Konrad, Christopher P.; Voss, Frank D.
2012-01-01
The streamflow-gaging network in the Puget Sound basin was analyzed for its capacity to monitor stormwater in small streams. The analysis consisted of an inventory of active and inactive gages and an evaluation of the coverage and resolution of the gaging network with an emphasis on lowland areas. The active gaging network covers much of the Puget Lowland largely by gages located at sites on larger streams and rivers. Assessments of stormwater impacts and management will likely require streamflow information with higher spatial resolution than provided by the current gaging network. Monitoring that emphasizes small streams in combination with approaches for estimating streamflow at ungaged sites provides an alternative to expanding the current gaging network that can improve the spatial resolution of streamflow information in the region. The highest priority gaps in the gaging network are low elevation basins close to the Puget Sound shoreline and sites that share less than 10 percent of the drainage area of an active gage. Although small, lowland sites with long records of streamflow are particularly valuable to maintain in the region, other criteria for prioritizing sites in the gaging network should be based on the specific questions that stormwater managers need to answer.
Olson, Scott A.
2003-01-01
The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.
Konrad, Christopher; Sevier, Maria
2014-01-01
Geospatial information for the active streamflow gaging network in the Puget Sound Basin was compiled to support regional monitoring of stormwater effects to small streams. The compilation includes drainage area boundaries and physiographic and land use attributes that affect hydrologic processes. Three types of boundaries were used to tabulate attributes: Puget Sound Watershed Characterization analysis units (AU); the drainage area of active streamflow gages; and the catchments of Regional Stream Monitoring Program (RSMP) sites. The active streamflow gaging network generally includes sites that represent the ranges of attributes for lowland AUs, although there are few sites with low elevations (less than 60 meters), low precipitation (less than 1 meter year), or high stream density (greater than 5 kilometers per square kilometers). The active streamflow gaging network can serve to provide streamflow information in some AUs and RSMP sites, particularly where the streamflow gage measures streamflow generated from a part of the AU or that drains to the RSMP site, and that part of the AU or RSMP site is a significant fraction of the drainage area of the streamgage. The maximum fraction of each AU or RSMP catchment upstream of a streamflow gage and the maximum fraction of any one gaged basin in an AU or RSMP along with corresponding codes are provided in the attribute tables.
Cost-effectiveness of the U.S. Geological Survey stream-gaging program in Indiana
Stewart, J.A.; Miller, R.L.; Butch, G.K.
1986-01-01
Analysis of the stream gaging program in Indiana was divided into three phases. The first phase involved collecting information concerning the data need and the funding source for each of the 173 surface water stations in Indiana. The second phase used alternate methods to produce streamflow records at selected sites. Statistical models were used to generate stream flow data for three gaging stations. In addition, flow routing models were used at two of the sites. Daily discharges produced from models did not meet the established accuracy criteria and, therefore, these methods should not replace stream gaging procedures at those gaging stations. The third phase of the study determined the uncertainty of the rating and the error at individual gaging stations, and optimized travel routes and frequency of visits to gaging stations. The annual budget, in 1983 dollars, for operating the stream gaging program in Indiana is $823,000. The average standard error of instantaneous discharge for all continuous record gaging stations is 25.3%. A budget of $800,000 could maintain this level of accuracy if stream gaging stations were visited according to phase III results. A minimum budget of $790,000 is required to operate the gaging network. At this budget, the average standard error of instantaneous discharge would be 27.7%. A maximum budget of $1 ,000,000 was simulated in the analysis and the average standard error of instantaneous discharge was reduced to 16.8%. (Author 's abstract)
A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams
Flynn, Robert H.
2003-01-01
The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.
Cost effectiveness of the stream-gaging program in North Dakota
Ryan, Gerald L.
1989-01-01
This report documents results of a cost-effectiveness study of the stream-gaging program In North Dakota. It is part of a nationwide evaluation of the stream-gaging program of the U.S. Geological Survey.One phase of evaluating cost effectiveness is to identify less costly alternative methods of simulating streamflow records. Statistical or hydro logic flow-routing methods were used as alternative methods to simulate streamflow records for 21 combinations of gaging stations from the 94-gaging-station network. Accuracy of the alternative methods was sufficient to consider discontinuing only one gaging station.Operation of the gaging-station network was evaluated by using associated uncertainty in streamflow records. The evaluation was limited to the nonwinter operation of 29 gaging stations in eastern North Dakota. The current (1987) travel routes and measurement frequencies require a budget of about $248/000 and result in an average equivalent Gaussian spread in streamflow records of 16.5 percent. Changes in routes and measurement frequencies optimally could reduce the average equivalent Gaussian spread to 14.7 percent.Budgets evaluated ranged from $235,000 to $400,000. A $235,000 budget would increase the optimal average equivalent Gaussian spread from 14.7 to 20.4 percent, and a $400,000 budget could decrease it to 5.8 percent.
Floods on small streams in Texas
Ruggles, Frederick H.
1966-01-01
The first streamflow station in Texas was established on the Rio Grande at El Paso on May 10, 1889. Sip,ce that time the systematic collection of streamflow data. has expanded. In 1915 the Texas Board of Water Engineers (now the Texas Water Development Board) entered into a cooperative agreement with the U. S. Geological Survey for the purpose of expanding the network of stream-gaging stations in Texas. Sites were selected for stream-gaging stations to obtain hydrologic data for water supply and flood control. Therefore, the stream-gaging stations were located principally on major streams. Today, after three-quarters of a century.of hydrologic data collection, peak discharge data on small streams are still deficient in Texas. The Geological Survey and the Texas Highway Department, therefore, have entered into a cooperative program to collect peak discharge data on small streams for the purpose of deriving flood-frequency data needed for the economical design of culverts and small bridges.
Applications of remote sensing to stream discharge predictions
NASA Technical Reports Server (NTRS)
Krause, F. R.; Winn, C. B.
1972-01-01
A feasibility study has been initiated on the use of remote earth observations for augmenting stream discharge prediction for the design and/or operation of major reservoir systems, pumping systems and irrigation systems. The near-term objectives are the interpolation of sparsely instrumented precipitation surveillance networks and the direct measurement of water loss by evaporation. The first steps of the study covered a survey of existing reservoir systems, stream discharge prediction methods, gage networks and the development of a self-adaptive variation of the Kentucky Watershed model, SNOPSET, that includes snowmelt. As a result of these studies, a special three channel scanner is being built for a small aircraft, which should provide snow, temperature and water vapor maps for the spatial and temporal interpolation of stream gages.
Cost effectiveness of the stream-gaging program in Louisiana
Herbert, R.A.; Carlson, D.D.
1985-01-01
This report documents the results of a study of the cost effectiveness of the stream-gaging program in Louisiana. Data uses and funding sources were identified for the 68 continuous-record stream gages currently (1984) in operation with a budget of $408,700. Three stream gages have uses specific to a short-term study with no need for continued data collection beyond the study. The remaining 65 stations should be maintained in the program for the foreseeable future. In addition to the current operation of continuous-record stations, a number of wells, flood-profile gages, crest-stage gages, and stage stations, are serviced on the continuous-record station routes; thus, increasing the current budget to $423,000. The average standard error of estimate for data collected at the stations is 34.6%. Standard errors computed in this study are one measure of streamflow errors, and can be used as guidelines in comparing the effectiveness of alternative networks. By using the routes and number of measurements prescribed by the ' Traveling Hydrographer Program, ' the standard error could be reduced to 31.5% with the current budget of $423,000. If the gaging resources are redistributed, the 34.6% overall level of accuracy at the 68 continuous-record sites and the servicing of the additional wells or gages could be maintained with a budget of approximately $410,000. (USGS)
Curran, Christopher A.; Olsen, Theresa D.
2009-01-01
Low-flow frequency statistics were computed at 17 continuous-record streamflow-gaging stations and 8 miscellaneous measurement sites in and near the Nooksack River basin in northwestern Washington and Canada, including the 1, 3, 7, 15, 30, and 60 consecutive-day low flows with recurrence intervals of 2 and 10 years. Using these low-flow statistics, 12 regional regression equations were developed for estimating the same low-flow statistics at ungaged sites in the Nooksack River basin using a weighted-least-squares method. Adjusted R2 (coefficient of determination) values for the equations ranged from 0.79 to 0.93 and the root-mean-squared error (RMSE) expressed as a percentage ranged from 77 to 560 percent. Streamflow records from six gaging stations located in mountain-stream or lowland-stream subbasins of the Nooksack River basin were analyzed to determine if any of the gaging stations could be removed from the network without significant loss of information. Using methods of hydrograph comparison, daily-value correlation, variable space, and flow-duration ratios, and other factors relating to individual subbasins, the six gaging stations were prioritized from most to least important as follows: Skookum Creek (12209490), Anderson Creek (12210900), Warm Creek (12207750), Fishtrap Creek (12212050), Racehorse Creek (12206900), and Clearwater Creek (12207850). The optimum streamflow-gaging station network would contain all gaging stations except Clearwater Creek, and the minimum network would include Skookum Creek and Anderson Creek.
Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA
Clayton, J.A.; Kean, J.W.
2010-01-01
Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.
Cost effectiveness of the US Geological Survey's stream-gaging program in New York
Wolcott, S.W.; Gannon, W.B.; Johnston, W.H.
1986-01-01
The U.S. Geological Survey conducted a 5-year nationwide analysis to define and document the most cost effective means of obtaining streamflow data. This report describes the stream gaging network in New York and documents the cost effectiveness of its operation; it also identifies data uses and funding sources for the 174 continuous-record stream gages currently operated (1983). Those gages as well as 189 crest-stage, stage-only, and groundwater gages are operated with a budget of $1.068 million. One gaging station was identified as having insufficient reason for continuous operation and was converted to a crest-stage gage. Current operation of the 363-station program requires a budget of $1.068 million/yr. The average standard error of estimation of continuous streamflow data is 13.4%. Results indicate that this degree of accuracy could be maintained with a budget of approximately $1.006 million if the gaging resources were redistributed among the gages. The average standard error for 174 stations was calculated for five hypothetical budgets. A minimum budget of $970,000 would be needed to operated the 363-gage program; a budget less than this does not permit proper servicing and maintenance of the gages and recorders. Under the restrictions of a minimum budget, the average standard error would be 16.0%. The maximum budget analyzed was $1.2 million, which would decrease the average standard error to 9.4%. (Author 's abstract)
McMurdo LTER: streamflow measurements in Taylor Valley
McKnight, D.; House, H.; Von Guerard, P.
1994-01-01
Has established a stream gaging network for the three major lake basins in Taylor Valley. These data are critical for determining nutrient budgets for the lake ecosystems and for understanding physical factors controlling microbial mats in the streams.
Water resources data, Idaho, 2002; Volume 1. Great Basin and Snake River basin above King Hill
Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.
2003-01-01
Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.
2003-01-01
Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska
Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.
1999-01-01
Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.
Cost effectiveness of the stream-gaging program in Nevada
Arteaga, F.E.
1990-01-01
The stream-gaging network in Nevada was evaluated as part of a nationwide effort by the U.S. Geological Survey to define and document the most cost-effective means of furnishing streamflow information. Specifically, the study dealt with 79 streamflow gages and 2 canal-flow gages that were under the direct operation of Nevada personnel as of 1983. Cost-effective allocations of resources, including budget and operational criteria, were studied using statistical procedures known as Kalman-filtering techniques. The possibility of developing streamflow data at ungaged sites was evaluated using flow-routing and statistical regression analyses. Neither of these methods provided sufficiently accurate results to warrant their use in place of stream gaging. The 81 gaging stations were being operated in 1983 with a budget of $465,500. As a result of this study, all existing stations were determined to be necessary components of the program for the foreseeable future. At the 1983 funding level, the average standard error of streamflow records was nearly 28%. This same overall level of accuracy could have been maintained with a budget of approximately $445,000 if the funds were redistributed more equitably among the gages. The maximum budget analyzed, $1,164 ,000 would have resulted in an average standard error of 11%. The study indicates that a major source of error is lost data. If perfectly operating equipment were available, the standard error for the 1983 program and budget could have been reduced to 21%. (Thacker-USGS, WRD)
Somerset County Flood Information System
Hoppe, Heidi L.
2007-01-01
The timely warning of a flood is crucial to the protection of lives and property. One has only to recall the floods of August 2, 1973, September 16 and 17, 1999, and April 16, 2007, in Somerset County, New Jersey, in which lives were lost and major property damage occurred, to realize how costly, especially in terms of human life, an unexpected flood can be. Accurate forecasts and warnings cannot be made, however, without detailed information about precipitation and streamflow in the drainage basin. Since the mid 1960's, the National Weather Service (NWS) has been able to forecast flooding on larger streams in Somerset County, such as the Raritan and Millstone Rivers. Flooding on smaller streams in urban areas was more difficult to predict. In response to this problem the NWS, in cooperation with the Green Brook Flood Control Commission, installed a precipitation gage in North Plainfield, and two flash-flood alarms, one on Green Brook at Seeley Mills and one on Stony Brook at Watchung, in the early 1970's. In 1978, New Jersey's first countywide flood-warning system was installed by the U.S. Geological Survey (USGS) in Somerset County. This system consisted of a network of eight stage and discharge gages equipped with precipitation gages linked by telephone telemetry and eight auxiliary precipitation gages. The gages were installed throughout the county to collect precipitation and runoff data that could be used to improve flood-monitoring capabilities and flood-frequency estimates. Recognizing the need for more detailed hydrologic information for Somerset County, the USGS, in cooperation with Somerset County, designed and installed the Somerset County Flood Information System (SCFIS) in 1990. This system is part of a statewide network of stream gages, precipitation gages, weather stations, and tide gages that collect data in real time. The data provided by the SCFIS improve the flood forecasting ability of the NWS and aid Somerset County and municipal agencies in the planning and execution of flood-preparation and emergency-evacuation procedures in the county. This fact sheet describes the SCFIS and identifies its benefits.
Water resources data, Idaho, 2003; Volume 3. Ground water records
Campbell, A.M.; Conti, S.N.; O'Dell, I.
2003-01-01
Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Water resources data, Idaho, 2004; Volume 3. Ground water records
Campbell, A.M.; Conti, S.N.; O'Dell, I.
2005-01-01
Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Cost-effectiveness of the stream-gaging program in the Hawaii District
Matsuoka, I.; Lee, R.; Thomas, W.O.
1985-01-01
This project documents the results of a study of the cost-effectiveness of the stream-gaging program in the Hawaii District. The stream gages in the District were divided into two groups, the State of Hawaii and the Other Pacific Areas. Data uses and funding sources were identified for the 124 continuous stream gages currently being operated in the Hawaii District with a budget of $570,620. All the stream-gages were identified as having sufficient reason to continue their operation and they should be maintained in the program for the foreseeable future. (USGS)
Brennan, T.S.; Lehmann, A.K.; O'Dell, I.
2005-01-01
Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Brennan, T.S.; Lehmann, A.K.; O'Dell, I.
2004-01-01
Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Brennan, T.S.; Lehmann, A.K.; O'Dell, I.
2004-01-01
Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Brennan, T.S.; Lehmann, A.K.; O'Dell, I.
2005-01-01
Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Cost effectiveness of the US Geological Survey's stream-gaging programs in New Hampshire and Vermont
Smath, J.A.; Blackey, F.E.
1986-01-01
Data uses and funding sources were identified for the 73 continuous stream gages currently (1984) being operated. Eight stream gages were identified as having insufficient reason to continue their operation. Parts of New Hampshire and Vermont were identified as needing additional hydrologic data. New gages should be established in these regions as funds become available. Alternative methods for providing hydrologic data at the stream gaging stations currently being operated were found to lack the accuracy that is required for their intended use. The current policy for operation of the stream gages requires a net budget of $297,000/yr. The average standard error of estimation of the streamflow records is 17.9%. This overall level of accuracy could be maintained with a budget of $285,000 if resources were redistributed among gages. Cost-effective analysis indicates that with the present budget, the average standard error could be reduced to 16.6%. A minimum budget of $278,000 is required to operate the present stream gaging program. Below this level, the gages and recorders would not receive the proper service and maintenance. At the minimum budget, the average standard error would be 20.4%. The loss of correlative data is a significant component of the error in streamflow records, especially at lower budgetary levels. (Author 's abstract)
Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.
2010-01-01
In addition, watersheds were assessed for their reference quality within nine broad regions for use in studies intended to characterize stream flows under conditions minimally influenced by human activities. Three primary criteria were used to assess reference quality: (1) a quantitative index of anthropogenic modification within the watershed based on GIS-derived variables, (2) visual inspection of every stream gage and drainage basin from recent high-resolution imagery and topographic maps, and (3) information about man-made influences from USGS Annual Water Data Reports. From the set of 6785 sites, we identified 1512 as reference-quality stream gages. All data derived for these watersheds as well as the reference condition evaluation are provided as an online data set termed GAGES (geospatial attributes of gages for evaluating stream flow).
USGS reservoir and lake gage network: Elevation and volumetric contents data, and their uses
Kroska, Anita C.
2014-01-01
In December of 2013, the U.S. Geological Survey (USGS) marked the 125th anniversary of the installation of its first official water level and streamflow gage, on the Rio Grande at Embudo, New Mexico. The gage was installed because it was recognized that water data were important to expanding irrigation needs. The USGS is a federal agency that provides nationally consistent and unbiased surface-water elevation and streamflow data at more than 10,000 gaging locations in the United States, about 330 of which are lakes and reservoirs (referred to hereafter as lakes) (Figure 1). The job of quantifying water resources, whether lakes, streams, or aquifers, is fundamental to proper water management and conservation of resources.
Koltun, G.F.; Holtschlag, David J.
2010-01-01
Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations. Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971–2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages).Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the size and composition of the streamflow-gaging network affected the average apparent errors and variability of the estimated flows and (b) whether results for certain months were more variable than for others. The six flow lines were categorized into one of three types depending upon their network topology and position relative to operating streamflow-gaging stations. Statistical analysis of the model results indicates that (1) less precise (that is, more variable) estimates resulted from smaller streamflow-gaging networks as compared to larger streamflow-gaging networks, (2) precision of AFINCH flow estimates at an ungaged flow line is improved by operation of one or more streamflow gages upstream and (or) downstream in the enclosing basin, (3) no consistent seasonal trend in estimate variability was evident, and (4) flow lines from ungaged basins appeared to exhibit the smallest absolute apparent percent errors (APEs) and smallest changes in average APE as a function of increasing censoring level. The counterintuitive results described in item (4) above likely reflect both the nature of the base-streamflow estimate from which the errors were computed and insensitivity in the average model-derived estimates to changes in the streamflow-gaging-network size and composition. Another analysis demonstrated that errors for flow lines in ungaged basins have the potential to be much larger than indicated by their APEs if measured relative to their true (but unknown) flows. “Missing gage” analyses, based on examination of censoring subset results where the streamflow gage of interest was omitted from the calibration data set, were done to better understand the true error characteristics for ungaged flow lines as a function of network size. Results examined for 2 water years indicated that the probability of computing a monthly streamflow estimate within 10 percent of the true value with AFINCH decreased from greater than 0.9 at about a 10-percent network-censoring level to less than 0.6 as the censoring level approached 75 percent. In addition, estimates for typically dry months tended to be characterized by larger percent errors than typically wetter months.
Cost effectiveness of the stream-gaging program in northeastern California
Hoffard, S.H.; Pearce, V.F.; Tasker, Gary D.; Doyle, W.H.
1984-01-01
Results are documented of a study of the cost effectiveness of the stream-gaging program in northeastern California. Data uses and funding sources were identified for the 127 continuous stream gages currently being operated in the study area. One stream gage was found to have insufficient data use to warrant cooperative Federal funding. Flow-routing and multiple-regression models were used to simulate flows at selected gaging stations. The models may be sufficiently accurate to replace two of the stations. The average standard error of estimate of streamflow records is 12.9 percent. This overall level of accuracy could be reduced to 12.0 percent using computer-recommended service routes and visit frequencies. (USGS)
Johnson, Kevin K.; Goodwin, Greg E.
2013-01-01
Lake Michigan diversion accounting is the process used by the U. S. Army Corps of Engineers to quantify the amount of water that is diverted from the Lake Michigan watershed into the Illinois and Mississippi River Basins. A network of streamgages within the Chicago area waterway system monitor tributary river flows and the major river flow on the Chicago Sanitary and Ship Canal near Lemont as one of the instrumental tools used for Lake Michigan diversion accounting. The mean annual discharges recorded by these streamgages are used as additions or deductions to the mean annual discharge recorded by the main stream gaging station currently used in the Lake Michigan diversion accounting process, which is the Chicago Sanitary and Ship Canal near Lemont, Illinois (station number 05536890). A new stream gaging station, Summit Conduit near Summit, Illinois (station number 414757087490401), was installed on September 23, 2010, for the purpose of monitoring stage, velocity, and discharge through the Summit Conduit for the U.S. Army Corps of Engineers in accordance with Lake Michigan diversion accounting. Summit Conduit conveys flow from a small part of the lower Des Plaines River watershed underneath the Des Plaines River directly into the Chicago Sanitary and Ship Canal. Because the Summit Conduit discharges into the Chicago Sanitary and Ship Canal upstream from the stream gaging station at Lemont, Illinois, but does not contain flow diverted from the Lake Michigan watershed, it is considered a flow deduction to the discharge measured by the Lemont stream gaging station in the Lake Michigan diversion accounting process. This report offers a technical summary of the techniques and methods used for the collection and computation of the stage, velocity, and discharge data at the Summit Conduit near Summit, Illinois stream gaging station for the 2011 and 2012 Water Years. The stream gaging station Summit Conduit near Summit, Illinois (station number 414757087490401) is an example of a nonstandard stream gage. Traditional methods of equating stage to discharge historically were not effective. Examples of the nonstandard conditions include the converging tributary flows directly upstream of the gage; the trash rack and walkway near the opening of the conduit introducing turbulence and occasionally entraining air bubbles into the flow; debris within the conduit creating conditions of variable backwater and the constant influx of smaller debris that escapes the trash rack and catches or settles in the conduit and on the equipment. An acoustic Doppler velocity meter was installed to measure stage and velocity to compute discharge. The stage is used to calculate area based the stage-area rating. The index-velocity from the acoustic Doppler velocity meter is applied to the velocity-velocity rating and the product of the two rated values is a rated discharge by the index-velocity method. Nonstandard site conditions prevalent at the Summit Conduit stream gaging station generally are overcome through the index-velocity method. Despite the difficulties in gaging and measurements, improvements continue to be made in data collection, transmission, and measurements. Efforts to improve the site and to improve the ratings continue to improve the quality and quantity of the data available for Lake Michigan diversion accounting.
Rosa, Sarah N.; Oki, Delwyn S.
2010-01-01
Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.
Crowdsourcing Stream Stage in Data Scarce Regions: Applications of CrowdHydrology
NASA Astrophysics Data System (ADS)
Lowry, C.; Fienen, M. N.
2013-12-01
Crowdsourced data collection using citizen scientists and mobile phones is a promising way to collect supplemental information in data scarce or remote regions. The research presented here explore the possibilities and pitfalls of crowdsourcing hydrologic data via mobile phone text messaging through the example of CrowdHydrology, a distributed network of over 40 stream gages in four states. Signage at the CrowdHydrology gages ask citizen scientists to answer to a simple question via text message: 'What is the water height?'. While these data in no way replace more traditional measurements of stream stage, they do provide low cost supplemental measurements in data scarce regions. Results demonstrate the accuracy of crowdsourced data and provide insight for successful future crowdsourced data collection efforts. A less recognized benefit is that even in data rich areas, crowdsourced data collection is a cost-effective way to perform quality assurance on more sophisticated, and costly, data collection efforts.
Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Illinois
Mades, D.M.; Oberg, K.A.
1984-01-01
Data uses and funding sources were identified for 138 continuous-record discharge-gaging stations currently (1983) operated as part of the stream-gaging program in Illinois. Streamflow data from five of those stations are used only for regional hydrology studies. Most streamflow data are used for defining regional hydrology, defining rainfall-runoff relations, flood forecasting, regulating navigation systems, and water-quality sampling. Based on the evaluations of data use and of alternative methods for determining streamflow in place of stream gaging, no stations in the 1983 stream-gaging program should be deactivated. The current budget (in 1983 dollars) for operating the 138-station program is $768,000 per year. The average standard error of instantaneous discharge for the current practice for visiting the gaging stations is 36.5 percent. Missing stage record accounts for one-third of the 36.5 percent average standard error. (USGS)
Cost effectiveness of the stream-gaging program in Ohio
Shindel, H.L.; Bartlett, W.P.
1986-01-01
This report documents the results of the cost effectiveness of the stream-gaging program in Ohio. Data uses and funding sources were identified for 107 continuous stream gages currently being operated by the U.S. Geological Survey in Ohio with a budget of $682,000; this budget includes field work for other projects and excludes stations jointly operated with the Miami Conservancy District. No stream gage were identified as having insufficient reason to continue their operation; nor were any station identified as having uses specifically only for short-term studies. All 107 station should be maintained in the program for the foreseeable future. The average standard error of estimation of stream flow records is 29.2 percent at its present level of funding. A minimum budget of $679,000 is required to operate the 107-gage program; a budget less than this does no permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 31.1 percent The maximum budget analyzed was $1,282,000, which resulted in an average standard error of 11.1 percent. A need for additional gages has been identified by the other agencies that cooperate in the program. It is suggested that these gage be installed as funds can be made available.
Telis, Pamela A.
1992-01-01
Mississippi State water laws require that the 7-day, 10-year low-flow characteristic (7Q10) of streams be used as a criterion for issuing wastedischarge permits to dischargers to streams and for limiting withdrawals of water from streams. This report presents techniques for estimating the 7Q10 for ungaged sites on streams in Mississippi based on the availability of baseflow discharge measurements at the site, location of nearby gaged sites on the same stream, and drainage area of the ungaged site. These techniques may be used to estimate the 7Q10 at sites on natural, unregulated or partially regulated, and non-tidal streams. Low-flow characteristics for streams in the Mississippi River alluvial plain were not estimated because the annual lowflow data exhibit decreasing trends with time. Also presented are estimates of the 7Q10 for 493 gaged sites on Mississippi streams.Techniques for estimating the 7Q10 have been developed for ungaged sites with base-flow discharge measurements, for ungaged sites on gaged streams, and for ungaged sites on ungaged streams. For an ungaged site with one or more base-flow discharge measurements, base-flow discharge data at the ungaged site are related to concurrent discharge data at a nearby gaged site. For ungaged sites on gaged streams, several methods of transferring the 7Q10 from a gaged site to an ungaged site were developed; the resulting 7Q10 values are based on drainage area prorations for the sites. For ungaged sites on ungaged streams, the 7Q10 is estimated from a map developed for. this study that shows the unit 7Q10 (7Q10 per square mile of drainage area) for ungaged basins in the State. The mapped values were estimated from the unit 7Q10 determined for nearby gaged basins, adjusted on the basis of the geology and topography of the ungaged basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1997-07-01
This report, Volume, 2, contains (1) discharge records for 81 continuous-record streamflow-gaging stations, 16 partial-record stations, and 20 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 7 gaging stations and 46 ungaged stream sites; and (4) water-level records for 30 ground-water network observation wells. Site locations are shown in figures throughout the report.
Moss, Marshall E.; Gilroy, Edward J.
1980-01-01
This report describes the theoretical developments and illustrates the applications of techniques that recently have been assembled to analyze the cost-effectiveness of federally funded stream-gaging activities in support of the Colorado River compact and subsequent adjudications. The cost effectiveness of 19 stream gages in terms of minimizing the sum of the variances of the errors of estimation of annual mean discharge is explored by means of a sequential-search optimization scheme. The search is conducted over a set of decision variables that describes the number of times that each gaging route is traveled in a year. A gage route is defined as the most expeditious circuit that is made from a field office to visit one or more stream gages and return to the office. The error variance is defined as a function of the frequency of visits to a gage by using optimal estimation theory. Currently a minimum of 12 visits per year is made to any gage. By changing to a six-visit minimum, the same total error variance can be attained for the 19 stations with a budget of 10% less than the current one. Other strategies are also explored. (USGS)
Cost effectiveness of the stream-gaging program in Pennsylvania
Flippo, H.N.; Behrendt, T.E.
1985-01-01
This report documents a cost-effectiveness study of the stream-gaging program in Pennsylvania. Data uses and funding were identified for 223 continuous-record stream gages operated in 1983; four are planned for discontinuance at the close of water-year 1985; two are suggested for conversion, at the beginning of the 1985 water year, for the collection of only continuous stage records. Two of 11 special-purpose short-term gages are recommended for continuation when the supporting project ends; eight of these gages are to be discontinued and the other will be converted to a partial-record type. Current operation costs for the 212 stations recommended for continued operation is $1,199,000 per year in 1983. The average standard error of estimation for instantaneous streamflow is 15.2%. An overall average standard error of 9.8% could be attained on a budget of $1,271,000, which is 6% greater than the 1983 budget, by adopted cost-effective stream-gaging operations. (USGS)
Cost effectiveness of stream-gaging program in Michigan
Holtschlag, D.J.
1985-01-01
This report documents the results of a study of the cost effectiveness of the stream-gaging program in Michigan. Data uses and funding sources were identified for the 129 continuous gaging stations being operated in Michigan as of 1984. One gaging station was identified as having insufficient reason to continue its operation. Several stations were identified for reactivation, should funds become available, because of insufficiencies in the data network. Alternative methods of developing streamflow information based on routing and regression analyses were investigated for 10 stations. However, no station records were reproduced with sufficient accuracy to replace conventional gaging practices. A cost-effectiveness analysis of the data-collection procedure for the ice-free season was conducted using a Kalman-filter analysis. To define missing-record characteristics, cross-correlation coefficients and coefficients of variation were computed at stations on the basis of daily mean discharge. Discharge-measurement data were used to describe the gage/discharge rating stability at each station. The results of the cost-effectiveness analysis for a 9-month ice-free season show that the current policy of visiting most stations on a fixed servicing schedule once every 6 weeks results in an average standard error of 12.1 percent for the current $718,100 budget. By adopting a flexible servicing schedule, the average standard error could be reduced to 11.1 percent. Alternatively, the budget could be reduced to $700,200 while maintaining the current level of accuracy. A minimum budget of $680,200 is needed to operate the 129-gaging-station program; a budget less than this would not permit proper service and maintenance of stations. At the minimum budget, the average standard error would be 14.4 percent. A budget of $789,900 (the maximum analyzed) would result in a decrease in the average standard error to 9.07 percent. Owing to continual changes in the composition of the network and the changes in the uncertainties of streamflow accuracy at individual stations, the cost-effectiveness analysis will need to be updated regularly if it is to be used as a management tool. Cost of these updates need to be considered in decisions concerning the feasibility of flexible servicing schedules.
Trends in Streamflow Characteristics at Long-Term Gaging Stations, Hawaii
Oki, Delwyn S.
2004-01-01
The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. Proper management of the surface-water resources of the State requires an understanding of the long- and short-term variability in streamflow characteristics that may occur. The U.S. Geological Survey maintains a network of stream-gaging stations in Hawaii, including a number of stations with long-term streamflow records that can be used to evaluate long-term trends and short-term variability in flow characteristics. The overall objective of this study is to obtain a better understanding of long-term trends and variations in streamflow on the islands of Hawaii, Maui, Molokai, Oahu, and Kauai, where long-term stream-gaging stations exist. This study includes (1) an analysis of long-term trends in flows (both total flow and estimated base flow) at 16 stream-gaging stations, (2) a description of patterns in trends within the State, and (3) discussion of possible regional factors (including rainfall) that are related to the observed trends and variations. Results of this study indicate the following: 1. From 1913 to 2002 base flows generally decreased in streams for which data are available, and this trend is consistent with the long-term downward trend in annual rainfall over much of the State during that period. 2. Monthly mean base flows generally were above the long-term average from 1913 to the early 1940s and below average after the early 1940s to 2002, and this pattern is consistent with the detected downward trends in base flows from 1913 to 2002. 3. Long-term downward trends in base flows of streams may indicate a reduction in ground-water discharge to streams caused by a long-term decrease in ground-water storage and recharge. 4. From 1973 to 2002, trends in streamflow were spatially variable (up in some streams and down in others) and, with a few exceptions, generally were not statistically significant. 5. Short-term variability in streamflow is related to the seasons and to the EL Ni?o-Southern Oscillation phenomenon that may be partly modulated by the phase of the Pacific Decadal Oscillation. 6. At almost all of the long-term stream-gaging stations considered in this study, average total flow (and to a lesser extent average base flow) during the winter months of January to March tended to be low following El Ni?o periods and high following La Ni?a periods, and this tendency was accentuated during positive phases of the Pacific Decadal Oscillation. 7. The El Ni?o-Southern Oscillation phenomenon occurs at a relatively short time scale (a few to several years) and appears to be more strongly related to processes controlling rainfall and direct runoff than ground-water storage and base flow. Long-term downward trends in base flows of streams may indicate a reduction in ground-water storage and recharge. Because ground water provides about 99 percent of Hawaii's domestic drinking water, a reduction in ground-water storage and recharge has serious implications for drinking-water availability. In addition, reduction in stream base flows may reduce habitat availability for native stream fauna and water availability for irrigation purposes. Further study is needed to determine (1) whether the downward trends in base flows from 1913 to 2002 will continue or whether the observed pattern is part of a long-term cycle in which base flows may eventually return to levels measured during 1913 to the early 1940s, (2) the physical causes for the detected trends and variations in streamflow, and (3) whether regional climate indicators successfully can be used to predict streamflow trends and variations throughout the State. These needs for future study underscore the importance of maintaining a network of long-term-trend stream-gaging stations in Hawaii.
Floods of Selected Streams in Arkansas, Spring 2008
Funkhouser, Jaysson E.; Eng, Ken
2009-01-01
Floods can cause loss of life and extensive destruction to property. Monitoring floods and understanding the reasons for their occurrence are the responsibility of many Federal agencies. The National Weather Service, the U.S. Army Corps of Engineers, and the U.S. Geological Survey are among the most visible of these agencies. Together, these three agencies collect and analyze floodflow information to better understand the variety of mechanisms that cause floods, and how the characteristics and frequencies of floods vary with time and location. The U.S. Geological Survey (USGS) has monitored and assessed the quantity of streamflow in our Nation's streams since the agency's inception in 1879. Because of ongoing collection and assessment of streamflow data, the USGS can provide information about a range of surface-water issues including the suitability of water for public supply and irrigation and the effects of agriculture and urbanization on streamflow. As part of its streamflow-data collection activities, the USGS measured streamflow in multiple streams during extreme flood events in Arkansas in the spring of 2008. The analysis of streamflow information collected during flood events such as these provides a scientific basis for decision making related to resource management and restoration. Additionally, this information can be used by water-resource managers to better define flood-hazard areas and to design bridges, culverts, dams, levees, and other structures. Water levels (stage) and streamflow (discharge) currently are being monitored in near real-time at approximately 150 locations in Arkansas. The streamflow-gaging stations measure and record hydrologic data at 15-minute or hourly intervals; the data then are transmitted through satellites to the USGS database and displayed on the internet every 1 to 4 hours. Streamflow-gaging stations in Arkansas are part of a network of over 7,500 active streamflow-gaging stations operated by the USGS throughout the United States in cooperation with other Federal, State, and local government agencies. In Arkansas, the major supporters of the streamflow-gaging network are the U.S. Army Corps of Engineers, Arkansas Natural Resources Commission, Arkansas Department of Environmental Quality, and Arkansas Geological Survey. Many other Federal, State, and local government entities provide additional support for streamflow-gaging stations. It is the combined support of the USGS and all funding partners that make it possible to maintain an adequate streamflow-gaging network in Arkansas. Data collected over the years at streamflow-gaging stations can be used to characterize the relative magnitude of flood events and their statistical frequency of occurrence. These analyses provide water-resource managers with accurate and reliable hydrologic information based on present and historical flow conditions. Continued collection of streamflow data, with consideration of changes in land use, agricultural practices, and climate change, will help scientists to more accurately characterize the magnitude of extreme floods in the future.
Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.
Cost-effectiveness of the stream-gaging program in Maryland, Delaware, and the District of Columbia
Carpenter, David H.; James, R.W.; Gillen, D.F.
1987-01-01
This report documents the results of a cost-effectiveness study of the stream-gaging program in Maryland, Delaware, and the District of Columbia. Data uses and funding sources were identified for 99 continuously operated stream gages in Maryland , Delaware, and the District of Columbia. The current operation of the program requires a budget of $465,260/year. The average standard error of estimation of streamflow records is 11.8%. It is shown that this overall level of accuracy at the 99 sites could be maintained with a budget of $461,000, if resources were redistributed among the gages. (USGS)
Hydrologic investigations in the Araguaia-Tocantins River basin (Brazil)
Snell, Leonard J.
1979-01-01
The Araguaia-Tocantins River basin system of central and northern Brazil drains an area of about 770,000 square kilometers and has the potential for supporting large-scale developments. During a short visit to the headquarters of the Interstate Commission for the Araguaia-Tocantins Valley and to several stream-gaging stations in June 1964, the author reviewed the status of the streamflow and meteorological data-collection programs in relation to the streamflow and meteorological data-collection programs in relation to the pressing needs of development project studies. To provide data for areal and project-site studies and for main-stream sites, an initial network of 33 stream gaging stations was proposed, including the 7 stations then in operation. Suggestions were made in regard to operations, staffing and equipment. Organizational responsibilities for operations were found to be divided uncertainly. The Brazilian Meteorological Service had 15 synoptic stations in operation in and near the basin, some in need of reconditioning. Plans were at hand for the addition of 15 sites to the synoptic network and for limited data collection at 27 other sites. The author proposed collection of precipitation data at about 50 other locations to achieve a more representative areal distribution. Temperature, evaporation, and upper-air data sites were suggested to enhance the prospective hydrometeorological studies. (USGS)
McCarthy, Peter M.; Dutton, DeAnn M.; Sando, Steven K.; Sando, Roy
2016-04-05
The U.S. Geological Survey (USGS) provides streamflow characteristics and other related information needed by water-resource managers to protect people and property from floods, plan and manage water-resource activities, and protect water quality. Streamflow characteristics provided by the USGS, such as peak-flow and low-flow frequencies for streamflow-gaging stations, are frequently used by engineers, flood forecasters, land managers, biologists, and others to guide their everyday decisions. In addition to providing streamflow characteristics at streamflow-gaging stations, the USGS also develops regional regression equations and drainage area-adjustment methods for estimating streamflow characteristics at locations on ungaged streams. Regional regression equations can be complex and often require users to determine several basin characteristics, which are physical and climatic characteristics of the stream and its drainage basin. Obtaining these basin characteristics for streamflow-gaging stations and ungaged sites traditionally has been time consuming and subjective, and led to inconsistent results.StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. StreamStats allows users to easily obtain streamflow and basin characteristics for USGS streamflow-gaging stations and user-selected locations on ungaged streams. The USGS, in cooperation with Montana Department of Transportation, Montana Department of Environmental Quality, and Montana Department of Natural Resources and Conservation, completed a study to develop a StreamStats application for Montana, compute streamflow characteristics at streamflow-gaging stations, and develop regional regression equations to estimate streamflow characteristics at ungaged sites. Chapter A of this Scientific Investigations Report describes the Montana StreamStats application and the datasets, streamflow-gaging stations, streamflow characteristics, and regression equations (as described fully in Chapters B through G of this report) that are used for development of the StreamStats application for Montana.
Real-time, continuous water-quality monitoring in Indiana and Kentucky
Shoda, Megan E.; Lathrop, Timothy R.; Risch, Martin R.
2015-01-01
Water-quality “super” gages (also known as “sentry” gages) provide real-time, continuous measurements of the physical and chemical characteristics of stream water at or near selected U.S. Geological Survey (USGS) streamgages in Indiana and Kentucky. A super gage includes streamflow and water-quality instrumentation and representative stream sample collection for laboratory analysis. USGS scientists can use statistical surrogate models to relate instrument values to analyzed chemical concentrations at a super gage. Real-time, continuous and laboratory-analyzed concentration and load data are publicly accessible on USGS Web pages.
Robbins, Clarence H.
1982-01-01
Peak stages, discharges, and rainfall recorded at 22 gaging stations on streams draining small (less than 25 mi super 2) urbanized basins across Tennessee are presented. The gaged basins are in 17 different municipalities with populations ranging between 5,000 and 100,000. The report gives a description of each gaged site along with a data sheet on which peak stages, discharges, and corresponding rainfall are listed. The description gives the station location, type of gage, basin characteristics, and general remarks. (USGS)
50. Stream gaging station in steelpipe well and shelter, looking ...
50. Stream gaging station in steel-pipe well and shelter, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
49. View of unlined canal near inline stream gaging station, ...
49. View of unlined canal near in-line stream gaging station, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
Cost effectiveness of the stream-gaging program in South Carolina
Barker, A.C.; Wright, B.C.; Bennett, C.S.
1985-01-01
The cost effectiveness of the stream-gaging program in South Carolina was documented for the 1983 water yr. Data uses and funding sources were identified for the 76 continuous stream gages currently being operated in South Carolina. The budget of $422,200 for collecting and analyzing streamflow data also includes the cost of operating stage-only and crest-stage stations. The streamflow records for one stream gage can be determined by alternate, less costly methods, and should be discontinued. The remaining 75 stations should be maintained in the program for the foreseeable future. The current policy for the operation of the 75 stations including the crest-stage and stage-only stations would require a budget of $417,200/yr. The average standard error of estimation of streamflow records is 16.9% for the present budget with missing record included. However, the standard error of estimation would decrease to 8.5% if complete streamflow records could be obtained. It was shown that the average standard error of estimation of 16.9% could be obtained at the 75 sites with a budget of approximately $395,000 if the gaging resources were redistributed among the gages. A minimum budget of $383,500 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 18.6%. The maximum budget analyzed was $850,000, which resulted in an average standard error of 7.6 %. (Author 's abstract)
Messinger, Terence; Wiley, Jeffrey B.
2004-01-01
Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be representative of channelcharacteristics on many or most streams, the regional equations in this report provide useful information for field identification of bankfull indicators.
Water Resources Data for Oregon, Water Year 2002
Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.
2003-01-01
The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.
Water Resources Data for Oregon, Water Year 2003
Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.
2004-01-01
The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.
