groundwater withdrawals on the stage and flow of water in the stream was derived. Fish sampling and habitat modeling were used to assess the effects of human influence on certain reaches of the Fenton River. Among the various water management scenarios studied, several are presented that would optimize water withdrawals, while minimizing adverse effects on the stream flow and in-stream habitat.

  15. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection

    NASA Astrophysics Data System (ADS)

    Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan

    2017-03-01

    To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.

  16. Regional statistical assessment of WRF-Hydro and IFC Model stream Flow uncertainties over the State of Iowa

    NASA Astrophysics Data System (ADS)

    ElSaadani, M.; Quintero, F.; Goska, R.; Krajewski, W. F.; Lahmers, T.; Small, S.; Gochis, D. J.

    2015-12-01

    This study examines the performance of different Hydrologic models in estimating peak flows over the state of Iowa. In this study I will compare the output of the Iowa Flood Center (IFC) hydrologic model and WRF-Hydro (NFIE configuration) to the observed flows at the USGS stream gauges. During the National Flood Interoperability Experiment I explored the performance of WRF-Hydro over the state of Iowa using different rainfall products and the resulting hydrographs showed a "flashy" behavior of the model output due to lack of calibration and bad initial flows due to short model spin period. I would like to expand this study by including a second well established hydrologic model and include more rain gauge vs. radar rainfall direct comparisons. The IFC model is expected to outperform WRF-Hydro's out of the box results, however, I will test different calibration options for both the Noah-MP land surface model and RAPID, which is the routing component of the NFIE-Hydro configuration, to see if this will improve the model results. This study will explore the statistical structure of model output uncertainties across scales (as a function of drainage areas and/or stream orders). I will also evaluate the performance of different radar-based Quantitative Precipitation Estimation (QPE) products (e.g. Stage IV, MRMS and IFC's NEXRAD based radar rainfall product. Different basins will be evaluated in this study and they will be selected based on size, amount of rainfall received over the basin area and location. Basin location will be an important factor in this study due to our prior knowledge of the performance of different NEXRAD radars that cover the region, this will help observe the effect of rainfall biases on stream flows. Another possible addition to this study is to apply controlled spatial error fields to rainfall inputs and observer the propagation of these errors through the stream network.

  17. Stream-aquifer interactions in the Straight River area, Becker and Hubbard counties, Minnesota

    USGS Publications Warehouse

    Stark, J.R.; Armstrong, David S.; Zwilling, Daniel R.

    1994-01-01

    Daily fluctuations of stream temperature are as great as 15 degrees Celsius during the summer, primarily in response to changes in air temperature. Ground-water discharge to the Straight River decreases stream temperature during the summer. Results of simulations from a stream-temperature model indicate that daily changes in stream temperature are strongly influenced by solar radiation, wind speed, stream depth, and ground-water inflow. Results of simulations from ground-water-flow and stream-temperature models developed for the investigation indicate a significant decrease in ground-water flow could result from ground-water withdrawal at rates similar to those measured during 1988. This reduction in discharge to the stream could result in an increase in stream temperature of 0.5 to 1.5 degrees Celsius. Nitrate concentrations in shallow wells screened at the water table, in some areas, are locally greater than the limit set by the Minnesota Pollution Control Agency. Nitrate concentrations in water from deeper wells and in the stream are low, generally less than 1.0 milligram per liter.

  18. Spatial and Temporal Patterns In Ecohydrological Separation

    NASA Astrophysics Data System (ADS)

    Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.

    2017-12-01

    The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.

  19. Hyporheic zone influences on concentration-discharge relationships in a headwater sandstone stream

    NASA Astrophysics Data System (ADS)

    Hoagland, Beth; Russo, Tess A.; Gu, Xin; Hill, Lillian; Kaye, Jason; Forsythe, Brandon; Brantley, Susan L.

    2017-06-01

    Complex subsurface flow dynamics impact the storage, routing, and transport of water and solutes to streams in headwater catchments. Many of these hydrogeologic processes are indirectly reflected in observations of stream chemistry responses to rain events, also known as concentration-discharge (CQ) relations. Identifying the relative importance of subsurface flows to stream CQ relationships is often challenging in headwater environments due to spatial and temporal variability. Therefore, this study combines a diverse set of methods, including tracer injection tests, cation exchange experiments, geochemical analyses, and numerical modeling, to map groundwater-surface water interactions along a first-order, sandstone stream (Garner Run) in the Appalachian Mountains of central Pennsylvania. The primary flow paths to the stream include preferential flow through the unsaturated zone ("interflow"), flow discharging from a spring, and groundwater discharge. Garner Run stream inherits geochemical signatures from geochemical reactions occurring along each of these flow paths. In addition to end-member mixing effects on CQ, we find that the exchange of solutes, nutrients, and water between the hyporheic zone and the main stream channel is a relevant control on the chemistry of Garner Run. CQ relationships for Garner Run were compared to prior results from a nearby headwater catchment overlying shale bedrock (Shale Hills). At the sandstone site, solutes associated with organo-mineral associations in the hyporheic zone influence CQ, while CQ trends in the shale catchment are affected by preferential flow through hillslope swales. The difference in CQ trends document how the lithology and catchment hydrology control CQ relationships.

  20. Mixing in the shear superposition micromixer: three-dimensional analysis.

    PubMed

    Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline

    2004-05-15

    In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.

  1. Cost effectiveness of the stream-gaging program in northeastern California

    USGS Publications Warehouse

    Hoffard, S.H.; Pearce, V.F.; Tasker, Gary D.; Doyle, W.H.

    1984-01-01

    Results are documented of a study of the cost effectiveness of the stream-gaging program in northeastern California. Data uses and funding sources were identified for the 127 continuous stream gages currently being operated in the study area. One stream gage was found to have insufficient data use to warrant cooperative Federal funding. Flow-routing and multiple-regression models were used to simulate flows at selected gaging stations. The models may be sufficiently accurate to replace two of the stations. The average standard error of estimate of streamflow records is 12.9 percent. This overall level of accuracy could be reduced to 12.0 percent using computer-recommended service routes and visit frequencies. (USGS)

  2. Simulating the Snow Water Equivalent and its changing pattern over Nepal

    NASA Astrophysics Data System (ADS)

    Niroula, S.; Joseph, J.; Ghosh, S.

    2016-12-01

    Snow fall in the Himalayan region is one of the primary sources of fresh water, which accounts around 10% of total precipitation of Nepal. Snow water is an intricate variable in terms of its global and regional estimates whose complexity is favored by spatial variability linked with rugged topography. The study is primarily focused on simulation of Snow Water Equivalent (SWE) by the use of a macroscale hydrologic model, Variable Infiltration Capacity (VIC). As whole Nepal including its Himalayas lies under the catchment of Ganga River in India, contributing at least 40% of annual discharge of Ganges, this model was run in the entire watershed that covers part of Tibet and Bangladesh as well. Meteorological inputs for 29 years (1979-2007) are drawn from ERA-INTERIM and APHRODITE dataset for horizontal resolution of 0.25 degrees. The analysis was performed to study temporal variability of SWE in the Himalayan region of Nepal. The model was calibrated by observed stream flows of the tributaries of the Gandaki River in Nepal which ultimately feeds river Ganga. Further, the simulated SWE is used to estimate stream flow in this river basin. Since Nepal has a greater snow cover accumulation in monsoon season than in winter at high altitudes, seasonality fluctuations in SWE affecting the stream flows are known. The model provided fair estimates of SWE and stream flow as per statistical analysis. Stream flows are known to be sensitive to the changes in snow water that can bring a negative impact on power generation in a country which has huge hydroelectric potential. In addition, our results on simulated SWE in second largest snow-fed catchment of the country will be helpful for reservoir management, flood forecasting and other water resource management issues. Keywords: Hydrology, Snow Water Equivalent, Variable Infiltration Capacity, Gandaki River Basin, Stream Flow

  3. Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Diplas, Panayiotis

    2008-01-01

    SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The research suggests ways of improving the modeling practices for ecosystem management studies.

  4. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or calculated deliveries. IWFM utilizes a very straight-forward input file structure, allowing rapid development of complex simulations. A key feature of IWFM is a new algorithm for computation of groundwater flow across element faces. Enhancements to version 3.0 include automatic time-tracking of input and output data sets, linkage with the HEC-DSS database, and dynamic crop allocation using logit functions. Utilities linking IWFM to the PEST automated calibration suite are also available. All source code, executables and documentation are available for download from the DWR web site. IWFM is currently being used to develop hydrologic simulations of California's Central Valley (C2VSIM); the west side of California's San Joaquin Valley (WESTSIM); Butte County, CA; Solano County, CA; Merced County, CA; and the Oregon side of the Walla Walla River Basin.

  5. Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity

    USGS Publications Warehouse

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Arp, Christopher D.; Adams, Jeff; Falke, Jeffrey A.

    2015-01-01

    In Arctic ecosystems, freshwater fish migrate seasonally between productive shallow water habitats that freeze in winter and deep overwinter refuge in rivers and lakes. How these movements relate to seasonal hydrology is not well understood. We used passive integrated transponder tags and stream wide antennae to track 1035 Arctic grayling in Crea Creek, a seasonally flowing beaded stream on the Arctic Coastal Plain, Alaska. Migration of juvenile and adult fish into Crea Creek peaked in June immediately after ice break-up in the stream. Fish that entered the stream during periods of high flow and cold stream temperature traveled farther upstream than those entering during periods of lower flow and warmer temperature. We used generalized linear models to relate migration of adult and juvenile fish out of Crea Creek to hydrology. Most adults migrated in late June – early July, and there was best support (Akaike weight = 0.46; w i ) for a model indicating that the rate of migration increased with decreasing discharge. Juvenile migration occurred in two peaks; the early peak consisted of larger juveniles and coincided with adult migration, while the later peak occurred shortly before freeze-up in September and included smaller juveniles. A model that included discharge, minimum stream temperature, year, season, and mean size of potential migrants was most strongly supported (w i  = 0.86). Juvenile migration rate increased sharply as daily minimum stream temperature decreased, suggesting fish respond to impending freeze-up. We found fish movements to be intimately tied to the strong seasonality of discharge and temperature, and demonstrate the importance of small stream connectivity for migratory Arctic grayling during the entire open-water period. The ongoing and anticipated effects of climate change and petroleum development on Arctic hydrology (e.g. reduced stream connectivity, earlier peak flows, increased evapotranspiration) have important implications for Arctic freshwater ecosystems.

  6. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Somogyi, Andy; Tagg, Randall

    2007-11-01

    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  7. Cytoplasmic streaming emerges naturally from hydrodynamic self-organisation of a microfilament suspension

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Goldstein, Raymond

    2013-03-01

    Cytoplasmic streaming is the ubiquitous phenomenon of deliberate, active circulation of the entire liquid contents of a plant or animal cell by the walking of motor proteins on polymer filament tracks. Its manifestation in the plant kingdom is particularly striking, where many cells exhibit highly organised patterns of flow. How these regimented flow templates develop is biologically unclear, but there is growing experimental evidence to support hydrodynamically-mediated self-organisation of the underlying microfilament tracks. Using the spirally-streaming giant internodal cells of the characean algae Chara and Nitella as our prototype, we model the developing sub-cortical streaming cytoplasm as a continuum microfilament suspension subject to hydrodynamic and geometric forcing. We show that our model successfully reproduces emergent streaming behaviour by evolving from a totally disordered initial state into a steady characean ``conveyor belt'' configuration as a consequence of the cell geometry, and discuss applicability to other classes of steadily streaming plant cells.

  8. Streaks Of Colored Water Indicate Surface Airflows

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1994-01-01

    Response faster and contamination less than in oil-flow technique. Flowing colored water provides accurate and clean way to reveal flows of air on surfaces of models in wind tunnels. Colored water flows from small orifices in model, forming streak lines under influence of air streaming over surface of model.

  9. Evaluating effects of potential changes in streamflow regime on fish and aquatic-invertebrate assemblages in the New Jersey Pinelands

    USGS Publications Warehouse

    Kennen, Jonathan G.; Riskin, Melissa L.

    2010-01-01

    Changes in water demand associated with population growth and changes in land-use practices in the Pinelands region of southern New Jersey will have a direct effect on stream hydrology. The most pronounced and measurable hydrologic effect is likely to be flow reductions associated with increasing water extraction. Because water-supply needs will continue to grow along with population in the Pinelands area, the goal of maintaining a sustainable balance between the availability of water to protect existing aquatic assemblages while conserving the surficial aquifer for long-term support of human water use needs to be addressed. Although many aquatic fauna have shown resilience and resistance to short-term changes in flows associated with water withdrawals, sustained effects associated with ongoing water-development processes are not well understood. In this study, the U.S. Geological Survey sampled forty-three 100-meter-long stream reaches during high- and low-flow periods across a designed hydrologic gradient ranging from small- (4.1 square kilometers (1.6 square miles)) to medium- (66.3 square kilometers (25.6 square miles)) sized Pinelands stream basins. This design, which uses basin size as a surrogate for water availability, provided an opportunity to evaluate the possible effects of potential variation in stream hydrology on fish and aquatic-invertebrate assemblage response in New Jersey Pinelands streams where future water extraction is expected based on known build-out scenarios. Multiple-regression models derived from extracted non-metric multidimensional scaling axis scores of fish and aquatic invertebrates indicate that some variability in aquatic-assemblage composition across the hydrologic gradient is associated with anthropogenic disturbance, such as urbanization, changes in stream chemistry, and concomitant changes in high-flow runoff patterns. To account for such underlying effects in the study models, any flow parameter or assemblage attribute that was found to be significantly correlated (|rho| = 0.5000) to known anthropogenic drivers (for example, the amount of urbanization in the basin) was eliminated from analysis. A reduced set of low- and annual-flow hydrologic variables, found to be unrelated to anthropogenic influences, was used to develop assemblage-response models. Many linear (monotonic) and curvilinear bivariate flow-ecology response models were developed for fish and invertebrate assemblages. For example, the duration and magnitude of low-flow events were significant predictors of invertebrate-assemblage complexity (for example, invertebrate-species richness, Plecoptera richness, and Ephemeroptera abundance); however, response models between flow attributes and fish-assemblage structure were, in all cases, more poorly fit. Annual flow variability also was important, especially variability across mean minimum monthly flows and annual mean streamflow. In general, all response models followed upward or downward trends that would be expected given hydrologic changes in Pinelands streams. This study demonstrates that the structural and functional response of aquatic assemblages of the Pinelands ecosystem resulting from changes in water-use practices associated with population growth and increased water extraction may be predictable.

  10. Coupled three-layer model for turbulent flow over large-scale roughness: On the hydrodynamics of boulder-bed streams

    NASA Astrophysics Data System (ADS)

    Pan, Wen-hao; Liu, Shi-he; Huang, Li

    2018-02-01

    This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.

  11. Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.

    2005-05-01

    To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the catchment scale.

  12. Predicting the impacts of existing, pending, and future surface water rights on environmental flows to maintain anadromous salmonids in the northern California wine country

    NASA Astrophysics Data System (ADS)

    Deitch, M.; Kondolf, G. M.; Merenlender, A.; Cover, M. R.

    2006-12-01

    We used digitized aerial photographs on a geographical information system, historical stream flow records, and water rights records to model the effects of existing, pending, and future small reservoirs on stream flow on six tributaries to the Russian River in Sonoma County. Institutions governing whether these reservoirs can operate as constructed, and as proposed, has important implications for efforts to meet human and ecological water needs in the California wine country. Beginning in 1992, state agencies rewrote the policies governing how wine grape growers meet water needs to offer protections to endangered species and public trust values. These changes caused a shift in water management institutions: wine grape growers could no longer rely on surface water appropriations to meet growing water needs for new vineyards, and instead turned to other types of water rights that placed different (and potentially more severe) pressures on aquatic ecosystems. Despite growing controversy over the ecological impacts of existing and pending surface water appropriations (primarily small onstream and offstream reservoirs) on environmental flows necessary to support endangered anadromous salmonids, no analysis has been conducted to evaluate the impacts of existing small reservoirs, pending proposed reservoirs, or future reservoirs on local or catchment-scale stream flow. Our stream flow models indicated that existing and pending small reservoirs can eliminate flow immediately downstream of small reservoirs at the onset of the rainy season (when adult salmonids begin to migrate upstream to spawn); but the cumulative effect of several small reservoirs on stream reaches suitable for spawning is dampened by the spatial distribution of small reservoirs in a drainage network. The temporal extant of local flow effects is variable; most recent and pending onstream reservoirs can impair flows late into the rainy season, but their cumulative effects on downstream flows are less because they are located on ephemeral streams far in river headwaters.

  13. Geohydrology of, and simulation of ground-water flow in, the Milford-Souhegan glacial-drift aquifer, Milford, New Hampshire

    USGS Publications Warehouse

    Harte, P.T.; Mack, Thomas J.

    1992-01-01

    Hydrogeologic data collected since 1990 were assessed and a ground-water-flow model was refined in this study of the Milford-Souhegan glacial-drift aquifer in Milford, New Hampshire. The hydrogeologic data collected were used to refine estimates of hydraulic conductivity and saturated thickness of the aquifer, which were previously calculated during 1988-90. In October 1990, water levels were measured at 124 wells and piezometers, and at 45 stream-seepage sites on the main stem of the Souhegan River, and on small tributary streams overlying the aquifer to improve an understanding of ground-water-flow patterns and stream-seepage gains and losses. Refinement of the ground-water-flow model included a reduction in the number of active cells in layer 2 in the central part of the aquifer, a revision of simulated hydraulic conductivity in model layers 2 and representing the aquifer, incorporation of a new block-centered finite-difference ground-water-flow model, and incorporation of a new solution algorithm and solver (a preconditioned conjugate-gradient algorithm). Refinements to the model resulted in decreases in the difference between calculated and measured heads at 22 wells. The distribution of gains and losses of stream seepage calculated in simulation with the refined model is similar to that calculated in the previous model simulation. The contributing area to the Savage well, under average pumping conditions, decreased by 0.021 square miles from the area calculated in the previous model simulation. The small difference in the contrib- uting recharge area indicates that the additional data did not enhance model simulation and that the conceptual framework for the previous model is accurate.

  14. Watershed models for instructional films

    Treesearch

    Peter E. Black; Raymond E. Leonard

    1970-01-01

    Watershed models, with a special sponge material that simulates soil drainage, were used to make an instructional film on subsurface flow and stream flow. Construction of the models and filming techniques are described.

  15. Construction of estimated flow- and load-duration curves for Kentucky using the Water Availability Tool for Environmental Resources (WATER)

    USGS Publications Warehouse

    Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.

    2012-01-01

    Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.

  16. Modeling the Impact of Stream Discharge Events on Riparian Solute Dynamics.

    PubMed

    Mahmood, Muhammad Nasir; Schmidt, Christian; Fleckenstein, Jan H; Trauth, Nico

    2018-03-22

    The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event. © 2018, National Ground Water Association.

  17. On the cross-stream spectral method for the Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Hodge, Steven L.

    1993-01-01

    Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.

  18. Simulation of groundwater flow and analysis of the effects of water-management options in the North Platte Natural Resources District, Nebraska

    USGS Publications Warehouse

    Peterson, Steven M.; Flynn, Amanda T.; Vrabel, Joseph; Ryter, Derek W.

    2015-08-12

    The calibrated groundwater-flow model was used with the Groundwater-Management Process for the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model, MODFLOW–2005, to provide a tool for the NPNRD to better understand how water-management decisions could affect stream base flows of the North Platte River at Bridgeport, Nebr., streamgage in a future period from 2008 to 2019 under varying climatic conditions. The simulation-optimization model was constructed to analyze the maximum increase in simulated stream base flow that could be obtained with the minimum amount of reductions in groundwater withdrawals for irrigation. A second analysis extended the first to analyze the simulated base-flow benefit of groundwater withdrawals along with application of intentional recharge, that is, water from canals being released into rangeland areas with sandy soils. With optimized groundwater withdrawals and intentional recharge, the maximum simulated stream base flow was 15–23 cubic feet per second (ft3/s) greater than with no management at all, or 10–15 ft3/s larger than with managed groundwater withdrawals only. These results indicate not only the amount that simulated stream base flow can be increased by these management options, but also the locations where the management options provide the most or least benefit to the simulated stream base flow. For the analyses in this report, simulated base flow was best optimized by reductions in groundwater withdrawals north of the North Platte River and in the western half of the area. Intentional recharge sites selected by the optimization had a complex distribution but were more likely to be closer to the North Platte River or its tributaries. Future users of the simulation-optimization model will be able to modify the input files as to type, location, and timing of constraints, decision variables of groundwater withdrawals by zone, and other variables to explore other feasible management scenarios that may yield different increases in simulated future base flow of the North Platte River.

  19. Properties of large scale plasma flow during the early stage of the plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Craven, P.; Torr, D. G.; Richards, P. G.

    1990-01-01

    The objective is to better characterize the macroscopic properties of the interhemisphere plasma flow by solving a more complete set of hydrodynamic equations than that solved previously. Specifically, the ion continuity, momentum and energy equations were solved for the plasma flow along the closed magnetic field lines. During the initial stage of the supersonic outflow in the equatorial region, the ions cool substantially. Using the hydrodynamic model for the large-scale plasma flow, the dynamics of shocks was examined which form in the geomagnetic flux tubes during the early stages of refilling. These shocks are more like those forming in neutral gases than the electrostatic shocks driven by microinstabilities involving ion-ion interaction. Therefore, the shocks seen in the hydrodynamic model are termed as hydrodynamic shocks. Such shocks are generally unsteady and therefore the usual shock jump conditions given by Rankine-Hugoniot relations are not strictly applicable to them. The density, flow velocity and temperature structures associated with the shocks are examined for both asymmetrical and symmetrical flows. In the asymmetrical flow the outflow from one of two conjugate ionospheres is dominant. On the other hand, in the symmetrical case outflows from the two ionospheric sources are identical. Both cases are treated by a two-stream model. In the late type of flow, the early-time refilling shows a relaxation type of oscillation, which is driven by the large-scale interactions between the two identical streams. After this early stage, the resulting temperature structure shows some interesting features. In the equatorial region the streams are isothermal, but in the off-equatorial regions the streams have quite different temperatures, and also densities and flow velocities. The dense and slow stream is found to be warmer than the low-density fast stream. In the late stage of refilling, the temperature is found to steadily increase from the conjugate ionospheres towards the equator; the equatorial temperature is found to be as high as about 8000 K compared to the ionospheric temperature of 3600 K.

  20. Modeling the effects of LID practices on streams health at watershed scale

    NASA Astrophysics Data System (ADS)

    Shannak, S.; Jaber, F. H.

    2013-12-01

    Increasing impervious covers due to urbanization will lead to an increase in runoff volumes, and eventually increase flooding. Stream channels adjust by widening and eroding stream bank which would impact downstream property negatively (Chin and Gregory, 2001). Also, urban runoff drains in sediment bank areas in what's known as riparian zones and constricts stream channels (Walsh, 2009). Both physical and chemical factors associated with urbanization such as high peak flows and low water quality further stress aquatic life and contribute to overall biological condition of urban streams (Maxted et al., 1995). While LID practices have been mentioned and studied in literature for stormwater management, they have not been studied in respect to reducing potential impact on stream health. To evaluate the performance and the effectiveness of LID practices at a watershed scale, sustainable detention pond, bioretention, and permeable pavement will be modeled at watershed scale. These measures affect the storm peak flows and base flow patterns over long periods, and there is a need to characterize their effect on stream bank and bed erosion, and aquatic life. These measures will create a linkage between urban watershed development and stream conditions specifically biological health. The first phase of this study is to design and construct LID practices at the Texas A&M AgriLife Research and Extension Center-Dallas, TX to collect field data about the performance of these practices on a smaller scale. The second phase consists of simulating the performance of LID practices on a watershed scale. This simulation presents a long term model (23 years) using SWAT to evaluate the potential impacts of these practices on; potential stream bank and bed erosion, and potential impact on aquatic life in the Blunn Watershed located in Austin, TX. Sub-daily time step model simulations will be developed to simulate the effectiveness of the three LID practices with respect to reducing potential erosion from stream beds and banks by studying annual average excess shear and reducing potential impact on aquatic life by studying rapid changes and variation in flow regimes in urban streams. This study will contribute to develop a methodology that evaluates the impact of hydrological changes that occur due to urban development, on aquatic life, stream bank and bed erosion. This is an ongoing research project and results will be shared and discussed at the conference.

  1. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    USGS Publications Warehouse

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  2. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  3. Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.

  4. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.

  5. A Framework to Assess the Impacts of Climate Change on ...

    EPA Pesticide Factsheets

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  6. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    NASA Astrophysics Data System (ADS)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  7. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  8. Development and application of a screening model for simulating regional ground-water flow in the St. Croix River basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Feinstein, Daniel T.; Buchwald, Cheryl A.; Dunning, Charles P.; Hunt, Randall J.

    2006-01-01

    A series of databases and an accompanying screening model were constructed by the U.S. Geological Survey, in cooperation with the National Park Service, to better understand the regional ground-water-flow system and its relation to stream drainage in the St. Croix River Basin. The St. Croix River and its tributaries drain about 8,000 square miles in northeastern Minnesota and northwestern Wisconsin. The databases contain information for the entire St. Croix River Basin pertaining to well logs, lithology, thickness of lithologic groups, ground-water levels, streamflow, and well pumpage. Maps and generalized cross sections created from the compiled data show the lithologic groups, extending from the water table to the crystalline bedrock, through which ground water flows. These lithologic groups are: fine-grained unconsolidated deposits; coarse-grained unconsolidated deposits; sandstone bedrock; carbonate bedrock; and other bedrock lithologies including shale, siltstone, conglomerate, and igneous intrusions. The steady-state screening model treats the ground-water-flow system as a single layer with transmissivity zones that reflect the distribution of lithologic groups, and with recharge zones that correspond to general areas of high or low evapotranspiration. The model includes representation of second- and higher-order streams and municipal and other high-capacity production wells. The analytic-element model code GFLOW was used to simulate the regional ground-water flow, the water-table surface across the St. Croix River Basin, and base-flow contributions from ground water to streams. In addition, the model routes tributary base flow through the stream network to the St. Croix River. The parameter-estimation inverse model UCODE was linked to the GFLOW model to select the combination of parameter values best able to match over 5,000 water-level measurements and base-flow estimates at 22 streamflow-gaging stations. Results from the calibrated screening model show ground-water contributing areas for selected stream reaches within the basin. The delineation of these areas is useful to water-resource managers concerned with protection of fisheries and other resources. The model results also identify the areas of the basin where ground-water travel time from the water table to streams and wells is relatively short (less than 50 years). Ninety percent of the simulated ground-water pathlines require travel times between 3 and 260 years. The median pathline distance traversed and the median pathline velocity were 1.7 mi and 177 ft/y, respectively. It is important to recognize the limitations of this screening model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale (hundreds to thousands of feet) flow systems associated with minor water bodies are neglected, and as a result, the model is not useful for simulating typical site-specific problems. Despite its limitations, the model serves as a framework for understanding the regional pattern of ground-water flow and as a starting point for a generation of more targeted and detailed ground-water models that would be needed to address emerging water-supply and water-quality concerns in the St. Croix River Basin.

  9. One-dimensional flow model of the river-hyporheic zone system

    NASA Astrophysics Data System (ADS)

    Pokrajac, D.

    2016-12-01

    The hyporheic zone is a shallow layer beneath natural streams that is characterized by intense exchange of water, nutrients, pollutants and thermal energy. Understanding these exchange processes is crucial for successful modelling of the river hydrodynamics and morphodynamics at various scales from the river corridor up to the river network scale (Cardenas, 2015). Existing simulation models of hyporheic exchange processes are either idealized models of the tracer movement through the river-hyporheic zone system (e.g. TSM, Bencala and Walters, 1983) or detailed models of turbulent flow in a stream, coupled with a conventional 2D Darcian groundwater model (e.g. Cardenas and Wilson, 2007). This paper presents an alternative approach which involves a simple 1-D simulation model of the hyporheic zone system based on the classical SWE equations coupled with the newly developed porous media analogue. This allows incorporating the effects of flow unsteadiness and non-Darcian parameterization od the drag term in the hyporheic zone model. The conceptual model of the stream-hyporheic zone system consists of a 1D model of the open channel flow in the river, coupled with a 1D model of the flow in the hyporheic zone via volume flux due to the difference in the water level in the river and the hyporheic zone. The interaction with the underlying groundwater aquifer is neglected, but coupling the present model with any conventional groundwater model is straightforward. The paper presents the derivation of the 1D flow equations for flow in the hyporheic zone, the details of the numerical scheme used for solving them and the model validation by comparison with published experimental data. References Bencala, K. E., and R. A. Walters (1983) "Simulation of solute transport in a mountain pool-and-riffle stream- a transient storage model", Water Resources Reseach 19(3): 718-724. Cardenas, M. B. (2015) "Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus", Water Resources Research 51: 3601-3616 Cardenas, M. B., and J. L. Wilson (2007) "Dunes, turbulent eddies, and interfacial exchange with permeable sediments", Water Resour. Res. 43:W08412

  10. A viable method to predict acoustic streaming in presence of cavitation.

    PubMed

    Louisnard, O

    2017-03-01

    The steady liquid flow observed under ultrasonic emitters generating acoustic cavitation can be successfully predicted by a standard turbulent flow calculation. The flow is driven by the classical averaged volumetric force density calculated from the acoustic field, but the inertial term in Navier-Stokes equations must be kept, and a turbulent solution must be sought. The acoustic field must be computed with a realistic model, properly accounting for dissipation by the cavitation bubbles [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Comparison with 20kHz experiments, involving the combination of acoustic streaming and a perpendicular forced flow in a duct, shows reasonably good agreement. Moreover, the persistence of the cavitation effects on the wall facing the emitter, in spite of the deflection of the streaming jet, is correctly reproduced by the model. It is also shown that predictions based either on linear acoustics with the correct turbulent solution, or with Louisnard's model with Eckart-Nyborg's theory yields unrealistic results. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. USING TWO-DIMENSIONAL HYDRODYNAMIC MODELS AT SCALES OF ECOLOGICAL IMPORTANCE. (R825760)

    EPA Science Inventory

    Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modelin...

  12. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    DOE PAGES

    Bougamont, M.; Christoffersen, P.; Price, S. F.; ...

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  13. sedFlow - a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2015-01-01

    Especially in mountainous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats and understanding geomorphic evolution. We present the new modelling tool {sedFlow} for simulating fractional bedload transport dynamics in mountain streams. sedFlow is a one-dimensional model that aims to realistically reproduce the total transport volumes and overall morphodynamic changes resulting from sediment transport events such as major floods. The model is intended for temporal scales from the individual event (several hours to few days) up to longer-term evolution of stream channels (several years). The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL) (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015).

  14. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Duck Creek, Madison, Tipton, and Hamilton counties, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    The Indiana State Board of Health is developing a State water-quality plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Duck Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The major point-source waste load affecting Duck Creek is the Elwood wastewater-treatment facility. Natural streamflow during the low flow is zero, so no benefit from dilution is provided. Natural reaeration at the low-flow condition (approximately 3 cubic feet per second), also low, is estimated to be less than 1 per day (base e at 20 Celsius). Consequently, the wasteload assimilative capacity of the stream is low. Effluent ammonia-nitrogen concentrations, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State ammonia-nitrogen toxicity standards (2.5 milligrams per liter from April to October and 4.0 milligrams per liter from November through March). The projected effluent ammonia-nitrogen load will also result in the present Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) not being met. Benthic-oxygen demand may also affect stream water quality. During the summer low-flow, a benthic-oxygen demand of only 0.6 gram per square meter per day would utilize all the streams 's available assimilative capacity. (USGS)

  15. Managing fish habitat for flow and temperature extremes ...

    EPA Pesticide Factsheets

    Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th

  16. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  17. Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Two-Equation Models

    NASA Technical Reports Server (NTRS)

    Liuo, William W.; Shih, Tsan-Hsing; Povinelli, L. A. (Technical Monitor)

    2000-01-01

    Bypass transitional flows over a flat plate were simulated using a Navier-Stokes solver and two equation models. A new model for the bypass transition, which occurs in cases with high free stream turbulence intensity (TI), is described. The new transition model is developed by including an intermittency correction function to an existing two-equation turbulence model. The advantages of using Navier-Stokes equations, as opposed to boundary-layer equations, in bypass transition simulations are also illustrated. The results for two test flows over a flat plate with different levels of free stream turbulence intensity are reported. Comparisons with the experimental measurements show that the new model can capture very well both the onset and the length of bypass transition.

  18. Method to support Total Maximum Daily Load development using hydrologic alteration as a surrogate to address aquatic life impairment in New Jersey streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Riskin, Melissa L.; Reilly, Pamela A.; Colarullo, Susan J.

    2013-01-01

    More than 300 ambient monitoring sites in New Jersey have been identified by the New Jersey Department of Environmental Protection (NJDEP) in its integrated water-quality monitoring and assessment report (that is, the 305(b) Report on general water quality and 303(d) List of waters that do not support their designated uses) as being impaired with respect to aquatic life; however, no unambiguous stressors (for example, nutrients or bacteria) have been identified. Because of the indeterminate nature of the broad range of possible impairments, surrogate measures that more holistically encapsulate the full suite of potential environmental stressors need to be developed. Streamflow alteration resulting from anthropogenic changes in the landscape is one such surrogate. For example, increases in impervious surface cover (ISC) commonly cause increases in surface runoff, which can result in “flashy” hydrology and other changes in the stream corridor that are associated with streamflow alteration. The NJDEP has indicated that methodologies to support a hydrologically based Total Maximum Daily Load (hydro-TMDL) need to be developed in order to identify hydrologic targets that represent a minimal percent deviation from a baseline condition (“minimally altered”) as a surrogate measure to meet criteria in support of designated uses. The primary objective of this study was to develop an applicable hydro-TMDL approach to address aquatic-life impairments associated with hydrologic alteration for New Jersey streams. The U.S. Geological Survey, in cooperation with the NJDEP, identified 51 non- to moderately impaired gaged streamflow sites in the Raritan River Basin for evaluation. Quantile regression (QR) analysis was used to compare flow and precipitation records and identify baseline hydrographs at 37 of these sites. At sites without an appropriately long period of record (POR) or where a baseline hydrograph could not be identified with QR, a rainfall-runoff model was used to develop simulated baseline hydrographs. The hydro-TMDL approach provided an opportunity to evaluate proportional differences in flow attributes between observed and baseline hydrographs and to develop complementary flow-ecology response relations at a subset of Raritan River Basin sites where available flow and ecological information overlapped. The New Jersey Stream Classification Tool (NJSCT) was used to determine the stream class of all 51 study sites by using either an observed or a simulated baseline hydrograph. Two New Jersey stream classes (A and C) were evaluated to help characterize the unique hydrology of the Raritan River Basin. In general, class C streams (1.99–40.7 square miles) had smaller drainage areas than class A streams (0.7–785 square miles). Many of the non-impaired and moderately impaired class A and C streams in the Raritan River Basin were found to have significant hydrologic alteration as indicated by numerous flow values that fell outside the established 25th-to-75th- and the more conservative 40th-to-60th-percentile boundaries. However, percent deviations for the class C streams (defined as moderately stable streams with moderately high base-flow contributions) were, in general, much larger than those for the class A streams (defined as semiflashy streams characterized by moderately low base flow). The greater deviations for class C streams in the hydro-TMDL assessments likely resulted from comparisons that were based solely on simulated baseline hydrographs, which were developed without considering any anthropogenic influences in the basin. In contrast, comparisons for many of the class A streams were made by using an observed baseline, which already includes an implicit level of ISC and other human influences on the landscape. By using the hydro-TMDL approach, numerous flow deviations were identified that were indicative of streams that are highly regulated by reservoirs or dams, streams that are affected by increasing amounts of surface runoff resulting from ISC, and streams that are affected by water abstraction (that is, groundwater or surface-water withdrawals used for agricultural and human supply). Eight of the reservoir- and (or) dam-affected sites showed flow deviations that are indicative of flow-managed systems. For example, indices that account for the timing and magnitude of high and low flows were often found to fall outside the 25th-to-75th-percentile range. In general, at regulated class C streams, annual summer low flows are arriving later and tend to be lower, and high flows are arriving earlier with higher magnitudes of longer duration. At class A streams, high and low flows are arriving later with an overall increase in discharge with respect to the prereservoir baseline conditions. The drainage basins of eight of the study sites had large values of ISC (>10 percent), most likely as a result of expanding urban development. In general, the magnitude and frequency of high flows at class A and C sites with high ISC are increasing and were commonly found to fall outside the 25th-to-75th-percentile range. Additionally, magnitudes of low flows are becoming lower and, although the timing of high flows was highly variable, low-flow events appeared to be arriving earlier than would be expected under normal low-flow conditions. Three of the study sites appeared to be affected by hydrologic changes associated with water abstraction. At these sites, the timing of flows appeared to be altered. For example, low flows tended to arrive earlier and high flows arrived later at two of the three sites. Additionally, the magnitude and duration of low flows were commonly less than the 25th-percentile value and the duration of high flows appeared to increase. A reduced set of hydrologic and ecological variables was used to develop univariate and multivariate flow-ecology response models for the aquatic-invertebrate assemblage. Many hydrologic variables accounting for the duration, magnitude, frequency, and timing of flows were significantly correlated with ecological response. Multiple linear regression (MLR) models were developed to provide a more holistic evaluation of the combined effects of hydrologic alteration and to identify models with two or three hydrologic variables that account for a significant proportion of the variability in invertebrate-assemblage condition as represented by assemblage metric scores. MLR models, derived on the basis of hydrologic attributes, accounted for 35 to 75 percent of the variability in assemblage condition. The hydro-TMDL method developed herein for non- to moderately impaired Raritan River Basin streams utilizes a “surrogate” approach in place of the traditional “pollutant of concern” approach commonly used for TMDL development. Managers can use the results obtained by using the hydro-TMDL method to offset the effects of impervious-surface runoff and altered streamflow and to implement measures designed to achieve the necessary load reductions for the “pollutant of concern” (that is, percentage deviations of stream-class-specific flow-index values outside the established 25th-to-75th-percentile range). In this case, such deviations could represent all or a subset of the altered flow indices that prevent the stream from meeting designated aquatic-life criteria. This hydro-TMDL uses a reference, or attainment stream approach for developing the TMDL endpoint. That is, either observed or simulated baseline hydrographs were selected as appropriate reference conditions on the basis of results of QR analysis and watershed modeling procedures, respectively. For any stream in the Raritan River Basin evaluated as part of this study, the hydro-TMDL can be expressed as the greatest amount of deviation in flow a stream can exhibit without violating the stream’s designated aquatic-life criteria. Use of this surrogate approach is appropriate because flows that fall outside the established percentile ranges are ultimately a function of many anthropogenic modifications of the landscape, including the amount of stormwater runoff generated from impervious surfaces within a given basin, the presence of manmade structures designed to retain or divert water, the magnitude of ground- and surface-water abstraction, and the presence of water-supply processes implemented to support human needs. In addition, the stream-type-specific flow indices used as the basis for the hydro-TMDL approach are useful for representing the hydrologic conditions of class A and C streams/basins because they incorporate the full spectrum of flow conditions (very low to very high) that occur in the stream system over a long period of time, as well as those flow properties that change as a result of seasonal variation. Ultimately, an estimate of the maximum percentage flow reduction that could be allowed will be needed to address the aquatic-life impairments in many of the study streams in the Raritan River Basin and will be necessary for identifying appropriate target flow conditions for hydro-TMDL implementation. As described in this report, a target flow value equal to the 25th- or 75th-percentile flow rate could be selected as the point useful for setting specific hydrologic targets. This selection, however, is a management decision that could vary depending on the designated use of the stream or other regulatory factors (for example, water-supply protection, trout production, antidegradation policies, or special protection designations). In New Jersey streams where no unambiguous stressors can be identified, State monitoring agencies, such as the NJDEP, could choose to require the implementation of a flow-based TMDL that not only supports designated uses, but meets the regulatory requirements under the Clean Water Act, and represents a balance between water supply intended to meet human needs and the conservation of ecosystem integrity.

  19. Modifying WEPP to improve streamflow simulation in a Pacific Northwest watershed

    Treesearch

    A. Srivastava; M. Dobre; J. Q. Wu; W. J. Elliot; E. A. Bruner; S. Dun; E. S. Brooks; I. S. Miller

    2013-01-01

    The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow...

  20. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values to predict stream temperature

    EPA Science Inventory

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to...

  1. Nonlinear acoustic streaming in straight and tapered tubes

    NASA Astrophysics Data System (ADS)

    Tuttle, Brian C.

    In thermoacoustic and Stirling devices such as the pulse-tube refrigerator, efficiency is diminished by the formation of a second-order mean velocity known as Rayleigh streaming. This flow emerges from the interaction of the working gas with the wall of the tube in a thin boundary layer. Recent studies have suggested that streaming velocity can be decreased in a tube by tapering it slightly. This research investigates that claim through the development of a numerical model of Rayleigh streaming in variously tapered tubes. It is found that the numerical simulation of streaming in a straight tube compares well with theory, and the application of different thermal boundary conditions at the tube wall shows that for pressurized helium, inner streaming vortices which appear near an adiabatic tube wall do not develop near an isothermal wall. An order analysis indicates that the temperature dependence of viscosity and thermal conductivity contributes appreciably to an accurate numerical model of streaming. Comparison of Rayleigh streaming in tapered tubes shows the effects of taper angle on the circulation and velocity of the mean flow.

  2. Evaluating ecological effects of small-scale agricultural diversions on stream flow in Coastal California

    NASA Astrophysics Data System (ADS)

    Deitch, M. J.; Kondolf, G. M.; Merenlender, A. M.

    2005-05-01

    In the absence of summer precipitation, grape growers in the California wine country often pump water directly from the stream for frost protection, irrigation, and heat protection. Managers may not be able to evaluate the impacts of the many small diversions on flow or anadromous salmonid habitat because of the uncertainty of human water needs. Building on previous research to predict diversion impacts on streamflow, we monitored flow in Franz Creek (a third-order stream draining 40 km2 in Sonoma County) to evaluate our model, and then measured water coverage in riffles and pools to quantify the change in salmonid habitat that these diversions would cause. Our model reasonably predicted flow decreases from diversion for frost protection: flow decreased by up to 80% on each cold morning, causing 50% riffle loss. Though it was not indicated in our model, the loss of habitat on hot summer days (suggesting diversion for heat protection) was also dramatic: levels dropped suddenly, reducing volume in intermittent pools by over 50%. Both changes in flow led to sudden reductions in habitat, suggesting that diversions are a major impediment to salmonid restoration in the region.

  3. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  4. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    NASA Astrophysics Data System (ADS)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  5. Bypass transition and spot nucleation in boundary layers

    NASA Astrophysics Data System (ADS)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  6. The Regulation of a Spatially Heterogeneous Externality: Tradable Groundwater Permits to Protect Streams

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Brozovic, N.

    2012-12-01

    Groundwater pumping from aquifers can reduce the flow of surface water in nearby streams through a process known as stream depletion. In the United States, recent awareness of this externality has led to intra- and inter-state conflict and rapidly-changing water management policies and institutions. A factor that complicates the design of groundwater management policies to protect streams is the spatial heterogeneity of the stream depletion externality; the marginal damage of groundwater use on stream flows depends crucially on the location of pumping relative to streams. Under these circumstances, economic theory predicts that spatially differentiated policies can achieve an aggregate reduction in stream depletion cost effectively. However, whether spatially differentiated policies offer significant abatement cost savings and environmental improvements over simpler, alternative policies is an empirical question. In this paper, we analyze whether adopting a spatially differentiated groundwater permit system can lead to significant savings in compliance costs while meeting targets on stream protection. Using a population data set of active groundwater wells in the Nebraska portion of the Republican River Basin, we implement an optimization model of each well owner's crop choice, land use, and irrigation decisions to determine the distribution of regulatory costs. We model the externality of pumping on streams by employing an analytical solution from the hydrology literature that determines reductions in stream flow caused by groundwater pumping over space and time. The economic and hydrologic model components are then combined into one optimization framework, which allows us to measure farmer abatement costs and stream flow benefits under a constrained optimal market that features spatially differentiated, tradable groundwater permits. We compare this outcome to the efficiency of alternative second-best policies, including spatially uniform permit markets and pumping restrictions based on geographic zones. Our analysis considers static policies for which abatement is fixed over time, as well as dynamic policies that allow abatement to vary over time and future compliance costs to be subject to a discount rate. We find that if current levels of stream flow in the Republican River Basin are held fixed, regulators can generate most of the potential abatement cost savings by establishing a one-to-one tradable permit system that does not account for spatial heterogeneity. We obtain this surprising result because the agronomic and climatic parameters in our data set that determine farmer abatement costs are spatially correlated with hydrologic parameters that determine the marginal damage of groundwater use on streams. However, we also find that if future legal or ecological circumstances require regulators to increase significantly the protection of streams from current levels, spatially differentiated policies will generate sizable cost savings compared to policies that ignore spatial heterogeneity.

  7. Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.

    2011-12-01

    The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical meteorological variables are also selected using the k-nn method. We present the statistical modeling framework using Generalized Linear Models (GLMs), along with diagnostics and measurements of skill. We will also provide a comparison of the stream temperature projections from the future years of 2020, 2040, and 2080 and discuss the potential implications on fish habitat in the Methow River. Future integration of the hourly climate scenarios in the hydraulic model will provide the ability to assess the spatial extent of habitat impacts and allow the USBR to evaluate the effectiveness of various river restoration projects in maintaining or improving habitat in a changing climate.

  8. Macroscale hydrologic modeling of ecologically relevant flow metrics

    NASA Astrophysics Data System (ADS)

    Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.

    2010-09-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.

  9. Highly Variable Cycle Exhaust Model Test (HVC10)

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Wernet, Mark; Podboy, Gary; Bozak, Rick

    2010-01-01

    Results from acoustic and flow-field studies using the Highly Variable Cycle Exhaust (HVC) model were presented. The model consisted of a lobed mixer on the core stream, an elliptic nozzle on the fan stream, and an ejector. For baseline comparisons, the fan nozzle was replaced with a round nozzle and the ejector doors were removed from the model. Acoustic studies showed far-field noise levels were higher for the HVC model with the ejector than for the baseline configuration. Results from Particle Image Velocimetry (PIV) studies indicated that large flow separation regions occurred along the ejector doors, thus restricting flow through the ejector. Phased array measurements showed noise sources located near the ejector doors for operating conditions where tones were present in the acoustic spectra.

  10. Climatic and geomorphic controls on low flow hydrograph recession

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Daley, M.; Kasaee Roodsari, B.; Shaw, S. B.; McNamara, J.

    2017-12-01

    Large scale operational hydrologic models should be capable of predicting seasonally low flow and stream intermittency as well as peak flow and inundation. We contrast examples of controls on low flow exerted by geomorphic and climatic setting at small catchment study sites in the Northeast and Northwest of the USA to indicate differences in hydrologic processes. Both regions accumulate winter snowpack and have an extended spring freshet, but the Reynolds Creek CZO and Dry Creek Experimental Watershed (both in Idaho mountains) experience a protracted summer drought, with occasional storms whereas precipitation free periods greater than five days are uncommon in the hilly Sleepers River (Vermont), and Yellow Barn State Forest (New York) and at Ley Creek, on a glacial plain (New York). At both Dry Creek and Reynolds Creek, headwater stream flow direction was transverse to groundwater, and below field capacity discharge was well related to either the ground water surface or corresponded to inversion of the hydraulic gradient over the depth of the soil. At all sites except Ley Creek, the headwaters became intermittent as the main tributary discharge declined, often disconnecting the surface source springs and seeps from the valley bottom stream. At the Idaho sites recession analysis for main stem was further complicated by consumptive use for irrigation and domestic wells. Modeling the recession characteristics of these various settings and across stream orders results in a variety of exponent values for power law scaling approaches that indicate the importance of site context for modeling low flow.