Driscoll, Daniel G.; Zogorski, John S.
1990-01-01
The report presents a summary of basin characteristics affecting streamflow, a history of the U.S. Geological Survey 's stream-gaging program, and a compilation of discharge records and statistical summaries for selected sites within the Rapid Creek basin. It is the first in a series which will investigate surface-water/groundwater relations along Rapid Creek. The summary of basin characteristics includes descriptions of the geology and hydrogeology, physiography and climate, land use and vegetation, reservoirs, and water use within the basin. A recounting of the U.S. Geological Survey 's stream-gaging program and a tabulation of historic stream-gaging stations within the basin are furnished. A compilation of monthly and annual mean discharge values for nine currently operated, long-term, continuous-record, streamflow-gaging stations on Rapid Creek is presented. The statistical summary for each site includes summary statistics on monthly and annual mean values, correlation matrix for monthly values, serial correlation for 1 year lag for monthly values, percentile rankings for monthly and annual mean values, low and high value tables, duration curves, and peak-discharge tables. Records of monthend contents for two reservoirs within the basin also are presented. (USGS)
Cost-effectiveness of the stream-gaging program in New Jersey
Schopp, R.D.; Ulery, R.L.
1984-01-01
The results of a study of the cost-effectiveness of the stream-gaging program in New Jersey are documented. This study is part of a 5-year nationwide analysis undertaken by the U.S. Geological Survey to define and document the most cost-effective means of furnishing streamflow information. This report identifies the principal uses of the data and relates those uses to funding sources, applies, at selected stations, alternative less costly methods (that is flow routing, regression analysis) for furnishing the data, and defines a strategy for operating the program which minimizes uncertainty in the streamflow data for specific operating budgets. Uncertainty in streamflow data is primarily a function of the percentage of missing record and the frequency of discharge measurements. In this report, 101 continuous stream gages and 73 crest-stage or stage-only gages are analyzed. A minimum budget of $548,000 is required to operate the present stream-gaging program in New Jersey with an average standard error of 27.6 percent. The maximum budget analyzed was $650,000, which resulted in an average standard error of 17.8 percent. The 1983 budget of $569,000 resulted in a standard error of 24.9 percent under present operating policy. (USGS)
Lewis, Jason M.
2010-01-01
Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.
Low-flow characteristics of streams in Virginia
Hayes, Donald C.
1991-01-01
Streamflow data were collected and low-flow characteristics computed for 715 gaged sites in Virginia Annual minimum average 7-consecutive-day flows range from 0 to 2,195 cubic feet per second for a 2-year recurrence interval and from 0 to 1,423 cubic feet per second for a 10-year recurrence interval. Drainage areas range from 0.17 to 7,320 square miles. Existing and discontinued gaged sites are separated into three types: long-term continuous-record sites, short-term continuous-record sites, and partial-record sites. Low-flow characteristics for long-term continuous-record sites are determined from frequency curves of annual minimum average 7-consecutive-day flows . Low-flow characteristics for short-term continuous-record sites are estimated by relating daily mean base-flow discharge values at a short-term site to concurrent daily mean discharge values at nearby long-term continuous-record sites having similar basin characteristics . Low-flow characteristics for partial-record sites are estimated by relating base-flow measurements to daily mean discharge values at long-term continuous-record sites. Information from the continuous-record sites and partial-record sites in Virginia are used to develop two techniques for estimating low-flow characteristics at ungaged sites. A flow-routing method is developed to estimate low-flow values at ungaged sites on gaged streams. Regional regression equations are developed for estimating low-flow values at ungaged sites on ungaged streams. The flow-routing method consists of transferring low-flow characteristics from a gaged site, either upstream or downstream, to a desired ungaged site. A simple drainage-area proration is used to transfer values when there are no major tributaries between the gaged and ungaged sites. Standard errors of estimate for108 test sites are 19 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 52 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval . A more complex transfer method must be used when major tributaries enter the stream between the gaged and ungaged sites. Twenty-four stream networks are analyzed, and predictions are made for 84 sites. Standard errors of estimate are 15 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 22 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval. Regional regression equations were developed for estimating low-flow values at ungaged sites on ungaged streams. The State was divided into eight regions on the basis of physiography and geographic grouping of the residuals computed in regression analyses . Basin characteristics that were significant in the regression analysis were drainage area, rock type, and strip-mined area. Standard errors of prediction range from 60 to139 percent for estimates of low-flow characteristics having a 2-year recurrence interval and 90 percent to 172 percent for estimates of low-flow characteristics having a 10-year recurrence interval.
GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow
Falcone, James A.
2011-01-01
This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they were the least-disturbed watersheds within the framework of broad regions, based on 12 major ecoregions across the United States. Of the 9,322 total sites, 2,057 are classified as reference, and 7,265 as non-reference. Of the 2,057 reference sites, 1,633 have (through 2009) 20+ years of record since 1950. Some sites have very long flow records: a number of gages have been in continuous service since 1900 (at least), and have 110 years of complete record (1900-2009) to date. The geospatial data include several hundred watershed characteristics compiled from national data sources, including environmental features (e.g. climate – including historical precipitation, geology, soils, topography) and anthropogenic influences (e.g. land use, road density, presence of dams, canals, or power plants). The dataset also includes comments from local USGS Water Science Centers, based on Annual Data Reports, pertinent to hydrologic modifications and influences. The data posted also include watershed boundaries in GIS format. This overall dataset is different in nature to the USGS Hydro-Climatic Data Network (HCDN; Slack and Landwehr 1992), whose data evaluation ended with water year 1988. The HCDN identifies stream gages which at some point in their history had periods which represented natural flow, and the years in which those natural flows occurred were identified (i.e. not all HCDN sites were in reference condition even in 1988, for example, 02353500). The HCDN remains a valuable indication of historic natural streamflow data. However, the goal of this dataset was to identify watersheds which currently have near-natural flow conditions, and the 2,057 reference sites identified here were derived independently of the HCDN. A subset, however, noted in the BasinID worksheet as “HCDN-2009”, has been identified as an updated list of 743 sites for potential hydro-climatic study. The HCDN-2009 sites fulfill all of the following criteria: (a) have 20 years of complete and continuous flow record in the last 20 years (water years 1990-2009), and were thus also currently active as of 2009, (b) are identified as being in current reference condition according to the GAGES-II classification, (c) have less than 5 percent imperviousness as measured from the NLCD 2006, and (d) were not eliminated by a review from participating state Water Science Center evaluators. The data posted here consist of the following items:- This point shapefile, with summary data for the 9,322 gages.- A zip file containing basin characteristics, variable definitions, and a more detailed report.- A zip file containing shapefiles of basin boundaries, organized by classification and aggregated ecoregion.- A zip file containing mainstem stream lines (Arc line coverages) for each gage.
Cost-effectiveness of the stream-gaging program in Maine; a prototype for nationwide implementation
Fontaine, Richard A.; Moss, M.E.; Smath, J.A.; Thomas, W.O.
1984-01-01
This report documents the results of a cost-effectiveness study of the stream-gaging program in Maine. Data uses and funding sources were identified for the 51 continuous stream gages currently being operated in Maine with a budget of $211,000. Three stream gages were identified as producing data no longer sufficiently needed to warrant continuing their operation. Operation of these stations should be discontinued. Data collected at three other stations were identified as having uses specific only to short-term studies; it is recommended that these stations be discontinued at the end of the data-collection phases of the studies. The remaining 45 stations should be maintained in the program for the foreseeable future. The current policy for operation of the 45-station program would require a budget of $180,300 per year. The average standard error of estimation of streamflow records is 17.7 percent. It was shown that this overall level of accuracy at the 45 sites could be maintained with a budget of approximately $170,000 if resources were redistributed among the gages. A minimum budget of $155,000 is required to operate the 45-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 25.1 percent. The maximum budget analyzed was $350,000, which resulted in an average standard error of 8.7 percent. Large parts of Maine's interior were identified as having sparse streamflow data. It was determined that this sparsity be remedied as funds become available.
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.
2017-12-01
In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.
Izuka, Scot K.; Ewart, Charles J.
1995-01-01
A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride ions in water samples from Talufofo Stream are characteristic of water draining a heavily vegetated basin near the ocean. The streamflow and water-chemistry data indicate that discharge from springs is in hydraulic connection with the limestone aquifer near the headwaters of the basin. The base flow therefore is subject to stresses placed on the nearby limestone ground-water system. Pumping from wells in the limestones at the headwaters of Talufofo Stream Basin may decrease spring flow in Talufofo Stream.
Wagner, Tyler; DeWeber, Jefferson Tyrell; Tsang, Yin-Phan; Krueger, Damon; Whittier, Joanna B.; Infante, Dana M.; Whelan, Gary
2014-01-01
Flow and water temperature are fundamental properties of stream ecosystems upon which many freshwater resource management decisions are based. U.S. Geological Survey (USGS) gages are the most important source of streamflow and water temperature data available nationwide, but the degree to which gages represent landscape attributes of the larger population of streams has not been thoroughly evaluated. We identified substantial biases for seven landscape attributes in one or more regions across the conterminous United States. Streams with small watersheds (<10 km2) and at high elevations were often underrepresented, and biases were greater for water temperature gages and in arid regions. Biases can fundamentally alter management decisions and at a minimum this potential for error must be acknowledged accurately and transparently. We highlight three strategies that seek to reduce bias or limit errors arising from bias and illustrate how one strategy, supplementing USGS data, can greatly reduce bias.
Application of the Hydroecological Integrity Assessment Process for Missouri Streams
Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.
2009-01-01
Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.
Stage measurement at gaging stations
Sauer, Vernon B.; Turnipseed, D. Phil
2010-01-01
Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ±0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.
Barber, Nancy L.; Stamey, Timothy C.
2000-01-01
Droughts do not have the immediate effects of floods, but sustained droughts can cause economic stress throughout the State. The word 'drought' has various meanings, depending on a person's perspective. To a farmer, a drought is a period of moisture deficiency that affects the crops under cultivation - even two weeks without rainfall can stress many crops during certain periods of the growing cycle. To a meteorologist, a drought is a prolonged period when precipitation is less than normal. To a water manager, a drought is a deficiency in water supply that affects water availability and water quality. To a hydrologist, a drought is an extended period of decreased precipitation and streamflow. Droughts in Georgia have severely affected municipal and industrial water supplies, agriculture, stream water quality, recreation at major reservoirs, hydropower generation, navigation, and forest resources. In Georgia, droughts have been documented at U.S. Geological Survey (USGS) streamflow gaging stations since the 1890's. From 1910 to 1940, about 20 streamflow gaging stations were in operation. Since the early 1950's through the late 1980's, about 100 streamflow gaging stations were in operation. Currently (2000), the USGS streamflow gaging network consists of more than 135 continuous-recording gages. Ground-water levels are currently monitored at 165 wells equipped with continuous recorders.
August median streamflow on ungaged streams in Eastern Coastal Maine
Lombard, Pamela J.
2004-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in eastern coastal Maine. The methods apply to streams with drainage areas ranging in size from 0.04 to 73.2 square miles and fraction of basin underlain by a sand and gravel aquifer ranging from 0 to 71 percent. The equations were developed with data from three long-term (greater than or equal to 10 years of record) continuous-record streamflow-gaging stations, 23 partial-record streamflow- gaging stations, and 5 short-term (less than 10 years of record) continuous-record streamflow-gaging stations. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record streamflow-gaging stations and short-term continuous-record streamflow-gaging stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term continuous-record streamflow-gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at streamflow-gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for different periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Thirty-one stations were used for the final regression equations. Two basin characteristics?drainage area and fraction of basin underlain by a sand and gravel aquifer?are used in the calculated regression equation to estimate August median streamflow for ungaged streams. The equation has an average standard error of prediction from -27 to 38 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -30 to 43 percent. Model error is larger than sampling error for both equations, indicating that additional or improved estimates of basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow at partial- record or continuous-record gaging stations range from 0.003 to 31.0 cubic feet per second or from 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in eastern coastal Maine, within the range of acceptable explanatory variables, range from 0.003 to 45 cubic feet per second or 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as drainage area and fraction of basin underlain by a sand and gravel aquifer increase.
Outlaw, G.S.; Butner, D.E.; Kemp, R.L.; Oaks, A.T.; Adams, G.S.
1992-01-01
Rainfall, stage, and streamflow data in the Murfreesboro area, Middle Tennessee, were collected from March 1989 through July 1992 from a network of 68 gaging stations. The network consists of 10 tipping-bucket rain gages, 2 continuous-record streamflow gages, 4 partial-record flood hydrograph gages, and 72 crest-stage gages. Data collected by the gages includes 5minute time-step rainfall hyetographs, 15-minute time-step flood hydrographs, and peak-stage elevations. Data are stored in a computer data base and are available for many computer modeling and engineering applications.
Citizen Hydrology and Compressed-Air Hydropower for Rural Electrification in Haiti
NASA Astrophysics Data System (ADS)
Allen, S. M.
2015-12-01
At the present time, only one in eight residents of Haiti has access to electricity. Two recent engineering and statistical innovations have the potential for vastly reducing the cost of installation of hydropower in Haiti and the rest of the developing world. The engineering innovation is that wind, solar and fluvial energy have been used to compress air for generation of electricity for only 20 per megawatt-hour, in contrast to the conventional World Bank practice of funding photovoltaic cells for 156 per megawatt-hour. The installation of hydropower requires a record of stream discharge, which is conventionally obtained by installing a gaging station that automatically monitors gage height (height of the water surface above a fixed datum). An empirical rating curve is then used to convert gage height to stream discharge. The multiple field measurements of gage height and discharge over a wide range of discharge values that are required to develop and maintain a rating curve require a manpower of hydrologic technicians that is prohibitive in remote and impoverished areas of the world. The statistical innovation is that machine learning has been applied to the USGS database of nearly four million simultaneous measurements of gage height and discharge to develop a new classification of rivers so that a rating curve can be developed solely from the stream slope, channel geometry, horizontal and vertical distances to the nearest upstream and downstream confluences, and two pairs of discharge - gage height measurements. The objective of this study is to organize local residents to monitor gage height at ten stream sites in the northern peninsula of Haiti over a one-year period in preparation for installation of hydropower at one of the sites. The necessary baseline discharge measurements and channel surveying are being carried out for conversion of gage height to discharge. Results will be reported at the meeting.
Index of stations; surface-water data-collections network of Texas, September 1993
Gandara, S.C.; Jones, R.E.
1995-01-01
Table 1 shows the station number and name, latitude and longitude, type of station, and the office principally responsible for collection of the data. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between them. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is an immediate tributary is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.
Index of stations: surface-water data-collection network of Texas, September 1995
Gandara, S.C.; Jones, R.E.
1996-01-01
Table 1 shows the station number and name, latitude and longitude, type of station, and the office responsible for the collection of the data and the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between them. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is an immediate tributary is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.
Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii
Gingerich, Stephen B.
1999-01-01
The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high-elevation saturated zone. Total average daily ground-water discharge from the high-elevation saturated zone upstream of 1,200 feet altitude is greater than 38 million gallons per day, all of which is eventually removed from the streams by surface-water diversion systems. Perennial streamflow has been measured at altitudes greater than 3,000 feet in several of the streams. Discharge from the high-elevation saturated zone is persistent even during periods of little rainfall. The total average annual streamflow of the gaged streams east of Keanae Valley is about 109 million gallons per day at about 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast nor at higher altitudes. All of the base flow measured east of Keanae Valley represents ground-water discharge from the vertically extensive freshwater-lens system. Total average daily ground-water discharge to gaged streams upstream of 1,200 feet altitude is about 27 million gallons per day. About 19 million gallons per day of ground water discharges through the Kula and Hana Volcanics between about 500 feet and 1,300 feet altitude in the gaged stream sub-basins. About 13 million gallons per day of this discharge is in Hanawi Stream. The total ground-water discharge above 500 feet altitude in this part of the study area is greater than 56 million gallons per day.
Cost-effectiveness of the stream-gaging program in Kentucky
Ruhl, K.J.
1989-01-01
This report documents the results of a study of the cost-effectiveness of the stream-gaging program in Kentucky. The total surface-water program includes 97 daily-discharge stations , 12 stage-only stations, and 35 crest-stage stations and is operated on a budget of $950,700. One station used for research lacks adequate source of funding and should be discontinued when the research ends. Most stations in the network are multiple-use with 65 stations operated for the purpose of defining hydrologic systems, 48 for project operation, 47 for definition of regional hydrology, and 43 for hydrologic forecasting purposes. Eighteen stations support water quality monitoring activities, one station is used for planning and design, and one station is used for research. The average standard error of estimation of streamflow records was determined only for stations in the Louisville Subdistrict. Under current operating policy, with a budget of $223,500, the average standard error of estimation is 28.5%. Altering the travel routes and measurement frequency to reduce the amount of lost stage record would allow a slight decrease in standard error to 26.9%. The results indicate that the collection of streamflow records in the Louisville Subdistrict is cost effective in its present mode of operation. In the Louisville Subdistrict, a minimum budget of $214,200 is required to operate the current network at an average standard error of 32.7%. A budget less than this does not permit proper service and maintenance of the gages and recorders. The maximum budget analyzed was $268,200, which would result in an average standard error of 16.9% indicating that if the budget was increased by 20%, the percent standard error would be reduced 40 %. (USGS)
Evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas
Medina, K.D.; Geiger, C.O.
1984-01-01
The results of an evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas are documented. Data uses and funding sources were identified for the 140 complete record streamflow-gaging stations operated in Kansas during 1983 with a budget of $793,780. As a result of the evaluation of the needs and uses of data from the stream-gaging program, it was found that the 140 gaging stations were needed to meet these data requirements. The average standard error of estimation of streamflow records was 20.8 percent, assuming the 1983 budget and operating schedule of 6-week interval visitations and based on 85 of the 140 stations. It was shown that this overall level of accuracy could be improved to 18.9 percent by altering the 1983 schedule of station visitations. A minimum budget of $760 ,000, with a corresponding average error of estimation of 24.9 percent, is required to operate the 1983 program. None of the stations investigated were suitable for the application of alternative methods for simulating discharge records. Improved instrumentation can have a very positive impact on streamflow uncertainties by decreasing lost record. (USGS)
Jack Lewis; Sylvia R. Mori; Elizabeth T. Keppeler; Robert R. Ziemer
2001-01-01
Abstract - Models are fit to 11 years of storm peak flows, flow volumes, and suspended sediment loads on a network of 14 stream gaging stations in the North Fork Caspar Creek, a 473-ha coastal watershed bearing a second-growth forest of redwood and Douglas-fir. For the first 4 years of monitoring, the watershed was in a relatively undisturbed state, having last been...
Methods for estimating magnitude and frequency of peak flows for natural streams in Utah
Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.
2007-01-01
Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.
NASA Astrophysics Data System (ADS)
Bailey, S. W.
2016-12-01
Nine catchments are gaged at Hubbard Brook Experimental Forest, Woodstock, NH, USA, with weirs installed on adjacent first-order streams. These catchments have been used as unit ecosystems for analysis of chemical budgets, including evaluation of long term trends and response to disturbance. This study examines uncertainty in the representativeness of these budgets to other nearby catchments, or as representatives of the broader northern hardwood ecosystem, depending on choice of location of the stream gaging station. Within forested northern hardwood catchments across the Hubbard Brook region, there is relatively little spatial variation in amount or chemistry of precipitation inputs or in amount of streamwater outputs. For example, runoff per unit catchment area varies by less than 10% at gaging stations on first to sixth order streams. In contrast, concentrations of major solutes vary by an order of magnitude or more across stream sampling sites, with a similar range in concentrations seen within individual first order catchments as seen across the third order Hubbard Brook valley or across the White Mountain region. These spatial variations in stream chemistry are temporally persistent across a range of flow conditions. Thus first order catchment budgets vary greatly depending on very local variations in stream chemistry driven by choice of the site to develop a stream gage. For example, carbon output in dissolved organic matter varies by a factor of five depending on where the catchment output is defined at Watershed 3. I hypothesize that catchment outputs from first order streams are driven by spatially variable chemistry of shallow groundwater, reflecting local variations in the distribution of soils and vegetation. In contrast, spatial variability in stream chemistry decreases with stream order, hypothesized to reflect deeper groundwater inputs on larger streams, which are more regionally uniform. Thus, choice of a gaging site and definition of an ecosystem as a unit of analysis at a larger scale, such as the Hubbard Brook valley, would have less impact on calculated budgets than at the headwater scale. Monitoring of a larger catchment is more likely to be representative of other similar sized catchments. However, particular research questions may be better studied at the smaller headwater scale.
Estimation of magnitude and frequency of floods for streams in Puerto Rico : new empirical models
Ramos-Gines, Orlando
1999-01-01
Flood-peak discharges and frequencies are presented for 57 gaged sites in Puerto Rico for recurrence intervals ranging from 2 to 500 years. The log-Pearson Type III distribution, the methodology recommended by the United States Interagency Committee on Water Data, was used to determine the magnitude and frequency of floods at the gaged sites having 10 to 43 years of record. A technique is presented for estimating flood-peak discharges at recurrence intervals ranging from 2 to 500 years for unregulated streams in Puerto Rico with contributing drainage areas ranging from 0.83 to 208 square miles. Loglinear multiple regression analyses, using climatic and basin characteristics and peak-discharge data from the 57 gaged sites, were used to construct regression equations to transfer the magnitude and frequency information from gaged to ungaged sites. The equations have contributing drainage area, depth-to-rock, and mean annual rainfall as the basin and climatic characteristics in estimating flood peak discharges. Examples are given to show a step-by-step procedure in calculating a 100-year flood at a gaged site, an ungaged site, a site near a gaged location, and a site between two gaged sites.
Straub, D.E.
1998-01-01
The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.
Eash, D.A.
1993-01-01
Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.
Ahearn, Elizabeth A.
2004-01-01
Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.
Ries, Kernell G.
1999-01-01
A network of 148 low-flow partial-record stations was operated on streams in Massachusetts during the summers of 1989 through 1996. Streamflow measurements (including historical measurements), measured basin characteristics, and estimated streamflow statistics are provided in the report for each low-flow partial-record station. Also included for each station are location information, streamflow-gaging stations for which flows were correlated to those at the low-flowpartial-record station, years of operation, and remarks indicating human influences of stream-flowsat the station. Three or four streamflow measurements were made each year for three years during times of low flow to obtain nine or ten measurements for each station. Measured flows at the low-flow partial-record stations were correlated with same-day mean flows at a nearby gaging station to estimate streamflow statistics for the low-flow partial-record stations. The estimated streamflow statistics include the 99-, 98-, 97-, 95-, 93-, 90-, 85-, 80-, 75-, 70-, 65-, 60-, 55-, and 50-percent duration flows; the 7-day, 10- and 2-year low flows; and the August median flow. Characteristics of the drainage basins for the stations that theoretically relate to the response of the station to climatic variations were measured from digital map data by use of an automated geographic information system procedure. Basin characteristics measured include drainage area; total stream length; mean basin slope; area of surficial stratified drift; area of wetlands; area of water bodies; and mean, maximum, and minimum basin elevation.Station descriptions and calculated streamflow statistics are also included in the report for the 50 continuous gaging stations used in correlations with the low-flow partial-record stations.
Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information
Brabets, Timothy P.
1996-01-01
In 1906, the U.S. Geological Survey (USGS) began operating a network of streamflow-gaging stations in Alaska. The primary purpose of the streamflow- gaging network has been to provide peak flow, average flow, and low-flow characteristics to a variety of users. In 1993, the USGS began a study to evaluate the current network of 78 stations. The objectives of this study were to determine the adequacy of the existing network in predicting selected regional flow characteristics and to determine if providing additional streamflow-gaging stations could improve the network's ability to predict these characteristics. Alaska was divided into six distinct hydrologic regions: Arctic, Northwest, Southcentral, Southeast, Southwest, and Yukon. For each region, historical and current streamflow data were compiled. In Arctic, Northwest, and Southwest Alaska, insufficient data were available to develop regional regression equations. In these areas, proposed locations of streamflow-gaging stations were selected by using clustering techniques to define similar areas within a region and by spatial visual analysis using the precipitation, physiographic, and hydrologic unit maps of Alaska. Sufficient data existed in Southcentral and Southeast Alaska to use generalized least squares (GLS) procedures to develop regional regression equations to estimate the 50-year peak flow, annual average flow, and a low-flow statistic. GLS procedures were also used for Yukon Alaska but the results should be used with caution because the data do not have an adequate spatial distribution. Network analysis procedures were used for the Southcentral, Southeast, and Yukon regions. Network analysis indicates the reduction in the sampling error of the regional regression equation that can be obtained given different scenarios. For Alaska, a 10-year planning period was used. One scenario showed the results of continuing the current network with no additional gaging stations and another scenario showed the results of adding gaging stations to the network. With the exception of the annual average discharge equation for Southeast Alaska, by adding gaging stations in all three regions, the sampling error was reduced to a greater extent than by not adding gaging stations. The proposed streamflow-gaging network for Alaska consists of 308 gaging stations, of which 32 are designated as index stations. If the proposed network can not be implemented in its entirety, then a lesser cost alternative would be to establish the index stations and to implement the network for a particular region.
Esralew, Rachel A.; Baker, Ronald J.
2008-01-01
Hydrologic changes in New Jersey stream basins resulting from human activity can affect the flow and ecology of the streams. To assess future changes in streamflow resulting from human activity an understanding of the natural variability of streamflow is needed. The natural variability can be classified using Ecologically Relevant Hydrologic Indices (ERHIs). ERHIs are defined as selected streamflow statistics that characterize elements of the flow regime that substantially affect biological health and ecological sustainability. ERHIs are used to quantitatively characterize aspects of the streamflow regime, including magnitude, duration, frequency, timing, and rate of change. Changes in ERHI values can occur as a result of human activity, and changes in ERHIs over time at various stream locations can provide information about the degree of alteration in aquatic ecosystems at or near those locations. New Jersey streams can be divided into four classes (A, B, C, or D), where streams with similar ERHI values (determined from cluster analysis) are assigned the same stream class. In order to detect and quantify changes in ERHIs at selected streamflow-gaging stations, a 'baseline' period is needed. Ideally, a baseline period is a period of continuous daily streamflow record at a gaging station where human activity along the contributing stream reach or in the stream's basin is minimal. Because substantial urbanization and other development had already occurred before continuous streamflow-gaging stations were installed, it is not possible to identify baseline periods that meet this criterion for many reaches in New Jersey. Therefore, the baseline period for a considerably altered basin can be defined as a period prior to a substantial human-induced change in the drainage basin or stream reach (such as regulations or diversions), or a period during which development did not change substantially. Index stations (stations with minimal urbanization) were defined as streamflow-gaging stations in basins that contain less than 15 percent urban land use throughout the period of continuous streamflow record. A minimum baseline period of record for each stream class was determined by comparing the variability of selected ERHIs among consecutive 5-, 10-, 15-, and 20-year time increments for index stations. On the basis of this analysis, stream classes A and D were assigned a minimum of 20 years of continuous record as a baseline period and stream classes B and C, a minimum of 10 years. Baseline periods were calculated for 85 streamflow-gaging stations in New Jersey with 10 or more years of continuous daily streamflow data, and the values of 171 ERHIs also were calculated for these baseline periods for each station. Baseline periods were determined by using historical streamflow-gaging station data, estimated changes in impervious surface in the drainage basin, and statistically significant changes in annual base flow and runoff. Historical records were reviewed to identify years during which regulation, diversions, or withdrawals occurred in the drainage basins. Such years were not included in baseline periods of record. For some sites, the baseline period of record was shorter than the minimum period of record specified for the given stream class. In such cases, the baseline period was rated as 'poor'. Impervious surface was used as an indicator of urbanization and change in streamflow characteristics owing to increases in storm runoff and decreases in base flow. Percentages of impervious surface were estimated for 85 streamflow-gaging stations from available municipal population-density data by using a regression model. Where the period of record was sufficiently long, all years after the impervious surface exceeded 10 to 20 percent were excluded from the baseline period. The percentage of impervious surface also was used as a criterion in assigning qualitative ratings to baseline periods. Changes in trends of annual base fl
Omang, R.J.; Parrett, Charles; Hull, J.A.
1983-01-01
Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)
Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.
2016-11-22
Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.
Network analysis applications in hydrology
NASA Astrophysics Data System (ADS)
Price, Katie
2017-04-01
Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain underexplored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five longterm USGS streamflow and water quality gages, allowing network application of longterm flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long term and eventbased hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwatersurface water interactions.
Water budgets for major streams in the Central Valley, California, 1961-77
Mullen, J.R.; Nady, Paul
1985-01-01
A compilation of annual streamflow data for 20 major stream systems in the central Valley of California, for water years 1961-77, is presented. The water-budget tables list gaged and ungaged inflow from tributaries and canals, diversions, and gaged outflow. Theoretical outflow and gain or loss in a reach are computed. A schematic diagram and explanation of the data are provided for each water-budget table. (USGS)
Harkins, Joe R.; Green, Mark E.
1981-01-01
Drainage areas for about 1,600 surface-water sites on streams and lakes in Florida are contained in this report. The sites are generally either U.S. Geological Survey gaging stations or the mouths of gaged streas. Each site is identified by latitude and longitude, by the general stream type, and by the U.S. Geological Survey 7.5-minute topographic map on which it can be located. The gaging stations are furhter identified by a downstream order number, a county code, and a nearby city or town. In addition to drainage areas, the surface areas of lakes are shown for the elevation given on the topographic map. These data were retrieved from the Surface Water Index developed and maintained by the Hydrologic Surveillance section of the Florida District Office, U.S. Geological Survey. (USGS)
Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams
Watson, Kara M.; Schopp, Robert D.
2009-01-01
Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.
Real-time surface-water monitoring in New Jersey, 2003
Schopp, Robert D.; Stedfast, David A.; Navoy, Anthony S.
2003-01-01
A network of 93 gaging stations that provide surface-water stage, flow (discharge), and tide-level data on a “realtime” basis through satellite, radio, and telephone telemetry is operating (May 2003) in New Jersey through a cooperative effort of the U.S. Geological Survey (USGS) and other agencies. The stream data from these stations are transmitted every 1 to 4 hours and then are immediately posted for viewing on the Internet. This fact sheet describes the “real-time” monitoring network, and the equipment used to measure stage and flow and to transmit the data for viewing on the Internet. Instructions for viewing the data are included.
Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data
White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.
2006-01-01
Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.
Water resources data, New Jersey, water year 2004-volume 1. surface-water data
Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.
2005-01-01
Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.
Estimating the magnitude of peak flows for streams in Kentucky for selected recurrence intervals
Hodgkins, Glenn A.; Martin, Gary R.
2003-01-01
This report gives estimates of, and presents techniques for estimating, the magnitude of peak flows for streams in Kentucky for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. A flowchart in this report guides the user to the appropriate estimates and (or) estimating techniques for a site on a specific stream. Estimates of peak flows are given for 222 U.S. Geological Survey streamflow-gaging stations in Kentucky. In the development of the peak-flow estimates at gaging stations, a new generalized skew coefficient was calculated for the State. This single statewide value of 0.011 (with a standard error of prediction of 0.520) is more appropriate for Kentucky than the national skew isoline map in Bulletin 17B of the Interagency Advisory Committee on Water Data. Regression equations are presented for estimating the peak flows on ungaged, unregulated streams in rural drainage basins. The equations were developed by use of generalized-least-squares regression procedures at 187 U.S. Geological Survey gaging stations in Kentucky and 51 stations in surrounding States. Kentucky was divided into seven flood regions. Total drainage area is used in the final regression equations as the sole explanatory variable, except in Regions 1 and 4 where main-channel slope also was used. The smallest average standard errors of prediction were in Region 3 (from -13.1 to +15.0 percent) and the largest average standard errors of prediction were in Region 5 (from -37.6 to +60.3 percent). One section of this report describes techniques for estimating peak flows for ungaged sites on gaged, unregulated streams in rural drainage basins. Another section references two previous U.S. Geological Survey reports for peak-flow estimates on ungaged, unregulated, urban streams. Estimating peak flows at ungaged sites on regulated streams is beyond the scope of this report, because peak flows on regulated streams are dependent upon variable human activities.
Alexander, Terry W.; Wilson, Gary L.
1995-01-01
A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.
Index of stations: surface-water data-collection network of Texas, September 1999
Gandara, Susan C.; Barbie, Dana L.
2001-01-01
As of September 30, 1999, the surface-water data-collection network of Texas (table 1) included 321 continuous-record streamflow stations (D), 20 continuous-record gage-height only stations (G), 24 crest-stage partial-record stations (C), 40 floodhydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-record temperature station (M1), 25 continuous-record temperature and specific conductance stations (M2), 17 continuous-record temperature, specific conductance, dissolved oxygen, and pH stations (M4), 4 daily water-quality stations (Qd), 115 periodic water-quality stations (Qp), 17 reservoir/lake surveys for water quality stations (Qs), 85 continuous or daily reservoircontent stations (R), and 10 daily precipitation stations (Pd). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1. Table 1 shows the station number and name, latitude and longitude, type of station, and office responsible for the collection of the data and maintenance of the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between these two stations. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is an immediate tributary, is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.
Bisese, James A.
1995-01-01
Methods are presented for estimating the peak discharges of rural, unregulated streams in Virginia. A Pearson Type III distribution is fitted to the logarithms of the unregulated annual peak-discharge records from 363 stream-gaging stations in Virginia to estimate the peak discharge at these stations for recurrence intervals of 2 to 500 years. Peak-discharge characteristics for 284 unregulated stations are divided into eight regions based on physiographic province, and regressed on basin characteristics, including drainage area, main channel length, main channel slope, mean basin elevation, percentage of forest cover, mean annual precipitation, and maximum rainfall intensity. Regression equations for each region are computed by use of the generalized least-squares method, which accounts for spatial and temporal correlation between nearby gaging stations. This regression technique weights the significance of each station to the regional equation based on the length of records collected at each cation, the correlation between annual peak discharges among the stations, and the standard deviation of the annual peak discharge for each station.Drainage area proved to be the only significant explanatory variable in four regions, while other regions have as many as three significant variables. Standard errors of the regression equations range from 30 to 80 percent. Alternate equations using drainage area only are provided for the five regions with more than one significant explanatory variable.Methods and sample computations are provided to estimate peak discharges at gaged and engaged sites in Virginia for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, and to adjust the regression estimates for sites on gaged streams where nearby gaging-station records are available.
Baldigo, Barry P.
1999-01-01
The increases in peak stormflows in the lower Beaver Kill basin through the period of record may have increased the rates of bed-sediment erosion (degradation) and deposition and accelerated changes in stream-channel morphology, however, these possible effects were not examined. Suggestions for further investigation of the effects of NY 17 and of other factors on hydrology, channel morphology, fish habitat, and fish populations in the Beaver Kill Basin include (1) addition of streamflow gages or a creststage gage network at critical locations, (2) a review of engineering records and other aerial photographs for indications of changes in channel morphology, (3) compilation of temperature data and modeling spatial extent and magnitude of stressful summer temperatures (to selected trout species), and (4) confirming the extent and severity of toxic thermal episodes using in-situ fish toxicity tests.
Wind Tunnel Tests of the Space Shuttle Foam Insulation with Simulated Debonded Regions
1981-04-01
set identification number Gage sensitivity Calculated gage sen8itivity 82 = Sl * f(TGE) Material specimen identification designation Free-stream...ColoY motion pictures (2 cameras) and pre- and posttest color stills recorded ariy changes "in the samples. The movie cameras were operated at...The oBli ~ue shock wave generated by the -wedge reduces the free-stream Mach nut1ber to the desired local Mach number. Since the free=sti’eam
Cost-effectiveness of the Federal stream-gaging program in Virginia
Carpenter, D.H.
1985-01-01
Data uses and funding sources were identified for the 77 continuous stream gages currently being operated in Virginia by the U.S. Geological Survey with a budget of $446,000. Two stream gages were identified as not being used sufficiently to warrant continuing their operation. Operation of these stations should be considered for discontinuation. Data collected at two other stations were identified as having uses primarily related to short-term studies; these stations should also be considered for discontinuation at the end of the data collection phases of the studies. The remaining 73 stations should be kept in the program for the foreseeable future. The current policy for operation of the 77-station program requires a budget of $446,000/yr. The average standard error of estimation of streamflow records is 10.1%. It was shown that this overall level of accuracy at the 77 sites could be maintained with a budget of $430,500 if resources were redistributed among the gages. A minimum budget of $428,500 is required to operate the 77-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, with optimized operation, the average standard error would be 10.4%. The maximum budget analyzed was $650,000, which resulted in an average standard error of 5.5%. The study indicates that a major component of error is caused by lost or missing data. If perfect equipment were available, the standard error for the current program and budget could be reduced to 7.6%. This also can be interpreted to mean that the streamflow data have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)
Flood frequency estimates and documented and potential extreme peak discharges in Oklahoma
Tortorelli, Robert L.; McCabe, Lan P.
2001-01-01
Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the dividing line.
August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine
Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.
2003-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Water Resources Data for Illinois - Water Year 2005 (Includes Historical Data)
LaTour, J.K.; Weldon, E.A.; Dupre, D.H.; Halfar, T.M.
2006-01-01
This annual Water-Data Report for Illinois contains current water year (Oct. 1, 2004, to Sept. 30, 2005) and historical data of discharge, stage, water quality and biology of streams; stage of lakes and reservoirs; levels and quality of ground water; and records of precipitation, air temperature, dew point, solar radiation, and wind speed. The current year's (2005) data provided in this report include (1) discharge for 182 surface-water gaging stations and for 9 crest-stage partial-record stations; (2) stage for 33 surface-water gaging stations; (3) water-quality records for 10 surface-water stations; (4) sediment-discharge records for 14 surface-water stations; (5) water-level records for 98 ground-water wells; (6) water-quality records for 17 ground-water wells; (7) precipitation records for 48 rain gages; (8) records of air temperature, dew point, solar radiation and wind speed for 1 meteorological station; and (9) biological records for 6 sample sites. Also included are miscellaneous data collected at various sites not in the systematic data-collection network. Data were collected and compiled as a part of the National Water Information System (NWIS) maintained by the U.S. Geological Survey in cooperation with Federal, State, and local agencies.
Water Resources Data, Nebraska, Water Year 2003
Hitch, D.E.; Hull, S.H.; Walczyk, V.C.; Miller, J.D.; Drudik, R.A.
2004-01-01
The Nebraska water resources data report for water year 2003 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 103 continuous and 5 crest-stage gaging stations, and 5 miscellaneous sites; stream water quality for 14 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 40 observation wells; and ground-water quality for 132 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, State, and Federal agencies.
Water resources data, Nebraska, water year 2004
Hitch, D. E.; Soensken, P.J.; Sebree, S.K.; Wilson, K.E.; Walczyk, V.C.; Drudik, R.A.; Miller, J.D.; Hull, S.H.
2005-01-01
The Nebraska water resources data report for water year 2004 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 101 continuous and 5 crest-stage gaging stations, and 6 miscellaneous sites; stream water quality for 7 gaging stations and 40 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 74 observation wells; and ground-water quality for 200 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating Federal, State, and local agencies.
Experimental Acoustic Velocity Measurements in a Tidally Affected Stream
Storm, J.B.; ,
2002-01-01
The U.S. Geological Survey (USGS) constructed a continuous steamgaging station on the tidally affected Escatawpa River at Interstate 10 near Orange Grove, Mississippi, in August 2001. The gage collects water quantity parameters of stage and stream velocity, and water quality parameters of water temperature, specific conductance, and salinity. Data are transmitted to the local USGS office via the GOES satellite and are presented on a near real-time web page. Due to tidal effects, the stream has multiple flow regimes which include downstream, bi-directional, and reverse flows. Advances in acoustic technology have made it possible to gage streams of this nature where conventional methods have been unsuccessful. An experimental mount was designed in an attempt to recognize, describe, and quantify these flow regimes by using acoustic Doppler equipment.
Gadoury, R.A.; Smath, J.A.; Fontaine, R.A.
1985-01-01
The report documents the results of a study of the cost-effectiveness of the U.S. Geological Survey 's continuous-record stream-gaging programs in Massachusetts and Rhode Island. Data uses and funding sources were identified for 91 gaging stations being operated in Massachusetts are being operated to provide data for two special purpose hydrologic studies, and they are planned to be discontinued at the conclusion of the studies. Cost-effectiveness analyses were performed on 63 continuous-record gaging stations in Massachusetts and 15 stations in Rhode Island, at budgets of $353,000 and $60,500, respectively. Current operations policies result in average standard errors per station of 12.3% in Massachusetts and 9.7% in Rhode Island. Minimum possible budgets to maintain the present numbers of gaging stations in the two States are estimated to be $340,000 and $59,000, with average errors per station of 12.8% and 10.0%, respectively. If the present budget levels were doubled, average standards errors per station would decrease to 8.1% and 4.2%, respectively. Further budget increases would not improve the standard errors significantly. (USGS)
Identifying dissolved organic carbon sources at a gaged headwater catchment using FDOM sensors
NASA Astrophysics Data System (ADS)
Malzone, J. M.; Shanley, J. B.
2014-12-01
The United States Geological Survey's (USGS) W-9 gage at the headwaters of Sleepers River, Vermont has been monitored for dissolved organic carbon (DOC) concentration for more than 20 years. However, the sources of this DOC during base flow and hydrologic events remain unclear. The major objectives of this research were to identify sources of DOC during storm events and to explain the observed DOC-streamflow counterclockwise hysteresis during hydrologic events. Two main hypotheses to explain hysteresis during hydrologic events were tested: (1) distant headwater wetlands are the major DOC source, which lags behind peak flow due to travel time; and (2) the entire watershed contributes to the DOC at the gage, but the response of DOC lags behind the period when groundwater contributes most to streamflow. Sources of DOC were tracked using fluorescent dissolved organic matter (FDOM) sensors in surface water and groundwater wells. Wells were installed at four depths, 0.3, 0.6, 0.9, and 1.2 m, at four sites: a peaty low-gradient riparian area near the headwaters; a mid-hillslope area on a long hillslope mid-watershed; a near-stream area on a long hillslope mid-watershed; and a low-gradient tributary confluence area just above the gage. During storm events, FDOM and hydraulic head were measured at the nested groundwater wells. Samples for DOC analysis were also taken to determine the relationship between FDOM and DOC. Results suggest that both distant sources and the greater watershed played a role in the transport of DOC to the W-9 gage. Distant peaty sources dominated during large storms and contributed the highest surface water FDOM measurements. The peak FDOM at the gage was therefore best described as a result of transport. However, export from these distant sources terminated rapidly and did not explain continued elevated FDOM at the gage. Groundwater across the watershed exhibited hysteresis analogous to that in the stream itself, with FDOM peaking as head receded. As groundwater is recharged, the water table intersects more carbon rich soil layers. Pre-event water is flushed out first before event water mobilizes DOC, causing the groundwater hysteresis. High FDOM groundwater discharging to the stream likely sustained elevated FDOM at the gage. The gage hysteresis, therefore, seems to be a result of both hypotheses tested.