  11. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    USGS Publications Warehouse

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  12. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).

    PubMed

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco

    2011-05-01

    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  13. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  14. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  15. Controls on the early Holocene collapse of the Bothnian Sea Ice Stream

    NASA Astrophysics Data System (ADS)

    Clason, Caroline C.; Greenwood, Sarah L.; Selmes, Nick; Lea, James M.; Jamieson, Stewart S. R.; Nick, Faezeh M.; Holmlund, Per

    2016-12-01

    New high-resolution multibeam data in the Gulf of Bothnia reveal for the first time the subglacial environment of a Bothnian Sea Ice Stream. The geomorphological record suggests that increased meltwater production may have been important in driving rapid retreat of Bothnian Sea Ice during deglaciation. Here we apply a well-established, one-dimensional flow line model to simulate ice flow through the Gulf of Bothnia and investigate controls on retreat of the ice stream during the post-Younger Dryas deglaciation of the Fennoscandian Ice Sheet. The relative influence of atmospheric and marine forcings are investigated, with the modeled ice stream exhibiting much greater sensitivity to surface melting, implemented through surface mass balance and hydrofracture-induced calving, than to submarine melting or relative sea level change. Such sensitivity is supported by the presence of extensive meltwater features in the geomorphological record. The modeled ice stream does not demonstrate significant sensitivity to changes in prescribed ice stream width or overall bed slope, but local variations in basal topography and ice stream width result in nonlinear retreat of the grounding line, notably demonstrating points of short-lived retreat slowdown on reverse bed slopes. Retreat of the ice stream was most likely governed by increased ice surface meltwater production, with the modeled retreat rate less sensitive to marine forcings despite the marine setting.

  16. Urban infrastructure and longitudinal stream profiles

    NASA Astrophysics Data System (ADS)

    Lindner, G. A.; Miller, A. J.

    2009-12-01

    Urban streams usually are highly engineered or modified by human activity and are conventionally thought of as being geometrically, and thus hydraulically, simple. The work presented here, a contribution to NSF CNH Project 0709659, is designed to capture the influence of urban infrastructure on the character of longitudinal profiles and flow hydraulics along streams in the Baltimore metropolitan area. Detailed topographic data sets are derived from LiDAR supplemented by total-station surveys of the channel bed and low-flow water surface. These in turn are used to drive 2D depth-averaged hydraulic models comparing flow conditions over a range of urban development patterns and stormwater management regimes. Results from stream surveys of 1-2 km length indicate that channels in older, highly urbanized areas typically have straight planforms and strongly stepped profiles characterized by a series of deep, stagnant pools with short intervening riffles or runs. This pattern is associated with frequent interruption of the channel profile by bridges, culverts, road embankments and other artificial structures. In one survey reach of the Dead Run watershed, 50 percent of cumulative channel length has zero gradient at low flow, and 50 percent of cumulative head loss is accounted for by only 4 percent of channel length. In the suburban Red Run watershed recent development has occurred under strict stormwater management regulations with minimal encroachment on the riparian zone. Although their average gradients are similar, the Red Run survey reach is steeper than the Dead Run reach over most its length but has a smaller fraction of total head loss caused by local slope breaks. Modeling results indicate that these differences in stream morphology are associated with differences in velocity, flow pattern, and residence time at base flow; the stepped nature of the profile in the older urban area becomes less pronounced at intermediate to high flows, but the controlling influence of infrastructure may become dominant again during large floods. Because flashy urban streams have lower and more persistent low flows as well as more extreme flood flows, these hydraulic patterns may have implications for both biogeochemical cycling at base flow and transport and deposition of sediment and other constituents during flood periods. Continuing research will develop a typology of urban streams in terms of the influence of engineering practices on flow patterns and material transport.

  17. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled boundary shear stresses were used to evaluate which flows are responsible for the most mobilization of the bed, and therefore, habitat maintenance. Evaluation of the magnitude and frequency of bed-sediment entrainment shows that most of the habitat maintenance results from flows that occur on average about 4 to 7 days a year. Our analysis documents the geomorphic and hydrologic dynamics that form and maintain habitats in a warmwater stream in the Ozarks. The range of flows that occurs on this stream can be partitioned into those that sustain habitat by providing the combinations of depth and velocity that stream organisms live with most of the time, and those flows that surpass sediment entrainment thresholds, alter stream geomorphology, and therefore maintain habitat. The quantitative relations show sensitivity of habitats to flow variation, but do not address how flow may vary in the future, or the extent to which stream geomorphology may be affected by variations in sediment supply.

  18. Particle migration and sorting in microbubble streaming flows

    PubMed Central

    Thameem, Raqeeb; Hilgenfeldt, Sascha

    2016-01-01

    Ultrasonic driving of semicylindrical microbubbles generates strong streaming flows that are robust over a wide range of driving frequencies. We show that in microchannels, these streaming flow patterns can be combined with Poiseuille flows to achieve two distinctive, highly tunable methods for size-sensitive sorting and trapping of particles much smaller than the bubble itself. This method allows higher throughput than typical passive sorting techniques, since it does not require the inclusion of device features on the order of the particle size. We propose a simple mechanism, based on channel and flow geometry, which reliably describes and predicts the sorting behavior observed in experiment. It is also shown that an asymptotic theory that incorporates the device geometry and superimposed channel flow accurately models key flow features such as peak speeds and particle trajectories, provided it is appropriately modified to account for 3D effects caused by the axial confinement of the bubble. PMID:26958103

  19. Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.

    2007-01-01

    The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.

  20. Acoustic streaming in the cochlea under compressive bone conduction excitation

    NASA Astrophysics Data System (ADS)

    Aho, Katherine; Sunny, Megha; Nabat, Taoufik; Au, Jenny; Thompson, Charles

    2012-02-01

    This work examines the acoustic streaming in the cochlea. A model will be developed to examine the steady flow over a flexible boundary that is induced by compressive excitation of the cochlear capsule. A stokeslet based analysis of oscillatory flows was used to model fluid motion. The influence of evanescent modes on the pressure field is considered as the limit of the aspect ratio epsilon approaches zero. We will show a uniformly valid solution in space.

  1. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for East Fork White River, Bartholomew County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, James G.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in East Fork White River, Bartholomew County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand and the headwater concentrations of carbonaceous biochemical-oxygen demand, nitrogenous biochemical-oxygen demand, and dissolved oxygen are the most significant factors affecting the dissolved-oxygen concentration of East Fork White River downstream from the Columbus wastewater-treatment facility. The effect of effluent from the facility on the water quality of East Fork White River was minimal. The model also indicates that, with a benthic-oxygen demand of approximately 0.65 gram per square meter per day, the stream has no additional waste-load assimilative capacity during summer low flows. Regardless of the quality of the Columbus wastewater effluent, the minimum 24-hour average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams, would not be met. Ammonia toxicity is not a limiting water-quality criterion during summer and winter low flows. During winter low flows, the current carbonaceous biochemical-oxygen demand limits for the Columbus wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard. (USGS)

  2. An analytical method for assessing the spatial and temporal variation of juvenile Atlantic salmon habitat in an upland Scottish river.

    NASA Astrophysics Data System (ADS)

    Buddendorf, B.; Fabris, L.; Malcolm, I.; Lazzaro, G.; Tetzlaff, D.; Botter, G.; Soulsby, C.

    2016-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Stream hydrodynamics have a strong influence on habitat quality and affect the distribution and density of juvenile salmon. As stream hydrodynamics directly relate to stream flow variability and channel morphology, the effects of hydroclimatic drivers on the spatial and temporal variability of habitat suitability can be assessed. Critical Displacement Velocity (CDV), which describes the velocity at which fish can no longer hold station, is one potential approach for characterising habitat suitability. CDV is obtained using an empirical formula that depends on fish size and stream temperature. By characterising the proportion of a reach below CDV it is possible to assess the suitable area. We demonstrate that a generic analytical approach based on field survey and hydraulic modelling can provide insights on the interactions between flow regime and average suitable area (SA) for juvenile salmon that could be extended to other aquatic species. Analytical functions are used to model the pdf of stream flow p(q) and the relationship between flow and suitable area SA(q). Theoretically these functions can assume any form. Here we used a gamma distribution to model p(q) and a gamma function to model SA(q). Integrating the product of these functions we obtain an analytical expression of SA. Since parameters of p(q) can be estimated from meteorological and flow measurements, they can be used directly to predict the effect of flow regime on SA. We show the utility of the approach with reference to 6 electrofishing sites in a single river system where long term (50 years) data on spatially distributed juvenile salmon densities are available.

  3. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    USGS Publications Warehouse

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that recharge from precipitation to the water table is 26 to 28 cm/year. Hydraulic conductivities are 1.7 x 10-6 to 2.7 x 10-6 m/s for glacial deposits, about 3 x 10-7 m/s for bedrock beneath lower hillsides and valleys, and about 6x10-8 m/s for bedrock beneath upper hillsides and hilltops. Analysis of parameter uncertainty indicates that the above values are well constrained, at least within the context of regression analysis. In the regression, several attributes of the ground-water flow model are assumed perfectly known. The hydraulic conductivity for bedrock beneath upper hillsides and hilltops was determined from few data, and additional data are needed to further confirm this result. Model fit was not improved by introducing a 10-to-1 ration of horizontal-to-vertical anisotropy in the hydraulic conductivity of the glacial deposits, or by varying hydraulic conductivity with depth in the modeled part (uppermost 150m) of the bedrock. The calibrated model was used to delineate the Mirror Lake ground-water basin, defined as the volumes of subsurface through which ground water flows from the water table to Mirror Lake or its inlet streams. Results indicate that Mirror Lake and its inlet streams drain an area of ground-water recharge that is about 1.5 times the area of the surface-water basin. The ground-water basin extends far up the hillside on the northwestern part of the study area. Ground water from this area flows at depth under Norris Brook to discharge into Mirror Lake or its inlet streams. As a result, the Mirror Lake ground-water basin extends beneath the adjacent ground-water basin that drains into Norris Brook. Model simulation indicates that approximately 300,000 m3/year of precipitation recharges the Mirror Lake ground-water basin. About half the recharge enters the basin in areas where the simulated water table lies in glacial deposits; the other half enters the basin in areas where the simulated water table lies in be

  4. Sediment transport under wave groups: Relative importance between nonlinear waveshape and nonlinear boundary layer streaming

    USGS Publications Warehouse

    Yu, X.; Hsu, T.-J.; Hanes, D.M.

    2010-01-01

    Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.

  5. Robust estimates of environmental effects on population vital rates: an integrated capture–recapture model of seasonal brook trout growth, survival and movement in a stream network

    USGS Publications Warehouse

    Letcher, Benjamin H.; Schueller, Paul; Bassar, Ronald D.; Nislow, Keith H.; Coombs, Jason A.; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B.; Whiteley, Andrew R.; O'Donnell, Matthew J.; Dubreuil, Todd L.

    2015-01-01

    Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses.We developed an integrated capture–recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival.We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature.Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall.These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful.

  6. Robust estimates of environmental effects on population vital rates: an integrated capture-recapture model of seasonal brook trout growth, survival and movement in a stream network.

    PubMed

    Letcher, Benjamin H; Schueller, Paul; Bassar, Ronald D; Nislow, Keith H; Coombs, Jason A; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B; Whiteley, Andrew R; O'Donnell, Matthew J; Dubreuil, Todd L

    2015-03-01

    Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses. We developed an integrated capture-recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival. We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature. Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall. These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  7. Relationship of stream ecological conditions to simulated hydraulic metrics across a gradient of basin urbanization

    USGS Publications Warehouse

    Steuer, J.J.; Bales, J.D.; Giddings, E.M.P.

    2009-01-01

    The relationships among urbanization, stream hydraulics, and aquatic biology were investigated across a gradient of urbanization in 30 small basins in eastern Wisconsin, USA. Simulation of hydraulic metrics with 1-dimensional unsteady flow models was an effective means for mechanistically coupling the effects of urbanization with stream ecological conditions (i.e., algae, invertebrates, and fish). Urbanization, characterized by household, road, and urban land density, was positively correlated with the lowest shear stress for 2 adjacent transects in a reach for the low-flow summer (p < 0.001) and autumn (p < 0.01) periods. Urbanization also was positively correlated with Reynolds number and % exposed stream bed during months with moderate to low flows. Our study demonstrated the value of temporally and spatially explicit hydraulic models for providing mechanistic insight into the relationships between hydraulic variables and biological responses. For example, the positive correlation between filter-feeding invertebrate richness and minimum 2-transect shear stress observed in our study is consistent with a higher concentration of water-column particulates available for filtration. The strength of correlations between hydraulic and biological metrics is related to the time period (annual, seasonal, or monthly) considered. The hydraulic modeling approach, whether based on hourly or daily flow data, allowed documentation of the effects of a spatially variable response within a reach, and the results suggest that stream response to urbanization varies with hydraulic habitat type. ?? North American Benthological Society.

  8. Explicit modeling of groundwater-surface water interactions using a simple bucket-type model

    NASA Astrophysics Data System (ADS)

    Staudinger, Maria; Carlier, Claire; Brunner, Philip; Seibert, Jan

    2017-04-01

    Longer dry spells can become critical for water supply and groundwater dependent ecosystems. During these dry spells groundwater is often the most relevant source for streams. Hence, the hydrological behavior of a catchment is often dominated by groundwater surface water interactions, which can vary considerably in space and time. While classical hydrological approaches hardly consider this spatial dependence, quantitative, hydrogeological modeling approaches can couple surface runoff processes and groundwater processes. Hydrogeological modeling can help to gain an improved understanding of catchment processes during low flow. However, due to their complex parametrization and large computational requirements, such hydrogeological models are difficult to employ at catchment scale, particularly for a larger set of catchments. Then bucket-type hydrological models remain a practical alternative. In this study we combine the strengths of both the hydrogeological and bucket-type hydrological models to better understand low flow processes and ultimately to use this knowledge for low flow projections. Bucket-type hydrological models have traditionally not been developed with focus on the simulation of low flow. One consequence is that interactions between surface and groundwater are not explicitly considered. Water fluxes in bucket-type hydrological models are commonly simulated only in one direction, namely from the groundwater to the stream but not from the stream to the groundwater. This latter flux, however, can become more important during low flow situations. We therefore further developed the bucket-type hydrological model HBV to simulate low flow situations by allowing for exchange in both directions i.e. also from the stream to the groundwater. The additional HBV exchange box is developed by using a variety of synthetic hydrogeological models as training set that were generated using a fully coupled, physically based hydrogeological model. In this way processes that occur in different spatial settings within the catchment are translated to functional relationships and effective parameter values for the conceptual exchange box can be extracted. Here, we show the development and evaluation of the HBV exchange box. We further show a first application in real catchments and evaluate the model performance by comparing the simulations to benchmark models that do not consider groundwater surface water interaction.

  9. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    USGS Publications Warehouse

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  10. Hydraulic and Thermal Response to Intermittent Pumping in Unconfined Alluvial Aquifers along a Regulated Stream

    NASA Astrophysics Data System (ADS)

    Maharjan, Madan

    Groundwater response to stream stage fluctuations was studied using a year-long time series of stream stage and well heads in Glen Dale and New Martinsville, WV. Stream stage fluctuations exerted primary control over groundwater levels, especially during high flows. The location and operation of river pools created by dams alter groundwater flow paths and velocities. Aquifers are more prone to surface water infiltration in the upper reaches of pools than in lower reaches. Aquifer diffusivity is heterogeneous within and between the two sites. Temperature fluctuations were observed for 2.5 years in 14 wells in three alluvial aquifers. Temperature signals have 2 components corresponding to pump-on and pump-off periods. Both components vary seasonality at different magnitudes. While pump-off temperatures fluctuated up to 3.8o C seasonally, short-term temperature shifts induced by turning the pump on were 0.2 to 2.5o C. Pumping-induced temperature shifts were highest in magnitude in summer and winter. Groundwater temperature lagged behind that of surface water by approximately six months. Pumping induced and seasonal temperature shifts were spatially and temporally complex but indicate stream exfiltration is a major driver for a number of these wells. Numerical simulation of aquifer response to pumping show different conditions before and after well-field development. During pre-development, the stream was losing at high flow and gaining at low flow. During post-development, however, the stream was losing at high flow and spatially variable at low flow. While bank storage gained only during high stage, stream exfiltration occurred year-round. Pumping induced stream exfiltration by creating an extensive cone of depression beneath the stream in both upstream and downstream directions. Spatially and temporally variable groundwater-surface water interaction next to a regulated stream were studied using analytical and numerical models, based on field observations. Seasonality plays an important role in these interactions, but human activity may also alter its intensity.

  11. Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession

    NASA Astrophysics Data System (ADS)

    Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.; Harman, Ciaran; Gooseff, Michael N.; Singha, Kamini

    2016-02-01

    Solute transport along riparian and hyporheic flow paths is broadly expected to respond to dynamic hydrologic forcing by streams, aquifers, and hillslopes. However, direct observation of these dynamic responses is lacking, as is the relative control of geologic setting as a control on responses to dynamic hydrologic forcing. We conducted a series of four stream solute tracer injections through base flow recession in each of two watersheds with contrasting valley morphology in the H.J. Andrews Experimental Forest, monitoring tracer concentrations in the stream and in a network of shallow riparian wells in each watershed. We found hyporheic mean arrival time, temporal variance, and fraction of stream water in the bedrock-constrained valley bottom and near large roughness elements in the wider valley bottom were not variable with discharge, suggesting minimal control by hydrologic forcing. Conversely, we observed increases in mean arrival time and temporal variance and decreasing fraction stream water with decreasing discharge near the hillslopes in the wider valley bottom. This may indicate changes in stream discharge and valley bottom hydrology control transport in less constrained locations. We detail five hydrogeomorphic responses to base flow recession to explain observed spatial and temporal patterns in the interactions between streams and their valley bottoms. Models able to account for the transition from geologically dominated processes in the near-stream subsurface to hydrologically dominated processes near the hillslope will be required to predict solute transport and fate in valley bottoms of headwater mountain streams.

  12. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.

  13. Stream fish colonization but not persistence varies regionally across a large North American river basin

    USGS Publications Warehouse

    Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.

    2018-01-01

    Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.

  14. Surface-water and groundwater interactions in an extensively mined watershed, upper Schuylkill River, Pennsylvania, USA

    USGS Publications Warehouse

    Cravotta, Charles A.; Goode, Daniel J.; Bartles, Michael D.; Risser, Dennis W.; Galeone, Daniel G.

    2014-01-01

    Streams crossing underground coal mines may lose flow, while abandoned mine drainage (AMD) restores flow downstream. During 2005-12, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near-neutral pH and elevated concentrations of iron, manganese, and sulfate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared to nearby streams, consistent with rapid infiltration and slow release of groundwater from the mine. Downstream of the AMD, dissolved iron was attenuated by oxidation and precipitation while dissolved CO2 degassed and pH increased. During high-flow conditions, the AMD and downstream waters exhibited decreased pH, iron, and sulfate with increased acidity that were modeled by mixing net-alkaline AMD with recharge or runoff having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high-flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and the West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality in streams.

  15. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were 12 to 13 percent of total annual flow in some subbasins and of total monthly flow throughout the basin in summer and early fall. Water-management alternatives were evaluated by simulating hypothetical scenarios of increased withdrawals and altered recharge for average 1989?98 conditions with the flow models. Increased withdrawals to maximum State-permitted levels would result in withdrawals of about 15 million gallons per day, or about 50 percent more than current withdrawals. Model-calculated effects of these increased withdrawals included reductions in stream base flow that were greatest (as a percentage of total flow) in late summer and early fall. These reductions ranged from less than 5 percent to more than 60 percent of model-calculated 1989?98 base flow along reaches of the Charles River and major tributaries during low-flow periods. Reductions in base flow generally were comparable to upstream increases in withdrawals, but were slightly less than upstream withdrawals in areas where septic-system return flow was simulated. Increased withdrawals also increased the proportion of wastewater in the Charles River downstream of treatment facilities. The wastewater component increased downstream from a treatment facility in Milford from 80 percent of September base flow under 1989?98 conditions to 90 percent of base flow, and from 18 to 27 percent of September base flow downstream of a treatment facility in Medway. In another set of hypothetical scenarios, additional recharge equal to the transfer of water out of a typical subbasin by sewers was found to increase model-calculated base flows by about 12 percent of model-calculated base flows. Addition of recharge equal to that available from artificial recharge of residential rooftop runoff had smaller effects, augmenting simulated September base flow by about 3 percent. Simulation-optimization methods were applied to an area near Populatic Pond and the confluence of the Mill and Charles Rivers in Franklin,

  16. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    PubMed

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Two-stream modeling of plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Guiter, S. M.; Gombosi, T. I.; Rasmussen, C. E.

    1995-01-01

    Plasmaspheric refilling on an L = 4 flux tube was studied by using a time-dependent, hydrodynamic plasmaspheric flow model in which the ion streams from the two hemispheres are treated as distinct fluids. In the model the continuity, momentum, and energy equations of a two-ion (O(+) and H(+)), quasi-neutral, currentless plasma are solved along a closed geomagnetic field line; diffusive equilibrium is not assumed. collisions between all stream pairs and with neutral species are included. The model includes a corotating, tilted dipole magnetic field and neutral winds. Ionospheric sources and sinks are accounted for in a self-consistent manner. Electrons are assumed to be heated by photoelectrons. The model flux tube extends from a 200-km altitude in one hemisphere to a 200-km altitude in the other hemisphere. Initially, the upwelling streams pass through each other practically unimpeded. When the streams approach the boundary in the conjugate ionosphere, a shock develops there, which moves upward and dissipates slowly; at about the same time a reverse shock develops in the hemisphere of origin, which moves upward. After about 1 hour, large shocks develop in each stream near the equator; these shocks move toward the equator and downward after crossing the equator. However, these shocks are probably artificial, because counterstreaming flows occur in each H(+) fluid, which the model can only handle by creating shocks.

  18. Effects of Surface-Water Diversions on Habitat Availability for Native Macrofauna, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Wolff, Reuben H.

    2005-01-01

    Effects of surface-water diversions on habitat availability for native stream fauna (fish, shrimp, and snails) are described for 21 streams in northeast Maui, Hawaii. Five streams (Waikamoi, Honomanu, Wailuanui, Kopiliula, and Hanawi Streams) were chosen as representative streams for intensive study. On each of the five streams, three representative reaches were selected: (1) immediately upstream of major surface-water diversions, (2) midway to the coast, and (3) near the coast. This study focused on five amphidromous native aquatic species (alamoo, nopili, nakea, opae, and hihiwai) that are abundant in the study area. The Physical Habitat Simulation (PHABSIM) System, which incorporates hydrology, stream morphology and microhabitat preferences to explore relations between streamflow and habitat availability, was used to simulate habitat/discharge relations for various species and life stages, and to provide quantitative habitat comparisons at different streamflows of interest. Hydrologic data, collected over a range of low-flow discharges, were used to calibrate hydraulic models of selected transects across the streams. The models were then used to predict water depth and velocity (expressed as a Froude number) over a range of discharges up to estimates of natural median streamflow. The biological importance of the stream hydraulic attributes was then assessed with the statistically derived suitability criteria for each native species and life stage that were developed as part of this study to produce a relation between discharge and habitat availability. The final output was expressed as a weighted habitat area of streambed for a representative stream reach. PHABSIM model results are presented to show the area of estimated usable bed habitat over a range of streamflows relative to natural conditions. In general, the models show a continuous decrease in habitat for all modeled species as streamflow is decreased from natural conditions. The PHABSIM modeling results from the intensively studied streams were normalized to develop relations between the relative amount of diversion from a stream and the resulting relative change in habitat in the stream. These relations can be used to estimate changes in habitat for diverted streams in the study area that were not intensively studied. The relations indicate that the addition of even a small amount of water to a dry stream has a significant effect on the amount of habitat available. Equations relating stream base-flow changes to habitat changes can be used to provide an estimate of the relative habitat change in the study area streams for which estimates of diverted and natural median base flow have been determined but for which detailed habitat models were not developed. Stream water temperatures, which could have an effect on stream ecology and taro cultivation, were measured in five streams in the study area. In general, the stream temperatures measured at any of the monitoring sites were not elevated enough, based on currently available information, to adversely effect the growth or mortality of native aquatic macrofauna or to cause wetland taro to be susceptible to fungi and associated rotting diseases.

  19. Spatially-Distributed Stream Flow and Nutrient Dynamics Simulations Using the Component-Based AgroEcoSystem-Watershed (AgES-W) Model

    NASA Astrophysics Data System (ADS)

    Ascough, J. C.; David, O.; Heathman, G. C.; Smith, D. R.; Green, T. R.; Krause, P.; Kipka, H.; Fink, M.

    2010-12-01

    The Object Modeling System 3 (OMS3), currently being developed by the USDA-ARS Agricultural Systems Research Unit and Colorado State University (Fort Collins, CO), provides a component-based environmental modeling framework which allows the implementation of single- or multi-process modules that can be developed and applied as custom-tailored model configurations. OMS3 as a “lightweight” modeling framework contains four primary foundations: modeling resources (e.g., components) annotated with modeling metadata; domain specific knowledge bases and ontologies; tools for calibration, sensitivity analysis, and model optimization; and methods for model integration and performance scalability. The core is able to manage modeling resources and development tools for model and simulation creation, execution, evaluation, and documentation. OMS3 is based on the Java platform but is highly interoperable with C, C++, and FORTRAN on all major operating systems and architectures. The ARS Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Project Plan provides detailed descriptions of ongoing research studies at 14 benchmark watersheds in the United States. In order to satisfy the requirements of CEAP WAS Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model development approach was initiated to take advantage of OMS3 modeling framework capabilities. Specific objectives of this study were to: 1) disaggregate and refactor various agroecosystem models (e.g., J2K-S, SWAT, WEPP) and implement hydrological, N dynamics, and crop growth science components under OMS3, 2) assemble a new modular watershed scale model for fully-distributed transfer of water and N loading between land units and stream channels, and 3) evaluate the accuracy and applicability of the modular watershed model for estimating stream flow and N dynamics. The Cedar Creek watershed (CCW) in northeastern Indiana, USA was selected for application of the OMS3-based AgroEcoSystem-Watershed (AgES-W) model. AgES-W performance for stream flow and N loading was assessed using Nash-Sutcliffe model efficiency (ENS) and percent bias (PBIAS) model evaluation statistics. Comparisons of daily and average monthly simulated and observed stream flow and N loads for the 1997-2005 simulation period resulted in PBIAS and ENS values that were similar or better than those reported in the literature for SWAT stream flow and N loading predictions at a similar scale. The results show that the AgES-W model was able to reproduce the hydrological and N dynamics of the CCW with sufficient quality, and should serve as a foundation upon which to better quantify additional water quality indicators (e.g., sediment transport and P dynamics) at the watershed scale.

  20. Effects of Recent Debris Flows on Stream Ecosystems and Food Webs in Small Watersheds in the Central Klamath Mountains, NW California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; de La Fuente, J.

    2008-12-01

    Debris flows are common erosional processes in steep mountain areas throughout the world, but little is known about the long-term ecological effects of debris flows on stream ecosystems. Based on debris flow histories that were developed for each of ten tributary basins, we classified channels as having experienced recent (1997) or older (pre-1997) debris flows. Of the streams classified as older debris flow streams, three streams experienced debris flows during floods in 1964 or 1974, while two streams showed little or no evidence of debris flow activity in the 20th century. White alder (Alnus rhombifolia) was the dominant pioneer tree species in recent debris flow streams, forming localized dense patches of canopy cover. Maximum temperatures and daily temperature ranges were significantly higher in recent debris flow streams than in older debris flow streams. Debris flows resulted in a shift in food webs from allochthonous to autochthonous energy sources. Primary productivity, as measured by oxygen change during the day, was greater in recent debris flow streams, resulting in increased abundances of grazers such as the armored caddisfly Glossosoma spp. Detritivorous stoneflies were virtually absent in recent debris flow streams because of the lack of year-round, diverse sources of leaf litter. Rainbow trout (Oncorhynchus mykiss) were abundant in four of the recent debris flow streams. Poor recolonizers, such as the Pacific giant salamander (Dicamptodon tenebrosus), coastal tailed frog (Ascaphus truei), and signal crayfish (Pacifistacus leniusculus), were virtually absent in recent debris flow streams. Forest and watershed managers should consider the role of forest disturbances, such as road networks, on debris flow frequency and intensity, and the resulting ecological effects on stream ecosystems.

  1. Flooding in ephemeral streams: incorporating transmission losses

    USDA-ARS?s Scientific Manuscript database

    Stream flow in semiarid lands commonly occurs as a form of flash floods in dry ephemeral stream beds. The goal of this research is to couple hydrological and hydraulic models treats channel transmission losses and test the methodology in the USDA-ARS Walnut Gulch Experimental Watershed (WGEW). For h...

  2. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values

    EPA Science Inventory

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to an...

  3. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  4. Vegetation Impacts on Near Bank Flows

    NASA Astrophysics Data System (ADS)

    Hopkinson, L. C.; Wynn, T. M.

    2008-12-01

    Sediment, a leading cause of water quality impairment, damages aquatic ecosystems and interferes with recreational uses and water treatment processes. A significant sediment source to streams, streambank retreat, has largely been ignored. Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on near bank flows need to be quantified. The goal of this research is to evaluate the effects of streambank vegetation on near bank flows and boundary shear stress. A flume experiment was conducted comparing three distinct streambank vegetation types: trees, shrubs, and grass. A second order prototype stream (Tom's Creek in Blacksburg, VA), with individual reaches dominated by the vegetation treatments was modeled using a fixed-bed Froude-scale modeling technique. One model streambank of the prototype stream was constructed for each vegetation type and compared to a bare control (only grain roughness). Simulated vegetation (e.g. woven grass mat and wooden dowels) was attached in locations identified in a field survey. Velocity profiles perpendicular to the flume model boundary will be evaluated along five cross sections for each vegetation treatment. Reynolds, law of the wall, and turbulent kinetic energy shear stresses will be analyzed using velocity measurements made with a three-dimensional acoustic Doppler velocimeter (ADV). Velocity profiles perpendicular to the flume model streambank will also be evaluated. The velocity profiles will be compared among vegetation types to see if profiles are similar along the bank face. This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The results will also aide in quantifying sediment inputs from streambanks, providing quantitative information for stream restoration projects and watershed management planning.

  5. MODELING PHYSICAL HABITAT PARAMETERS

    EPA Science Inventory

    Salmonid populations can be affected by alterations in stream physical habitat. Fish productivity is determined by the stream's physical habitat structure ( channel form, substrate distribution, riparian vegetation), water quality, flow regime and inputs from the watershed (sedim...

  6. Inferring Aquifer Transmissivity from River Flow Data

    NASA Astrophysics Data System (ADS)

    Trichakis, Ioannis; Pistocchi, Alberto

    2016-04-01

    Daily streamflow data is the measurable result of many different hydrological processes within a basin; therefore, it includes information about all these processes. In this work, recession analysis applied to a pan-European dataset of measured streamflow was used to estimate hydrogeological parameters of the aquifers that contribute to the stream flow. Under the assumption that base-flow in times of no precipitation is mainly due to groundwater, we estimated parameters of European shallow aquifers connected with the stream network, and identified on the basis of the 1:1,500,000 scale Hydrogeological map of Europe. To this end, Master recession curves (MRCs) were constructed based on the RECESS model of the USGS for 1601 stream gauge stations across Europe. The process consists of three stages. Firstly, the model analyses the stream flow time-series. Then, it uses regression to calculate the recession index. Finally, it infers characteristics of the aquifer from the recession index. During time-series analysis, the model identifies those segments, where the number of successive recession days is above a certain threshold. The reason for this pre-processing lies in the necessity for an adequate number of points when performing regression at a later stage. The recession index derives from the semi-logarithmic plot of stream flow over time, and the post processing involves the calculation of geometrical parameters of the watershed through a GIS platform. The program scans the full stream flow dataset of all the stations. For each station, it identifies the segments with continuous recession that exceed a predefined number of days. When the algorithm finds all the segments of a certain station, it analyses them and calculates the best linear fit between time and the logarithm of flow. The algorithm repeats this procedure for the full number of segments, thus it calculates many different values of recession index for each station. After the program has found all the recession segments, it performs calculations to determine the expression for the MRC. Further processing of the MRCs can yield estimates of transmissivity or response time representative of the aquifers upstream of the station. These estimates can be useful for large scale (e.g. continental) groundwater modelling. The above procedure allowed calculating values of transmissivity for a large share of European aquifers, ranging from Tmin = 4.13E-04 m²/d to Tmax = 8.12E+03 m²/d, with an average value Taverage = 9.65E+01 m²/d. These results are in line with the literature, indicating that the procedure may provide realistic results for large-scale groundwater modelling. In this contribution we present the results in the perspective of their application for the parameterization of a pan-European bi-dimensional shallow groundwater flow model.

  7. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    USGS Publications Warehouse

    Gomez-Velez, Jesus D.; Harvey, Judson

    2014-01-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  8. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    NASA Astrophysics Data System (ADS)

    Gomez-Velez, Jesus D.; Harvey, Judson W.

    2014-09-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  9. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved representation of subsurface geology and explicitly simulates the effects of hydrologically important fault zones not included in the previous model.The upper Deschutes Basin GSFLOW model was calibrated using an iterative trial and error approach using measured water-level elevations (water levels) from 800 wells, 144 of which have time series of 10 or more measurements. Streamflow was calibrated using data from 21 gage locations. At 14 locations where measured flows are heavily influenced by reservoir operations and irrigation diversions, so called “naturalized” flows, with the effects of reservoirs and diversion removed, developed by the Bureau of Reclamation, were used for calibration. Surface energy and moisture processes such as solar radiation, snow accumulation and melting, and evapotranspiration were calibrated using national datasets as well as data from long-term measurement sites in the basin. The calibrated Deschutes GSFLOW model requires daily precipitation, minimum and maximum air temperature data, and monthly data describing groundwater pumping and artificial recharge from leaking irrigation canals (which are a significant source of groundwater recharge).The calibrated model simulates the geographic distribution of hydraulic head over the 5,000 ft range measured in the basin, with a median absolute residual of about 53 ft. Temporal variations in head resulting from climate cycles, pumping, and canal leakage are well simulated over the model area. Simulated daily streamflow matches gaged flows or calculated naturalized flows for streams including the Crooked and Metolius Rivers, and lower parts of the mainstem Deschutes River. Seasonal patterns of runoff are less well fit in some upper basin streams. Annual water balances of streamflow are good over most of the model domain. Model fit and overall capabilities are appropriate for the objectives of the project.The integrated model results confirm findings from other studies and models indicating that most streamflow in the upper Deschutes Basin comes directly from groundwater discharge. The integrated model provides additional insights about the components of streamflow including direct groundwater discharge to streams, interflow, groundwater discharge to the land surface (Dunnian flow), and direct runoff (Hortonian flow). The new model provides improved capability for exploring the timing and distribution of streamflow capture by wells, and the hydrologic response to changes in other external stresses such as canal operation, irrigation, and drought. Because the model uses basic meteorological data as the primary input; and simulates surface energy and moisture balances, groundwater recharge and flow, and all components of streamflow; it is well suited for exploring the hydrologic response to climate change, although no such simulations are included in this report.The model was developed as a tool for future application; however, example simulations are provided in this report. In the example simulations, the model is used to explore the influence of well location and geologic structure on stream capture by pumping wells. Wells were simulated at three locations within a 12-mi area close to known groundwater discharge areas and crossed by a regional fault zone. Simulations indicate that the magnitude and timing of stream capture from pumping is largely controlled by the geographic location of the wells, but that faults can have a large influence on the propagation of pumping stresses.

  10. Design of Remediation Actions for Nutrient Mitigation in the Hyporheic Zone

    NASA Astrophysics Data System (ADS)

    Morén, I.; Wörman, A.; Riml, J.

    2017-11-01

    Although hyporheic exchange has been shown to be of great importance for the overall water quality of streams, it is rarely considered quantitatively in stream remediation projects. A main driver of hyporheic exchange is the hydraulic head fluctuation along the streambed, which can be enhanced by modifications of the streambed topography. Here we present an analytical 2-D spectral subsurface flow model to estimate the hyporheic exchange associated with streambed topographies over a wide range of spatial scales; a model that was validated using tracer-test-results and measurements of hydraulic conductivity. Specifically, engineered steps in the stream were shown to induce a larger hyporheic exchange velocity and shorter hyporheic residence times compared to the observed topography in Tullstorps Brook, Sweden. Hyporheic properties were used to parameterize a longitudinal transport model that accounted for reactions in terms of first-order decay and instantaneous adsorption. Theoretical analyses of the mitigation effect for nitrate due to denitrification in the hyporheic zone show that there is a Damköhler number of the hyporheic zone, associated with several different stream geomorphologies, that optimizes nitrate mass removal on stream reach scale. This optimum can be limited by the available hydraulic head gradient given by the slope of the stream and the geological constraints of the streambed. The model illustrates the complex interactions between design strategies for nutrient mitigation, hyporheic flow patterns, and stream biogeochemistry and highlights the importance to diagnose a stream prior remediation, specifically to evaluate if remediation targets are transport or reaction controlled.

  11. Prediction and validation of blowout limits of co-flowing jet diffusion flames -- effect of dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karbasi, M.; Wierzba, I.

    1996-10-01

    The blowout limits of a co-flowing turbulent methane jet diffusion flame with addition of diluent in either jet fuel or surrounding air stream is studied both analytically and experimentally. Helium, nitrogen and carbon dioxide were employed as the diluents. Experiments indicated that an addition of diluents to the jet fuel or surrounding air stream decreased the stability limit of the jet diffusion flames. The strongest effect was observed with carbon dioxide as the diluent followed by nitrogen and then by helium. A model of extinction based on recognized criterion of the mixing time scale to characteristic combustion time scale ratiomore » using experimentally derived correlations is proposed. It is capable of predicting the large reduction of the jet blowout velocity due to a relatively small increase in the co-flow stream velocity along with an increase in the concentration of diluent in either the jet fuel or surrounding air stream. Experiments were carried out to validate the model. The predicted blowout velocities of turbulent jet diffusion flames obtained using this model are in good agreement with the corresponding experimental data.« less

  12. Is hyporheic flow an indicator for salmonid spawning site selection?

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Tonina, D.; Marzadri, A.; McKean, J. A.; Isaak, D.

    2015-12-01

    Several studies have investigated the role of hydraulic variables in the selection of spawning sites by salmonids. Some recent studies suggest that the intensity of the ambient hyporheic flow, that present without a salmon egg pocket, is a cue for spawning site selection, but others have argued against it. We tested this hypothesis by using a unique dataset of field surveyed spawning site locations and an unprecedented meter-scale resolution bathymetry of a 13.5 km long reach of Bear Valley Creek (Idaho, USA), an important Chinook salmon spawning stream. We used a two-dimensional surface water model to quantify stream hydraulics and a three-dimensional hyporheic model to quantify the hyporheic flows. Our results show that the intensity of ambient hyporheic flows is not a statistically significant variable for spawning site selection. Conversely, the intensity of the water surface curvature and the habitat quality, quantified as a function of stream hydraulics and morphology, are the most important variables for salmonid spawning site selection. KEY WORDS: Salmonid spawning habitat, pool-riffle system, habitat quality, surface water curvature, hyporheic flow

  13. Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM

    NASA Astrophysics Data System (ADS)

    Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.

    2013-06-01

    The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.

  14. Description and User Manual for a Web-Based Interface to a Transit-Loss Accounting Program for Monument and Fountain Creeks, El Paso and Pueblo Counties, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Krammes, Gary S.; Beal, Vivian J.

    2007-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, the Colorado Water Conservation Board, and the El Paso County Water Authority, began a study in 2004 with the following objectives: (1) Apply a stream-aquifer model to Monument Creek, (2) use the results of the modeling to develop a transit-loss accounting program for Monument Creek, (3) revise an existing accounting program for Fountain Creek to easily incorporate ongoing and future changes in management of return flows of reusable water, and (4) integrate the two accounting programs into a single program and develop a Web-based interface to the integrated program that incorporates simple and reliable data entry that is automated to the fullest extent possible. This report describes the results of completing objectives (2), (3), and (4) of that study. The accounting program for Monument Creek was developed first by (1) using the existing accounting program for Fountain Creek as a prototype, (2) incorporating the transit-loss results from a stream-aquifer modeling analysis of Monument Creek, and (3) developing new output reports. The capabilities of the existing accounting program for Fountain Creek then were incorporated into the program for Monument Creek and the output reports were expanded to include Fountain Creek. A Web-based interface to the new transit-loss accounting program then was developed that provided automated data entry. An integrated system of 34 nodes and 33 subreaches was integrated by combining the independent node and subreach systems used in the previously completed stream-aquifer modeling studies for the Monument and Fountain Creek reaches. Important operational criteria that were implemented in the new transit-loss accounting program for Monument and Fountain Creeks included the following: (1) Retain all the reusable water-management capabilities incorporated into the existing accounting program for Fountain Creek; (2) enable daily accounting and transit-loss computations for a variable number of reusable return flows discharged into Monument Creek at selected locations; (3) enable diversion of all or a part of a reusable return flow at any selected node for purposes of storage in off-stream reservoirs or other similar types of reusable water management; (4) and provide flexibility in the accounting program to change the number of return-flow entities, the locations at which the return flows discharge into Monument or Fountain Creeks, or the locations to which the return flows are delivered. The primary component of the Web-based interface is a data-entry form that displays data stored in the accounting program input file; the data-entry form allows for entry and modification of new data, which then is rewritten to the input file. When the data-entry form is displayed, up-to-date discharge data for each station are automatically computed and entered on the data-entry form. Data for native return flows, reusable return flows, reusable return flow diversions, and native diversions also are entered automatically or manually, if needed. In computing the estimated quantities of reusable return flow and the associated transit losses, the accounting program uses two sets of computations. The first set of computations is made between any two adjacent streamflow-gaging stations (termed 'stream-segment loop'); the primary purpose of the stream-segment loop is to estimate the loss or gain in native discharge between the two adjacent streamflow-gaging stations. The second set of computations is made between any two adjacent nodes (termed 'subreach loop'); the actual transit-loss computations are made in the subreach loop, using the result from the stream-segment loop. The stream-segment loop is completed for a stream segment, and then the subreach loop is completed for each subreach within the segment. When the subreach loop is completed for all subreaches within a stream segment, the stream-segment loop is initiated for the ne

  15. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.

    PubMed

    Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel

    2014-02-05

    Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Modeling the Effects of Onsite Wastewater Treatment Systems on Nitrate Loads Using SWAT in an Urban Watershed of Metropolitan Atlanta.

    PubMed

    Hoghooghi, Nahal; Radcliffe, David E; Habteselassie, Mussie Y; Jeong, Jaehak

    2017-05-01

    Onsite wastewater treatment systems (OWTSs) can be a source of nitrogen (N) pollution in both surface and ground waters. In metropolitan Atlanta, GA, >26% of homes are on OWTSs. In a previous article, we used the Soil Water Assessment Tool to model the effect of OWTSs on stream flow in the Big Haynes Creek Watershed in metropolitan Atlanta. The objective of this study was to estimate the effect of OWTSs, including failing systems, on nitrate as N (NO-N) load in the same watershed. Big Haynes Creek has a drainage area of 44 km with mainly urban land use (67%), and most of the homes use OWTSs. A USGS gauge station where stream flow was measured daily and NO-N concentrations were measured monthly was used as the outlet. The model was simulated for 12 yr. Overall, the model showed satisfactory daily stream flow and NO-N loads with Nash-Sutcliffe coefficients of 0.62 and 0.58 for the calibration period and 0.67 and 0.33 for the validation period at the outlet of the Big Haynes Watershed. Onsite wastewater treatment systems caused an average increase in NO-N load of 23% at the watershed scale and 29% at the outlet of a subbasin with the highest density of OWTSs. Failing OWTSs were estimated to be 1% of the total systems and did not have a large impact on stream flow or NO-N load. The NO-N load was 74% of the total N load in the watershed, indicating the important effect of OWTSs on stream loads in this urban watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Klages, Johann P.; Kuhn, Gerhard; Graham, Alastair G. C.; Smith, James A.; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Larter, Rob D.; Gohl, Karsten

    2015-04-01

    Multibeam swath bathymetry datasets collected over the past two decades have been compiled to identify palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment. We mapped 3010 glacial landforms to reconstruct palaeo-ice flow in the ~250 km-long Abbot Glacial Trough that was occupied by a large palaeo-ice stream, fed by two tributaries (Cosgrove and Abbot) that reached the continental shelf edge during the last maximum ice-sheet advance. The mapping has enabled a clear differentiation between glacial landforms interpreted as indicative of wet- (e.g. mega-scale glacial lineations) and cold-based ice (e.g. hill-hole pairs) during the last glaciation of the continental shelf. Both the regions of fast palaeo-ice flow within the palaeo-ice stream troughs, and the regions of slow palaeo-ice flow on adjacent seafloor highs (referred to as inter-ice stream ridges) additionally record glacial landforms such as grounding-zone wedges and recessional moraines that indicate grounding line stillstands of the ice sheet during the last deglaciation from the shelf. As the palaeo-ice stream flowed along a trough with variable geometry and variable subglacial substrate, it appears that trough sections characterized by constrictions and outcropping hard substrate that changes the bed gradient, led the pace of grounding-line retreat to slow and subsequently pause, resulting in the deposition of grounding-zone wedges. The stepped retreat recorded within the Abbot Glacial Trough corresponds well to post-glacial stepped retreat interpreted for the neighbouring Pine Island-Thwaites Palaeo-Ice Stream trough, thus suggesting a uniform pattern of episodic retreat across the eastern Amundsen Sea Embayment. The correlation of episodic retreat features with geological boundaries further emphasises the significance of subglacial geology in steering ice stream flow. Our new geomorphological map of the easternmost Amundsen Sea Embayment resolves the pathways of palaeo-ice streams that were probably all active during the last maximum extent of the ice sheet on this part of the shelf, and reveals the style of postglacial grounding-line retreat. Both are important input variables in ice sheet models and therefore can be used for validating the reliability of these models.

  18. The Mississippi Embayment Regional Aquifer Study (MERAS): Documentation of a Groundwater-Flow Model Constructed to Assess Water Availability in the Mississippi Embayment

    USGS Publications Warehouse

    Clark, Brian R.; Hart, Rheannon M.