Data uses and funding for the stream-gaging program in Utah
Cruff, R.W.
1986-01-01
This report documents the results of the first phase of a study of the cost effectiveness of the streamflow-information program in Utah. Data use, funding, and data availability are described for the streamflow stations operated by the U.S. Geological Survey; and a history of the stream-gaging program is given. During the 1984 water year, 214 continuous streamflow stations were operated on a budget of $854,000. Data from most stations have multiple uses and all stations presently have sufficient justification for continuation.
Cost-effectiveness of the US Geological Survey stream-gaging program in Arkansas
Darling, M.E.; Lamb, T.E.
1984-01-01
This report documents the results of the cost-effectiveness of the stream-gaging program in Arkansas. Data uses and funding sources were identified for the daily-discharge stations. All daily-discharge stations were found to be in one or more data use categories, and none were candidates for alternate methods which would result in discontinuation or conversion to a partial record station. The cost for operation of daily-discharge stations and routing costs to partial record stations, crest gages, pollution control stations as well as seven recording ground-water stations was evaluated in the Kalman-Filtering Cost-Effective Resource allocation (K-CERA) analysis. This operation under current practices requires a budget of $292,150. The average standard error of estimate of streamflow record for the Arkansas District was analyzed at 33 percent.
A hot-wire surface gage for skin friction and separation detection measurements
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Okuno, A. F.; Mateer, G. G.; Brosh, A.
1975-01-01
A heated-element, skin-friction gage employing a very low thermal conductivity support is described. It is shown that the effective dimension of the gage in the stream direction in only 0.06 mm, including the effects of heat conduction in the supporting material. Because of its small size, the calibration of the gage is independent of the kind of boundary-layer flow (whether laminar or turbulent) and is insensitive to pressure gradients. Construction tolerances can be maintained so that a single universal calibration can be applied. Multiple gages, sufficiently closely spaced so as to interfere with each other, are shown to provide accurate determinations of the locations of the points of boundary-layer separation and reattachment.
Reiser, Robert G.; Watson, Kara M.; Chang, Ming; Nieswand, Steven P.
2002-01-01
The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates and maintains a variety of surface-water data-collection networks throughout the State of New Jersey. The networks include streamflow-gaging stations, low-flow sites, crest-stage gages, tide gages, tidal creststage gages, and water-quality sampling sites. Both real-time and historical surface-water data for many of the sites in these networks are available at the USGS, New Jersey District, web site (http://nj.usgs.gov/), and water-quality data are available at the USGS National Water Information System (NWIS) web site (http://waterdata.usgs.gov/nwis/). These data are an important source of information for water managers, engineers, environmentalists, and private citizens.
NASA Astrophysics Data System (ADS)
Anderson, S. W.; Konrad, C. P.
2016-12-01
Understanding the connections between climate and river bed morphology is relevant both for interpreting the geologic record and understanding modern channel change. Here, we use changing stage-discharge relations at USGS stream-gage sites in western Washington State to infer local bed-elevation changes over the past 50 to 90 years. A network of gages in a large, unregulated basin with active glaciation show decadal periods of aggradation and incision that are strongly correlated when lagged. Best-fit lag times indicate the downstream propagation of single coherent signal at a slope-dependent velocity of 1-4 km/yr. This same pattern of change is observed at the outlets of regional rivers with glaciated headwaters but is absent in unglaciated river systems. Sites high in glaciated river systems also show coherency across basins, suggesting that the similarity in the downstream trends across glaciated basins is the result of the downstream propagation of a regionally coherent headwater signal. Incisional trends emanating from headwaters between 1950 and 1980 match a period when regional glaciers were stable or advancing, but assigning causation is complicated by hydroclimatic trends with similar temporal patterns. The recent trend is aggradational, though current bed elevations are generally similar to those prior to 1950, and are consistent with regional data indicating that sediment production in glaciated basins from 1950 to 1980 was anomalously low relative to conditions over the past several hundred years. Regionally, our results suggest the possibility of forecasting periods of aggradation and increased flood hazards several years to decades in advance in populated downstream settings. More broadly, the methods used in this analysis involve simple calculations on publically available data and provide a low-cost means of assessing local channel change wherever USGS stream-gages have been operated.
Spies, Ryan R.; Over, Thomas M.; Ortel, Terry W.
2018-05-21
In this report, precipitation data from 2002 to 2012 from the hourly gridded Next-Generation Radar (NEXRAD)-based Multisensor Precipitation Estimate (MPE) precipitation product are compared to precipitation data from two rain gage networks—an automated tipping bucket network of 25 rain gages operated by the U.S. Geological Survey (USGS) and 51 rain gages from the volunteer-operated Community Collaborative Rain, Hail, and Snow (CoCoRaHS) network—in and near DuPage County, Illinois, at a daily time step to test for long-term differences in space, time, and distribution. The NEXRAD–MPE data that are used are from the fifty 2.5-mile grid cells overlying the rain gages from the other networks. Because of the challenges of measuring of frozen precipitation, the analysis period is separated between days with or without the chance of freezing conditions. The NEXRAD–MPE and tipping-bucket rain gage precipitation data are adjusted to account for undercatch by multiplying by a previously determined factor of 1.14. Under nonfreezing conditions, the three precipitation datasets are broadly similar in cumulative depth and distribution of daily values when the data are combined spatially across the networks. However, the NEXRAD–MPE data indicate a significant trend relative to both rain gage networks as a function of distance from the NEXRAD radar just south of the study area. During freezing conditions, of the USGS network rain gages only the heated gages were considered, and these gages indicate substantial mean undercatch of 50 and 61 percent compared to the NEXRAD–MPE and the CoCoRaHS gages, respectively. The heated USGS rain gages also indicate substantially lower quantile values during freezing conditions, except during the most extreme (highest) events. Because NEXRAD precipitation products are continually evolving, the report concludes with a discussion of recent changes in those products and their potential for improved precipitation estimation. An appendix provides an analysis of spatially combined NEXRAD–MPE precipitation data as a function of temperature at an hourly time scale and indicates, among other results, that most precipitation in the study area occurs at moderate temperatures of 30 to 74 degrees Fahrenheit. However, when precipitation does occur, its intensity increases with temperature to about 86 degrees Fahrenheit.
Oki, Delwyn S.; Rosa, Sarah N.; Yeung, Chiu W.
2010-01-01
This study provides an updated analysis of the magnitude and frequency of peak stream discharges in Hawai`i. Annual peak-discharge data collected by the U.S. Geological Survey during and before water year 2008 (ending September 30, 2008) at stream-gaging stations were analyzed. The existing generalized-skew value for the State of Hawai`i was retained, although three methods were used to evaluate whether an update was needed. Regional regression equations were developed for peak discharges with 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated streams (those for which peak discharges are not affected to a large extent by upstream reservoirs, dams, diversions, or other structures) in areas with less than 20 percent combined medium- and high-intensity development on Kaua`i, O`ahu, Moloka`i, Maui, and Hawai`i. The generalized-least-squares (GLS) regression equations relate peak stream discharge to quantified basin characteristics (for example, drainage-basin area and mean annual rainfall) that were determined using geographic information system (GIS) methods. Each of the islands of Kaua`i,O`ahu, Moloka`i, Maui, and Hawai`i was divided into two regions, generally corresponding to a wet region and a dry region. Unique peak-discharge regression equations were developed for each region. The regression equations developed for this study have standard errors of prediction ranging from 16 to 620 percent. Standard errors of prediction are greatest for regression equations developed for leeward Moloka`i and southern Hawai`i. In general, estimated 100-year peak discharges from this study are lower than those from previous studies, which may reflect the longer periods of record used in this study. Each regression equation is valid within the range of values of the explanatory variables used to develop the equation. The regression equations were developed using peak-discharge data from streams that are mainly unregulated, and they should not be used to estimate peak discharges in regulated streams. Use of a regression equation beyond its limits will produce peak-discharge estimates with unknown error and should therefore be avoided. Improved estimates of the magnitude and frequency of peak discharges in Hawai`i will require continued operation of existing stream-gaging stations and operation of additional gaging stations for areas such as Moloka`i and Hawai`i, where limited stream-gaging data are available.
NASA Astrophysics Data System (ADS)
Rosner, A.; Letcher, B. H.; Vogel, R. M.
2014-12-01
Predicting streamflow in headwaters and over a broad spatial scale pose unique challenges due to limited data availability. Flow observation gages for headwaters streams are less common than for larger rivers, and gages with records lengths of ten year or more are even more scarce. Thus, there is a great need for estimating streamflows in ungaged or sparsely-gaged headwaters. Further, there is often insufficient basin information to develop rainfall-runoff models that could be used to predict future flows under various climate scenarios. Headwaters in the northeastern U.S. are of particular concern to aquatic biologists, as these stream serve as essential habitat for native coldwater fish. In order to understand fish response to past or future environmental drivers, estimates of seasonal streamflow are needed. While there is limited flow data, there is a wealth of data for historic weather conditions. Observed data has been modeled to interpolate a spatially continuous historic weather dataset. (Mauer et al 2002). We present a statistical model developed by pairing streamflow observations with precipitation and temperature information for the same and preceding time-steps. We demonstrate this model's use to predict flow metrics at the seasonal time-step. While not a physical model, this statistical model represents the weather drivers. Since this model can predict flows not directly tied to reference gages, we can generate flow estimates for historic as well as potential future conditions.
Cost effectiveness of the US Geological Survey stream-gaging program in Alabama
Jeffcoat, H.H.
1987-01-01
A study of the cost effectiveness of the stream gaging program in Alabama identified data uses and funding sources for 72 surface water stations (including dam stations, slope stations, and continuous-velocity stations) operated by the U.S. Geological Survey in Alabama with a budget of $393,600. Of these , 58 gaging stations were used in all phases of the analysis at a funding level of $328,380. For the current policy of operation of the 58-station program, the average standard error of estimation of instantaneous discharge is 29.3%. This overall level of accuracy can be maintained with a budget of $319,800 by optimizing routes and implementing some policy changes. The maximum budget considered in the analysis was $361,200, which gave an average standard error of estimation of 20.6%. The minimum budget considered was $299,360, with an average standard error of estimation of 36.5%. The study indicates that a major source of error in the stream gaging records is lost or missing data that are the result of streamside equipment failure. If perfect equipment were available, the standard error in estimating instantaneous discharge under the current program and budget could be reduced to 18.6%. This can also be interpreted to mean that the streamflow data records have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)
Cost-effectiveness of the stream-gaging program in North Carolina
Mason, R.R.; Jackson, N.M.
1985-01-01
This report documents the results of a study of the cost-effectiveness of the stream-gaging program in North Carolina. Data uses and funding sources are identified for the 146 gaging stations currently operated in North Carolina with a budget of $777,600 (1984). As a result of the study, eleven stations are nominated for discontinuance and five for conversion from recording to partial-record status. Large parts of North Carolina 's Coastal Plain are identified as having sparse streamflow data. This sparsity should be remedied as funds become available. Efforts should also be directed toward defining the efforts of drainage improvements on local hydrology and streamflow characteristics. The average standard error of streamflow records in North Carolina is 18.6 percent. This level of accuracy could be improved without increasing cost by increasing the frequency of field visits and streamflow measurements at stations with high standard errors and reducing the frequency at stations with low standard errors. A minimum budget of $762,000 is required to operate the 146-gage program. A budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, and with the optimum allocation of field visits, the average standard error is 17.6 percent.
Peak-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.
Problems with indirect determinations of peak streamflows in steep, desert stream channels
Glancy, Patrick A.; Williams, Rhea P.
1994-01-01
Many peak streamflow values used in flood analyses for desert areas are derived using the Manning equation. Data used in the equation are collected after the flow has subsided, and peak flow is thereby determined indirectly. Most measurement problems and associated errors in peak-flow determinations result from (1) channel erosion or deposition that cannot be discerned or properly evaluated after the fact, (2) unsteady and non-uniform flow that rapidly changes in magnitude, and (3) appreciable sediment transport that has unknown effects on energy dissipation. High calculated velocities and Froude numbers are unacceptable to some investigators. Measurement results could be improved by recording flows with a video camera, installing a recording stream gage and recording rain gages, measuring channel scour with buried chains, analyzing measured data by multiple techniques, and supplementing indirect measurements with direct measurements of stream velocities in similar ephemeral streams.
Streamflow characteristics related to channel geometry of streams in western United States
Hedman, E.R.; Osterkamp, W.R.
1982-01-01
Assessment of surface-mining and reclamation activities generally requires extensive hydrologic data. Adequate streamflow data from instrumented gaging stations rarely are available, and estimates of surface- water discharge based on rainfall-runoff models, drainage area, and basin characteristics sometimes have proven unreliable. Channel-geometry measurements offer an alternative method of quickly and inexpensively estimating stream-flow characteristics for ungaged streams. The method uses the empirical development of equations to yield a discharge value from channel-geometry and channel-material data. The equations are developed by collecting data at numerous streamflow-gaging sites and statistically relating those data to selected discharge characteristics. Mean annual runoff and flood discharges with selected recurrence intervals can be estimated for perennial, intermittent, and ephemeral streams. The equations were developed from data collected in the western one-half of the conterminous United States. The effect of the channel-material and runoff characteristics are accounted for with the equations.
Measuring flood discharge in unstable stream channels using ground-penetrating radar
Spicer, K.R.; Costa, J.E.; Placzek, G.
1997-01-01
Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.
NASA Astrophysics Data System (ADS)
Silverman, N. L.; Moore, J. N.; Maneta, M. P.
2014-12-01
The majority of watersheds within the United States have been disturbed by anthropogenic land use change. On top of this, there is strong evidence of (historic and projected) climatic changes that affect earth's hydrologic cycle. Streamflow measurements integrate the effects of land use and climate change on watershed hydrology. Therefore, when temporal trends are present, teasing out the cause is challenging due to the overlying climate and land use signals. In this study, we develop an analytical framework for distinguishing trends in streamflow that are driven by climate change from those that are driven by land use change. This framework is based on the theory that during wetter years runoff is affected more by changes in climate than during drier years. Whereas, the inverse is true for land use change. During wetter years runoff is affected less by land use change than during drier years. This difference can be seen in the quantile regression of the 75th and 25th percentile annual stream flows which represent wetter and drier years, respectively. This creates a defining characteristic in how these two forcing mechanisms manifest within the streamflow record. We empirically test this framework and show that the sensitivity of runoff to climate and land use change is uniquely dependent on the spatiotemporal water and energy limitations of a catchment. Finally we apply the framework using 1,566 watersheds across the contiguous United States. We use gages from the United States Geological Survey (USGS) National Water Information System (NWIS) network. The gages are selected because they have continuous and complete data from the years 1950 to 2009 and represent watersheds which are characterized by a range of disturbances. Our results show that the driving mechanisms of streamflow change across the U.S. are regionally coherent and correspond with land management activities and climate zones. This methodology provides a simple means of classifying watershed to regional scale hydroclimatic change without relying on reference stream gages, complex models, or observational climate networks.
Hydraulic and hydrologic aspects of flood-plain planning
Wiitala, S.W.; Jetter, K.R.; Sommerville, Alan J.
1961-01-01
The valid incentives compelling occupation of the flood plain, up to and eve n into the stream channel, undoubtedly have contributed greatly to the development of the country. But the result has been a heritage of flood disaster, suffering, and enormous costs. Flood destruction awakened a consciousness toward reduction and elimination of flood hazards, originally manifested in the protection of existing developments. More recently, increased knowledge of the problem has shown the impracticability of permitting development that requires costly flood protect/on. The idea of flood zoning, or flood-plain planning, has received greater impetus as a result of this realization. This study shows how hydraulic and hydrologic data concerning the flood regimen of a stream can be used in appraising its flood potential and the risk inherent in occupation of its flood plain. The approach involves the study of flood magnitudes as recorded or computed; flood frequencies based1 on experience shown by many years of gaging-station record; use of existing or computed stagedischarge relations and flood profiles; and, where required, the preparation of flood-zone maps to show the areas inundated by floods of several magnitudes and frequencies. The planner can delineate areas subject to inundation by floods o* specific recurrence intervals for three conditions: (a) for the immediate vicinity of a gaging station; (b) for a gaged stream at a considerable distance from a gaging station; and (c) for an ungaged stream. The average depth for a flood of specific frequency can be estimated on the basis of simple measurements of area of drainage basin, width of channel, and slope of streambed. This simplified approach should be useful in the initial stages of flood-plain planning. Brief discussions are included on various types of flood hazards, the effects of urbanization on flood runoff, and zoning considerations.
2016-04-05
About this volumeMontana StreamStats is a Web-based geographic information system (http://water.usgs.gov/osw/streamstats/) application that provides users with access to basin and streamflow characteristics for gaged and ungaged streams in Montana. Montana StreamStats was developed by the U.S. Geological Survey (USGS) in cooperation with the Montana Departments of Transportation, Environmental Quality, and Natural Resources and Conservation. The USGS Scientific Investigations Report consists of seven independent but complementary chapters dealing with various aspects of this effort.Chapter A describes the Montana StreamStats application, the basin and streamflow datasets, and provides a brief overview of the streamflow characteristics and regression equations used in the study. Chapters B through E document the datasets, methods, and results of analyses to determine streamflow characteristics, such as peak-flow frequencies, low-flow frequencies, and monthly and annual characteristics, for USGS streamflow-gaging stations in and near Montana. The StreamStats analytical toolsets that allow users to delineate drainage basins and solve regression equations to estimate streamflow characteristics at ungaged sites in Montana are described in Chapters F and G.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.
2003-01-01
Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.
Empirical flow parameters - a tool for hydraulic model validity assessment.
DOT National Transportation Integrated Search
2013-08-01
Data in Texas from the U.S. Geological Survey (USGS) physical stream flow and channel property measurements for gaging stations in the state of Texas were used to construct relations between observed stream flow, topographic slope, mean section veloc...
NASA Astrophysics Data System (ADS)
Hodgkinson, K. M.; Mencin, D.; Fox, O.; Walls, C. P.; Mann, D.; Blume, F.; Berglund, H. T.; Phillips, D.; Meertens, C. M.; Mattioli, G. S.
2015-12-01
The GAGE facility, managed by UNAVCO, currently operates a network of ~460, real-time, high-rate GNSS stations (RT-GNSS). The majority of these RT stations are part of the Earthscope PBO network, which spans the western US Pacific North-American plate boundary. Approximately 50 are distributed throughout the Mexico and Caribbean region funded by the TLALOCNet and COCONet projects. The entire network is processed in real-time at UNAVCO using Precise Point Positioning (PPP). The real-time streams are freely available to all and user demand has grown almost exponentially since 2010. Data usage is multidisciplinary, including tectonic and volcanic deformation studies, meteorological applications, atmospheric science research in addition to use by national, state and commercial entities. 21 RT-GNSS sites in California now include 200-sps accelerometers for the development of Earthquake Early Warning systems. All categories of users of real-time streams have similar requirements, reliable, low-latency, high-rate, and complete data sets. To meet these requirements, UNAVCO tracks the latency and completeness of the incoming raw observations and also is developing tools to monitor the quality of the processed data streams. UNAVCO is currently assessing the precision, accuracy and latency of solutions from various PPP software packages. Also under review are the data formats UNAVCO distributes; for example, the PPP solutions are currently distributed in NMEA format, but other formats such as SEED or GeoJSON may be preferred by different user groups to achieve specific mission objectives. In this presentation we will share our experiences of the challenges involved in the data operations of a continental-scale, multi-project, real-time GNSS network, summarize the network's performance in terms of latency and completeness, and present the comparisons of PPP solutions using different PPP processing techniques.
NASA Astrophysics Data System (ADS)
Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.
2006-12-01
The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.
Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.
2006-01-01
The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects of restoration activities in the wildlife refuge, and (3) potential impacts of ground-water withdrawals.
Storage requirements for Arkansas streams
Patterson, James Lee
1968-01-01
The supply of good-quality surface water in Arkansas is abundant. owing to seasonal and annual variability of streamflow, however, storage must be provided to insure dependable year-round supplies in most of the State. Storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 49 continuous-record gaging stations can be obtained from tabular data in this report. Through regional analyses of streamflow data, the State was divided into three regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, the mean annual flow, and the low-flow index are known. These data are tabulated for 53 gaging stations used in the analyses and for 132 partial-record sites where only base-flow measurements have been made. Mean annual flow can be determined for any stream whose drainage lies within the State by using the runoff map in this report. Low-flow indices can be estimated by correlating base flows, determined from several discharge measurements, with concurrent flows at nearby continuous-record gaging stations, whose low-flow indices have been determined.
Channel degradation in southeastern Nebraska Rivers
Wahl, Kenneth L.; Weiss, Linda S.; ,
1995-01-01
Many stream channels in southeastern Nebraska were dredged and straightened during 1904-15. The resulting channels were both shorter and steeper than the original channels. Tests for time trends were conducted using the nonparametric Kendall tau test to see if the channels have responded to these changes. Tests were conducted on the stages associated with specific discharges and on measurement characteristics at gaging stations. Tests also were conducted on hydrologic forcing variables (annual mean precipitation, annual peak discharges, annual mean discharge, and annual mean base flows). The null hypothesis (that the data were free from trend) was rejected for stages associated with the mean of the annual discharges for 6 of 7 gaging stations in the study area, but was accepted for all 3 gages on the main stem of the Missouri River. The trends at the 6 streamflow gaging stations were for decreasing stages (degrading channels) for specific discharges. The rates of change ranged from about 0.2 to 0.5 m per decade. Mean stream bed elevations computed for individual discharge measurements at these streamflow gaging stations confirmed that the channels are degrading. However, neither the precipitation nor flow variables show evidence of trends. The tendency for the channels to degrade thus cannot be attributed to changes in runoff characteristics and are assumed to be a response to the channel modifications in the early 1900's. Indications are that the channels presently are continuing to degrade.
D. Max Smith; Deborah M. Finch
2016-01-01
Riparian ecosystems are vital components of aridlands within the southwestern United States. Historically, surface flows influenced population dynamics of native riparian trees. Many southwestern streams has been altered by regulation, however, and will be further affected by greenhouse warming. Our analysis of stream gage data revealed that decreases in...
52. View of sitdown cable car, cable way, and stream ...
52. View of sit-down cable car, cable way, and stream gaging station, looking southeast. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
Prediction of flood quantiles at ungaged watersheds in Louisiana : final report.
DOT National Transportation Integrated Search
1989-12-01
Four popular regional flood frequency methods were compared using Louisiana stream flow series. The state was divided into four homogeneous regions and all undistorted, long-term stream gages were used in the analysis. The GEV, TCEV, regional LP3 and...
Funkhouser, Jaysson E.; Eng, Ken; Moix, Matthew W.
2008-01-01
Water use in Arkansas has increased dramatically in recent years. Since 1990, the use of water for all purposes except power generation has increased 53 percent (4,004 cubic feet per second in 1990 to 6,113 cubic feet per second in 2005). The biggest users are agriculture (90 percent), municipal water supply (4 percent) and industrial supply (2 percent). As the population of the State continues to grow, so does the demand for the State's water resources. The low-flow characteristics of a stream ultimately affect its utilization by humans. Specific information on the low-flow characteristics of streams is essential to State water-management agencies such as the Arkansas Department of Environmental Quality, the Arkansas Natural Resources Commission, and the Arkansas Game and Fish Commission when dealing with problems related to irrigation, municipal and industrial water supplies, fish and wildlife conservation, and dilution of waste. Low-flow frequency data are of particular value to management agencies responsible for the development and management of the State's water resources. This report contains the low-flow characteristics for 70 active continuous-streamflow record gaging stations, 59 inactive continuous-streamflow record stations, and 101 partial-record gaging stations. These characteristics are the annual 7-day, 10-year low flow and the annual 7-day, 2-year low flow, and the seasonal, bimonthly, and monthly 7-day, 10-year low flow for the 129 active and inactive continuous-streamflow record and 101 partial-record gaging stations. Low-flow characteristics were computed on the basis of streamflow data for the period of record through September 2005 for the continuous-streamflow record and partial-record streamflow gaging stations. The low-flow characteristics of these continuous- and partial-record streamflow gaging stations were utilized in a regional regression analysis to produce equations for estimating the annual, seasonal, bimonthly, and monthly (November through April) 7-day, 10-year low flows and the annual 7-day, 2-year low flow for ungaged streams in the western two-thirds of Arkansas.
Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma
Esralew, Rachel A.; Smith, S. Jerrod
2010-01-01
Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin characteristics by using a k-means cluster analysis. Three regions were identified for Oklahoma on the basis of the clustering of gaging stations and a manual delineation of distinguishable hydrologic and geologic boundaries: Region 1 (western Oklahoma excluding the Oklahoma and Texas Panhandles), Region 2 (north- and south-central Oklahoma), and Region 3 (eastern and central Oklahoma). A total of 228 regression equations (225 flow-duration regressions and three annual mean-flow regressions) were developed using ordinary least-squares and left-censored (Tobit) multiple-regression techniques. These equations can be used to estimate 75 flow-duration statistics and annual mean-flow for ungaged streams in the three regions. Drainage-basin characteristics that were statistically significant independent variables in the regression analyses were (1) contributing drainage area; (2) station elevation; (3) mean drainage-basin elevation; (4) channel slope; (5) percentage of forested canopy; (6) mean drainage-basin hillslope; (7) soil permeability; and (8) mean annual, seasonal, and monthly precipitation. The accuracy of flow-duration regression equations generally decreased from high-flow exceedance (low-exceedance probability) to low-flow exceedance (high-exceedance probability) . This decrease may have happened because a greater uncertainty exists for low-flow estimates and low-flow is largely affected by localized geology that was not quantified by the drainage-basin characteristics selected. The standard errors of estimate of regression equations for Region 1 (western Oklahoma) were substantially larger than those standard errors for other regions, especially for low-flow exceedances. These errors may be a result of greater variability in low flow because of increased irrigation activities in this region. Regression equations may not be reliable for sites where the drainage-basin characteristics are outside the range of values of independent vari
Gingerich, Stephen B.
2005-01-01
Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall rate, maximum basin elevation, and the elongation ratio of the basin were the basin characteristics used in the final regression equations for 50-percent duration total flow and base flow. Rainfall rate and maximum basin elevation were used in the final regression equations for the 95-percent duration total flow and base flow. The relative errors between observed and estimated flows ranged from 10 to 20 percent for the 50-percent duration total flow and base flow, and from 29 to 56 percent for the 95-percent duration total flow and base flow. The regression equations developed for this study were used to determine the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow at selected ungaged diverted and undiverted sites. Estimated streamflow, prediction intervals, and standard errors were determined for 48 ungaged sites in the study area and for three gaged sites west of the study area. Relative errors were determined for sites where measured values of 95-percent duration discharge of total flow were available. East of Keanae Valley, the 95-percent duration discharge equation generally underestimated flow, and within and west of Keanae Valley, the equation generally overestimated flow. Reduction in 50- and 95-percent flow-duration values in stream reaches affected by diversions throughout the study area average 58 to 60 percent.
Wiley, J.B.; Atkins, John T.; Tasker, Gary D.
2000-01-01
Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).
U.S. Geological Survey Real-Time River Data Applications
Morlock, Scott E.
1998-01-01
Real-time river data provided by the USGS originate from streamflow-gaging stations. The USGS operates and maintains a network of more than 7,000 such stations across the nation (Mason and Wieger, 1995). These gaging stations, used to produce records of stage and streamflow data, are operated in cooperation with local, state, and other federal agencies. The USGS office in Indianapolis operates a statewide network of more than 170 gaging stations. The instrumentation at USGS gaging stations monitors and records river information, primarily river stage (fig. 1). As technological advances are made, many USGS gaging stations are being retrofitted with electronic instrumentation to monitor and record river data. Electronic instrumentation facilitates transmission of real-time or near real-time river data for use by government agencies in such flood-related tasks as operating flood-control structures and ordering evacuations.
Thermal infrared remote sensing of water temperature in riverine landscapes
Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé
2012-01-01
Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.
Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5
Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing
2012-01-01
Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).
Impact of river discharge on the California coastal ocean circulation and variability
NASA Astrophysics Data System (ADS)
Leiva, J.; Chao, Y.; Farrara, J. D.; Zhang, H.
2016-12-01
A real-time California coastal ocean nowcast and forecast system is used to quantify the impact of river discharge on the California coastal ocean circulation and variability. River discharge and freshwater runoff is monitored by an extensive network of stream gages maintained through the U.S. Geological Survey, that offers archived stream flow records as well as real-time datasets. Of all the rivers monitored by the USGS, 25 empty into the Pacific Ocean and contribute a potential source of runoff data. Monthly averages for the current water year yield discharge estimates as high as 6,000 cubic meters per second of additional freshwater input into our present model. Using Regional Ocean Modeling System (ROMS), we performed simulations from October 2015 to May 2016 with and without the river discharge. Results of these model simulations are compared with available observations including both in situ and satellite. Particular attention is paid to the salinity simulation. Validation is done with comparisons to sea glider data available through Oregon State University and UC San Diego, which provides depth profiles along the California coast during this time period. Additional validation is performed through comparisons with sea surface salinity measurements from the Soil Moisture and Ocean Salinity (SMOS) mission. Continued testing for previous years, e.g. between 2011 and 2015, is being made using the Aquarius sea surface salinity data. Discharge data collected by the USGS stream gages provides a necessary source of freshwater input that must be accounted for. Incorporating a new runoff source produces a more robust model that generates improved forecasts. Following validation with available sea glider and satellite data, the enhanced model can be adapted to real-time forecasting.
Conrads, Paul; Roehl, Edwin A.
2007-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface models designed to provide scientists, engineers, and water-resource managers with current (2000-present) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystem Science provides support for EDEN and the goal of providing quality assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the water-surface models, 25 real-time water-level gaging stations were added to the network of 253 established water-level gaging stations. To incorporate the data from the newly added stations to the 7-year EDEN database in the greater Everglades, the short-term water-level records (generally less than 1 year) needed to be simulated back in time (hindcasted) to be concurrent with data from the established gaging stations in the database. A three-step modeling approach using artificial neural network models was used to estimate the water levels at the new stations. The artificial neural network models used static variables that represent the gaging station location and percent vegetation in addition to dynamic variables that represent water-level data from the established EDEN gaging stations. The final step of the modeling approach was to simulate the computed error of the initial estimate to increase the accuracy of the final water-level estimate. The three-step modeling approach for estimating water levels at the new EDEN gaging stations produced satisfactory results. The coefficients of determination (R2) for 21 of the 25 estimates were greater than 0.95, and all of the estimates (25 of 25) were greater than 0.82. The model estimates showed good agreement with the measured data. For some new EDEN stations with limited measured data, the record extension (hindcasts) included periods beyond the range of the data used to train the artificial neural network models. The comparison of the hindcasts with long-term water-level data proximal to the new EDEN gaging stations indicated that the water-level estimates were reasonable. The percent model error (root mean square error divided by the range of the measured data) was less than 6 percent, and for the majority of stations (20 of 25), the percent model error was less than 1 percent.
Analyzing Flash Flood Data in an Ultra-Urban Region
NASA Astrophysics Data System (ADS)
Smith, B. K.; Rodriguez, S.
2016-12-01
New York City is an ultra-urban region, with combined sewers and buried stream channels. Traditional flood studies rely on the presence of stream gages to detect flood stage and discharge, but ultra-urban regions frequently lack the surface stream channels and gages necessary for this approach. In this study we aggregate multiple non-traditional data for detecting flash flood events. These data including phone call reports, city records, and, for one particular flood event, news reports and social media reports. These data are compared with high-resolution bias-corrected radar rainfall fields to study flash flood events in New York City. We seek to determine if these non-traditional data will allow for a comprehensive study of rainfall-runoff relationships in New York City. We also seek to map warm season rainfall heterogeneities in the city and to compare them to spatial distribution of reported flood occurrence.
Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams
Stuckey, Marla H.; Reed, Lloyd A.
2000-01-01
Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.
Stewart, Anne M.; Callegary, James B.; Smith, Christopher F.; Gupta, Hoshin V.; Leenhouts, James M.; Fritzinger, Robert A.
2012-01-01
The continuous slope-area (CSA) method is an innovative gaging method for indirect computation of complete-event discharge hydrographs that can be applied when direct measurement methods are unsafe, impractical, or impossible to apply. This paper reports on use of the method to produce event-specific discharge hydrographs in a network of sand-bedded ephemeral stream channels in southeast Arizona, USA, for water year 2008. The method provided satisfactory discharge estimates for flows that span channel banks, and for moderate to large flows, with about 10–16% uncertainty, respectively for total flow volume and peak flow, as compared to results obtained with an alternate method. Our results also suggest that the CSA method may be useful for estimating runoff of small flows, and during recessions, but with increased uncertainty.
Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Wisconsin
Walker, J.F.; Osen, L.L.; Hughes, P.E.
1987-01-01
A minimum budget of $510,000 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gaging stations. At this minimum budget, the theoretical average standard error of instantaneous discharge is 14.4%. The maximum budget analyzed was $650,000 and resulted in an average standard of error of instantaneous discharge of 7.2%.
M.B. Adams; P.J. Edwards; J.N. Kochenderfer; F. Wood
2004-01-01
In 1951, stream gaging was begun on five small headwater catchments on the Fernow Experimental Forest in West Virginia, to study the effects of forest management activities, particularly timber harvesting, on water yield and quality. Results from these watersheds, and others gaged more recently, have shown that annual water yields increase in proportion to the basal...
Graphical correlation of gaging-station records
Searcy, James K.
1960-01-01
A gaging-station record is a sample of the rate of flow of a stream at a given site. This sample can be used to estimate the magnitude and distribution of future flows if the record is long enough to be representative of the long-term flow of the stream. The reliability of a short-term record for estimating future flow characteristics can be improved through correlation with a long-term record. Correlation can be either numerical or graphical, but graphical correlation of gaging-station records has several advantages. The graphical correlation method is described in a step-by-step procedure with an illustrative problem of simple correlation, illustrative problems of three examples of multiple correlation--removing seasonal effect--and two examples of correlation of one record with two other records. Except in the problem on removal of seasonal effect, the same group of stations is used in the illustrative problems. The purpose of the problems is to illustrate the method--not to show the improvement that can result from multiple correlation as compared with simple correlation. Hydrologic factors determine whether a usable relation exists between gaging-station records. Statistics is only a tool for evaluating and using an existing relation, and the investigator must be guided by a knowledge of hydrology.
Streamflow statistics for selected streams in North Dakota, Minnesota, Manitoba, and Saskatchewan
Williams-Sether, Tara
2012-01-01
Statistical summaries of streamflow data for the periods of record through water year 2009 for selected active and discontinued U.S. Geological Survey streamflow-gaging stations in North Dakota, Minnesota, Manitoba, and Saskatchewan were compiled. The summaries for each streamflow-gaging station include a brief station description, a graph of the annual peak and annual mean discharge for the period of record, statistics of monthly and annual mean discharges, monthly and annual flow durations, probability of occurrence of annual high discharges, annual peak discharge and corresponding gage height for the period of record, and monthly and annual mean discharges for the period of record.
Tortorelli, Robert L.
1997-01-01
Statewide regression equations for Oklahoma were determined for estimating peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years for ungaged sites on natural unregulated streams. The most significant independent variables required to estimate peak-streamflow frequency for natural unregulated streams in Oklahoma are contributing drainage area, main-channel slope, and mean-annual precipitation. The regression equations are applicable for watersheds with drainage areas less than 2,510 square miles that are not affected by regulation from manmade works. Limitations on the use of the regression relations and the reliability of regression estimates for natural unregulated streams are discussed. Log-Pearson Type III analysis information, basin and climatic characteristics, and the peak-stream-flow frequency estimates for 251 gaging stations in Oklahoma and adjacent states are listed. Techniques are presented to make a peak-streamflow frequency estimate for gaged sites on natural unregulated streams and to use this result to estimate a nearby ungaged site on the same stream. For ungaged sites on urban streams, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. For ungaged sites on streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. The statewide regression equations are adjusted by substituting the drainage area below the floodwater retarding structures, or drainage area that represents the percentage of the unregulated basin, in the contributing drainage area parameter to obtain peak-streamflow frequency estimates.
Annual peak discharges from small drainage areas in Montana through September 1977
Omang, R.J.; Hull, J.A.
1978-01-01
Annual peak stage and stream-discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 191 stations in 1977. Data are tabulated for 336 sites throughout the period of record. (Woodard-USGS)
Continuous turbidity monitoring in streams of northwestern California
Rand Eads; Jack Lewis
2002-01-01
Abstract - Redwood Sciences Laboratory, a field office of the USDA Forest Service, Pacific Southwest Research Station has developed and refined methods and instrumentation to monitor turbidity and suspended sediment in streams of northern California since 1996. Currently we operate 21 stations and have provided assistance in the installation of 6 gaging stations for...
Gazetteer of hydrologic characteristics of streams in Massachusetts; Housatonic River basin
Wandle, S.W.; Lippert, R.G.
1984-01-01
The Housatonic River basin includes streams that drain 504 square miles in western Massachusetts and 30.5 square miles in eastern New York. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics for four gaged streams were calculated using a new data base with daily flow records through 1981. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. Seven-day low-flow statistics are presented for 52 partial-record sites, and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are provided for selected gaging stations. This gazetteer will aid in the planning and siting of water-resources related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)
Peak-flow characteristics of Wyoming streams
Miller, Kirk A.
2003-01-01
Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peak-flow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.
Glatfelter, D.R.; Butch, G.K.
1994-01-01
The study results indicate that installation of streamflow-gaging stations at 15 new sites would improve collection of flood data. Instrumenting the 15 new sites plus 26 existing streamflow-gaging stations with telemetry, preferably data-collection platforms with satellite transmitters, would improve transmission of data to users of the information.
Water-quality characteristics of Montana streams in a statewide monitoring network, 1999-2003
Lambing, John H.; Cleasby, Thomas E.
2006-01-01
A statewide monitoring network of 38 sites was operated during 1999-2003 in cooperation with the Montana Department of Environmental Quality to provide a broad geographic base of water-quality information on Montana streams. The purpose of this report is to summarize and describe the water-quality characteristics for those sites. Samples were collected at U.S. Geological Survey streamflow-gaging stations in the Missouri, Yellowstone, and Columbia River basins for stream properties, nutrients, suspended sediment, major ions, and selected trace elements. Mean annual streamflows were below normal during the period, which likely influenced water quality. Continuous water-temperature monitors were operated at 26 sites. The median of daily mean water temperatures for the June-August summer period ranged from 12.5 degC at Kootenai River below Libby Dam to 23.0 degC at Poplar River near Poplar and Tongue River at Miles City. In general, sites in the Missouri River basin commonly had the highest water temperatures. Median daily mean summer water temperatures at four sites (Jefferson River near Three Forks, Missouri River at Toston, Judith River near Winifred, and Poplar River near Poplar) classified as supporting or marginally supporting cold-water biota exceeded the general guideline of 19.4 degC for cold-water biota. Median daily mean temperatures at sites in the network classified as supporting warm-water biota did not exceed the guideline of 26.7 degC for warm-water biota, although several sites exceeded the warm-water guideline on several days during the summer. More...
Rea, Alan; Cederstrand, Joel R.
1994-01-01
The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the global-change research community. The data sets were chosen with input from the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical weather-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.
Ten years of real-time streamflow gaging of turkey creek - where we have been and where we are going
Paul Conrads; Devendra Amatya
2016-01-01
The Turkey Creek watershed is a third-order coastal plain stream system draining an area of approximately 5,240 hectares of the Francis Marion National Forest and located about 37 miles northwest of Charleston near Huger, South Carolina. The U.S. Department of Agriculture (USDA) Forest Service maintained a streamflow gaging station on Turkey Creek from 1964 to 1981....
Techniques for estimating magnitude and frequency of floods on streams in Indiana
Glatfelter, D.R.
1984-01-01
A rainfall-runoff model was tlsed to synthesize long-term peak data at 11 gaged locations on small streams. Flood-frequency curves developed from the long-term synthetic data were combined with curves based on short-term observed data to provide weighted estimates of flood magnitude and frequency at the rainfall-runoff stations.
Comparison of current meters used for stream gaging
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.
1994-01-01
The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.
Hoffman, E.B.; Bowers, J.C.; Jensen, R.M.
1990-01-01
Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 137 gaging stations; stage and contents for 15 lakes and reservoirs; water quality for 25 streams; and precipitation for 8 gaging stations. Also included are 15 crest-stage partial-record stations, 7 miscellaneous measurement sites, and 5 water-quality partial record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.
2006-01-01
Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.
Water Resources Data, Massachusetts and Rhode Island, Water Year 2003
Socolow, R.S.; Zanca, J.L.; Driskell, T.R.; Ramsbey, L.R.
2004-01-01
Water resources data for the 2003 water year for Massachusetts and Rhode Island consists of records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; and water levels of ground-water wells. This report contains discharge records for 108 gaging stations, stage records for 2 gaging stations, stage records for 3 ponds; monthend contents of 1 reservoir, precipitation totals at 8 gaging stations; water quality for 27 gaging stations, air temperature at 2 climatological stations; water levels for 129 observation wells, and ground-water quality for 15 wells. Miscellaneous hydrologic data were collected at various sites that were not a part of the systematic data-collection program and are published as miscellaneous discharge measurements and miscellaneous surface-water-quality data. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Massachusetts and Rhode Island.
Water resources data for Massachusetts and Rhode Island, water year 2004
Socolow, R.S.; Comeau, L.Y.; Murino, Domenic
2005-01-01
This report includes records of stage, discharge, and water quality of streams; contents and elevation of lakes and ponds; and water levels of ground-water wells. This volume contains discharge records for 112 gaging stations; stage records for 2 gaging stations; stage records for 2 ponds; month-end contents of 1 reservoir; precipitation totals at 6 gaging stations; water quality for 21 gaging stations; air temperature at 2 climatological stations; and water levels for 131 observation wells. Locations of these sites are shown in figures 1 and 2. Hydrologic data were collected at many sites that were not involved in the systematic data-collection program; these data are published as miscellaneous discharge measurements, miscellaneous surface-water-quality, and miscellaneous ground-water-quality data. The data in this report represent that part of the National Water Information System (NWIS) operated by the U.S. Geological Survey and cooperating State and Federal agencies in Massachusetts and Rhode Island.
Water Resources Data, New Jersey, Water Year 2003; Volume 1. Surface-Water Data
Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.
2004-01-01
Water-resources data for the 2003 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 100 gaging stations; tide summaries at 29 tidal gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 106 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 142 low-flow partial- record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 143 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including streamflow, precipitation, reservoir conditions, and air temperatures.
Estimating the Magnitude and Frequency of Floods in Small Urban Streams in South Carolina, 2001
Feaster, Toby D.; Guimaraes, Wladimir B.
2004-01-01
The magnitude and frequency of floods at 20 streamflowgaging stations on small, unregulated urban streams in or near South Carolina were estimated by fitting the measured wateryear peak flows to a log-Pearson Type-III distribution. The period of record (through September 30, 2001) for the measured water-year peak flows ranged from 11 to 25 years with a mean and median length of 16 years. The drainage areas of the streamflow-gaging stations ranged from 0.18 to 41 square miles. Based on the flood-frequency estimates from the 20 streamflow-gaging stations (13 in South Carolina; 4 in North Carolina; and 3 in Georgia), generalized least-squares regression was used to develop regional regression equations. These equations can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for small urban streams in the Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The most significant explanatory variables from this analysis were mainchannel length, percent impervious area, and basin development factor. Mean standard errors of prediction for the regression equations ranged from -25 to 33 percent for the 10-year recurrence-interval flows and from -35 to 54 percent for the 100-year recurrence-interval flows. The U.S. Geological Survey has developed a Geographic Information System application called StreamStats that makes the process of computing streamflow statistics at ungaged sites faster and more consistent than manual methods. This application was developed in the Massachusetts District and ongoing work is being done in other districts to develop a similar application using streamflow statistics relative to those respective States. Considering the future possibility of implementing StreamStats in South Carolina, an alternative set of regional regression equations was developed using only main channel length and impervious area. This was done because no digital coverages are currently available for basin development factor and, therefore, it could not be included in the StreamStats application. The average mean standard error of prediction for the alternative equations was 2 to 5 percent larger than the standard errors for the equations that contained basin development factor. For the urban streamflow-gaging stations in South Carolina, measured water-year peak flows were compared with those from an earlier urban flood-frequency investigation. The peak flows from the earlier investigation were computed using a rainfall-runoff model. At many of the sites, graphical comparisons indicated that the variance of the measured data was much less than the variance of the simulated data. Several statistical tests were applied to compare the variances and the means of the measured and simulated data for each site. The results indicated that the variances were significantly different for 11 of the 13 South Carolina streamflow-gaging stations. For one streamflow-gaging station, the test for normality, which is one of the assumptions of the data when comparing variances, indicated that neither the measured data nor the simulated data were distributed normally; therefore, the test for differences in the variances was not used for that streamflow-gaging station. Another statistical test was used to test for statistically significant differences in the means of the measured and simulated data. The results indicated that for 5 of the 13 urban streamflowgaging stations in South Carolina there was a statistically significant difference in the means of the two data sets. For comparison purposes and to test the hypothesis that there may have been climatic differences between the period in which the measured peak-flow data were measured and the period for which historic rainfall data were used to compute the simulated peak flows, 16 rural streamflow-gaging stations with long-term records were reviewed using similar techniques as those used for the measured an
Magnitude and frequency of floods in small drainage basins in Idaho
Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.
1973-01-01
A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas which total about 20,000 square miles, most of which are in southern Idaho. These areas are described in the report to prevent use of regression equations where they do not apply. They include urbanized areas, streams affected by regulation or diversion by works of man, unforested areas, streams with gaining or losing reaches, streams draining alluvial valleys and the Snake Plain, intense thunderstorm areas, and scattered areas where records indicate recurring floods which depart from the regional equations. Maximum flows of record and basin locations are summarized in tables and maps. The analysis indicates deficiencies in data exist. To improve knowledge regarding flood characteristics in poorly defined areas, the following data-collection programs are recommended. Gages should be operated on a few selected small streams for an extended period to define floods at long recurrence intervals. Crest-stage gages should be operated in representative basins in urbanized areas, newly developed irrigated areas and grasslands, and in unforested areas. Unusual floods should continue to be measured at miscellaneous sites on regulated streams and in intense thunderstorm-prone areas. The relationship between channel geometry and floodflow characteristics should be investigated as an alternative or supplement to operation of gaging stations. Documentation of historic flood data from newspapers and other sources would improve the basic flood-data base.
Westergard, Britt E.; Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.
2005-01-01
Equations that relate drainage area to bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. A study to develop equations to predict bankfull data for ungaged streams in New York established eight regions that coincided with previously defined hydrologic regions. This report presents drainage areas and bankfull characteristics (discharge and channel dimensions) for streams in central New York (Region 5) selected for this pilot study.Stream-survey data and discharge records from seven active (currently gaged) sites and nine inactive (discontinued gaged) sites were used in regression analyses to relate size of drainage area to bankfull discharge and bankfull channel width, depth, and cross-sectional area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 45.3*(drainage area, in square miles)0.856;(2) bankfull channel width, in feet = 13.5*(drainage area, in square miles)0.449;(3) bankfull channel depth, in feet = 0.801*(drainage area, in square miles)0.373; and(4) bankfull channel cross-sectional area, in square feet = 10.8*(drainage area, in square miles)0.823.The high correlation coefficients (R2) for these four equations (0.96, 0.92, 0.91, 0.98, respectively) indicate that much of the variation in the variables is explained by the size of the drainage area. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.11 to 3.40 years; the mean recurrence interval was 1.51 years. The 16 surveyed streams were classified by Rosgen stream type; most were mainly C-type reaches, with occasional B- and F-type reaches. The Region 5 equation was compared with equations developed for six other large areas in the Northeast. The major differences among results indicate a need to refine equations so they can be applied by water-resources managers to local planning and design efforts.
Sauer, Vernon B.
1974-01-01
The 2-, 5-, 10-, 25-, 50-, and 100-year recurrence interval floods are related to basin and climatic parameters for natural streams in Oklahoma by multiple regression techniques through the mathematical model, Qx=aAbScPd,where Qx is peak discharge for recurrence interval x, A is contributing drainage area, S is main channel slope, P is mean annual precipitation, and a, b, c, and d are regression constants and coefficients. One equation for each recurrence interval applies statewide for all natural streams of less than 2,500 mil (6,500 km2), except where manmade works, such as dams, flood-detention structures, levees, channelization, and urban development, appreciably affect flood runoff. The equations can be used to estimate flood frequency of a stream at an ungaged site if drainage area size, main channel slope, and mean annual precipitation are known. At or near gaged sites, a weighted average of the regression results and the gaging station data is recommended.Individual relations of flood magnitude to contributing drainage area are given for all or parts of the main stems of the Arkansas, Salt Fork Arkansas, Cimarron, North Canadian, Canadian, Washita, North Fork Red, and Red Rivers. Parts of some of these streams, and all of the Neosho and Verdigris Rivers are not included because the effects of. major regulation from large reservoirs cannot be evaluated within the scope of the report. Graphical relations of maximum floods of record for eastern and western Oklahoma provide a guide to maximum probable floods. A random sampling of the seasonal occurrence of floods indicated about two-thirds of all annual floods in Oklahoma occur during. April through July. Less than one-half of one percent of annual floods occur in December. A compilation of flood records at all gaging sites in Oklahoma and some selected sites in adjacent States is given in an appendix. Basin and climatic parameters and log-Pearson Type III frequency data and statistics are given for most station records. A second appendix gives a reprint of the U.S. Water Resources Council Bulletin 15 which describes procedures for fitting a log-Pearson Type III distribution to gaging station data.
Design of a ground-water-quality monitoring network for the Salinas River basin, California
Showalter, P.K.; Akers, J.P.; Swain, L.A.
1984-01-01
A regional ground-water quality monitoring network for the entire Salinas River drainage basin was designed to meet the needs of the California State Water Resources Control Board. The project included phase 1--identifying monitoring networks that exist in the region; phase 2--collecting information about the wells in each network; and phase 3--studying the factors--such as geology, land use, hydrology, and geohydrology--that influence the ground-water quality, and designing a regional network. This report is the major product of phase 3. Based on the authors ' understanding of the ground-water-quality monitoring system and input from local offices, an ideal network was designed. The proposed network includes 317 wells and 8 stream-gaging stations. Because limited funds are available to implement the monitoring network, the proposed network is designed to correspond to the ideal network insofar as practicable, and is composed mainly of 214 wells that are already being monitored by a local agency. In areas where network wells are not available, arrangements will be made to add wells to local networks. The data collected by this network will be used to assess the ground-water quality of the entire Salinas River drainage basin. After 2 years of data are collected, the network will be evaluated to test whether it is meeting the network objectives. Subsequent network evaluations will be done very 5 years. (USGS)
A Case Study of Differing Effects of Urbanization on Streamflow From Two Proximate Watersheds
NASA Astrophysics Data System (ADS)
Brandes, D.; Lott, F.
2007-12-01
The effects of urbanization on streamflow from two proximate watersheds (Little Lehigh Creek (LLC) and Monocacy Creek (MC)) are investigated. Despite close similarities in rainfall, population growth, land use, imperviousness, and geology of the watersheds, streamflows at the LLC gage have changed markedly over the past 50 years, while those at the MC gage have not. In LLC, there are significant increasing trends in annual stormflow volume, annual maximum flow, and flashiness, but there are no significant trends in these measures in MC. Neither stream shows significant trends in annual baseflow volume or low flow. It appears that the distinct difference in response to urbanization of these two streams can be ascribed to differences in 1) watershed geomorphology, 2) spatial distribution, composition, and infiltration characteristics of carbonate bedrock, and 3) the spatial pattern of land development in each watershed with respect to the gage location. In regards to geomorphology, there is a steeper main channel and narrower floodplains in LLC than in MC. Carbonate soil and bedrock (primarily dolostone) are distributed throughout much of LLC watershed but only in the lower half of MC watershed; however the lower MC watershed (primarily limestone) has much more abundant sinkholes and karst features than in the LLC watershed. Finally, residential and commercial development is concentrated in the upper two thirds of the LLC watershed, where travel times are such that these areas contribute to the peak flows measured at the gage. Development is concentrated in the lower third of the MC watershed, where it has had less effect on peak flows at the gage. Overall, the study indicates that relatively subtle differences between watershed characteristics and development patterns can result in significant differences in runoff and in how streamflow regimes may change in response to urbanization.
Social.Water--Open Source Citizen Science Software for CrowdHydrology
NASA Astrophysics Data System (ADS)
Fienen, M. N.; Lowry, C.
2013-12-01
CrowdHydrology is a crowd-sourced citizen science project in which passersby near streams are encouraged to read a gage and send an SMS (text) message with the water level to a number indicated on a sign. The project was initially started using free services such as Google Voice, Gmail, and Google Maps to acquire and present the data on the internet. Social.Water is open-source software, using Python and JavaScript, that automates the acquisition, categorization, and presentation of the data. Open-source objectives pervade both the project and the software as the code is hosted at Github, only free scripting codes are used, and any person or organization can install a gage and join the CrowdHydrology network. In the first year, 10 sites were deployed in upstate New York, USA. In the second year, expansion to 44 sites throughout the upper Midwest USA was achieved. Comparison with official USGS and academic measurements have shown low error rates. Citizen participation varies greatly from site to site, so surveys or other social information is sought for insight into why some sites experience higher rates of participation than others.
McCallum, Brian E.; Hickey, Andrew C.
2000-01-01
Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.
Index of surface-water stations in Texas, January 1984
Carrillo, E.R.; Buckner, H.D.
1984-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2 the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1985
Carrillo, E.R.; Buckner, H.D.; Rawson, Jack
1984-01-01
This index shows the station number -and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1987
Rawson, Jack; Carrillo, E.R.; Buckner, H.D.
1987-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1988
Rawson, Jack; Carrillo, E.R.; Buckner, H.D.
1988-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
McCarthy, Peter M.
2016-04-05
Chapter E of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation, to provide an update of statewide streamflow characteristics based on data through water year 2009 for streamflow-gaging stations in or near Montana. Streamflow characteristics are presented for 408 streamflow-gaging stations in Montana and adjacent areas having 10 or more years of record. Data include the magnitude and probability of annual low and high streamflow, the magnitude and probability of low streamflow for three seasons (March–June, July–October, and November–February), streamflow duration statistics for monthly and annual periods, and mean streamflows for monthly and annual periods. Streamflow is considered to be regulated at streamflow-gaging stations where dams or other large-scale human modifications affect 20 percent or more of the contributing drainage basin. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for streamflow-gaging stations with sufficient data.
Wilson, John Thomas
2000-01-01
A mathematical technique of estimating low-flow frequencies from base-flow measurements was evaluated by using data for streams in Indiana. Low-flow frequencies at low- flow partial-record stations were estimated by relating base-flow measurements to concurrent daily flows at nearby streamflow-gaging stations (index stations) for which low-flowfrequency curves had been developed. A network of long-term streamflow-gaging stations in Indiana provided a sample of sites with observed low-flow frequencies. Observed values of 7-day, 10-year low flow and 7-day, 2-year low flow were compared to predicted values to evaluate the accuracy of the method. Five test cases were used to evaluate the method under a variety of conditions in which the location of the index station and its drainage area varied relative to the partial-record station. A total of 141 pairs of streamflow-gaging stations were used in the five test cases. Four of the test cases used one index station, the fifth test case used two index stations. The number of base-flow measurements was varied for each test case to see if the accuracy of the method was affected by the number of measurements used. The most accurate and least variable results were produced when two index stations on the same stream or tributaries of the partial-record station were used. All but one value of the predicted 7-day, 10-year low flow were within 15 percent of the values observed for the long-term continuous record, and all of the predicted values of the 7-day, 2-year lowflow were within 15 percent of the observed values. This apparent accuracy, to some extent, may be a result of the small sample set of 15. Of the four test cases that used one index station, the most accurate and least variable results were produced in the test case where the index station and partial-record station were on the same stream or on streams tributary to each other and where the index station had a larger drainage area than the partial-record station. In that test case, the method tended to over predict, based on the median relative error. In 23 of 28 test pairs, the predicted 7-day, 10-year low flow was within 15 percent of the observed value; in 26 of 28 test pairs, the predicted 7-day, 2-year low flow was within 15 percent of the observed value. When the index station and partial-record station were on the same stream or streams tributary to each other and the index station had a smaller drainage area than the partial-record station, the method tended to under predict the low-flow frequencies. Nineteen of 28 predicted values of the 7-day, 10-year low flow were within 15 percent of the observed values. Twenty-five of 28 predicted values of the 7-day, 2-year low flow were within 15 percent of the observed values. When the index station and the partial-record station were on different streams, the method tended to under predict regardless of whether the index station had a larger or smaller drainage area than that of the partial-record station. Also, the variability of the relative error of estimate was greatest for the test cases that used index stations and partial-record stations from different streams. This variability, in part, may be caused by using more streamflow-gaging stations with small low-flow frequencies in these test cases. A small difference in the predicted and observed values can equate to a large relative error when dealing with stations that have small low-flow frequencies. In the test cases that used one index station, the method tended to predict smaller low-flow frequencies as the number of base-flow measurements was reduced from 20 to 5. Overall, the average relative error of estimate and the variability of the predicted values increased as the number of base-flow measurements was reduced.
A model to predict stream water temperature across the conterminous USA
Catalina Segura; Peter Caldwell; Ge Sun; Steve McNulty; Yang Zhang
2014-01-01
Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating...
Tortorelli, R.L.; Bergman, D.L.
1985-01-01
Statewide regression relations for Oklahoma were determined for estimating peak discharge of floods for selected recurrence intervals from 2 to 500 years. The independent variables required for estimating flood discharge for rural streams are contributing drainage area and mean annual precipitation. Main-channel slope, a variable used in previous reports, was found to contribute very little to the accuracy of the relations and was not used. The regression equations are applicable for watersheds with drainage areas less than 2,500 square miles that are not significantly affected by regulation from manmade works. These relations are presented in graphical form for easy application. Limitations on the use of the regression relations and the reliability of regression estimates for rural unregulated streams are discussed. Basin and climatic characteristics, log-Pearson Type III statistics and the flood-frequency relations for 226 gaging stations in Oklahoma and adjacent states are presented. Regression relations are investigated for estimating flood magnitude and frequency for watersheds affected by regulation from small FRS (floodwater retarding structures) built by the U.S. Soil Conservation Service in their watershed protection and flood prevention program. Gaging-station data from nine FRS regulated sites in Oklahoma and one FRS regulated site in Kansas are used. For sites regulated by FRS, an adjustment of the statewide rural regression relations can be used to estimate flood magnitude and frequency. The statewide regression equations are used by substituting the drainage area below the FRS, or drainage area that represents the percent of the basin unregulated, in the contributing drainage area parameter to obtain flood-frequency estimates. Flood-frequency curves and flow-duration curves are presented for five gaged sites to illustrate the effects of FRS regulation on peak discharge.
Webster, M.D.; Rockwell, G.L.; Friebel, M.F.; Brockner, S.J.
2005-01-01
Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 188 gaging stations, stage and contents for 62 lakes and reservoirs, gage-height records for 1 station, water quality for 20 streamflow-gaging stations and 1 partial-record stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Freeman, L.A.; Smithson, J.R.; Webster, M.D.; Pope, G.L.; Friebel, M.F.
2003-01-01
Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 2 contains discharge records for 133 gaging stations, stage and contents for 8 lakes and reservoirs, gage-height records for 6 stations, water quality for 43 streamflow-gaging stations and 5 partial-record stations. Also included are data for 1 low-flow partial-record station, and 5 miscellaneous-measurement stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Streamflow Characteristics of Streams in the Helmand Basin, Afghanistan
Williams-Sether, Tara
2008-01-01
Statistical summaries of streamflow data for all historical streamflow-gaging stations for the Helmand Basin upstream from the Sistan Wetlands are presented in this report. The summaries for each streamflow-gaging station include (1) manuscript (station description), (2) graph of the annual mean discharge for the period of record, (3) statistics of monthly and annual mean discharges, (4) graph of the annual flow duration, (5) monthly and annual flow duration, (6) probability of occurrence of annual high discharges, (7) probability of occurrence of annual low discharges, (8) probability of occurrence of seasonal low discharges, (9) annual peak discharge and corresponding gage height for the period of record, and (10) monthly and annual mean discharges for the period of record.
NASA Astrophysics Data System (ADS)
Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.
2014-12-01
A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.
NASA Astrophysics Data System (ADS)
Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.
2015-12-01
A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.
Peak streamflow on selected streams in Arkansas, December 2015
Breaker, Brian K.
2017-01-11
Heavy rainfall during December 2015 resulted in flooding across parts of Arkansas; rainfall amounts were as high as 12 inches over a period from December 27, 2015, to December 29, 2015. Although precipitation accumulations were highest in northwestern Arkansas, significant flooding occurred in other parts of the State. Flood damage occurred in several counties as water levels rose in streams, and disaster declarations were declared in 32 of the 75 counties in Arkansas.Given the severity of the December 2015 flooding, the U.S. Geological Survey (USGS), in cooperation with the Federal Emergency Management Agency (FEMA), conducted a study to document the meteorological and hydrological conditions prior to and during the flood; compiled flood-peak gage heights, streamflows, and flood probabilities at USGS streamflow-gaging stations; and estimated streamflows and flood probabilities at selected ungaged locations.
Hydrologic data for North Creek, Trinity River basin, Texas, 1975
Kidwell, C.C.
1977-01-01
This report contains the rainfall, runoff, and storage data collected during the 1975 water year for the 21.6-square-mile area above the stream-gaging station North Creek near Jacksboro, Texas. The weighted-mean rainfall in the study area during the water year was 39.01 inches, which is greater than the 18-year average of 30.21 inches for the period 1958-75. Monthly rainfall totals ranged from 1.04 inches in November to 7.94 inches in May. The mean discharge for 1975 at the stream-gaging station was 5.98 cfs, compared with the 14-year (1957-70) average of 5.75 cfs. The annual runoff from the basin above the stream-gaging station was 4,330 acre-feet or 3.76 inches. Three storms were selected for detailed computations for the 1975 water year. The storms occurred on Oct. 30-31, 1974, May 2, 1975 , and Aug. 26, 1975. Rainfall and discharge were computed on the basis of a refined time breakdown. Patterns of the storms are illustrated by hydrographs and mass curves. A summary of rainfall-runoff data is tabulated. There are five floodwater-retarding structures in the study area. These structures have a total capacity of 4,425 acre-feet below flood-spillway crests and regulate streamflow from 16.3 square miles, or 75 percent of the study area. A summary of the physical data at each of the floodwater-retarding structures is included. (Woodard-USGS)
Hopkins, H.T.; Fisher, G.T.; McGreevy, L.J.
1986-01-01
The water table in the alluvium of the Zekiah Swamp Run valley in southern Maryland is above stream level during most of the year and the alluvial aquifer contributes water to the stream. During the summer, however, high evapotranspiration sometimes lowers the water table below the stream level. Water then moves from the stream to the alluvium and, at times, reaches of the stream become dry. Pumping from the confined aquifers has caused water levels to decline several tens of ft, which has increased the downward gradient between the water-table aquifer and the underlying confined aquifers. Three synoptic surveys of base flow show areal and temporal variations in stream discharge, pH, specific conductance, dissolved oxygen, and temperature. April 1984 base flows were high (141 cu ft/sec, at the Route 6 gage) because of high precipitation during March. July 1983 base flows were low (2.35 cu ft/sec at the Route 6 gage) and showed significant loss of streamflow because of high antecedent evapotranspiration. Estimates of inflow and outflow of the Zekiah Swamp Run basin above Route 6 during the 1984 water year include: Precipitation, 50.21 in; stream outflow, 20.10 in; shallow groundwater underflow, 0.1 in; stream outflow, 20.10 in; shallow groundwater underflow, 0.1 in; and evapotranspiration, 33 in. A streamflow budget of a 5.1 mi area of the valley of Zekiah Swamp Run between Routes 5 and 6, during the April 1984 survey and a loss of almost 5 cu ft during the July 1983 survey. (Author 's abstract)
Henriksen, James A.; Heasley, John; Kennen, Jonathan G.; Nieswand, Steven
2006-01-01
Applying the Hydroecological Integrity Assessment Process involves four steps: (1) a hydrologic classification of relatively unmodified streams in a geographic area using long-term gage records and 171 ecologically relevant indices; (2) the identification of statistically significant, nonredundant, hydroecologically relevant indices associated with the five major flow components for each stream class; and (3) the development of a stream-classification tool and a hydrologic assessment tool. Four computer software tools have been developed.
Magnitude and Frequency of Floods on Nontidal Streams in Delaware
Ries, Kernell G.; Dillow, Jonathan J.A.
2006-01-01
Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious area, basin storage, housing density, soil type A, and mean basin slope as explanatory variables, and have average standard errors of prediction ranging from 28 to 72 percent. Additional regression equations that incorporate drainage area and housing density as explanatory variables are presented for use in defining the effects of urbanization on peak-flow estimates throughout Delaware for the 2-year through 500-year recurrence intervals, along with suggestions for their appropriate use in predicting development-affected peak flows. Additional topics associated with the analyses performed during the study are also discussed, including: (1) the availability and description of more than 30 basin and climatic characteristics considered during the development of the regional regression equations; (2) the treatment of increasing trends in the annual peak-flow series identified at 18 gaged sites, with respect to their relations with maximum 24-hour precipitation and housing density, and their use in the regional analysis; (3) calculation of the 90-percent confidence interval associated with peak-flow estimates from the regional regression equations; and (4) a comparison of flood-frequency estimates at gages used in a previous study, highlighting the effects of various improved analytical techniques.
Wetherbee, Gregory A.; Latysh, Natalie E.; Chesney, Tanya A.
2010-01-01
The U.S. Geological Survey (USGS) used six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2007-08. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples, and a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL), Mercury (Hg) Analytical Laboratory (HAL), and 12 other participating laboratories. A blind-audit program was also implemented for the MDN to evaluate analytical bias in HAL total Hg concentration data. A co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and prototype precipitation collectors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the U.S. NADP data-quality objectives continued to be achieved during 2007-08. Results also indicate that retrofit of the NADP networks with the new E-gages is not likely to create step-function type shifts in NADP precipitation-depth records, except for sites where annual precipitation depth is dominated by snow because the E-gages tend to catch more snow than the original NADP rain gages. Evaluation of prototype precipitation collectors revealed no difference in sample volumes and analyte concentrations between the original NADP collectors and modified, deep-bucket collectors, but the Yankee Environmental Systems, Inc. (YES) collector obtained samples of significantly higher volumes and analyte concentrations than the standard NADP collector.
Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.
Near real time water resources data for river basin management
NASA Technical Reports Server (NTRS)
Paulson, R. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.
Water Resources Data for Alaska, Water Year 1996
Linn, K.R.; Shaw, S.K.; Swanner, W.C.; Rickman, R.L.; Schellekens, M.F.
1997-01-01
Water resources data for the 1996 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 85 gaging stations; stage or contents only at 5 gaging stations; water quality at 19 gaging stations; and water levels for 49 observation wells. Also included are data for 56 crest-stage partial-record stations and 2 lakes. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.
Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.
1998-01-01
Water-resources data for the 1997 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 151 gaging stations and 16 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 23 streamflow-gaging stations and 10 partialrecord stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Califomia.
Pope, G.L.; Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.
2004-01-01
Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 193 gaging stations and 11 crest-stage partial-record stations, stage and contents for 22 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 12 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Agajanian, J.; Rockwell, G.L.; Anderson, S.W.; Pope, G.L.
2002-01-01
Water-resources data for the 2001 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 180 gaging stations and 13 crest-stage partial-record stations, stage and contents for 20 lakes and reservoirs, gage-height records for 2 stations, water quality for 37 streamflow-gaging stations and 2 partial-record stations, and precipitation data for 3 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Rockwell, G.L.; Pope, G.L.; Agajanian, J.; Caldwell, L.A.
2003-01-01
Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 188 gaging stations and 10 crest-stage partial-record stations, stage and contents for 19 lakes and reservoirs, gage-height records for 2 stations, water quality for 39 streamflow-gaging stations and 11 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.; Pope, G.L.
2005-01-01
Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 195 gaging stations and 10 crest-stage partial-record stations, stage and contents for 25 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 7 partial-record stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Agajanian, J.; Rockwell, G.L.; Hayes, P.D.; Anderson, S.W.
1999-01-01
Water-resources data for the 1998 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 157 gaging stations and 13 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage-height records for 1 station, water quality for 22 streamflow-gaging stations and 14 partialrecord stations, and precipitation data for 3 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Rockwell, G.L.; Hayes, P.D.; Agajanian, J.A.
1997-01-01
Water-resources data for the 1996 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 149 gaging stations and 6 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 19 streamflow-gaging stations and 17 partial record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Anderson, S.W.; Agajanian, J.; Rockwell, G.L.
2001-01-01
Water-resources data for the 2000 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 175 gaging stations and 13 crest-stage partial-record stations, stage and contents for 20 lakes and reservoirs, gage-height records for 2 stations, water quality for 27 streamflow-gaging stations and 3 partial-record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Water Resources Data, Alaska, Water Year 2000
Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.
2001-01-01
Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.
Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Kitchens, Wiley M.
2006-01-01
The Savannah Harbor is one of the busiest ports on the East Coast of the United States and is located downstream from the Savannah National Wildlife Refuge, which is one of the Nation?s largest freshwater tidal marshes. The Georgia Ports Authority and the U.S. Army Corps of Engineers funded hydrodynamic and ecological studies to evaluate the potential effects of a proposed deepening of Savannah Harbor as part of the Environmental Impact Statement. These studies included a three-dimensional (3D) model of the Savannah River estuary system, which was developed to simulate changes in water levels and salinity in the system in response to geometry changes as a result of the deepening of Savannah Harbor, and a marsh-succession model that predicts plant distribution in the tidal marshes in response to changes in the water-level and salinity conditions in the marsh. Beginning in May 2001, the U.S. Geological Survey entered into cooperative agreements with the Georgia Ports Authority to develop empirical models to simulate the water level and salinity of the rivers and tidal marshes in the vicinity of the Savannah National Wildlife Refuge and to link the 3D hydrodynamic river-estuary model and the marsh-succession model. For the development of these models, many different databases were created that describe the complexity and behaviors of the estuary. The U.S. Geological Survey has maintained a network of continuous streamflow, water-level, and specific-conductance (field measurement to compute salinity) river gages in the study area since the 1980s and a network of water-level and salinity marsh gages in the study area since 1999. The Georgia Ports Authority collected water-level and salinity data during summer 1997 and 1999 and collected continuous water-level and salinity data in the marsh and connecting tidal creeks from 1999 to 2002. Most of the databases comprise time series that differ by variable type, periods of record, measurement frequency, location, and reliability. Understanding freshwater inflows, tidal water levels, and specific conductance in the rivers and marshes is critical to enhancing the predictive capabilities of a successful marsh succession model. Data-mining techniques, including artificial neural network (ANN) models, were applied to address various needs of the ecology study and to integrate the riverine predictions from the 3D model to the marsh-succession model. ANN models were developed to simulate riverine water levels and specific conductance in the vicinity of the tidal marshes for the full range of historical conditions using data from the river gaging networks. ANN models were also developed to simulate the marsh water levels and pore-water salinities using data from the marsh gaging networks. Using the marsh ANN models, the continuous marsh network was hindcasted to be concurrent with the long-term riverine network. The hindcasted data allow ecologists to compute hydrologic parameters?such as hydroperiods and exposure frequency?to help analyze historical vegetation data. To integrate the 3D hydrodynamic model, the marsh-succession model, and various time-series databases, a decision support system (DSS) was developed to support the various needs of regulatory and scientific stakeholders. The DSS required the development of a spreadsheet application that integrates the database, 3D hydrodynamic model output, and ANN riverine and marsh models into a single package that is easy to use and can be readily disseminated. The DSS allows users to evaluate water-level and salinity response for different hydrologic conditions. Savannah River streamflows can be controlled by the user as constant flow, a percentage of historical flows, a percentile daily flow hydrograph, or as a user-specified hydrograph. The DSS can also use output from the 3D model at stream gages near the Savannah National Wildlife Refuge to simulate the effects in the tidal marshes. The DSS is distributed with a two-dimensional (
Differences between nipher and slter shielded rain gages at two Colorado deposition monitoring sites
Bigelow, David S.; Denning, A. Scott
1990-01-01
In the last decade the United States and Canada have made significant progress in establishing spatial ad temporal estimates of atmospheric deposition throughout North America. Fundamental to the wet-deposition portion of these estimates is the accurate and precise measurement of precipitation amount. Goodison and others (I-3) have reported on a new type of shielded snow gage known as the Canadian MSC Nipher shielded snow gage. Because this shielded snow gage has been shown to be superior to other precipitation gages for the estimation of snowfall amount, its design was adapted to the Universal Belfort precipitation gage (4), the dominant precipitation gage used at deposition monitoring sites in the United States. Favorable results taken from monitoring sites using this modified Nipher shielded snow gage (3-6) have prompted the U.S. Environmental Protection Agency and the Electric Power Research Institute to adopt the Nipher shielded Belfort gage as a standard piece of equipment in the Acid MODES and Operational Evaluation Network (OEN) monitoring programs and to propose that is be included as a standard snow gage in other North American deposition monitoring programs. This communication details preliminary results from two of nine NADP/NTN deposition monitoring sites selected by the Environmental Protection Agency to compare Nipher shielded Belfort precipitation gage volumes to volumes obtained from the standard Belfort gage used in the NADP/NTN monitoring program.
Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water
Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.
2003-01-01
Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.
Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water
Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.
2004-01-01
Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.
Water resources data--North Dakota water year 2005, Volume 1. Surface water
Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.
2006-01-01
Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.
Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water
Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.
2002-01-01
Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.
In Brief: Online database for instantaneous streamflow data
NASA Astrophysics Data System (ADS)
Showstack, Randy
2007-11-01
Access to U.S. Geological Survey (USGS) historical instantaneous streamflow discharge data, dating from around 1990, is now available online through the Instantaneous Data Archive (IDA), the USGS announced on 14 November. In this new system, users can find streamflow information reported at the time intervals at which it is collected, typically 15-minute to hourly intervals. Although instantaneous data have been available for many years, they were not accessible through the Internet. Robert Hirsch, USGS Associate Director of Water, said, ``A user-friendly archive of historical instantaneous streamflow data is important to many different users for such things as floodplain mapping, flood modeling, and estimating pollutant transport.''The site currently has about 1.5 billion instantaneous data values from 5500 stream gages in 26 states. The number of states and stream gages with data will continue to increase, according to the USGS. For more information, visit the Web site: http://ida.water.usgs.gov/ida/.
Water Resources Data, West Virginia, Water Year 2003
Ward, S.M.; Rosier, M.T.; Crosby, G.R.
2004-01-01
Water-resources data for the 2003 water year for West Virginia consists of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 70 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 16 crest-stage partial-record stations; stage records for 6 detention reservoirs; water-quality records for 2 stations; and water-level records for 8 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water data were collected at various sites, not involved in the systematic data-collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.
Water resources data-West Virginia, water year 2004
Ward, S.M.; Rosier, M.T.; Crosby, G.R.
2005-01-01
Water-resources data for the 2004 water year for West Virginia consist of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 17 crest-stage partial-record stations; stage records for 14 detention reservoirs; water-quality records for 2 stations; and water-level records for 10 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water-quality data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.
Miscellaneous streamflow measurements in the State of Washington, January 1961 to September 1985
Williams, John R.; Riis, S.A.
1989-01-01
This report is a compilation of previously published miscellaneous streamflow measurements made in Washington State by the U.S. Geological Survey between January 1961 and September 1985. It is a supplement to a volume of similar data for the period 1890 to January 1961. The data include stream name and stream to which it is tributary, latitude and longitude, county code, hydrologic unit code, land-line location, drainage area, and measurement dates and discharges. In general, the data sites are not at gaging stations; however, some data are given for gaging station sites during periods when the stations were not in operation. All data in this report have been entered into a computerized data base that includes the data for the period 1890 to January 1961. The data can be retrieved in a variety of ways, such as by county, by hydrologic unit code, by river basin , or by size of drainage area. (USGS)
Sando, Steven K.; McCarthy, Peter M.; Sando, Roy; Dutton, DeAnn M.
2016-04-05
The two low-elevation gaging stations in eastern Montana (Poplar River at international boundary [gaging station 06178000] and Powder River at Moorhead, Montana [gaging station 06324500]) had considerable changes in annual-peakflow characteristics after the mid-1970s, which might provide evidence of potential nonstationarity in the peak-flow records. The two low-elevation gaging stations that have potential nonstationarity are located in drainage basins that are strongly affected by agricultural activities that potentially affect the hydrologic regimes. Primary agricultural activities that might alter natural hydrologic conditions include construction of small impoundments (primarily for stock-watering purposes) and irrigation diversions. Temporal variability in these activities might contribute to the potential nonstationarity issues. Changes in climatic characteristics after the mid-1970s also possibly contribute to the potential nonstationarity issues. Lack of considerable indication of potential nonstationarity in annual peak flow for the other long-term gaging stations in this study might indicate that climatic changes have been more pronounced with respect to effects on peak flows in low elevation areas in eastern Montana than in areas represented by the other long-term gaging stations. Another possibility is that climatic changes after the mid-1970s are exacerbated in low-elevation areas where small-impoundment development and potential effects of irrigation diversions might be more extensive.
Templin, W.E.; Smith, P.E.; DeBortoli, M.L.; Schluter, R.C.
1995-01-01
This report presents an evaluation of water- resources data-collection networks in the northern and coastal areas of Monterey County, California. This evaluation was done by the U.S. Geological Survey in cooperation with the Monterey County Flood Control and Water Conservation District to evaluate precipitation, surface water, and ground water monitoring networks. This report describes existing monitoring networks in the study areas and areas where possible additional data-collection is needed. During this study, 106 precipitation-quantity gages were identified, of which 84 were active; however, no precipitation-quality gages were identified in the study areas. The precipitaion-quantity gages were concentrated in the Monterey Peninsula and the northern part of the county. If the number of gages in these areas were reduced, coverage would still be adequate to meet most objectives; however, additional gages could improve coverage in the Tularcitos Creek basin and in the coastal areas south of Carmel to the county boundary. If collection of precipitation data were expanded to include monitoring precipitation quality, this expanded monitoring also could include monitoring precipitation for acid rain and pesticides. Eleven continuous streamflow-gaging stations were identified during this study, of which seven were active. To meet the objectives of the streamflow networks outlined in this report, the seven active stations would need to be continued, four stations would need to be reactivated, and an additional six streamflow-gaging stations would need to be added. Eleven stations that routinely were sampled for chemical constituents were identified in the study areas. Surface water in the lower Big Sur River basin was sampled annually for total coli- form and fecal coliform bacteria, and the Big Sur River was sampled monthly at 16 stations for these bacteria. Routine sampling for chemical constituents also was done in the Big Sur River basin. The Monterey County Flood Control and Water Conservation District maintained three networks in the study areas to measure ground-water levels: (1) the summer network, (2) the monthly network, and (3) the annual autumn network. The California American Water Company also did some ground-water-level monitoring in these areas. Well coverage for ground-water monitoring was dense in the seawater-intrusion area north of Moss Landing (possibly because of multiple overlying aquifers), but sparse in other parts of the study areas. During the study, 44 sections were identified as not monitored for ground-water levels. In an ideal ground-water-level network, wells would be evenly spaced, except where local conditions or correlations of wells make monitoring unnecessary. A total of 384 wells that monitor ground-water levels and/or ground-water quality were identified during this study. The Monterey County Flood Control and Water Conservation District sampled ground-water quality monthly during the irrigation season to monitor seawater intrusion. Once each year (during the summer), the wells in this network were monitored for chlorides, specific conductance, and nitrates. Additional samples were collected from each well once every 5 years for complete mineral analysis. The California Department of Health Services, the California American Water Company, the U.S. Army Health Service at Ford Ord, and the Monterey Peninsula Water Management District also monitored ground-water quality in wells in the study areas. Well coverage for the ground-water- quality networks was dense in the seawater- intrusion area north of Moss Landing, but sparse in the rest of the study areas. During this study, 54 sections were identified as not monitored for water quality.
Mapping connectivity damage in the case of Phineas Gage.
Van Horn, John Darrell; Irimia, Andrei; Torgerson, Carinna M; Chambers, Micah C; Kikinis, Ron; Toga, Arthur W
2012-01-01
White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a "tamping iron" was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25-36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized "average" brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient.
Water Resources Data--Nebraska, Water Year 2002
Hitch, D.E.; Hull, S.H.; Walczyk, V.C.
2002-01-01
The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.
Friday, John
1974-01-01
A crest-stage gaging station provides an excellent means for determining peak water-surface elevations at a selected location on a stream channel. When related to streamflow, these data provide hydrologists with a knowledge of the flood experience of a drainage basin. If an adequate flood history is known, it is possible to estimate the probable magnitude and frequency of floods likely to occur in that basin, and this information is a valuable asset to anyone who must estimate design floods at proposed drainage structures. However, most design problems involve estimating peak flows on ungaged streams. This is difficult because the rate of storm runoff is not the same in all basins due to the influence of various basin characteristics which can either assist or retard the runoff. The crest-stage gaging program in Oregon is designed to provide a representative sampliing of peak flows at basins having a wide range in characteristics. Then, after sufficient data are collected, a statistical analysis can be made which will provide a means for estimating design floods at ungaged sites on the basis of known basin characteristics.This report is one of a series presenting a compilation of peak data collected at 232 crest-stage gaging stations in Oregon. The collection and publication of these data are made possible through mutual funding by State and Federal agencies. The Geological Survey, the Oregon State Highway Commission, the Federal Highway Administration, and the Bureau of Land Management are currently supporting 160 active crest-stage stations in Oregon.
NASA Astrophysics Data System (ADS)
Praskievicz, S. J.; Luo, C.
2017-12-01
Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.
Flood of April 2-3, 2005, Neversink River Basin, New York
Suro, Thomas P.; Firda, Gary D.
2006-01-01
Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.
Relations for estimating unit-hydrograph parameters in New Mexico
Waltemeyer, Scott D.
2001-01-01
Data collected from 20 U.S. Geological Survey streamflow-gaging stations, most of which were operated in New Mexico between about 1969 and 1977, were used to define hydrograph characteristics for small New Mexico streams. Drainage areas for the gaging stations ranged from 0.23 to 18.2 square miles. Observed values for the hydrograph characteristics were determined for 87 of the most significant rainfall-runoff events at these gaging stations and were used to define regional regression relations with basin characteristics. Regional relations defined lag time (tl), time of concentration (tc), and time to peak (tp) as functions of stream length and basin shape. The regional equation developed for time of concentration for New Mexico agrees well with the Kirpich equation developed for Tennessee. The Kirpich equation is based on stream length and channel slope, whereas the New Mexico equation is based on stream length and basin shape. Both equations, however, underestimate tc when applied to larger basins where tc is greater than about 2 hours. The median ratio between tp and tc for the observed data was 0.66, which equals the value (0.67) recommended by the Natural Resources Conservation Service (formerly the Soil Conservation Service). However, the median ratio between tl and tc was only 0.42, whereas the commonly used ratio is 0.60. A relation also was developed between unit-peak discharge (qu) and time of concentration. The unit-peak discharge relation is similar in slope to the Natural Resources Conservation Service equation, but the equation developed for New Mexico in this study produces estimates of qu that range from two to three times as large as those estimated from the Natural Resources Conservation Service equation. An average value of 833 was determined for the empirical constant Kp. A default value of 484 has been used by the Natural Resources Conservation Service when site-specific data are not available. The use of a lower value of Kp in calculations generally results in a lower peak discharge. A relation between the empirical constant Kp and average channel slope was defined in this study. The predicted Kp values from the equation ranged from 530 to 964 for the 20 flood-hydrograph gaging stations. The standard error of estimate for the equation is 36 percent.