    2009-01-01

    The Mississippi Embayment Regional Aquifer Study (MERAS) was conducted with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater. This report documents the construction and calibration of a finite-difference groundwater model for use as a tool to quantify groundwater availability within the Mississippi embayment. To approximate the differential equation, the MERAS model was constructed with the U.S. Geological Survey's modular three-dimensional finite-difference code, MODFLOW-2005; the preconditioned conjugate gradient solver within MODFLOW-2005 was used for the numerical solution technique. The model area boundary is approximately 78,000 square miles and includes eight States with approximately 6,900 miles of simulated streams, 70,000 well locations, and 10 primary hydrogeologic units. The finite-difference grid consists of 414 rows, 397 columns, and 13 layers. Each model cell is 1 square mile with varying thickness by cell and by layer. The simulation period extends from January 1, 1870, to April 1, 2007, for a total of 137 years and 69 stress periods. The first stress period is simulated as steady state to represent predevelopment conditions. Areal recharge is applied throughout the MERAS model area using the MODFLOW-2005 Recharge Package. Irrigation, municipal, and industrial wells are simulated using the Multi-Node Well Package. There are 43 streams simulated by the MERAS model. Each stream or river in the model area was simulated using the Streamflow-Routing Package. The perimeter of the model area and the base of the flow system are represented as no-flow boundaries. The downgradient limit of each model layer is a no-flow boundary, which approximates the extent of water with less than 10,000 milligrams per liter of dissolved solids. The MERAS model was calibrated by making manual changes to parameter values and examining residuals for hydraulic heads and streamflow. Additional calibration was achieved through alternate use of UCODE-2005 and PEST. Simulated heads were compared to 55,786 hydraulic-head measurements from 3,245 wells in the MERAS model area. Values of root mean square error between simulated and observed hydraulic heads of all observations ranged from 8.33 feet in 1919 to 47.65 feet in 1951, though only six root mean square error values are greater than 40 feet for the entire simulation period. Simulated streamflow generally is lower than measured streamflow for streams with streamflow less than 1,000 cubic feet per second, and greater than measured streamflow for streams with streamflow more than 1,000 cubic feet per second. Simulated streamflow is underpredicted for 18 observations and overpredicted for 10 observations in the model. These differences in streamflow illustrate the large uncertainty in model inputs such as predevelopment recharge, overland flow, pumpage (from stream and aquifer), precipitation, and observation weights. The groundwater-flow budget indicates changes in flow into (inflows) and out of (outflows) the model area during the pregroundwater-irrigation period (pre-1870) to 2007. Total flow (sum of inflows or outflows) through the model ranged from about 600 million gallons per day prior to development to 18,197 million gallons per day near the end of the simulation. The pumpage from wells represents the largest outflow components with a net rate of 18,197 million gallons per day near the end of the model simulation in 2006. Groundwater outflows are offset primarily by inflow from aquifer storage and recharge.

  19. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    NASA Astrophysics Data System (ADS)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and more solar radiation measurements are needed to fully validate the accuracy of the SSR model in Southern Appalachian forests, but initial results suggest the high resolution, spatially explicit estimates of solar radiation can improve solar radiation parameter estimates in deterministic models of stream temperature in forested landscapes.

  20. Time-Scales of Storm Flow Response in the Stream and Hyporheic Zone of a Small, Steep Forested Catchment - Contrasting the Potential Contributions from the Hillslope, Riparian-Hyporheic Zones, and the Stream Channel

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Corson-rikert, H.; Haggerty, R.

    2016-12-01

    Storm-flow responses of small catchments are widely studied to identify water sources and mechanisms routing water through catchments. These studies typically observe rapid responses to rainfall with peak concentrations of many chemical constituents occurring on rising leg of the hydrograph. To explain this, some conceptual models suggest that stream water early in storm periods is dominated by riparian water sources with hillslope water sources dominating later in the storm. We examined changes in both stream and hyporheic water chemistry during a small, autumn storm in a forested mountain catchment to test this conceptual model. Our study site was located in WS01 at the H.J. Andrews Experimental Forest, in Oregon, USA. The watershed has a narrow valley floor, always less than 15 m wide and occasionally interrupted by narrow, constrained bedrock sections. The valley floor has a longitudinal gradient of approximately 14%. Hyporheic water tends to flow parallel the valley axis and flow paths change little with changes in stream discharge, even during storm events. A well network is located in a 30-m reach near the bottom of the watershed. We sampled the stream, 9 hyporheic wells, and a hillslope well for DOC, DIC, Cl-, and NO3- during the storm. As expected, concentrations of DOC and NO3- increased rapidly on the rising leg of the hydrograph in both the stream and the hyporheic wells. However, the stream always had higher concentrations of DOC, and lower concentrations of NO3-, than did either the hillslope well or the hyporheic wells. These data suggest that the riparian/hyporheic zone is not a likely source of water influencing stream water chemistry on the rising leg of the hydrograph. These data agree with median travel time estimates of water flowing along hyporheic flow paths - it takes many 10s of hours for water to move from the riparian/hyporheic zone to the stream - a time scale that is far too slow to explain the rapid changes observed on the rising leg of the hydrograph. These data suggest that much of the early storm responses in stream chemistry may be generated by in-channel processes, or processes occurring in the shallow streambed with very short hyporheic residence times; the influence of the riparian zone, most of the hyporheic zone, or hillslopes must occur much later in the storm event.

  1. Hydroecological Connections: Hyporheic Zone Weathering of Silicate Minerals Controls Diatom Biodiversity in Microbial Mats in Glacial Meltwater Streams of the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Dyson, I.; Esposito, R. M.; Gooseff, M. N.; Lyons, W. B.; Welch, K. A.

    2015-12-01

    The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. As part of the McMurdo Dry Valleys Long-Term Ecological research project, we have observed stream ecosystem response to a sustained 18 year cool period with low flows, which has been recently interrupted by three "flood events" during sunny, warm summers. Many of these streams contain thriving microbial mats comprised of cyanobacteria and endemic diatoms, the most diverse group of eukaryotic organisms in the valleys. Of the 45 diatom taxa, some common taxa are heavily silicified, Hantzschia amphioxys f. muelleri, while others are only lightly silicified. By comparing diatom communities in streams which flow every summer with those in streams that only flow during flood events, we found that hydrologic flow regime acts as a strong environmental filter on diatom community composition. Following the first flood event in 2001/02, mat biomass was two-fold lower due to scouring and recovered over several years, with lesser declines following the subsequent floods. In the longer streams, the diatom community composition remained stable through the flood events, whereas in two of the shorter streams, Green and Bowles Creeks, the diatom community shifted after the first flood event to a greater abundance of lightly silicified taxa. Water quality monitoring and reactive transport modeling have shown that rapid weathering of silicate minerals in the hyporheic zone accounts for the downstream increases in Si concentration which are observed in the longer streams. One mechanism driving this greater abundance of lightly silicified diatoms in shorter streams could be the greater dilution of the Si supply from hyporheic weathering in shorter streams under high flows. Given that the stream diatom community is well preserved in the 40,000-year sediment record from the receiving lake, greater understanding of hydrologic and biogeochemical controls on diatom community composition provides insight into the evolution of the lakes and geologic history of the region.

  2. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  3. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections

    USGS Publications Warehouse

    Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.

    2011-01-01

    Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.

  4. A Comparative Analysis of Hydrologic Response to Climate Change in Developed and Undeveloped Watersheds on the New Jersey Coastal Plain

    NASA Astrophysics Data System (ADS)

    Daraio, J. A.

    2014-12-01

    Climate change is projected to have an impact on precipitation patterns across the Mid-Atlantic with the likelihood of an increase in the frequency and magnitude of extreme precipitation events. A greater proportion of total annual precipitation could fall in larger events with the potential to impact flooding, storm water infrastructure, and water supply. The watersheds of the coastal plain of New Jersey draining to the Atlantic and Delaware Bay have mild slopes are underlain by very sandy soils. These areas serve as sources of recharge to the Kirkwood-Cohansey aquifer, which is an important water supply for the region. The Precipitation-Runoff Modeling System (PRMS) was used to simulate the potential impacts of climate change on stream flow and groundwater recharge in two watersheds located within the New Jersey coastal plain. The Batsto River watershed includes parts of the Pinelands Reserve with relatively little development in some its headwater areas, primarily small towns and agricultural land use. The Maurice River watershed includes several urbanized areas along with some agricultural land, but population is expecting to increase within the next 10-20 years. The Maurice River basin is outside the Pinelands Reserve but has significant area that contains Pine Barrens. Models were calibrated using observed stream flow from USGS gages and gridded meteorological data from 1995-2002 and validated with observed data from 2002-2005. The calibrated models were forced using an ensemble of three bias-corrected downscaled climate projections (CMIP5, NOAA NCEP, and ECHAM) to assess and compare the potential response of these two watersheds. All meteorological data were obtained online from the GeoData Portal. Preliminary results indicate that climate change is likely to have a greater impact on stream flow in the developed Maurice River basin than in the undeveloped Batsto River basin. More detailed analyses of stream flow and the potential impacts on groundwater recharge are ongoing. These models will serve as the basis of further research that will examine the potential impacts of land-use change and climate change on stream flow, stream temperature, and groundwater recharge.

  5. Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations

    NASA Astrophysics Data System (ADS)

    Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph

    2010-06-01

    This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow component. The steady part can be an important contributor to wave steepening, a mechanism that is often observed during the onset of acoustic instability.

  6. Effects of a flood pulse on exchange flows along a sinuous stream

    NASA Astrophysics Data System (ADS)

    Käser, D.; Brunner, P.; Renard, P.; Perrochet, P.; Schirmer, M.; Hunkeler, D.

    2012-04-01

    Flood pulses are important events for river ecosystems: they create hydrological interactions at the terrestrial/aquatic interface that fuel biological productivity and shape the hyporheic-riparian habitats. For example, floods promote faunal activity and decomposition by increasing the supply of oxygenated water in downwelling areas, while the following recession periods tend to provide stable thermal conditions favoured by fish or insects in areas of groundwater upwelling. This 3-D modelling study investigates the effect of stream stage transience (with events characterised by their intensity and duration) on hydrological exchanges between the surface and the near-stream subsurface. It evaluates, in particular, its effect on streams of varying sinuosity by quantifying the dynamic response of: (1) subsurface flow paths, (2) the exchange pattern at the sediment-water interface, and (3) integrative measures such as total exchange flux and total storage. Understanding geomorphological controls on groundwater/surface water interactions is attractive because topography is generally better constrained than subsurface parameters, and can be used in data-poor situations. The numerical model represents a hypothetical alluvial plain limited by impervious bedrock on all four sides, and in which the channel meanders according to the sine-generated curve of Langbein and Leopold (1966). As the model (HydroGeoSphere) couples surface and subsurface flow, the stream stage transience is imposed by a fluctuating head at the channel inlet. Preliminary results show that a simple rectangular flood pulse in an idealised sinuous stream without additional complexity can generate multiple flow direction reversals at a single point in the channel. The initial conditions of the groundwater table, the channel sinuosity and the time characteristics of the flood pulse all control exchange flow features in different ways. Results are also compared with 'bank storage' analytical solutions that typically assume a straight channel. The discussion covers an evaluation of this work with respect to previous studies that considered the influence of sinuosity on interfacial exchange flows. It addresses the issue of steady vs. transient exchanges, which is of uppermost importance at the operational scale of river restoration schemes. Langbein WB, Leopold LB. 1966. River meanders - theory of minimum variance. U.S. Geol. Surv. Prof. Pap. 422-H: 15 p.

  7. Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA

    USGS Publications Warehouse

    Clayton, J.A.; Kean, J.W.

    2010-01-01

    Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.

  8. Evaluation of simulations to understand effects of groundwater development and artificial recharge on the surface water and riparian vegetation Sierra Vista subwatershed, Upper San Pedro Basin, Arizona

    USGS Publications Warehouse

    Leake, Stanley A.; Gungle, Bruce

    2012-01-01

    In 2007, the U.S. Geological Survey documented a five-layer groundwater flow model of the Sierra Vista and Sonoran subwatersheds of the Upper San Pedro Basin. The model has been applied by a private consultant to evaluate the effects of projected groundwater pumping through 2105 and effects of artificial recharge at three near-stream sites for 2012-2111. The main concern regarding simulations of long-term groundwater pumping is the effect of artificial model boundaries on modeled response, particularly for pumping near Cananea, Sonora, Mexico, which is adjacent to an artificial no-flow boundary. Concerns regarding the simulations of the effects of artificial recharge near streams include the resolution of the model and the representation of the model properties at the site scale; a possible limited ability of the model to correctly apportion recharge response between increased streamflow and increased evapotranspiration; a limited ability of the model to simulate detailed geometries of artificial recharge areas and evapotranspiration areas; and stream locations with the 820-foot grid spacing of the basin-scale model. In spite of these concerns, use of the U.S. Geological Survey five-layer groundwater flow model by the consultant are reasonable and valid.

  9. A probabilistic approach to quantifying hydrologic thresholds regulating migration of adult Atlantic salmon into spawning streams

    NASA Astrophysics Data System (ADS)

    Lazzaro, G.; Soulsby, C.; Tetzlaff, D.; Botter, G.

    2017-03-01

    Atlantic salmon is an economically and ecologically important fish species, whose survival is dependent on successful spawning in headwater rivers. Streamflow dynamics often have a strong control on spawning because fish require sufficiently high discharges to move upriver and enter spawning streams. However, these streamflow effects are modulated by biological factors such as the number and the timing of returning fish in relation to the annual spawning window in the fall/winter. In this paper, we develop and apply a novel probabilistic approach to quantify these interactions using a parsimonious outflux-influx model linking the number of female salmon emigrating (i.e., outflux) and returning (i.e., influx) to a spawning stream in Scotland. The model explicitly accounts for the interannual variability of the hydrologic regime and the hydrological connectivity of spawning streams to main rivers. Model results are evaluated against a detailed long-term (40 years) hydroecological data set that includes annual fluxes of salmon, allowing us to explicitly assess the role of discharge variability. The satisfactory model results show quantitatively that hydrologic variability contributes to the observed dynamics of salmon returns, with a good correlation between the positive (negative) peaks in the immigration data set and the exceedance (nonexceedance) probability of a threshold flow (0.3 m3/s). Importantly, model performance deteriorates when the interannual variability of flow regime is disregarded. The analysis suggests that flow thresholds and hydrological connectivity for spawning return represent a quantifiable and predictable feature of salmon rivers, which may be helpful in decision making where flow regimes are altered by water abstractions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bougamont, M.; Christoffersen, P.; Price, S. F.

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  11. Dynamic Floodplain representation in hydrologic flood forecasting using WRF-Hydro modeling framework

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Li, Z.; Maitaria, K.; Islam, M.; Ito, T.; Dhondia, J.

    2016-12-01

    Floods claim more lives and damage more property than any other category of natural disaster in the Continental United States. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels at each reach with the fourth dimension, time. We use modeled flows from WRF-Hydro and demarcate the right and left lateral boundaries of inundation dynamically by appropriately mapping discharges into hydraulically corrected stages. Backwater effects from the mainstem to tributaries are considered and proper corrections are applied for the tributary inundations. We obtained river stages by optimizing reach level channel parameters using newly developed stream flow routing algorithm. Non uniform inundations are mapped at each NHDplus reach (upstream and downstream nodes) and spatial interpolation is carried out on a normalized digital elevation model (always streams are at zero elevations) to obtain the smooth flood boundaries between adjacent reaches. The validation of the dynamic inundation boundaries is performed using multi-temporal satellite datasets as well as HEC-RAS hydrodynamic model results for selected streams for previous flood events.

  12. 4D Floodplain representation in hydrologic flood forecasting using WRFHydro modeling framework

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Li, Z.; Adams, T.; Ito, T.; Maitaria, K.; Islam, M.; Dhondia, J.

    2015-12-01

    Floods claim more lives and damage more property than any other category of natural disaster in the Continental U.S. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007, 2011) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels with the fourth dimension, time. We use modeled flows from WRFHydro and demarcate the right and left lateral boundaries of inundation dynamically. This approach dynamically integrates with high resolution models (e.g., hourly and ~ 1 km spatial resolution) that are developed from recent advancements in high computational power with ground based measurements (e.g., Fluxnet), lateral inundation vectors (direction and spatial extent) derived from multi-temporal remote sensing data (e.g., LiDAR, WorldView 2, Landsat, ASTER, MODIS), and improved representations of the physical processes through multi-parameterizations. Our approach enhances the normalized (streams are at zero elevations) DEM derived upstream flow routing pathways for stream reaches for given water stages as more and more satellite data become available for various flood inundations. Validation of the inundation boundaries is performed using HEC-RAS hydrodynamic model results for selected streams.

  13. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Yeo, Leslie Y.

    2018-04-01

    A two-dimensional hybrid numerical method that allows full coupling of the elastic motion in a piezoelectric solid (modeled using a finite-difference time-domain technique) with the resultant compressional flow in a fluid (simulated using a lattice Boltzmann scheme) is developed to study the acoustic streaming that arises in both microchannels and nanochannels under surface acoustic wave (SAW) excitation. In addition to verifying the model through a comparison of the simulations with results from experimental and numerical studies of microchannel and nanochannel flows driven by both standing and traveling SAWs in the literature, we highlight salient features of the flow field that arise and discuss the underlying mechanisms responsible for the flow. In microchannels, boundary layer streaming is the dominant mechanism when the channel height is below the sound wavelength in the liquid, whereas Eckart streaming—arising as a consequence of the attenuation of the sound wave in the liquid—dominates in the form of periodic vortices for larger channel heights. The absence of Eckart streaming and the overlapping of boundary layers in nanochannels with heights below the boundary layer thickness, on the other hand, give rise to a time-averaged dynamic acoustic pressure that results in an inertial-dominant flow, which paradoxically possesses a parabolic-like velocity profile resembling pressure-driven laminar flow. In contrast, if the nanochannel were to be filled instead with air, the significantly lower fluid density leads to a considerable reduction in the dynamic acoustic pressure and hence inertial forcing such that boundary layer streaming once again dominates, asymptotically imposing a slip condition along the channel surface that results in a negative pluglike velocity profile.

  14. Viscous interaction of flow redevelopment after flow reattachment with supersonic external streams

    NASA Technical Reports Server (NTRS)

    Chow, W. L.; Spring, D. J.

    1975-01-01

    A flow model has been developed to study the flow development after reattachment with supersonic external streams. Special attention is given to the pressure difference across the viscous layer, and it is suggested that such a flow redevelopment can be treated as a relaxation of this pressure difference. Upon correlating the pressure difference with a slope parameter of the velocity profile, the system of equations governing the flow would produce a saddle point singularity corresponding to the fully rehabilitated asymptotic flow condition. A method of calculation for this flowfield, in conjunction with the matching of the upstream flow, has been derived and is discussed. Samples of calculations are also presented. Reasonably good agreement with experimental data has also been observed.

  15. Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Pizzo, V.; Lazarus, A.; Gazis, P. R.

    1984-01-01

    A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment.

  16. Analysis of supersonic plug nozzle flowfield and heat transfer

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Sheu, W. H.

    1988-01-01

    A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.

  17. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    NASA Astrophysics Data System (ADS)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  18. Assessment of groundwater response to droughts in a complex runoff-dominated watershed by using an integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Woolfenden, L. R.; Hevesi, J. A.; Nishikawa, T.

    2014-12-01

    Groundwater is an important component of the water supply, especially during droughts, within the Santa Rosa Plain watershed (SRPW), California, USA. The SRPW is 680 km2 and includes a network of natural and engineered stream channels. Streamflow is strongly seasonal, with high winter flows, predominantly intermittent summer flows, and comparatively rapid response time to larger storms. Groundwater flow is influenced primarily by complex geology, spatial and temporal variation in recharge, and pumping for urban, agricultural, and rural demands. Results from an integrated hydrologic model (GSFLOW) for the SRPW were analyzed to assess the effect of droughts on groundwater resources during water years 1976-2010. Model results indicate that, in general, below-average precipitation during historical drought periods reduced groundwater recharge (focused within stream channels and diffuse outside of channels on alluvial plains), groundwater evapotranspiration (ET), and groundwater discharge to streams (baseflow). In addition, recharge during wet periods was not sufficient to replenish groundwater-storage losses caused by drought and groundwater pumping, resulting in an overall 150 gigaliter loss in groundwater storage for water years 1976-2010. During drought periods, lower groundwater levels from reduced recharge broadly increased the number and length of losing-stream reaches, and seepage losses in streams became a higher percentage of recharge relative to the diffuse recharge outside of stream channels (for example, seepage losses in streams were 36% of recharge in 2006 and 57% at the end of the 2007-09 drought). Reductions in groundwater storage during drought periods resulted in decreased groundwater ET (loss of riparian habitat) and baseflow, especially during the warmer and dryer months (May through September) when groundwater is the dominant component of streamflow.

  19. Importance of poplar plantations in the groundwater mass balance and stream base flow of a Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ferrer, Nuria; Folch, Albert

    2015-04-01

    Poplar plantations are used for biomass production in many countries.Poplar (Populus spp.) is well known for its large biomass production, its ability to adapt to different environments, its ability to synergise with agriculture and its high energy potential. These plantations areoften located in areas where the tree roots can reach the water table of shallow aquifers to reduce irrigation costs but increasing evapotranspiration, mainly during the summer. This study aims to assess the effects of these plantations on an aquifer water budget and on the stream base flow of a Mediterranean basin, the Santa Coloma river (321.3 km2) located in the NE Spain. A numerical flow model was constructed using Visual Modflow 4.5 Software to simulate groundwater flow in the shallow aquifers and the stream-aquifer interaction for a period of 9 years. Once the model was calibrated, different land use scenarios, such as deciduous forests, dry farming and irrigated farming, were simulated for comparison. The mass balance shows that poplar extracts an average of 2.40 hm3 from the aquifer. This amount of water represents the 30% of the aquifer withdrawal, approximately 18% of the average recharge of the aquifer and 12 % of the total outputs of the system. This effect reduces the groundwater flow to the main stream and increases the infiltration from the stream to the aquifer. Compared with deciduous forest as a soil use , there is an average reduction in the main stream flow by 46% during the summer months, when the lowest flow occurs and when the river is most sensitive. These results indicate that this impact should be considered in basin management plans and in evaluating the benefits of this type of biomass production.Additional research is needed to conceptualise the costs and benefits of this type of non-natural plantations for biomass production, specifically, the associated economic benefits and the effects on the water budget (i.e., stream flow) at various scales (local, basin or national level). Acknowledgements This study has been financed by the Spanish Government with the projects CGL2011-29975 C04-04 and SCARCE (Consolider-Ingenio 2010, CSD2009-00065) and the Catalan Water Agency and the Postdoc Grants 2013 of the Spanish Ministry of Economy and Competitiveness.

  20. Economic impacts of federal policy responses to drought in the Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Ward, Frank A.; Hurd, Brian H.; Rahmani, Tarik; Gollehon, Noel

    2006-03-01

    Significant growth in the Rio Grande Basin's demand for water has stressed the region's scarce water supply. This paper presents an analysis of the impacts of severe and sustained drought and of minimum in-stream flow requirements to support endangered species in the Rio Grande watershed. These impacts are investigated by modeling the physical and institutional constraints within the Rio Grande Basin and by identifying the hydrologic and economic responses of all major water users. Water supplies, which include all major tributaries, interbasin transfers, and hydrologically connected groundwater, are represented in a yearly time step. A nonlinear programming model is developed to maximize economic benefits subject to hydrologic and institutional constraints. Results indicate that drought produces considerable impacts on both agriculture and municipal and industrial (MI) uses in the Rio Grande watershed. In-stream flow requirements to support endangered species' habitat produce the largest impacts on agricultural water users in New Mexico and Texas. Hydrologic and economic impacts are more pronounced when in-stream flow requirements dictate larger quantities of water for endangered species' habitat. Higher in-stream flow requirements for endangered species in central New Mexico cause considerable losses to New Mexico agriculture above Elephant Butte Reservoir and to MI users in Albuquerque, New Mexico. Those same in-stream flow requirements reduce drought damages to New Mexico agriculture below Elephant Butte Reservoir and reduce the severity of drought damages to MI users in El Paso, Texas. Results provide a framework for formulating federal policy responses to drought in the Rio Grande Basin.

  1. Assessing the Responses of Streamflow to Pollution Release in South Carolina

    NASA Astrophysics Data System (ADS)

    Maze, G.; Chovancak, N. A.; Samadi, S. Z.

    2017-12-01

    The purpose of this investigation was to examine the effects of various stream flows on the transport of a pollutant downstream and to evaluate the uncertainty associated with using a single stream flow value when the true flow is unknown in the model. The area used for this study was Horse Creek in South Carolina where a chlorine pollutant spill has occurred in the past resulting from a train derailment in Graniteville, SC. In the example scenario used, the chlorine gas pollutant was released into the environment, where it killed plants, infected groundwater, and caused evacuation of the city. Tracking the movement and concentrations at various points downstream in the river system is crucial to understanding how a single accidental pollutant release can affect the surrounding areas. As a result of the lack of real-time data available this emergency response model uses historical monthly averages, however, these monthly averages do not reflect how widely the flow can vary within that month. Therefore, the assumption to use the historical monthly average flow data may not be accurate, and this investigation aims at quantifying the uncertainty associated with using a single stream flow value when the true stream flow may vary greatly. For the purpose of this investigation, the event in Graniteville was used as a case study to evaluate the emergency response model. This investigation was conducted by adjusting the STREAM II V7 program developed by Savannah River National Laboratory (SRNL) to model a confluence at the Horse Creek and the Savannah River system. This adjusted program was utilized to track the progress of the chlorine pollutant release and examine how it was transported downstream. By adjusting this program, the concentrations and time taken to reach various points downstream of the release were obtained and can be used not only to analyze this particular pollutant release in Graniteville, but can continue to be adjusted and used as a technical tool for emergency responders in future accidents. Further, the program was run with monthly maximum, minimum, and average advective flows and an uncertainty analysis was conducted to examine the error associated with the input data. These results underscore to profound influence that streamflow magnitudes (maximum, minimum, and average) have on shaping downstream water quality.

  2. Grounding Zones, Subglacial Lakes, and Dynamics of an Antarctic Ice Stream: The WISSARD Glaciological Experiment

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Schwartz, S. Y.; Fisher, A. T.; Powell, R. D.; Fricker, H. A.; Anandakrishnan, S.; Horgan, H. J.; Scherer, R. P.; Walter, J. I.; Siegfried, M. R.; Mikucki, J.; Christianson, K.; Beem, L.; Mankoff, K. D.; Carter, S. P.; Hodson, T. O.; Marsh, O.; Barcheck, C. G.; Branecky, C.; Neuhaus, S.; Jacobel, R. W.

    2015-12-01

    Interactions of West Antarctic ice streams with meltwater at their beds, and with seawater at their grounding lines, are widely considered to be the primary drivers of ice stream flow variability on different timescales. Understanding of processes controlling ice flow variability is needed to build quantitative models of the Antarctic Ice Sheet that can be used to help predict its future behavior and to reconstruct its past evolution. The ice plain of Whillans Ice Stream provides a natural glaciological laboratory for investigations of Antarctic ice flow dynamics because of its highly variable flow rate modulated by tidal processes and fill-drain cycles of subglacial lakes. Moreover, this part of Antarctica has one of the longest time series of glaciological observations, which can be used to put recently acquired datasets in a multi-decadal context. Since 2007 Whillans Ice Stream has been the focus of a regional glaciological experiment, which included surface GPS and passive-source seismic sensors, radar and seismic imaging of subglacial properties, as well as deep borehole geophysical sensors. This experiment was possible thanks to the NSF-funded multidisciplinary WISSARD project (Whillans Ice Stream Subglacial Access Research Drilling). Here we will review the datasets collected during the WISSARD glaciological experiment and report on selected results pertaining to interactions of this ice stream with water at its bed and its grounding line.

  3. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Sand Creek, Decatur County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)

  4. Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Vera, Jerry

    2015-01-01

    Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.

  5. Conceptualizing the seasonal and hydrological dynamics of riparian zone control on DOC in boreal headwater streams

    NASA Astrophysics Data System (ADS)

    Winterdahl, M.; Laudon, H.; Köhler, S.; Seibert, J.; Bishop, K.

    2009-04-01

    Dissolved organic material (DOM) plays a key role in many natural surface waters. Despite the importance of DOC for the hydrochemistry in boreal headwaters there are few models that conceptualize the controls on short-term variability in stream DOC. A relatively simple model has been proposed where the vertical profile of DOC in the riparian soil solution, serves as an instantaneous "chemostat" setting the DOC of laterally flowing groundwater just before it enters the stream. This paper considers whether the addition of seasonality (in the form of soil temperature) and antecedent flows can improve the predictions of daily DOC concentrations. The model was developed and tested using field data from the Krycklan catchment on the Svartberget Research Station in northern Sweden where a transect of soil solution sampling sites equipped with suction lysimeters and wells for monitoring groundwater level have been installed and monitored for over a decade. The field data showed an exponential correlation between depth and DOC concentration in the soil solution. There was also an exponential correlation between stream discharge and groundwater table position. The expressions for these two correlations (exponential functions) have been combined into a simple riparian DOC model. To simulate effects of seasonality and/or antecedent flow, modules for soil temperature evolution and/or groundwater flow were added and tested. The model was calibrated and tested against 8 years of data from the Västrabäcken headwater catchment in the Krycklan area. To estimate the uncertainty in the model and the observed data a Hornberger-Spear-Young sensitivity analysis together with a GLUE uncertainty analysis was performed.

  6. Evaluating LSM-Based Water Budgets Over a West African Basin Assisted with a River Routing Scheme

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Boone, Aaron; Peugeot, Christophe

    2014-01-01

    Within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Oum River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region,a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005-08 AMMA field campaign period during which rainfall and stream flow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily stream flow at five gauges within the basin. Results demonstrate that the RRS simulates stream flow at all gauges with relative errors varying from -22% to 3% and Nash-Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the sub-basin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated stream flows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.

  7. Channel Geometry and Flood Flows: Quantifying over-bank flow dynamics during high-flow events in North Carolina's floodplains

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.

    2015-12-01

    Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.

  8. Modeling fecal contamination in the Aljezur coastal stream (Portugal)

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marta; Oliveira, Anabela; Guerreiro, Martha; Fortunato, André Bustorff; Menaia, José; David, Luís Mesquita; Cravo, Alexandra

    2011-06-01

    This study aims at understanding the fecal contamination behavior in a small coastal stream (Aljezur, Portugal), which has significant economic and ecological values. Like in most small coastal systems, circulation and water renewal in the Aljezur stream exhibit a strong variability due to their dependence on tides, waves, intermittent river flows, and a highly variable morphology. Hence, the problem was approached through a combination of field surveys and the development and application of a hard-coupled three-dimensional hydrodynamic and fecal contamination model. Salinity and temperature results have shown that mixing and transport in the stream are very sensitive to the river flow and wind forcing. The model is able to represent the main patterns and trends observed in Escherichia coli and fecal enterococcus concentrations along the stream, for different environmental and contamination conditions, suggesting die-off rates on the order of 0.50-0.55 day-1. Die-off rate and the representation of the sediment-associated processes were identified as the major remaining sources of uncertainty in the model. Results show that, owing to the processes that occur along the stream, fecal bacteria reach the beaches water in numbers that comply with the European Bathing Waters Directive, even during the summer periods when the upstream concentrations are larger. In particular, results suggest a direct relation between the tidal propagation upstream and the reduction of the fecal bacteria concentrations along the stream that can be relevant for the development of a strategy for the management of the system's water safety.

  9. Internal Catchment Process Simulation in a Snow-Dominated Basin: Performance Evaluation with Spatiotemporally Variable Runoff Generation and Groundwater Dynamics

    NASA Astrophysics Data System (ADS)

    Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.

    2006-12-01

    Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.

  10. Experimental Investigation of a Large-Scale Low-Boom Inlet Concept

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Chima, Rodrick V.; Vyas, Manan A.; Wayman, Thomas R.; Conners, Timothy R.; Reger, Robert W.

    2011-01-01

    A large-scale low-boom inlet concept was tested in the NASA Glenn Research Center 8- x 6- foot Supersonic Wind Tunnel. The purpose of this test was to assess inlet performance, stability and operability at various Mach numbers and angles of attack. During this effort, two models were tested: a dual stream inlet designed to mimic potential aircraft flight hardware integrating a high-flow bypass stream; and a single stream inlet designed to study a configuration with a zero-degree external cowl angle and to permit surface visualization of the vortex generator flow on the internal centerbody surface. During the course of the test, the low-boom inlet concept was demonstrated to have high recovery, excellent buzz margin, and high operability. This paper will provide an overview of the setup, show a brief comparison of the dual stream and single stream inlet results, and examine the dual stream inlet characteristics.

  11. Teasing apart the effects of natural and constructed green ...

    EPA Pesticide Factsheets

    Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th

  12. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  13. Simulated Effects of Seasonal Ground-Water Pumpage for Irrigation on Hydrologic Conditions in the Lower Apalachicola-Chattahoochee-Flint River Basin, Southwestern Georgia and Parts of Alabama and Florida, 1999-2002

    USGS Publications Warehouse

    Jones, L. Elliott; Torak, Lynn J.

    2006-01-01

    To determine the effects of seasonal ground-water pumpage for irrigation, a finite-element ground-water flow model was developed for the Upper Floridan aquifer in the lower Flint River Basin area, including adjacent parts of the Chattahoochee and Apalachicola River Basins. The model simulates withdrawal from the aquifer at 3,280 irrigation, municipal, and industrial wells; stream-aquifer flow between the aquifer and 36 area streams; leakage to and from the overlying upper semiconfining unit; regional ground-water flow at the lateral boundaries of the model; and water-table recharge in areas where the aquifer is at or near land surface. Steady-state calibration to drought conditions of October 1999 indicated that the model could adequately simulate measured groundwater levels at 275 well locations and streamflow gains and losses along 53 reaches of area streams. A transient simulation having 12 monthly stress periods from March 2001 to February 2002 incorporated time-varying stress from irrigation pumpage, stream and lake stage, head in the overlying upper semiconfining unit, and infiltration rates. Analysis of simulated water budgets of the Upper Floridan aquifer provides estimates of the source of water pumped for irrigation. During October 1999, an estimated 127 million gallons per day (Mgal/d) of irrigation pumpage from the Upper Floridan aquifer in the model area were simulated to be derived from changes in: stream-aquifer flux (about 56 Mgal/d, or 44 percent); leakage to or from the upper semiconfining unit (about 49 Mgal/d, or 39 percent); regional flow (about 18 Mgal/d, or 14 percent); leakage to or from Lakes Seminole and Blackshear (about 2.7 Mgal/d, or 2 percent); and flux at the Upper Floridan aquifer updip boundary (about 1.8 Mgal/d, or 1 percent). During the 2001 growing season (May-August), estimated irrigation pumpage ranged from about 310 to 830 Mgal/ d, about 79 percent of the 12-month total. During the growing season, irrigation pumpage was derived from decreased discharge or increased recharge of stream-aquifer flux (from about 23 to 39 percent), leakage to or from the upper semiconfining unit (from about 30 to 36 percent), regional flow (from about 8 to 11 percent), Lakes Seminole and Blackshear (about 2 percent), and flux at the Upper Floridan aquifer updip boundary (about 1 percent). Storage effects (decreased storage gain or increased storage loss) contributed from about 11 to 36 percent of irrigation pumpage during the growing season. Water managers can use the model to determine where and how much additional ground-water pumpage for irrigation should be permitted based on a variety of hydrologic constraints. For example, the model results may indicate that in some critical locations, additional ground-water pumpage during a prolonged drought might reduce stream-aquifer flux enough to cause noncompliance of established minimum instream flow conditions.

  14. Environmental controls on drainage behavior of an ephemeral stream

    USGS Publications Warehouse

    Blasch, K.W.; Ferré, T.P.A.; Vrugt, J.A.

    2010-01-01

    Streambed drainage was measured at the cessation of 26 ephemeral streamflow events in Rillito Creek, Tucson, Arizona from August 2000 to June 2002 using buried time domain reflectometry (TDR) probes. An unusual drainage response was identified, which was characterized by sharp drainage from saturation to near field capacity at each depth with an increased delay between depths. We simulated the drainage response using a variably saturated numerical flow model representing a two-layer system with a high permeability layer overlying a lower permeability layer. Both the observed data and the numerical simulation show a strong correlation between the drainage velocity and the temperature of the stream water. A linear combination of temperature and the no-flow period preceding flow explained about 90% of the measured variations in drainage velocity. Evaluation of this correlative relationship with the one-dimensional numerical flow model showed that the observed temperature fluctuations could not reproduce the magnitude of variation in the observed drainage velocity. Instead, the model results indicated that flow duration exerts the most control on drainage velocity, with the drainage velocity decreasing nonlinearly with increasing flow duration. These findings suggest flow duration is a primary control of water availability for plant uptake in near surface sediments of an ephemeral stream, an important finding for estimating the ecological risk of natural or engineered changes to streamflow patterns. Correlative analyses of soil moisture data, although easy and widely used, can result in erroneous conclusions of hydrologic cause—effect relationships, and demonstrating the need for joint physically-based numerical modeling and data synthesis for hypothesis testing to support quantitative risk analysis.

  15. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  16. A framework for estimating potential fluid flow from digital imagery

    NASA Astrophysics Data System (ADS)

    Luttman, Aaron; Bollt, Erik M.; Basnayake, Ranil; Kramer, Sean; Tufillaro, Nicholas B.

    2013-09-01

    Given image data of a fluid flow, the flow field, ⟨u,v⟩, governing the evolution of the system can be estimated using a variational approach to optical flow. Assuming that the flow field governing the advection is the symplectic gradient of a stream function or the gradient of a potential function—both falling under the category of a potential flow—it is natural to re-frame the optical flow problem to reconstruct the stream or potential function directly rather than the components of the flow individually. There are several advantages to this framework. Minimizing a functional based on the stream or potential function rather than based on the components of the flow will ensure that the computed flow is a potential flow. Next, this approach allows a more natural method for imposing scientific priors on the computed flow, via regularization of the optical flow functional. Also, this paradigm shift gives a framework—rather than an algorithm—and can be applied to nearly any existing variational optical flow technique. In this work, we develop the mathematical formulation of the potential optical flow framework and demonstrate the technique on synthetic flows that represent important dynamics for mass transport in fluid flows, as well as a flow generated by a satellite data-verified ocean model of temperature transport.

  17. Implementation and use of direct-flow connections in a coupled ground-water and surface-water model

    USGS Publications Warehouse

    Swain, Eric D.

    1994-01-01

    The U.S. Geological Survey's MODFLOW finite-difference ground-water flow model has been coupled with three surface-water packages - the MODBRANCH, River, and Stream packages - to simulate surface water and its interaction with ground water. Prior to the development of the coupling packages, the only interaction between these modeling packages was that leakage values could be passed between MODFLOW and the three surface-water packages. To facilitate wider and more flexible uses of the models, a computer program was developed and added to MODFLOW to allow direct flows or stages to be passed between any of the packages and MODFLOW. The flows or stages calculated in one package can be set as boundary discharges or stages to be used in another package. Several modeling packages can be used in the same simulation depending upon the level of sophistication needed in the various reaches being modeled. This computer program is especially useful when any of the River, Stream, or MODBRANCH packages are used to model a river flowing directly into or out of wetlands in direct connection with the aquifer and represented in the model as an aquifer block. A field case study is shown to illustrate an application.

  18. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    USGS Publications Warehouse

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater than 10 percent point-source flow contributions to streamflow had higher yields relative to undeveloped watersheds (having less than 10 and 15 percent developed and agricultural land uses, respectively) and watersheds with relatively low agricultural land use (between 15 and 30 percent). The statistical tests further indicated that the median annual yields for total P were statistically higher for watersheds with high agricultural land use (greater than 30 percent) compared to the undeveloped watersheds and watersheds with low agricultural land use. The total P yields also were higher for watersheds with low urban land use (between 10 and 30 percent developed land) compared to the undeveloped watersheds. The study data indicate that grouping and examining stream nutrient yields based on the land-use classifications used in this report can be useful for characterizing relations between watershed settings and nutrient yields in streams located throughout central and eastern North Carolina. Compiled study data also were analyzed with four regression tree models as a means of determining which watershed environmental variables or combination of variables result in basins that are likely to have high or low nutrient yields. The regression tree analyses indicated that some of the environmental variables examined in this study were useful for predicting yields of nitrate, total N, and total P. When the median annual nutrient yields for all 48 sites were evaluated as a group (Model 1), annual point-source flow yields had the greatest influence on nitrate and total N yields observed in streams, and annual streamflow yields had the greatest influence on yields of total P. The Model 1 results indicated that watersheds with higher annual point-source flow yields had higher annual yields of nitrate and total N, and watersheds with higher annual streamflow yields had higher annual yields of total P. When sites with high point-source flows (greater than 10 percent of total streamflow) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.

  19. The effect of bedload transport rates on bedform and planform morphological development in a laboratory meandering stream under varying flow conditions

    NASA Astrophysics Data System (ADS)

    Sullivan, C.; Good, R. G. R.; Binns, A. D.

    2017-12-01

    Sediment transport processes in streams provides valuable insight into the temporal evolution of planform and bedform geometry. The majority of previous experimental research in the literature has focused on bedload transport and corresponding bedform development in rectangular, confined channels, which does not consider planform adjustment processes in streams. In contrast, research conducted with laboratory streams having movable banks can investigate planform development in addition to bedform development, which is more representative of natural streams. The goal of this research is to explore the relationship between bedload transport rates and the morphological adjustments in meandering streams. To accomplish this, a series of experimental runs were conducted in a 5.6 m by 1.9 m river basin flume at the University of Guelph to analyze the bedload impacts on bed formations and planform adjustments in response to varying flow conditions. In total, three experimental runs were conducted: two runs using steady state conditions and one run using unsteady flow conditions in the form of a symmetrical hydrograph implementing quasi steady state flow. The runs were performed in a series of time-steps in order to monitor the evolution of the stream morphology and the bedload transport rates. Structure from motion (SfM) was utilized to capture the channel morphology after each time-step, and Agisoft PhotoScan software was used to produce digital elevation models to analyze the morphological evolution of the channel with time. Bedload transport rates were quantified using a sediment catch at the end of the flume. Although total flow volumes were similar for each run, the morphological evolution and bedload transport rates in each run varied. The observed bedload transport rates from the flume are compared with existing bedload transport formulas to assess their accuracy with respect to sediment transport in unconfined meandering channels. The measured sediment transport rates varied from the existing equations, which can be attributed to the sediment characteristics, planform morphology and bed formations. The results from this research provide greater knowledge of morphological processes in natural meandering streams to improve the capabilities of computational modelling and river engineering practice.

  20. Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment

    NASA Astrophysics Data System (ADS)

    Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip

    2014-05-01

    Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.

  1. Empirical flow parameters : a tool for hydraulic model validity

    USGS Publications Warehouse

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  2. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages.

    PubMed

    Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P

    2018-06-01

    Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.

  3. Parametrisation of initial conditions for seasonal stream flow forecasting in the Swiss Rhine basin

    NASA Astrophysics Data System (ADS)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2016-04-01

    Current climate forecast models show - to the best of our knowledge - low skill in forecasting climate variability in Central Europe at seasonal lead times. When it comes to seasonal stream flow forecasting, initial conditions thus play an important role. Here, initial conditions refer to the catchments moisture at the date of forecast, i.e. snow depth, stream flow and lake level, soil moisture content, and groundwater level. The parametrisation of these initial conditions can take place at various spatial and temporal scales. Examples are the grid size of a distributed model or the time aggregation of predictors in statistical models. Therefore, the present study aims to investigate the extent to which the parametrisation of initial conditions at different spatial scales leads to differences in forecast errors. To do so, we conduct a forecast experiment for the Swiss Rhine at Basel, which covers parts of Germany, Austria, and Switzerland and is southerly bounded by the Alps. Seasonal mean stream flow is defined for the time aggregation of 30, 60, and 90 days and forecasted at 24 dates within the calendar year, i.e. at the 1st and 16th day of each month. A regression model is employed due to the various anthropogenic effects on the basins hydrology, which often are not quantifiable but might be grasped by a simple black box model. Furthermore, the pool of candidate predictors consists of antecedent temperature, precipitation, and stream flow only. This pragmatic approach follows the fact that observations of variables relevant for hydrological storages are either scarce in space or time (soil moisture, groundwater level), restricted to certain seasons (snow depth), or regions (lake levels, snow depth). For a systematic evaluation, we therefore focus on the comprehensive archives of meteorological observations and reanalyses to estimate the initial conditions via climate variability prior to the date of forecast. The experiment itself is based on four different approaches, whose differences in model skill were estimated within a rigorous cross-validation framework for the period 1982-2013: The predictands are regressed on antecedent temperature, precipitation, and stream flow. Here, temperature and precipitation constitute basin averages out of the E-OBS gridded data set. As in 1., but temperature and precipitation are used at the E-OBS grid scale (0.25 degree in longitude and latitude) without spatial averaging. As in 1., but the regression model is applied to 66 gauged subcatchments of the Rhine basin. Forecasts for these subcatchments are then simply summed and upscaled to the area of the Rhine basin. As in 3., but the forecasts at the subcatchment scale are additionally weighted in terms of hydrological representativeness of the corresponding subcatchment.

  4. Global characteristics of stream flow seasonality and variability

    USGS Publications Warehouse

    Dettinger, M.D.; Diaz, Henry F.

    2000-01-01

    Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of maximum precipitation, evapotranspiration, and contributions from snow and ice. Lags between peaks of precipitation and stream flow vary smoothly from long delays in high-latitude and mountainous regions to short delays in the warmest sectors. Stream flow is most variable from year to year in dry regions of the southwest United States and Mexico, the Sahel, and southern continents, and it varies more (relatively) than precipitation in the same regions. Tropical rivers have the steadiest flows. El Nin??o variations are correlated with stream flow in many parts of the Americas, Europe, and Australia. Many stream flow series from North America, Europe, and the Tropics reflect North Pacific climate, whereas series from the eastern United States, Europe, and tropical South America and Africa reflect North Atlantic climate variations.

  5. Incorporating rainfall uncertainty in a SWAT model: the river Zenne basin (Belgium) case study

    NASA Astrophysics Data System (ADS)

    Tolessa Leta, Olkeba; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2013-04-01

    The European Union Water Framework Directive (EU-WFD) called its member countries to achieve a good ecological status for all inland and coastal water bodies by 2015. According to recent studies, the river Zenne (Belgium) is far from this objective. Therefore, an interuniversity and multidisciplinary project "Towards a Good Ecological Status in the river Zenne (GESZ)" was launched to evaluate the effects of wastewater management plans on the river. In this project, different models have been developed and integrated using the Open Modelling Interface (OpenMI). The hydrologic, semi-distributed Soil and Water Assessment Tool (SWAT) is hereby used as one of the model components in the integrated modelling chain in order to model the upland catchment processes. The assessment of the uncertainty of SWAT is an essential aspect of the decision making process, in order to design robust management strategies that take the predicted uncertainties into account. Model uncertainty stems from the uncertainties on the model parameters, the input data (e.g, rainfall), the calibration data (e.g., stream flows) and on the model structure itself. The objective of this paper is to assess the first three sources of uncertainty in a SWAT model of the river Zenne basin. For the assessment of rainfall measurement uncertainty, first, we identified independent rainfall periods, based on the daily precipitation and stream flow observations and using the Water Engineering Time Series PROcessing tool (WETSPRO). Secondly, we assigned a rainfall multiplier parameter for each of the independent rainfall periods, which serves as a multiplicative input error corruption. Finally, we treated these multipliers as latent parameters in the model optimization and uncertainty analysis (UA). For parameter uncertainty assessment, due to the high number of parameters of the SWAT model, first, we screened out its most sensitive parameters using the Latin Hypercube One-factor-At-a-Time (LH-OAT) technique. Subsequently, we only considered the most sensitive parameters for parameter optimization and UA. To explicitly account for the stream flow uncertainty, we assumed that the stream flow measurement error increases linearly with the stream flow value. To assess the uncertainty and infer posterior distributions of the parameters, we used a Markov Chain Monte Carlo (MCMC) sampler - differential evolution adaptive metropolis (DREAM) that uses sampling from an archive of past states to generate candidate points in each individual chain. It is shown that the marginal posterior distributions of the rainfall multipliers vary widely between individual events, as a consequence of rainfall measurement errors and the spatial variability of the rain. Only few of the rainfall events are well defined. The marginal posterior distributions of the SWAT model parameter values are well defined and identified by DREAM, within their prior ranges. The posterior distributions of output uncertainty parameter values also show that the stream flow data is highly uncertain. The approach of using rainfall multipliers to treat rainfall uncertainty for a complex model has an impact on the model parameter marginal posterior distributions and on the model results Corresponding author: Tel.: +32 (0)2629 3027; fax: +32(0)2629 3022. E-mail: otolessa@vub.ac.be

  6. Surgical streams in the flow of health care financing. The role of surgery in national expenditures: what costs are controllable?