The Plate Boundary Observatory: Current status and plans for the next five years
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Feaux, K.; Meertens, C. M.; Mencin, D.; Miller, M.
2013-12-01
UNAVCO currently operates and maintains the NSF-funded Plate Boundary Observatory (PBO), which is the geodetic facility of EarthScope. PBO was designed and built from 2003 to 2008 with $100M investment from the NSF Major Research Equipment and Facilities Construction (MREFC) Program. UNAVCO operated and maintained PBO under a Cooperative Agreement (CA) with NSF from 2008 to 2013 and will continue PBO O&M for the next five years as part of the new Geodesy Advancing Geosciences and EarthScope (GAGE) Facility. PBO is largest continuous GPS and borehole geophysical network in the Americas, with 1100 continuous Global Positioning System (cGPS) sites, including several with multiple monuments, 79 boreholes, with 75 tensor strainmeters, 78 short-period, 3-component seismometers, and pore pressure sensors at 23 sites. PBO also includes 26 tiltmeters deployed at volcanoes in Alaska, Mt St Helens, and Yellowstone caldera and 6 long-baseline laser strainmeters. Surface meteorological sensors are collocated at 154 GPS sites. UNAVCO provides high-rate (1 Hz), low-latency (<1 s) GPS data streams (RT-GPS) from 382 stations in PBO. UNAVCO has delivered over 62 Tb of geodetic data to the EarthScope community since its PBO's inception in 2004. Over the past year, data return for the cGPS component of PBO is 98%, well above the data return metric of 85% set by the NSF, a result of efforts to upgrade power systems and communications infrastructure. In addition, PBO has set the standard for the design, construction, and operation of other multi-hazard networks across the Americas, including COCONet in the Caribbean region and TLALOCNet in Mexico. Funding to support ongoing PBO O&M has declined from FY2012 CA levels under the new GAGE Facility. The implications for data return and data quality metrics as well as replacement of aging PBO GPS instruments with GNSS-compatible systems are as yet unknown. A process to assess the cost of specific PBO components, data rates, enhanced capabilities, and method of delivery (i.e. continuous streams vs. archived files) relative to their scientific value will be proposed. In addition, options to partner with other federal mission-oriented agencies and possible commercial ventures also will be discussed. 1100 station PBO continuous GPS Network.
NASA Technical Reports Server (NTRS)
Pluhowski, E. J. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Land use data derived from high altitude photography and satellite imagery were studied for 49 basins in Delaware, and eastern Maryland and Virginia. Applying multiple regression techniques to a network of gaging stations monitoring runoff from 39 of the basins, demonstrated that land use data from high altitude photography provided an effective means of significantly improving estimates of stream flow. Forty stream flow characteristic equations for incorporating remotely sensed land use information, were compared with a control set of equations using map derived land cover. Significant improvement was detected in six equations where level 1 data was added and in five equations where level 2 information was utilized. Only four equations were improved significantly using land use data derived from LANDSAT imagery. Significant losses in accuracy due to the use of remotely sensed land use information were detected only in estimates of flood peaks. Losses in accuracy for flood peaks were probably due to land cover changes associated with temporal differences among the primary land use data sources.
Water Resources Data, New Jersey, Water Year 2002, Volume 1. Surface-Water Data
Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Spehar, A.B.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.; Holzer, G.K.
2003-01-01
Water-resources data for the 2002 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 93 gaging stations; tide summaries at 31 gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 104 crest-stage partial-record stations and stage-only at 31 tidal crest-stage gages. Locations of these sites are shown in figures 8-11. Additional water data were collected at various sites that are not part of the systematic data-collection program. Discharge measurements were made at 201 low-flow partial-record stations and 121 miscellaneous sites.
Water Resources Data, Louisiana, Water Year 2002
Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.
2003-01-01
Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.
Surface-Water Techniques: On Demand Training Opportunities
,
2007-01-01
The U.S. Geological Survey (USGS) has been collecting streamflow information since 1889 using nationally consistent methods. The need for such information was envisioned by John Wesley Powell as a key component for settlement of the arid western United States. Because of Powell?s vision the nation now has a rich streamflow data base that can be analyzed with confidence in both space and time. This means that data collected at a stream gaging station in Maine in 1903 can be compared to data collected in 2007 at the same gage in Maine or at a different gage in California. Such comparisons are becoming increasingly important as we work to assess climate variability and anthropogenic effects on streamflow. Training employees in proper and consistent techniques to collect and analyze streamflow data forms a cornerstone for maintaining the integrity of this rich data base.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Wang, Cheng; Wang, Ying; Gao, Xiong; Yu, Chen
2017-06-01
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLE confidence interval and thus more precise estimation by using the related information from regional gage stations. The Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.
Water resources data, Louisiana, water year 2004
Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montogmery, P.A.; Resweber, J.C.; Ross, Garron B.; Ward, Aub N.; Walters, David J.
2005-01-01
Water resources data for the 2004 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 77 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 60 surface-water stations (including 42 gaging stations) and 112 wells; and water levels for 304 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.
NASA Astrophysics Data System (ADS)
Smith, B. K.; Smith, J. A.; Baeck, M. L.; Miller, A. J.
2015-03-01
A physically based model of the 14 km2 Dead Run watershed in Baltimore County, MD was created to test the impacts of detention basin storage and soil storage on the hydrologic response of a small urban watershed during flood events. The Dead Run model was created using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) algorithms and validated using U.S. Geological Survey stream gaging observations for the Dead Run watershed and 5 subbasins over the largest 21 warm season flood events during 2008-2012. Removal of the model detention basins resulted in a median peak discharge increase of 11% and a detention efficiency of 0.5, which was defined as the percent decrease in peak discharge divided by percent detention controlled area. Detention efficiencies generally decreased with increasing basin size. We tested the efficiency of detention basin networks by focusing on the "drainage network order," akin to the stream order but including storm drains, streams, and culverts. The detention efficiency increased dramatically between first-order detention and second-order detention but was similar for second and third-order detention scenarios. Removal of the soil compacted layer, a common feature in urban soils, resulted in a 7% decrease in flood peak discharges. This decrease was statistically similar to the flood peak decrease caused by existing detention. Current soil storage within the Dead Run watershed decreased flood peak discharges by a median of 60%. Numerical experiment results suggested that detention basin storage and increased soil storage have the potential to substantially decrease flood peak discharges.
Raines, Timothy H.
1998-01-01
The potential extreme peak-discharge curves as related to contributing drainage area were estimated for each of the three hydrologic regions from measured extreme peaks of record at 186 sites with streamflow-gaging stations and from measured extreme peaks at 37 sites without streamflow-gaging stations in and near the Brazos River Basin. The potential extreme peak-discharge curves generally are similar for hydrologic regions 1 and 2, and the curve for region 3 consistently is below the curves for regions 1 and 2, which indicates smaller peak discharges.
Flood-frequency characteristics of Wisconsin streams
Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.
2017-05-22
Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.
Storage requirements for Georgia streams
Carter, Robert F.
1983-01-01
The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.
NASA Astrophysics Data System (ADS)
Renschler, Chris S.; Wang, Zhihao
2017-10-01
In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better understand and communicate the complex spatial-temporal dynamics, return periods and potential/actual consequences to decision-makers and the local population.
Evaluation of streamflow records in Rogue River basin, Oregon
Richardson, Donald
1952-01-01
This report presents data which are, in general, supplementary to those the surface-water investigations made in the past by the U. S. Geological Survey. Those have been essentially investigations of the operation of the many gaging stations on the Rogue River and tributaries. The data presented were obtained from a detailed field investigation of the various #actors resulting from man-made structures that influence the quantity or regimen of the flow at the gaging stations. These factors include diversions from the stream, bypass channels carrying water around the gaging stations, return flow from irrigation or other projects, storage and release of flood waters, and other similar factors. Where feasible, the location, size, effect upon the streamflow periods of use, method of operation,, and similar information are. given. The information is divided into sections corresponding to areas determined by the location of gaging stations. An index of streamflow records is included. A section dealing with the adequacy of available water-resources data and containing location and period of record also is included. This information is given in general terms only, and is portrayed mainly by maps and graphs.
Lagtime relations for urban streams in Georgia
Inman, Ernest J.
2000-01-01
Urban flood hydrographs are needed for the design of many highway drainage structures, embankments, and entrances to detention ponds. The three components that are needed to simulate urban flood hydrographs at ungaged sites are the design flood, the dimensionless hydrograph, and lagtime. The design flood and the dimensionless hydrograph have been presented in earlier studies for urban streams in Georgia. The objective of this study was to develop equations for estimating lagtime for urban streams in Georgia. Lagtimes were computed for 329 floods at 69 urban gaging stations in 11 cities in Georgia. These data were used to compute an average lagtime for each gaging station. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics, of which drainage area, slope, and impervious area were found to be significant. A qualitative variable was used to account for a geographical bias in flood-frequency region 4, a small area of southwestern Georgia. Information from this report can be used to simulate a flood hydrograph using a dimensionless hydrograph, the design flood, and the lagtime obtained from regression equations for any urban site with less than a 25-square-mile drainage area in Georgia.
53. View of unlined canal about 1,500' west of streamgaging ...
53. View of unlined canal about 1,500' west of stream-gaging station, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
51. View of sitdown cable car and cable way for ...
51. View of sit-down cable car and cable way for stream gaging, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
"Artificial intelligence" at streamgaging stations
R. B. Thomas
1985-01-01
Two types of problems are related to collecting hydrologic data at stream gaging stations. One includes the technical/logistical questions associated with measuring and transferring data for processing. Effort spent on these problems ranges from improving devices for sensing data to using electronic data loggers.
Oregon Hydrologic Landscapes: An Approach for Broadscale Hydrologic Classification
Gaged streams represent only a small percentage of watershed hydrologic conditions throughout the Unites States and globe, but there is a growing need for hydrologic classification systems that can serve as the foundation for broad-scale assessments of the hydrologic functions of...
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.; Roberts, J.W.
1990-01-01
Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)
Wang, Hongrui; Wang, Cheng; Wang, Ying; ...
2017-04-05
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLEmore » confidence interval and thus more precise estimation by using the related information from regional gage stations. As a result, the Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.« less
Water resources data, Ohio, water year 2003 : Volume 1. Ohio River basin excluding project data
Shindel, H.L.; Mangus, J.P.; Frum, S.R.
2004-01-01
Water-resources data for the 2003 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 138 gaging stations and various partial-record sites; water levels at 217 observation wells and 35 crest-stage gages; and water quality at 30 gaging stations, 34 observation wells, and no partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.
Shindel, H.L.; Mangus, J.P.; Frum, S.R.
2004-01-01
Water-resources data for the 2003 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 138 gaging stations and various partial-record sites; water levels at 217 observation wells and 35 crest-stage gages; and water quality at 30 gaging stations, 34 observation wells, and no partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.
Williams-Sether, Tara
2015-08-06
Annual peak-flow frequency data from 231 U.S. Geological Survey streamflow-gaging stations in North Dakota and parts of Montana, South Dakota, and Minnesota, with 10 or more years of unregulated peak-flow record, were used to develop regional regression equations for exceedance probabilities of 0.5, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 using generalized least-squares techniques. Updated peak-flow frequency estimates for 262 streamflow-gaging stations were developed using data through 2009 and log-Pearson Type III procedures outlined by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data. An average generalized skew coefficient was determined for three hydrologic zones in North Dakota. A StreamStats web application was developed to estimate basin characteristics for the regional regression equation analysis. Methods for estimating a weighted peak-flow frequency for gaged sites and ungaged sites are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockwell, G.L.; Hayes, P.D.; Agajanian, J.
1997-07-01
Water-resources data for the 1996 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 149 gaging stations and 6 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 19 streamflow-gaging stations and 17 partial-record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State andmore » Federal agencies in California.« less
Roland, Mark A.; Stuckey, Marla H.
2008-01-01
Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.
Lee, Karl K.; Risley, John C.
2002-03-19
Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.
Lorenz, D.L.; Payne, G.A.
1994-01-01
Data describing the physical characteristics of stream subbasins upstream from selected points on streams in the Pomme de Terre River Basin, located in west-central Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. The points on the stream include outlets of subbasins of at least 5 square miles, outfalls of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.
ESTIMATING STREAMFLOW AND ASSOCIATED HYDRAULIC GEOMETRY, THE MID-ATLANTIC REGION, USA
Methods to estimate streamflow and channel hydraulic geometry were developed for ungaged streams in the Mid-Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations located in the Appalachian Plateau, the Ridge and Valley, an...
Cost-effectiveness of the stream-gaging program in Iowa
Burmeister, I.L.; Lara, O.G.
1984-01-01
Data simulated by using the flow-routing and regression methods for stations in 6 river basins do not meet the accuracy required for their data use. Other basins will be studied later to determine if alternative methods to meet accuracy standards are feasible.
Water resources data, Kentucky. Water year 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClain, D.L.; Byrd, F.D.; Brown, A.C.
1991-12-31
Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at amore » regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.« less
Storm and flood of July 5, 1989, in northern New Castle County, Delaware
Paulachok, G.N.; Simmons, R.H.; Tallman, A.J.
1995-01-01
On July 5, 1989, intense rainfall from the remnants of Tropical Storm Allison caused severe flooding in northern New Castle County, Delaware. The flooding claimed three lives, and damage was estimated to be $5 million. Flood conditions were aggravated locally by rapid runoff from expansive urban areas. Record- breaking floods occurred on many streams in northern New Castle County. Peak discharges at three active, continuous-record streamflow-gaging stations, one active crest-stage station, and at two discontinued streamflow-gaging stations exceeded previously recorded maximums. Estimated recurrence intervals for peak flow at the three active, continuous-record streamflow stations exceeded 100 years. The U.S. Geological Survey conducted comprehensive post-flood surveys to determine peak water-surface elevations that occurred on affected streams and their tributaries during the flood of July 5, 1989. Detailed surveys were performed near bridge crossings to provide additional information on the extent and severity of the flooding and the effects of hydraulic constrictions on floodwaters.
Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington
Williams, John R.
1987-01-01
Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)
Templin, W.E.; Schluter, R.C.
1990-01-01
This report evaluates existing data collection networks and possible additional data collection to monitor quantity and quality of precipitation, surface water, and groundwater in the northern Salinas River drainage basin, California. Of the 34 precipitation stations identified, 20 were active and are concentrated in the northwestern part of the study area. No precipitation quality networks were identified, but possible data collection efforts include monitoring for acid rain and pesticides. Six of ten stream-gaging stations are active. Two surface water quality sites are sampled for suspended sediment, specific conductance, and chloride; one U.S. Geological Survey NASOAN site and one site operated by California Department of Water Resources make up the four active sampling locations; reactivation of 45 inactive surface water quality sites might help to achieve objectives described in the report. Three local networks measure water levels in 318 wells monthly, during peak irrigation, and at the end of the irrigation season. Water quality conditions are monitored in 379 wells; samples are collected in summer to monitor saltwater intrusion near Castroville and are also collected annually throughout the study area for analysis of chloride, specific conductance, and nitrate. An ideal baseline network would be an evenly spaced grid of index wells with a density of one per section. When baseline conditions are established, representative wells within the network could be monitored periodically according to specific data needs. (USGS)
Moyer, Douglas; Bennett, Mark
2007-01-01
The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS streamflow-gaging stations included in the areal extent of the model. These regression models were developed on the basis of data from stations in four physiographic provinces (Appalachian Plateaus, Valley and Ridge, Piedmont, and Coastal Plain) and were used to predict channel geometry for all 738 stream segments in the modeled area from associated basin drainage area. Manning's roughness coefficient for the channel and floodplain was represented in the XSECT program in two forms. First, all available field-estimated values of roughness were compiled for gaging stations in each physiographic province. The median of field-estimated values of channel and floodplain roughness for each physiographic province was applied to all respective stream segments. The second representation of Manning's roughness coefficient was to allow roughness to vary with channel depth. Roughness was estimated at each gaging station for each 1-foot depth interval. Median values of roughness were calculated for each 1-foot depth interval for all stations in each physiographic province. Channel and floodplain slope were determined for every stream segment in CBRWM using the USGS National Elevation Dataset. Function tables were generated by the XSECT program using values of channel geometry, channel and floodplain roughness, and channel and floodplain slope. The FTABLEs for each of the 290 USGS streamflow-gaging stations were evaluated by comparing observed discharge to the XSECT-derived discharge. Function table stream discharge derived using depth-varying roughness was found to be more representative of and statistically indistinguishable from values of observed stream discharge. Additionally, results of regression analysis showed that XSECT-derived discharge accounted for approximately 90 percent of the variability associated with observed discharge in each of the four physiographic provinces. The results of this study indicate that the methodology developed to generate FTABLEs for every s
Sando, Steven K.; Sando, Roy; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
The climatic conditions of the specific time period during which peak-flow data were collected at a given streamflow-gaging station (hereinafter referred to as gaging station) can substantially affect how well the peak-flow frequency (hereinafter referred to as frequency) results represent long-term hydrologic conditions. Differences in the timing of the periods of record can result in substantial inconsistencies in frequency estimates for hydrologically similar gaging stations. Potential for inconsistency increases with decreasing peak-flow record length. The representativeness of the frequency estimates for a short-term gaging station can be adjusted by various methods including weighting the at-site results in association with frequency estimates from regional regression equations (RREs) by using the Weighted Independent Estimates (WIE) program. Also, for gaging stations that cannot be adjusted by using the WIE program because of regulation or drainage areas too large for application of RREs, frequency estimates might be improved by using record extension procedures, including a mixed-station analysis using the maintenance of variance type I (MOVE.1) procedure. The U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources and Conservation, completed a study to provide adjusted frequency estimates for selected gaging stations through water year 2011.The purpose of Chapter D of this Scientific Investigations Report is to present adjusted frequency estimates for 504 selected streamflow-gaging stations in or near Montana based on data through water year 2011. Estimates of peak-flow magnitudes for the 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to the 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.The at-site frequency estimates were adjusted by weighting with frequency estimates from RREs using the WIE program for 438 selected gaging stations in Montana. These 438 selected gaging stations (1) had periods of record less than or equal to 40 years, (2) represented unregulated or minor regulation conditions, and (3) had drainage areas less than about 2,750 square miles.The weighted-average frequency estimates obtained by weighting with RREs generally are considered to provide improved frequency estimates. In some cases, there are substantial differences among the at-site frequency estimates, the regression-equation frequency estimates, and the weighted-average frequency estimates. In these cases, thoughtful consideration should be applied when selecting the appropriate frequency estimate. Some factors that might be considered when selecting the appropriate frequency estimate include (1) whether the specific gaging station has peak-flow characteristics that distinguish it from most other gaging stations used in developing the RREs for the hydrologic region; and (2) the length of the peak-flow record and the general climatic characteristics during the period when the peak-flow data were collected. For critical structure-design applications, a conservative approach would be to select the higher of the at-site frequency estimate and the weighted-average frequency estimate.The mixed-station MOVE.1 procedure generally was applied in cases where three or more gaging stations were located on the same large river and some of the gaging stations could not be adjusted using the weighted-average method because of regulation or drainage areas too large for application of RREs. The mixed-station MOVE.1 procedure was applied to 66 selected gaging stations on 19 large rivers.The general approach for using mixed-station record extension procedures to adjust at-site frequencies involved (1) determining appropriate base periods for the gaging stations on the large rivers, (2) synthesizing peak-flow data for the gaging stations with incomplete peak-flow records during the base periods by using the mixed-station MOVE.1 procedure, and (3) conducting frequency analysis on the combined recorded and synthesized peak-flow data for each gaging station. Frequency estimates for the combined recorded and synthesized datasets for 66 gaging stations with incomplete peak-flow records during the base periods are presented. The uncertainties in the mixed-station record extension results are difficult to directly quantify; thus, it is important to understand the intended use of the estimated frequencies based on analysis of the combined recorded and synthesized datasets. The estimated frequencies are considered general estimates of frequency relations among gaging stations on the same stream channel that might be expected if the gaging stations had been gaged during the same long-term base period. However, because the mixed-station record extension procedures involve secondary statistical analysis with accompanying errors, the uncertainty of the frequency estimates is larger than would be obtained by collecting systematic records for the same number of years in the base period.
Stamey, Timothy C.
2001-01-01
In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.
Periodic water- and air-temperature records for Utah streams, 1966-70
Whitaker, G.L.
1971-01-01
Since 1967, all Geological Survey hydrographers have been instructed to observe and record the water and air temperatures at times when water-discharge measurements were being made at stream-gaging stations in Utah. The frequency of these observations generally varies from I to 5 weeks, depending upon the magnitude of the stream flow.This report summarizes the periodic water and air temperatures that have been recorded in Utah since that effort began. This information may be of value to individuals or agencies concerned with thermal pollution of streams, or with enforcement of water-quality standards.A compilation of all daily water-temperature records recorded for streams in Utah by the U. S. Geological Survey during the period 1944-68 is contained in Utah Basic-Data Release No. 19.
Daamen, Ruby C.; Edwin A. Roehl, Jr.; Conrads, Paul
2010-01-01
A technology often used for industrial applications is “inferential sensor.” Rather than installing a redundant sensor to measure a process, such as an additional waterlevel gage, an inferential sensor, or virtual sensor, is developed that estimates the processes measured by the physical sensor. The advantage of an inferential sensor is that it provides a redundant signal to the sensor in the field but without exposure to environmental threats. In the event that a gage does malfunction, the inferential sensor provides an estimate for the period of missing data. The inferential sensor also can be used in the quality assurance and quality control of the data. Inferential sensors for gages in the EDEN network are currently (2010) under development. The inferential sensors will be automated so that the real-time EDEN data will continuously be compared to the inferential sensor signal and digital reports of the status of the real-time data will be sent periodically to the appropriate support personnel. The development and application of inferential sensors is easily transferable to other real-time hydrologic monitoring networks.
DOT National Transportation Integrated Search
2017-03-01
Reliable estimates of the magnitude and frequency of floods are needed by Federal, regional, State, and local infrastructure designers and water-resource managers for the design of highway, road, and other bridge crossings of rivers, delineation of f...
D. G. Fox; H. C. Humphries; K. F. Zeller; B. H. Connell; G. L. Wooldridge
1994-01-01
GLEES is contained within the Snowy Range Observatory. This Observatory consists of many weather stations, precipitation monitors, and stream gages scattered throughout the Snowy Range. These sites have been operated by the Wyoming Water Research Center (WWRC) since 1968. Data from the sites are available from the WWRC and were last summarized by Wesche (1982).
The ALE/GAGE/AGAGE Network (DB1001)
Prinn, Ronald G. [MIT, Center for Global Change Science; Weiss, Ray F. [University of California, San Diego; Scripps Institution of Oceanography; Krummel, Paul B. [CSIRO Oceans and Atmosphere, Cape Grim; O'Doherty, Simon [University of Bristol, Barbados and Mace Head Stations; Fraser, Paul [CSIRO Oceans and Atmosphere; Muhle, Jens [UCSD Scripps Institution of Oceanography; Cape Matatula Station; Reimann, Stefan [Swiss Federal Laboratories for Materials Science and Research (EMPA); Jungfraujoch Station; Vollmer, Martin [Swiss Federal Laboratories for Materials Science and Research (EMPA); Jungfraujoch Station; Simmonds, Peter G. [University of Bristol, Atmospheric Chemistry Research Group; Mace Head Station; Malone, Michela [University of Urbino; Monte Cimone Station; Arduini, Jgor [University of Urbino; Monte Cimone Station; Lunder, Chris [Norwegian Institute for Air Research; Ny Alesund Station; Hermansen, Ove [Norwegian Inst. for Air Research (NILU), Kjeller (Norway); Ny Alesund Station; Schmidbauer, Norbert [Norwegian Inst. for Air Research (NILU), Kjeller (Norway); Global Network; Young, Dickon [University of Bristol; Ragged Point Station; Wang, Hsiang J. (Ray) [Geogia Institute of Technology, School of Earth and Atmospheric Sciences; Global Network; Huang, Jin; Rigby, Matthew [University of Bristol; Global Network; Harth, Chris [UCSD, Scripps Institutioon of Oceanography; Global Network; Salameh, Peter [UCSD, Scripps Institution of Oceanography; Global Network; Spain, Gerard [National University of Ireland; Global Network; Steele, Paul [CSIRO Oceans and Atmosphere; Global Network; Arnold, Tim; Kim, Jooil [UCSD, Scripps Institution of Oceanography; Global Network; Derek, Nada; mitrevski, Blagoj; Langenfelds, Ray
2008-01-01
In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. More information may be found at the AGAGE home page: http://agage.eas.gatech.edu/instruments-gcms-medusa.htm.
Cost-effectiveness of the streamflow-gaging program in Wyoming
Druse, S.A.; Wahl, K.L.
1988-01-01
This report documents the results of a cost-effectiveness study of the streamflow-gaging program in Wyoming. Regression analysis or hydrologic flow-routing techniques were considered for 24 combinations of stations from a 139-station network operated in 1984 to investigate suitability of techniques for simulating streamflow records. Only one station was determined to have sufficient accuracy in the regression analysis to consider discontinuance of the gage. The evaluation of the gaging-station network, which included the use of associated uncertainty in streamflow records, is limited to the nonwinter operation of the 47 stations operated by the Riverton Field Office of the U.S. Geological Survey. The current (1987) travel routes and measurement frequencies require a budget of $264,000 and result in an average standard error in streamflow records of 13.2%. Changes in routes and station visits using the same budget, could optimally reduce the standard error by 1.6%. Budgets evaluated ranged from $235,000 to $400,000. A $235,000 budget increased the optimal average standard error/station from 11.6 to 15.5%, and a $400,000 budget could reduce it to 6.6%. For all budgets considered, lost record accounts for about 40% of the average standard error. (USGS)
Methods for estimating magnitude and frequency of floods in Montana based on data through 1983
Omang, R.J.; Parrett, Charles; Hull, J.A.
1986-01-01
Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)
Sanocki, Christopher A.
1996-01-01
Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Hawk Creek-Yellow Medicine River Basin, located in southwestern Minnesota and eastern South Dakota are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, outlets of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.
Low-flow characteristics of Indiana streams
Fowler, K.K.; Wilson, J.T.
1996-01-01
Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.
ESTIMATING LOW-FLOW FREQUENCIES OF UNGAGED STREAMS IN NEW ENGLAND.
Wandle, S. William
1987-01-01
Equations to estimate low flows were developed using multiple-regression analysis with a sample of 48 river basins, which were selected from the U. S. Geological Survey's network of gaged river basins in Massachusetts, New Hampshire, Rhode Island, Vermont, and southwestern Maine. Low-flow characteristics are represented by the 7Q2 and 7Q10 (the annual minimum 7-day mean low flow at the 2- and 10-year recurrence intervals). These statistics for each of the 48 basins were determined from a low-flow frequency analysis of streamflow records for 1942-71, or from a graphical or mathematical relationship if the record did not cover this 30-year period. Estimators for the mean and variance of the 7-day low flows at the index and short-term sites were used for two stations where discharge measurements of base flow were available and for two sites where the graphical technique was unsatisfactory.
Low-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1993-08-01
Water resources data for the 1992 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River basins. Specifically, it contains discharge records for 85 continuous-record streamflow-gaging stations and 38 partial-record stations; elevation and contents records for 13 lakes and reservoirs; water-quality records for 12 streamflow-gaging stations and 48 ungaged streamsites; and water-level records for 25 observation wells.
The acoustic streamflow-measuring system on the Columbia River at The Dalles, Oregon
Smith, Winchell; Hubbard, Larry L.; Laenen, Antonius
1971-01-01
Installation of this sytem, which is the first application of an AVM (acoustic velocity meter) in a large natural channel, was completed in April 1969. It has been in continuous operation since that date. Performance has been satisfactory, and similar installations at other key points in the Columbia River basin are now under consideration. This paper covers the general theory behind acoustic velocity meters, tracing development from earlier concepts to the present commercially available system. Conclusions are that the AVM can now be considered as an operational instrument which permits accurate gaging of river discharge at many sites where conventional stream-gaging procedures have proved to be unreliable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.
1995-03-01
Water resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 143 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 19 streamflow-gaging stations and 2 partial-record stations; and (4) precipitation records for 8 stations.
Water resources data, North Carolina, water year 2001. Volume 1A: Surface-water records
Ragland, B.C.; Walters, D.A.; Cartano, G.D.; Taylor, J.E.
2002-01-01
Water-resources data for the 2001 water year for North Carolina consist of records of stage, discharge, water-quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground water levels and water-quality of ground-water. Volume 1 contains discharge records for 209 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 52 gaging stations; water quality for 101 gaging stations and 91 miscellaneous sites; continuous daily tide stage at 4 sites; and continuous precipitation at 98 sites. Volume 2 contains ground-water-level data from 136 observation wells and ground-water-quality data from 68 wells. Additional water data were collected at 84 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.
Water resources data, North Carolina, water year 2002. Volume 1B: Surface-water records
Ragland, B.C.; Barker, R.G.; Robinson, J.B.
2003-01-01
Water-resources data for the 2002 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 211 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 20 gaging stations; water quality for 52 gaging stations and 7 miscellaneous sites, and continuous water quality for 30 sites; and continuous precipitation at 109 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. Additional water data were collected at 85 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.
Saleh, Dina K.
2010-01-01
Statistical summaries of streamflow data for all long-term streamflow-gaging stations in the Tigris River and Euphrates River Basins in Iraq are presented in this report. The summaries for each streamflow-gaging station include (1) a station description, (2) a graph showing annual mean discharge for the period of record, (3) a table of extremes and statistics for monthly and annual mean discharge, (4) a graph showing monthly maximum, minimum, and mean discharge, (5) a table of monthly and annual mean discharges for the period of record, (6) a graph showing annual flow duration, (7) a table of monthly and annual flow duration, (8) a table of high-flow frequency data (maximum mean discharge for 3-, 7-, 15-, and 30-day periods for selected exceedance probabilities), and (9) a table of low-flow frequency data (minimum mean discharge for 3-, 7-, 15-, 30-, 60-, 90-, and 183-day periods for selected non-exceedance probabilities).
Messinger, Terence; Paybins, Katherine S.
2014-01-01
Correlation of flows at pairs of streamgages were evaluated using a Spearman’s rho correlation coefficient to better identify gages that can be used as index gages to estimate daily flow at ungaged stream sites in West Virginia. Much of West Virginia (77 percent) is within areas where Spearman’s rho for daily streamflow between streamgages on unregulated streams (unregulated streamgages) is greater than 0.9; most withdrawals from ungaged streams for shale gas well hydraulic fracturing are being made in these areas. Most of West Virginia (>99 percent) is within zones where Spearman’s rho between streamgages on unregulated streams is greater than 0.85. Withdrawals for hydraulic fracturing are made from ungaged streams in areas where Spearman’s rho between streamgages on unregulated streams is less than 0.9, but because spatial correlation is partly a function of the density of the streamgaging network, adding or reactivating several streamgages would be likely to result in correlations of 0.90 or higher in these areas. Seasonal differences in the strength and spatial extent of correlations of daily streamflows are great. The strongest correlations among streamgages are for fall, followed by spring, then winter. One possible explanation for the weak correlations for summer may be that precipitation and runoff associated with convective storms affect one basin and miss nearby basins. A comparison of correlation patterns during previously identified climatic periods shows that the strongest correlations occurred during 1963–69, a period of drought, and the weakest during 1970–79, a wet period. The apparent effect of frequent rain during 1970–79 overshadowed streamgage-network density, which was at its historic maximum in West Virginia at that time, so that the extent of areas with high correlation to at least one streamgage was smaller during 1970–79 than during 1963–69. Correlations for 1992 to 2011 were slightly weaker than those for 1963 to 1969. The relation between correlation and distance between basin centroids was determined to be stronger for streamgage pairs in the Ohio River Basin than for pairs in the Atlantic Slope River Basins, which in turn was stronger than the relation between pairs of streamgages split between the two major basins. Quantile regression equations were developed for these three comparisons to estimate the Spearman’s rho correlation coefficient for streamgage pairs using distance between basin centroids as a predictor variable. The equations can be used for streamgage network planning. For the Ohio River Basin, the distance between basin centroids at which 50 percent of streamgage pairs would exceed a Spearman’s rho of 0.95 is 9 miles. The distance between basin centroids at which 50 percent of streamgage pairs would exceed a Spearman’s rho of 0.90 is 25 miles, and the distance at which 50 percent of streamgage pairs would exceed a Spearman’s rho of 0.85 is 48 miles. For the Atlantic Slope River Basins, the distance between basin centroids at which 50 percent of streamgage pairs would exceed a Spearman’s rho of 0.95 is 1 mile. The distance between basin centroids at which 50 percent of streamgage pairs would exceed a Spearman’s rho of 0.90 is 13 miles, and the distance at which 50 percent of streamgage pairs would exceed a Spearman’s rho of 0.85 is 41 miles. For pairs of streamgages split between the two major basins, the regression equation gives a value of 0.84 for the correlation coefficient at zero miles. On maps of correlations, the shape of strongly correlated areas for streamgages in the Ohio River Basin is generally round. In the Valley and Ridge Physiographic Province, which generally coincides with the Atlantic Slope River Basins within the study area, areas strongly correlated with streamgages generally coincide with major valleys.
Surface waters of Kansas, 1919-1924
Kinnison, H.B.
1926-01-01
From 1906 to 1916 no stream-gaging investigations were made in Kansas, and the only records available for this period are those of river stages taken by the United States Weather Bureau, at a few selected stations, for use by the river forcast service. The floods of 1908, 1909 and 1915 occurred during this period.
Flood characteristics of streams in Owyhee County, Idaho
Riggs, H.C.; Harenberg, W.A.
1976-01-01
Channel-width measurements were used to estimate annual peaks with a recurrence interval of 10 years at 79 sites in Owyhee County, Idaho, and adjacent areas. These discharges and those from 33 gaging stations are plotted on a map of the area. The map will allow the user to interpolate between sites. (Woodard-USGS)
Lorenz, David L.; Sanocki, Chris A.; Kocian, Matthew J.
2010-01-01
Knowledge of the peak flow of floods of a given recurrence interval is essential for regulation and planning of water resources and for design of bridges, culverts, and dams along Minnesota's rivers and streams. Statistical techniques are needed to estimate peak flow at ungaged sites because long-term streamflow records are available at relatively few places. Because of the need to have up-to-date peak-flow frequency information in order to estimate peak flows at ungaged sites, the U.S. Geological Survey (USGS) conducted a peak-flow frequency study in cooperation with the Minnesota Department of Transportation and the Minnesota Pollution Control Agency. Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are presented for 330 streamflow-gaging stations in Minnesota and adjacent areas in Iowa and South Dakota based on data through water year 2005. The peak-flow frequency information was subsequently used in regression analyses to develop equations relating peak flows for selected recurrence intervals to various basin and climatic characteristics. Two statistically derived techniques-regional regression equation and region of influence regression-can be used to estimate peak flow on ungaged streams smaller than 3,000 square miles in Minnesota. Regional regression equations were developed for selected recurrence intervals in each of six regions in Minnesota: A (northwestern), B (north central and east central), C (northeastern), D (west central and south central), E (southwestern), and F (southeastern). The regression equations can be used to estimate peak flows at ungaged sites. The region of influence regression technique dynamically selects streamflow-gaging stations with characteristics similar to a site of interest. Thus, the region of influence regression technique allows use of a potentially unique set of gaging stations for estimating peak flow at each site of interest. Two methods of selecting streamflow-gaging stations, similarity and proximity, can be used for the region of influence regression technique. The regional regression equation technique is the preferred technique as an estimate of peak flow in all six regions for ungaged sites. The region of influence regression technique is not appropriate for regions C, E, and F because the interrelations of some characteristics of those regions do not agree with the interrelations throughout the rest of the State. Both the similarity and proximity methods for the region of influence technique can be used in the other regions (A, B, and D) to provide additional estimates of peak flow. The peak-flow-frequency estimates and basin characteristics for selected streamflow-gaging stations and regional peak-flow regression equations are included in this report.
Climate change and the detection of trends in annual runoff
McCabe, G.J.; Wolock, D.M.
1997-01-01
This study examines the statistical likelihood of detecting a trend in annual runoff given an assumed change in mean annual runoff, the underlying year-to-year variability in runoff, and serial correlation of annual runoff. Means, standard deviations, and lag-1 serial correlations of annual runoff were computed for 585 stream gages in the conterminous United States, and these statistics were used to compute the probability of detecting a prescribed trend in annual runoff. Assuming a linear 20% change in mean annual runoff over a 100 yr period and a significance level of 95%, the average probability of detecting a significant trend was 28% among the 585 stream gages. The largest probability of detecting a trend was in the northwestern U.S., the Great Lakes region, the northeastern U.S., the Appalachian Mountains, and parts of the northern Rocky Mountains. The smallest probability of trend detection was in the central and southwestern U.S., and in Florida. Low probabilities of trend detection were associated with low ratios of mean annual runoff to the standard deviation of annual runoff and with high lag-1 serial correlation in the data.
NASA Technical Reports Server (NTRS)
Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.
1984-01-01
Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.
Real-time streamflow conditions
Graczyk, David J.; Gebert, Warren A.
1996-01-01
Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov
Spatial analysis of storm depths from an Arizona raingage network
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.
1986-01-01
Eight years of summer rainstorm observations are analyzed by a dense network of 93 raingages operated by the U.S. Department of Agriculture, Agricultural Research Service, in the 150 km Walnut Gulch experimental catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon-to-noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storm days, the gage depths are interpolated onto a dense grid and the resulting random field analyzed to obtain moments, isohyetal plots, spatial correlation function, variance function, and the spatial distribution of storm depth.
Effects of hydraulic and geologic factors on streamflow of the Yakima River Basin, Washington
Kinnison, Hallard B.; Sceva, Jack E.
1963-01-01
The Yakima River basin, in south-central Washington, is the largest single river system entirely within the confines of the State. Its waters are the most extensively utilized of all the rivers in Washington. The river heads high on the eastern slope of the Cascade Mountains, flows for 180 miles in a generally southeast direction, and discharges into the Columbia River. The western part of the basin is a mountainous area formed by sedimentary, volcanic, and metamorphic rocks, which generally have a low capacity for storing and transmitting water. The eastern part of the basin is. formed by a thick sequence of lava flows that have folded into long ridges and troughs. Downwarped structural basins between many of the ridges are partly filled with younger sedimentary deposits, which at some places are many hundreds of feet thick. The Yakima River flows from structural basin to structural basin through narrow water gaps that have been eroded through the anticlinal ridges. Each basin is also a topographic basin and a ground-water subbasin. A gaging station will measure the total outflow of a drainage area only if it is located at the surface outlet of a ground-water subbasin and then only if the stream basin is nearly coextensive with the ground-water subbasin. Many gaging stations in the Yakima basin are so located. The geology, hydrology, size. and location of 25 ground-water subbasins are described. Since the settlement of the valley began, the development of the land and water resources have caused progressive changes in the natural regimen of the basin's runoff. These changes have resulted from diversion of water from the streams, the application of water on the land for irrigation, the storage and release of flood waters, the pumping of ground water, and other factors Irrigation in the Yakima basin is reported 'to have begun about 1864. In 1955 about 425,000 acres were under irrigation. During the past 60-odd years many gaging stations have been operated at different sites within the basin. Only stations in the upper reaches, such as those below Keechelus, Kachess, or Cle Elum Lakes, give discharge records which are an accurate measure of the natural outflow of the drainage area. Farther down, stream, as the utilization of water becomes more extensive, the records at a gaging station show the discharge passing a particular point, but they do not reflect the natural outflow of the basin. Large canals divert water for use on lands above a station or carry it around a station for irrigation downstream. The deep sedimentary deposits within subbasins and the overlying alluvial gravels permit downvalley movement of large subsurface flows which bypass the gaging stations, except in the near vicinity of the water gaps. At the water gaps ground water rises to the surface, becoming streamflow, and can be accurately measured. The location of gaging stations within each subbasin is important, therefore, in determining whether the flow measured represents the total downvalley outflow or whether it is merely the surface-water component. Surface and subsurface factors that may affect the discharge records at each gaging station in the Yakima River basin include a description of upstream diversions, surface return flows, bypass canals, storage reservoirs, subsurface bypass flows, ground-water withdrawals, and other items. The available data are not sufficiently complete to permit a quantitative determination of the total basin yield at most gaging stations. However, data on the existing bypass channels, such as canals and drainage ditches, and on related subsurface movement of water provide valuable information necessary to proper use and interpretation of the streamflow records.
Whetstone, B.H.
1982-01-01
A program to collect and analyze flood data from small streams in South Carolina was conducted from 1967-75, as a cooperative research project with the South Carolina Department of Highways and Public Transportation and the Federal Highway Administration. As a result of that program, a technique is presented for estimating the magnitude and frequency of floods on small streams in South Carolina with drainage areas ranging in size from 1 to 500 square miles. Peak-discharge data from 74 stream-gaging stations (25 small streams were synthesized, whereas 49 stations had long-term records) were used in multiple regression procedures to obtain equations for estimating magnitude of floods having recurrence intervals of 10, 25, 50, and 100 years on small natural streams. The significant independent variable was drainage area. Equations were developed for the three physiographic provinces of South Carolina (Coastal Plain, Piedmont, and Blue Ridge) and can be used for estimating floods on small streams. (USGS)
Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
Chapter C of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources, to provide an update of statewide peak-flow frequency analyses and results for Montana. The purpose of this report chapter is to present peak-flow frequency analyses and results for 725 streamflow-gaging stations in or near Montana based on data through water year 2011. The 725 streamflow-gaging stations included in this study represent nearly all streamflowgaging stations in Montana (plus some from adjacent states or Canadian Provinces) that have at least 10 years of peak-flow records through water year 2011. For 29 of the 725 streamflow-gaging stations, peak-flow frequency analyses and results are reported for both unregulated and regulated conditions. Thus, peak-flow frequency analyses and results are reported for a total of 754 analyses. Estimates of peak-flow magnitudes for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals.