    PubMed Central

    Moore, F D

    1985-01-01

    The dollar flow in United States medical care has been analyzed in terms of a six-level model; this model and the gross 1981 flow data are set forth. Of the estimated $310 billion expended in 1981, it is estimated that $85-$95 billion was the "surgical stream", i.e., that amount expended to take care of surgical patients at a variety of institutional types and including ambulatory care and surgeons' fees. Some of the determinants of surgical flow are reviewed as well as controllable costs and case mix pressures. Surgical complications, when severe, increase routine operative costs by a factor of 8 to 20. Maintenance of high quality in American surgery, despite new manpower pressures, is the single most important factor in cost containment. By voluntary or imposed controls on fees, malpractice premiums, case mix selection, and hospital utilization, a saving of $2.0-$4.0 billion can be seen as reachable and practical. This is five per cent of the surgical stream and is a part of the realistic "achievable" savings of total flow estimated to be about +15 billion or 5 per cent. PMID:3918514

  7. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Wabash River, Huntington County, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in the Wabash River in Huntington County, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditons, summer and winter low flows. The major point-source waste load affecting the Wabash River in Huntington County is the Huntington wastewater-treatment facility. The most significnt factor potentially affecting the dissolved-oxygen concentration during summer low flows is nitrification. However, nitrification should not be a limiting factor on the allowable nitrogenous and carbonaceous waste loads for the Huntington wastewater-treatment facility during summer low flows if the ammonia-nitrogen toxicity standard for Indiana streams is met. The disolved-oxygen standard for Indiana stream, an average of 5.0 milligrams per liter, should be met during summer and winter low flows if the National Pollution Discharge Elimination System 's 5-day, carbonaceous biochemical-oxygen demands of a monthly average concentration of 30 milligrams per liter and a maximum weekly average of 45 milligrams per liter are not exceeded. 

  8. Regional ground-water discharge to large streams in the upper coastal plain of South Carolina and parts of North Carolina and Georgia

    USGS Publications Warehouse

    Aucott, W.R.; Meadows, R.S.; Patterson, G.G.

    1987-01-01

    Base flow was computed to estimate discharge from regional aquifers for six large streams in the upper Coastal Plain of South Carolina and parts of North Carolina and Georgia. Aquifers that sustain the base flow of both large and small streams are stratified into shallow and deep flow systems. Base-flow during dry conditions on main stems of large streams was assumed to be the discharge from the deep groundwater flow system. Six streams were analyzed: the Savannah, South and North Fork Edisto, Lynches, Pee Dee, and the Luber Rivers. Stream reaches in the Upper Coastal Plain were studied because of the relatively large aquifer discharge in these areas in comparison to the lower Coastal Plain. Estimates of discharge from the deep groundwater flow system to the six large streams averaged 1.8 cu ft/sec/mi of stream and 0.11 cu ft/sec/sq mi of surface drainage area. The estimates were made by subtracting all tributary inflows from the discharge gain between two gaging stations on a large stream during an extreme low-flow period. These estimates pertain only to flow in the deep groundwater flow system. Shallow flow systems and total base flow are > flow in the deep system. (USGS)

  9. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Silver Creek, Clark and Floyd counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)

  10. Use of an integrated flow model to estimate ecologically relevant hydrologic characteristics at stream biomonitoring sites

    USGS Publications Warehouse

    Kennen, J.G.; Kauffman, L.J.; Ayers, M.A.; Wolock, D.M.; Colarullo, S.J.

    2008-01-01

    We developed an integrated hydroecological model to provide a comprehensive set of hydrologic variables representing five major components of the flow regime at 856 aquatic-invertebrate monitoring sites in New Jersey. The hydroecological model simulates streamflow by routing water that moves overland and through the subsurface from atmospheric delivery to the watershed outlet. Snow accumulation and melt, evapotranspiration, precipitation, withdrawals, discharges, pervious- and impervious-area runoff, and lake storage were accounted for in the water balance. We generated more than 78 flow variables, which describe the frequency, magnitude, duration, rate of change, and timing of flow events. Highly correlated variables were filtered by principal component analysis to obtain a non-redundant subset of variables that explain the majority of the variation in the complete set. This subset of variables was used to evaluate the effect of changes in the flow regime on aquatic-invertebrate assemblage structure at 856 biomonitoring sites. We used non-metric multidimensional scaling (NMS) to evaluate variation in aquatic-invertebrate assemblage structure across a disturbance gradient. We employed multiple linear regression (MLR) analysis to build a series of MLR models that identify the most important environmental and hydrologic variables driving the differences in the aquatic-invertebrate assemblages across the disturbance gradient. The first axis of NMS ordination was significantly related to many hydrologic, habitat, and land-use/land-cover variables, including the average number of annual storms producing runoff, ratio of 25-75% exceedance flow (flashiness), diversity of natural stream substrate, and the percentage of forested land near the stream channel (forest buffer). Modifications in the hydrologic regime as the result of changes in watershed land use appear to promote the retention of highly tolerant aquatic species; in contrast, species that are sensitive to hydrologic instability and other anthropogenic disturbance become much less prevalent. We also found strong relations between an index of invertebrate-assemblage impairment, its component metrics, and the primary disturbance gradient. The process-oriented watershed modeling approach used in this study provides a means to evaluate how natural landscape features interact with anthropogenic factors and assess their effects on flow characteristics and stream ecology. By combining watershed modeling and indirect ordination techniques, we were able to identify components of the hydrologic regime that have a considerable effect on aquatic-assemblage structure and help in developing short- and long-term management measures that mitigate the effects of anthropogenic disturbance in stream systems.

  11. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously the flow into and within a granular medium composed of spherical and non-spherical shapes under wave forcing. It is concluded that variations in grain shape orientation within a bed appear to control the amount of flow that can be accumulated by the pores, which was illustrated in a conceptual model.

  12. Thresholds of flow-induced bed disturbances and their effects on stream metabolism in an agricultural river

    USGS Publications Warehouse

    O'Connor, Ben L.; Harvey, Judson W.; McPhillips, Lauren E.

    2012-01-01

    Storm-driven flow pulses in rivers destroy and restructure sediment habitats that affect stream metabolism. This study examined thresholds of bed disturbances that affected patch- and reach-scale sediment conditions and metabolism rates. A 4 year record of discharge and diel changes in dissolved oxygen concentrations (ΔDO) was analyzed for disturbances and recovery periods of the ΔDO signal. Disturbances to the ΔDO signal were associated with flow pulses, and the recovery times for the ΔDO signal were found to be in two categories: less than 5 days (30% of the disturbances) or greater than 15 days (70% of the disturbances). A field study was performed during the fall of 2007, which included a storm event that increased discharge from 3.1 to 6.9 m3/s over a 7 h period. During stable flow conditions before the storm, variability in patch-scale stream metabolism values were associated with sediment texture classes with values ranging from −16.4 to 2.3 g O22/d (negative sign indicates net respiration) that bounded the reach-averaged rate of −5.6 g O22/d. Hydraulic modeling of bed shear stresses demonstrated a storm-induced flow pulse mobilized approximately 25% of the bed and reach-scale metabolism rates shifted from −5 to −40 g O22/d. These results suggest that storm-induced bed disturbances led to threshold behavior with respect to stream metabolism. Small flow pulses resulted in partial-bed mobilization that disrupted stream metabolism by increased turbidity with short recovery times. Large flow pulses resulted in full-bed mobilization that disrupted stream metabolism by destroying periphyton habitats with long recovery times.

  13. El-Niño/Southern Oscillation (ENSO) influences on monthly NO 3 load and concentration, stream flow and precipitation in the Little River Watershed, Tifton, Georgia (GA)

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Feyereisen, G. W.; Lall, U.; Jones, J. W.; Bosch, D. D.; Lowrance, R.

    2010-02-01

    SummaryAs climate variability increases, it is becoming increasingly critical to find predictable patterns that can still be identified despite overall uncertainty. The El-Niño/Southern Oscillation is the best known pattern. Its global effects on weather, hydrology, ecology and human health have been well documented. Climate variability manifested through ENSO has strong effects in the southeast United States, seen in precipitation and stream flow data. However, climate variability may also affect water quality in nutrient concentrations and loads, and have impacts on ecosystems, health, and food availability in the southeast. In this research, we establish a teleconnection between ENSO and the Little River Watershed (LRW), GA., as seen in a shared 3-7 year mode of variability for precipitation, stream flow, and nutrient load time series. Univariate wavelet analysis of the NINO 3.4 index of sea surface temperature (SST) and of precipitation, stream flow, NO 3 concentration and load time series from the watershed was used to identify common signals. Shared 3-7 year modes of variability were seen in all variables, most strongly in precipitation, stream flow and nutrient load in strong El Niño years. The significance of shared 3-7 year periodicity over red noise with 95% confidence in SST and precipitation, stream flow, and NO 3 load time series was confirmed through cross-wavelet and wavelet-coherence transforms, in which common high power and co-variance were computed for each set of data. The strongest 3-7 year shared power was seen in SST and stream flow data, while the strongest co-variance was seen in SST and NO 3 load data. The strongest cross-correlation was seen as a positive value between the NINO 3.4 and NO 3 load with a three-month lag. The teleconnection seen in the LRW between the NINO 3.4 index and precipitation, stream flow, and NO 3 load can be utilized in a model to predict monthly nutrient loads based on short-term climate variability, facilitating management in high risk seasons.

  14. Subglacial hydrology and the formation of ice streams

    PubMed Central

    Kyrke-Smith, T. M; Katz, R. F; Fowler, A. C

    2014-01-01

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. PMID:24399921

  15. Effects of Land-Use Changes and Ground-Water Withdrawals on Stream Base Flow, Pocono Creek Watershed, Monroe County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2008-01-01

    The Pocono Creek watershed drains 46.5 square miles in eastern Monroe County, Pa. Between 2000 and 2020, the population of Monroe County is expected to increase by 70 percent, which will result in substantial changes in land-use patterns. An evaluation of the effect of reduced recharge from land-use changes and additional ground-water withdrawals on stream base flow was done by the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency (USEPA) and the Delaware River Basin Commission as part of the USEPA?s Framework for Sustainable Watershed Management Initiative. Two models were used. A Soil and Water Assessment Tool (SWAT) model developed by the USEPA provided areal recharge values for 2000 land use and projected full buildout land use. The USGS MODFLOW-2000 ground-water-flow model was used to estimate the effect of reduced recharge from changes in land use and additional ground-water withdrawals on stream base flow. This report describes the ground-water-flow-model simulations. The Pocono Creek watershed is underlain by sedimentary rock of Devonian age, which is overlain by a veneer of glacial deposits. All water-supply wells are cased into and derive water from the bedrock. In the ground-water-flow model, the surficial geologic units were grouped into six categories: (1) moraine deposits, (2) stratified drift, (3) lake deposits, (4) outwash, (5) swamp deposits, and (6) undifferentiated deposits. The unconsolidated surficial deposits are not used as a source of water. The ground-water and surface-water systems are well connected in the Pocono Creek watershed. Base flow measured on October 13, 2004, at 27 sites for model calibration showed that streams gained water between all sites measured except in the lower reach of Pocono Creek. The ground-water-flow model included the entire Pocono Creek watershed. Horizontally, the modeled area was divided into a 53 by 155 cell grid with 6,060 active cells. Vertically, the modeled area was discretized into four layers. Layers 1 and 2 represented the unconsolidated surficial deposits where they are present and bedrock where the surficial deposits are absent. Layer 3 represented shallow bedrock and was 200 ft (feet) thick. Layer 4 represented deep bedrock and was 300 ft thick. A total of 873 cells representing streams were assigned to layer 1. Recharge rates for model calibration were provided by the USEPA SWAT model for 2000 land-use conditions. Recharge rates for 2000 for the 29 subwatersheds in the SWAT model ranged from 6.11 to 22.66 inches per year. Because the ground-water-flow model was calibrated to base-flow data collected on October 13, 2004, the 2000 recharge rates were multiplied by 1.18 so the volume of recharge was equal to the volume of streamflow measured at the mouth of Pocono Creek. During model calibration, adjustments were made to aquifer hydraulic conductivity and streambed conductance. Simulated base flows and hydraulic heads were compared to measured base flows and hydraulic heads using the root mean squared error (RMSE) between measured and simulated values. The RMSE of the calibrated model for base flow was 4.7 cubic feet per second for 27 locations, and the RMSE for hydraulic heads for 15 locations was 35 ft. The USEPA SWAT model was used to provide areal recharge values for 2000 and full buildout land-use conditions. The change in recharge ranged from an increase of 37.8 percent to a decrease of 60.8 percent. The ground-water-flow model was used to simulate base flow for 2000 and full buildout land-use conditions using steady-state simulations. The decrease in simulated base flow ranged from 3.8 to 63 percent at the streamflow-measurement sites. Simulated base flow at streamflow-gaging station Pocono Creek above Wigwam Run near Stroudsburg, Pa. (01441495), decreased 25 percent. This is in general agreement with the SWAT model, which estimated a 30.6-percent loss in base flow at the streamflow-gaging station.

  16. Analysis of Nitrogen Cycling in a Forest Stream During Autumn Using a 15N Tracer Addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tank, J.L.

    2000-01-01

    We added {sup 15}NH{sub 4}Cl over 6 weeks to Upper Ball Creek, a second-order deciduous forest stream in the Appalachian Mountains, to follow the uptake, spiraling, and fate of nitrogen in a stream food web during autumn. A priori predictions of N flow and retention were made using a simple food web mass balance model. Values of d{sup 15}N were determined for stream water ammonium, nitrate, dissolved organic nitrogen, and various compartments of the food web over time and distance and then compared to model predictions.

  17. Estimating future flood frequency and magnitude in basins affected by glacier wastage.

    DOT National Transportation Integrated Search

    2015-03-01

    We present field measurements of meteorology, hydrology and glaciers and long-term modeled projections of glacier mass balance and : stream flow informed by downscaled climate simulations. The study basins include Valdez Glacier Stream (342 km2 : ), ...

  18. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Clear Creek, Monroe County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, J.G.; Girardi, F.P.

    1979-01-01

    A digital model calibrated to conditions in Clear Creek, Monroe County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The Winston Thomas wastewater-treatment facility is the only point-source waste load affecting the modeled reach of Clear Creek. A new waste-water-treatment facility under construction at Dillman Road (river mile 13.78) will replace the Winston Thomas wastewater-treatment facility (river mile 16.96) in 1980. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. The model indicates that ammonia-nitrogen toxicity is the most significant factor affecting the stream water quality during summer and winter low flows. The ammonia-nitrogen concentration of the wastewater effluent exceeds the maximum total ammonia-nitrogen concentration of 2.5 milligrams per liter for summer months (June through August) and 4.0 milligrams per liter for winter months (November through March) required for Indiana streams. Nitrification, benthic-oxygen demand, and algal respiration were the most significant factors affecting the dissolved-oxygen concentration in Clear Creek during the model calibration. Nitrification should not significantly affect the dissolved-oxygen concentration in Clear Creek during summer low flows when the ammonia-nitrogen toxicity standards are met. (USGS)

  19. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of removal of riparian vegetation. Because debris flow frequency increases following road construction and timber harvest, the long-term biological effects of debris flows on stream ecosystems, including anadromous fish populations, needs to be considered in forest management decisions.

  20. Status of surface-water modeling in the U.S. Geological Survey

    USGS Publications Warehouse

    Jennings, Marshall E.; Yotsukura, Nobuhiro

    1979-01-01

    The U.S. Geological Survey is active in the development and use of models for the analysis of various types of surface-water problems. Types of problems for which models have been, or are being developed, include categories such as the following: (1)specialized hydraulics, (2)flow routing in streams, estuaries, lakes, and reservoirs, (3) sedimentation, (4) transport of physical, chemical, and biological constituents, (5) surface exchange of heat and mass, (6) coupled stream-aquifer flow systems, (7) physical hydrology for rainfall-runoff relations, stream-system simulations, channel geometry, and water quality, (8) statistical hydrology for synthetic streamflows, floods, droughts, storage, and water quality, (9) management and operation problems, and (10) miscellaneous hydrologic problems. Following a brief review of activities prior to 1970, the current status of surface-water modeling is given as being in a developmental, verification, operational, or continued improvement phase. A list of recently published selected references, provides useful details on the characteristics of models.

  1. Physically Modeling Stream Channel Adjustment to Woody Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Bennett, S. J.; Alonso, C. V.

    2003-12-01

    Stream restoration designs often use vegetation to promote bank and channel stability, to facilitate point-bar development, and to encourage natural colonization of riparian species. Here we examine the adjustment of an alluvial channel to in-stream and riparian vegetation using a distorted Froude-scale flume model with a movable boundary. A decimeter-scale trapezoidal channel comprised of 0.8-mm diameter sand was systematically vegetated with emergent, rigid dowels (3-mm in diameter) in rectangular and hemispherical patterns with varying vegetation densities while conserving the shape of the zone and the geometry of the vegetal patterns. Alternate sides of the channel were vegetated at the prescribed spacing of equilibrium alternate bars, ca. 5 to 7 times the channel width. Using flow conditions just below the threshold of sediment motion, flow obstruction, deflection, and acceleration caused bed erosion, bank failure, and morphologic channel adjustments that were wholly attributable to the managed plantings. As vegetation density increased, the magnitude and rate of scaled channel adjustment increased, which included increased channel widths, bankline steepening and meandering, and thalweg meandering. As the modeled channel began to meander, the stream bed aggraded and flow depth decreased markedly, creating a continuously connected, inter-reach complex of mid-channel bars. This study demonstrates the utility of using managed vegetations in stream corridor design and meander development, and it provides the practitioner with guidance on the magnitude of channel adjustment as it relates to vegetation density, shape, and spacing.

  2. Hydrologic Modeling of Relatively Recent Martian Streams and Lake

    NASA Image and Video Library

    2016-09-15

    This map of an area within the Arabia Terra region on Mars shows where hydrologic modeling predicts locations of depressions that would have been lakes (black), overlaid with a map of the preserved valleys (blue lines, with width exaggerated for recognition) that would have been streams. The area today holds numerous features called "fresh shallow valleys." Research findings in 2016 interpret the fresh shallow valleys as evidence for flows of liquid water that occurred several hundred million years -- up to about a billion years -- after the ancient lakes and streams previously documented on Mars. Most of the fresh shallow valleys in this northern portion of Arabia Terra terminate at the margins of model-predicted submerged basins, consistent with an interpretation of flows into lakes and out of lakes. Some valley segments connect to form longer systems, consistent with connections forged by flowing water between interspersed lakes. In the area mapped here, for example, valleys connect basin "A" to basin "B," and basin B to "Heart Lake," each lower in elevation in that chain. http://photojournal.jpl.nasa.gov/catalog/PIA20839

  3. Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-12-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in air temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitats in freshwater systems is critical for predicting aquatic species' responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore the spatially and temporally varying changes in stream temperature for the late 21st century at the subbasin and ecological province scale for the Columbia River basin (CRB). On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil water flow, and groundwater inflow, are negatively correlated to increases in stream temperature depending on the ecological province and season. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa.

  4. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-06-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled General Circulation Model outputs to explore the spatially and temporally varying changes in stream temperature at the subbasin and ecological province scale for the Columbia River Basin. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil flow, and groundwater, are negatively correlated to increases in stream temperature depending on the season and ecological province. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by non-migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically-explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa.

  5. A stream temperature model for the Peace-Athabasca River basin

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  6. Catchment Tomography - Joint Estimation of Surface Roughness and Hydraulic Conductivity with the EnKF

    NASA Astrophysics Data System (ADS)

    Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.

    2017-12-01

    Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.

  7. Natural and Diverted Low-Flow Duration Discharges for Streams Affected by the Waiahole Ditch System, Windward O`ahu, Hawai`i

    USGS Publications Warehouse

    Yeung, Chiu W.; Fontaine, Richard A.

    2007-01-01

    For nearly a century, the Waiahole Ditch System has diverted an average of approximately 27 million gallons per day of water from the wet, northeastern part of windward O`ahu, Hawai`i, to the dry, central part of the island to meet irrigation needs. The system intercepts large amounts of dike-impounded ground water at high altitudes (above approximately 700 to 800 ft) that previously discharged to Waiahole (and its tributaries Waianu and Uwao), Waikane, and Kahana Streams through seeps and springs. Diversion of this ground water has significantly diminished low flows in these streams. Estimates of natural and diverted flows are needed by water managers for (1) setting permanent instream flow standards to protect, enhance, and reestablish beneficial instream uses of water in the diverted streams and (2) allocating the diverted water for instream and offstream uses. Data collected before construction of the Waiahole Ditch System reflect natural (undiverted) flow conditions. Natural low-flow duration discharges for percentiles ranging from 50 to 99 percent were estimated for four sites at altitudes of 75 to 320 feet in Waiahole Stream (and its tributaries Waianu and Uwao Streams), for six sites at altitudes of 10 to 220 feet in Waikane Stream, and for three sites at altitudes of 30 to 80 feet in Kahana Stream. Among the available low-flow estimates along each affected stream, the highest natural Q50 (median) flows on Waiahole (altitude 250 ft), Waianu (altitude 75 ft), Waikane (altitude 75 ft), and Kahana Streams (altitude 30 ft) are 13, 7.0, 5.5, and 22 million gallons per day, respectively. Q50 (median) is just one of five duration percentiles presented in this report to quantify low-flow discharges. All flow-duration estimates were adjusted to a common period of 1960-2004 (called the base period). Natural flow-duration estimates compared favorably with limited pre-ditch streamflow data available for Waiahole and Kahana Streams. Data collected since construction of the ditch system reflect diverted flow conditions, which can be further divided into pre-release and post-release periods - several flow releases to Waiahole, Waianu, and Waikane Streams were initiated between December 1994 and October 2002. Comparison of pre-release to natural flows indicate that the effects of the Waiahole Ditch System diversion are consistently greater at lower low-flow conditions (Q99 to Q90) than at higher low-flow conditions (Q75 to Q50). Results also indicate that the effects of the diversion become less significant as the streams gain additional ground water at lower altitudes. For Waiahole Stream, pre-release flows range from 25 to 28 percent of natural flows at an altitude of 250 feet and from 19 to 20 percent at an altitude of 320 feet. For Waikane Stream, pre-release flows range from 30 to 46 percent of natural flows at an altitude of 10 feet and from 7 to 19 percent at an altitude of 220 feet. For Kahana Stream, pre-release flows range from 65 to 72 percent of natural flows at an altitude of 30 feet and from 58 to 71 percent at an altitude of 80 feet. Estimates of post-release flows were compared with estimates of natural flows to assess how closely current streamflows are to natural conditions. For Waianu Stream, post-release flows at an altitude of 75 feet are 41 to 46 percent lower than corresponding natural flows. For Waikane Stream, post-release flows at an altitude of 75 feet are within 12 percent of the corresponding natural flows. Comparisons of pre-release and post-release flows for Waikane Stream at altitudes of 10 to 220 feet were used to assess downstream changes in flow along the stream reach where flow releases were made. For a particular stream altitude, proportions of pre-release to post-release flows associated with median flows are consistently greater than proportions associated with lower low flows because the relative effect of the flow release is smaller at higher low flows. Similarly, for a particular f

  8. Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2017-11-01

    We investigate correlations between seismically derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion using a Stokes ice flow model. Using high-resolution measurements along several seismic profiles on Pine Island Glacier (PIG), we find no significant correlation at kilometer scale between acoustic impedance and either retrieved basal slipperiness or basal drag. However, there is a stronger correlation when comparing average values along the individual profiles. We hypothesize that the correlation appears at the length scales over which basal variations are important to large-scale ice sheet flow. Although the seismic technique is sensitive to the material properties of the bed, at present there is no clear way of incorporating high-resolution seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs to be done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  9. Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.

    2006-04-01

    We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.

  10. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.

  11. New streams and springs after the 2014 Mw6.0 South Napa earthquake.

    PubMed

    Wang, Chi-Yuen; Manga, Michael

    2015-07-09

    Many streams and springs, which were dry or nearly dry before the 2014 Mw6.0 South Napa earthquake, started to flow after the earthquake. A United States Geological Survey stream gauge also registered a coseismic increase in discharge. Public interest was heightened by a state of extreme drought in California. Since the new flows were not contaminated by pre-existing surface water, their composition allowed unambiguous identification of their origin. Following the earthquake we repeatedly surveyed the new flows, collecting data to test hypotheses about their origin. We show that the new flows originated from groundwater in nearby mountains released by the earthquake. The estimated total amount of new water is ∼ 10(6) m(3), about 1/40 of the annual water use in the Napa-Sonoma area. Our model also makes a testable prediction of a post-seismic decrease of seismic velocity in the shallow crust of the affected region.

  12. Electrohydrodynamic and flow induced tip-streaming

    NASA Astrophysics Data System (ADS)

    Collins, Robert

    2008-11-01

    A liquid subjected to a strong electric field emits thin fluid jets from conical structures (Taylor cones) that form at its surface. Such behavior has both practical and fundamental implications, e.g. for raindrops in thunderclouds and in electrospray mass spectrometry. Theoretical analysis of the temporal development of such electrohydrodynamic (EHD) tip- streaming phenomena has been elusive given the large disparity in length scales between the macroscopic drops/films and the microscopic (nanoscopic) jets. Here, simulation and experiment are used to investigate the mechanisms of EHD tip-streaming from a film of finite conductivity. In the simulations, the full Taylor-Melcher leaky-dielectric model, which accounts for charge relaxation, is solved. Simulations show that tip- streaming does not occur for perfectly conducting or perfectly insulating liquids. Scaling laws for sizes of drops produced from the breakup of the thin jets is developed. Further, simulations demonstrate the critical role played by electrically induced surface shear stresses in the inception of tip-streaming. This invites a comparison to flow focusing, i.e. tip-streaming induced by co-flowing two fluids. The latter phenomenon is also investigated by simulation. In collaboration with Ronald Suryo, Exxon-Mobil; and Jeremy Jones, Michael Harris, and Osman Basaran, Purdue University.

  13. Tracing Nitrate Contributions to Streams During Varying Flow Regimes at the Sleepers River Research Watershed, Vermont, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.

    2003-12-01

    Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.

  14. Three-dimensional numerical model of ground-water flow in northern Utah Valley, Utah County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2009-01-01

    A three-dimensional, finite-difference, numerical model was developed to simulate ground-water flow in northern Utah Valley, Utah. The model includes expanded areal boundaries as compared to a previous ground-water flow model of the valley and incorporates more than 20 years of additional hydrologic data. The model boundary was generally expanded to include the bedrock in the surrounding mountain block as far as the surface-water divide. New wells have been drilled in basin-fill deposits near the consolidated-rock boundary. Simulating the hydrologic conditions within the bedrock allows for improved simulation of the effect of withdrawal from these wells. The inclusion of bedrock also allowed for the use of a recharge model that provided an alternative method for spatially distributing areal recharge over the mountains.The model was calibrated to steady- and transient-state conditions. The steady-state simulation was developed and calibrated by using hydrologic data that represented average conditions for 1947. The transient-state simulation was developed and calibrated by using hydrologic data collected from 1947 to 2004. Areally, the model grid is 79 rows by 70 columns, with variable cell size. Cells throughout most of the model domain represent 0.3 mile on each side. The largest cells are rectangular with dimensions of about 0.3 by 0.6 mile. The largest cells represent the mountain block on the eastern edge of the model domain where the least hydrologic data are available. Vertically, the aquifer system is divided into 4 layers which incorporate 11 hydrogeologic units. The model simulates recharge to the ground-water flow system as (1) infiltration of precipitation over the mountain block, (2) infiltration of precipitation over the valley floor, (3) infiltration of unconsumed irrigation water from fields, lawns, and gardens, (4) seepage from streams and canals, and (5) subsurface inflow from Cedar Valley. Discharge of ground water is simulated by the model to (1) flowing and pumping wells, (2) drains and springs, (3) evapotranspiration, (4) Utah Lake, (5) the Jordan River and mountain streams, and (6) Salt Lake Valley by subsurface outflow through the Jordan Narrows.During steady-state calibration, variables were adjusted within probable ranges to minimize differences between model-computed and measured water levels as well as between model-computed and independently estimated flows that include: recharge by seepage from individual streams and canals, discharge by seepage to individual streams and the Jordan River, discharge to Utah Lake, discharge to drains and springs, discharge by evapotranspiration, and subsurface flows into and out of northern Utah Valley from Cedar Valley and to Salt Lake Valley, respectively. The transient-state simulation was calibrated to measured water levels and water-level changes with consideration given to annual changes in the flows listed above.

  15. A Windmill's Theoretical Maximum Extraction of Power from the Wind.

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1979-01-01

    Explains that the efficiency and the useful power available from a windmill turbine, of a laminar-flow model, will vary due to rotational kinetic energy of the downwind stream and turbulent mixing from outside the boundaries of the idealized stream. (GA)

  16. Modeling Flow and Pollutant Transport in a Karst Watershed with SWAT

    USDA-ARS?s Scientific Manuscript database

    Karst hydrology is characterized by multiple springs, sinkholes, and losing streams resulting from acidic water percolating through limestone. These features provide direct connections between surface water and groundwater and increase the risk of groundwater, springs and stream contamination. Anthr...

  17. A method to assess longitudinal riverine connectivity in tropical streams dominated by migratory biota

    USGS Publications Warehouse

    Crook, K.E.; Pringle, C.M.; Freeman, Mary C.

    2009-01-01

    1. One way in which dams affect ecosystem function is by altering the distribution and abundance of aquatic species. 2. Previous studies indicate that migratory shrimps have significant effects on ecosystem processes in Puerto Rican streams, but are vulnerable to impediments to upstream or downstream passage, such as dams and associated water intakes where stream water is withdrawn for human water supplies. Ecological effects of dams and water withdrawals from streams depend on spatial context and temporal variability of flow in relation to the amount of water withdrawn. 3. This paper presents a conceptual model for estimating the probability that an individual shrimp is able to migrate from a stream's headwaters to the estuary as a larva, and then return to the headwaters as a juvenile, given a set of dams and water withdrawals in the stream network. The model is applied to flow and withdrawal data for a set of dams and water withdrawals in the Caribbean National Forest (CNF) in Puerto Rico. 4. The index of longitudinal riverine connectivity (ILRC), is used to classify 17 water intakes in streams draining the CNF as having low, moderate, or high connectivity in terms of shrimp migration in both directions. An in-depth comparison of two streams showed that the stream characterized by higher water withdrawal had low connectivity, even during wet periods. Severity of effects is illustrated by a drought year, where the most downstream intake caused 100% larval shrimp mortality 78% of the year. 5. The ranking system provided by the index can be used as a tool for conservation ecologists and water resource managers to evaluate the relative vulnerability of migratory biota in streams, across different scales (reach-network), to seasonally low flows and extended drought. This information can be used to help evaluate the environmental tradeoffs of future water withdrawals. ?? 2008 John Wiley & Sons, Ltd.

  18. Data assimilation in integrated hydrological modelling in the presence of observation bias

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Madsen, H.; Jensen, K. H.; Refsgaard, J. C.

    2015-08-01

    The use of bias-aware Kalman filters for estimating and correcting observation bias in groundwater head observations is evaluated using both synthetic and real observations. In the synthetic test, groundwater head observations with a constant bias and unbiased stream discharge observations are assimilated in a catchment scale integrated hydrological model with the aim of updating stream discharge and groundwater head, as well as several model parameters relating to both stream flow and groundwater modeling. The Colored Noise Kalman filter (ColKF) and the Separate bias Kalman filter (SepKF) are tested and evaluated for correcting the observation biases. The study found that both methods were able to estimate most of the biases and that using any of the two bias estimation methods resulted in significant improvements over using a bias-unaware Kalman Filter. While the convergence of the ColKF was significantly faster than the convergence of the SepKF, a much larger ensemble size was required as the estimation of biases would otherwise fail. Real observations of groundwater head and stream discharge were also assimilated, resulting in improved stream flow modeling in terms of an increased Nash-Sutcliffe coefficient while no clear improvement in groundwater head modeling was observed. Both the ColKF and the SepKF tended to underestimate the biases, which resulted in drifting model behavior and sub-optimal parameter estimation, but both methods provided better state updating and parameter estimation than using a bias-unaware filter.

  19. Streamflow loss quantification for groundwater flow modeling using a wading-rod-mounted acoustic Doppler current profiler in a headwater stream

    NASA Astrophysics Data System (ADS)

    Pflügl, Christian; Hoehn, Philipp; Hofmann, Thilo

    2017-04-01

    Irrespective of the availability of various field measurement and modeling approaches, the quantification of interactions between surface water and groundwater systems remains associated with high uncertainty. Such uncertainties on stream-aquifer interaction have a high potential to misinterpret the local water budget and water quality significantly. Due to typically considerable temporal variation of stream discharge rates, it is desirable for the measurement of streamflow to reduce the measuring duration while reducing uncertainty. Streamflow measurements, according to the velocity-area method, have been performed along reaches of a losing-disconnected, subalpine headwater stream using a 2-dimensional, wading-rod-mounted acoustic Doppler current profiler (ADCP). The method was chosen, with stream morphology not allowing for boat-mounted setups, to reduce uncertainty compared to conventional, single-point streamflow measurements of similar measurement duration. Reach-averaged stream loss rates were subsequently quantified between 12 cross sections. They enabled the delineation of strongly infiltrating stream reaches and their differentiation from insignificantly infiltrating reaches. Furthermore, a total of 10 near-stream observation wells were constructed and/or equipped with pressure and temperature loggers. The time series of near-stream groundwater temperature data were cross-correlated with stream temperature time series to yield supportive qualitative information on the delineation of infiltrating reaches. Subsequently, as a reference parameterization, the hydraulic conductivity and specific yield of a numerical, steady-state model of groundwater flow, in the unconfined glaciofluvial aquifer adjacent to the stream, were inversely determined incorporating the inferred stream loss rates. Applying synthetic sets of infiltration rates, resembling increasing levels of uncertainty associated with single-point streamflow measurements of comparable duration, the same inversion procedure was run. The volume-weighted mean of the respective parameter distribution within 200 m of stream periphery deviated increasingly from the reference parameterization at increasing deviation of infiltration rates.

  20. Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks

    NASA Astrophysics Data System (ADS)

    Beaufort, Aurélien; Lamouroux, Nicolas; Pella, Hervé; Datry, Thibault; Sauquet, Eric

    2018-05-01

    Headwater streams represent a substantial proportion of river systems and many of them have intermittent flows due to their upstream position in the network. These intermittent rivers and ephemeral streams have recently seen a marked increase in interest, especially to assess the impact of drying on aquatic ecosystems. The objective of this paper is to quantify how discrete (in space and time) field observations of flow intermittence help to extrapolate over time the daily probability of drying (defined at the regional scale). Two empirical models based on linear or logistic regressions have been developed to predict the daily probability of intermittence at the regional scale across France. Explanatory variables were derived from available daily discharge and groundwater-level data of a dense gauging/piezometer network, and models were calibrated using discrete series of field observations of flow intermittence. The robustness of the models was tested using an independent, dense regional dataset of intermittence observations and observations of the year 2017 excluded from the calibration. The resulting models were used to extrapolate the daily regional probability of drying in France: (i) over the period 2011-2017 to identify the regions most affected by flow intermittence; (ii) over the period 1989-2017, using a reduced input dataset, to analyse temporal variability of flow intermittence at the national level. The two empirical regression models performed equally well between 2011 and 2017. The accuracy of predictions depended on the number of continuous gauging/piezometer stations and intermittence observations available to calibrate the regressions. Regions with the highest performance were located in sedimentary plains, where the monitoring network was dense and where the regional probability of drying was the highest. Conversely, the worst performances were obtained in mountainous regions. Finally, temporal projections (1989-2016) suggested the highest probabilities of intermittence (> 35 %) in 1989-1991, 2003 and 2005. A high density of intermittence observations improved the information provided by gauging stations and piezometers to extrapolate the temporal variability of intermittent rivers and ephemeral streams.

  1. Generalized additive regression models of discharge and mean velocity associated with direct-runoff conditions in Texas: Utility of the U.S. Geological Survey discharge measurement database

    USGS Publications Warehouse

    Asquith, William H.; Herrmann, George R.; Cleveland, Theodore G.

    2013-01-01

    A database containing more than 17,700 discharge values and ancillary hydraulic properties was assembled from summaries of discharge measurement records for 424 U.S. Geological Survey streamflow-gauging stations (stream gauges) in Texas. Each discharge exceeds the 90th-percentile daily mean streamflow as determined by period-of-record, stream-gauge-specific, flow-duration curves. Each discharge therefore is assumed to represent discharge measurement made during direct-runoff conditions. The hydraulic properties of each discharge measurement included concomitant cross-sectional flow area, water-surface top width, and reported mean velocity. Systematic and statewide investigation of these data in pursuit of regional models for the estimation of discharge and mean velocity has not been previously attempted. Generalized additive regression modeling is used to develop readily implemented procedures by end-users for estimation of discharge and mean velocity from select predictor variables at ungauged stream locations. The discharge model uses predictor variables of cross-sectional flow area, top width, stream location, mean annual precipitation, and a generalized terrain and climate index (OmegaEM) derived for a previous flood-frequency regionalization study. The mean velocity model uses predictor variables of discharge, top width, stream location, mean annual precipitation, and OmegaEM. The discharge model has an adjusted R-squared value of about 0.95 and a residual standard error (RSE) of about 0.22 base-10 logarithm (cubic meters per second); the mean velocity model has an adjusted R-squared value of about 0.67 and an RSE of about 0.063 fifth root (meters per second). Example applications and computations using both regression models are provided. - See more at: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0000635#sthash.jhGyPxgZ.dpuf

  2. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    PubMed

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The role of headwater streams in downstream water quality

    USGS Publications Warehouse

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.

  4. The Role of Headwater Streams in Downstream Water Quality1

    PubMed Central

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565

  5. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, L. N.; College of Sciences, China Jiliang University, Hangzhou 310018; Ma, Z. W., E-mail: zwma@zju.edu.cn

    2014-07-15

    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvénmore » resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β < β{sub s}, but decreases if β > β{sub s}. The existence of the specific value β{sub s} can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β{sub s} increases with increase of the streaming flow strength.« less

  6. Hysteretic behavior of stage-discharge relationships in urban streams

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Lindner, G. A.

    2009-12-01

    Reliable stage-discharge relationships or rating curves are of critical importance for accurate calculation of streamflow and maintenance of long-term flow records. Urban streams offer particular challenges for the maintenance of accurate rating curves. It is often difficult or impossible to collect direct discharge measurements at high flows, many of which are generated by short-duration high-intensity summer thunderstorms, both because of dangerous conditions in the channel and also because the stream rises and falls so rapidly that field crews cannot reach sites in time and sometimes cannot make measurements rapidly enough to keep pace with changing water levels even when they are on site during a storm. Work in urban streams in the Baltimore metropolitan area has shown that projection of rating curves beyond the range of measured flows can lead to overestimation of flood peaks by as much as 100%, and these can only be corrected when adequate field data are available to support modeling efforts. Even moderate flows that are above safe wading depth and velocity may best be estimated using hydraulic models. Current research for NSF CNH project 0709659 includes the application of 2-d depth-averaged hydraulic models to match existing rating curves over a range of low to moderate flows and to extend rating curves for higher flows, based on field collection of high-water marks. Although it is generally assumed that stage-discharge relationships are single-valued, we find that modeling results in small urban streams often generate hysteretic relationships, with higher discharges on the rising limb of the hydrograph than on the falling limb. The difference between discharges for the same stage on the rising and falling limb can be on the order of 20-30% even for in-channel flows that are less than 1 m deep. As safety considerations dictate that it is preferable to make direct discharge measurements on the falling limb of the hydrograph, the higher direct measurements used in many rating curves probably have been collected on the falling limb and therefore may not capture the correct stage-discharge relationship for the rising limb. In some cases model results selected only from the falling limb are able to match the existing rating curve very closely. Although hysteresis may be explained with reference to the innate properties of the flood wave, other factors also lead to hysteretic behavior. Downstream constrictions and obstructions associated with urban infrastructure may cause substantial backwater effects, particularly during flood flows. Flood conditions at tributary confluences also can exert a controlling influence upstream. Based on our results we recommend that at some sites it is advisable to develop separate rating curves for the rising and falling limbs, and to develop a range of modeling scenarios for predicting the range of potential uncertainty.

  7. Groundwater availability in the Crouch Branch and McQueen Branch aquifers, Chesterfield County, South Carolina, 1900-2012

    USGS Publications Warehouse

    Campbell, Bruce G.; Landmeyer, James E.

    2014-01-01

    Chesterfield County is located in the northeastern part of South Carolina along the southern border of North Carolina and is primarily underlain by unconsolidated sediments of Late Cretaceous age and younger of the Atlantic Coastal Plain. Approximately 20 percent of Chesterfield County is in the Piedmont Physiographic Province, and this area of the county is not included in this study. These Atlantic Coastal Plain sediments compose two productive aquifers: the Crouch Branch aquifer that is present at land surface across most of the county and the deeper, semi-confined McQueen Branch aquifer. Most of the potable water supplied to residents of Chesterfield County is produced from the Crouch Branch and McQueen Branch aquifers by a well field located near McBee, South Carolina, in the southwestern part of the county. Overall, groundwater availability is good to very good in most of Chesterfield County, especially the area around and to the south of McBee, South Carolina. The eastern part of Chesterfield County does not have as abundant groundwater resources but resources are generally adequate for domestic purposes. The primary purpose of this study was to determine groundwater-flow rates, flow directions, and changes in water budgets over time for the Crouch Branch and McQueen Branch aquifers in the Chesterfield County area. This goal was accomplished by using the U.S. Geological Survey finite-difference MODFLOW groundwater-flow code to construct and calibrate a groundwater-flow model of the Atlantic Coastal Plain of Chesterfield County. The model was created with a uniform grid size of 300 by 300 feet to facilitate a more accurate simulation of groundwater-surface-water interactions. The model consists of 617 rows from north to south extending about 35 miles and 884 columns from west to east extending about 50 miles, yielding a total area of about 1,750 square miles. However, the active part of the modeled area, or the part where groundwater flow is simulated, totaled about 1,117 square miles. Major types of data used as input to the model included groundwater levels, groundwater-use data, and hydrostratigraphic data, along with estimates and measurements of stream base flows made specifically for this study. The groundwater-flow model was calibrated to groundwater-level and stream base-flow conditions from 1900 to 2012 using 39 stress periods. The model was calibrated with an automated parameter-estimation approach using the computer program PEST, and the model used regularized inversion and pilot points. The groundwater-flow model was calibrated using field data that included groundwater levels that had been collected between 1940 and 2012 from 239 wells and base-flow measurements from 44 locations distributed within the study area. To better understand recharge and inter-aquifer interactions, seven wells were equipped with continuous groundwater-level recording equipment during the course of the study, between 2008 and 2012. These water levels were included in the model calibration process. The observed groundwater levels were compared to the simulated ones, and acceptable calibration fits were achieved. Root mean square error for the simulated groundwater levels compared to all observed groundwater levels was 9.3 feet for the Crouch Branch aquifer and 8.6 feet for the McQueen Branch aquifer. The calibrated groundwater-flow model was then used to calculate groundwater budgets for the entire study area and for two sub-areas. The sub-areas are the Alligator Rural Water and Sewer Company well field near McBee, South Carolina, and the Carolina Sandhills National Wildlife Refuge acquisition boundary area. For the overall model area, recharge rates vary from 56 to 1,679 million gallons per day (Mgal/d) with a mean of 737 Mgal/d over the simulation period (1900–2012). The simulated water budget for the streams and rivers varies from 653 to 1,127 Mgal/d with a mean of 944 Mgal/d. The simulated “storage-in term” ranges from 0 to 565 Mgal/d with a mean of 276 Mgal/d. The simulated “storage-out term” has a range of 0 to 552 Mgal/d with a mean of 77 Mgal/d. Groundwater budgets for the McBee, South Carolina, area and the Carolina Sandhills National Wildlife Refuge acquisition area had similar results. An analysis of the effects of past and current groundwater withdrawals on base flows in the McBee area indicated a negligible effect of pumping from the Alligator Rural Water and Sewer well field on local stream base flows. Simulate base flows for 2012 for selected streams in and around the McBee area were similar with and without simulated groundwater withdrawals from the well field. Removing all pumping from the model for the entire simulation period (1900–2012) produces a negligible difference in increased base flow for the selected streams. The 2012 flow for Lower Alligator Creek was 5.04 Mgal/d with the wells pumping and 5.08 Mgal/d without the wells pumping; this represents the largest difference in simulated flows for the six streams.