Coffin, Robert; Grams, Susan C.; Cressler, Alan M.; Leeth, David C.
2001-01-01
Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins. To obtain a copy of the CD version of this report, you may call the U.S. Geological Survey office in Atlanta at (770) 903-9100, or send e-mail to request the publication. Please include your name and mailing address in your e-mail.
Channel-morphology data for the Tongue River and selected tributaries, southeastern Montana, 2001-02
Chase, Katherine J.
2004-01-01
Coal-bed methane exploration and production have begun within the Tongue River watershed in southeastern Montana. The development of coal-bed methane requires production of large volumes of ground water, some of which may be discharged to streams, potentially increasing stream discharge and sediment load. Changes in stream discharge or sediment load may result in changes to channel morphology through changes in erosion and vegetation. These changes might be subtle and difficult to detect without baseline data that indicate stream-channel conditions before extensive coal-bed methane development began. In order to provide this baseline channel-morphology data, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, collected channel-morphology data in 2001-02 to document baseline conditions for several reaches along the Tongue River and selected tributaries. This report presents channel-morphology data for five sites on the mainstem Tongue River and four sites on its tributaries. Bankfull, water-surface, and thalweg elevations, channel sections, and streambed-particle sizes were measured along reaches near streamflow-gaging stations. At each site, the channel was classified using methods described by Rosgen. For six sites, bankfull discharge was determined from the stage- discharge relation at the gage for the stage corresponding to the bankfull elevation. For three sites, the step-backwater computer model HEC-RAS was used to estimate bankfull discharge. Recurrence intervals for the bankfull discharge also were estimated for eight of the nine sites. Channel-morphology data for each site are presented in maps, tables, graphs, and photographs.
A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island
Barbaro, Jeffrey R.; Zarriello, Phillip J.
2007-01-01
A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological Survey cooperative streamflow-gaging network, and at seven partial-record stations installed in 2004 for this study. Because the model-calibration period preceded data collection at the partial-record stations, a continuous streamflow record was estimated at these stations by correlation with flows at nearby continuous-record stations to provide additional streamflow data for model calibration. Water-use information was compiled for 1996-2001 and included municipal and commercial/industrial withdrawals, private residential withdrawals, golf-course withdrawals, municipal wastewater-return flows, and on-site septic effluent return flows. Streamflow depletion was computed for all time-varying ground-water withdrawals prior to simulation. Water-use data were included in the model to represent the net effect of water use on simulated hydrographs. Consequently, the calibrated values of the hydrologic parameters better represent the hydrologic response of the basin to precipitation. The model was calibrated for 1997-2001 to coincide with the land-use and water-use data compiled for the study. Four long-term stations (Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island) that monitor flow at 3.3, 5.4, 19, and 88 percent of the total basin area, respectively, provided the primary model-calibration points. Hydrographs, scatter plots, and flow-duration curves of observed and simulated discharges, along with various model-fit statistics, indicated that the model performed well over a range of hydrologic conditions. For example, the total runoff volume for the calibration period simulated at the Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island streamflow-gaging stations differed from the observed runoff v
Wyoming Water Resources Data, Water Year 2002, Volume 2. Ground Water
Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.
2003-01-01
Water resources data for the 2002 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 156 gaging stations; water quality for 33 gaging stations and 34 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
Water Resources Data, Wyoming, Water Year 2001, Volume 1. Surface Water
Swanson, R.B.; Woodruff, R.E.; Laidlaw, G.A.; Watson, K.R.; Clark, M.L.
2002-01-01
Water resources data for the 2001 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 151 gaging stations, stage and contents for 12 lakes and reservoirs, and water quality for 33 gaging stations and 32 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water
Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.
2004-01-01
Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
Water resources data, Indiana, water year 1982
Miller, R.L.; Hoggatt, R.E.; Nell, G.E.
1983-01-01
Water resources data for the 1982 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 176 gaging stations, stage and contents for 9 lakes and reservoirs, releases from 8 flood control reservoirs, water quality for 26 gaging stations, and water levels for 87 observation wells. Also included are 71 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.
Water resources data, Indiana, water year 1983
Miller, R.L.; Hoggatt, R.E.; Nell, G.E.
1984-01-01
Water resources data for the 1983 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations, stage and contents for 9 lake and reservoirs, releases from 7 flood control reservoirs, water quality for 5 gaging stations, and water levels for 84 observation wells. Also included are 23 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.
Wyoming Water Resources Data, Water Year 2000, Volume 2. Ground Water
Mason, J.P.; Swanson, R.B.; Roberts, S.C.
2001-01-01
Water resources data for the 2000 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 141 gaging stations; stage and contents for 15 lakes and reservoirs; and water quality for 22 gaging stations and 21 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.
1993-09-01
Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 161 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 23 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 11 stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, J.R.; Hayes, P.D.; Agajanian, J.A.
1994-06-01
Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 156 streamflow-gaging stations, 12 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 17 streamflow-gaging stations and 6 partial-record stations; and (4) precipitation records for 10 stations.
Review of the hydrologic data-collection network in the St Joseph River basin, Indiana
Crompton, E.J.; Peters, J.G.; Miller, R.L.; Stewart, J.A.; Banaszak, K.J.; Shedlock, R.J.
1986-01-01
The St. Joseph River Basin data-collection network in the St. Joseph River for streamflow, lake, ground water, and climatic stations was reviewed. The network review included only the 1700 sq mi part of the basin in Indiana. The streamflow network includes 11 continuous-record gaging stations and one partial-record station. Based on areal distribution, lake effect , contributing drainage area, and flow-record ratio, six of these stations can be used to describe regional hydrology. Gaging stations on lakes are used to collect long-term lake-level data on which to base legal lake levels, and to monitor lake-level fluctuations after legal levels are established. More hydrogeologic data are needed for determining the degree to which grouhd water affects lake levels. The current groundwater network comprises 15 observation wells and has four purposes: (1) to determine the interaction between groundwater and lakes; (2) to measure changes in groundwater levels near irrigation wells; (3) to measure water levels in wells at special purpose sites; and (4) to measure long-term changes in water levels in areas not affected by pumping. Seven wells near three lakes have provided sufficient information for correlating water levels in wells and lakes but are not adequate to quantify the effect of groundwater on lake levels. Water levels in five observation wells located in the vicinity of intensive irrigation are not noticeably affected by seasonal withdrawals. The National Weather Sevice operates eight climatic stations in the basin primarily to characterize regional climatic conditions and to aid in flood forecasting. The network meets network-density guidelines established by the World Meterological Organization for collection of precipitation and evaporation data but not guidelines suggested by the National Weather Service for density of precipitation gages in areas of significant convective rainfalls. (Author 's abstract)
Surface water data at Los Alamos National Laboratory: 2009 water year
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, David; McCullough, Betsy
2010-05-01
The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.
Surface water data at Los Alamos National Laboratory: 2008 water year
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, David; Cata, Betsy; Kuyumjian, Gregory
2009-09-01
The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.
Measuring surface-water loss in Honouliuli Stream near the ‘Ewa Shaft, O‘ahu, Hawai‘i
Rosa, Sarah N.
2017-05-30
The Honolulu Board of Water Supply is currently concerned with the possibility of bacteria in the pumped water of the ‘Ewa Shaft (State well 3-2202-21). Groundwater from the ‘Ewa Shaft could potentially be used to meet future potable water needs in the ‘Ewa area on the island of O‘ahu. The source of the bacteria in the pumped water is unknown, although previous studies indicate that surface water may be lost to the subsurface near the site. The ‘Ewa Shaft consists of a vertical shaft, started near the south bank of Honouliuli Stream at an altitude of about 161 feet, and two horizontal infiltration tunnels near sea level. The shaft extracts groundwater from near the top of the freshwater lens in the Waipahu-Waiawa aquifer system within the greater Pearl Harbor Aquifer Sector, a designated Water Management Area.The surface-water losses were evaluated with continuous groundwater-level data from the ‘Ewa Shaft and a nearby monitoring well, continuous stream-discharge data from U.S. Geological Survey streamflow-gaging station 16212490 (Honouliuli Stream at H-1 Freeway near Waipahu), and seepage-run measurements in Honouliuli Stream and its tributary. During storms, discharge at the Honouliuli Stream gaging station increases and groundwater levels at ‘Ewa Shaft and a nearby monitoring well also increase. The concurrent increase in water levels at ‘Ewa Shaft and the nearby monitoring well during storms indicates that regional groundwater-level changes related to increased recharge, reduced withdrawals (due to a decrease in demand during periods of rainfall), or both may be occurring; although these data do not preclude the possibility of local recharge from Honouliuli Stream. Discharge measurements from two seepage runs indicate that surface water in the immediate area adjacent to ‘Ewa Shaft infiltrates into the streambed and may later reach the groundwater system developed by the ‘Ewa Shaft. The estimated seepage loss rates in the vicinity of ‘Ewa Shaft from the two seepage runs generally ranged from 0.27 to 1.78 million gallons per day per mile of stream reach; although higher seepage rates may occur during periods of higher discharge in Honouliuli Stream. A potential source of bacteria in ‘Ewa Shaft maybe related to seepage from Honouliuli Stream; however, other sources of bacteria were not studied and cannot be excluded.
Parameter Estimation for a Model of Space-Time Rainfall
NASA Astrophysics Data System (ADS)
Smith, James A.; Karr, Alan F.
1985-08-01
In this paper, parameter estimation procedures, based on data from a network of rainfall gages, are developed for a class of space-time rainfall models. The models, which are designed to represent the spatial distribution of daily rainfall, have three components, one that governs the temporal occurrence of storms, a second that distributes rain cells spatially for a given storm, and a third that determines the rainfall pattern within a rain cell. Maximum likelihood and method of moments procedures are developed. We illustrate that limitations on model structure are imposed by restricting data sources to rain gage networks. The estimation procedures are applied to a 240-mi2 (621 km2) catchment in the Potomac River basin.
Changes in streamflow characteristics in Wisconsin as related to precipitation and land use
Gebert, Warren A.; Garn, Herbert S.; Rose, William J.
2016-01-19
Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent for streams in the agriculture area and 27 percent for streams in the forested area. Increases in low flow for agriculture streams are attributed to changes in agricultural practices and land use as well as increased precipitation. The decrease in annual flood peak discharge with increased annual precipitation is less clear, but is attributed to increased infiltration from changes in agricultural practices and climatic changes. For future low-flow studies, the 1969–2008 period should be used to determine low-flow characteristics since it represents current (2014) conditions and was generally free of significant trends.
Paretti, Nicholas V.; Kennedy, Jeffrey R.; Turney, Lovina A.; Veilleux, Andrea G.
2014-01-01
The regional regression equations were integrated into the U.S. Geological Survey’s StreamStats program. The StreamStats program is a national map-based web application that allows the public to easily access published flood frequency and basin characteristic statistics. The interactive web application allows a user to select a point within a watershed (gaged or ungaged) and retrieve flood-frequency estimates derived from the current regional regression equations and geographic information system data within the selected basin. StreamStats provides users with an efficient and accurate means for retrieving the most up to date flood frequency and basin characteristic data. StreamStats is intended to provide consistent statistics, minimize user error, and reduce the need for large datasets and costly geographic information system software.
A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000
Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.
2004-01-01
The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a stream reach is based on a mass-balance approach and accounts for exchanges with (inputs from or losses to) ground-water systems. Two test examples are used to illustrate some of the capabilities of the SFR1 Package. The first test simulation was designed to illustrate how pumping of ground water from an aquifer connected to streams can affect streamflow, depth, width, and streambed conductance using the different options. The second test simulation was designed to illustrate solute transport through interconnected lakes, streams, and aquifers. Because of the need to examine time series results from the model simulations, the Gage Package first described in the LAK3 documentation was revised to include time series results of selected variables (streamflows, stream depth and width, streambed conductance, solute concentrations, and solute loads) for specified stream reaches. The mass-balance or continuity approach for routing flow and solutes through a stream network may not be applicable for all interactions between streams and aquifers. The SFR1 Package is best suited for modeling long-term changes (months to hundreds of years) in ground-water flow and solute concentrations using averaged flows in streams. The Package is not recommended for modeling the transient exchange of water between streams and aquifers when the objective is to examine short-term (minutes to days) effects caused by rapidly changing streamflows.
Low-flow characteristics of Indiana streams
Stewart, J.A.
1983-01-01
Knowledge of low-flow data for Indiana streams is essential to the planners and developers of water resources for municipal, industrial, and recreational uses in the State. Low-flow data for 219 continuous-record gaging stations through the 1978 water year and for some stations since then are presented in tables and curves. Flow-duration and low-flow-frequency data were estimated or determined for continuous-record stations having more than 10 years of record. In addition, low-flow-frequency data were estimated for 248 partial-record stations. Methods for estimating these data are included in the report. (USGS)
Flood profiles for lower Brooker Creek, west-central Florida
Murphy, W.R.
1978-01-01
Flood heights are computed for a range of recurrence intervals for a 12.6 mile reach of Brooker Creek, beginning at the mouth at Lake Tarpon. A Geological Survey step-backwater computer program, E431, was used in these analyses using: (1) Stream and valley cross-section geometry and roughness data; (2) Recurrence interval flood-peak discharges; (3) Recurrence interval starting elevations; (4) Gaging station stage-discharge relations. Flood heights may be plotted versus distance above stream mouth and connected to construct flood profiles. They may also be used to indicate areas of inundation on detailed topographic maps.
Drainage areas of the Guyandotte River basin, West Virginia
Mathes, M.V.
1977-01-01
This report, prepared in cooperation with the West Virginia Office of Federal-State Relations (now the Office of Economic and Community Development), lists in tabular form 435 drainage areas for basins within the Guyandotte River basin of West Virginia. Drainage areas are compiled for sites at the mouths of all streams having drainage areas of approximately five square miles or greater, for sites at U.S. Geological Survey gaging stations (past and present), and for other miscellaneous sites. Drainage areas are summed in a downstream direction to provide areas for main channel sites. The site or reference point of each basin can be located by stream miles measured upstream from the mouth of each stream, by county, by quadrangle, and by latitude and longitude.
Ishii, Audrey L.; Soong, David T.; Sharpe, Jennifer B.
2010-01-01
Illinois StreamStats (ILSS) is a Web-based application for computing selected basin characteristics and flood-peak quantiles based on the most recently (2010) published (Soong and others, 2004) regional flood-frequency equations at any rural stream location in Illinois. Limited streamflow statistics including general statistics, flow durations, and base flows also are available for U.S. Geological Survey (USGS) streamflow-gaging stations. ILSS can be accessed on the Web at http://streamstats.usgs.gov/ by selecting the State Applications hyperlink and choosing Illinois from the pull-down menu. ILSS was implemented for Illinois by obtaining and projecting ancillary geographic information system (GIS) coverages; populating the StreamStats database with streamflow-gaging station data; hydroprocessing the 30-meter digital elevation model (DEM) for Illinois to conform to streams represented in the National Hydrographic Dataset 1:100,000 stream coverage; and customizing the Web-based Extensible Markup Language (XML) programs for computing basin characteristics for Illinois. The basin characteristics computed by ILSS then were compared to the basin characteristics used in the published study, and adjustments were applied to the XML algorithms for slope and basin length. Testing of ILSS was accomplished by comparing flood quantiles computed by ILSS at a an approximately random sample of 170 streamflow-gaging stations computed by ILSS with the published flood quantile estimates. Differences between the log-transformed flood quantiles were not statistically significant at the 95-percent confidence level for the State as a whole, nor by the regions determined by each equation, except for region 1, in the northwest corner of the State. In region 1, the average difference in flood quantile estimates ranged from 3.76 percent for the 2-year flood quantile to 4.27 percent for the 500-year flood quantile. The total number of stations in region 1 was small (21) and the mean difference is not large (less than one-tenth of the average prediction error for the regression-equation estimates). The sensitivity of the flood-quantile estimates to differences in the computed basin characteristics are determined and presented in tables. A test of usage consistency was conducted by having at least 7 new users compute flood quantile estimates at 27 locations. The average maximum deviation of the estimate from the mode value at each site was 1.31 percent after four mislocated sites were removed. A comparison of manual 100-year flood-quantile computations with ILSS at 34 sites indicated no statistically significant difference. ILSS appears to be an accurate, reliable, and effective tool for flood-quantile estimates.
NASA Astrophysics Data System (ADS)
Owens, H.; Skaugset, A. E.
2012-12-01
Resident Coastal Cutthroat trout are ubiquitous in headwater streams across western Oregon. The federal Endangered Species Act lists coastal cutthroat trout as a species of concern and lists habitat modification due to forest management as a cause of population decline. Protection of cutthroat trout is a concern to natural resource managers, yet the dynamics of cutthroat trout populations are complex and poorly understood. Thus, identifying the factors that drive the dynamics of cutthroat trout populations is important to the management of forested headwater watersheds. This poster describes an interdisciplinary study to identify hydrologic determinants of annual abundance, age structure, and growth in resident Cutthroat trout in headwater streams of the western Cascades of southern Oregon. Discharge is a primary variable of interest because it affects habitat volume, stream velocity, channel hydraulics, water quality, channel geomorphology, bed-load stability, and resource availability. Discharge is also affected by forest management activities, specifically timber harvest. The objective of this project is to identify and quantify the influence streamflow has on the abundance of resident cutthroat trout in western Oregon. The study was a part of the Hinkle Creek Paired Watershed Study and took place in the foothills of the Cascade Mountains in the Umpqua River basin from 2004-2011. Streamflow and fish populations were measured in the streams of a 3rd order, 1,950 hectare watershed. The study design was a nested paired watershed study that allowed the investigation to occur at multiple spatial and temporal scales. The study watersheds supported harvest-regenerated stands of Douglas-fir (pseudotsuga menziesii) and are part of a larger study to investigate the environmental impacts of contemporary forest practices on fish-bearing headwater streams. Fish populations and channel habitat characteristics were measured throughout the stream network annually. Discharge was measured at eight gaging stations (two 3rd-order and six 2nd-order streams). Stream temperature was measured at 29 locations throughout the study period. Linear regression was used to model potential explanatory variables of discharge, temperature, and habitat characteristics to explain annual trout abundance, age structure, and growth.
Brown, David P.
1982-01-01
The average annual rainfall in the Manasota Basin is 53.7 inches , and annual evapotranspiration is about 39 inches. Annual runoff from gaged parts of the Basin ranges from about 13 to 17 inches per year. Streamflow in the upland areas diminishes rapidly following the end of the rainy season and approaches zero during extended dry periods. Generally, surface water is of good quality except in tidally affected, coastal areas. Its quality varies seasonally, generally becoming more mineralized during the dry season. The principal hydrogeologic units are the surficial aquifer, the upper confining beds and minor artesian aquifers, the Floridan acquifer, and the lower confining bed. The quality of ground water is generally good except in the western and southern parts where saltwater intrusion or incomplete flushing of residual seawater has occurred. Land-use changes and stream impoundments and diversions require reassessment of the type and use of data collected by the surface-water network. Such changes may require modification of existing sites and establishment of new ones. Development and completion of the monitoring plan could provide most of the data necessary to define the groundwater system. (USGS)
Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records
Howe, S.S.; Breton, P.L.; Chapman, M.J.
2005-01-01
Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.
Elizabeth T. Keppeler; Jack Lewis; Thomas E. Lisle
2003-01-01
Abstract - Caspar Creek Experimental Watersheds were established in 1962 to research the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of...
Accuracy in streamflow measurements on the Fernow Experimental Forest
James W. Hornbeck
1965-01-01
Measurement of streamflow from small watersheds on the Fernow Experimental Forest at Parsons, West Virginia was begun in 1951. Stream-gaging stations are now being operated on 9 watersheds ranging from 29 to 96 acres in size; and 91 watershed-years of record have been collected. To determine how accurately streamflow is being measured at these stations, several of the...
Surface Water Data at Los Alamos National Laboratory: 2002 Water Year
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.A. Shaull; D. Ortiz; M.R. Alexander
2003-03-03
The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.
Surface Water Data at Los Alamos National Laboratory 2006 Water Year
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.P. Romero, D. Ortiz, G. Kuyumjian
2007-08-01
The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.
Large rivers of the United States
Iseri, Kathleen T.; Langbein, Walter Basil
1974-01-01
Information on the flow of the 28 largest rivers in the United States is presented for the base periods 1931-60 and 1941-70. Drainage area, stream length, source, and mouth are included. Table 1 shows the average discharge at downstream gaging stations. Table 2 lists large rivers in order of average discharge at the mouth, based on the period 1941-70.
Water resources of the Cook Inlet Basin, Alaska
Freethey, Geoffrey W.; Scully, David R.
1980-01-01
Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodrigues-Iturbe, I.
1986-01-01
Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth.
Lotspeich, R. Russell
2009-01-01
Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull features in the Piedmont Physiographic Province in Virginia with drainage areas ranging from 0.29 to 111 square miles. All sites included in the development of the regional curves were located on streams with current or historical U.S. Geological Survey streamflow-gaging stations. These curves can be used to verify bankfull features identified in the field and bankfull stage for ungaged streams in non-urban areas.
Cheng, Chui Ling
2016-08-03
Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.
Water resources data West Virginia water wear 2001
Ward, S.M.; Taylor, B.C.; Crosby, G.R.
2002-01-01
Water-resources data for the 2001 water year for West Virginia consist of records of discharge and water quality of streams and water levels of observation wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 7 streamflow-gaging stations; annual maximum discharge at 18 crest-stage partial-record stations; water-quality records for 4 stations; and water-level records for 10 observation wells. Locations of these sites are shown on figures 4 and 5. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.
Water resources data, Kansas, water year 2004
Putnam, J.E.; Schneider, D.R.
2005-01-01
Water-resources data for the 2004 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 155 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 14 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 16 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 29 high-flow partial-record stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.
1995-01-01
Water resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 143 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 19 streamflow-gaging stations and 2 partial-record stations; and ( 4) precipitation records for 8 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Bowers, J.C.; Jensen, R.M.; Hoffman, E.B.
1991-01-01
Water resources data for the 1990 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 157 streamflow-gaging stations, 16 crest-stage partial-record streamflow stations, and 2miscellaneous measurement stations; stage and contents records for 16 lakes and reservoirs; water-quality records for 19 streamflow-gaging stations, 2 partial-record stations; and precipitation records for 13 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Agajanian, J.A.; Rockwell, G.L.; Hayes, P.D.
1996-01-01
Water resources data for the 1995 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 141 streamflow-gaging stations, 6 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 21 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Jensen, R.M.; Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.
1992-01-01
Water resources data for the 1991 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains dischrage records for 171 streamflow-gaging stations, 16 crest-stage partial-record streamflow stations, and 3 miscellaneous measurement stations; stage and contents records for 24 lakes and reservoirs; water-quality records for 23 streamflow-gaging stations, 4 partial-record stations; and precipitation records for 16 stations. These data represent that part of the National Water Data System operated by the U,S. Geological Survey and cooperating State and Federal agencies in California.
Blodgett, J.C.; Oltmann, R.N.; Poeschel, K.R.
1984-01-01
Daily mean and monthly discharges were estimated for 10 sites on the Carson and Truckee Rivers for periods of incomplete records and for tributary sites affected by reservoir regulation. On the basis of the hydrologic characteristics, stream-flow data for a water year were grouped by month or season for subsequent regression analysis. In most cases, simple linear regressions adequately defined a relation of streamflow between gaging stations, but in some instances a nonlinear relation for several months of the water year was derived. Statistical data are presented to indicate the reliability of the estimated streamflow data. Records of discharges including historical and estimated data for the gaging stations for the water years 1944-80 are presented. (USGS)
Evaluation of the streamflow-gaging network of Texas and a proposed core network
Slade, Raymond M.; Howard, Teresa; Anaya, Roberto
2001-01-01
The U.S. Geological Survey streamflowgaging network in Texas is operated as part of the National Streamgaging Program and is jointly funded by the Geological Survey and Federal, State, and local agencies. This report documents an evaluation of the existing (as of October 1, 1999) network with regard to four major objectives of streamflow data; and on the basis of that evaluation, proposes a core network of streamflowgaging stations that best meets those objectives. The objectives are (1) regionalization (estimate flows or flow characteristics at ungaged sites in 11 hydrologically similar regions), (2) major flow (obtain flow rates and volumes in large streams), (3) outflow from the State (account for streamflow leaving the State), and (4) streamflow conditions assessment (assess current conditions with regard to long-term data, and define temporal trends in flow). The network analysis resulted in a proposed core network of 263 stations. Of those 263 stations, 43 were discontinued as of October 1, 1999, and 15 were partial-record stations. Fifty-five of the proposed core-network stations meet two of the four major objectives, 16 stations meet three objectives, and 1 station meets all four. One-hundred eighty-five stations with a median record length of 33 years were selected to meet the regionalization objective. Ninety-two stations with a median record length of about 62 years were selected to meet the major-flow objective. Twenty-six stations with a median record length of 59 years were selected to meet the outflow from the State objective. Fifty stations with a median record length of 53 years were selected to meet the streamflow conditions assessment objective.
A national streamflow network gap analysis
Kiang, Julie E.; Stewart, David W.; Archfield, Stacey A.; Osborne, Emily B.; Eng, Ken
2013-01-01
The U.S. Geological Survey (USGS) conducted a gap analysis to evaluate how well the USGS streamgage network meets a variety of needs, focusing on the ability to calculate various statistics at locations that have streamgages (gaged) and that do not have streamgages (ungaged). This report presents the results of analysis to determine where there are gaps in the network of gaged locations, how accurately desired statistics can be calculated with a given length of record, and whether the current network allows for estimation of these statistics at ungaged locations. The analysis indicated that there is variability across the Nation’s streamflow data-collection network in terms of the spatial and temporal coverage of streamgages. In general, the Eastern United States has better coverage than the Western United States. The arid Southwestern United States, Alaska, and Hawaii were observed to have the poorest spatial coverage, using the dataset assembled for this study. Except in Hawaii, these areas also tended to have short streamflow records. Differences in hydrology lead to differences in the uncertainty of statistics calculated in different regions of the country. Arid and semiarid areas of the Central and Southwestern United States generally exhibited the highest levels of interannual variability in flow, leading to larger uncertainty in flow statistics. At ungaged locations, information can be transferred from nearby streamgages if there is sufficient similarity between the gaged watersheds and the ungaged watersheds of interest. Areas where streamgages exhibit high correlation are most likely to be suitable for this type of information transfer. The areas with the most highly correlated streamgages appear to coincide with mountainous areas of the United States. Lower correlations are found in the Central United States and coastal areas of the Southeastern United States. Information transfer from gaged basins to ungaged basins is also most likely to be successful when basin attributes show high similarity. At the scale of the analysis completed in this study, the attributes of basins upstream of USGS streamgages cover the full range of basin attributes observed at potential locations of interest fairly well. Some exceptions included very high or very low elevation areas and very arid areas.
Flood of July 12-13, 2004, Burlington and Camden Counties, South-Central New Jersey
Protz, Amy R.; Reed, Timothy J.
2006-01-01
Intense rainfall inundated south-central New Jersey on July 12-13, 2004, causing major flooding with heavy property, road, and bridge damage in Burlington and Camden Counties. Forty-five dams were topped or damaged, or failed completely. The affected areas were in the Rancocas Creek, Cooper River, and Pennsauken Creek Basins. The U.S. Geological Survey (USGS) documented peak stream elevations and flows at 56 selected sites within the affected area. With rainfall totals averaging more than 6 inches throughout the three basins, peak-of-record flood elevations and streamflows occurred at all but one USGS stream gage, where the previous record was tied. Flood-frequency recurrence-intervals ranged from 30 to greater than 100 years and maximum streamflow per square mile ranged from 13.9 to 263 cubic feet per second per square mile (ft3/s/mi2). Peak streamflow at USGS stream gages surrounding the affected basins are associated with considerably lower recurrence intervals and demonstrate the limited extent of the flood. A high tide of about 1 foot above monthly mean high tide did not contribute to high-water conditions. Low ground-water levels prior to the rainfall helped to mitigate flooding in the affected basins. Compared with historical floods in the Rancocas Creek Basin during 1938-40, the July 2004 flood had greater streamflow, but lower stream elevations. Property damage from the event was estimated at $50 million. Governor James E. McGreevy declared a State of Emergency in Burlington and Camden Counties on July 13, 2004. After assessment of the damage by the Federal Emergency Management Agency (FEMA), President George W. Bush declared Burlington and Camden Counties disaster areas on July 16, 2004.
Summary of records of surface waters of Texas, 1898-1937
Ellsworth, Clarence E.
1939-01-01
The first gaging station In Texas urns established on the Rio Grande at El Paso on May 10, 1889, under the provisions of the Act of Congress of October 2, 1888, which authorized the organization of the Irrigation Survey by the United States Geological Survey. A few miscellaneous measurements of streams In central Texas, between Del Rio and Austin, were made, by C. C. Babb of the Geological Survey in 1894, 1895, and 1896. In 1897 T. U. Taylor, professor of civil engineering at the University of Texas, at Austin, began a systematic study for the Geological Survey of as many of the principal streams as the limited funds would permit. In the same year the American section of the International Water Commission began collecting records of flow of the Rio Grande in Texas. Records for the Rio Grande and some of its tributaries from 1897 to 1913, inclusive, collected by that commission under the immediate direction of W. W. Follett, United States consulting engineer, are contained in Geological Survey Water-supply Paper 358. It was not until 1915, when the State Legislature appropriated funds for stream measurement investigations by the Texas Board of Water Engineers, that a substantial beginning toward the systematic collection of stream-flow records was made. The work has been continued and enlarged gradually so that records have been collected at about 230 stations in Texas. In September 1937 86 gaging stations were being maintained in Texas by the Geological Survey and the cooperating agencies. Many miscellaneous discharge measurements have been made at other points. The records collected by the Geological Survey from 1889 to 1937 are now scattered through more than 50 reports, many of which are out of print.
The USGS at Embudo, New Mexico: 125 years of systematic streamgaging in the United States
Gunn, Mark A.; Matherne, Anne Marie; Mason, Jr., Robert R.
2014-01-01
John Wesley Powell, second Director of the U.S. Geological Survey, had a vision for the Western United States. In the late 1800s, Powell explored the West as head of the Geographical and Geological Survey of the Rocky Mountain Region. He devoted a large part of “Report on the Lands of the Arid Region of the United States with a more detailed account of the land of Utah with maps,” his 1878 report to the General Land Office on the lands west of the 100th meridian, to the feasibility of “reclaiming” large portions of this arid land. Powell recognized that the availability of water was key to the wise settlement of the region. He proposed to inventory all streams in the West to evaluate the potential for irrigation. The essential first step was to gage the flows of the rivers and streams. A few cities in the Eastern United States had established primitive streamgages as early as the 1870s to acquire data needed for the design of their water supply systems. Their methods generally used constructed channels and dams to enable accurate gaging. These methods were not feasible in the West, and certainly not on the vast scale and extreme range of flows common to western streams. New, more flexible techniques were needed. A site was chosen where these methods could be worked out and developed in a practical setting.
Pugh, Aaron L.
2014-01-01
Users of streamflow information often require streamflow statistics and basin characteristics at various locations along a stream. The USGS periodically calculates and publishes streamflow statistics and basin characteristics for streamflowgaging stations and partial-record stations, but these data commonly are scattered among many reports that may or may not be readily available to the public. The USGS also provides and periodically updates regional analyses of streamflow statistics that include regression equations and other prediction methods for estimating statistics for ungaged and unregulated streams across the State. Use of these regional predictions for a stream can be complex and often requires the user to determine a number of basin characteristics that may require interpretation. Basin characteristics may include drainage area, classifiers for physical properties, climatic characteristics, and other inputs. Obtaining these input values for gaged and ungaged locations traditionally has been time consuming, subjective, and can lead to inconsistent results.
Colson, B.E.
1986-01-01
In 1964 the U.S. Geological Survey in Mississippi expanded the small stream gaging network for collection of rainfall and runoff data to 92 stations. To expedite availability of flood frequency information a rainfall-runoff model using available long-term rainfall data was calibrated to synthesize flood peaks. Results obtained from observed annual peak flow data for 51 sites having 16 yr to 30 yr of annual peaks are compared with the synthetic results. Graphical comparison of the 2, 5, 10, 25, 50, and 100-year flood discharges indicate good agreement. The root mean square error ranges from 27% to 38% and the synthetic record bias from -9% to -18% in comparison with the observed record. The reduced variance in the synthetic results is attributed to use of only four long-term rainfall records and model limitations. The root mean square error and bias is within the accuracy considered to be satisfactory. (Author 's abstract)
Surface-water hydrology of the Western New York Nuclear Service Center Cattaraugus County, New York
Kappel, W.M.; Harding, W.E.
1987-01-01
Precipitation data were collected from October 1980 through September 1983 from three recording gages at the Western New York Nuclear Service Center, and surface water data were collected at three continuous-record gaging stations and one partial-record gage on streams that drain a 0.7 sq km part of the site. Seepage from springs was measured periodically during the study. The data were used to identify runoff characteristics at the waste burial ground and the reprocessing plant area, 400 meters to the north. Preliminary water budgets for April 1982 through March 1983 were calculated to aid in the development of groundwater flow models to the two areas. Nearly 80% of the measured runoff from the burial ground area was storm runoff; the remaining 20% was base flow. In contrast, only 30% of the runoff leaving the reprocessing plant area was storm runoff, and 70% was base flow. This difference is attributed to soil composition. The burial ground soil consists of clayey silty till that limits infiltration and causes most precipitation to flow to local channels as direct runoff. In contrast, the reprocessing plant area is overlain by alluvial sand and gravel that allows rapid infiltration of precipitation and subsequent steady discharge from the water table to nearby stream channels and seepage faces. Measured total annual runoff and estimated evapotranspiration from the reprocessing plant area exceeded the precipitation by 35%, which suggests that the groundwater basin is larger than the surface water basin. The additional outflow probably includes underflow from bedrock upgradient from the plant, water leakage from plant facilities, and groundwater flow from adjacent basins. (Author 's abstract)
Baseline Characteristics of Jordan Creek, Juneau, Alaska
Host, Randy H.; Neal, Edward G.
2004-01-01
Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.
Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.
2005-01-01
Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period, the pumps underdischarged the tracer by 5.8-15.9 percent as compared to the initial pumping rate setting, which may explain some of the error in the tracer-dilution streamflow record as compared to current-meter streamflow record.
Streamflow losses along the Balcones Fault Zone, Nueces River basin, Texas
Land, L.F.; Boning, C.W.; Harmsen, Lynn; Reeves, R.D.
1983-01-01
Statistical evaluations of historical daily flow records for the streams that have gaging stations upstream and downstream from the recharge zone provided mathematical relationships that expressed downstream flow in terms of other significant parameters. For each stream, flow entering the recharge zone is most significant in defining downstream flow; for some streams, antecedent flows at the upstream site and ground-water levels are also significantly related to downstream flow. The analyses also determined the discharges required upstream from the recharge zone to sustain flow downstream from that zone. These discharges ranged from 355 cubic feet per second for the combined Frio and Dry Frio Rivers to 33 cubic feet per second for the Nueces River. The entire flows of lesser magnitude are generally lost to recharge to the aquifer.
Experimental measurements of unsteady turbulent boundary layers near separation
NASA Technical Reports Server (NTRS)
Simpson, R. L.
1982-01-01
Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.
Hydrologic and hydraulic analyses for the Black Fork Mohican River Basin in and near Shelby, Ohio
Huitger, Carrie A.; Ostheimer, Chad J.; Koltun, G.F.
2016-05-06
Hydrologic and hydraulic analyses were done for selected reaches of five streams in and near Shelby, Richland County, Ohio. The U.S. Geological Survey (USGS), in cooperation with the Muskingum Watershed Conservancy District, conducted these analyses on the Black Fork Mohican River and four tributaries: Seltzer Park Creek, Seltzer Park Tributary, Tuby Run, and West Branch. Drainage areas of the four stream reaches studied range from 0.51 to 60.3 square miles. The analyses included estimation of the 10-, 2-, 1-, and 0.2-percent annual-exceedance probability (AEP) flood-peak discharges using the USGS Ohio StreamStats application. Peak discharge estimates, along with cross-sectional and hydraulic structure geometries, and estimates of channel roughness coefficients were used as input to step-backwater models. The step-backwater water models were used to determine water-surface elevation profiles of four flood-peak discharges and a regulatory floodway. This study involved the installation of, and data collection at, a streamflow-gaging station (Black Fork Mohican River at Shelby, Ohio, 03129197), precipitation gage (Rain gage at Reservoir Number Two at Shelby, Ohio, 405209082393200), and seven submersible pressure transducers on six selected river reaches. Two precipitation-runoff models, one for the winter events and one for nonwinter events for the headwaters of the Black Fork Mohican River, were developed and calibrated using the data collected. With the exception of the runoff curve numbers, all other parameters used in the two precipitation-runoff models were identical. The Nash-Sutcliffe model efficiency coefficients were 0.737, 0.899, and 0.544 for the nonwinter events and 0.850 and 0.671 for the winter events. Both of the precipitation-runoff models underestimated the total volume of water, with residual runoff ranging from -0.27 inches to -1.53 inches. The results of this study can be used to assess possible mitigation options and define flood hazard areas that will contribute to the protection of life and property. This study could also assist emergency managers, community officials, and residents in determining when flooding may occur and planning evacuation routes during a flood.
Lenfest, L.W.
1987-01-01
Quantifying the recharge from ephemeral streams to alluvial and bedrock aquifers will help evaluate the effects of surface mining on alluvial valley floors in Wyoming. Two stream reaches were chosen for study in the Powder River basin. One reach was located along the North Fork Dry Fork Cheyenne River near Glenrock, Wyoming, and the other reach was located along Black Thunder Creek near Hampshire, Wyoming. The reach along the North Fork Dry Fork Cheyenne River was instrumented with 3 gaging stations to measure streamflow and with 6 observation wells to measure groundwater level fluctuations in alluvial and bedrock aquifers in response to streamflow. The 3 streamflow gaging stations were located within the 2.5-mi study reach to measure the approximate gain or loss of discharge along the reach. Computed streamflow losses ranged from 0.43 acre-ft/mi on July 9 , 1982, to 1.44 acre-ft/mi on August 9, 1982. The observation wells completed only in the alluvial aquifer were dry during flow in the North Fork Dry Fork Cheyenne River, whereas water levels in half of the observation wells completed in the bedrock aquifers or the alluvial and bedrock aquifers rose in response to flow in the North Fork Dry Fork Cheyenne River. Groundwater recharge on August 9, 1982, was calculated using a convolution technique using groundwater levels at the upstream site and was estimated to be 26.5 acre-ft/mi. The reach along Black Thunder Creek was instrumented with one gaging station to measure streamflow and with 4 observation wells to measure water level response in alluvial and bedrock aquifers to streamflow. Recharge to the alluvial aquifer from flow in Black Thunder Creek ranged from 3.56 to 12.4 acre-ft/mi. The recharge was estimated using the convolution technique using water level measurements in the observation wells completed in the alluvial aquifer. Water level measurements in the observation wells indicated water level rises in the alluvial and bedrock aquifers in response to flow in Black Thunder Creek. (Author 's abstract)
Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.
2006-01-01
Computation of bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at ungaged sites requires equations that relate bankfull discharge and channel dimensions to drainage-area at gaged sites. Bankfull-channel information commonly is needed for watershed assessments, stream channel classification, and the design of stream-restoration projects. Such equations are most accurate if they are derived on the basis of data from streams within a region of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in western New York (Region 7).Stream-survey data and discharge records from seven active and three inactive USGS streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and to bankfull channel width, depth, and cross-sectional area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 37.1*(drainage area, in square miles)0.765;(2) bankfull channel width, in feet = 10.8*(drainage area, in square miles)0.458;(3) bankfull channel depth, in feet = 1.47*(drainage area, in square miles)0.199; and(4) bankfull channel cross-sectional area, in square feet = 15.9*(drainage area, in square mile)0.656.The coefficients of determination (R2) for these four equations were 0.94, 0.89, 0.52, and 0.96, respectively. The high coefficients of determination for three of these equations (discharge, width, and cross-sectional area) indicate that much of the range in the variables was explained by the drainage area. The low coefficient of determination for the equation relating bankfull depth to drainage area, however, suggests that other factors also affected water depth. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.05 to 3.60 years; the mean recurrence interval was 2.13 years. The 10 surveyed streams were classified by Rosgen stream type; most were C- and E-type, with occasional B- and F-type cross sections. The equation (curve) for bankfull discharge for Region 7 was compared with those previously developed for four other hydrologic regions in New York State. The differences confirm that the hydraulic geometry of streams is affected by local climatic and physiographic conditions.
The U.S. Geological Survey's water resources program in New York
Wiltshire, Denise A.
1983-01-01
The U.S. Geological Survey performs hydrologic investigations throughout the United States to appraise the Nation's water resources. The Geological Survey began its water-resources investigations in New York in 1895. To meet the objectives of assessing New York's water resources, the Geological Survey (1) monitors the quantity and quality of surface and ground water, (2) conducts investigations of the occurrence, availability, and chemical quality of water in specific areas of the State, (3) develops methods and techniques of data-collection and interpretation, (4) provides scientific guidance to the research community, to Federal, State, and local governments, and to the public, and (5) disseminates data and results of research through reports, maps, news releases, conferences, and workshops. Many of the joint hydrologic investigations are performed by the Geological Survey in cooperation with State, county, and nonprofit organizations. The data collection network in New York includes nearly 200 gaging stations and 250 observation wells; chemical quality of water is measured at 260 sites. Data collected at these sites are published annually and are filed in the WATSTORE computer system. Some of the interpretive studies performed by the Geological Survey in New York include (1) determining the suitability of ground-water reservoirs for public-water supply in urban areas, (2) assessing geohydrologic impacts of leachate from hazardous waste sites on stream and ground-water quality, (3) evaluating the effects of precipitation quality and basin characteristics on streams and lakes, and (4) developing digital models of the hydrology of aquifers to simulate ground-water flow and the interaction between ground water and streams.
Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.
2005-01-01
Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
Water Resources Data, Kansas, Water Year 2001
Putnam, J.E.; Lacock, D.L.; Schneider, D.R.
2002-01-01
Water-resources data for the 2001 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 145 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 140 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Water Resources Data, Kansas, Water Year 2002
Putnam, J.E.; Schneider, D.R.