  8. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    USGS Publications Warehouse

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox Hills aquifer. The numerical model was constructed using a uniform grid with square cells that are about 1 mile (1,600 meters) on each side with a total of about 657,000 active cells.Model calibration was completed by linking Parameter ESTimation (PEST) software with MODFLOW–NWT. The PEST software uses statistical parameter estimation techniques to identify an optimum set of input parameters by adjusting individual model input parameters and assessing the differences, or residuals, between observed (measured or estimated) data and simulated values. Steady-state model calibration consisted of attempting to match mean simulated values to measured or estimated values of (1) hydraulic head, (2) hydraulic head differences between model layers, (3) stream infiltration, and (4) discharge to streams. Calibration of the transient model consisted of attempting to match simulated and measured temporally distributed values of hydraulic head changes, stream base flow, and groundwater discharge to artesian flowing wells. Hydraulic properties estimated through model calibration included hydraulic conductivity, vertical hydraulic conductivity, aquifer storage, and riverbed hydraulic conductivity in addition to groundwater recharge and well skin.The ability of the numerical model to accurately simulate groundwater flow in the Williston Basin was assessed primarily by its ability to match calibration targets for hydraulic head, stream base flow, and flowing well discharge. The steady-state model also was used to assess the simulated potentiometric surfaces in the upper Fort Union aquifer, the lower Fort Union aquifer, and the Fox Hills aquifer. Additionally, a previously estimated regional groundwater-flow budget was compared with the simulated steady-state groundwater-flow budget for the Williston Basin. The simulated potentiometric surfaces typically compared well with the estimated potentiometric surfaces based on measured hydraulic head data and indicated localized groundwater-flow gradients that were topographically controlled in outcrop areas and more generalized regional gradients where the aquifers were confined. The differences between the measured and simulated (residuals) hydraulic head values for 11,109 wells were assessed, which indicated that the steady-state model generally underestimated hydraulic head in the model area. This underestimation is indicated by a positive mean residual of 11.2 feet for all model layers. Layer 7, which represents the lower Hell Creek aquifer, is the only layer for which the steady-state model overestimated hydraulic head. Simulated groundwater-level changes for the transient model matched within plus or minus 2.5 feet of the measured values for more than 60 percent of all measurements and to within plus or minus 17.5 feet for 95 percent of all measurements; however, the transient model underestimated groundwater-level changes for all model layers. A comparison between simulated and estimated base flows for the steady-state and transient models indicated that both models overestimated base flow in streams and underestimated annual fluctuations in base flow.The estimated and simulated groundwater budgets indicate the model area received a substantial amount of recharge from precipitation and stream infiltration. The steady-state model indicated that reservoir seepage was a larger component of recharge in the Williston Basin than was previously estimated. Irrigation recharge and groundwater inflow from outside the Williston Basin accounted for a relatively small part of total groundwater recharge when compared with recharge from precipitation, stream infiltration, and reservoir seepage. Most of the estimated and simulated groundwater discharge in the Williston Basin was to streams and reservoirs. Simulated groundwater withdrawal, discharge to reservoirs, and groundwater outflow in the Williston Basin accounted for a smaller part of total groundwater discharge.The transient model was used to simulate discharge to 571 flowing artesian wells within the model area. Of the 571 established flowing artesian wells simulated by the model, 271 wells did not flow at any time during the simulation because hydraulic head was always below the land-surface altitude. As hydraulic head declined throughout the simulation, 68 of these wells responded by ceasing to flow by the end of 2005. Total mean simulated discharge for the 571 flowing artesian wells was 55.1 cubic feet per second (ft3/s), and the mean simulated flowing well discharge for individual wells was 0.118 ft3/s. Simulated discharge to individual flowing artesian wells increased from 0.039 to 0.177 ft3/s between 1961 and 1975 and decreased to 0.102 ft3/s by 2005. The mean residual for 34 flowing wells with measured discharge was 0.014 ft3/s, which indicates the transient model overestimated discharge to flowing artesian wells in the model area.Model limitations arise from aspects of the conceptual model and from simplifications inherent in the construction and calibration of a regional-scale numerical groundwater-flow model. Simplifying assumptions in defining hydraulic parameters in space and hydrologic stresses and time-varying observational data in time can limit the capabilities of this tool to simulate how the groundwater-flow system responds to changes in hydrologic stresses, particularly at the local scale; nevertheless, the steady-state model adequately simulated flow in the uppermost principal aquifer systems in the Williston Basin based on the comparison between the simulated and estimated groundwater-flow budget, the comparison between simulated and estimated potentiometric surfaces, and the results of the calibration process.

  9. Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development.

    PubMed

    Heilweil, Victor M; Grieve, Paul L; Hynek, Scott A; Brantley, Susan L; Solomon, D Kip; Risser, Dennis W

    2015-04-07

    The environmental impacts of shale-gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply wells, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shale-gas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 μg L(-1) were observed, with four streams ≥ 5 μg L(-1). Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess groundwater contamination from shale-gas development.

  10. Sonic environment of aircraft structure immersed in a supersonic jet flow stream

    NASA Technical Reports Server (NTRS)

    Guinn, W. A.; Balena, F. J.; Soovere, J.

    1976-01-01

    Test methods for determining the sonic environment of aircraft structure that is immersed in the flow stream of a high velocity jet or that is subjected to the noise field surrounding the jet, were investigated. Sonic environment test data measured on a SCAT 15-F model in the flow field of Mach 1.5 and 2.5 jets were processed. Narrow band, lateral cross correlation and noise contour plots are presented. Data acquisition and reduction methods are depicted. A computer program for scaling the model data is given that accounts for model size, jet velocity, transducer size, and jet density. Comparisons of scaled model data and full size aircraft data are made for the L-1011, S-3A, and a V/STOL lower surface blowing concept. Sonic environment predictions are made for an engine-over-the-wing SST configuration.

  11. Determination of trunk streams via using flow accumulation values

    NASA Astrophysics Data System (ADS)

    Farek, Vladimir

    2013-04-01

    There is often a problem, with schematisation of catchments and a channel networks in a broken relief like sandstone landscape (with high vertical segmentation, narrow valley lines, crags, sheer rocks, endorheic hollows etc.). Usual hydrological parameters (subcatchment areas, altitude of highest point of subcatchment, water discharge), which are mostly used for determination of trunk stream upstream the junction, are frequently not utilizable very well in this kind of relief. We found, that for small, relatively homogeneous catchments (within the meaning of land-use, geological subsurface, anthropogenic influence etc.), which are extremely shaped, the value called "flow accumulation" (FA) could be very useful. This value gives the number of cells of the Digital Elevation Model (DEM) grid, which are drained to each cell of the catchment. We can predict that the stream channel with higher values of flow accumulation represents the main stream. There are three crucial issues with this theory. At first it is necessary to find the most suitable algorithm for calculation flow accumulation in a broken relief. Various algorithms could have complications with correct flow routing (representation of divergent or convergent character of the flow), or with keeping the flow paths uninterrupted. Relief with high curvature changes (alternating concave/convex shapes, high steepness changes) causes interrupting of flow lines in many algorithms used for hydrological computing. Second - set down limits of this theory (e.g. the size and character of a surveyed catchment). Third - verify this theory in reality. We tested this theory on sandstone landscape of National park Czech Switzerland. The main data source were high-resolution LIDAR (Light Detection and Ranging) DEM snapshots of surveyed area. This data comes from TU Dresden project called Genesis (Geoinformation Networks For The Cross- Border National Park Region Saxon- Bohemian Switzerland). In order to solve these issues GIS applications (e. g. GIS GRASS and its hydrological modules like r.terraflow, r.watershed, r.flow etc.) are very useful. Key words: channel network, flow accumulation, Digital Elevation Model, LIDAR, broken relief, GIS GRASS

  12. Improvement of trout streams in Wisconsin by augmenting low flows with ground water

    USGS Publications Warehouse

    Novitzki, R.P.

    1973-01-01

    Approximately 2 cubic feet per second of ground water were introduced into the Little Plover River in 1968 when natural streamflow ranged from 3 to 4 cubic feet per second. These augmentation flows were retained undiminished through the 2-mile reach of stream monitored. Maximum stream temperatures were reduced as much as 5?F (3?C) at the augmentation site during the test period, although changes became insignificant more than 1 mile downstream. Maximum temperatures might be reduced as much as 10?F (6?C) during critical periods, based on estimates using a stream temperature model developed as part of the study. During critical periods significant temperature improvement may extend 2 miles or more downstream. Changes in minimum DO (dissolved oxygen) levels were slight, primarily because of the high natural DO levels occurring during the test period. Criteria for considering other streams for flow augmentation are developed on the basis of the observed hydrologic responses in the Little Plover River. Augmentation flows of nearly 2? cubic feet per second of ground water were introduced into the headwater reach of Black Earth Creek from the end of June through mid-October 1969. Streamflow ranged from 1 to 2 cubic feet per second at the augmentation site, and the average flow at the gaging station at Black Earth, approximately 8 miles downstream, ranged from 25 to 50 cubic feet per second. Augmentation flows were retained through the 8-mile reach of stream. Temperature of the augmentation flow as it entered the stream ranged from 60? to 70?F (about 16? to 21?C) during the test period, and minimum stream temperatures were raised 5?F (3?C) or more at the augmentation site, with changes extending from 2 to 3 miles downstream. Augmentation during critical periods could maintain stream temperatures between 40? and 70?F (4? and 21?C) through most of the study reach. DO levels were increased by as much as 2 milligrams per liter or more below the augmentation site, although the improvement diminished to approximately 1 milligram per liter downstream in the problem reach. During critical periods DO improvement in the problem reach would be somewhat greater. Flow augmentation would not be necessary during normal conditions in either of the streams studied. Critical DO and temperature levels are not known to occur in the Little Plover River. Since the construction of secondary treatment facilities at the Cross Plains sewage-treatment plant, critical DO levels are no longer expected to be a problem in Black Earth Creek. However, results from this study may be used to estimate the effectiveness of flow augmentation in other streams in similar areas in which critical DO or temperature levels may occur.

  13. An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation

    EPA Science Inventory

    Digital elevation model (DEM) data are essential to hydrological applications and have been widely used to calculate a variety of useful topographic characteristics, e.g., slope, flow direction, flow accumulation area, stream channel network, topographic index, and others. Excep...

  14. Groundwater Flow Model for Taos, New Mexico

    NASA Astrophysics Data System (ADS)

    Burck, P. W.; Barroll, P. W.; Core, A. B.; Rappuhn, D.

    2003-12-01

    The New Mexico Office of the State Engineer - Hydrology Bureau (OSE) has developed a regional groundwater flow model for Taos, New Mexico. The MODFLOW 2000 model will serve as a tool to evaluate alternatives in settlement negotiations in an on-going water rights adjudication. If current settlement negotiations fail, it is conceivable that the model might be used in support of litigation. OSE produced the model in cooperation with technical representatives of the various parties to the adjudication. Regional hydrogeologic data including well records, aquifer test results, stream flow measurements and seepage studies have been shared relatively freely among the parties. A recent deep drilling program conducted in conjunction with the negotiation effort has added substantially to the hydrogeologic data set. Among the hydrologic processes simulated by the model are mountain front recharge; areal recharge from precipitation; evapotranspiration; discharge from springs; river and stream flow; accretions to groundwater from irrigation return flow, seepage from acequias, canals, and ditches, and deep percolation; and pumping by municipal entities and mutual domestic water users associations. The resulting model files are available for all parties to review and evaluate. Comments are assessed and many have resulted in significant improvements to the model. At this stage, however, it is unclear whether adopting this cooperative approach will increase the likelihood of model acceptance by the parties.

  15. Influence of observers and stream flow on northern two-lined salamander (Eurycea bislineata bislineata) relative abundance estimates in Acadia and Shenandoah National Parks, USA

    USGS Publications Warehouse

    Crocker, J.B.; Bank, M.S.; Loftin, C.S.; Jung Brown, R.E.

    2007-01-01

    We investigated effects of observers and stream flow on Northern Two-Lined Salamander (Eurycea bislineata bislineata) counts in streams in Acadia (ANP) and Shenandoah National Parks (SNP). We counted salamanders in 22 ANP streams during high flow (May to June 2002) and during low flow (July 2002). We also counted salamanders in SNP in nine streams during high flow (summer 2003) and 11 streams during low flow (summers 2001?02, 2004). In 2002, we used a modified cover-controlled active search method with a first and second observer. In succession, observers turned over 100 rocks along five 1-m belt transects across the streambed. The difference between observers in total salamander counts was not significant. We counted fewer E. b. bislineata during high flow conditions, confirming that detection of this species is reduced during high flow periods and that assessment of stream salamander relative abundance is likely more reliable during low or base flow conditions.

  16. Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Detty, Joel; Aubeneau, Antoine; Packman, Aaron I.

    2012-01-01

    Improved predictions of hyporheic exchange based on easily measured physical variables are needed to improve assessment of solute transport and reaction processes in watersheds. Here we compare physically based model predictions for an Indiana stream with stream tracer results interpreted using the Transient Storage Model (TSM). We parameterized the physically based, Multiscale Model (MSM) of stream-groundwater interactions with measured stream planform and discharge, stream velocity, streambed hydraulic conductivity and porosity, and topography of the streambed at distinct spatial scales (i.e., ripple, bar, and reach scales). We predicted hyporheic exchange fluxes and hyporheic residence times using the MSM. A Continuous Time Random Walk (CTRW) model was used to convert the MSM output into predictions of in stream solute transport, which we compared with field observations and TSM parameters obtained by fitting solute transport data. MSM simulations indicated that surface-subsurface exchange through smaller topographic features such as ripples was much faster than exchange through larger topographic features such as bars. However, hyporheic exchange varies nonlinearly with groundwater discharge owing to interactions between flows induced at different topographic scales. MSM simulations showed that groundwater discharge significantly decreased both the volume of water entering the subsurface and the time it spent in the subsurface. The MSM also characterized longer timescales of exchange than were observed by the tracer-injection approach. The tracer data, and corresponding TSM fits, were limited by tracer measurement sensitivity and uncertainty in estimates of background tracer concentrations. Our results indicate that rates and patterns of hyporheic exchange are strongly influenced by a continuum of surface-subsurface hydrologic interactions over a wide range of spatial and temporal scales rather than discrete processes.

  17. Discharge of New Subglacial Lake on Whillians Ice Stream: Implication for Ice Stream Flow Dynamics.

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Fricker, H. A.; Bindschadler, R. A.; Vornberger, P. L.; Macayeal, D. R.

    2006-12-01

    One of the surprise discoveries made possible by the ICESat laser altimeter mission of 2004-2006 is the presence of a large subglacial lake below the grounding zone of Whillians Ice Stream (dubbed here `Lake Helen' after the discoverer, Helen Fricker). What is even more surprising is the fact that this lake discharged a substantial portion of its volume during the ICESat mission, and changes in lake volume and surface elevation of the ice stream are documented in exquisite detail [Fricker et al., in press]. The presence and apparent dynamism of large subglacial lakes in the grounding zone of a major ice stream raises questions about their effects on ice-stream dynamics. Being liquid and movable, water modifies basal friction spatially and temporally. Melting due to shear heating and geothermal flux reduces basal traction, making the ice stream move fast. However, when water collects in a depression to form a lake, it potentially deprives the surrounding bed of lubricating water, and additionally makes the ice surface flat, thereby locally decreasing the ice stream driving stress. We study the effect of formation and discharge of a subglacial lake at the mouth of and ice stream using a two dimensional, vertically integrated, ice-stream model. The model is forced by the basal friction, ice thickness and surface elevation. The basal friction is obtained by inversion of the ice surface velocity, ice thickness and surface elevation come from observations. To simulate the lake formation we introduce zero basal friction and "inflate" the basal elevation of the ice stream at the site of the lake. Sensitivity studies of the response of the surrounding ice stream and ice shelf flow are performed to delineate the influence of near-grounding-line subglacial water storage for ice streams in general.

  18. Modelling rating curves using remotely sensed LiDAR data

    USGS Publications Warehouse

    Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.

    2012-01-01

    Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.

  19. Radial variations of large-scale magnetohydrodynamic fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.

    1983-01-01

    Two time periods are studied for which comprehensive data coverage is available at both 1 AU using IMP-8 and ISEE-3 and beyond using Voyager 1. One of these periods is characterized by the predominance of corotating stream interactions. Relatively small scale transient flows characterize the second period. The evolution of these flows with heliocentric distance is studied using power spectral techniques. The evolution of the transient dominated period is consistent with the hypothesis of turbulent evolution including an inverse cascade of large scales. The evolution of the corotating period is consistent with the entrainment of slow streams by faster streams in a deterministic model.

  20. An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation

    Treesearch

    F. Pan; M. Stieglitz; R.B. McKane

    2012-01-01

    Digital elevation model (DEM) data are essential to hydrological applications and have been widely used to calculate a variety of useful topographic characteristics, e.g., slope, flow direction, flow accumulation area, stream channel network, topographic index, and others. Except for slope, none of the other topographic characteristics can be calculated until the flow...

  1. Evaluation of simplified stream-aquifer depletion models for water rights administration

    USGS Publications Warehouse

    Sophocleous, Marios; Koussis, Antonis; Martin, J.L.; Perkins, S.P.

    1995-01-01

    We assess the predictive accuracy of Glover's (1974) stream-aquifer analytical solutions, which are commonly used in administering water rights, and evaluate the impact of the assumed idealizations on administrative and management decisions. To achieve these objectives, we evaluate the predictive capabilities of the Glover stream-aquifer depletion model against the MODFLOW numerical standard, which, unlike the analytical model, can handle increasing hydrogeologic complexity. We rank-order and quantify the relative importance of the various assumptions on which the analytical model is based, the three most important being: (1) streambed clogging as quantified by streambed-aquifer hydraulic conductivity contrast; (2) degree of stream partial penetration; and (3) aquifer heterogeneity. These three factors relate directly to the multidimensional nature of the aquifer flow conditions. From these considerations, future efforts to reduce the uncertainty in stream depletion-related administrative decisions should primarily address these three factors in characterizing the stream-aquifer process. We also investigate the impact of progressively coarser model grid size on numerically estimating stream leakage and conclude that grid size effects are relatively minor. Therefore, when modeling is required, coarser model grids could be used thus minimizing the input data requirements.

  2. Dynamics of current-use pesticides in the agricultural model basin

    NASA Astrophysics Data System (ADS)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The southeast of the Pampas plains is a zone with intensive agricultural activities; this zone is highly irrigated by wetlands, rivers and many streams. The stream flow dynamics are strongly related to the regional humidity, mainly given by runoff water and phreatic surface level, and can change dramatically during storm events. In this sense, it is important to study the fluctuations in the loads and mass of current-use pesticide (CUPs) to examine the influence of hydrologic and seasonal variability on the response of pesticide levels. The objective of this work was to determine the maximum loads reached of ∑CUPs and mass of CUPs associated with the flow dynamic in surface waters of "El Crespo" stream. "El Crespo" stream is only influenced by farming activities, with intensive crop systems upstream (US) and extensive livestock production downstream (DS). It is an optimal site for pesticide monitoring studies since there are no urban or industrial inputs into the system. Water samples were collected monthly from October 2014 to October 2015 in the UP and DN sites using 1 L polypropylene bottles and stored at -20°C until analysis. The samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The stream flow was measured during the sampling times in both sites, covering low base-flow and high base-flow periods. The most frequently detected residues (>40%) were glyphosate and its metabolite AMPA, atrazine, acetochlor, metolachlor, 2,4-D, metsulfuron methyl, fluorocloridone, imidacloprid, tebuconazole and epoxiconazole. The mean concentrations of ∑CUPs during the sampling period were 1.62µg/L and 1.66µg/L in UP site and DN site, respectively. The highest levels of ∑CUPs were 4.03 µg/L in UP site during spring 2014 and 2.53 µg/L in DN site during winter 2014. The mass of ∑CUPs showed a direct relation between low base flow and high base flow periods. During high base flow during spring 2014, the stream discharge showed peak of 6.16 mt3/s and 6.77 mt3/s, in UP and DN site, respectively; where the total loads of ∑CUPs were 3.7 µg/L and 2.88 µg/L and the associated mass were 22.74 and 19.54 µg/s, in UP and DN site, respectively. During low base flow the discharge were lower than 1 mt3/s and the total loads of ∑CUPs were variable between 1-3 µg/L, but the mass never were higher than 3 µg/s. The intensive rain during the spring 2014, were the mainly factor that influence the stream flow and pesticide dynamics in the model basin

  3. Predictions for the Effects of Free Stream Turbulence on Turbine Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Giel, Paul W.; Ames, Forrest E.

    2004-01-01

    An approach to predicting the effects of free stream turbulence on turbine vane and blade heat transfer is described. Four models for predicting the effects of free stream turbulence were in incorporated into a Navier-Stokes CFD analysis. Predictions were compared with experimental data in order to identify an appropriate model for use across a wide range of flow conditions. The analyses were compared with data from five vane geometries and from four rotor geometries. Each of these nine geometries had data for different Reynolds numbers. Comparisons were made for twenty four cases. Steady state calculations were done because all experimental data were obtained in steady state tests. High turbulence levels often result in suction surface transition upstream of the throat, while at low to moderate Reynolds numbers the pressure surface remains laminar. A two-dimensional analysis was used because the flow is predominately two-dimensional in the regions where free stream turbulence significantly augments surface heat transfer. Because the evaluation of models for predicting turbulence effects can be affected by other factors, the paper discusses modeling for transition, relaminarization, and near wall damping. Quantitative comparisons are given between the predictions and data.

  4. Wenatchee River, Washington, Water Temperature Modeling and Assessment Using Remotely Sensed Thermal Infrared and Instream Recorded Data

    NASA Astrophysics Data System (ADS)

    Cristea, N. C.; Burges, S. J.

    2004-12-01

    The stream water spatial and temporal temperature patterns of the Wenatchee River, WA are assessed based on temperature data recorded by instream data loggers in the dry season of 2002 and thermal infrared imagery from August 16th 2002. To gain insights into the possible thermal behavior of the river, the stream temperature model Qual2K (Chapra and Pelletier, 2003) is extended beyond its calibration (10-16 August 2002) and confirmation (9-11 September 2002) periods for use with different meteorological, shade and flow conditions. The temperature longitudinal profile of the Wenatchee River is influenced by the temperature regime in Lake Wenatchee, the source of the Wenatchee River. Model simulations performed at 7-day average with 2-year return period flow conditions show that the potential (maximum average across all reaches) temperature (the temperature that would occur under natural conditions) is about 19.8 deg. C. For the 7-day average with 10-year return period flow conditions the potential temperature increases to about 21.2 deg. C. The simulation results show that under normal flow and meteorological conditions the water temperature exceeds the current water quality standards. Model simulations performed under the 7-day average with 10-year return period flow conditions and a climate change scenario show that the average potential temperature across all reaches can increase by as much as 1.3 deg. C compared to the case where climate change impact is not taken into account. Thermal infrared (TIR) derived stream temperature data were useful for describing spatial distribution patterns of the Wenatchee River water temperature. The TIR and visible band images are effective tools to map cold water refugia for fish and to detect regions that can be improved for fish survival. The images collected during the TIR survey and the TIR derived stream temperature longitudinal profile helps pinpoint additional instream monitoring locations that avoid regions of backwater, cool or warm pockets or regions affected by tributary influence, that are inappropriate for stream temperature monitoring. Groundwater input is difficult to detect from the TIR images in the case of a relatively large river such the Wenatchee River.

  5. A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1978-01-01

    The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.

  6. Groundwater flow model for the Little Plover River basin in Wisconsin’s Central Sands

    USGS Publications Warehouse

    Ken Bradbury,; Fienen, Michael N.; Kniffin, Maribeth; Jacob Krause,; Westenbroek, Stephen M.; Leaf, Andrew T.; Barlow, Paul M.

    2017-01-01

    The Little Plover River is a groundwater-fed stream in the sand plains region of central Wisconsin. In this region, sandy sediment deposited during or soon after the last glaciation forms an important unconfined sand and gravel aquifer. This aquifer supplies water for numerous high-capacity irrigation, municipal, and industrial wells that support a thriving agricultural industry. In recent years the addition of many new wells, combined with observed diminished flows in the Little Plover and other nearby rivers, has raised concerns about the impacts of the wells on groundwater levels and on water levels and flows in nearby lakes, streams, and wetlands. Diverse stakeholder groups, including well operators, Growers, environmentalists, local land owners, and regulatory and government officials have sought a better understanding of the local groundwater-surface water system and have a shared desire to balance the water needs of the he liagricultural, industrial, and urban users with the maintenance and protection of groundwater-dependent natural resources. To help address these issues, the Wisconsin Department of Natural Resources requested that the Wisconsin Geological and Natural History Survey and U.S. Geological Survey cooperatively develop a groundwater flow model that could be used to demonstrate the relationships among groundwater, surface water, and well withdrawals and also be a tool for testing and evaluating alternative water management strategies for the central sands region. Because of an abundance of previous studies, data availability, local interest, and existing regulatory constraints the model focuses on the Little Plover River watershed, but the modeling methodology developed during this study can apply to much of the larger central sands of Wisconsin. The Little Plover River groundwater flow model simulates three-dimensional groundwater movement in and around the Little Plover River basin under steady-state and transient conditions. This model explicitly includes all high-capacity wells in the model domain and simulates seasonal variations in recharge and well pumping. The model represents the Little Plover River, and other significant streams and drainage ditches in the model domain, as fully connected to the groundwater system, computes stream base flow resulting from groundwater discharge, and routes the flow along the stream channel. A separate soil-water-balance (SWB) model was used to develop groundwater recharge arrays as input for the groundwater flow model. The SWB model uses topography, soils, land use, and climatic data to estimate recharge as deep drainage from the soil zone. The SWB model explicitly includes recharge originating as irrigation water, and computes irrigation using techniques similar to those used by local irrigation operators. The groundwater flow model uses the U.S. Geological Survey’s MODFLOW modeling code which is freely available, widely accepted, and commonly used by the groundwater community. The groundwater flow model and the SWB model use identical high-resolution numerical grids having model cells 100 feet on a side, with physical properties assigned to each grid cell. This grid allows accurate geographic placement of wells, streams, and other model features. The 3-dimensional grid has three layers; layers 1 and 2 represent the sand and gravel aquifer and layer 3 represents the underlying sandstone. The distribution of material properties in the model (hydraulic conductivity, aquifer thickness, etc.) comes from previous published geologic studies of the region, updated by calibration to recent streamflow and groundwater level data. The SWB model operates on a daily time step. The groundwater flow model was calibrated to monthly stress periods with time steps ranging from 1 to 16 days. More detailed time discretization is possible. The groundwater model was calibrated to water-level and streamflow data collected during 2013 and 2014 by adjusting model parameters (primarily hydraulic conductivity, storage, and recharge) until the model produced a conditionally optimal fit between field observations and model output, subject to consistency with previously published geologic studies. Calibration was performed under both steady and transient conditions, and used a sophisticated parameter-estimation procedure (PEST) for the calibration process and to identify important model parameters. For the Little Plover River, the two most important parameters are the global recharge multiplier and the hydraulic conductivity of the stream bed. The calibrated model produces water-level and mass-balance results that are consistent with field observations and previous studies of the area. The completed model is a powerful tool for testing and demonstrating alternative water-management scenarios. Example model applications described in this report include simulating how the cumulative impacts of pumping and land-use change have affected average baseflow in the Little Plover River. Depletion-potential mapping represents a method for predicting which wells and well locations have the greatest impact on nearby surface-water resources. The completed model is publicly available, along with a companion user’s guide to assist with its operation, at http://wgnhs.org/littleplover- river-groundwater-model.

  7. Dynamics of stream water TOC concentrations in a boreal headwater catchment: Controlling factors and implications for climate scenarios

    NASA Astrophysics Data System (ADS)

    Köhler, S. J.; Buffam, I.; Seibert, J.; Bishop, K. H.; Laudon, H.

    2009-06-01

    SummaryTwo different but complementary modelling approaches for reproducing the observed dynamics of total organic carbon (TOC) in a boreal stream are presented. One is based on a regression analysis, while the other is based on riparian soil conditions using a convolution of flow and concentration. Both approaches are relatively simple to establish and help to identify gaps in the process understanding of the TOC transport from soils to catchments runoff. The largest part of the temporal variation of stream TOC concentrations (4-46 mg L -1) in a forested headwater stream in the boreal zone in northern Sweden may be described using a four-parameter regression equation that has runoff and transformed air temperature as sole input variables. Runoff is assumed to be a proxy for soil wetness conditions and changing flow pathways which in turn caused most of the stream TOC variation. Temperature explained a significant part of the observed inter-annual variability. Long-term riparian hydrochemistry in soil solutions within 4 m of the stream also captures a surprisingly large part of the observed variation of stream TOC and highlights the importance of riparian soils. The riparian zone was used to reproduce stream TOC with the help of a convolution model based on flow and average riparian chemistry as input variables. There is a significant effect of wetting of the riparian soil that translates into a memory effect for subsequent episodes and thus contributes to controlling stream TOC concentrations. Situations with high flow introduce a large amount of variability into stream water TOC that may be related to memory effects, rapid groundwater fluctuations and other processes not identified so far. Two different climate scenarios for the region based on the IPCC scenarios were applied to the regression equation to test what effect the expected increase in precipitation and temperature and resulting changes in runoff would have on stream TOC concentrations assuming that the soil conditions remain unchanged. Both scenarios resulted in a mean increase of stream TOC concentrations of between 1.5 and 2.5 mg L -1 during the snow free season, which amounts to approximately 15% more TOC export compared to present conditions. Wetter and warmer conditions in the late autumn led to a difference of monthly average TOC of up to 5 mg L -1, suggesting that stream TOC may be particularly susceptible to climate variability during this season.

  8. Explaining and modeling the concentration and loading of Escherichia coli in a stream-A case study.

    PubMed

    Wang, Chaozi; Schneider, Rebecca L; Parlange, Jean-Yves; Dahlke, Helen E; Walter, M Todd

    2018-09-01

    Escherichia coli (E. coli) level in streams is a public health indicator. Therefore, being able to explain why E. coli levels are sometimes high and sometimes low is important. Using citizen science data from Fall Creek in central NY we found that complementarily using principal component analysis (PCA) and partial least squares (PLS) regression provided insights into the drivers of E. coli and a mechanism for predicting E. coli levels, respectively. We found that stormwater, temperature/season and shallow subsurface flow are the three dominant processes driving the fate and transport of E. coli. PLS regression modeling provided very good predictions under stormwater conditions (R 2  = 0.85 for log (E. coli concentration) and R 2  = 0.90 for log (E. coli loading)); predictions under baseflow conditions were less robust. But, in our case, both E. coli concentration and E. coli loading were significantly higher under stormwater condition, so it is probably more important to predict high-flow E. coli hazards than low-flow conditions. Besides previously reported good indicators of in-stream E. coli level, nitrate-/nitrite-nitrogen and soluble reactive phosphorus were also found to be good indicators of in-stream E. coli levels. These findings suggest management practices to reduce E. coli concentrations and loads in-streams and, eventually, reduce the risk of waterborne disease outbreak. Copyright © 2018. Published by Elsevier B.V.

  9. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin

    USGS Publications Warehouse

    Selbig, William R.

    2015-01-01

    The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2 °C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery.

  10. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin.

    PubMed

    Selbig, William R

    2015-07-15

    The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2°C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery. Published by Elsevier B.V.

  11. The role of the Gulf Stream in European climate.

    PubMed

    Palter, Jaime B

    2015-01-01

    The Gulf Stream carries the warm, poleward return flow of the wind-driven North Atlantic subtropical gyre and the Atlantic Meridional Overturning Circulation. This northward flow drives a significant meridional heat transport. Various lines of evidence suggest that Gulf Stream heat transport profoundly influences the climate of the entire Northern Hemisphere and, thus, Europe's climate on timescales of decades and longer. The Gulf Stream's influence is mediated through feedback processes between the ocean, atmosphere, and cryosphere. This review synthesizes paleoclimate archives, model simulations, and the instrumental record, which collectively suggest that decadal and longer-scale variability of the Gulf Stream's heat transport manifests in changes in European temperature, precipitation, and storminess. Given that anthropogenic climate change is projected to weaken the Atlantic Meridional Overturning Circulation, associated changes in European climate are expected. However, large uncertainty in the magnitude of the anticipated weakening undermines the predictability of the future climate in Europe.

  12. A Streaming Language Implementation of the Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Knight, Timothy

    2005-01-01

    We present a Brook streaming language implementation of the 3-D discontinuous Galerkin method for compressible fluid flow on tetrahedral meshes. Efficient implementation of the discontinuous Galerkin method using the streaming model of computation introduces several algorithmic design challenges. Using a cycle-accurate simulator, performance characteristics have been obtained for the Stanford Merrimac stream processor. The current Merrimac design achieves 128 Gflops per chip and the desktop board is populated with 16 chips yielding a peak performance of 2 Teraflops. Total parts cost for the desktop board is less than $20K. Current cycle-accurate simulations for discretizations of the 3-D compressible flow equations yield approximately 40-50% of the peak performance of the Merrimac streaming processor chip. Ongoing work includes the assessment of the performance of the same algorithm on the 2 Teraflop desktop board with a target goal of achieving 1 Teraflop performance.

  13. Fish habitat regression under water scarcity scenarios in the Douro River basin

    NASA Astrophysics Data System (ADS)

    Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa

    2015-04-01

    Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the interplay of flow reduction, increase of temperature and transversal barriers. This species is therefore a good indicator of climate change impacts in rivers and therefore we recommend using this species as a target of monitoring programs to be implemented in the context of climate change adaptation strategies.

  14. Dynamics of wood in stream networks of the western Cascades Range, Oregon

    Treesearch

    Nicole M. Czarnomski; David M. Dreher; Kai U. Snyder; Julia A. Jones; Frederick J. Swanson

    2008-01-01

    We develop and test a conceptual model of wood dynamics in stream networks that considers legacies of forest management practices, floods, and debris flows. We combine an observational study of wood in 25 km of 2nd- through 5th-order streams in a steep, forested watershed of the western Cascade Range of Oregon with whole-network studies of forest cutting, roads, and...

  15. Genetic assessment of the effects of streamscape succession on coho salmon Oncorhynchus kisutch colonization in recently deglaciated streams

    USGS Publications Warehouse

    Scribner, Kim T.; Soiseth, Chad; McGuire, Jeffrey J.; Sage, Kevin; Thorsteinson, Lyman K.; Nielsen, J. L.; Knudsen, E.

    2017-01-01

    Measures of genetic diversity within and among populations and historical geomorphological data on stream landscapes were used in model simulations based on approximate Bayesian computation (ABC) to examine hypotheses of the relative importance of stream features (geomorphology and age) associated with colonization events and gene flow for coho salmon Oncorhynchus kisutch breeding in recently deglaciated streams (50–240 years b.p.) in Glacier Bay National Park (GBNP), Alaska. Population estimates of genetic diversity including heterozygosity and allelic richness declined significantly and monotonically from the oldest and largest to youngest and smallest GBNP streams. Interpopulation variance in allele frequency increased with increasing distance between streams (r = 0·435, P < 0·01) and was inversely related to stream age (r = –0·281, P < 0·01). The most supported model of colonization involved ongoing or recent (<10 generations before sampling) colonization originating from large populations outside Glacier Bay proper into all other GBNP streams sampled. Results here show that sustained gene flow from large source populations is important to recently established O. kisutch metapopulations. Studies that document how genetic and demographic characteristics of newly founded populations vary associated with successional changes in stream habitat are of particular importance to and have significant implications for, restoration of declining or repatriation of extirpated populations in other regions of the species' native range.

  16. Climate Change Impacts on River Temperature in the Southeastern United States: A Case Study of the Tennessee River Basin

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Niemeyer, R. J.; Mao, Y.; Yearsley, J. R.; Nijssen, B.

    2016-12-01

    In the coming decades, climate change and population growth are expected to affect water and energy supply as well as demand in the southeastern United States. Changes in temperature and precipitation impact river flow and stream temperature with implications for hydropower generation, industrial and municipal water supply, cooling for thermo-electric power plants, agricultural irrigation, ecosystem functions and flood control. At the same time, water and energy demand are expected to change in response to temperature increase, population growth and changing crop water requirements. As part of a multi-institution study of the food-energy-water nexus in the southeastern U.S., we are developing coupled hydrological and stream temperature models that will be linked to water resources, power systems and crop models at a later stage. Here we evaluate the ability of our system to simulate water supply and stream temperature in the Tennessee River Basin using the Variable Infiltration Capacity (VIC) macroscale hydrology model coupled to the River Basin Model (RBM), a 1-D semi-Lagrangian river temperature model, which has recently been expanded with a two-layer reservoir temperature model. Simulations with VIC-RBM were performed for the Tennessee River Basin at 1/8-degree spatial resolution and a temporal resolution of 1 day or less. Reservoir releases were prescribed based on historic operating rules. In future iterations, these releases will be modeled directly by a water resources model that incorporates flood control, and power and agricultural water demands. We compare simulated flows, as well as stream and reservoir temperatures with observed flows and temperatures throughout the basin. In preparation for later stages of the project, we also perform a set of climate change sensitivity experiments to evaluate how changes in climate may impact river and reservoir temperature.

  17. Trail Creek II: Modeling Flow and E. Coli Concentrations in a Small Urban Stream using SWAT

    NASA Astrophysics Data System (ADS)

    Radcliffe, D. E.; Saintil, T.

    2017-12-01

    Pathogens are one of the leading causes of stream and river impairment in the State of Georgia. The common presence of fecal bacteria is driven by several factors including rapid population growth stressing pre-existing and ageing infrastructure, urbanization and poor planning, increase percent imperviousness, urban runoff, municipal discharges, sewage, pet/wildlife waste and leaky septic tanks. The Trail Creek watershed, located in Athens-Clarke County, Georgia covers about 33 km2. Stream segments within Trail Creek violate the GA standard due to high levels of fecal coliform bacteria. In this study, the Soil and Water Assessment Tool (SWAT) modeling software was used to predict E. coli bacteria concentrations during baseflow and stormflow. Census data from the county was used for human and animal population estimates and the Fecal Indicator Tool to generate the number of colony forming units of E. Coli for each source. The model was calibrated at a daily time step with one year of monitored streamflow and E. coli bacteria data using SWAT-CUP and the SUFI2 algorithm. To simulate leaking sewer lines, we added point sources in the five subbasins in the SWAT model with the greatest length of sewer line within 50 m of the stream. The flow in the point sources were set to 5% of the stream flow and the bacteria count set to that of raw sewage (30,000 cfu/100 mL). The calibrated model showed that the average load during 2003-2013 at the watershed outlet was 13 million cfu per month. Using the calibrated model, we simulated scenarios that assumed leaking sewers were repaired in one of the five subbasins with point sources. The reduction ranged from 10 to 46%, with the largest reduction in subbasin in the downtown area. Future modeling work will focus on the use of green infrastructure to address sources of bacteria.

  18. Controls on streamflow intermittence in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kampf, S. K.; Puntenney, K.; Martin, C.; Weber, R.; Gerlich, J.; Hammond, J. C.; Lefsky, M. A.

    2017-12-01

    Intermittent streams comprise more than 60% of the channel length in semiarid northern Colorado, yet little is known about their flow magnitude and timing. We used field surveys, stream sensors, and remote sensing to quantify spatial and temporal patterns of streamflow intermittence in the Cache la Poudre basin in 2016-2017. To evaluate potential controls on streamflow intermittence, we delineated the drainage area to each monitored point and quantified the catchment's mean precipitation, temperature, snow persistence, slope, aspect, vegetation type, soil type, and bedrock geology. During the period of study, most streams below 2500 m elevation and <550 mm mean annual precipitation were intermittent, with flow only during the early spring and summer. In these drier low elevation areas, flow duration generally increased with precipitation and snow persistence. Locally, the type of bedrock geology and location of streams relative to faults affected flow duration. Above 2500 m, nearly all streams with drainage areas >1 km2 had perennial flow, whereas nearly all streams with drainage areas <1 km2 had intermittent flow. For the high elevation intermittent streams, stream locations often differed substantially from the locations mapped in standard GIS data products. Initial analyses have identified no clearly quantifiable controls on flow duration of high elevation streams, but field observations indicate subsurface flow paths are important contributors to surface streams.

  19. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach

    USGS Publications Warehouse

    Norman, Laura M.; Sankey, Joel B.; Dean, David; Caster, Joshua J.; DeLong, Stephen B.; Henderson-DeLong, Whitney; Pelletier, Jon D.

    2017-01-01

    Rock-detention structures are used as restoration treatments to engineer ephemeral stream channels of southeast Arizona, USA, to reduce streamflow velocity, limit erosion, retain sediment, and promote surface-water infiltration. Structures are intended to aggrade incised stream channels, yet little quantified evidence of efficacy is available. The goal of this 3-year study was to characterize the geomorphic impacts of rock-detention structures used as a restoration strategy and develop a methodology to predict the associated changes. We studied reaches of two ephemeral streams with different watershed management histories: one where thousands of loose-rock check dams were installed 30 years prior to our study, and one with structures constructed at the beginning of our study. The methods used included runoff, sediment transport, and geomorphic modelling and repeat terrestrial laser scanner (TLS) surveys to map landscape change. Where discharge data were not available, event-based runoff was estimated using KINEROS2, a one-dimensional kinematic-wave runoff and erosion model. Discharge measurements and estimates were used as input to a two-dimensional unsteady flow-and-sedimentation model (Nays2DH) that combined a gridded flow, transport, and bed and bank simulation with geomorphic change. Through comparison of consecutive DEMs, the potential to substitute uncalibrated models to analyze stream restoration is introduced. We demonstrate a new approach to assess hydraulics and associated patterns of aggradation and degradation resulting from the construction of check-dams and other transverse structures. Notably, we find that stream restoration using rock-detention structures is effective across vastly different timescales.

  20. Bed topography and sand transport responses to a step change in discharge and water depth

    USDA-ARS?s Scientific Manuscript database

    Ephemeral streams with sand and gravel beds may inherit bed topography caused by previous flow events, resulting in bed topography that is not in equilibrium with flow conditions, complicating the modeling of flow and sediment transport. Major flow events, resulting from rainfall with high intensity...

  1. Tracing seasonal groundwater contributions to stream flow using a suite of environmental isotopes

    NASA Astrophysics Data System (ADS)

    Pritchard, J. L.; Herczeg, A. L.; Lamontagne, S.

    2003-04-01

    Groundwater discharge to streams is important for delivering essential solutes to maintain ecosystem health and flow throughout dry seasons. However, managing the groundwater components of stream flow is difficult because several sources of water can contribute, including delayed drainage from bank storage and regional groundwater. In this study we assessed the potential for a variety of environmental tracers to discriminate between different sources of water to stream flow. A case study comparing Cl-, delta O-18 &delta H-2, Rn-222 and 87Sr/86Sr to investigate the spatial and temporal variability of groundwater inputs to stream flow was conducted in the Wollombi Brook Catchment (SE Australia). The objectives were to characterise the three potential sources of water to stream flow (surface water, groundwater from the near-stream sandy alluvial aquifer system, and groundwater from the regional sandstone aquifer system) and estimate their relative contributions to stream discharge at flood recession and baseflow. Surface water was sampled at various locations along the Wollombi Brook and from its tributaries during flood recession (Mar-01) and under baseflow conditions (Oct-01). Alluvial groundwater was sampled from a piezometer network and regional groundwater from deeper bores in the lower to mid-catchment biannually over two years to characterise these potential sources of water to stream flow. Chloride identified specific reaches of the catchment that were either subjected to evaporation or received regional groundwater contributions to stream flow. The water isotopes verified which of these reaches were dominated by evaporation versus groundwater contributions. They also revealed that the predominant sources of water to stream flow during flood recession were either rainfall and storm runoff or regional groundwater, and that during baseflow the predominant source of water to stream flow was alluvial groundwater. Radon showed that there was a greater proportion of groundwater contributing to stream flow in the upper part of the catchment than the lower catchment during both flood recession and baseflow. Strontium isotopes showed that regional groundwater contributed less than 10% to stream flow in all parts of the catchment under baseflow conditions.

  2. Investigating low flow process controls, through complex modelling, in a UK chalk catchment

    NASA Astrophysics Data System (ADS)

    Lubega Musuuza, Jude; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Woods, Ross; Howden, Nicholas

    2017-04-01

    The typical streamflow response of Chalk catchments is dominated by groundwater contributions due the high degree of groundwater recharge through preferential flow pathways. The groundwater store attenuates the precipitation signal, which causes a delay between the corresponding high and low extremes in the precipitation and the stream flow signals. Streamflow responses can therefore be quite out of phase with the precipitation input to a Chalk catchment. Therefore characterising such catchment systems, including modelling approaches, clearly need to reproduce these percolation and groundwater dominated pathways to capture these dominant flow pathways. The simulation of low flow conditions for chalk catchments in numerical models is especially difficult due to the complex interactions between various processes that may not be adequately represented or resolved in the models. Periods of low stream flows are particularly important due to competing water uses in the summer, including agriculture and water supply. In this study we apply and evaluate the physically-based Pennstate Integrated Hydrologic Model (PIHM) to the River Kennet, a sub-catchment of the Thames Basin, to demonstrate how the simulations of a chalk catchment are improved by a physically-based system representation. We also use an ensemble of simulations to investigate the sensitivity of various hydrologic signatures (relevant to low flows and droughts) to the different parameters in the model, thereby inferring the levels of control exerted by the processes that the parameters represent.

  3. Suspended sediment transport in an ephemeral stream following wildfire

    USGS Publications Warehouse

    Malmon, D.V.; Reneau, Steven L.; Katzman, D.; Lavine, A.; Lyman, J.

    2007-01-01

    We examine the impacts of a stand-clearing wildfire on the characteristics and magnitude of suspended sediment transport in ephemeral streams draining the burn area. We report the results of a monitoring program that includes 2 years of data prior to the Cerro Grande fire in New Mexico, and 3 years of postfire data. Suspended sediment concentration (SSC) increased by about 2 orders of magnitude following the fire, and the proportion of silt and clay increased from 50% to 80%. For a given flow event, SSC is highest at the flood bore and decreases monotonically with time, a pattern evident in every flood sampled both before and after the fire. We propose that the accumulation of flow and wash load at the flow front is an inherent characteristic of ephemeral stream flows, due to amplified momentum losses at the flood bore. We present a new model for computing suspended sediment transport in ephemeral streams (in the presence or absence of wildfire) by relating SSC to the time following the arrival of the flood bore, rather than to instantaneous discharge. Using this model and a rainfall history, we estimate that in the 3 years following the fire, floods transported in suspension a mass equivalent to about 3 mm of landscape lowering across the burn area, 20% of this following a single rainstorm. We test the model by computing fine sediment delivery to a small reservoir in an adjacent watershed, where we have a detailed record of postfire sedimentation based on repeat surveys. Systematic discrepancies between modeled and measured sedimentation rates in the reservoir suggest rapid reductions in suspended sediment delivery in the first several years after the fire.

  4. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a “single” lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux‐weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.

  5. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  6. Streams in the urban heat island: spatial and temporal variability in temperature

    USGS Publications Warehouse

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization, and stream thermal regimes.

  7. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is produced by a boulder-bedrock constriction that rapidly decreases the channel width above the pool by roughly 25 percent. The width constriction creates highly turbulent flow capable of scouring bed material through the pool. The high velocity core that is produced through the pool center appears to be enhanced by the formation of a large eddy directly below the boulder. Values of unit stream power and shear stress indicate that the pool exit is an area of deposition of bed material due to a decrease in tractive force. The presence of a strong transverse velocity gradient suggests that only a portion of the flow is responsible for scouring bed material. After we eliminate the dead water zone, the lowest five percent of the velocity range, patterns of effective width between pools and riffles begin to emerge. The ratio of flow width between adjacent pools and riffles is one measure of flow convergence. At a discharge of 0.5 cms, the ratio of effective width between pools and riffles is roughly 1:1, implying that there is uniform flow with little flow convergence. At a discharge of 5.15 cms the width ratio between the pool and riffle is about 1:3, demonstrating the strong convergent flow patterns at the pool head. The observed effective width relationship suggests that when considering restoration designs, boulders should be placed in areas that replicate natural convergence and divergence patterns in order to maximize pool area and depth.

  8. Effects of channel constriction on upstream steering of flow around Locke Island, Columbia River, Washington

    NASA Astrophysics Data System (ADS)

    Loy, G. E.; Furbish, D. J.; Covey, A.