2003-01-01
Water-resources data for the 2002 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 149 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 142 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Water Resources Data, Kansas, Water Year 2000
Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.
2001-01-01
Water-resources data for the 2000 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 144 complete-record gaging stations; elevation and contents at 19 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 8 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, and miscellaneous onsite water-quality data collected at 134 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.; Hayes, P.D.
1993-01-01
Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 161 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 23 streamflow-gaging stations and 3 partialrecord stations; and ( 4) precipitation records for 11 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Mullen, J.R.; Hayes, P.D.; Agajanian, J.A.
1994-01-01
Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 156 streamflow-gaging stations, 12 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 17 streamflow-gaging stations and 6 partial-record stations; and (4) precipitation records for 10 stations . These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
NASA Technical Reports Server (NTRS)
Gregory, Otto J. (Inventor); You, Tao (Inventor)
2011-01-01
A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.
Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.
2002-01-01
Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.
Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.
2004-01-01
Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.
Floods of March 1982, Indiana, Michigan, and Ohio
Glatfelter, D.R.; Butch, G.K.; Stewart, J.A.
1984-01-01
Rapid melting of a snowpack containing 2 to 6 inches of water equivalent coinciding with moderate rainfall caused flooding in March 1982 across northern Indiana, southern Michigan, and northwestern Ohio. Millions of dollars in property damage and the loss of four lives resulted from the flooding. Peak discharges at several gaging stations in each of the following river basins have recurrence intervals of 50 to greater than 100 years: Wabash, St. Joseph, River Raisin, Maumee, and Kankakee. Flooding in the Wabash River basin was confined to major tributaries draining from the north. The St. Joseph River experienced flooding having a recurrence interval of about 50 years. Peak discharges having recurrence intervals of 50 to greater than 100 years were recorded on the River Raisin. Flooding on most large streams in the Maumee River basin was the worst since 1913. The Kankakee River and its major tributary, Yellow River, recorded peak discharges having recurrence intervals greater than 100 years. Hydrologic data have been tabulated for 83 gaging stations and partial-record sites. Maps are presented to emphasize the severity and untimely sequence of meteorological conditions that provided the potential and triggered the floods. Hydrographs are shown for 32 gaging stations.
Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.
2014-01-01
Management of sediment in rivers downstream from dams requires knowledge of both the sediment supply and downstream sediment transport. In some dam-regulated rivers, the amount of sediment supplied by easily measured major tributaries may overwhelm the amount of sediment supplied by the more difficult to measure lesser tributaries. In this first class of rivers, managers need only know the amount of sediment supplied by these major tributaries. However, in other regulated rivers, the cumulative amount of sediment supplied by the lesser tributaries may approach the total supplied by the major tributaries. The Colorado River downstream from Glen Canyon has been hypothesized to be one such river. If this is correct, then management of sediment in the Colorado River in the part of Glen Canyon National Recreation Area downstream from the dam and in Grand Canyon National Park may require knowledge of the sediment supply from all tributaries. Although two major tributaries, the Paria and Little Colorado Rivers, are well documented as the largest two suppliers of sediment to the Colorado River downstream from Glen Canyon Dam, the contributions of sediment supplied by the ephemeral lesser tributaries of the Colorado River in the lowermost Glen Canyon, and Marble and Grand Canyons are much less constrained. Previous studies have estimated amounts of sediment supplied by these tributaries ranging from very little to almost as much as the amount supplied by the Paria River. Because none of these previous studies relied on direct measurement of sediment transport in any of the ephemeral tributaries in Glen, Marble, or Grand Canyons, there may be significant errors in the magnitudes of sediment supplies estimated during these studies. To reduce the uncertainty in the sediment supply by better constraining the sediment yield of the ephemeral lesser tributaries, the U.S. Geological Survey Grand Canyon Monitoring and Research Center established eight sediment-monitoring gaging stations beginning in 2000 on the larger of the previously ungaged tributaries of the Colorado River downstream from Glen Canyon Dam. The sediment-monitoring gaging stations consist of a downward-looking stage sensor and passive suspended-sediment samplers. Two stations are equipped with automatic pump samplers to collect suspended-sediment samples during flood events. Directly measuring discharge and collecting suspended-sediment samples in these remote ephemeral streams during significant sediment-transporting events is nearly impossible; most significant run-off events are short-duration events (lasting minutes to hours) associated with summer thunderstorms. As the remote locations and short duration of these floods make it prohibitively expensive, if not impossible, to directly measure the discharge of water or collect traditional depth-integrated suspended-sediment samples, a method of calculating sediment loads was developed that includes documentation of stream stages by field instrumentation, modeling of discharges associated with these stages, and automatic suspended-sediment measurements. The approach developed is as follows (1) survey and model flood high-water marks using a two-dimensional hydrodynamic model, (2) create a stage-discharge relation for each site by combining the modeled flood flows with the measured stage record, (3) calculate the discharge record for each site using the stage-discharge relation and the measured stage record, and (4) calculate the instantaneous and cumulative sediment loads using the discharge record and suspended-sediment concentrations measured from samples collected with passive US U-59 samplers and ISCOTM pump samplers. This paper presents the design of the gaging network and briefly describes the methods used to calculate discharge and sediment loads. The design and methods herein can easily be used at other remote locations where discharge and sediment loads are required.
International Virtual Observatory System for Water Resources Information
NASA Astrophysics Data System (ADS)
Leinenweber, Lewis; Bermudez, Luis
2013-04-01
Sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time. The current state of data portals, standards, technologies, activities, and expertise can be leverage to develop an initial operational capability for a virtual observatory system. This system will allow to link observations data with stream networks and models, and to solve semantic inconsistencies among communities. Prototyping a virtual observatory system is an inter-disciplinary, inter-agency and international endeavor. The Open Geospatial Consortium (OGC) within the OGC Interoperability Program provides the process and expertise to run such collaborative effort. The OGC serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The project coordinated by OGC that is advancing an international virtual observatory system for water resources information is called Climatology-Hydrology Information Sharing Pilot, Phase 1 (CHISP-1). It includes observations and forecasts in the U.S. and Canada levering current networks and capabilities. It is designed to support the following use cases: 1) Hydrologic modeling for historical and near-future stream flow and groundwater conditions. Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies. Emphasis will be on time series data and real-time flood monitoring. 2) Modeling and assessment of nutrient load into the lakes. Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads. Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. The key objectives of these use cases are: 1) To link observations data to the stream network, enabling queries of conditions upstream from a given location to return all relevant gages and well locations. This is currently not practical with the data sources available. 2) To bridge differences in semantics across information models and processes used by the various data producers, to improve the hydrologic and water quality modeling capabilities. Other expected benefits to be derived from this project include: - Leverage a large body of existing data holdings and related activities of multiple agencies in the US and Canada. - Influence data and metadata standards used internationally for web-based information sharing, through multiple agency cooperation and OGC standards setting process. - Reduction of procurement risk through partnership-based development of an initial operating capability verses the cost for building a fully operational system using a traditional "waterfall approach". - Identification and clarification of what is possible, and of the key technical and non-technical barriers to continued progress in sharing and integrating hydrologic and climatic information. - Promote understanding and strengthen ties within the hydro-climatic community. This is anticipated to be the first phase of a multi-phase project, with future work on forecasting the hydrologic consequences of extreme weather events, and enabling more sophisticated water quality modeling.
Development of a Wireless Network of Temperature Sensors for Yellowstone National Park (USA)
NASA Astrophysics Data System (ADS)
Munday, D. A.; Hutter, T.; Minolli, M.; Obraczka, K.; Manduchi, R.; Petersen, S.; Lowenstern, J. B.; Heasler, H.
2007-12-01
Temperature sensors deployed at Yellowstone clearly document that thermal features can vary in temperature on a variety of timescales and show regional correlations unrelated to meteorological variables such as air temperature. Yellowstone National Park (YNP) staff currently measures temperatures at over 40 thermal features and streams within the park, utilizing USGS stream gaging stations and portable data loggers deployed in geyser basins. The latter measure temperature every 1 to 15 minutes, and the data are physically downloaded after about 30 days. Installation of a wireless sensor network would: 1) save considerable time and effort in data retrieval, 2) minimize lost data due to equipment failure, and 3) provide a means to monitor thermal perturbations in near-real time. To meet this need, we developed a wireless sensor network capable of in-situ monitoring of air and water temperature. Temperature sensors are dispersed as nodes that communicate among themselves and through relays to a single base-station linked to the Internet. The small, weatherproof sensors operate unattended for over six months at temperatures as low as -40°C. Each uses an ultra-low-power Texas Instruments' MSP430 microcontroller and an SD card as mass storage. They are powered by 15Ah, 3.6 v, inert Li-ion batteries and transmit data via 900MHz radio modules with a 1-km range. The initial prototype consists of 4 nodes, and is designed to scale with additional nodes for finer spatial resolution and broader coverage. Temperature measurements are asynchronous from node to node, with intervals as frequent as 30 seconds. Data are stored internally to withstand temporary communication failures; underlying intelligent software is capable of re-routing data through alternative nodes to the base station and a MySQL data archiving system. We also developed a Google-Maps-based, front-end that displays the data, recent trends and sensor locations. The system was tested in the Santa Cruz Mountains and will be used at Yellowstone National Park during Fall 2007.
Methods for estimating flood frequency in Montana based on data through water year 1998
Parrett, Charles; Johnson, Dave R.
2004-01-01
Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.
Aucott, W.R.; Meadows, R.S.; Patterson, G.G.
1987-01-01
Base flow was computed to estimate discharge from regional aquifers for six large streams in the upper Coastal Plain of South Carolina and parts of North Carolina and Georgia. Aquifers that sustain the base flow of both large and small streams are stratified into shallow and deep flow systems. Base-flow during dry conditions on main stems of large streams was assumed to be the discharge from the deep groundwater flow system. Six streams were analyzed: the Savannah, South and North Fork Edisto, Lynches, Pee Dee, and the Luber Rivers. Stream reaches in the Upper Coastal Plain were studied because of the relatively large aquifer discharge in these areas in comparison to the lower Coastal Plain. Estimates of discharge from the deep groundwater flow system to the six large streams averaged 1.8 cu ft/sec/mi of stream and 0.11 cu ft/sec/sq mi of surface drainage area. The estimates were made by subtracting all tributary inflows from the discharge gain between two gaging stations on a large stream during an extreme low-flow period. These estimates pertain only to flow in the deep groundwater flow system. Shallow flow systems and total base flow are > flow in the deep system. (USGS)
Using a soil moisture and precipitation network for satellite validation
USDA-ARS?s Scientific Manuscript database
A long term in situ network for the study of soil moisture and precipitation was deployed in north central Iowa, in cooperation between USDA and NASA. A total of 20 dual precipitation gages were established across a watershed landscape with an area of approximately 600 km2. In addition, four soil mo...
Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.
2012-01-01
Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.
Paleoflood Data, Extreme Floods and Frequency: Data and Models for Dam Safety Risk Scenarios
NASA Astrophysics Data System (ADS)
England, J. F.; Godaire, J.; Klinger, R.
2007-12-01
Extreme floods and probability estimates are crucial components in dam safety risk analysis and scenarios for water-resources decision making. The field-based collection of paleoflood data provides needed information on the magnitude and probability of extreme floods at locations of interest in a watershed or region. The stratigraphic record present along streams in the form of terrace and floodplain deposits represent direct indicators of the magnitude of large floods on a river, and may provide 10 to 100 times longer records than conventional stream gaging records of large floods. Paleoflood data is combined with gage and historical streamflow estimates to gain insights to flood frequency scaling, model extrapolations and uncertainty, and provide input scenarios to risk analysis event trees. We illustrate current data collection and flood frequency modeling approaches via case studies in the western United States, including the American River in California and the Arkansas River in Colorado. These studies demonstrate the integration of applied field geology, hydraulics, and surface-water hydrology. Results from these studies illustrate the gains in information content on extreme floods, provide data- based means to separate flood generation processes, guide flood frequency model extrapolations, and reduce uncertainties. These data and scenarios strongly influence water resources management decisions.
Water-resources activities of the U.S. Geological Survey in New Mexico, fiscal year 1992
Allen, Harriet R.
1994-01-01
Awareness of our environment in general, and water resources in particular, has brought increased interest in and support of hydrologic data collection and research. The quantity, quality, and distribution of water are extremely important to the future well-being of New Mexico. The State's surface-water resources are minimal and highly variable due to climate and to regulation and diversion; ground-water resources are subject to development that exceeds natural recharge and to potential contamination by land use. Issues related to global climate change, disposal of hazardous wastes, toxic substances in water, water rights, and ground-water contamination are evolving areas of greater public concern. At the same time there is a continuing need for a better understanding of various hydrologic systems and processes in order to manage these limited water resources for maximum benefit to present and future generations.The U.S. Geological Survey has collected and disseminated information on the water resources of New Mexico for more than a century. The Survey began to collect records of streamflow in New Mexico in December 1888 when the first discharge measurements were made on the Rio Grande near the present gaging station at Embudo. This site, called the "birthplace of systematic stream gaging," was chosen to be the training center for the first hydrographers of the Irrigation Survey, a bureau within the original Geological Survey. Since that time, in cooperation with Federal, State, local, and tribal agencies, we have monitored streams at hundreds of sites throughout the State and have a current network of more than 200 streamflow-gaging stations. Through the Cooperative Program, we also have established sites where ground-water levels are monitored to document changes in ground-water storage or where surface-water and groundwater samples are collected to determine water chemistry, and we have undertaken investigative studies to define the availability, quality, and distribution of water resources. Information from the data program and results of investigative studies are made available to water-resources managers, regulators, and the public to be used for the effective management of the State's water resources.This report provides a brief summary of the activities of the New Mexico District for FY (fiscal year) 1992, including our mission, organization, sources of funding, and descriptions of current projects. This report serves to document not only the content of the program, but also the diversity and complexity of that program. Cooperation among water-resources agencies will be essential in effectively dealing with water-related issues facing New Mexico. We look forward to the challenge of addressing these issues by continuing to provide factual hydrologic data and technically sound areal appraisals and interpretive studies.
Flood of April 2-3, 2005, Esopus Creek Basin, New York
Suro, Thomas P.; Firda, Gary D.
2007-01-01
On April 2-3, 2005, heavy rain moved into southern New York and delivered rainfall amounts that ranged from about 2 in. to almost 6 in. within a 36-hour period. Significant flooding occurred on many small streams and tributaries in the area, and extensive flooding occurred on the Esopus and Roundout Creeks in Ulster and Greene Counties, New York. The flooding damaged many homes, caused millions of dollars worth of damage, and forced hundreds of residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Disaster recovery assistance for those people affected stands at almost $35 million, according to the Federal Emergency Management Agency, as more than 3,400 New Yorkers registered for Federal aid. U.S. Geological Survey stream-gaging stations on the Esopus Creek above the Ashokan Reservoir at Allaben, N.Y., and below the Ashokan Reservoir at Mount Marion, N.Y., each recorded a new record maximum water-surface elevation and discharge for the respective periods of record as a result of this storm. The peak water-surface elevation and discharge recorded during the April 2-3, 2005, storm at the U.S. Geological Survey stream-gaging station on the Esopus Creek at Cold Brook, N.Y. were the third highest elevation and discharge since the station was put into operation in 1914. Most of the study sites along the Esopus Creek indicated water-surface elevations near the 50-year flood elevations, as documented in flood-insurance studies by the Federal Emergency Management Agency.
Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.
2005-01-01
Equations that relate bankfull discharge and channel characteristics (width, depth, and cross-sectional area) to drainage-area size at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for watershed assessments, stream-channel classification, and the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. In New York State, eight hydrologic regions were previously defined on the basis of similar high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in southwestern New York (Region 6).Stream-survey data and discharge records from 11 active (currently gaged) sites and 3 inactive (discontinued) sites were used in regression analyses to relate bankfull discharge and bankfull channel width, depth, and cross-sectional area to the size of the drainage area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 48.0*(drainage area, in square miles)0.842;(2) bankfull channel width, in feet = 16.9*(drainage area, in square miles)0.419;(3) bankfull channel depth, in feet = 1.04*(drainage area, in square miles)0.244; and(4) bankfull channel cross-sectional area, in square feet = 17.6*(drainage area, in square miles)0.662.The coefficient of determination (R2) for these four equations were 0.90, 0.79, 0.64, and 0.89, respectively. The high correlation coefficients for bankfull discharge and cross-sectional area indicate that much of the variation in these variables is explained by the size of the drainage area. The smaller correlation coefficients for bankfull channel width and depth indicate that other factors also affect these relations. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.01 to 2.35 years; the mean recurrence interval was 1.54 years. The 14 surveyed streams were classified by Rosgen stream type; most were C-type reaches, with occasional B-type reaches. The Region 6 equation (curve) for bankfull discharge was compared with equations previously developed for four other large areas in New York State and southeastern Pennsylvania. The differences among results indicate that, although the equations need to be refined by region before being applied by water-resources managers to local planning and design efforts, similar regions have similar relations between bankfull discharge and channel characteristics.
The U.S. Geological Survey and City of Atlanta water-quality and water-quantity monitoring network
Horowitz, Arthur J.; Hughes, W. Brian
2006-01-01
Population growth and urbanization affect the landscape, and the quality and quantity of water in nearby rivers and streams, as well as downstream receiving waters (Ellis, 1999). Typical impacts include: (1) disruption of the hydrologic cycle through increases in the extent of impervious surfaces (e.g., roads, roofs, sidewalks) that increase the velocity and volume of surface-water runoff; (2) increased chemical loads to local and downstream receiving waters from industrial sources, nonpoint-source runoff, leaking sewer systems, and sewer overflows; (3) direct or indirect soil contamination from industrial sources, power-generating facilities, and landfills; and (4) reduction in the quantity and quality of aquatic habitats. The City of Atlanta's monitoring network consists of 21 long-term sites. Eleven of these are 'fully instrumented' to provide real-time data on water temperature, pH, specific conductance, dissolved oxygen, turbidity (intended as a surrogate for suspended sediment concentration), water level (gage height, intended as a surrogate for discharge), and precipitation. Data are transmitted hourly and are available on a public Web site (http://ga.water.usgs.gov/). Two sites only measure water level and rainfall as an aid to stormwater monitoring. The eight remaining sites are used to assess water quality.
Grid vs Mesh: The case of Hyper-resolution Modeling in Urban Landscapes
NASA Astrophysics Data System (ADS)
Grimley, L. E.; Tijerina, D.; Khanam, M.; Tiernan, E. D.; Frazier, N.; Ogden, F. L.; Steinke, R. C.; Maxwell, R. M.; Cohen, S.
2017-12-01
In this study, the relative performance of ADHydro and GSSHA was analyzed for a small and large rainfall event in an urban watershed called Dead Run near Baltimore, Maryland. ADHydro is a physics-based, distributed, hydrologic model that uses an unstructured mesh and operates in a high performance computing environment. The Gridded Surface/Subsurface Hydrological Analysis (GSSHA) model, which is maintained by the US Army Corps of Engineers, is a physics-based, distributed, hydrologic model that incorporates subsurface utilities and uses a structured mesh. A large portion of the work served as alpha-testing of ADHydro, which is under development by the CI-WATER modeling team at the University of Wyoming. Triangular meshes at variable resolutions were created to assess the sensitivity of ADHydro to changes in resolution and test the model's ability to handle a complicated urban routing network with structures present. ADHydro was compared with GSSHA which does not have the flexibility of an unstructured grid but does incorporate the storm drainage network. The modelled runoff hydrographs were compared to observed United States Geological Survey (USGS) stream gage data. The objective of this study was to analyze the effects of mesh type and resolution using ADHydro and GSSHA in simulations of an urban watershed.
NASA Technical Reports Server (NTRS)
Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman
1992-01-01
Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.
Smith, S. Jerrod; Esralew, Rachel A.
2010-01-01
The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the drainage-basin outlet for the period 1961-1990, 10-85 channel slope (slope between points located at 10 percent and 85 percent of the longest flow-path length upstream from the outlet), and percent impervious area. The Oklahoma StreamStats application interacts with the National Streamflow Statistics database, which contains the peak-flow regression equations in a previously published report. Fourteen peak-flow (flood) frequency statistics are available for computation in the Oklahoma StreamStats application. These statistics include the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural, unregulated streams; and the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural streams that are regulated by Natural Resources Conservation Service floodwater retarding structures. Basin characteristics and streamflow statistics cannot be computed for locations in playa basins (mostly in the Oklahoma Panhandle) and along main stems of the largest river systems in the state, namely the Arkansas, Canadian, Cimarron, Neosho, Red, and Verdigris Rivers, because parts of the drainage areas extend outside of the processed hydrologic units.
Physical habitat simulation system reference manual: version II
Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.
1989-01-01
There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.
Hydrologic data for the Cache Creek-Bear Thrust environmental impact statement near Jackson, Wyoming
Craig, G.S.; Ringen, B.H.; Cox, E.R.
1981-01-01
Information on the quantity and quality of surface and ground water in an area of concern for the Cache Creek-Bear Thrust Environmental Impact Statement in northwestern Wyoming is presented without interpretation. The environmental impact statement is being prepared jointly by the U.S. Geological Survey and the U.S. Forest Service and concerns proposed exploration and development of oil and gas on leased Federal land near Jackson, Wyoming. Information includes data from a gaging station on Cache Creek and from wells, springs, and miscellaneous sites on streams. Data include streamflow, chemical and suspended-sediment quality of streams, and the occurrence and chemical quality of ground water. (USGS)
Slade, R.M.; Asquith, W.H.
1996-01-01
About 23,000 annual peak streamflows and about 400 historical peak streamflows exist for about 950 stations in the surface-water data-collection network of Texas. These data are presented on a computer diskette along with the corresponding dates, gage heights, and information concerning the basin, and nature or cause for the flood. Also on the computer diskette is a U.S. Geological Survey computer program that estimates peak-streamflow frequency based on annual and historical peak streamflow. The program estimates peak streamflow for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals and is based on guidelines established by the Interagency Advisory Committee on Water Data. Explanations are presented for installing the program, and an example is presented with discussion of its options.
Water resources data, Montana, water year 2005: Volume 1. Hudson Bay and upper Missouri River basins
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2005-01-01
Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 134 streamflow-gaging stations; stage or content records for 18 lakes and reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 13 ground-water wells. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Water Resources Data, Montana, 2003; Volume 1. Hudson Bay and Upper Missouri River Basins
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2004-01-01
Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 132 streamflow-gaging stations; stage or content records for 5 lakes and large reservoirs and content for 5 smaller reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 7 ground-water wells. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Water Resources Data, Montana, 2002
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2003-01-01
Water resources data for Montana for the 2002 water year consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This report contains discharge records for 244 streamflow-gaging stations; stage or content records for 9 lakes and large reservoirs and content for 31 smaller reservoirs; water-quality records for 142 streamflow stations (42 ungaged), 9 ground-water wells, and 3 lakes; precipitation records for 2 atmospheric-deposition stations; and water-level records for 53 observation wells. Additional water year 2002 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Water Resources Data--Kansas, Water Year 2003
Putnam, J.E.; Schneider, D.R.
2004-01-01
Water-resources data for the 2003 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 148 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 12 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 27 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 138 stations, and suspended-sediment concentration for 11 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Water resources data for New Mexico, water year 1975
,
1976-01-01
Water resources data for the 1975 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 201 gaging stations; stage and contents far 23 lakes and reservoirs; water quality for 62 gaging stations, 77 partial-record flow stations, 1 reservoir, 47 springs and 197 wells; and water levels for 93 observation wells. Also included are 162 crest-stage partial-record stations and 2 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic da,ta collection program, and are pu,blis"Q,ed as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.
Web services in the U.S. geological survey streamstats web application
Guthrie, J.D.; Dartiguenave, C.; Ries, Kernell G.
2009-01-01
StreamStats is a U.S. Geological Survey Web-based GIS application developed as a tool for waterresources planning and management, engineering design, and other applications. StreamStats' primary functionality allows users to obtain drainage-basin boundaries, basin characteristics, and streamflow statistics for gaged and ungaged sites. Recently, Web services have been developed that provide the capability to remote users and applications to access comprehensive GIS tools that are available in StreamStats, including delineating drainage-basin boundaries, computing basin characteristics, estimating streamflow statistics for user-selected locations, and determining point features that coincide with a National Hydrography Dataset (NHD) reach address. For the state of Kentucky, a web service also has been developed that provides users the ability to estimate daily time series of drainage-basin average values of daily precipitation and temperature. The use of web services allows the user to take full advantage of the datasets and processes behind the Stream Stats application without having to develop and maintain them. ?? 2009 IEEE.
ERIC Educational Resources Information Center
McFaul, Susannah
2016-01-01
Addressing the importance of international student engagement on campus and creating friendships with host-country nationals during their time abroad, this small-scale study explores the question of, "Are there trends in how or through what means international students are making connections with co-national, multi-national, or host-national…
Technique for estimating depth of 100-year floods in Tennessee
Gamble, Charles R.; Lewis, James G.
1977-01-01
Preface: A method is presented for estimating the depth of the loo-year flood in four hydrologic areas in Tennessee. Depths at 151 gaging stations on streams that were not significantly affected by man made changes were related to basin characteristics by multiple regression techniques. Equations derived from the analysis can be used to estimate the depth of the loo-year flood if the size of the drainage basin is known.
Development of Predictive Relationships for Flood Hazard Assessments in Ungaged Basins
2016-02-01
Hydrological Analysis (GSSHA) model (Downer and Ogden 2004) was deployed in megascale for ungaged basins of the Philippine Islands . The GSSHA...et al. [1988]). STUDY AREA: Two megascale catchments in the Philippine Islands were considered in this study. No stream gage data exists for either...imagery. The Cagayan River Basin on Luzon Island (Figure 1[a]) is the largest river in the Philippines with a drainage area of 27,280 km2
In Situ Measurement of Ground-Surface Flow Resistivity
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1984-01-01
New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.
Elizabeth Keppeler; Jack Lewis
2007-01-01
The Caspar Creek Experimental Watersheds were established in 1962 to study the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of the timber...
Bales, Jerad D.; Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia
2007-01-01
Flood-inundation maps were created for selected streamgage sites in the North Carolina Tar River basin. Light detection and ranging (LiDAR) data with a vertical accuracy of about 20 centimeters, provided by the Floodplain Mapping Information System of the North Carolina Floodplain Mapping Program, were processed to produce topographic data for the inundation maps. Bare-earth mass point LiDAR data were reprocessed into a digital elevation model with regularly spaced 1.5-meter by 1.5-meter cells. A tool was developed as part of this project to connect flow paths, or streams, that were inappropriately disconnected in the digital elevation model by such features as a bridge or road crossing. The Hydraulic Engineering Center-River Analysis System (HEC-RAS) model, developed by the U.S. Army Corps of Engineers, was used for hydraulic modeling at each of the study sites. Eleven individual hydraulic models were developed for the Tar River basin sites. Seven models were developed for reaches with a single gage, and four models were developed for reaches of the Tar River main stem that receive flow from major gaged tributaries, or reaches in which multiple gages were near one another. Combined, the Tar River hydraulic models included 272 kilometers of streams in the basin, including about 162 kilometers on the Tar River main stem. The hydraulic models were calibrated to the most current stage-discharge relations at 11 long-term streamgages where rating curves were available. Medium- to high-flow discharge measurements were made at some of the sites without rating curves, and high-water marks from Hurricanes Fran and Floyd were available for high-stage calibration. Simulated rating curves matched measured curves over the full range of flows. Differences between measured and simulated water levels for a specified flow were no more than 0.44 meter and typically were less. The calibrated models were used to generate a set of water-surface profiles for each of the 11 modeled reaches at 0.305-meter increments for water levels ranging from bankfull to approximately the highest recorded water level at the downstream-most gage in each modeled reach. Inundated areas were identified by subtracting the water-surface elevation in each 1.5-meter by 1.5-meter grid cell from the land-surface elevation in the cell through an automated routine that was developed to identify all inundated cells hydraulically connected to the cell at the downstream-most gage in the model domain. Inundation maps showing transportation networks and orthoimagery were prepared for display on the Internet. These maps also are linked to the U.S. Geological Survey North Carolina Water Science Center real-time streamflow website. Hence, a user can determine the near real-time stage and water-surface elevation at a U.S. Geological Survey streamgage site in the Tar River basin and link directly to the flood-inundation maps for a depiction of the estimated inundated area at the current water level. Although the flood-inundation maps represent distinct boundaries of inundated areas, some uncertainties are associated with these maps. These are uncertainties in the topographic data for the hydraulic model computational grid and inundation maps, effective friction values (Manning's n), model-validation data, and forecast hydrographs, if used. The Tar River flood-inundation maps were developed by using a steady-flow hydraulic model. This assumption clearly has less of an effect on inundation maps produced for low flows than for high flows when it typically takes more time to inundate areas. A flood in which water levels peak and fall slowly most likely will result in more inundation than a similar flood in which water levels peak and fall quickly. Limitations associated with the steady-flow assumption for hydraulic modeling vary from site to site. The one-dimensional modeling approach used in this study resulted in good agreement between measurements and simulations. T
Flood-Inundation Maps for a 1.6-Mile Reach of Salt Creek, Wood Dale, Illinois
Soong, David T.; Murphy, Elizabeth A.; Sharpe, Jennifer B.
2012-01-01
Digital flood-inundation maps for a 1.6-mile reach of Salt Creek from upstream of the Chicago, Milwaukee, St. Paul & Pacific Railroad to Elizabeth Drive, Wood Dale, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the DuPage County Stormwater Management Division. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage on Salt Creek at Wood Dale, Illinois (station number 05531175). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05531175. In this study, flood profiles were computed for the stream reach by means of a one-dimensional unsteady flow Full EQuations (FEQ) model. The unsteady flow model was verified by comparing the rating curve output for a September 2008 flood event to discharge measurements collected at the Salt Creek at Wood Dale gage. The hydraulic model was then used to determine 14 water-surface profiles for gage heights at 0.5-ft intervals referenced to the streamgage datum and ranging from less than bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The areal extent of the inundation was verified with high-water marks from a flood in July 2010 with a peak gage height of 14.08 ft recorded at the Salt Creek at Wood Dale gage. The availability of these maps along with Internet information regarding current gage height from USGS streamgages provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.
Water resources data for Oregon, water year 2004
Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine
2005-01-01
The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.
NASA Astrophysics Data System (ADS)
Murphy, Kevin W.; Ellis, Andrew W.
2014-02-01
Several studies drawing upon general circulation models have investigated the potential impacts of future climate change on precipitation and runoff to stream flow in the southwest United States, suggesting reduced runoff in response to increasing temperatures and less precipitation. With the hydroclimatic changes considered to be underway, water management professionals have been counseled to abandon historical assumptions of stationarity in the natural systems governing surface water replenishments. Stationarity is predicated upon an assumption that the generating process is in equilibrium around an underlying mean and that variance remains constant over time. The implications of a more arid future are significant for surface water resources in the semi-arid Colorado River Basin (CRB). To examine the evidence of forthcoming change, eight sub-basins were identified for this study having unregulated runoff to stream flow gages, providing a 22% spatial sampling of the CRB. Their long-term record of surface temperature and precipitation along with corresponding gage records were evaluated with time series analysis methods and testing criteria established per statistical definitions of stationarity. Statistically significant temperature increases in all sub-basins were found, with persistently non-stationary time series in the recent record relative to the earlier historical record. However, tests of precipitation and runoff did not reveal persistent reductions, indicating that they remain stationary processes. Their transitions through periods of drought and excess have been characterized, with precipitation and stream flows found to be currently close to their long-term average. The evidence also indicates that resolving precipitation and runoff trends amidst natural modes of variability will be challenging and unlikely within the next several decades. Abandonment of stationarity assumptions for the CRB is not necessarily supported by the evidence, making it premature to discard its historical record as an instrument by which to assess sustainability of water resource systems.
Drainage areas in the Vermillion River basin in eastern South Dakota
Benson, Rick D.; Freese, M.D.; Amundson, Frank D.
1988-01-01
Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)
Tice, Richard H.
1968-01-01
Flood magnitude-frequency relation applicable to streams in the North Atlantic slope basins, New York to York River, Va., are presented in this report. The relations are based on flood data collected at 487 gaging stations having 5 or more years of record not materially affected by regulation. For sites on most streams, the magnitude of a flood of any given frequency between 1.1 and 50 years can be determined from two curves - one expressing the relation between the mean annual flood and size of draining basin and the other expressing the ratio to the mean annual flood of floods of other recurrence intervals. For New Jersey streams, an adjustment to the mean annual flood is based on the percentage of surface area covered by lakes and swamps in the basin.
A technique for estimating time of concentration and storage coefficient values for Illinois streams
Graf, Julia B.; Garklavs, George; Oberg, Kevin A.
1982-01-01
Values of the unit hydrograph parameters time of concentration (TC) and storage coefficient (R) can be estimated for streams in Illinois by a two-step technique developed from data for 98 gaged basins in the State. The sum of TC and R is related to stream length (L) and main channel slope (S) by the relation (TC + R)e = 35.2L0.39S-0.78. The variable R/(TC + R) is not significantly correlated with drainage area, slope, or length, but does exhibit a regional trend. Regional values of R/(TC + R) are used with the computed values of (TC + R)e to solve for estimated values of time of concentration (TCe) and storage coefficient (Re). The use of the variable R/(TC + R) is thought to account for variations in unit hydrograph parameters caused by physiographic variables such as basin topography, flood-plain development, and basin storage characteristics. (USGS)
The Future of the Plate Boundary Observatory in the GAGE Facility and beyond 2018
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Bendick, R. O.; Foster, J. H.; Freymueller, J. T.; La Femina, P. C.; Miller, M. M.; Rowan, L.
2014-12-01
The Geodesy Advancing Geosciences and Earthscope (GAGE) Facility, which operates the Plate Boundary Observatory (PBO), builds on UNAVCO's strong record of facilitating research and education in the geosciences and geodesy-related engineering fields. Precise positions and velocities for the PBO's ~1100 continuous GPS stations and other PBO data products are used to address a wide range of scientific and technical issues across North America. A large US and international community of scientists, surveyors, and civil engineers access PBO data streams, software, and other on-line resources daily. In a global society that is increasingly technology-dependent, consistently risk-averse, and often natural resource-limited, communities require geodetic research, education, and infrastructure to make informed decisions about living on a dynamic planet. The western U.S. and Alaska, where over 95% of the PBO sensor assets are located, have recorded significant geophysical events like earthquakes, volcanic eruptions, and tsunami. UNAVCO community science provides first-order constraints on geophysical processes to support hazards mapping and zoning, and form the basis for earthquake and tsunami early warning applications currently under development. The future of PBO was discussed at a NSF-sponsored three-day workshop held in September 2014 in Breckenridge, CO. Over 40 invited participants and community members, including representatives from interested stakeholder groups, UNAVCO staff, and members of the PBO Working Group and Geodetic Infrastructure Advisory Committee participated in workshop, which included retrospective and prospective plenary presentations and breakout sessions focusing on specific scientific themes. We will present some of the findings of that workshop in order to continue a dialogue about policies and resources for long-term earth observing networks. How PBO fits into the recently released U.S. National Plan for Civil Earth Observations will also be discussed.
Pyne, Matthew I.; Carlisle, Daren M.; Konrad, Christopher P.; Stein, Eric D.
2017-01-01
Regional classification of streams is an early step in the Ecological Limits of Hydrologic Alteration framework. Many stream classifications are based on an inductive approach using hydrologic data from minimally disturbed basins, but this approach may underrepresent streams from heavily disturbed basins or sparsely gaged arid regions. An alternative is a deductive approach, using watershed climate, land use, and geomorphology to classify streams, but this approach may miss important hydrological characteristics of streams. We classified all stream reaches in California using both approaches. First, we used Bayesian and hierarchical clustering to classify reaches according to watershed characteristics. Streams were clustered into seven classes according to elevation, sedimentary rock, and winter precipitation. Permutation-based analysis of variance and random forest analyses were used to determine which hydrologic variables best separate streams into their respective classes. Stream typology (i.e., the class that a stream reach is assigned to) is shaped mainly by patterns of high and mean flow behavior within the stream's landscape context. Additionally, random forest was used to determine which hydrologic variables best separate minimally disturbed reference streams from non-reference streams in each of the seven classes. In contrast to stream typology, deviation from reference conditions is more difficult to detect and is largely defined by changes in low-flow variables, average daily flow, and duration of flow. Our combined deductive/inductive approach allows us to estimate flow under minimally disturbed conditions based on the deductive analysis and compare to measured flow based on the inductive analysis in order to estimate hydrologic change.
NASA Astrophysics Data System (ADS)
Congdon, R. D.
2012-12-01
There is frequently a need in land management agencies for a quick and easy method for estimating hydrogeologic conditions in a watershed for which there is very little subsurface information. Setting up a finite difference or finite element model takes valuable time that often is not available when decisions need to be made quickly. An analytic element model (AEM), GFLOW in this case, may enable the investigator to produce a preliminary steady-state model for a watershed, and to easily evaluate variants of the conceptual model. Use of preexisting data, such as stream gage data or USGS reports makes the job much easier. Solutions to analytic element models are obtained within seconds. The Eagle Creek watershed in central New Mexico is a site of local water supply issues in an area of volcanic and plutonic rocks. Parameters estimated by groundwater consultants and the USGS, and discharge data from three USGS stream gages were used to set up the steady-state analytical model (GFLOW). Matching gage records with line-sink fluxes facilitated conceptualization of local groundwater flow and quick analysis of the effects of steady water supply pumping on Eagle Creek. Because of steep topgraphy and limited access, a water supply well is located within the stream channel within 20 meters of the creek, and it would be useful to evaluate the effects of the well on stream flow. A USGS report (SIR 2010-5205) revealed a section of Eagle Creek with a high vertical conductivity which results in flow loss of up to 34 l/s (including flow to the water table and flow into alluvium) when the well was pumped and the water table was lowered below the channel bottom. The water supply well was simulated with a steady-state well pumping at the average and maximum rates of 12 l/s and 31 l/s. The initial simulation shows that pumping at these rates results in stream flow loss of 19% and 51%, respectively. The simulation was conducted with average flow conditions, and this information will be important in planning for management during periods of drought, as well as times of more normal precipitation; as water uses must be balanced with the needs of the existing ecosystem. Alternatives, such as low conductivity blocks between stream channels and different volumetric and geographic pumping scenarios may also be readily explored in an AEM. Exporting these scenarios into MODFLOW simulations will enable us to evaluate transient and cyclical pumping effects on the surface waters for each AEM conceptualization, as well as being able to simulate seasonal recharge. However, in many cases the use of MODFLOW may not be necessary, if the AEM proves sufficient to answer the relevant questions. Symbiotic use of GFLOW and MODFLOW will be an invaluable aid in evaluating groundwater and its uses in National Forest watersheds, especially in cases when time is a critical factor in informed decision-making.
Parrett, Charles; Hull, J.A.
1990-01-01
Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)
Liscum, Fred; Brown, D.W.; Kasmarek, M.C.
1997-01-01
The study area, a metropolitan area in southeast Texas about 45 miles north of the Gulf of Mexico, has been undergoing extensive urban development since the 1950s. The Houston Urban Runoff Program was begun by the U.S. Geological Survey in water year 1964 to define the magnitude and frequency of flood peaks, to determine the impact of continuing urban development on surface-water hydrologic responses, and to determine variations in stream water quality for different flow conditions, seasons, and urban development. An extensive data base has been developed.During water years 1964-89, the Houston Urban Runoff Program collected information from a total of 54 U.S. Geological Survey streamflow-gaging stations, 30 U.S. Geological Survey water-quality sampling sites, and 102 rain gages (operated by the U.S. Geological Survey, the National Weather Service, and local agencies). In addition, basin characteristics were developed to aid in understanding the effects of urban development on surface-water hydrologic responses.Surface-water hydrologic data on diskettes describe the 54 U.S. Geological Survey streamflow-gaging stations, list annual peaks (and where available, peaks above an arbitrary base) for 50 streamflow sites, tabulate 1,125 storm hydrographs from 43 sites, and document 102 waterquality parameters determined from 3,242 available samples.
Armstrong, David S.; Parker, Gene W.
2003-01-01
The relations among stream habitat and hydrologic conditions were investigated in the Usquepaug?Queen River Basin in southern Rhode Island. Habitats were assessed at 13 sites on the mainstem and tributaries from July 1999 to September 2000. Channel types are predominantly low-gradient glides, pools, and runs that have a sand and gravel streambed and a forest or shrub riparian zone. Along the stream margins,overhanging brush, undercut banks supported by roots, and downed trees create cover; within the channel, submerged aquatic vegetation and woody debris create cover. These habitat features decrease in quality and availability with declining streamflows, and features along stream margins generally become unavailable once streamflows drop to the point at which water recedes from the stream banks. Riffles are less common, but were identified as critical habitat areas because they are among the first to exhibit habitat losses or become unavailable during low-flow periods. Stream-temperature data were collected at eight sites during summer 2000 to indicate the suitability of those reaches for cold-water fish communities. Data indicate stream temperatures provide suitable habitat for cold-water species in the Fisherville and Locke Brook tributaries and in the mainstem Queen River downstream of the confluence with Fisherville Brook. Stream temperatures in the Usquepaug River downstream from Glen Rock Reservoir are about 6?F warmer than in the Queen River upstream from the impoundment. These warmer temperatures may make habitat in the Usquepaug River marginal for cold-water species. Fish-community composition was determined from samples collected at seven sites on tributaries and at three sites on the mainstem Usquepaug?Queen River. Classification of the fish into habitat-use groups and comparison to target fish communities developed for the Quinebaug and Ipswich Rivers indicated that the sampled reaches of the Usquepaug?Queen River contained most of the riverine fish species that would have been expected to occur in this area. Streamflow records from the gaging station Usquepaug River near Usquepaug were used to (1) determine streamflow requirements for habitat protection by use of the Tennant method, and (2) define a flow regime that mimics the river's natural flow regime by use of the Range of Variability Approach. The Tennant streamflow requirement, defined as 30 percent of the mean annual flow, was 0.64 cubic feet per second per square mile (ft3/s/mi2). This requirement should be considered an initial estimate because flows measured at the Usquepaug River gaging station are reduced by water withdrawals upstream from the gage. The streamflow requirements may need to be revised once a watershed-scale precipitationrunoff model of the Usquepaug River is complete and a simulation of streamflows without water withdrawals has been determined. Streamflow requirements for habitat protection were also determined at seven riffle sites by use of the Wetted-Perimeter and R2Cross methods. Two of these sites were on the mainstem Usquepaug River, one was on the mainstem Queen River, and four were on tributaries and the headwaters of the Queen River. Median streamflow requirements for habitat protection for these sites were 0.41 (ft3/s)/mi2, determined by the Wetted-Perimeter method and 0.72 ft3/s/mi2, determined by the R2Cross method.