    2010-12-01

    Landsliding of the White Bluffs along the Columbia River in Washington State has constricted the width of the river on one side of Locke Island, a two-kilometer long island positioned in the middle of the channel. Associated changes in flow are thought to be causing relatively rapid erosion of Locke Island on the constricted side. This island is of cultural significance to Native American tribes of south-central Washington, so there are social as well as scientific reasons to understand how the alteration of stream channel processes resulting from the landsliding might be influencing observed erosion rates. Simple hydrodynamic calculations suggest that the constriction on one side of the island creates an upstream backwater effect. As a consequence a cross-stream pressure gradient upstream of the island results in steering of flow around the island into the unobstructed thread. This diversion of water decreases the discharge through the constriction. Therefore, flow velocities within the constriction are not necessarily expected to be higher than those in the unobstructed thread, contrary to initial reports suggesting that higher velocities within the constriction are the main cause of erosion. We set up streamtable experiments with lapse rate imaging to illustrate the backwater effects of the channel constriction and the associated cross-stream steering of flow around a model island. Our experiments are scaled by channel roughness and slope rather than geometrically, as the main focus is to understand the mechanical behavior of flow in this type of island-landslide system. In addition, we studied the stream velocities and flow steering as well as the magnitude of the backwater effect in both the constricted and unobstructed channels using tracer particles in the time-lapse images. These experimental data are compared with calculated upstream backwater distances determined from the known water-surface slope, flow depth, total discharge, and bed roughness. Furthermore, this experimental work will inform subsequent numerical modeling of flow and field-based measurements at Locke Island.

  9. Possibilities and Challenges for Modeling Flow and Pollutant Transport in a Karst Watershed with SWAT

    USDA-ARS?s Scientific Manuscript database

    Karst hydrology is characterized by multiple springs, sinkholes, and losing streams resulting from acidic water percolating through limestone. These features provide direct connections between surface water and groundwater and increase the risk of groundwater, spring and stream contamination. Anthro...

  10. Application of Analysis and Modeling for Surface Water-Ground Water System: Preliminary Study of Artificial Recharge in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Koo, M.; Lee, K.; Ko, K.; Barry, J. M.

    2008-12-01

    The primary goal of this study is to secure sustainable groundwater resources with application of the analysis and modeling of coupled surface water-groundwater system to Jeju Island in the form of artificial recharge. Artificial recharge technology is a feasible method to augment groundwater resources in Jeju Island, Korea. Jeju-friendly Aquifer Recharge Technology (J-ART) that will be developed in this study is a technology for securing sustainable water resources by capturing ephemeral stream water with no interference in the environment such as natural recharge or eco-system, capturing the water in the reservoirs, recharging it through designed borehole after appropriate treatment, and then making it to be used at down-gradient production wells. Precipitation pattern in the study area is shifting to more sparsely-distributed and heavier rain type in summer season which reduces infiltration and/or groundwater recharge but increases runoff and flash flood on stream. Stream water as a source for J-ART is available only a few times a year since the stream bed is highly feasible to be percolated. To characterize quantitatively stream water, automatic temporal data collection system for water level, water velocity, and water qualities of total 8 parameters including temperature, water depth, pH, EC, DO, turbidity, NO3-N and Cl-. Characterizing groundwater flow from recharge area to discharge area should be achieved to evaluate the efficiency of J-ART. Jeju volcanic island has very thick unsaturated zone which is approximately 50 percent of the elevation on which it is. This hydrogeological property is good to inject source water through unsaturated zone to increase transport time, to get main basal aquifer, and to naturally filter the injected water during the transport. However, characterizing groundwater flow through the thick unsaturated zone with repeatedly overlapping permeable/impermeable layers would be a challenge. Estimation method of the infiltration velocity of soil water, groundwater age dating, and evaluation method for groundwater flow/circulation using stable isotopes are developed to evaluate artificial recharge. Input parameters for groundwater flow model are collected and analyzed quantitatively to develop model for simulating groundwater flow and thermal transport during artificial recharge. Self-potential survey method is reviewed theoretically as a geophysical evaluation method to characterize unsaturated flow during artificial recharge.

  11. Flow pathways in the Slapton Wood catchment using temperature as a tracer

    NASA Astrophysics Data System (ADS)

    Birkinshaw, Stephen J.; Webb, Bruce

    2010-03-01

    SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.

  12. The role of dynamic surface water-groundwater exchange on streambed denitrification in a first-order, low-relief agricultural watershed

    NASA Astrophysics Data System (ADS)

    Rahimi, Mina; Essaid, Hedeff I.; Wilson, John T.

    2015-12-01

    The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.

  13. The role of dynamic surface water-groundwater exchange on streambed denitrification in a first-order, low-relief agricultural watershed

    USGS Publications Warehouse

    Rahimi Kazerooni, Mina N.; Essaid, Hedeff I.; Wilson, John T.

    2015-01-01

    The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.

  14. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  15. A discussion of interplanetary post-shock flows with two examples. [with plasma and magnetometer observations

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Burlaga, L. F.

    1974-01-01

    Plasma and magnetometer observations are described for two flare-associated shock flows and the comparison of them with models. One represents a class of flows where the shock is followed by a stream and separated from it by a region in which density temperature and speed decrease monotonically. The other is characterized by a complex region between the shock and the following stream, which has many discontinuities and fluctuations, but in which there is no increase in helium concentration. These two types of flow can be distinguished using ground magnetograms, since the former shows no sudden impulses following the shock, whereas the latter shows many.

  16. Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Martin, M. Pino; Helm, Clara M.

    2017-11-01

    The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  17. Local sensitivities of the gulf stream separation

    DOE PAGES

    Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas; ...

    2016-12-05

    Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less

  18. Increasing synchrony of high temperature and low flow in western North American streams: Double trouble for coldwater biota?

    Treesearch

    Ivan Arismendi; Mohammad Safeeq; Sherri L. Johnson; Jason B Dunham; Roy Haggerty

    2013-01-01

    Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and...

  19. Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE). Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Dupnick, E.; Wiggins, D.

    1980-01-01

    An interactive computer program for automatically generating traffic models for the Space Transportation System (STS) is presented. Information concerning run stream construction, input data, and output data is provided. The flow of the interactive data stream is described. Error messages are specified, along with suggestions for remedial action. In addition, formats and parameter definitions for the payload data set (payload model), feasible combination file, and traffic model are documented.

  20. Feedback of land subsidence on the movement and conjunctive use of water resources

    USGS Publications Warehouse

    Schmid, Wolfgang; Hanson, Randall T.; Leake, Stanley A.; Hughes, Joseph D.; Niswonger, Richard G.

    2014-01-01

    The dependency of surface- or groundwater flows and aquifer hydraulic properties on dewatering-induced layer deformation is not available in the USGS's groundwater model MODFLOW. A new integrated hydrologic model, MODFLOW-OWHM, formulates this dependency by coupling mesh deformation with aquifer transmissivity and storage and by linking land subsidence/uplift with deformation-dependent flows that also depend on aquifer head and other flow terms. In a test example, flows most affected were stream seepage and evapotranspiration from groundwater (ETgw). Deformation feedback also had an indirect effect on conjunctive surface- and groundwater use components: Changed stream seepage and streamflows influenced surface-water deliveries and returnflows. Changed ETgw affected irrigation demand, which jointly with altered surface-water supplies resulted in changed supplemental groundwater requirements and pumping and changed return runoff. This modeling feature will improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface-infrastructure integrity.

  1. Climate Change Impacts on Stream Temperature in Regulated River Systems: A Case Study in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Niemeyer, R. J.; Zhang, X.; Yearsley, J. R.; Voisin, N.; Nijssen, B.

    2017-12-01

    Climate change and associated changes in air temperature and precipitation are projected to impact natural water resources quantity, quality and timing. In the past century, over 280 major dams were built in the Southeastern United States (SEUS) (GRanD database). Regulation of the river system greatly alters natural streamflow as well as stream temperature. Understanding the impacts of climate change on regulated systems, particularly within the context of the Clean Water Act, can inform stakeholders how to maintain and adapt water operations (e.g. regulation, withdrawals). In this study, we use a new modeling framework to study climate change impacts on stream temperatures of a regulated river system. We simulate runoff with the Variable Infiltration Capacity (VIC) macroscale hydrological model, regulated streamflow and reservoir operations with a large-scale river routing-reservoir model (MOSART-WM), and stream temperature using the River Basin Model (RBM). We enhanced RBM with a two-layer thermal stratification reservoir module. This modeling framework captures both the impact of reservoir regulation on streamflow and the reservoir stratification effects on downstream temperatures. We evaluate changes in flow and stream temperatures based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We simulate river temperature with meteorological forcings that have been downscaled with the Multivariate Constructed Analogs (MACA) method. We are specifically interested in analyzing extreme periods during which stream temperature exceeds water quality standards. In this study, we focus on identifying whether these extreme temperature periods coincide with low flows, and whether the frequency and duration of these operationally-relevant periods will increase under future climate change.

  2. Rapid reconnaissance hydrogeologic modeling on public lands using analytic element solutions coupled with MODFLOW - application to the Eagle Creek watershed, New Mexico

    NASA Astrophysics Data System (ADS)

    Congdon, R. D.

    2012-12-01

    There is frequently a need in land management agencies for a quick and easy method for estimating hydrogeologic conditions in a watershed for which there is very little subsurface information. Setting up a finite difference or finite element model takes valuable time that often is not available when decisions need to be made quickly. An analytic element model (AEM), GFLOW in this case, may enable the investigator to produce a preliminary steady-state model for a watershed, and to easily evaluate variants of the conceptual model. Use of preexisting data, such as stream gage data or USGS reports makes the job much easier. Solutions to analytic element models are obtained within seconds. The Eagle Creek watershed in central New Mexico is a site of local water supply issues in an area of volcanic and plutonic rocks. Parameters estimated by groundwater consultants and the USGS, and discharge data from three USGS stream gages were used to set up the steady-state analytical model (GFLOW). Matching gage records with line-sink fluxes facilitated conceptualization of local groundwater flow and quick analysis of the effects of steady water supply pumping on Eagle Creek. Because of steep topgraphy and limited access, a water supply well is located within the stream channel within 20 meters of the creek, and it would be useful to evaluate the effects of the well on stream flow. A USGS report (SIR 2010-5205) revealed a section of Eagle Creek with a high vertical conductivity which results in flow loss of up to 34 l/s (including flow to the water table and flow into alluvium) when the well was pumped and the water table was lowered below the channel bottom. The water supply well was simulated with a steady-state well pumping at the average and maximum rates of 12 l/s and 31 l/s. The initial simulation shows that pumping at these rates results in stream flow loss of 19% and 51%, respectively. The simulation was conducted with average flow conditions, and this information will be important in planning for management during periods of drought, as well as times of more normal precipitation; as water uses must be balanced with the needs of the existing ecosystem. Alternatives, such as low conductivity blocks between stream channels and different volumetric and geographic pumping scenarios may also be readily explored in an AEM. Exporting these scenarios into MODFLOW simulations will enable us to evaluate transient and cyclical pumping effects on the surface waters for each AEM conceptualization, as well as being able to simulate seasonal recharge. However, in many cases the use of MODFLOW may not be necessary, if the AEM proves sufficient to answer the relevant questions. Symbiotic use of GFLOW and MODFLOW will be an invaluable aid in evaluating groundwater and its uses in National Forest watersheds, especially in cases when time is a critical factor in informed decision-making.

  3. Effects of Large Wood on River-Floodplain Connectivity in a Headwater Appalachian Stream

    NASA Astrophysics Data System (ADS)

    Keys, T.; Govenor, H.; Jones, C. N.; Hession, W. C.; Scott, D.; Hester, E. T.

    2017-12-01

    Large wood (LW) plays an important, yet often undervalued role in stream ecosystems. Traditionally, LW has been removed from streams for aesthetic, navigational, and flood mitigation purposes. However, extensive research over the last three decades has directly linked LW to critical ecosystem functions including habitat provisioning, stream geomorphic stability, and water quality improvements; and as such, LW has increasingly been implemented in stream restoration activities. One of the proposed benefits to this restoration approach is that LW increases river-floodplain connectivity, potentially decreasing downstream flood peaks and improving water quality. Here, we conducted two experiential floods (i.e., one with and one without LW) in a headwater, agricultural stream to explore the effect of LW on river-floodplain connectivity and resulting hydrodynamic processes. During each flood, we released an equal amount of water to the stream channel, measured stream discharge at upstream and downstream boundaries, and measured inundation depth at multiple locations across the floodplain. We then utilized a 2-dimensional hydrodynamic model (HEC-RAS) to simulate floodplain hydrodynamics. We first calibrated the model using observations from the two experimental floods. Then, we utilized the calibrated model to evaluate differing LW placement strategies and effects under various flow conditions. Results show that the addition of LW to the channel decreased channel velocity and increased inundation extent, inundation depth, and floodplain velocity. Differential placement of LW along the stream impacted the levels of floodplain discharge, primarily due to the geomorphic characteristics of the stream. Finally, we examined the effects of LW on floodplain hydrodynamics across a synthetic flow record, and found that the magnitude of river-floodplain connectivity decreased as recurrence interval increased, with limited impacts on storm events with a recurrence interval of 25 years or greater. These findings suggest that LW plays a substantial role in river-floodplain connectivity of headwater streams and associated ecosystem services.

  4. Development of a cross-section based stream package for MODFLOW

    NASA Astrophysics Data System (ADS)

    Ou, G.; Chen, X.; Irmak, A.

    2012-12-01

    Accurate simulation of stream-aquifer interactions for wide rivers using the streamflow routing package in MODFLOW is very challenging. To better represent a wide river spanning over multiple model grid cells, a Cross-Section based streamflow Routing (CSR) package is developed and incorporated into MODFLOW to simulate the interaction between streams and aquifers. In the CSR package, a stream segment is represented as a four-point polygon instead of a polyline which is traditionally used in streamflow routing simulation. Each stream segment is composed of upstream and downstream cross-sections. A cross-section consists of a number of streambed points possessing coordinates, streambed thicknesses and streambed hydraulic conductivities to describe the streambed geometry and hydraulic properties. The left and right end points are used to determine the locations of the stream segments. According to the cross-section geometry and hydraulic properties, CSR calculates the new stream stage at the cross-section using the Brent's method to solve the Manning's Equation. A module is developed to automatically compute the area of the stream segment polygon on each intersected MODFLOW grid cell as the upstream and downstream stages change. The stream stage and streambed hydraulic properties of model grids are interpolated based on the streambed points. Streambed leakage is computed as a function of streambed conductance and difference between the groundwater level and stream stage. The Muskingum-Cunge flow routing scheme with variable parameters is used to simulate the streamflow as the groundwater (discharge or recharge) contributes as lateral flows. An example is used to illustrate the capabilities of the CSR package. The result shows that the CSR is applicable to describing the spatial and temporal variation in the interaction between streams and aquifers. The input data become simple due to that the internal program automatically interpolates the cross-section data to each model grid cell.

  5. Groundwater Recharge and Flow Processes in Taihang Mountains, a Semi-humid Region, North China

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2015-04-01

    Groundwater flow/recharge variations in time and space are crucial for effective water management especially in semi-arid and semi-humid regions. In order to reveal comprehensive groundwater flow/recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were undertaken at 4 times in different seasons (June 2011, August 2012, November 2012, February 2014) in the Wangkuai watershed, Taihang mountains, which is a main groundwater recharge area of the North China Plain. The groundwater, spring, stream water and reservoir water were taken, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate and the depth of groundwater table were observed. The stable isotopic compositions and inorganic solute constituents in the groundwater are depleted and shown similar values as those of the surface water at the mountain-plain transitional area. Additionally, the groundwater in the vicinity of the Wangkuai Reservoir presents clearly higher stable isotopic compositions and lower d-excess than those of the stream water, indicating the groundwater around the reservoir is affected by evaporation same as the Wangkuai Reservoir itself. Hence, the surface water in the mountain-plain transitional area and Wangkuai Reservoir are principal groundwater recharge sources. An inversion analysis and simple mixing model were applied in the Wangkuai watershed using stable isotopes of oxygen-18 and deuterium to construct a groundwater flow model. The model shows that multi-originated groundwater flows from upstream to downstream along topography with certain mixing. In addition, the groundwater recharge occurs dominantly at the altitude from 421 m to 953 m, and the groundwater recharge rate by the Wangkuai Reservoir is estimated to be 2.4 % of the total groundwater recharge in the Wangkuai watershed. Therefore, the stream water and reservoir water in the mountain-plain transitional area plays an important role of groundwater recharge in semi-arid and semi-humid regions.

  6. Inference of Stream Network Fragmentation Patterns from Ground Water - Surface Water Interactions on the High Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Yang, X.; Steward, D. R.; Gido, K.

    2007-12-01

    Stream networks in the Great Plains integrate fluxes from precipitation as surface runoff in discrete events and groundwater as base flow. Changes in land cover and agronomic practices and development of ground water resources to support irrigated agriculture have resulted in profound changes in the occurrence and magnitude of stream flows, especially near the Ogallala aquifer, where precipitation is low. These changes have demonstrably altered the aquatic habitat of western Kansas, with documented changes in fish populations, riparian communities and groundwater quality due to stream transmission losses. Forecasting future changes in aquatic and riparian ecology and groundwater quality requires a large scale spatially explicit model of groundwater- surface water interaction. In this study, we combine historical data on land use, stream flow, production well development and groundwater level observations with groundwater elevation modeling to support a geospatial framework for assessing changes in refugia for aquatic species in four rivers in western Kansas between 1965 and 2005. Decreased frequency and duration of streamflow occurred in all rivers, but the extent of change depended on the geomorphology of the river basin and the extent of groundwater development. In the absence of streamflow, refugia for aquatic species were defined as the stream reaches below the phreatic surface of the regional aquifer. Changes in extent, location and degree of fragmentation of gaining reaches was found to be a strong predictor of surface water occurrence during drought and a robust hydrological template for the analysis of changes in recharge to alluvial and regional aquifers and riparian and aquatic habitat.

  7. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value of integrating field and modelling studies of stream metabolism as a means of understanding the dynamic interactions of the riverscape and its surrounding landscape.

  8. Analysis of nitrogen cycling in a forest stream during autumn using a 15N-tracer addition

    Treesearch

    Jennifer L. Tank; Judy L. Meyer; Diane M. Sanzone; Patrick J. Mulholland; Jackson R. Webster; Bruce J. Peterson; Wilfred M. Wollheim; Norman E. Leonard

    2000-01-01

    We added l5NH4Cl over 6 weeks to Upper Ball Creek, a second-order deciduous forest stream in the Appalachian Mountains, to follow the uptake, spiraling, and fate of nitrogen in a stream food web during autumn. A priori predictions of N flow and retention were made using a simple food web mass balance model. Values of ...

  9. Stochastic modeling of Cryptosporidium parvum to predict transport, retention, and downstream exposure

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Boano, F.; Atwill, E. R.; Li, X.; Harter, T.; Packman, A. I.

    2016-12-01

    Rivers are a means of rapid and long-distance transmission of pathogenic microorganisms from upstream terrestrial sources. Thus, significant fluxes of pathogen loads from agricultural lands can occur due to transport in surface waters. Pathogens enter streams and rivers in a variety of processes, notably overland flow, shallow groundwater discharge, and direct inputs from host populations such as humans and other vertebrate species. Viruses, bacteria, and parasites can enter a stream and persist in the environment for varying amounts of time. Of particular concern is the protozoal parasite, Cryptosporidium parvum, which can remain infective for weeks to months under cool and moist conditions, with the infectious state (oocysts) largely resistant to chlorination. In order to manage water-borne diseases more effectively we need to better predict how microbes behave in freshwater systems, particularly how they are transported downstream in rivers and in the process interact with the streambed and other solid surfaces. Microbes continuously immobilize and resuspend during downstream transport due to a variety of processes, such as gravitational settling, attachment to in-stream structures such as submerged macrophytes, and hyporheic exchange and filtration within underlying sediments. These various interactions result in a wide range of microbial residence times in the streambed and therefore influence the persistence of pathogenic microbes in the stream environment. We developed a stochastic mobile-immobile model to describe these microbial transport and retention processes in streams and rivers that also accounts for microbial inactivation. We used the model to assess the transport, retention, and inactivation of C. parvum within stream environments, specifically under representative flow conditions of California streams where C. parvum exposure can be at higher risk due to agricultural nonpoint sources. The results demonstrate that the combination of stream reach-scale analysis and multi-scale stochastic modeling improves assessment of C. parvum transport and retention in streams in order to predict downstream exposure to human communities, wildlife, and livestock.

  10. Rehabilitation and Flood Management Planning in a Steep, Boulder-Bedded Stream

    NASA Astrophysics Data System (ADS)

    Caruso, Brian S.; Downs, Peter W.

    2007-08-01

    This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.

  11. Roughness, resistance, and dispersion: Relationships in small streams

    NASA Astrophysics Data System (ADS)

    Noss, Christian; Lorke, Andreas

    2016-04-01

    Although relationships between roughness, flow, and transport processes in rivers and streams have been investigated for several decades, the prediction of flow resistance and longitudinal dispersion in small streams is still challenging. Major uncertainties in existing approaches for quantifying flow resistance and longitudinal dispersion at the reach scale arise from limitations in the characterization of riverbed roughness. In this study, we characterized the riverbed roughness in small moderate-gradient streams (0.1-0.5% bed slope) and investigated its effects on flow resistance and dispersion. We analyzed high-resolution transect-based measurements of stream depth and width, which resolved the complete roughness spectrum with scales ranging from the micro to the reach scale. Independently measured flow resistance and dispersion coefficients were mainly affected by roughness at spatial scales between the median grain size and the stream width, i.e., by roughness between the micro- and the mesoscale. We also compared our flow resistance measurements with calculations using various flow resistance equations. Flow resistance in our study streams was well approximated by the equations that were developed for high gradient streams (>1%) and it was overestimated by approaches developed for sand-bed streams with a smooth riverbed or ripple bed. This article was corrected on 10 MAY 2016. See the end of the full text for details.

  12. Impact of stream restoration on flood waves

    NASA Astrophysics Data System (ADS)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  13. Modeling E. coli Release And Transport In A Creek During Artificial High-Flow Events

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Pachepsky, Y. A.; Gish, T. J.; Cho, K.; Shelton, D. R.; Kuznetsov, M. Y.

    2012-12-01

    In-stream fate and transport of E. coli, is a leading indicator of microbial contamination of natural waters, and so needs to be understood to eventually minimize surface water contamination by microbial organisms. The objective of this work was to simulate E. coli release and transport from soil sediment in a creek bed both during and after high water flow events. The artificial high-water flow events were created by releasing 60-80 m3 of city water on a tarp-covered stream bank at a rate of 60 L/s in four equal allotments in July of 2008, 2009 and 2010. The small first-order creek used in this study is part of the Beaver Dam Creek Tributary and is located at the USDA Optimizing Production inputs for Economic and Environmental Enhancement (OPE3) research site, in Beltsville, Maryland. In 2009 and 2010 a conservative tracer difluorobenzoic acid (DFBA) was added to the released water. Specifically, water flow rates, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at the ends of the three in-stream weirs reaching a total length of 630 m. Sediment particle size distributions and the streambed E. coli concentrations were measured along a creek before and after experiment. The observed DFBA breakthrough curves (BTCs) exhibited long tails after the water pulse and tracer peaks indicating that transient storage might be an important element of the in-stream transport process. Turbidity and E. coli BTCs also exhibited long tails indicative of transient storage and low rates of settling caused by re-entrainment. Typically, turbidity peaked prior to E. coli and returned to lower base-line levels more rapidly. A one-dimensional model was applied to simulate water flow, E. coli and DFBA transport during these experiments. The Saint-Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for advection-dispersion, lateral inflow/outflow, exchange with the transient storage, and resuspension of bacteria by shear stress from stream bottom sediments. Reach-specific model parameters were estimated by using observed time series of flow rates and concentrations at three weir stations. Transient storage and dispersion parameters were obtained with DFBA BTCs, then critical shear stress and resuspension rate were assessed by fitting computed E. coli BTCs to observations. To obtain a good model fit for E. coli, we generally had to make the transient storage for E. coli larger than for DFBA. Comparison of simulated and measured E. coli concentrations indicated that significant resuspension of E. coli continued when water flow returned to the base level after the water pulse passed and bottom shear stress was small. The hypothetical mechanism of this extended release could be the enhanced boundary layer (water-streambed) exchange due to changes in biofilm properties by erosion and sloughing detachment.

  14. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  15. Managing a Watershed Monitoring Project with Innovative Data Telemetry and Communications Software

    EPA Science Inventory

    In collaboration with Clermont County, the U.S. EPA is developing watershed-wide load and transport models to better understand environmental stressors in stream flow and the structure and function of stream ecosystems in the tributaries of the Lower East Fork River. Watershed s...

  16. Managing a Watershed Monitoring Project with Innovative Data Telemetry and Communications Software

    EPA Science Inventory

    In collaboration with Clermont County, the U.S. EPA is developing watershed-wide load and transport models to better understand environmental stressors in stream flow and the structure and function of stream ecosystems in the tributaries of the Lower East Fork River. Watershed se...

  17. Modeling the Effects of Land Use and Climate Change on Streamflow in the Delaware River Basin

    NASA Astrophysics Data System (ADS)

    Kwon, P. Y. S.; Endreny, T. A.; Kroll, C. N.; Williamson, T. N.

    2014-12-01

    Forest-cover loss and drinking-water reservoirs in the upper Delaware River Basin of New York may alter summer low streamflows, which could degrade the in-stream habitat for the endangered dwarf wedgemussel. Our project analyzes how flow statistics change with land-cover change for 30-year increments of model-simulated streamflow hydrographs for three watersheds of concern to the National Park Service: the East Branch, West Branch, and main stem of the Delaware River. We use four treatments for land cover ranging from historical high to low forest cover. We subject each land cover to adjusted GCM climate scenarios for 1600, 1900, 1940, and 2040 to isolate land cover from potential climate-change effects. Hydrographs are simulated using the Water Availability Tool for Environmental Resources (WATER), a TOPMODEL-based United States Geological Survey hydrologic decision-support tool, which uses the variable-source-area concept and water budgets to generate streamflow. Model parameters for each watershed change with land-use, and capture differences in soil-physical properties that control how rainfall infiltrates, evaporates, transpires, is stored in the soil, and moves to the stream. Our results analyze flow statistics used as indicators of hydrologic alteration, and access streamflow events below the critical flow needed to provide sustainable habitat for dwarf wedgemussels. These metrics will demonstrate how changes in climate and land use might affect flow statistics. Initial results show that the 1940 WATER simulation outputs generally match observed unregulated low flows from that time period, while performance for regulated flow from the same time period and from 1600, 1900, and 2040 require model input adjustments. Our study will illustrate how increased forest cover could potentially restore in-stream habitat for the endangered dwarf wedgemussel for current and future climate conditions.

  18. Estimation of monthly water yields and flows for 1951-2012 for the United States portion of the Great Lakes Basin with AFINCH

    USGS Publications Warehouse

    Luukkonen, Carol L.; Holtschlag, David J.; Reeves, Howard W.; Hoard, Christopher J.; Fuller, Lori M.

    2015-01-01

    Monthly water yields from 105,829 catchments and corresponding flows in 107,691 stream segments were estimated for water years 1951–2012 in the Great Lakes Basin in the United States. Both sets of estimates were computed by using the Analysis of Flows In Networks of CHannels (AFINCH) application within the NHDPlus geospatial data framework. AFINCH provides an environment to develop constrained regression models to integrate monthly streamflow and water-use data with monthly climatic data and fixed basin characteristics data available within NHDPlus or supplied by the user. For this study, the U.S. Great Lakes Basin was partitioned into seven study areas by grouping selected hydrologic subregions and adjoining cataloguing units. This report documents the regression models and data used to estimate monthly water yields and flows in each study area. Estimates of monthly water yields and flows are presented in a Web-based mapper application. Monthly flow time series for individual stream segments can be retrieved from the Web application and used to approximate monthly flow-duration characteristics and to identify possible trends.

  19. Ground Water Flow No Longer A Mystery

    ERIC Educational Resources Information Center

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  20. Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2004-05-01

    Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.

  1. Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990-2006

    USGS Publications Warehouse

    Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.

    2010-01-01

    Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to nutrient management practices designed to reduce nutrient transport to streams by runoff. Conversely, sites with potential for shallow or deep groundwater contribution (some combination of permeable soils or permeable bedrock) had significantly greater contributions of nitrate from base flow. Effective nutrient management strategies would consider groundwater nitrate contributions in these areas. Mean annual base-flow nitrate concentrations were compared to shallow-groundwater nitrate concentrations for 27 sites. Concentrations in groundwater tended to be greater than base-flow concentrations for this group of sites. Sites where groundwater concentrations were much greater than base-flow concentrations were found in areas of high infiltration and oxic groundwater conditions. The lack of correspondingly high concentrations in the base flow of the paired surface-water sites may have multiple causes. In some settings, there has not been sufficient time for enough high-nitrate shallow groundwater to migrate to the nearby stream. In these cases, the stream nitrate concentrations lag behind those in the shallow groundwater, and concentrations may increase in the future as more high-nitrate groundwater reaches the stream. Alternatively, some of these sites may have processes that rapidly remove nitrate as water moves from the aquifer into the stream channel. Partitioning streamflow and nitrate load between the quick-flow and base-flow portions of the hydrograph coupled with relative scales of soil permeability can infer the importance of surface water compared to groundwater nitrate sources. Study of the relation of nitrate concentrations to base-flow index and the comparison of groundwater nitrate concentrations to stream nitrate concentrations during times when base-flow index is high can provide evidence of potential nitrate transport mechanisms. Accounting for the surface-water and groundwater contributions of nitrate is crucial to effective management and remediat

  2. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of bedforms and resulting drag can return similar levels of roughness to those in the field site.

  3. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  4. Conceptual model and numerical simulation of the ground-water-flow system in the unconsolidated deposits of the Colville River Watershed, Stevens County, Washington

    USGS Publications Warehouse

    Ely, D. Matthew; Kahle, Sue C.

    2004-01-01

    Increased use of ground- and surface-water supplies in watersheds of Washington State in recent years has created concern that insufficient instream flows remain for fish and other uses. Issuance of new ground-water rights in the Colville River Watershed was halted by the Washington Department of Ecology due to possible hydraulic continuity of the ground and surface waters. A ground-water-flow model was developed to aid in the understanding of the ground-water system and the regional effects of ground-water development alternatives on the water resources of the Colville River Watershed. The Colville River Watershed is underlain by unconsolidated deposits of glacial and non-glacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Five principal hydrogeologic units are recognized in the study area and form the basis of the ground-water-flow model. A steady-state ground-water-flow model of the Colville River Watershed was developed to simulate September 2001 conditions. The simulation period represented a period of below-average precipitation. The model was calibrated using nonlinear regression to minimize the weighted differences or residuals between simulated and measured hydraulic head and stream discharge. Simulated inflow to the model area was 53,000 acre-feet per year (acre-ft/yr) from precipitation and secondary recharge, and 36,000 acre-ft/yr from stream and lake leakage. Simulated outflow from the model was primarily through discharge to streams and lakes (71,000 acre-ft/yr), ground-water outflow (9,000 acre-ft/yr), and ground-water withdrawals (9,000 acre-ft/yr). Because the period of simulation, September 2001, was extremely dry, all components of the ground-water budget are presumably less than average flow conditions. The calibrated model was used to simulate the possible effects of increased ground-water pumping. Although the steady-state model cannot be used to predict how long it would take for effects to occur, it does simulate the ultimate response to such changes relative to September 2001 (relatively dry) conditions. Steady-state simulations indicated that increased pumping would result in decreased discharge to streams and lakes and decreased ground-water outflow. The location of the simulated increased ground-water pumping determined the primary source of the water withdrawn. Simulated pumping wells in the northern end of the main Colville River valley diverted a large percentage of the pumpage from ground-water outflow. Simulated pumping wells in the southern end of the main Colville River valley diverted a large percentage of the pumpage from flow to rivers and streams. The calibrated steady-state model also was used to simulate predevelopment conditions, during which no ground-water pumping, secondary recharge, or irrigation application occurred. Cumulative streamflow in the Colville River Watershed increased by 1.1 cubic feet per second, or about 36 percent of net ground-water pumping in 2001. The model is intended to simulate the regional ground-water-flow system of the Colville River Watershed and can be used as a tool for water-resource managers to assess the ultimate regional effects of changes in stresses. The regional scale of the model, coupled with relatively sparse data, must be considered when applying the model in areas of poorly understood hydrology, or examining hydrologic conditions at a larger scale than what is appropriate.

  5. Stepwise calibration procedure for regional coupled hydrological-hydrogeological models

    NASA Astrophysics Data System (ADS)

    Labarthe, Baptiste; Abasq, Lena; de Fouquet, Chantal; Flipo, Nicolas

    2014-05-01

    Stream-aquifer interaction is a complex process depending on regional and local processes. Indeed, the groundwater component of hydrosystem and large scale heterogeneities control the regional flows towards the alluvial plains and the rivers. In second instance, the local distribution of the stream bed permeabilities controls the dynamics of stream-aquifer water fluxes within the alluvial plain, and therefore the near-river piezometric head distribution. In order to better understand the water circulation and pollutant transport in watersheds, the integration of these multi-dimensional processes in modelling platform has to be performed. Thus, the nested interfaces concept in continental hydrosystem modelling (where regional fluxes, simulated by large scale models, are imposed at local stream-aquifer interfaces) has been presented in Flipo et al (2014). This concept has been implemented in EauDyssée modelling platform for a large alluvial plain model (900km2) part of a 11000km2 multi-layer aquifer system, located in the Seine basin (France). The hydrosystem modelling platform is composed of four spatially distributed modules (Surface, Sub-surface, River and Groundwater), corresponding to four components of the terrestrial water cycle. Considering the large number of parameters to be inferred simultaneously, the calibration process of coupled models is highly computationally demanding and therefore hardly applicable to a real case study of 10000km2. In order to improve the efficiency of the calibration process, a stepwise calibration procedure is proposed. The stepwise methodology involves determining optimal parameters of all components of the coupled model, to provide a near optimum prior information for the global calibration. It starts with the surface component parameters calibration. The surface parameters are optimised based on the comparison between simulated and observed discharges (or filtered discharges) at various locations. Once the surface parameters have been determined, the groundwater component is calibrated. The calibration procedure is performed under steady state hypothesis (to minimize the procedure time length) using recharge rates given by the surface component calibration and imposed fluxes boundary conditions given by the regional model. The calibration is performed using pilot point where the prior variogram is calculated from observed transmissivities values. This procedure uses PEST (http//:www.pesthomepage.org/Home.php) as the inverse modelling tool and EauDyssée as the direct model. During the stepwise calibration process, each modules, even if they are actually dependant from each other, are run and calibrated independently, therefore contributions between each module have to be determined. For the surface module, groundwater and runoff contributions have been determined by hydrograph separation. Among the automated base-flow separation methods, the one-parameter Chapman filter (Chapman et al 1999) has been chosen. This filter is a decomposition of the actual base-flow between the previous base-flow and the discharge gradient weighted by functions of the recession coefficient. For the groundwater module, the recharge has been determined from surface and sub-surface module. References : Flipo, N., A. Mourhi, B. Labarthe, and S. Biancamaria (2014). Continental hydrosystem modelling : the concept of nested stream-aquifer interfaces. Hydrol. Earth Syst. Sci. Discuss. 11, 451-500. Chapman,TG. (1999). A comparison of algorithms for stream flow recession and base-flow separation. hydrological Processes 13, 701-714.

  6. Modeling Alpine Meadow Restoration Techniques and their Effects on Stream Stage Regimes

    NASA Astrophysics Data System (ADS)

    Moore, C. E.; Lundquist, J. D.; Loheide, S. P.

    2010-12-01

    Meadow ecosystems in the Sierra Nevada of California often suffer from negative anthropogenic impacts, resulting in stream incision and meadow aridification. Groundwater dependent ecosystems, such as meadows, are especially vulnerable to channel degradation because alteration of stream stage propagates through the groundwater system to affect riparian vegetation. Restoration aimed at raising water table elevation of degraded meadow systems is becoming a salient and viable option as managers recognize the importance of intact headwaters. Stream stage controls groundwater levels and thus, vegetation communities, more dramatically than stream discharge in groundwater dependent ecosystems. Here we use a one dimensional hydraulic model, Hydraulic Engineering Center - River Analysis System (HEC-RAS) to model stream stage along the Tuolumne River, given a time series of stream discharge. Extensive hydroclimatic monitoring since 2001, and groundwater monitoring since 2006, make Tuolumne Meadows, in Yosemite National Park, California a prime location for a validated case study, applicable to other snow dominated basins. In order to determine the most plausible, efficient and effective strategy of restoring impacted meadows, different management scenarios are modeled. HEC-RAS modeling provides critical stream stage boundary conditions for groundwater modeling. Scenarios are chosen that are most effective at increasing stream stage and therefore water table levels. The effectiveness is quantified by modeling how each scenario changes the rating curve for a particular channel. Additionally, surface stage modeling allows decision makers to see under what flow conditions and what time period of the hydrograph is affected by restoration. Quantification of stream stage alterations is key for understanding restoration impacts during the short growing season in alpine meadows. Results of HEC-RAS modeling at Tuolumne Meadows are presented in the following formats to highlight the ways in which this work can be used as a vital tool in management decisions regarding meadow restoration. First, direct changes to the resulting stream stage time series are used to illustrate the magnitude of change among scenarios. Second, synthetic rating curves are compared so that the flow regimes which are highly sensitive to a particular restoration strategy can be readily identified. Third, an empirical probability density function describing the stream stage regime will be provided for each scenario to illustrate the overall effectiveness of each restoration technique in changing water levels. Finally, the probability of exceedance for bankfull stage, the depth associated with the onset of oxygen stress, and the depth associated with the onset of water stress will be presented to demonstrate changes to stream levels that are believed to have ecological significance. Investigation of multiple scenarios allows an informed decision based on sound science that will help achieve restoration goals in the future.

  7. Quantifying the fate of agricultural nitrogen in an unconfined aquifer: Stream-based observations at three measurement scales

    NASA Astrophysics Data System (ADS)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Solder, John E.; Kimball, Briant A.; Mitasova, Helena; Birgand, François

    2016-03-01

    We compared three stream-based sampling methods to study the fate of nitrate in groundwater in a coastal plain watershed: point measurements beneath the streambed, seepage blankets (novel seepage-meter design), and reach mass-balance. The methods gave similar mean groundwater seepage rates into the stream (0.3-0.6 m/d) during two 3-4 day field campaigns despite an order of magnitude difference in stream discharge between the campaigns. At low flow, estimates of flow-weighted mean nitrate concentrations in groundwater discharge ([NO3-]FWM) and nitrate flux from groundwater to the stream decreased with increasing degree of channel influence and measurement scale, i.e., [NO3-]FWM was 654, 561, and 451 µM for point, blanket, and reach mass-balance sampling, respectively. At high flow the trend was reversed, likely because reach mass-balance captured inputs from shallow transient high-nitrate flow paths while point and blanket measurements did not. Point sampling may be better suited to estimating aquifer discharge of nitrate, while reach mass-balance reflects full nitrate inputs into the channel (which at high flow may be more than aquifer discharge due to transient flow paths, and at low flow may be less than aquifer discharge due to channel-based nitrate removal). Modeling dissolved N2 from streambed samples suggested (1) about half of groundwater nitrate was denitrified prior to discharge from the aquifer, and (2) both extent of denitrification and initial nitrate concentration in groundwater (700-1300 µM) were related to land use, suggesting these forms of streambed sampling for groundwater can reveal watershed spatial relations relevant to nitrate contamination and fate in the aquifer.

  8. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.

  9. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT

    NASA Astrophysics Data System (ADS)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier

    2017-04-01

    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  10. Soil Microbial Community Contribution to Small Headwater Stream Metabolism.

    NASA Astrophysics Data System (ADS)

    Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.

    2005-05-01

    The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.

  11. A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminata in oligotrophic streams

    NASA Astrophysics Data System (ADS)

    Cullis, James D. S.; Gillis, Carole-Anne; Bothwell, Max L.; Kilroy, Cathy; Packman, Aaron; Hassan, Marwan

    2012-06-01

    The benthic, mat-forming diatomDidymosphenia geminata has the unique ability to produce large amounts of algal biomass under oligotrophic conditions in cold, fast flowing streams and rivers. This presents an ecological paradox that challenges our current understanding of stream ecosystem dynamics. Our understanding of the drivers of D. geminata ecology is still limited. Here we present a conceptual model for the blooming behavior and persistence of this species to advance scientific understanding of strategies for life in fast flowing oligotrophic waters and support the design of future research and mitigation measures for nuisance algal blooms. The conceptual model is based on a synthesis of data and ideas from a range of disciplines including hydrology, geomorphology, biogeochemistry, and ecology. The conceptual model highlights the role of water chemistry, river morphology, and flow thresholds in defining the habitat window for D. geminata. We propose that bed disturbance is a primary control on accumulation and persistence of D. geminataand that the removal threshold can be determined by synthesizing site-specific information on hydrology and geomorphology. Further, we propose that a key to understanding the didymo paradox is the separation of cellular reproduction and mat morphology with specific controls acting in respect of the different processes.

  12. Regionalization of winter low-flow characteristics of Tennessee streams

    USGS Publications Warehouse

    Bingham, R.H.

    1986-01-01

    Procedures were developed for estimating winter (December-April) low flows at ungaged stream sites in Tennessee based on surface geology and drainage area size. One set of equations applies to West Tennessee streams, and another set applies to Middle and East Tennessee streams. The equations do not apply to streams where flow is significantly altered by the activities of man. Standard errors of estimate of equations for West Tennessee are 22% - 35% and for middle and East Tennessee 31% - 36%. Statistical analyses indicate that summer low-flow characteristics are the same as annual low-flow characteristics, and that winter low flows are larger than annual low flows. Streamflow-recession indexes, in days per log cycle of decrease in discharge, were used to account for effects of geology on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that contribute to streamflows during periods of no surface runoff. Streamflow-recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)

  13. Investigation of a supersonic cruise fighter model flow field

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Bare, E. A.

    1985-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.

  14. Variability, trends, and teleconnections of stream flows with large-scale climate signals in the Omo-Ghibe River Basin, Ethiopia.

    PubMed

    Degefu, Mekonnen Adnew; Bewket, Woldeamlak

    2017-04-01

    This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.

  15. Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth

    USGS Publications Warehouse

    Niswonger, Richard G.; Naranjo, Ramon C.; Smith, David; Constantz, James E.; Allander, Kip K.; Rosenberry, Donald O.; Neilson, Bethany; Rosen, Michael R.; Stonestrom, David A.

    2017-01-01

    Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow.

  16. Streaming potential of superhydrophobic microchannels.

    PubMed

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characteristics of Five Ejector Configurations at Free-Stream Mach Numbers from 0 to 2.0

    NASA Technical Reports Server (NTRS)

    Klann, John L.; Huff, Ronald G.

    1959-01-01

    Thrust, air-handling, and base-pressure characteristics of five ejector configurations were investigated in the Lewis 8-by 6-foot wind tunnel at free-stream Mach numbers from 0 to 2.0 over ranges of primary-jet pressure ratio up to 24 and corrected secondary weight-flow ratio up to 13 percent. The ejector-shroud geometries varied from convergent to divergent. Base pressure ratio and ejector performance were interrelated by means of an exit-momentum parameter. Correlations, to at least a first approximation, with base pressure ratio, of both internal-ejector-flow separation and external-flow separation over the model boattail were shown. Furthermore, it was shown that magnitudes and exact trends in base pressure ratio depended largely, and in a complicated fashion, on ejector geometry and amount of secondary flow. External-stream effects on ejector jet thrust were determined for a typical schedule of jet-engine pressure ratios. With the exception of the ejector having the largest (1.81) shroud-exit-to primary-diameter ratio, there were no stream effects at Mach numbers from 1.5 to 2.0 and variations from quiescent-air thrust data were less than 2.5 percent at the subsonic speed investigated.

  18. Effects of bathymetric lidar errors on flow properties predicted with a multi-dimensional hydraulic model

    Treesearch

    J. McKean; D. Tonina; C. Bohn; C. W. Wright

    2014-01-01

    New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...

  19. Land Cover and Hydrologic Variability in Residential Watersheds: Drivers of N Loss in Sacramento CA

    NASA Astrophysics Data System (ADS)

    McConaghie, J. B.; Zhou, W.; Cadenasso, M. L.

    2011-12-01

    A key aspect to understanding N loss from urban systems is the link between landscape heterogeneity and variability in non-point source (NPS) nitrogen (N) flux. Because water transports N across the landscape and into receiving streams as runoff, understanding how landscape heterogeneity influences water quantity and movement is also needed. High variability in N loss has been documented from urban systems. However, typical NPS studies characterize landscape heterogeneity by land use and only weakly explain variability in stream N. Focusing on land cover, rather than land use, may better explain observed variability in N loss because land cover elements may better indicate major drivers of N loss. Also, most studies have been conducted in temperate urban systems with stream flow year round. In semi-arid urban systems, storm flow accounts for the majority of stream discharges, and residential irrigation contributes significantly to flows in the dry season. To address how landscape heterogeneity affects variability in water quantity and quality in urban streams, we examined how land cover influences stream flows and N loss in residential streams of metropolitan Sacramento, CA. We analyzed fine-scale variation in land cover and stream N during base flow and storm events in 4 residential watersheds which differ substantially in land cover. We classified land cover using HERCULES (High Ecological Resolution Classification for Urban Landscapes and Environmental Systems) which was developed specifically for urban systems. HERCULES classifies high-resolution aerial photographs into 5 elements: buildings, pavement, herbaceous and woody vegetation, and bare soil. Streams were sampled for discharge, NO3, and Total N using auto samplers during storms in the 2010-2011 rainy season and monthly in the dry season. Partial correlation analysis and multivariate models describe the relationships between land cover elements, water retention, and stream N in these watersheds. We found an early season flush of N from streams during the first storms, and N levels diminished through progressive storms. Also, N concentrations were higher during the rainy season compared to the dry season. High proportion of impervious cover was associated with greater flow rates overall, while high proportion of herbaceous cover was associated with reduced flow rates during storms. The proportion of pavement in the watersheds, a commonly used indicator of urban intensity, did not strongly correlate with increased levels of stream N except during the flush, but did correlate with the magnitude and timing of flows during storms. However, high proportions of building cover, e.g. residential homes, did correlate with higher N fluxes. The use of fertilizers or enhanced N cycling through vegetation management near residential buildings is a possible source of increased N. Management to reduce aquatic enrichment of N from urban ecosystems may be best directed toward identifying N sources and sinks associated with specific land covers. Management must also account for seasonal dynamics, such as annual hydrologic patterns, which drive the loss of N.

  20. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach

    USGS Publications Warehouse

    Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.

    2014-01-01

    Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.

  1. Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Bresciani, R.; Masi, F.; Boano, F.; Revelli, R.; Ridolfi, L.

    2018-05-01

    Urban runoff negatively impacts the receiving streams and different solutions have been proposed in literature to limit the effect of urbanization on the water balance. These solutions suggest to manage urban runoff in order to switch from a post-development river hydrograph (high peak and short duration) back again to a pre-development hydrograph (low peak and high duration). Combined sewer overflows (CSOs) represent severe pollutant sources for receiving streams due to the combination of first flush of roads and sewers and black water conveyed by combined sewer systems. Constructed wetlands for CSO treatment (CSO-CWs) are adopted with increasing frequency for reducing pollutant inputs to streams. Moreover, these systems exhibit the characteristic to behave similarly to ponds, wetlands, and bioretention systems that provide flood mitigation by decreasing the intensity of peak flows. This work aims to show the additional ecosystem service provided by CSO-CWs in term of limitation of the hydraulic impact of CSO on stream hydrograph. A mathematical model is developed to simulate the hydraulic behavior of a real case study situated in Gorla Maggiore (Italy), which includes vertical flow subsurface beds (VF) as first stage and a free water surface bed (FWS) as second stage. The model simulates the unsaturated flow within VF and the accumulation of water on the top of VF and within FWS. Results show a satisfactory lamination performance of the system for both single and up to 5 consecutive flood events, with a peak flow reduction ranging from 52.7% to 95.4%. Withdrawn of flow rate from the river in order to cope with long dry period does not significantly affect the lamination performances. The considered CSO-CW exhibits an excellent lamination efficiency also during more intense floods events, with a peak flow reduction of 86.2% for a CSO event with return period of 10 years. The flow rate frequency density function determined by the CSO-CW is more shifted towards lower values compared to untreated CSOs. These results indicate that CSO-CWs work properly in terms of reduction of CSO urbanization impact on stream hydrology.

  2. Exploring mechanisms of transport and persistence of environmental DNA (eDNA)

    NASA Astrophysics Data System (ADS)

    Shogren, A.; Tank, J. L.; Riis, T.; Rosi, E. J.; Bolster, D.

    2017-12-01

    Sampling for eDNA is a non-intrusive method to detect species presence without direct observation, which allows for earlier detection and more rapid response than conventional sampling methods. However, our current understanding of how eDNA is transported and persists in flowing waters (e.g., streams and rivers) remains imprecise; in flowing waters, the target organism may be some distance away from where the eDNA in water is collected. It is uncertain how the unique transport properties of suspended eDNA or the inherent heterogeneity of natural flowing systems may impact the probability of downstream eDNA detection. To improve understanding of eDNA fate, we first conducted experimental releases and modeled the impact of benthic substrate heterogeneity and size on eDNA transport and retention in streams. We also used recirculating artificial streams to constrain estimates of eDNA degradation in systems with varying flow and microbial biofilm coverage. We found that eDNA retention in streams is substrate-specific, and that streambed hydraulics have significant influence on how far eDNA is transported downstream. Through the degradation experiments, we found that eDNA degradation is strongly context dependent, but even in systems with low velocity, eDNA can remain detectable in the water column >24hrs after introduction. This differential persistence of eDNA particles confirms that eDNA dynamics in flowing waters are not constant along a spatial continuum, which complicates interpretation of a positive detection in flowing waters, which presents a scaling problem for future modeling efforts to support transport predictions. To test our experimental results in a natural system, we compared our previous estimates for eDNA transport, retention, and degradation to field data collected during a longitudinal field survey for zebra mussel eDNA on the Gudena River in Silkeborg, Denmark. We found that though heterogeneity indeed complicates scaling efforts to extrapolate results from small experimental streams to larger natural systems, we can use the small-scale experiments to improve how we interpret spatial variation in eDNA signal in larger scale flowing systems.

  3. Economic Analysis of the Impacts of Climate-Induced Changes in River Flow on Hydropower and Fisheries in Himalayan region.

    NASA Astrophysics Data System (ADS)

    Khadka Mishra, S.; Hayse, J.; Veselka, T.; Yan, E.; Kayastha, R. B.; McDonald, K.; Steiner, N.; Lagory, K.

    2017-12-01

    Climate-mediated changes in melting of snow and glaciers and in precipitation patterns are expected to significantly alter the water flow of rivers at various spatial and temporal scales. Hydropower generation and fisheries are likely to be impacted annually and over the century by the seasonal as well as long-term changes in hydrological conditions. In order to quantify the interactions between the drivers of climate change, the hydropower sector and the ecosystem we developed an integrated assessment framework that links climate models with process-based bio-physical and economic models. This framework was applied to estimate the impacts of changes in snow and glacier melt on the stream flow of the Trishuli River of the High Mountain Asia Region. Remotely-sensed data and derived products, as well as in-situ data, were used to quantify the changes in snow and glacier melt. The hydrological model was calibrated and validated for stream flows at various points in the Trishuli river in order to forecast conditions at the location of a stream gauge station upstream of the Trishuli hydropower plant. The flow of Trishuli River was projected to increase in spring and decrease in summer over the period of 2020-2100 under RCP 8.5 and RCP 4.5 scenarios as compared to respective mean seasonal discharge observed over 1981-2014. The simulated future annual mean stream flow would increase by 0.6 m3/s under RCP 8.5 scenario but slightly decrease under RCP 4.5. The Argonne Hydropower Energy and Economic toolkit was used to estimate and forecast electricity generation at the Trishuli power plant under various flow conditions and upgraded infrastructure. The increased spring flow is expected to increase dry-season electricity generation by 18% under RCP 8.5 in comparison to RCP 4.5. A fishery suitability model developed for the basin indicated that fishery suitability in the Trishuli River would be greater than 70% of optimal, even during dry months under both RCP 4.5 and RCP 8.5. The estimated economic value (preliminary result) of electricity generated from the Trishuli hydropower plant under RCP 4.5 and RCP 8.5 were projected to be 3.7% to 7.5% higher for the month of March while for the months of April and May the values were1.5% to 9.4% lower.

  4. New streams and springs after the 2014 Mw6.0 South Napa earthquake

    PubMed Central

    Wang, Chi-Yuen; Manga, Michael

    2015-01-01

    Many streams and springs, which were dry or nearly dry before the 2014 Mw6.0 South Napa earthquake, started to flow after the earthquake. A United States Geological Survey stream gauge also registered a coseismic increase in discharge. Public interest was heightened by a state of extreme drought in California. Since the new flows were not contaminated by pre-existing surface water, their composition allowed unambiguous identification of their origin. Following the earthquake we repeatedly surveyed the new flows, collecting data to test hypotheses about their origin. We show that the new flows originated from groundwater in nearby mountains released by the earthquake. The estimated total amount of new water is ∼106 m3, about 1/40 of the annual water use in the Napa–Sonoma area. Our model also makes a testable prediction of a post-seismic decrease of seismic velocity in the shallow crust of the affected region. PMID:26158898

  5. How would peak rainfall intensity affect runoff predictions using conceptual water balance models?

    NASA Astrophysics Data System (ADS)

    Yu, B.

    2015-06-01

    Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud) in the French Alps (area = 1.478 km2) (1966-2006). Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd) were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash-Sutcliffe coefficient of efficiency (NSE) varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10-20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.

  6. The role of the hyporheic flow on sediment transport processes : an experimental approach using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe

    2017-04-01

    The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.

  7. A Physically Based Analytical Model to Describe Effective Excess Charge for Streaming Potential Generation in Water Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Guarracino, L.; Jougnot, D.

    2018-01-01

    Among the different contributions generating self-potential, the streaming potential is of particular interest in hydrogeology for its sensitivity to water flow. Estimating water flux in porous media using streaming potential data relies on our capacity to understand, model, and upscale the electrokinetic coupling at the mineral-solution interface. Different approaches have been proposed to predict streaming potential generation in porous media. One of these approaches is the flux averaging which is based on determining the excess charge which is effectively dragged in the medium by water flow. In this study, we develop a physically based analytical model to predict the effective excess charge in saturated porous media using a flux-averaging approach in a bundle of capillary tubes with a fractal pore size distribution. The proposed model allows the determination of the effective excess charge as a function of pore water ionic concentration and hydrogeological parameters like porosity, permeability, and tortuosity. The new model has been successfully tested against different set of experimental data from the literature. One of the main findings of this study is the mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by several researchers. The proposed model also highlights the link to other lithological properties, and it is able to reproduce the evolution of effective excess charge with electrolyte concentrations.

  8. Constraints upon the Response of Fish and Crayfish to Environmental Flow Releases in a Regulated Headwater Stream Network

    PubMed Central

    Chester, Edwin T.; Matthews, Ty G.; Howson, Travis J.; Johnston, Kerrylyn; Mackie, Jonathon K.; Strachan, Scott R.; Robson, Belinda J.

    2014-01-01

    In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer–term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006–2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human–made dispersal barriers downstream need to be identified and ameliorated, to allow native fish to fulfil their life cycles in these headwater streams. PMID:24647407

  9. Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.

  10. Factors which influence the behavior of turbofan forced mixer nozzles

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Povinelli, L. A.

    1981-01-01

    A finite difference procedure was used to compute the mixing for three experimentally tested mixer geometries. Good agreement was obtained between analysis and experiment when the mechanisms responsible for secondary flow generation were properly modeled. Vorticity generation due to flow turning and vorticity generated within the centerbody lobe passage were found to be important. Results are presented for two different temperature ratios between fan and core streams and for two different free stream turbulence levels. It was concluded that the dominant mechanisms in turbofan mixers is associated with the secondary flows arising within the lobe region and their development within the mixing section.

  11. Cost-effectiveness of the U.S. Geological Survey stream-gaging program in Indiana

    USGS Publications Warehouse

    Stewart, J.A.; Miller, R.L.; Butch, G.K.

    1986-01-01

    Analysis of the stream gaging program in Indiana was divided into three phases. The first phase involved collecting information concerning the data need and the funding source for each of the 173 surface water stations in Indiana. The second phase used alternate methods to produce streamflow records at selected sites. Statistical models were used to generate stream flow data for three gaging stations. In addition, flow routing models were used at two of the sites. Daily discharges produced from models did not meet the established accuracy criteria and, therefore, these methods should not replace stream gaging procedures at those gaging stations. The third phase of the study determined the uncertainty of the rating and the error at individual gaging stations, and optimized travel routes and frequency of visits to gaging stations. The annual budget, in 1983 dollars, for operating the stream gaging program in Indiana is $823,000. The average standard error of instantaneous discharge for all continuous record gaging stations is 25.3%. A budget of $800,000 could maintain this level of accuracy if stream gaging stations were visited according to phase III results. A minimum budget of $790,000 is required to operate the gaging network. At this budget, the average standard error of instantaneous discharge would be 27.7%. A maximum budget of $1 ,000,000 was simulated in the analysis and the average standard error of instantaneous discharge was reduced to 16.8%. (Author 's abstract)

  12. A physically-based analytical model to describe effective excess charge for streaming potential generation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Guarracino, L.

    2016-12-01

    The self-potential (SP) method is considered by most researchers the only geophysical method that is directly sensitive to groundwater flow. One source of SP signals, the so-called streaming potential, results from the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore space, it gives rise to a streaming current and a resulting measurable electrical voltage. Different approaches have been proposed to predict streaming potentials in porous media. One approach is based on the excess charge which is effectively dragged in the medium by the water flow. Following a recent theoretical framework, we developed a physically-based analytical model to predict the effective excess charge in saturated porous media. In this study, the porous media is described by a bundle of capillary tubes with a fractal pore-size distribution. First, an analytical relationship is derived to determine the effective excess charge for a single capillary tube as a function of the pore water salinity. Then, this relationship is used to obtain both exact and approximated expressions for the effective excess charge at the Representative Elementary Volume (REV) scale. The resulting analytical relationship allows the determination of the effective excess charge as a function of pore water salinity, fractal dimension and hydraulic parameters like porosity and permeability, which are also obtained at the REV scale. This new model has been successfully tested against data from the literature of different sources. One of the main finding of this study is that it provides a mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by various researchers. The proposed petrophysical relationship also contributes to understand the role of porosity and water salinity on effective excess charge and will help to push further the use of streaming potential to monitor groundwater flow.

  13. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  14. Classification of California streams using combined deductive and inductive approaches: Setting the foundation for analysis of hydrologic alteration

    USGS Publications Warehouse

    Pyne, Matthew I.; Carlisle, Daren M.; Konrad, Christopher P.; Stein, Eric D.

    2017-01-01

    Regional classification of streams is an early step in the Ecological Limits of Hydrologic Alteration framework. Many stream classifications are based on an inductive approach using hydrologic data from minimally disturbed basins, but this approach may underrepresent streams from heavily disturbed basins or sparsely gaged arid regions. An alternative is a deductive approach, using watershed climate, land use, and geomorphology to classify streams, but this approach may miss important hydrological characteristics of streams. We classified all stream reaches in California using both approaches. First, we used Bayesian and hierarchical clustering to classify reaches according to watershed characteristics. Streams were clustered into seven classes according to elevation, sedimentary rock, and winter precipitation. Permutation-based analysis of variance and random forest analyses were used to determine which hydrologic variables best separate streams into their respective classes. Stream typology (i.e., the class that a stream reach is assigned to) is shaped mainly by patterns of high and mean flow behavior within the stream's landscape context. Additionally, random forest was used to determine which hydrologic variables best separate minimally disturbed reference streams from non-reference streams in each of the seven classes. In contrast to stream typology, deviation from reference conditions is more difficult to detect and is largely defined by changes in low-flow variables, average daily flow, and duration of flow. Our combined deductive/inductive approach allows us to estimate flow under minimally disturbed conditions based on the deductive analysis and compare to measured flow based on the inductive analysis in order to estimate hydrologic change.

  15. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  16. Climate and land cover effects on the temperature of Puget Sound streams: Assessment of Climate and Land Use Impacts on Stream Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qian; Sun, Ning; Yearsley, John

    We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lowermore » reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change.« less

  17. Sample stream distortion modeled in continuous-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.

    1979-01-01

    Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.

  18. A modeling assessment of the thermal regime for an urban sport fishery

    NASA Astrophysics Data System (ADS)

    Bartholow, John M.

    1991-11-01

    Water temperature is almost certainly a limiting factor in the maintenance of a self-sustaining rainbow trout ( Oncorhynchus mykiss, formerly Salmo gairdneri) and brown trout ( Salmo trutta) fishery in the lower reaches of the Cache la Poudre River near Fort Collins, Colorado, USA. Irrigation diversions dewater portions of the river, but cold reservoir releases moderate water temperatures during some periods. The US Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP) was applied to a 31-km segment of the river using readily available stream geometry and hydrological and meteorological data. The calibrated model produced satisfactory water temperature predictions ( R 2=0.88, P<0.001, N=49) for a 62-day summer period. It was used to evaluate a variety of flow and nonflow alternatives to keep water temperatures below 23.3°C for the trout. Supplemental flows or reduced diversions of 3 m3/sec would be needed to maintain suitable summer temperatures throughout most of the study area. Such flows would be especially beneficial during weekends when current irrigation patterns reduce flows. The model indicated that increasing the riparian shade would result in little improvement in water temperatures but that decreasing the stream width would result in significant temperature reductions. Introduction of a more thermally tolerant redband trout ( Oncorhynchus sp.), or smallmouth bass ( Micropterus dolomieui) might prove beneficial to the fishery. Construction of deep pools for thermal refugia might also be helpful.

  19. The dynamics of climate-induced deglacial ice stream acceleration

    NASA Astrophysics Data System (ADS)

    Robel, A.; Tziperman, E.

    2015-12-01

    Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.

  20. Geomorphology of ice stream beds: recent progress and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and concepts, particularly with respect to how landforms can be securely linked to subglacial processes and ice dynamics. However, recent developments in numerical modelling of the subglacial environment are beginning to offer new opportunities to tackle this issue and observations from both modern and palaeo-ice streams will be critical to constrain and validate such modelling.

  1. How has climate change altered network connectivity in a mountain stream network?

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish migration) and indirectly (e.g., stream temperature modeling). Additionally, our results inform management and regulatory needs such as estimating connectivity for entire river networks as a basis for regulation, and identifying the complexity of a shifting baseline in identifying a regulatory basis.

  2. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.

    PubMed

    Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian

    2007-02-22

    Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.

  3. Hydrogeologic data for the Blaine aquifer and associated units in southwestern Oklahoma and northwestern Texas

    USGS Publications Warehouse

    Runkle, D.L.; Bergman, D.L.; Fabian, R.S.

    1997-01-01

    This report is a compilation of hydrogeologic data collected for an areal ground-water investigation of the Blaine aquifer and associated units in southwestern Oklahoma and northwestern Texas. The study area includes parts of Greer, Harmon, and Jackson counties in Oklahoma and parts of Childress, Collingsworth, Hall, Hardeman, and Wilbarger counties in Texas. The Blaine aquifer consists of cavernous gypsum and dolomite beds. Water from the Blaine aquifer supports a local agriculture based mainly on irrigated cotton and wheat. The purpose of the study was to determine the availability, quantity, and quality of ground water from the Blaine aquifer and associated units. This report provides a reference for some of the data that was used as input into a computer ground-water flow model that simulates ground-water flow in the Blaine aquifer. The data in this report consists of: (1) Monthly or periodic water-level measurements in 134 wells; (2) daily mean water-level measurements for 11 wells equipped with water-level recorders; (3) daily total precipitation measurements from five precipitation gages; (4) low-flow stream-discharge measurements for 89 stream sites; (5) miscellaneous stream-discharge measurements at seven stream sites; (6) chemical analyses of surface water from 78 stream sites during low-flow periods; (7) chemical analyses of ground water from 41 wells; and (8) chemical analyses of runoff water collected at five sites.

  4. Adequacy of satellite derived rainfall data for stream flow modeling

    USGS Publications Warehouse

    Artan, G.; Gadain, Hussein; Smith, Jodie; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  5. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2011-01-01

    This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection–diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability. PMID:22247719

  6. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection-diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability.

  7. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    NASA Astrophysics Data System (ADS)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  8. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    NASA Technical Reports Server (NTRS)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  9. Overview of a simple model describing variation of dissolved organic carbon in an upland catchment

    USGS Publications Warehouse

    Boyer, Elizabeth W.; Hornberger, George M.; Bencala, Kenneth E.; McKnight, Diane M.

    1996-01-01

    Hydrological mechanisms controlling the variation of dissolved organic carbon (DOC) were investigated in the Deer Creek catchment located near Montezuma, CO. Patterns of DOC in streamflow suggested that increased flows through the upper soil horizon during snowmelt are responsible for flushing this DOC-enriched interstitial water to the streams. We examined possible hydrological mechanisms to explain the observed variability of DOC in Deer Creek by first simulating the hydrological response of the catchment using TOPMODEL and then routing the predicted flows through a simple model that accounted for temporal changes in DOC. Conceptually the DOC model can be taken to represent a terrestrial (soil) reservoir in which DOC builds up during low flow periods and is flushed out when infiltrating meltwaters cause the water table to rise into this “reservoir”. Concentrations of DOC measured in the upper soil and in streamflow were compared to model simulations. The simulated DOC response provides a reasonable reproduction of the observed dynamics of DOC in the stream at Deer Creek.

  10. Impact of debris dams on hyporheic interaction along a semi-arid stream

    NASA Astrophysics Data System (ADS)

    Lautz, Laura K.; Siegel, Donald I.; Bauer, Robert L.

    2006-01-01

    Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi-arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface.Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi-arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS-P, a one-dimensional, surface-water, solute-transport model from which we extracted the storage exchange rate and cross-sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short-term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non-gaining reach, stream water was diverted to the subsurface by debris dams and captured by large-scale near-stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams.

  11. Hydrologic Links Among Urbanization, Channel Morphology, Aquatic Habitat, and Macroinvertebrates in North Carolina Piedmont Streams

    NASA Astrophysics Data System (ADS)

    Giddings, E. M.

    2005-12-01

    Landscape changes associated with urbanization have been shown to alter flow regimes of streams that, in turn, alter channel morphology, aquatic habitat, and biological communities. In order to mitigate the effects of urbanization on biological communities, it is important to understand the hydrologic links between these interactions. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, 30 stream sites in the Piedmont of North Carolina (including the cities Raleigh, Greensboro, and Winston-Salem) having a range of watershed urbanization were sampled. To measure urbanization intensity, a multimetric index of watershed and riparian land use, infrastructure, and socioeconomic conditions was used. Population density ranged from 24 to 3,276 people per square kilometer; 75 percent of the sites had less than 2,000 people per square kilometer. At each site, continuous discharge record was estimated for 1 year using continuous stream-stage data, instantaneous discharge measurements, and one-dimensional hydraulic modeling. Hydrologic variability metrics were calculated to compare the magnitude, frequency, and duration of high and low flows among sites. These metrics then were correlated with measures of channel morphology, habitat, a richness-based macroinvertebrate index, and the urban-intensity index. As urban intensity in the watershed increased, the frequency of quickly rising flows increased (R2=0.55, p<0.0001), and the duration of high flows decreased (R2=0.47, p=0.0001). Along with these changes, channels became more incised; bankfull channel depths (normalized by drainage area) increased as the frequency of quickly rising flows increased (R2=0.28, p=0.006) and the duration of high flows decreased (R2=0.17, p =0.04). Additionally, streams with higher frequencies of quickly rising flows had greater percentages of sand as a dominant substrate (R2=0.19, p=0.03) and greater differences between bankfull depth and low-flow depth at summer flows (R2=0.30, p= 0.004), which is considered an indicator of flow stability. A macroinvertebrate index of sensitive taxa (the orders Ephemeroptera, Plecoptera and Trichoptera) to tolerant taxa (the family Chironomid) richness at the sampled streams declined with increases in percentages of sand (R2=0.22, p=0.008) and bankfull channel depth (R2=0.25, p=0.005) and decreases in flow stability (R2=0.43, p<0.0001), illustrating the important hydrologic links among urbanization and channel morphology, habitat, and macroinvertebrates in piedmont streams.

  12. Spatial pattern of dissolved organic matter (DOM) along a stream drainage in a forested, Piedmont catchment

    NASA Astrophysics Data System (ADS)

    Inamdar, S. P.; Singh, S.

    2013-12-01

    Understanding how dissolved organic matter (DOM) varies spatially in catchments and the processes and mechanisms that regulate this variation is critical for developing accurate and reliable models of DOM. We determined the concentrations and composition of DOM at multiple locations along a stream drainage network in a 79 ha forested, Piedmont, watershed in Maryland, USA. DOM concentrations and composition was compared for five stream locations during baseflow (drainage areas - 0.62, 3.5, 4.5, 12 and 79 ha) and three locations (3.5, 12, 79 ha) for storm flow. Sampling was conducted by manual grab samples and automated ISCO samplers. DOM composition was characterized using a suite of spectrofluorometric indices which included - HIX, a254, and FI. A site-specific PARAFAC model was also developed for DOM fluorescence to determine the humic-, fulvic-, and protein-like DOM constituents. Hydrologic flow paths during baseflow and stormflow were characterized for all stream locations using an end-member mixing model (EMMA). DOM varied notably across the sampled positions for baseflow and stormflow. During baseflow, mean DOC concentrations for the sampled locations ranged between 0.99-3.1 mg/L whereas for stormflow the range was 5.22-8.11 mg/L. Not surprisingly, DOM was more humic and aromatic during stormflow versus baseflow. The 3.5 ha stream drainage location that contained a large wetland yielded the highest DOC concentration as well as the most humic and aromatic DOM, during both, baseflow and stormflow. In contrast, a headwater stream location (0.62 ha) that received runoff from a groundwater seep registered the highest mean value for % protein-like DOM (30%) and the lowest index for aromaticity (mean a254 = 6.52) during baseflow. During stormflow, the mean % protein-like DOM was highest at the largest 79 ha drainage location (mean = 11.8%) and this site also registered the lowest mean value for a254 (46.3). Stream drainage locations that received a larger proportion of runoff along surficial flow paths produced a more aromatic and humic DOM with high DOC concentrations; whereas those with a greater proportion of groundwater contributions produced DOM with greater % of protein-like content. Overall, our observations suggest that occurrence of wetlands and the nature of hydrologic flow paths were the key determinants for the spatial pattern of DOM.

  13. Numerical simulation of interaction of long-wave disturbances with a shock wave on a wedge for the problem of mode decomposition of supersonic flow oscillations

    NASA Astrophysics Data System (ADS)

    Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.

    2016-10-01

    This work is aimed at obtaining conversion factors of free stream disturbances from shock wave angle φ, angle of acoustic disturbances distribution θ and Mach number M∞ by solving a problem of interaction of long-wave (with the wavelength λ greater than the model length) free-stream disturbances with a shock wave formed in a supersonic flow around the wedge. Conversion factors at x/λ=0.2 as a ration between amplitude of pressure pulsations on the wedge surface and free stream disturbances amplitude were obtained. Factors of conversion were described by the dependence on angle θ of disturbances distribution, shock wave angle φ and Mach number M∞. These dependences are necessary for solving the problem of mode decomposition of disturbances in supersonic flows in wind tunnels.

  14. Stream-Groundwater Interactions Along Streams of the Eastern Sierra Nevada, California: Implications for Assessing Potential Impacts of Flow Diversions

    Treesearch

    G. Mathias Kondolf

    1989-01-01

    One of the most fundamental hydrologic determinations to be made in assessing the probable impacts of flow diversions on riparian vegetation is whether flows are gaining or losing water to groundwater in the reach of interest. Flow measurements on eight streams in the Owens River and Mono Lake basins show that stream- groundwater interactions can produce substantial...

  15. User's guide to revised method-of-characteristics solute-transport model (MOC--version 31)

    USGS Publications Warehouse

    Konikow, Leonard F.; Granato, G.E.; Hornberger, G.Z.

    1994-01-01

    The U.S. Geological Survey computer model to simulate two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978; Goode and Konikow, 1989) has been modified to improve management of input and output data and to provide progressive run-time information. All opening and closing of files are now done automatically by the program. Names of input data files are entered either interactively or using a batch-mode script file. Names of output files, created automatically by the program, are based on the name of the input file. In the interactive mode, messages are written to the screen during execution to allow the user to monitor the status and progress of the simulation and to anticipate total running time. Information reported and updated during a simulation include the current pumping period and time step, number of particle moves, and percentage completion of the current time step. The batch mode enables a user to run a series of simulations consecutively, without additional control. A report of the model's activity in the batch mode is written to a separate output file, allowing later review. The user has several options for creating separate output files for different types of data. The formats are compatible with many commercially available applications, which facilitates graphical postprocessing of model results. Geohydrology and Evaluation of Stream-Aquifer Relations in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern Alabama, Northwestern Florida, and Southwestern Georgia By Lynn J. Torak, Gary S. Davis, George A. Strain, and Jennifer G. Herndon Abstract The lower Apalachieola-Chattahoochec-Flint River Basin is underlain by Coastal Plain sediments of pre-Cretaceous to Quaternary age consisting of alternating units of sand, clay, sandstone, dolomite, and limestone that gradually thicken and dip gently to the southeast. The stream-aquifer system consism of carbonate (limestone and dolomite) and elastic sediments, which define the Upper Floridan aquifer and Intermediate system, in hydraulic connection with the principal rivers of the basin and other surface-water features, natural and man made. Separate digital models of the Upper Flori-dan aquifer and Intermediate system were constructed by using the U.S. Geological Survey's MODular Finite-Element model of two dimensional ground-water flow, based on concep- tualizations of the stream-aquifer system, and calibrated to drought conditions of October 1986. Sensitivity analyses performed on the models indicated that aquifer hydraulic conductivity, lateral and vertical boundary flows, and pumpage have a strong influence on groundwater levels. Simulated pumpage increases in the Upper Floridan aquifer, primarily in the Dougherty Plain physiographic district of Georgia,. caused significant reductions in aquifer discharge to streams that eventually flow to Lake Seminole and the Apalachicola River and Bay. Simulated pumpage increases greater than 3 times the October 1986 rates caused drying ofsome stream reaches and parts of the Upper Floridan aquifer in Georgia. Water budgets prepared from simulation results indicate that ground- water discharge to streams and recharge by horizontal and vertical flow are the principal mechanisms for moving water through the flow system. The potential for changes in ground-water quality is high in areas where chemical constituents can be mobilized by these mechanisms. Less than 2 percent of ground-water discharge to streams comes from the Intermediate system; thus, it plays a minor role in the hydrodynamics of the stream- aquifer system.

  16. Low-flow profiles of the Tallapoosa River and tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The report is the fourth in a series of reports presenting the results of a low flow study of all stream basins north of the Fall Line in Georgia. This report covers the part of the Tallapoosa River basin in the Piedmont province of Georgia. The low flow characteristic presented is the minimum average flow for 7 consecutive days with a 10-year recurrence interval (7Q10). The data are presented in tables and shown graphically as ' low flow profiles ' (low flow plotted against distance along a stream channel), and as ' drainage area profiles ' (drainage area plotted against distance along a stream channel). Low flow profiles were constructed by interpolation or extrapolation from points of known low flow data. Low flow profiles are included for all stream reaches where low flow data of sufficient accuracy are available to justify computation of the profiles. Drainage area profiles are included for all stream basins > 5 sq mi, except for those in a few remote areas. Flow records were not adjusted for diversions or other factors that cause measured flows to represent conditions other than natural flow. (Author 's abstract)

  17. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change

    PubMed Central

    Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E.; Safeeq, Mohammad; Skaugset, Arne E.

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change. PMID:26295478

  18. Local variability mediates vulnerability of trout populations to land use and climate change

    USGS Publications Warehouse

    Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E.

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  19. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.

    PubMed

    Penaluna, Brooke E; Dunham, Jason B; Railsback, Steve F; Arismendi, Ivan; Johnson, Sherri L; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  20. Development of a simulation of the surficial groundwater system for the CONUS

    NASA Astrophysics Data System (ADS)

    Zell, W.; Sanford, W. E.

    2016-12-01

    Water resource and environmental managers across the country face a variety of questions involving groundwater availability and/or groundwater transport pathways. Emerging management questions require prediction of groundwater response to changing climate regimes (e.g., how drought-induced water-table recession may degrade near-stream vegetation and result in increased wildfire risks), while existing questions can require identification of current groundwater contributions to surface water (e.g., groundwater linkages between landscape contaminant inputs and receiving streams may help explain in-stream phenomena such as fish intersex). At present, few national-coverage simulation tools exist to help characterize groundwater contributions to receiving streams and predict potential changes in base-flow regimes under changing climate conditions. We will describe the Phase 1 development of a simulation of the water table and shallow groundwater system for the entire CONUS. We use national-scale datasets such as the National Recharge Map and the Map Database for Surficial Materials in the CONUS to develop groundwater flow (MODFLOW) and transport (MODPATH) models that are calibrated against groundwater level and stream elevation data from NWIS and NHD, respectively. Phase 1 includes the development of a national transmissivity map for the surficial groundwater system and examines the impact of model-grid resolution on the simulated steady-state discharge network (and associated recharge areas) and base-flow travel time distributions for different HUC scales. In the course of developing the transmissivity map we show that transmissivity in fractured bedrock systems is dependent on depth to water. Subsequent phases of this work will simulate water table changes at a monthly time step (using MODIS-dependent recharge estimates) and serve as a critical complement to surface-water-focused USGS efforts to provide national coverage hydrologic modeling tools.

  1. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-11-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.

  2. Modular GIS Framework for National Scale Hydrologic and Hydraulic Modeling Support

    NASA Astrophysics Data System (ADS)

    Djokic, D.; Noman, N.; Kopp, S.

    2015-12-01

    Geographic information systems (GIS) have been extensively used for pre- and post-processing of hydrologic and hydraulic models at multiple scales. An extensible GIS-based framework was developed for characterization of drainage systems (stream networks, catchments, floodplain characteristics) and model integration. The framework is implemented as a set of free, open source, Python tools and builds on core ArcGIS functionality and uses geoprocessing capabilities to ensure extensibility. Utilization of COTS GIS core capabilities allows immediate use of model results in a variety of existing online applications and integration with other data sources and applications.The poster presents the use of this framework to downscale global hydrologic models to local hydraulic scale and post process the hydraulic modeling results and generate floodplains at any local resolution. Flow forecasts from ECMWF or WRF-Hydro are downscaled and combined with other ancillary data for input into the RAPID flood routing model. RAPID model results (stream flow along each reach) are ingested into a GIS-based scale dependent stream network database for efficient flow utilization and visualization over space and time. Once the flows are known at localized reaches, the tools can be used to derive the floodplain depth and extent for each time step in the forecast at any available local resolution. If existing rating curves are available they can be used to relate the flow to the depth of flooding, or synthetic rating curves can be derived using the tools in the toolkit and some ancillary data/assumptions. The results can be published as time-enabled spatial services to be consumed by web applications that use floodplain information as an input. Some of the existing online presentation templates can be easily combined with available online demographic and infrastructure data to present the impact of the potential floods on the local community through simple, end user products. This framework has been successfully used in both the data rich environments as well as in locales with minimum available spatial and hydrographic data.

  3. Hydraulic-based empirical model for sediment and soil organic carbon loss on steep slopes for extreme rainstorms on the Chinese loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, Z. W.; Nie, X. D.; He, J. J.; Huang, B.; Chang, X. F.; Liu, C.; Xiao, H. B.; Wang, D. Y.

    2017-11-01

    Building a hydraulic-based empirical model for sediment and soil organic carbon (SOC) loss is significant because of the complex erosion process that includes gravitational erosion, ephemeral gully, and gully erosion for loess soils. To address this issue, a simulation of rainfall experiments was conducted in a 1 m × 5 m box on slope gradients of 15°, 20°, and 25° for four typical loess soils with different textures, namely, Ansai, Changwu, Suide, and Yangling. The simulated rainfall of 120 mm h-1 lasted for 45 min. Among the five hydraulic factors (i.e., flow velocity, runoff depth, shear stress, stream power, and unit stream power), flow velocity and stream power showed close relationships with SOC concentration, especially the average flow velocity at 2 m from the outlet where the runoff attained the maximum sediment load. Flow velocity controlled SOC enrichment by affecting the suspension-saltation transport associated with the clay and silt contents in sediments. In consideration of runoff rate, average flow velocity at 2 m location from the outlet, and slope steepness as input variables, a hydraulic-based sediment and SOC loss model was built on the basis of the relationships of hydraulic factors to sediment and SOC loss. Nonlinear regression models were built to calculate the parameters of the model. The difference between the effective and dispersed median diameter (δD50) or the SOC content of the original soil served as the independent variable. The hydraulic-based sediment and SOC loss model exhibited good performance for the Suide and Changwu soils, that is, these soils contained lower amounts of aggregates than those of Ansai and Yangling soils. The hydraulic-based empirical model for sediment and SOC loss can serve as an important reference for physical-based sediment models and can bring new insights into SOC loss prediction when serious erosion occurs on steep slopes.

  4. Using Isotopic Age of Water as a Constraint on Model Identification at a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Thomas, E.; Bhatt, G.; George, H.; Boyer, E. W.; Sullivan, P. L.

    2016-12-01

    This paper presents an ecohydrologic model constrained by comprehensive space and time observations of water and stable isotopes of oxygen and hydrogen for an upland catchment, the Susquehanna/Shale Hills Critical Zone Observatory (SSH_CZO). The paper first develops the theoretical basis for simulation of flow, isotope ratios and "age" as water moves through the canopy, to the unsaturated and saturated zones and finally to an intermittent stream. The model formulation demonstrates that the residence time and age of environmental tracers can be directly simulated without knowledge of the form of the underlying residence time distribution function and without the addition of any new physical parameters. The model is used to explore the observed rapid attenuation of event and seasonal isotopic ratios in precipitation over the depth of the soil zone and the impact of decreasing hydraulic conductivity with depth on the dynamics of streamflow and stream isotope ratios. The results suggest the importance of mobile macropore flow on recharge to groundwater during the non-growing cold-wet season. The soil matrix is also recharged during this season with a cold-season isotope signature. During the growing-dry season, root uptake and evaporation from the soil matrix along with a declining water table provides the main source of water for plants and determines the growing season signature. Flow path changes during storm events and transient overland flow is inferred by comparing the frequency distribution of groundwater and stream isotope histories with model results. Model uncertainty is evaluated for conditions of matrix-macropore partitioning and heterogeneous variations in conductivity with depth. The paper concludes by comparing the fully dynamical model with the simplified mixing model form in dynamic equilibrium. The comparison illustrates the importance of system memory on the time scales for flow and mixing processes and the limitations of the dynamic equilibrium assumption on estimated age and residence time.

  5. A process-oriented hydro-biogeochemical model enabling simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen losses from a subtropical catchment.

    PubMed

    Zhang, Wei; Li, Yong; Zhu, Bo; Zheng, Xunhua; Liu, Chunyan; Tang, Jialiang; Su, Fang; Zhang, Chong; Ju, Xiaotang; Deng, Jia

    2018-03-01

    Quantification of nitrogen losses and net greenhouse gas (GHG) emissions from catchments is essential for evaluating the sustainability of ecosystems. However, the hydrologic processes without lateral flows hinder the application of biogeochemical models to this challenging task. To solve this issue, we developed a coupled hydrological and biogeochemical model, Catchment Nutrients Management Model - DeNitrification-DeComposition Model (CNMM-DNDC), to include both vertical and lateral mass flows. By incorporating the core biogeochemical processes (including decomposition, nitrification, denitrification and fermentation) of the DNDC into the spatially distributed hydrologic framework of the CNMM, the simulation of lateral water flows and their influences on nitrogen transportation can be realized. The CNMM-DNDC was then calibrated and validated in a small subtropical catchment belonged to Yanting station with comprehensive field observations. Except for the calibration of water flows (surface runoff and leaching water) in 2005, stream discharges of water and nitrate in 2007, the model validations of soil temperature, soil moisture, crop yield, water flows in 2006 and associated nitrate loss, fluxes of methane, ammonia, nitric oxide and nitrous oxide, and stream discharges of water and nitrate in 2008 were statistically in good agreement with the observations. Meanwhile, our initial simulation of the catchment showed scientific predictions. For instance, it revealed the following: (i) dominant ammonia volatilization among the losses of nitrogenous gases (accounting for 11-21% of the applied annual fertilizer nitrogen in croplands); (ii) hotspots of nitrate leaching near the main stream; and (iii) a net GHG sink function of the catchment. These results implicate the model's promising capability of predicting ecosystem productivity, hydrologic nitrogen loads, losses of gaseous nitrogen and emissions of GHGs, which could be used to provide strategies for establishing sustainable catchments. In addition, the model's capability would be further proved by applying in other catchments with different backgrounds. Copyright © 2017. Published by Elsevier B.V.

  6. Using heat to characterize streambed water flux variability in four stream reaches

    USGS Publications Warehouse

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon E.; Lockaby, B. Graeme

    2006-12-01

    SummaryAs urbanization infiltrates into rural areas, stream water quality is expected to decline as a result from increased impervious surface and greater sources for pollutants. Consequently, West Georgia's water quality is threatened by extensive development as well as other land uses such as livestock grazing and silvicultural activity. Maintenance of stream water quality, as land development occurs, is critical for the protection of drinking water and biotic integrity. A 2-phase, watershed-scale study was established to develop relationships among land cover and water quality within western Georgia. During phase 1, nutrient and fecal coliform data were collected within 18 mixed land use watersheds, ranging in size from 500 to 2500 ha. Regression models were developed that related land cover to stream water nutrient and fecal coliform concentrations. Nutrient and fecal coliform concentrations within watersheds having >24% impervious surface (IS) were often higher than those in nonurban watersheds (i.e., <5% IS) during both base flow (N: 1.64 mg/L versus 0.61 mg/L, and FC: 430 versus 120 MPN/100 ml) and storm flow (N: 1.93 mg/L versus 0.36 mg/L, and FC: 1600 versus 167 MPN/100 ml). Fecal coliform bacteria in urbanized areas consistently exceeded the US EPA's review criterion for recreational waters during both base flow and to a greater extent storm flow. During phase 2, regression models were tested based on data from six newly chosen watersheds with similar land use/cover patterns. Lastly, theoretical watersheds, based on land use percentages, were created to illustrate trends in water quality impairment as land development occurs. The models developed from this research could be used to forecast water quality changes under various land use scenarios in the developing Piedmont region of the US.

  8. The effects of flow and stream characteristics on the variation in freshwater mussel growth in a Southeast US river basin

    USGS Publications Warehouse

    Dycus, Justin C.; Wisniewski, Jason M.; Peterson, James T.

    2015-01-01

    This study provides insight to the factors affecting the growth of stream-dwelling freshwater mussels. Although hierarchical von Bertalanffy growth models are rarely used for freshwater mussel age and growth studies, this approach can provide important information regarding the ecology of freshwater mussels.

  9. VALUING ACID MINE DRAINAGE REMEDIATION OF IMPAIRED WATERWAYS IN WEST VIRGINIA: A HEDONIC MODELING APPROACH

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD), the metal rich runoff flowing primarily from abandoned mines and surface deposits of mine waste. AMD can lower stream and river pH ...

  10. Development of hydraulic computer models to analyze tidal and coastal stream hydraulic conditions at highway structures : phase 2 for the Pooled Fund Study, SPR-3(22)

    DOT National Transportation Integrated Search

    1997-12-01

    Highway structures are subjected to stream instability and foundation scour resulting from dynamic flow conditions caused by tides, currents, storm surges, and upland runoff. This phase of the study (Phase II) focused on (1) making useful modificatio...

  11. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    NASA Astrophysics Data System (ADS)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  12. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  13. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for West Fork Blue River, Washington County, Indiana

    USGS Publications Warehouse

    Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.

    1979-01-01

    A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)

  14. Assessing the Effects of Water Rights Purchases on Dissolved Oxygen, Stream Temperatures, and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Mouzon, N. R.; Null, S. E.

    2014-12-01

    Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.

  15. Alteration of intraaneurysmal hemodynamics by placement of a self-expandable stent. Laboratory investigation.

    PubMed

    Tateshima, Satoshi; Tanishita, Kazuo; Hakata, Yasuhiro; Tanoue, Shin-ya; Viñuela, Fernando

    2009-07-01

    Development of a flexible self-expanding stent system and stent-assisted coiling technique facilitates endovascular treatment of wide-necked brain aneurysms. The hemodynamic effect of self-expandable stent placement across the neck of a brain aneurysm has not been well documented in patient-specific aneurysm models. Three patient-specific silicone aneurysm models based on clinical images were used in this study. Model 1 was constructed from a wide-necked internal carotid artery-ophthalmic artery aneurysm, and Models 2 and 3 were constructed from small wide-necked middle cerebral artery aneurysms. Neuroform stents were placed in the in vitro aneurysm models, and flow structures were compared before and after the stent placements. Flow velocity fields were acquired with particle imaging velocimetry. In Model 1, a clockwise, single-vortex flow pattern was observed in the aneurysm dome before stenting was performed. There were multiple vortices, and a very small fast flow stream was newly formed in the aneurysm dome after stenting. The mean intraaneurysmal flow velocity was reduced by approximately 23-40%. In Model 2, there was a clockwise vortex flow in the aneurysm dome and another small counterclockwise vortex in the tip of the aneurysm dome before stenting. The small vortex area disappeared after stenting, and the mean flow velocity in the aneurysm dome was reduced by 43-64%. In Model 3, a large, counterclockwise, single vortex was seen in the aneurysm dome before stenting. Multiple small vortices appeared in the aneurysm dome after stenting, and the mean flow velocity became slower by 22-51%. The flexible self-expandable stents significantly altered flow velocity and also flow structure in these aneurysms. Overall flow alterations by the stent appeared favorable for the long-term durability of aneurysm embolization. The possibility that the placement of a low-profile self-expandable stent might induce unfavorable flow patterns such as a fast flow stream in the aneurysm dome cannot be excluded.

  16. Mixing zone and drinking water intake dilution factor and wastewater generation distributions to enable probabilistic assessment of down-the-drain consumer product chemicals in the U.S.

    PubMed

    Kapo, Katherine E; McDonough, Kathleen; Federle, Thomas; Dyer, Scott; Vamshi, Raghu

    2015-06-15

    Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.) was utilized to determine probabilistic distributions for no decay and decay-based dilution factors in mean annual and low (7Q10) flow conditions. The dilution factors derived in this study are "combined" dilution factors which account for both hydrologic dilution and cumulative upstream effluent contributions that will differ depending on the rate of in-stream decay due to biodegradation, volatilization, sorption, etc. for the chemical being evaluated. The median dilution factors estimated in this study (based on various in-stream decay rates from zero decay to a 1h half-life) for WWTP mixing zones dominated by domestic wastewater flow ranged from 132 to 609 at mean flow and 5 to 25 at low flow, while median dilution factors at drinking water intakes (mean flow) ranged from 146 to 2×10(7) depending on the in-stream decay rate. WWTPs within the iSTREEM® model were used to generate a distribution of per capita wastewater generated in the U.S. The dilution factor and per capita wastewater generation distributions developed by this work can be used to conduct probabilistic exposure assessments for down-the-drain chemicals in influent wastewater, wastewater treatment plant mixing zones and at drinking water intakes in the conterminous U.S. In addition, evaluation of types and abundance of U.S. wastewater treatment processes provided insight into treatment trends and the flow volume treated by each type of process. Moreover, removal efficiencies of chemicals can differ by treatment type. Hence, the availability of distributions for per capita wastewater production, treatment type, and dilution factors at a national level provides a series of practical and powerful tools for building probabilistic exposure models. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas

    Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less

  18. Water-supply potential of major streams and the Upper Floridan Aquifer in the vicinity of Savannah, Georgia

    USGS Publications Warehouse

    Garza, Reggina; Krause, Richard E.

    1997-01-01

    Surface- and ground-water resources in the Savannah, Georgia, area were evaluated for potential water-supply development. Stream-discharge and water-quality data were analyzed for two major streams considered to be viable water-supply sources. A ground-water flow model was developed to be used in conjunction with other previously calibrated models to simulate the effects of additional pumpage on water levels near areas of saltwater intrusion at Brunswick and seawater encroachment at Hilton Head Island. Hypothetical scenarios also were simulated involving redistributions and small increases, and decreases in pumpage.

  19. Evaluation of Topographic wetness index and catchment characteristics on spatially and temporally variable streams across an elevation gradient

    NASA Astrophysics Data System (ADS)

    Martin, C.

    2017-12-01

    Topography can be used to delineate streams and quantify the topographic control on hydrological processes of a watershed because geomorphologic processes have shaped the topography and streams of a catchment over time. Topographic Wetness index (TWI) is a common index used for delineating stream networks by predicting location of saturation excess overland flow, but is also used for other physical attributes of a watershed such as soil moisture, groundwater level, and vegetation patterns. This study evaluates how well TWI works across an elevation gradient and the relationships between the active drainage network of four headwater watersheds at various elevations in the Colorado Front Range to topography, geology, climate, soils, elevation, and vegetation in attempt to determine the controls on streamflow location and duration. The results suggest that streams prefer to flow along a path of least resistance which including faults and permeable lithology. Permeable lithologies created more connectivity of stream networks during higher flows but during lower flows dried up. Streams flowing over impermeable lithologies had longer flow duration. Upslope soil hydraulic conductivity played a role on stream location, where soils with low hydraulic conductivity had longer flow duration than soils with higher hydraulic conductivity.Finally TWI thresholds ranged from 5.95 - 10.3 due to changes in stream length and to factors such as geology and soil. TWI had low accuracy for the lowest elevation site due to the greatest change of stream length. In conclusion, structural geology, upslope soil texture, and the permeability of the underlying lithology influenced where the stream was flowing and for how long. Elevation determines climate which influences the hydrologic processes occurring at the watersheds and therefore affects the duration and timing of streams at different elevations. TWI is an adequate tool for delineating streams because results suggest topography has a primary control on the stream locations, but because intermittent streams change throughout the year a algorithm needs to be created to correspond to snow melt and rain events. Also geology indices and soil indices need be considered in addition to topography to have the most accurate derived stream network.

  20. Determining long time-scale hyporheic zone flow paths in Antarctic streams

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Vaughn, B.H.

    2003-01-01

    In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11??? D and 2.2??? 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occured owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (??) generally an order magnitude lower (10-5 s-1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where 'fast' biogeochemical reactions may influence water chemistry, and extended hyporheic zones, in which slower biogeochemical reaction rates may affect stream-water chemistry at longer time-scales. Copyright ?? 2003 John Wiley & Sons, Ltd.

  1. A coupled metabolic-hydraulic model and calibration scheme for estimating of whole-river metabolism during dynamic flow conditions

    USGS Publications Warehouse

    Payn, Robert A.; Hall, Robert O Jr.; Kennedy, Theodore A.; Poole, Geoff C; Marshall, Lucy A.

    2017-01-01

    Conventional methods for estimating whole-stream metabolic rates from measured dissolved oxygen dynamics do not account for the variation in solute transport times created by dynamic flow conditions. Changes in flow at hourly time scales are common downstream of hydroelectric dams (i.e. hydropeaking), and hydrologic limitations of conventional metabolic models have resulted in a poor understanding of the controls on biological production in these highly managed river ecosystems. To overcome these limitations, we coupled a two-station metabolic model of dissolved oxygen dynamics with a hydrologic river routing model. We designed calibration and parameter estimation tools to infer values for hydrologic and metabolic parameters based on time series of water quality data, achieving the ultimate goal of estimating whole-river gross primary production and ecosystem respiration during dynamic flow conditions. Our case study data for model design and calibration were collected in the tailwater of Glen Canyon Dam (Arizona, USA), a large hydropower facility where the mean discharge was 325 m3 s 1 and the average daily coefficient of variation of flow was 0.17 (i.e. the hydropeaking index averaged from 2006 to 2016). We demonstrate the coupled model’s conceptual consistency with conventional models during steady flow conditions, and illustrate the potential bias in metabolism estimates with conventional models during unsteady flow conditions. This effort contributes an approach to solute transport modeling and parameter estimation that allows study of whole-ecosystem metabolic regimes across a more diverse range of hydrologic conditions commonly encountered in streams and rivers.

  2. Turbulent shear layers in confining channels

    NASA Astrophysics Data System (ADS)

    Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.

    2018-06-01

    We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.

  3. Assessing Cumulative Impacts of Coal Bed Methane Development on Surface Water Quality and its Suitability for Irrigation in the Powder River Basin

    NASA Astrophysics Data System (ADS)

    Dawson, H. E.

    2003-12-01

    This paper presents a mass balance approach to assessing the cumulative impacts of discharge from Coal Bed Methane (CBM) wells on surface water quality and its suitability for irrigation in the Powder River Basin. Key water quality parameters for predicting potential effects of CBM development on irrigated agriculture are sodicity, expressed as sodium adsorption ratio (SAR) and salinity, expressed as electrical conductivity (EC). The assessment was performed with the aid of a spreadsheet model, which was designed to estimate steady-state SAR and EC at gauged stream locations after mixing with CBM produced water. Model input included ambient stream water quality and flow, CBM produced water quality and discharge rates, conveyance loss (quantity of water loss that may occur between the discharge point and the receiving streams), beneficial uses, regulatory thresholds, and discharge allocation at state-line boundaries. Historical USGS data were used to establish ambient stream water quality and flow conditions. The resultant water quality predicted for each stream station included the cumulative discharge of CBM produced water in all reaches upstream of the station. Model output was presented in both tabular and graphical formats, and indicated the suitability of pre- and post-mixing water quality for irrigation. Advantages and disadvantages of the spreadsheet model are discussed. This approach was used by federal agencies to support the development of the January 2003 Environmental Impact Statements (EIS) for the Wyoming and Montana portions of the Powder River Basin.

  4. Experimental Investigation of Transition to Turbulence as Affected By Passing Wakes

    NASA Technical Reports Server (NTRS)

    Kaszeta, Richard W.; Ashpis, David E.; Simon, Terrence W.

    2001-01-01

    This paper presents experimental results from a study of the effects of periodically passing wakes upon laminar-to-turbulent transition and separation in a low-pressure turbine passage. The test section geometry is designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface by using a single suction surface and a single pressure surface to simulate a single turbine blade passage. Single-wire, thermal anemometry techniques are used to measure time-resolved and phase averaged, wall-normal profiles of velocity, turbulence intensity and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady-state wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and stage exit velocity of 50,000 and an approach flow turbulence intensity of 2.5%. While both existing design and experimental data are primarily concerned with higher Reynolds number flows (Re greater than 100,000), recent advances in gas turbine engines, and the accompanying increase in laminar and transitional flow effects, have made low-Re research increasingly important. From the presented data, the effects of passing wakes on transition and separation in the boundary layer, due to both increased turbulence levels and varying streamwise pressure gradients are presented. The results show how the wakes affect transition. The wakes affect the flow by virtue of their difference in turbulence levels and scales from those of the free-stream and by virtue of their ensemble- averaged velocity deficits, relative to the free-stream velocity, and the concomitant changes in angle of attack and temporal pressure gradients. The relationships between the velocity oscillations in the freestream and the unsteady velocity profile shapes in the near-wall flow are described. In this discussion is support for the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.

  5. Low-flow profiles of the Tennessee River tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The purpose of this report is to present the results of a compilation of available low flow data in the form of tables and ' 7Q10 flow profiles ' (minimum average flow for 7 consecutive days with a 10-yr recurrence interval) (7Q10 flow plotted against distance along a stream channel) for all stream reaches of the Tennessee River tributaries where sufficient data of acceptable accuracy are available. Drainage area profiles are included for all stream basins larger than 5 sq mi, except for those in a few remote areas. This report is the fifth in a series of reports that will cover all stream basins north of the Fall Line in Georgia. It includes the parts of the Tennessee River basin in Georgia. Flow records were not adjusted for diversions or other factors that cause measured flows to represent other than natural flow conditions. The 7-day minimum flow profile was omitted for stream reaches where natural flow was known to be altered significantly. (Lantz-PTT)

  6. Analysis of low flows and selected methods for estimating low-flow characteristics at partial-record and ungaged stream sites in western Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.

    2012-01-01

    Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.

  7. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  8. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  9. Integrated approach for the assessment and development of groundwater resources in arid lands: Applications in the Quetta Valley, Pakistan

    NASA Astrophysics Data System (ADS)

    Sagintayev, Zhanay (Jay Sagin)

    The lack of adequate field measurements (e.g., precipitation and stream flow) and difficulty in obtaining them often hampers the construction and calibration of rainfall-runoff models over many of the world's watersheds, leaving key elements of the hydrologic cycle unconstrained. I adopted methodologies that rely heavily on readily available remote sensing datasets as viable alternatives and useful tools for assessing, managing, and modeling the water resources of such remote and inadequately gauged regions. The Soil and Water Assessment Tool was selected for continuous (1998--2005) rainfall-runoff modeling of the northeast part of the Pishin Lora basin (NEPL), a politically unstable area that lacks adequate rain gauge and stream flow data. To account for the paucity of rain gauge and stream flow gauge data, input to the model included satellite-based Tropical Rainfall Measuring Mission TRMM precipitation data. Modeled runoff was calibrated against satellite-based observations including: (1) monthly estimates of the water volumes impounded by the Khushdil Khan (latitude 30° 40'N, longitude 67° 40'E) and the Kara Lora (latitude 30° 34'N, longitude 66° 52'E) reservoirs, and (2) inferred wet versus dry conditions in streams across the NEPL throughout this period. Calibrations were also conducted against observed flow reported from the Burj Aziz Khan station at the NEPL outlet (latitude 30°20'N; longitude 66°35'E). Model simulations indicate that (1) average annual precipitation (1998--2005), surface runoff, and net recharge are 1,300 x 106 m3, 148 x 106 m3, and 361 x 106 m3, respectively; (2) within the NEPL watershed, precipitation and runoff are high for the northeast (precipitation: 194 mm/year; runoff: 38 x 106 m 3/year) and northwest (134 mm/year; 26 x 106 m3/y) basins compared to the southern basin (124 mm/year; 8 x 106 m3/year); and (3) construction of delay action dams in the northeast and northwest basins of the NEPL could increase recharge from 361 x 106 m3/year up to 432 x 106 m3/year and achieve sustainable extraction. The adopted methodologies are not a substitute for traditional approaches that require extensive field datasets, but they could provide first-order estimates for rainfall, runoff, and recharge in the arid and semi-arid parts of the world that are inaccessible and/or lack adequate coverage with stream flow and precipitation data.

  10. Adaptive hydrological flow field modeling based on water body extraction and surface information

    NASA Astrophysics Data System (ADS)

    Puttinaovarat, Supattra; Horkaew, Paramate; Khaimook, Kanit; Polnigongit, Weerapong

    2015-01-01

    Hydrological flow characteristic is one of the prime indicators for assessing flood. It plays a major part in determining drainage capability of the affected basin and also in the subsequent simulation and rainfall-runoff prediction. Thus far, flow directions were typically derived from terrain data which for flat landscapes are obscured by other man-made structures, hence undermining the practical potential. In the absence (or diminutive) of terrain slopes, water passages have a more pronounced effect on flow directions than elevations. This paper, therefore, presents detailed analyses and implementation of hydrological flow modeling from satellite and topographic images. Herein, gradual assignment based on support vector machine was applied to modified normalized difference water index and a digital surface model, in order to ensure reliable water labeling while suppressing modality-inherited artifacts and noise. Gradient vector flow was subsequently employed to reconstruct the flow field. Experiments comparing the proposed scheme with conventional water boundary delineation and flow reconstruction were presented. Respective assessments revealed its advantage over the generic stream burning. Specifically, it could extract water body from studied areas with 98.70% precision, 99.83% recall, 98.76% accuracy, and 99.26% F-measure. The correlations between resultant flows and those obtained from the stream burning were as high as 0.80±0.04 (p≤0.01 in all resolutions).

  11. Use of heat to estimate streambed fluxes during extreme hydrologic events

    USGS Publications Warehouse

    Barlow, Jeannie R.B.; Coupe, Richard H.

    2009-01-01

    Using heat as a tracer, quantitative estimates of streambed fluxes and the critical stage for flow reversal were calculated for high‐flow events that occurred on the Bogue Phalia (a tributary of the Mississippi River) following the 2005 Hurricanes Katrina and Rita. In June 2005, piezometers were installed in the Bogue Phalia upstream from the stream gage near Leland, Mississippi, to monitor temperature. Even with the hurricanes, precipitation in the Bogue Phalia Basin for the months of June to October 2005 was below normal, and consequently, streamflow was below the long‐term average. Temperature profiles from the piezometers indicate that the Bogue Phalia was a gaining stream during most of this time, but relatively static streambed temperatures suggested long‐term data was warranted for heat‐based estimates of flux. However, the hurricanes caused a pair of sharp rises in stream stage over short periods of time, increasing the potential for rapid heat‐based modeling and for identification of the critical stage for flow reversal into the streambed. Heat‐based modeling fits of simulated‐to‐measured sediment temperatures show that once a critical stage was surpassed, flow direction reversed into the streambed. Results of this study demonstrate the ability to constrain estimates of streambed water flux and the critical stage of flow reversal, with little available groundwater head data, by using heat as a tracer during extreme stage events.

  12. Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream

    USGS Publications Warehouse

    Katz, B.G.; Catches, J.S.; Bullen, T.D.; Michel, R.L.

    1998-01-01

    The Little River, an ephemeral stream that drains a watershed of approximately 88 km2 in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta 18O and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) 87Sr/86Sr ratios, and lower concentrations of 222Rn, silica, and alkalinity compared to low-flow conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers 18O, deuterium, tannic acid, silica, 222Rn, and 87Sr/86Sr. On the basis of mass-balance modeling during steady-state flow conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.The Little River of northern Florida disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Based on mass-balance modeling during steady-state flow conditions, it was found that the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.

  13. Dynamics of streaming instability with quantum correction

    NASA Astrophysics Data System (ADS)

    Goutam, H. P.; Karmakar, P. K.

    2017-05-01

    A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.

  14. Computer analysis of flow perturbations generated by placement of choke bumps in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1981-01-01

    An inviscid analytical study was conducted to determine the upstream flow perturbations caused by placing choke bumps in a wind tunnel. A computer program based on the stream-tube curvature method was used to calculate the resulting flow fields for a nominal free-stream Mach number range of 0.6 to 0.9. The choke bump geometry was also varied to investigate the effect of bump shape on the disturbance produced. Results from the study indicate that a region of significant variation from the free-stream conditions exists upstream of the throat of the tunnel. The extent of the disturbance region was, as a rule, dependent on Mach number and the geometry of the choke bump. In general, the upstream disturbance distance decreased for increasing nominal free-stream Mach number and for decreasing length-to-height ratio of the bump. A polynomial-curve choke bump usually produced less of a disturbance than did a circular-arc bump and going to an axisymmetric configuration (modeling choke bumps on all the tunnel walls) generally resulted in a lower disturbance than with the corresponding two dimensional case.

  15. An experimental study of tip shape effects on the flutter of aft-swept, flat-plate wings

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Rivera, Jose A., Jr.; Farmer, Moses G.

    1990-01-01

    The effects of tip chord orientation on wing flutter are investigated experimentally using six cantilever-mounted, flat-plate wing models. Experimentally determined flutter characteristics of the six models are presented covering both the subsonic and transonic Mach number ranges. While all models have a 60 degree leading edge sweep, a 40.97 degree trailing edge sweep, and a root chord of 34.75 inches, they are subdivided into two series characterized by a higher aspect ratio and a lower aspect ratio. Each series is made up of three models with tip chord orientations which are parallel to the free-stream flow, perpendicular to the model mid-chord line, and perpendicular to the free-stream flow. Although planform characteristics within each series of models are held constant, structural characteristics such as mode shapes and natural frequencies are allowed to vary.

  16. THRSTER: A THRee-STream Ejector Ramjet Analysis and Design Tool

    NASA Technical Reports Server (NTRS)

    Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.

    2000-01-01

    An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.

  17. THRSTER: A Three-Stream Ejector Ramjet Analysis and Design Tool

    NASA Technical Reports Server (NTRS)

    Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.; Komar, D. R. (Technical Monitor)

    2000-01-01

    An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.

  18. Modifying Bagnold's Sediment Transport Equation for Use in Watershed-Scale Channel Incision Models

    NASA Astrophysics Data System (ADS)

    Lammers, R. W.; Bledsoe, B. P.

    2016-12-01

    Destabilized stream channels may evolve through a sequence of stages, initiated by bed incision and followed by bank erosion and widening. Channel incision can be modeled using Exner-type mass balance equations, but model accuracy is limited by the accuracy and applicability of the selected sediment transport equation. Additionally, many sediment transport relationships require significant data inputs, limiting their usefulness in data-poor environments. Bagnold's empirical relationship for bedload transport is attractive because it is based on stream power, a relatively straightforward parameter to estimate using remote sensing data. However, the equation is also dependent on flow depth, which is more difficult to measure or estimate for entire drainage networks. We recast Bagnold's original sediment transport equation using specific discharge in place of flow depth. Using a large dataset of sediment transport rates from the literature, we show that this approach yields similar predictive accuracy as other stream power based relationships. We also explore the applicability of various critical stream power equations, including Bagnold's original, and support previous conclusions that these critical values can be predicted well based solely on sediment grain size. In addition, we propagate error in these sediment transport equations through channel incision modeling to compare the errors associated with our equation to alternative formulations. This new version of Bagnold's bedload transport equation has utility for channel incision modeling at larger spatial scales using widely available and remote sensing data.

  19. Contraction driven flow in the extended vein networks of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Amselem, Gabriel; Peaudecerf, Francois; Pringle, Anne; Brenner, Michael P.

    2011-11-01

    The true slime mold Physarum polycephalum is a basal organism that forms an extended network of veins to forage for food. P. polycephalum is renown for its adaptive changes of vein structure and morphology in response to food sources. These rearrangements presumably occur to establish an efficient transport and mixing of resources throughout the networks thus presenting a prototype to design transport networks under the constraints of laminar flow. The physical flows of cytoplasmic fluid enclosed by the veins exhibit an oscillatory flow termed ``shuttle streaming.'' The flow exceed by far the volume required for growth at the margins suggesting that the additional energy cost for generating the flow is spent for efficient and/or targeted redistribution of resources. We show that the viscous shuttle flow is driven by the radial contractions of the veins that accompany the streaming. We present a model for the fluid flow and resource dispersion arising due to radial contractions. The transport and mixing properties of the flow are discussed.

  20. Groundwater and surface-water interaction within the upper Smith River Watershed, Montana 2006-2010

    USGS Publications Warehouse

    Caldwell, Rodney R.; Eddy-Miller, Cheryl A.

    2013-01-01

    The 125-mile long Smith River, a tributary of the Missouri River, is highly valued as an agricultural resource and for its many recreational uses. During a drought starting in about 1999, streamflow was insufficient to meet all of the irrigation demands, much less maintain streamflow needed for boating and viable fish habitat. In 2006, the U.S. Geological Survey, in cooperation with the Meagher County Conservation District, initiated a multi-year hydrologic investigation of the Smith River watershed. This investigation was designed to increase understanding of the water resources of the upper Smith River watershed and develop a detailed description of groundwater and surface-water interactions. A combination of methods, including miscellaneous and continuous groundwater-level, stream-stage, water-temperature, and streamflow monitoring was used to assess the hydrologic system and the spatial and temporal variability of groundwater and surface-water interactions. Collectively, data are in agreement and show: (1) the hydraulic connectedness of groundwater and surface water, (2) the presence of both losing and gaining stream reaches, (3) dynamic changes in direction and magnitude of water flow between the stream and groundwater with time, (4) the effects of local flood irrigation on groundwater levels and gradients in the watershed, and (5) evidence and timing of irrigation return flows to area streams. Groundwater flow within the alluvium and older (Tertiary) basin-fill sediments generally followed land-surface topography from the uplands to the axis of alluvial valleys of the Smith River and its tributaries. Groundwater levels were typically highest in the monitoring wells located within and adjacent to streams in late spring or early summer, likely affected by recharge from snowmelt and local precipitation, leakage from losing streams and canals, and recharge from local flood irrigation. The effects of flood irrigation resulted in increased hydraulic gradients (increased groundwater levels relative to stream stage) or even reversed gradient direction at several monitoring sites coincident with the onset of nearby flood irrigation. Groundwater-level declines in mid-summer were due to groundwater withdrawals and reduced recharge from decreased precipitation, increased evapotranspiration, and reduced leakage in some area streams during periods of low flow. Groundwater levels typically rebounded in late summer, a result of decreased evapotranspiration, decreased groundwater use for irrigation, increased flow in losing streams, and the onset of late-season flood irrigation at some sites. The effect of groundwater and surface-water interactions is most apparent along the North and South Forks of the Smith River where the magnitude of streamflow losses and gains can be greater than the magnitude of flow within the stream. Net gains consistently occurred over the lower 15 miles of the South Fork Smith River. A monitoring site near the mouth of the South Fork Smith River gained (flow from the groundwater to the stream) during all seasons, with head gradients towards the stream. Two upstream sites on the South Fork Smith River exhibited variable conditions that ranged from gaining during the spring, losing (flowing from the stream to the groundwater) during most of the summer as groundwater levels declined, and then approached or returned to gaining conditions in late summer. Parts of the South Fork Smith River became dry during periods of losing conditions, thus classifying this tributary as intermittent. The North Fork Smith River is highly managed at times through reservoir releases. The North Fork Smith River was perennial throughout the study period although irrigation diversions removed a large percentage of streamflow at times and losing conditions persisted along a lower reach. The lowermost reach of the North Fork Smith River near its mouth transitioned from a losing reach to a gaining reach throughout the study period. Groundwater and surface-water interactions occur downstream from the confluence of the North and South Fork Smith Rivers, but are less discernible compared to the overall magnitude of the main-stem streamflow. The Smith River was perennial throughout the study. Monitoring sites along the Smith River generally displayed small head gradients between the stream and the groundwater, while one site consistently showed strongly gaining conditions. Synoptic streamflow measurements during periods of limited irrigation diversion in 2007 and 2008 consistently showed gains over the upper 41.4 river miles of the main stem Smith River where net gains ranged from 13.0 to 28.9 cubic feet per second. Continuous streamflow data indicated net groundwater discharge and small-scale tributary inflow contributions of around 25 cubic feet per second along the upper 10-mile reach of the Smith River for most of the 2010 record. A period of intense irrigation withdrawal during the last two weeks in May was followed by a period (early June 2010 to mid-July 2010) with the largest net increase (an average of 71.1 cubic feet per second) in streamflow along this reach of the Smith River. This observation is likely due to increased groundwater discharge to the Smith River resulting from irrigation return flow. By late July, the apparent effects of return flows receded, and the net increase in streamflow returned to about 25 cubic feet per second. Two-dimensional heat and solute transport VS2DH models representing selected stream cross sections were used to constrain the hydraulic properties of the Quaternary alluvium and estimate temporal water-flux values through model boundaries. Hydraulic conductivity of the Quaternary alluvium of the modeled sections ranged from 3x10-6 to 4x10-5 feet per second. The models showed reasonable approximations of the streambed and shallow aquifer environment, and the dynamic changes in water flux between the stream and the groundwater through different model boundaries.

  1. A Statistical Model-Based Decision Support System for Managing Summer Stream Temperatures with Quantified Confidence Analysis

    NASA Astrophysics Data System (ADS)

    Neumann, D. W.; Zagona, E. A.; Rajagopalan, B.

    2005-12-01

    Warm summer stream temperatures due to low flows and high air temperatures are a critical water quality problem in many western U.S. river basins because they impact threatened fish species' habitat. Releases from storage reservoirs and river diversions are typically driven by human demands such as irrigation, municipal and industrial uses and hydropower production. Historically, fish needs have not been formally incorporated in the operating procedures, which do not supply adequate flows for fish in the warmest, driest periods. One way to address this problem is for local and federal organizations to purchase water rights to be used to increase flows, hence decrease temperatures. A statistical model-predictive technique for efficient and effective use of a limited supply of fish water has been developed and incorporated in a Decision Support System (DSS) that can be used in an operations mode to effectively use water acquired to mitigate warm stream temperatures. The DSS is a rule-based system that uses the empirical, statistical predictive model to predict maximum daily stream temperatures based on flows that meet the non-fish operating criteria, and to compute reservoir releases of allocated fish water when predicted temperatures exceed fish habitat temperature targets with a user specified confidence of the temperature predictions. The empirical model is developed using a step-wise linear regression procedure to select significant predictors, and includes the computation of a prediction confidence interval to quantify the uncertainty of the prediction. The DSS also includes a strategy for managing a limited amount of water throughout the season based on degree-days in which temperatures are allowed to exceed the preferred targets for a limited number of days that can be tolerated by the fish. The DSS is demonstrated by an example application to the Truckee River near Reno, Nevada using historical flows from 1988 through 1994. In this case, the statistical model predicts maximum daily Truckee River stream temperatures in June, July, and August using predicted maximum daily air temperature and modeled average daily flow. The empirical relationship was created using a step-wise linear regression selection process using 1993 and 1994 data. The adjusted R2 value for this relationship is 0.91. The model is validated using historic data and demonstrated in a predictive mode with a prediction confidence interval to quantify the uncertainty. Results indicate that the DSS could substantially reduce the number of target temperature violations, i.e., stream temperatures exceeding the target temperature levels detrimental to fish habitat. The results show that large volumes of water are necessary to meet a temperature target with a high degree of certainty and violations may still occur if all of the stored water is depleted. A lower degree of certainty requires less water but there is a higher probability that the temperature targets will be exceeded. Addition of the rules that consider degree-days resulted in a reduction of the number of temperature violations without increasing the amount of water used. This work is described in detail in publications referenced in the URL below.

  2. Numerical Simulation of Ground-Water Withdrawals in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.; Oki, Delwyn S.

    2002-01-01

    Numerical simulations indicate that ground-water withdrawals from the Hanamaulu and Puhi areas of the southern Lihue Basin will result in a decline in water levels and reductions in base flows of streams near proposed new water-supply wells. Most of the changes will be attained within 10 to 20 years of the start of pumping. Except for areas such as Puhi and Kilohana, the freshwater lens in most inland areas of the southern Lihue Basin is thick and model simulations indicate that changes in water level and the position of the freshwater- saltwater interface in response to pumping will be small relative to the present thickness of the freshwater lens. Effects of the proposed withdrawals on streamflow depend on withdrawal rate and proximity of the wells to streams. Placing pumped wells away from streams with low base flow and toward streams with high base flow can reduce the relative effect on individual streams. Simulation of the 0.42-million-gallon-per-day increase in withdrawal projected for 2000 indicates that the resulting changes in water levels and interface position, relative to conditions prior to the withdrawal increase, will be small, and that stream base flow will be reduced by less than 10 percent. Simulation of the 0.83-million-gallon-per-day withdrawal projected for 2010 indicates further thinning of the freshwater lens in the Puhi area, where the lens already may be thin, as well as base-flow reduction in Nawiliwili Stream. Simulation of an alternative distribution of the 0.83-million-gallon-per-day withdrawal indicates that the effects can be reduced by shifting most of the new withdrawal to the Hanamaulu area where the freshwater lens is thicker and stream base flows are greater. Simulation of the 1.16-million-gallon-per-day increase in withdrawal projected for 2020 indicates that if withdrawal is distributed only among Hana-maulu wells 1, 3, and 4, and Puhi well 5A, further thinning of the already-thin freshwater lens in the Puhi area would occur. Such a distribution would also exceed the maximum draft recommended by the water-systems standards used in Hawaii. Another simulation in which part of the 1.16 million gallons per day was distributed among three additional hypothetical wells in the Hanamaulu area showed that the pumping effects could be shifted from the Puhi area to the Hanamaulu area, where the freshwater lens is thicker, but that base flow in Hanamaulu Stream may decrease by as much as 16 percent.

  3. Effect of Free-Stream Turbulence Intensity on Transonic Airfoil with Shock Wave

    NASA Astrophysics Data System (ADS)

    Lutsenko, I.; Serikbay, M.; Akiltayev, A.; Rojas-Solórzano, L. R.; Zhao, Y.

    2017-09-01

    Airplanes regularly operate switching between various flight modes such as take-off, climb, cruise, descend and landing. During these flight conditions the free-stream approaching the wings undergo fundamental changes. In transonic flow conditions, typically in the military or aerospace applications, existence of nonlinear and unsteady effects of the airflow stream significantly alters the performance of an airfoil. This paper presents the influence of free-stream turbulence intensity on transonic flow over an airfoil in the presence of a weak shock wave. In particular, NACA 0012 airfoil performance at Ma∞ = 0.7 is considered in terms of drag, lift, turbulence kinetic energy, and turbulence eddy dissipation parameters under the influence of varying angle of attacks and free-stream turbulence. The finite volume method in a commercial CFD package ANSYS-CFX is used to perform the numerical analysis of the flow. Mesh refinement using a mesh-adaption technique based on velocity gradient is presented for more accurate prediction of shocks and boundary layers. A Shear Stress Transport (SST) turbulence model is validated against experimental data available in the literature. Numerical simulations were performed, with free stream turbulence intensity ranging from low (1%), medium (5%) to high (10%) levels. Results revealed that drag and lift coefficients are approximately the same at every aforementioned value of turbulence intensity. However, turbulence kinetic energy and eddy dissipation contours vary as turbulence intensity changes, but their changes are disproportionally small, compared with values adopted for free-stream turbulence.

  4. Geomorphic controls on hyporheic exchange flow in mountain streams.

    Treesearch

    T. Kasahara; S.M. Wondzell

    2003-01-01

    Hyporheic exchange flows were simulated using MODFLOW and MODPATH to estimate relative effects of channel morphologic features on the extent of the hyporheic zone, on hyporheic exchange flow, and on the residence time of stream water in the hyporheic zone. Four stream reaches were compared in order to examine the influence of stream size and channel constraint. Within...

  5. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.

    USGS Publications Warehouse

    Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.

    2012-01-01

    Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.

  6. Experimental study of streaming flows associated with ultrasonic levitators

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Robey, J. L.

    1994-11-01

    Steady-state acoustic streaming flow patterns have been observed during the operation of a variety of resonant single-axis ultrasonic levitators in a gaseous environment and in the 20-37 kHz frequency range. Light sheet illumination and scattering from smoke particles have revealed primary streaming flows which display different characteristics at low and high sound pressure levels. Secondary macroscopic streaming cells around levitated samples are superimposed on the primary streaming flow pattern generated by the standing wave. These recorded flows are quite reproducible, and are qualitatively the same for a variety of levitator physical geometries. An onset of flow instability can also be recorded in nonisothermal systems, such as levitated spot-heated samples when the resonance conditions are not exactly satisfied. A preliminary qualitative interpretation of these experimental results is presented in terms of the superposition of three discrete sets of circulation cells operating on different spatial scales. These relevant length scales are the acoustic wavelength, the levitated sample size, and finally the acoustic boundary layer thickness. This approach fails, however, to explain the streaming flow-field morphology around liquid drops levitated on Earth. Observation of the interaction between the flows cells and the levitated samples also suggests the existence of a steady-state torque induced by the streaming flows.

  7. The influence of stream thermal regimes and preferential flow paths on hyporheic exchange in a glacial meltwater stream

    USGS Publications Warehouse

    Cozzetto, Karen D.; Bencala, Kenneth E.; Gooseff, Michael N.; McKnight, Diane M.

    2013-01-01

    Given projected increases in stream temperatures attributable to global change, improved understanding of relationships between stream temperatures and hyporheic exchange would be useful. We conducted two conservative tracer injection experiments in a glacial meltwater stream, to evaluate the effects of hyporheic thermal gradients on exchange processes, including preferential flow paths (PFPs). The experiments were conducted on the same day, the first (a stream injection) during a cool, morning period and the second (dual stream and hyporheic injections) during a warm, afternoon period. In the morning, the hyporheic zone was thermally uniform at 4°C, whereas by the afternoon the upper 10 cm had warmed to 6–12°C and exhibited greater temperature heterogeneity. Solute transport modeling showed that hyporheic cross-sectional areas (As) at two downstream sites were two and seven times lower during the warm experiment. Exchange metrics indicated that the hyporheic zone had less influence on downstream solute transport during the warm, afternoon experiment. Calculated hyporheic depths were less than 5 cm, contrasting with tracer detection at 10 and 25 cm depths. The hyporheic tracer arrival at one downstream site was rapid, comparable to the in-stream tracer arrival, providing evidence for PFPs. We thus propose a conceptual view of the hyporheic zone in this reach as being dominated by discrete PFPs weaving through hydraulically isolated areas. One explanation for the simultaneous increase in temperature heterogeneity and As decrease in a warmer hyporheic zone may be a flow path preferentiality feedback mechanism resulting from a combination of temperature-related viscosity decreases and streambed heterogeneity.

  8. Fish assemblage responses to water withdrawals and water supply reservoirs in Piedmont streams

    USGS Publications Warehouse

    Freeman, Mary C.; Marcinek, P.A.

    2006-01-01

    Understanding effects of flow alteration on stream biota is essential to developing ecologically sustainable water supply strategies. We evaluated effects of altering flows via surface water withdrawals and instream reservoirs on stream fish assemblages, and compared effects with other hypothesized drivers of species richness and assemblage composition. We sampled fishes during three years in 28 streams used for municipal water supply in the Piedmont region of Georgia, U.S.A. Study sites had permitted average withdrawal rates that ranged from 13 times the stream?s seven-day, ten-year recurrence low flow (7Q10), and were located directly downstream either from a water supply reservoir or from a withdrawal taken from an unimpounded stream. Ordination analysis of catch data showed a shift in assemblage composition at reservoir sites corresponding to dominance by habitat generalist species. Richness of fluvial specialists averaged about 3 fewer species downstream from reservoirs, and also declined as permitted withdrawal rate increased above about 0.5 to one 7Q10-equivalent of water. Reservoir presence and withdrawal rate, along with drainage area, accounted for 70% of the among-site variance in fluvial specialist richness and were better predictor variables than percent of the catchment in urban land use or average streambed sediment size. Increasing withdrawal rate also increased the odds that a site?s Index of Biotic Integrity score fell below a regulatory threshold indicating biological impairment. Estimates of reservoir and withdrawal effects on stream biota could be used in predictive landscape models to support adaptive water supply planning intended to meet societal needs while conserving biological resources.

  9. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    USGS Publications Warehouse

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total phosphorus model include discharges for municipal wastewater-treatment facilities and pulp and paper facilities, developed land area, agricultural area, and forested area. For total phosphorus, loss rates were significant for reservoirs with surface areas of 10 square kilometers or less, and in streams with flows less than or equal to 2.83 cubic meters per second. Applications of SPARROW for evaluating nutrient loading in New England waters include estimates of the spatial distributions of total nitrogen and phosphorus yields, sources of the nutrients, and the potential for delivery of those yields to receiving waters. This information can be used to (1) predict ranges in nutrient levels in surface waters, (2) identify the environmental variables that are statistically significant predictors of nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.

  10. Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape

    NASA Astrophysics Data System (ADS)

    Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.

    2017-12-01

    Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and improve management of our critical water resources.

  11. Surface-water quantity and quality, aquatic biology, stream geomorphology, and groundwater-flow simulation for National Guard Training Center at Fort Indiantown Gap, Pennsylvania, 2002-05

    USGS Publications Warehouse

    Langland, Michael J.; Cinotto, Peter J.; Chichester, Douglas C.; Bilger, Michael D.; Brightbill, Robin A.

    2010-01-01

    Base-line and long-term monitoring of water resources of the National Guard Training Center at Fort Indiantown Gap in south-central Pennsylvania began in 2002. Results of continuous monitoring of streamflow and turbidity and monthly and stormflow water-quality samples from two continuous-record long-term stream sites, periodic collection of water-quality samples from five miscellaneous stream sites, and annual collection of biological data from 2002 to 2005 at 27 sites are discussed. In addition, results from a stream-geomorphic analysis and classification and a regional groundwater-flow model are included. Streamflow at the facility was above normal for the 2003 through 2005 water years and extremely high-flow events occurred in 2003 and in 2004. Water-quality samples were analyzed for nutrients, sediments, metals, major ions, pesticides, volatile and semi-volatile organic compounds, and explosives. Results indicated no exceedances for any constituent (except iron) above the primary and secondary drinking-water standards or health-advisory levels set by the U.S. Environmental Protection Agency. Iron concentrations were naturally elevated in the groundwater within the watershed because of bedrock lithology. The majority of the constituents were at or below the method detection limit. Sediment loads were dominated by precipitation due to the remnants of Hurricane Ivan in September 2004. More than 60 percent of the sediment load measured during the entire study was transported past the streamgage in just 2 days during that event. Habitat and aquatic-invertebrate data were collected in the summers of 2002-05, and fish data were collected in 2004. Although 2002 was a drought year, 2003-05 were above-normal flow years. Results indicated a wide diversity in invertebrates, good numbers of taxa (distinct organisms), and on the basis of a combination of metrics, the majority of the 27 sites indicated no or slight impairment. Fish-metric data from 25 sites indicated results similar to the invertebrate data. Stream classification based on evolution of the stream channels indicates about 94 percent of the channels were considered to be in equilibrium (type B or C channels), neither aggrading nor eroding. A regional, uncalibrated groundwater-flow model indicated the surface-water and groundwater-flow divides coincided. Because of folding of rock layers, groundwater was under confined conditions and nearly all the water leaves the facility via the streams.

  12. Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten

    2017-04-01

    Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.

  13. Measurement of Hydrologic Streamflow Metrics and Estimation of Streamflow with Lumped Parameter Models in a Managed Lake System, Sebago Lake, Maine

    NASA Astrophysics Data System (ADS)

    Reeve, A. S.; Martin, D.; Smith, S. M.

    2013-12-01

    Surface waters within the Sebago Lake watershed (southern Maine, USA) provide a variety of economically and intrinsically valuable recreational, commercial and environmental services. Different stakeholder groups for the 118 km2 Sebago Lake and surrounding watershed advocate for different lake and watershed management strategies, focusing on the operation of a dam at the outflow from Sebago Lake. While lake level in Sebago Lake has been monitored for over a century, limited data is available on the hydrologic processes that drive lake level and therefore impact how dam operation (and other changes to the region) will influence the hydroperiod of the lake. To fill this information gap several tasks were undertaken including: 1) deploying data logging pressure transducers to continuously monitor stream stage in nine tributaries, 2) measuring stream discharge at these sites to create rating curves for the nine tributaries, and using the resulting continuous discharge records to 3) calibrate lumped parameter computer models based on the GR4J model, modified to include a degree-day snowmelt routine. These lumped parameter models have been integrated with a simple lake water-balance model to estimate lake level and its response to different scenarios including dam management strategies. To date, about three years of stream stage data have been used to estimate stream discharge in all monitored tributaries (data collection is ongoing). Baseflow separation indices (BFI) for 2010 and 2011 using the USGS software PART and the Eckhart digital filter in WHAT range from 0.80-0.86 in the Crooked River and Richmill Outlet,followed by Northwest (0.75) and Muddy (0.53-0.56) Rivers, with the lowest BFI measured in Sticky River (0.41-0.56). The BFI values indicate most streams have significant groundwater (or other storage) inputs. The lumped parameter watershed model has been calibrated for four streams (Nash-Sutcliffe = 0.4 to 0.9), with the other major tributaries containing hydraulic structures that are not included in the lumped parameter model. Calibrated watershed models tend to substantially underestimate the highest streamflows while overestimating low flows. An early June 2012 event caused extremely high flows with discharge in the Crooked River (the most significant tributary) peaking at about 85 m3/day. The lumped parameter model dramatically underestimated this important and anomalous event, but provided a reasonable prediction of flows throughout the rest of 2012. Ongoing work includes incorporating hydraulic structures in the lumped parameter model and using the available data to drive the lake water-balance model that has been prepared.

  14. Detection of dual effects of degradation of perennial snow and ice covers on the hydrologic regime of a Himalayan river basin by stream water availability modeling

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Biswajit

    2012-01-01

    SummaryIn river basins where melt water from snow and ice constitutes a dominant component of stream discharge during summer, degradation or reduction of perennial snow and ice covered areas ( SCA P) has a profound effect on stream water availability in those basins. Degradation of SCA P that includes glaciers is a globally widespread phenomenon observed in the recently past decades; its cause has been attributed to global warming and its consequence is expected to dramatically alter the flow regimes of the rivers draining the terrains. The predicted change in flow regime is an initial increase in summer flows in the early decades of 21st century followed by sharp decline of the same during the later parts of the century. Estimation of SCA P within the Upper Indus Basin (UIB), straddling the western ranges of the Greater Himalayas, Karakoram Mountains, and the eastern mountain ranges of the Hindu Kush, shows that from 1992 to 2010 there has been about 2.15% reduction in SCA P. A spatially distributed basin-scale stream water availability model is presented to calculate monthly river discharges at critical hydrologic junctions within UIB. Model calculations for the years 1992, 2000, and 2008, show that due to the degradation of the SCA P within the basin, there has been significant decrease in summer discharges at various hydrologic junctions. The percentage decline in flows varies from 10% to 22%, depending on the locations of the junctions within the basin. The space-dependence of these variations reflects differential degradation of SCA P in various parts of the basin. Furthermore, the time of peak discharge at all of the hydrological junctions has shifted from middle/late summer to late spring/early summer as another outcome of SCA P reduction. Such temporal shifting of nival regimes to early part of warmer season has also been predicted by global warming models. However, the case study presented here for a major Himalayan river basin demonstrates that such shifting of peak discharge in the time domain can also take place simply due to retreat of the equilibrium line. Thus, the effects of a warming climate have possibly been already set within UIB. Instead of experiencing an increased pulse of summer flows for the next few decades, summer flows within this basin are expected to decline. Changes in the timing of peak flows can have adverse effects on multipurpose water resources management without appropriate adaptation and mitigation measures. Monthly average stream flow data with 35 year period of record from a key gauging station support the findings of the model results. Similarly, digital maps of SCA P at different time periods within a key catchment of UIB, containing one of the major glaciers, show retreat of glacial lobes and significant decrease in total SCA P taking place during the past decades.

  15. Local flow measurements at the inlet spike tip of a Mach 3 supersonic cruise airplane

    NASA Technical Reports Server (NTRS)

    Johnson, H. J.; Montoya, E. J.

    1973-01-01

    The flow field at the left inlet spike tip of a YF-12A airplane was examined using at 26 deg included angle conical flow sensor to obtain measurements at free-stream Mach numbers from 1.6 to 3.0. Local flow angularity, Mach number, impact pressure, and mass flow were determined and compared with free-stream values. Local flow changes occurred at the same time as free-stream changes. The local flow usually approached the spike centerline from the upper outboard side because of spike cant and toe-in. Free-stream Mach number influenced the local flow angularity; as Mach number increased above 2.2, local angle of attack increased and local sideslip angle decreased. Local Mach number was generally 3 percent less than free-stream Mach number. Impact-pressure ratio and mass flow ratio increased as free-stream Mach number increased above 2.2, indicating a beneficial forebody compression effect. No degradation of the spike tip instrumentation was observed after more than 40 flights in the high-speed thermal environment encountered by the airplane. The sensor is rugged, simple, and sensitive to small flow changes. It can provide accurate imputs necessary to control an inlet.

  16. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  17. Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali A.; Beven, Keith; Erlandsson, Martin; Creed, Irena F.; McDonnell, Jeffrey J.; Bishop, Kevin

    2017-01-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flow path dynamics drive the spatiotemporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flow paths are complex and difficult to map quantitatively. Here we couple a new integrated flow and particle tracking transport model with a general reversible Transition State Theory style dissolution rate law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration (Ceq) to intrinsic weathering rate (Rmax), vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As CeqRmax decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behavior, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as CeqRmax decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time).

  18. Numerical simulation of the groundwater-flow system of the Kitsap Peninsula, west-central Washington

    USGS Publications Warehouse

    Frans, Lonna M.; Olsen, Theresa D.

    2016-05-05

    A groundwater-flow model was developed to improve understanding of water resources on the Kitsap Peninsula. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater, and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Twelve hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit form the basis of the groundwater-flow model.Groundwater flow on the Kitsap Peninsula was simulated using the groundwater-flow model, MODFLOW‑NWT. The finite difference model grid comprises 536 rows, 362 columns, and 14 layers. Each model cell has a horizontal dimension of 500 by 500 feet, and the model contains a total of 1,227,772 active cells. Groundwater flow was simulated for transient conditions. Transient conditions were simulated for January 1985–December 2012 using annual stress periods for 1985–2004 and monthly stress periods for 2005–2012. During model calibration, variables were adjusted within probable ranges to minimize differences between measured and simulated groundwater levels and stream baseflows. As calibrated to transient conditions, the model has a standard deviation for heads and flows of 47.04 feet and 2.46 cubic feet per second, respectively.Simulated inflow to the model area for the 2005–2012 period from precipitation and secondary recharge was 585,323 acre-feet per year (acre-ft/yr) (93 percent of total simulated inflow ignoring changes in storage), and simulated inflow from stream and lake leakage was 43,905 acre-ft/yr (7 percent of total simulated inflow). Simulated outflow from the model primarily was through discharge to streams, lakes, springs, seeps, and Puget Sound (594,595 acre-ft/yr; 95 percent of total simulated outflow excluding changes in storage) and through withdrawals from wells (30,761 acre-ft/yr; 5 percent of total simulated outflow excluding changes in storage).Six scenarios were formulated with input from project stakeholders and were simulated using the calibrated model to provide representative examples of how the model could be used to evaluate the effects on water levels and stream baseflows of potential changes in groundwater withdrawals, in consumptive use, and in recharge. These included simulations of a steady-state system, no-pumping and return flows, 15-percent increase in current withdrawals in all wells, 80-percent decrease in outdoor water to simulate effects of conservation efforts, 15-percent decrease in recharge from precipitation to simulate a drought, and particle tracking to determine flow paths.Changes in water-level altitudes and baseflow amounts vary depending on the stress applied to the system in these various scenarios. Reducing recharge by 15 percent between 2005 and 2012 had the largest effect, with water-level altitudes declining throughout the model domain and baseflow amounts decreasing by as much as 18 percent compared to baseline conditions. Changes in pumping volumes had a smaller effect on the model. Removing all pumping and resulting return flows caused increased water-level altitudes in many areas and increased baseflow amounts of between 1 and 3 percent.

  19. Prediction of the blowout of jet diffusion flames in a coflowing stream of air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karbasi, M.; Wierzba, I.

    1995-12-31

    The blowout limits of a lifted diffusion flame in a coflowing stream of air are estimated using a simple model for extinction, for a range of fuels, jet diameters and co-flowing stream velocities. The proposed model uses a parameter which relates to the ratio of a time associated with the mixing processes in a turbulent jet to a characteristic chemical time. The Kolmogorov microscale of time is used as time scale in this model. It is shown that turbulent diffusion flames are quenched by excessive turbulence for a critical value of this parameter. The predicted blowout velocity of diffusion flamesmore » obtained using this model is in good agreement with the available experimental data.« less

  20. Hydrologic connectivity in the McMurdo Dry Valleys of Antarctica: System function and changes over two decades

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Gooseff, M. N.; Bernzott, E. D.; McKnight, D. M.; Jaros, C.; Lyons, W.

    2013-12-01

    The McMurdo Dry Valleys of Antarctica is one of the coldest (average annual air temperature of -18°C) and driest (<10cm water equivalent of precip per year) places on earth. Despite the harsh climatic conditions of this landscape, a thriving microbial and invertebrate ecosystem exists, but is limited by the availability of liquid water. So, it is important to quantify temporal and spatial dynamics of hydrologic and ecological connections in the McMurdo Dry Valleys. Intermittent glacial meltwater streams connect glaciers to closed basin lakes and compose the most prominent hydrologic nexus in the valleys. This study uses of 20+ years of stream temperature, electrical conductivity (EC), and discharge data to enhance our quantitative understanding of the temporal dynamics of hydrologic connections along the glacier-stream-lake continuum. Annually, streamflow occurs for a relatively brief 10-12 week period of the austral summer. Longer streams are more prone to intermittent dry periods during the flow season, making for a harsher ecological environment than shorter streams. Diurnal streamflow variation occurs primarily as a result of changing solar postion relative to the source-glacier surfaces. Therfore, different streams predictably experience high flows and low flows at different times of the day. Electrical conductivity also exhibits diel variations, but the nature of EC-discharge relationships differs among streams throughout the valley. Longer streams have higher EC values and lower discharges than shorter streams, suggesting that hyporheic zones act as a significant solute source and hydrologic reservoir along longer streams. Water temperatures are consistently warmer in longer streams, relative to shorter streams, likely due to prolonged exposure to incident radiation with longer surface water residence times. Inter-annually, several shorter streams in the region show significant increases in Q10, Q30, Q50, Q70, Q90, and/or Q100 flows across the 20+ year record, indicating a long-term non-stationarity in hydrologic system dynamics. The tight coupling between surface waters and the glacier surface energy balance bring forth remarkably consistent hydrologic patterns on the daily and annual timescales, providing a model system for understanding fundamental hydro-ecological connectivity. We are beginning to understand long-term inter-annual changes in hydrologic connections in this thermodynamically sensitive landscape, with the aid of well-maintained long-term data sets.

Top