Messinger, Terence; Paybins, Katherine S.
2003-01-01
Large-scale surface mining using valley fills has changed hydrologic storage and processes in the Ballard Fork Watershed in West Virginia. Total unit flow for the 2-year study period (November 15, 1999?November 14, 2001) on the Unnamed Tributary (extensively mined) (11,700 cubic feet per second per square mile) was almost twice that on Spring Branch (unmined) (6,260 cubic feet per second per square mile), and about 1.75 times that on Ballard Fork (downstream, partly mined) (6,690 cubic feet per second per square mile). Unit flow from the Unnamed Tributary exceeded that from the other two streams for all flows analyzed (5?95 percent duration). Unit flow from Ballard Fork exceeded unit flow from Spring Branch about 80 percent of the time, but was about the same for high flows (less than 20 percent duration). The proportional differences among sites were greatest at low flows. Spring Branch was dry for several days in October and November 2000 and for most of October 2001, and the Unnamed Tributary had flow throughout the study period. The increase in flows from mined parts of the Ballard Fork Watershed appears to result from decreases in evapotranspiration caused by removal of trees and soil during mining. During both years, evapotranspiration from the Spring Branch Watershed greatly exceeded that from the Unnamed Tributary Watershed during May through October, when leaves were open. Evapotranspiration from the Unnamed Tributary Watershed slightly exceeded that from the Spring Branch Watershed in February and March during both years. Evapotranspiration, as a percentage of total rainfall, decreased from the first to the second, drier, year from the Unnamed Tributary Watershed (from 61 percent to 49 percent) but changed little from the Spring Branch (from 77 to 76 percent) and Ballard Fork (73 to 76 percent) Watersheds. Precipitation and flow during the study period at three nearby long-term sites, the U.S. Geological Survey stream-gaging station East Fork Twelvepole Creek near Dunlow, West Virginia, and two National Oceanic Atmospheric Administration rain gages at Madison and Dunlow, West Virginia, were less than long-term annual averages. Relations observed among the three streams in the Ballard Fork Watershed during this study may not represent those in years when annual precipitation and flow are closer to long-term averages.
Flood of June 26-29, 2006, Mohawk, Delaware, and Susquehanna River Basins, New York
Suro, Thomas P.; Firda, Gary D.; Szabo, Carolyn O.
2009-01-01
A stalled frontal system caused tropical moisture to be funneled northward into New York, causing severe flooding in the Mohawk, Delaware, and Susquehanna River basins during June 26-29, 2006. Rainfall totals for this multi-day event ranged from 2 to 3 inches to greater than 13 inches in southern New York. The storm and flooding claimed four lives in New York, destroyed or damaged thousands of homes and businesses, and closed hundreds of roads and highways. Thousands of people evacuated their homes as floodwaters reached new record elevations at many locations within the three basins. Twelve New York counties were declared Federal disaster areas, more than 15,500 residents applied for disaster assistance, and millions of dollars in damages resulted from the flooding. Disaster-recovery assistance for individuals and businesses adversely affected by the floods of June 2006 reached more than $227 million. The National Weather Service rainfall station at Slide Mountain recorded storm totals of more than 8 inches of rainfall, and the stations at Walton and Fishs Eddy, NY, recorded storm totals of greater than 13 inches of rainfall. The U.S. Geological Survey (USGS) stream-gaging stations at Mohawk River at Little Falls, West Branch Delaware River at Hale Eddy, and Susquehanna River at Vestal, NY, among others, recorded peak discharges of 35,000 ft3/s, 43,400 ft3/s, and 119,000 ft3/s respectively, with greater than 100-year recurrence intervals. The peak water-surface elevation 21.47 ft and the peak discharge 189,000 ft3/s recorded on June 28, 2006, at the Delaware River at Port Jervis stream-gaging station were the highest recorded since the flood of August 1955. At the Susquehanna River at Conklin, NY, stream-gaging station, which has been in operation since 1912, the peak water-surface elevation 25.02 ft and peak discharge 76,800 ft3/s recorded on June 28, 2006, exceeded the previous period-of-record maximums that were set during the flood of March 1936. Documented peak water-surface elevations during the June 2006 flood at many study sites in the Mohawk, Delaware, and Susquehanna River basins exceeded the 100-year flood-profile elevations determined in the flood-insurance studies prepared by the Federal Emergency Management Agency.
Method for estimating low-flow characteristics of ungaged streams in Indiana
Arihood, Leslie D.; Glatfelter, Dale R.
1991-01-01
Equations for estimating the 7-day, 2-year and 7oday, 10-year low flows at sites on ungaged streams are presented. Regression analysis was used to develop equations relating basin characteristics and low-flow characteristics at 82 gaging stations. Significant basin characteristics in the equations are contributing drainage area and flow-duration ratio, which is the 20-percent flow duration divided by the 90-percent flow duration. Flow-duration ratio has been regionalized for Indiana on a plate. Ratios for use in the equations are obtained from the plate. Drainage areas are determined from maps or are obtained from reports. The predictive capability of the method was determined by tests of the equations and of the flow-duration ratios on the plate. The accuracy of the equations alone was tested by estimating the low-flow characteristics at 82 gaging stations where flow-duration ratio is already known. In this case, the standard errors of estimate for 7-day, 2-year and 7-day, 10-year low flows are 19 and 28 percent. When flow-duration ratios for the 82 gaging stations are obtained from the map, the standard errors are 46 and 61 percent. However, when stations having drainage areas of less than 10 square miles are excluded from the test, the standard errors decrease to 38 and 49 percent. Standard errors increase when stations with small basins are included, probably because some of the flow-duration ratios obtained for these small basins are incorrect. Local geology and its effect on the ratio are not adequately reflected on the plate, which shows the regional variation in flow-duration ratio. In all the tests, no bias is apparent areally, with increasing drainage area or with increasing ratio. Guidelines and limitations should be considered when using the method. The method can be applied only at sites in the northern and central physiographic zones of the State. Low-flow characteristics cannot be estimated for regulated streams unless the amount of regulation is known so that the estimated low-flow characteristic can be adjusted. The method is most accurate for sites having drainage areas ranging from 10 to 1,000 square miles and for predictions of 7-day, 10-year low flows ranging from 0.5 to 340 cubic feet per second.
Method for estimating low-flow characteristics of ungaged streams in Indiana
Arihood, L.D.; Glatfelter, D.R.
1986-01-01
Equations for estimating the 7-day, 2-yr and 7-day, 10-yr low flows at sites on ungaged streams are presented. Regression analysis was used to develop equations relating basin characteristics and low flow characteristics at 82 gaging stations. Significant basin characteristics in the equations are contributing drainage area and flow duration ratio, which is the 20% flow duration divided by the 90% flow duration. Flow duration ratio has been regionalized for Indiana on a plate. Ratios for use in the equations are obtained from this plate. Drainage areas are determined from maps or are obtained from reports. The predictive capability of the method was determined by tests of the equations and of the flow duration ratios on the plate. The accuracy of the equations alone was tested by estimating the low flow characteristics at 82 gaging stations where flow duration ratio is already known. In this case, the standard errors of estimate for 7-day, 2-yr and 7-day, 10-yr low flows are 19% and 28%. When flow duration ratios for the 82 gaging stations are obtained from the map, the standard errors are 46% and 61%. However, when stations with drainage areas < 10 sq mi are excluded from the test, the standard errors reduce to 38% and 49%. Standard errors increase when stations with small basins are included, probably because some of the flow duration ratios obtained for these small basins are incorrect. Local geology and its effect on the ratio are not adequately reflected on the plate, which shows the regional variation in flow duration ratio. In all the tests, no bias is apparent areally, with increasing drainage area or with increasing ratio. Guidelines and limitations should be considered when using the method. The method can be applied only at sites in the northern and the central physiographic zones of the state. Low flow characteristics cannot be estimated for regulated streams unless the amount of regulation is known so that the estimated low flow characteristic can be adjusted. The method is most accurate for sites with drainage areas ranging from 10 to 1,000 sq mi and for predictions of 7-day, 10-yr low flows ranging from 0.5 to 340 cu ft/sec. (Author 's abstract)
New Jersey StreamStats: A web application for streamflow statistics and basin characteristics
Watson, Kara M.; Janowicz, Jon A.
2017-08-02
StreamStats is an interactive, map-based web application from the U.S. Geological Survey (USGS) that allows users to easily obtain streamflow statistics and watershed characteristics for both gaged and ungaged sites on streams throughout New Jersey. Users can determine flood magnitude and frequency, monthly flow-duration, monthly low-flow frequency statistics, and watershed characteristics for ungaged sites by selecting a point along a stream, or they can obtain this information for streamgages by selecting a streamgage location on the map. StreamStats provides several additional tools useful for water-resources planning and management, as well as for engineering purposes. StreamStats is available for most states and some river basins through a single web portal.Streamflow statistics for water resources professionals include the 1-percent annual chance flood flow (100-year peak flow) used to define flood plain areas and the monthly 7-day, 10-year low flow (M7D10Y) used in water supply management and studies of recreation, wildlife conservation, and wastewater dilution. Additionally, watershed or basin characteristics, including drainage area, percent area forested, and average percent of impervious areas, are commonly used in land-use planning and environmental assessments. These characteristics are easily derived through StreamStats.
Models for extracting vertical crustal movements from leveling data
NASA Technical Reports Server (NTRS)
Holdahl, S. H.
1978-01-01
Various adjustment strategies are being used in North America to obtain vertical crustal movements from repeated leveling. The more successful models utilize polynomials or multiquadric analysis to describe elevation change with a velocity surface. Other features permit determination of nonlinear motions, motions associated with earthquakes or episodes, and vertical motions of blocks where boundaries are prespecified. The preferred models for estimating crustal motions permit the use of detached segments of releveling to govern the shape of a velocity surface and allow for input from nonleveling sources such as tide gages and paired lake gages. Some models for extracting vertical crustal movements from releveling data are also excellent for adjusting leveling networks, and permit mixing old and new data in areas exhibiting vertical motion. The new adjustment techniques are more general than older static models and will undoubtedly be used routinely in the future as the constitution of level networks becomes mainly relevelings.
Feaster, Toby D.; Tasker, Gary D.
2002-01-01
Data from 167 streamflow-gaging stations in or near South Carolina with 10 or more years of record through September 30, 1999, were used to develop two methods for estimating the magnitude and frequency of floods in South Carolina for rural ungaged basins that are not significantly affected by regulation. Flood frequency estimates for 54 gaged sites in South Carolina were computed by fitting the water-year peak flows for each site to a log-Pearson Type III distribution. As part of the computation of flood-frequency estimates for gaged sites, new values for generalized skew coefficients were developed. Flood-frequency analyses also were made for gaging stations that drain basins from more than one physiographic province. The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, updated these data from previous flood-frequency reports to aid officials who are active in floodplain management as well as those who design bridges, culverts, and levees, or other structures near streams where flooding is likely to occur. Regional regression analysis, using generalized least squares regression, was used to develop a set of predictive equations that can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for rural ungaged basins in the Blue Ridge, Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The predictive equations are all functions of drainage area. Average errors of prediction for these regression equations ranged from -16 to 19 percent for the 2-year recurrence-interval flow in the upper Coastal Plain to -34 to 52 percent for the 500-year recurrence interval flow in the lower Coastal Plain. A region-of-influence method also was developed that interactively estimates recurrence- interval flows for rural ungaged basins in the Blue Ridge of South Carolina. The region-of-influence method uses regression techniques to develop a unique relation between flow and basin characteristics for an individual watershed. This, then, can be used to estimate flows at ungaged sites. Because the computations required for this method are somewhat complex, a computer application was developed that performs the computations and compares the predictive errors for this method. The computer application includes the option of using the region-of-influence method, or the generalized least squares regression equations from this report to compute estimated flows and errors of prediction specific to each ungaged site. From a comparison of predictive errors using the region-of-influence method with those computed using the regional regression method, the region-of-influence method performed systematically better only in the Blue Ridge and is, therefore, not recommended for use in the other physiographic provinces. Peak-flow data for the South Carolina stations used in the regionalization study are provided in appendix A, which contains gaging station information, log-Pearson Type III statistics, information on stage-flow relations, and water-year peak stages and flows. For informational purposes, water-year peak-flow data for stations on regulated streams in South Carolina also are provided in appendix D. Other information pertaining to the regulated streams is provided in the text of the report.
Fey, D.L.; Wirt, L.; Besser, J.M.; Wright, W.G.
2002-01-01
This report presents hydrologic, water-quality, and biologic toxicity data collected during the annual spring thaw of 2002 in the upper Animas River watershed near Silverton, Colorado. The spring-thaw runoff is a concern because elevated concentrations of iron oxyhydroxides can contain sorbed trace metals that are potentially toxic to aquatic life. Water chemistry of streams draining the San Juan Mountains is affected by natural acid drainage and weathering of hydrothermal altered volcanic rocks and by more than a century of mining activities. The timing of the spring-thaw sampling effort was determined by reviewing historical climate and stream-flow hydrographs and current weather conditions. Twenty-one water-quality samples were collected between 11:00 AM March 27, 2002 and 6:00 PM March 30, 2002 to characterize water chemistry at the A-72 gage on the upper Animas River below Silverton. Analyses of unfiltered water at the A-72 gage showed a relation between turbidity and total-recoverable iron concentrations, and showed diurnal patterns. Copper and lead concentrations were related to iron concentrations, indicating that these elements are probably sorbed to colloidal iron material. Calcium, strontium, and sulfate concentrations showed overall decreasing trends due to dilution, but the loads of those constituents increased over the sampling period. Nine water-quality samples were collected near the confluence of Mineral Creek with the Animas River, the confluence of Cement Creek with the Animas River, and on the upper Animas River above the confluence with Cement Creek (three samples at each site). A total of six bulk water-toxicity samples were collected before, during, and after the spring thaw from the Animas River at the A-72 gage site. Toxicity tests conducted with the bulk water samples on amphipods did not show strong differences in toxicity among the three sampling periods; however, toxicity of river water to fathead minnows showed a decreasing trend during the course of the study.
Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers
Boldt, Justin A.; Oberg, Kevin A.
2015-01-01
The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.
Price, Don; Plantz, G.G.
1987-01-01
The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)
Estimation of stream conditions in tributaries of the Klamath River, northern California
Manhard, Christopher V.; Som, Nicholas A.; Jones, Edward C.; Perry, Russell W.
2018-01-01
Because of their critical ecological role, stream temperature and discharge are requisite inputs for models of salmonid population dynamics. Coho Salmon inhabiting the Klamath Basin spend much of their freshwater life cycle inhabiting tributaries, but environmental data are often absent or only seasonally available at these locations. To address this information gap, we constructed daily averaged water temperature models that used simulated meteorological data to estimate daily tributary temperatures, and we used flow differentials recorded on the mainstem Klamath River to estimate daily tributary discharge. Observed temperature data were available for fourteen of the major salmon bearing tributaries, which enabled estimation of tributary-specific model parameters at those locations. Water temperature data from six mid-Klamath Basin tributaries were used to estimate a global set of parameters for predicting water temperatures in the remaining tributaries. The resulting parameter sets were used to simulate water temperatures for each of 75 tributaries from 1980-2015. Goodness-of-fit statistics computed from a cross-validation analysis demonstrated a high precision of the tributary-specific models in predicting temperature in unobserved years and of the global model in predicting temperatures in unobserved streams. Klamath River discharge has been monitored by four gages that broadly intersperse the 292 kilometers from the Iron Gate Dam to the Klamath River mouth. These gages defined the upstream and downstream margins of three reaches. Daily discharge of tributaries within a reach was estimated from 1980-2015 based on drainage-area proportionate allocations of the discharge differential between the upstream and downstream margin. Comparisons with measured discharge on Indian Creek, a moderate-sized tributary with naturally regulated flows, revealed that the estimates effectively approximated both the variability and magnitude of discharge.
Stets, Edward G.; Winter, Thomas C.; Rosenberry, Donald O.; Striegl, Robert G.
2010-01-01
Accurate quantification of hydrologic fluxes in lakes is important to resource management and for placing hydrologic solute flux in an appropriate biogeochemical context. Water stable isotopes can be used to describe water movements, but they are typically only effective in lakes with long water residence times. We developed a descriptive time series model of lake surface water oxygen‐18 stable isotope signature (δL) that was equally useful in open‐ and closed‐basin lakes with very different hydrologic residence times. The model was applied to six lakes, including two closed‐basin lakes and four lakes arranged in a chain connected by a river, located in a headwaters watershed. Groundwater discharge was calculated by manual optimization, and other hydrologic flows were constrained by measured values including precipitation, evaporation, and streamflow at several stream gages. Modeled and observed δL were highly correlated in all lakes (r = 0.84–0.98), suggesting that the model adequately described δL in these lakes. Average modeled stream discharge at two points along the river, 16,000 and 11,800 m3d−1, compares favorably with synoptic measurement of stream discharge at these sites, 17,600 and 13,700 m3 d−1, respectively. Water yields in this watershed were much higher, 0.23–0.45 m, than water yields calculated from gaged streamflow in regional rivers, approximately 0.10 m, suggesting that regional groundwater discharge supports water flux through these headwaters lakes. Sensitivity and robustness analyses also emphasized the importance of considering hydrologic residence time when designing a sampling protocol for stable isotope use in lake hydrology studies.
NASA Astrophysics Data System (ADS)
Gasperi, J. T.; McClung, J. M.; Hanson, D. L.
2006-12-01
The USDA-Natural Resources Conservation Service has developed regional hydraulic geometry curves relating drainage area to bankfull top width, mean depth and cross-sectional area for the east and west sides of the northern Cascade Mountains in Chelan and King Counties, Washington. NRCS surveyed 10 channel reaches with drainage areas from 1 to 1000 square miles within the Wenatchee River drainage of Chelan County and 10 channel reaches with drainage areas of 1 to 100 square miles within the Cedar and Green River drainages of King County. Selection criteria for stream reaches required a minimum of 20 years of USGS stream gage discharge records, unregulated flows and safe access. Survey data were collected with a Sokkia Total Station during low flow conditions from August 2004 to September 2005. NRCS measured a channel cross-section at each of the USGS stream gage sites and two or three additional cross-sections up and downstream. The authors also collected samples of bed material for gradation analysis and estimation of Manning's roughness coefficient, n. Bankfull elevations were estimated based on visual identification of field indicators and USGS flood discharges for the 50% exceedance probability event. Field data were evaluated with the Ohio DNR Reference Reach spreadsheet to determine bankfull top width, mean depth and cross-sectional area. We applied a simple linear regression to the data following USGS statistical methods to evaluate the closeness of fit between drainage area and bankfull channel dimensions. The resulting R2 values of 0.83 to 0.93 for the eastern Cascade data of Chelan County and 0.71 to 0.88 for the western Cascade data of King County indicate a close association between drainage area and bankfull channel dimensions for these two sets of data.
Low-flow characteristics of streams in South Carolina
Feaster, Toby D.; Guimaraes, Wladmir B.
2017-09-22
An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.Between 2008 and 2016, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, updated low-flow statistics at 106 continuous-record streamgages operated by the U.S. Geological Survey for the eight major river basins in South Carolina. The low-flow frequency statistics included the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamflow-gaging station. Computations of daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also were included.This report summarizes the findings from publications generated during the 2008 to 2016 investigations. Trend analyses for the annual minimum 7-day average flows are provided as well as trend assessments of long-term annual precipitation data. Statewide variability in the annual minimum 7-day average flow is assessed at eight long-term (record lengths from 55 to 78 years) streamgages. If previous low-flow statistics were available, comparisons with the updated annual minimum 7-day average flow, having a 10-year recurrence interval, were made. In addition, methods for estimating low-flow statistics at ungaged locations near a gaged location are described.
Stream-groundwater exchange and hydrologic turnover at the network scale
NASA Astrophysics Data System (ADS)
Covino, Tim; McGlynn, Brian; Mallard, John
2011-12-01
The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.
Evaluation of selected methods for determining streamflow during periods of ice effect
Melcher, Norwood B.; Walker, J.F.
1992-01-01
Seventeen methods for estimating ice-affected streamflow are evaluated for potential use with the U.S. Geological Survey streamflow-gaging station network. The methods evaluated were identified by written responses from U.S. Geological Survey field offices and by a comprehensive literature search. The methods selected and techniques used for applying the methods are described in this report. The methods are evaluated by comparing estimated results with data collected at three streamflow-gaging stations in Iowa during the winter of 1987-88. Discharge measurements were obtained at 1- to 5-day intervals during the ice-affected periods at the three stations to define an accurate baseline record. Discharge records were compiled for each method based on data available, assuming a 6-week field schedule. The methods are classified into two general categories-subjective and analytical--depending on whether individual judgment is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used at streamflow-gaging stations, where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice-adjustment factor) may be appropriate for use at stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge-ratio and multiple-regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.
Methods for estimating streamflow at mountain fronts in southern New Mexico
Waltemeyer, S.D.
1994-01-01
The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.
Streamflow from the United States into the Atlantic Ocean during 1931-1960
Bue, Conrad D.
1970-01-01
Streamflow from the United States into the Atlantic Ocean, between the international stream St. Croix River, inclusive, and Cape Sable, Fla., averaged about 355,000 cfs (cubic feet per second) during the 30-year period 1931-60, or roughly 20 percent of the water that, on the average flows out of the conterminous United States. The area drained by streams flowing into the Atlantic Ocean is about 288,000 square miles, including the Canadian part of the St. Croix and Connecticut River basins, or a little less than 10 percent of the area of the conterminous United States. Hence, the average streamflow into the Atlantic Ocean, in terms of cubic feet per second per square mile, is about twice the national average of the flow that leaves the conterminous United States. Flow from about three-fourths of the area draining into the Atlantic Ocean is gaged at streamflow measuring stations of the U.S. Geological Survey. The remaining one-fourth of the drainage area consists mostly of low-lying coastal areas from which the flow was estimated, largely on the basis of nearby gaging stations. Streamflow, in terms of cubic feet per second per square mile, decreases rather progressively from north to south. It averages nearly 2 cfs along the Maine coast, about 1 cfs along the North Carolina coast, and about 0.9 cfs along the Florida coast.
Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data
Gebert, Warren A.; Walker, John F.; Hunt, Randall J.
2011-01-01
The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.
Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.
1988-01-01
Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 144 gaging stations; stage and contents for 15 lakes and reservoirs; watet quality for 21 streams. Also included are crest-stage partial-record stations, 3 miscellaneous measurement sites, and 5 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.
1987-01-01
Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 150 gaging stations; stage and contents for 17 lakes and reservoirs; water quality for 23 streams. Also included are 10 crest-stage partial-record stations, three miscellaneous measurement sites, and one waterquality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Bowers, J.C.; Butcher, M.T.; Lamb, C.E.; Singer, J.A.; Smith, G.B.
1985-01-01
Water resources data for the 1983 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 154 gaging stations; stage and contents for 18 lakes and reservoirs; water quality for 20 streams and 18 wells; water levels for 165 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and federal agencies in California.
Bowers, J.C.; Butcher, M.T.; Lamb, C.E.; Singer, J.A.; Smith, G.B.
1984-01-01
Water-resources data for the 1982 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 160 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 20 streams and 20 wells; water levels for 174 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Velocity profile, water-surface slope, and bed-material size for selected streams in Colorado
Marchand, J.P.; Jarrett, R.D.; Jones, L.L.
1984-01-01
Existing methods for determining the mean velocity in a vertical sampling section do not address the conditions present in high-gradient, shallow-depth streams common to mountainous regions such as Colorado. The report presents velocity-profile data that were collected for 11 streamflow-gaging stations in Colorado using both a standard Price type AA current meter and a prototype Price Model PAA current meter. Computational results are compiled that will enable mean velocities calculated from measurements by the two current meters to be compared with each other and with existing methods for determining mean velocity. Water-surface slope, bed-material size, and flow-characteristic data for the 11 sites studied also are presented. (USGS)
Waltemeyer, Scott D.
2006-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction for a peak discharge have a recurrence interval of 100-years for region 8 was 53 percent (average) for the 100-year flood. The average standard of prediction, which includes average sampling error and average standard error of regression, ranged from 45 to 83 percent for the 100-year flood. Estimated standard error of prediction for a hybrid method for region 11 was large in the 1997 investigation. No distinction of floods produced from a high-elevation region was presented in the 1997 investigation. Overall, the equations based on generalized least-squares regression techniques are considered to be more reliable than those in the 1997 report because of the increased length of record and improved GIS method. Techniques for transferring flood-frequency relations to ungaged sites on the same stream can be estimated at an ungaged site by a direct application of the regional regression equation or at an ungaged site on a stream that has a gaging station upstream or downstream by using the drainage-area ratio and the drainage-area exponent from the regional regression equation of the respective region.
NASA Astrophysics Data System (ADS)
Mizukami, N.; Smith, M. B.
2010-12-01
It is common for the error characteristics of long-term precipitation data to change over time due to various factors such as gauge relocation and changes in data processing methods. The temporal consistency of precipitation data error characteristics is as important as data accuracy itself for hydrologic model calibration and subsequent use of the calibrated model for streamflow prediction. In mountainous areas, the generation of precipitation grids relies on sparse gage networks, the makeup of which often varies over time. This causes a change in error characteristics of the long-term precipitation data record. We will discuss the diagnostic analysis of the consistency of gridded precipitation time series and illustrate the adverse effect of inconsistent precipitation data on a hydrologic model simulation. We used hourly 4 km gridded precipitation time series over a mountainous basin in the Sierra Nevada Mountains of California from October 1988 through September 2006. The basin is part of the broader study area that served as the focus of the second phase of the Distributed Model Intercomparison Project (DMIP-2), organized by the U.S. National Weather Service (NWS) of the National Oceanographic and Atmospheric Administration (NOAA). To check the consistency of the gridded precipitation time series, double mass analysis was performed using single pixel and basin mean areal precipitation (MAP) values derived from gridded DMIP-2 and Parameter-Elevation Regressions on Independent Slopes Model (PRISM) precipitation data. The analysis leads to the conclusion that over the entire study time period, a clear change in error characteristics in the DMIP-2 data occurred in the beginning of 2003. This matches the timing of one of the major gage network changes. The inconsistency of two MAP time series computed from the gridded precipitation fields over two elevation zones was corrected by adjusting hourly values based on the double mass analysis. We show that model simulations using the adjusted MAP data produce improved stream flow compared to simulations using the inconsistent MAP input data.
Voronin, Lois M.; Cauller, Stephen J.
2017-07-31
Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base flow to streams that eventually flow into the bay and groundwater discharge directly into the estuary and adjoining coastal wetlands— is summarized by quantity, travel time, and estimated nitrogen concentration. Simulated average groundwater discharge to streams in the watershed that flow into the BB-LEH estuary is approximately 400 million gallons per day. Particle-tracking results indicate that the travel time of 56 percent of this discharge is less than 7 years. Fourteen percent of the groundwater discharge to the streams in the BB-LEH watershed has a travel time of less than 7 years and originates in urban land. Analysis of flow-path simulations indicate that approximately 13 percent of the total groundwater flow through the study area discharges directly to the estuary and adjoining coastal wetlands (approximately 64 million gallons per day). The travel time of 19 percent of this discharge is less than 7 years. Ten percent of this discharge (1 percent of the total groundwater flow through the study area) originates in urban areas and has a travel time of less than 7 years. Groundwater that discharges to the streams that flow into the BB-LEH, in general, has shorter travel times, and a higher percentage of it originates in urban areas than does direct groundwater discharge to the Barnegat Bay–Little Egg Harbor estuary.The simulated average nitrogen concentration in groundwater that discharges to the Toms River, upstream from streamflow-gaging station 01408500 was computed and compared to summary concentrations determined from analysis of multiple surface-water samples. The nitrogen concentration in groundwater that discharges directly to the estuary and adjoining coastal wetlands is a current data gap. The particle tracking methodology used in this study provides an estimate of this concentration."
Dynamic Floodplain representation in hydrologic flood forecasting using WRF-Hydro modeling framework
NASA Astrophysics Data System (ADS)
Gangodagamage, C.; Li, Z.; Maitaria, K.; Islam, M.; Ito, T.; Dhondia, J.
2016-12-01
Floods claim more lives and damage more property than any other category of natural disaster in the Continental United States. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels at each reach with the fourth dimension, time. We use modeled flows from WRF-Hydro and demarcate the right and left lateral boundaries of inundation dynamically by appropriately mapping discharges into hydraulically corrected stages. Backwater effects from the mainstem to tributaries are considered and proper corrections are applied for the tributary inundations. We obtained river stages by optimizing reach level channel parameters using newly developed stream flow routing algorithm. Non uniform inundations are mapped at each NHDplus reach (upstream and downstream nodes) and spatial interpolation is carried out on a normalized digital elevation model (always streams are at zero elevations) to obtain the smooth flood boundaries between adjacent reaches. The validation of the dynamic inundation boundaries is performed using multi-temporal satellite datasets as well as HEC-RAS hydrodynamic model results for selected streams for previous flood events.
4D Floodplain representation in hydrologic flood forecasting using WRFHydro modeling framework
NASA Astrophysics Data System (ADS)
Gangodagamage, C.; Li, Z.; Adams, T.; Ito, T.; Maitaria, K.; Islam, M.; Dhondia, J.
2015-12-01
Floods claim more lives and damage more property than any other category of natural disaster in the Continental U.S. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007, 2011) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels with the fourth dimension, time. We use modeled flows from WRFHydro and demarcate the right and left lateral boundaries of inundation dynamically. This approach dynamically integrates with high resolution models (e.g., hourly and ~ 1 km spatial resolution) that are developed from recent advancements in high computational power with ground based measurements (e.g., Fluxnet), lateral inundation vectors (direction and spatial extent) derived from multi-temporal remote sensing data (e.g., LiDAR, WorldView 2, Landsat, ASTER, MODIS), and improved representations of the physical processes through multi-parameterizations. Our approach enhances the normalized (streams are at zero elevations) DEM derived upstream flow routing pathways for stream reaches for given water stages as more and more satellite data become available for various flood inundations. Validation of the inundation boundaries is performed using HEC-RAS hydrodynamic model results for selected streams.
Granato, Gregory E.
2009-01-01
Streamflow information is important for many planning and design activities including water-supply analysis, habitat protection, bridge and culvert design, calibration of surface and ground-water models, and water-quality assessments. Streamflow information is especially critical for water-quality assessments (Warn and Brew, 1980; Di Toro, 1984; Driscoll and others, 1989; Driscoll and others, 1990, a,b). Calculation of streamflow statistics for receiving waters is necessary to estimate the potential effects of point sources such as wastewater-treatment plants and nonpoint sources such as highway and urban-runoff discharges on receiving water. Streamflow statistics indicate the amount of flow that may be available for dilution and transport of contaminants (U.S. Environmental Protection Agency, 1986; Driscoll and others, 1990, a,b). Streamflow statistics also may be used to indicate receiving-water quality because concentrations of water-quality constituents commonly vary naturally with streamflow. For example, concentrations of suspended sediment and sediment-associated constituents (such as nutrients, trace elements, and many organic compounds) commonly increase with increasing flows, and concentrations of many dissolved constituents commonly decrease with increasing flows in streams and rivers (O'Connor, 1976; Glysson, 1987; Vogel and others, 2003, 2005). Reliable, efficient and repeatable methods are needed to access and process streamflow information and data. For example, the Nation's highway infrastructure includes an innumerable number of stream crossings and stormwater-outfall points for which estimates of stream-discharge statistics may be needed. The U.S. Geological Survey (USGS) streamflow data-collection program is designed to provide streamflow data at gaged sites and to provide information that can be used to estimate streamflows at almost any point along any stream in the United States (Benson and Carter, 1973; Wahl and others, 1995; National Research Council, 2004). The USGS maintains the National Water Information System (NWIS), a distributed network of computers and file servers used to store and retrieve hydrologic data (Mathey, 1998; U.S. Geological Survey, 2008). NWISWeb is an online version of this database that includes water data from more than 24,000 streamflow-gaging stations throughout the United States (U.S. Geological Survey, 2002, 2008). Information from NWISWeb is commonly used to characterize streamflows at gaged sites and to help predict streamflows at ungaged sites. Five computer programs were developed for obtaining and analyzing streamflow from the National Water Information System (NWISWeb). The programs were developed as part of a study by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, to develop a stochastic empirical loading and dilution model. The programs were developed because reliable, efficient, and repeatable methods are needed to access and process streamflow information and data. The first program is designed to facilitate the downloading and reformatting of NWISWeb streamflow data. The second program is designed to facilitate graphical analysis of streamflow data. The third program is designed to facilitate streamflow-record extension and augmentation to help develop long-term statistical estimates for sites with limited data. The fourth program is designed to facilitate statistical analysis of streamflow data. The fifth program is a preprocessor to create batch input files for the U.S. Environmental Protection Agency DFLOW3 program for calculating low-flow statistics. These computer programs were developed to facilitate the analysis of daily mean streamflow data for planning-level water-quality analyses but also are useful for many other applications pertaining to streamflow data and statistics. These programs and the associated documentation are included on the CD-ROM accompanying this report. This report and the appendixes on the
Maurer, Douglas K.; Watkins, Sharon A.; Burrowws, Robert L.
2004-01-01
Rapid population growth in Carson Valley has caused concern over the continued availability of water resources to sustain future growth. The U.S. Geological Survey, in cooperation with Douglas County, began a study to update estimates of water-budget components in Carson Valley for current climatic conditions. Data collected at 19 sites included 9 continuous records of tributary streamflows, 1 continuous record of outflow from the valley, and 408 measurements of 10 perennially flowing but ungaged drainages. These data were compiled and analyzed to provide updated computations and estimates of streamflows tributary to Carson Valley, 1990-2002. Mean monthly and annual flows were computed from continuous records for the period 1990-2002 for five streams, and for the period available, 1990-97, for four streams. Daily mean flow from ungaged drainages was estimated using multi-variate regressions of individual discharge measurements against measured flow at selected continuous gages. From the estimated daily mean flows, monthly and annual mean flows were calculated from 1990 to 2002. These values were used to compute estimates of mean monthly and annual flows for the ungaged perennial drainages. Using the computed and estimated mean annual flows, annual unit-area runoff was computed for the perennial drainages, which ranged from 0.30 to 2.02 feet. For the period 1990-2002, estimated inflow of perennial streams tributary to Carson Valley totaled about 25,900 acre-feet per year. Inflow computed from gaged perennial drainages totaled 10,300 acre-feet per year, and estimated inflow from ungaged perennial drainages totaled 15,600 acre-feet per year. The annual flow of perennial streams ranges from 4,210 acre-feet at Clear Creek to 450 acre-feet at Stutler Canyon Creek. Differences in unit-area runoff and in the seasonal timing of flow likely are caused by differences in geologic setting, altitude, slope, or aspect of the individual drainages. The remaining drainages are ephemeral and supply inflow to the valley floor only during spring runoff in wet years or during large precipitation events. Annual unit-area runoff for the perennial drainages was used to estimate inflow from ephemeral drainages totaling 11,700 acre-feet per year. The totaled estimate of perennial and ephemeral tributary inflows to Carson Valley is 37,600 acre-feet per year. Gaged perennial inflow is 27 percent of the total, ungaged perennial inflow is 42 percent, and ephemeral inflow is 31 percent. The estimate is from 50 to 60 percent greater than three previous estimates, one made for a larger area and similar to two other estimates made for larger areas. The combined uncertainty of the estimates totaled about 33 percent of the total inflow or about 12,000 acre-feet per year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1997-02-01
This report, Volume, 2, includes record from the Susquehanna and Potomac River Basins. Specifically, it contains: (1) discharge records for 90 continuous-record streamflow-gaging stations and 41 partial-record stations; (2) elevation and contents record for 12 lakes and reservoirs; (3) water-quality records for 13 streamflow-gaging stations and 189 partial-record and project stations; and (4) water-level records for 25 network observation wells. Site locations are shown in figures throughout the report. Additional water data collected at various sites not involved in the systematic data-collection program are also presented.
Asquith, William H.; Heitmuller, Franklin T.
2008-01-01
Analysts and managers of surface-water resources have interest in annual mean and annual harmonic mean statistics of daily mean streamflow for U.S. Geological Survey (USGS) streamflow-gaging stations in Texas. The mean streamflow represents streamflow volume, whereas the harmonic mean streamflow represents an appropriate statistic for assessing constituent concentrations that might adversely affect human health. In 2008, the USGS, in cooperation with the Texas Commission on Environmental Quality, conducted a large-scale documentation of mean and harmonic mean streamflow for 620 active and inactive, continuous-record, streamflow-gaging stations using period of record data through water year 2007. About 99 stations within the Texas USGS streamflow-gaging network are part of the larger national Hydroclimatic Data Network and are identified. The graphical depictions of annual mean and annual harmonic mean statistics in this report provide a historical perspective of streamflow at each station. Each figure consists of three time-series plots, two flow-duration curves, and a statistical summary of the mean annual and annual harmonic mean streamflow statistics for available data for each station.The first time-series plot depicts daily mean streamflow for the period 1900-2007. Flow-duration curves follow and are a graphical depiction of streamflow variability. Next, the remaining two time-series plots depict annual mean and annual harmonic mean streamflow and are augmented with horizontal lines that depict mean and harmonic mean for the period of record. Monotonic trends for the annual mean streamflow and annual harmonic mean streamflow also are identified using Kendall's tau, and the slope of the trend is depicted using the nonparametric (linear) Theil-Sen line, which is only drawn for p-values less than .10 of tau. The history of annual mean and annual harmonic mean streamflow of one or more streamflow-gaging stations could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of streamflow conditions in Texas.
Cox, Marisa H.; Hatch, Christine
2003-01-01
Temperature, water level elevation, stage height, and river discharge data for this report were collected in and adjacent to the Russian River from Hopland to Guerneville, CA over a four-year period from 1998 to 2002 to establish baselines for long-term water quality, water supply and habitat. Data files presented in this report were collected by the USGS and the Sonoma County Water Agency's Engineering Resource and Planning, and Natural Resource Divisions. Temperature data were collected in single-channel submersible microloggers or temperature data were collected simultaneously with water-elevation data in dual-channel down-hole data loggers. Stream stage and streamflow data were collected at USGS stream gaging stations located near Hopland, Healdsburg, and Guerneville over a 130 km reach of the Russian River. During the period of record stream flow ranged from 3 to 1458 m3/s. Stream temperature ranged from 8 to 29 oC while groundwater temperature ranged from 10 to 38 oC. Stream stage varied 5 m seasonly, while ground-water level varied 19 m over the same time scale.
Salamander occupancy in headwater stream networks
Grant, E.H.C.; Green, L.E.; Lowe, W.H.
2009-01-01
1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.
Cummans, J.E.
1976-01-01
Low-flow-frequency data are tabulated for 90 streamflow sites on the Kitsap Peninsula and adjacent islands, Washington. Also listed are data for 56 additional sites which have insufficient measurements for frequency analysis but which have been observed having no flow at least once during the low-flow period. The streams drain relatively small basins; only three streams have drainage areas greater than 20.0 square miles, and only nine other streams have drainage areas greater than 10.0 square miles. Mean annual precipitation during the period 1931-60 ranged from about 25 inches near Hansville to about 70 inches near Tahuya. Low-flow-frequency curves plotted from records of streamflow at eight long-term gaging stations were used to determine data for low-flow durations of 7, 30, 60, 90, and 183 days. Regression techniques then were used to estimate low flows with frequencies up to 20 years for stations with less than 10 years of record and for miscellaneous sites where discharge measurements have been made. (Woodard-USGS)
Laine, L.L.
1958-01-01
Analysis of streamflow data shows that water supply in the Washita River basin is variable, ranging from substantial amounts and almost continuous flow in the Washita River in the lower end of the basin to somewhat limited and intermittent flow in the upper part of the basin. The total yield of the basin averages 1,557,000 acre-ft per year, of which somewhat less than 1.3 percent is contributed by headwater areas in Texas. The surface waters are generally of acceptable quality for drinking purposes, excellent for irrigation uses, and suitable for many industrial purposes. In Oklahoma the high amounts of runoff tend to occur in the spring months. High runoff may occur during any month in the year but, in general, the available streamflow is relatively small in the summer. Most tributary streams have little sustained base flow and many are dry at times each year. Because of the high variability in flow, development of storage will be necessary to attain maximum utilization of the available water supplies. This report gives the average discharge at most gaging stations and at several additional sites for the 16-year period October 1938 to September 1954, used as a standard period in this report. Data are also shown on water available at several gaging stations and other sites for a given percentage of the time during the 16-year standard period. For several gaging stations data are given on minimum discharges for periods of various length during the most critical periods of record. For all gaging stations a summary of available basic data on streamflow is presented on a monthly annual basis. For other sites at which discharge measurements have been made, a tabulation of observed discharge is given. (available as photostat copy only)
Gordon Tribble; Jonathan Stock; Jim Jacobi
2016-01-01
Molokaiâs south shore has some of Hawaiiâs most extensive and best-developed coral reefs. Historic terrigenous sedimentation appears to have impacted coral growth along several miles of fringing reef. The land upslope of the reef consists of small watersheds with streams that flow intermittently to the ocean. A USGS gage at the outlet of one of the most impacted...
Busciolano, Ronald J.
2005-01-01
Ground water is the sole source of water supply for more than 3 million people on Long Island, New York. Large-scale ground-water pumpage, sewering systems, and prolonged periods of below-normal precipitation have lowered ground-water levels and decreased stream-discharge in western and central Long Island. No method is currently (2004) available on Long Island that can assess data from the ground-water-monitoring network to enable water managers and suppliers with the ability to give timely warning of severe water-level declines.This report (1) quantifies past drought- and human-induced changes in the ground-water system underlying Long Island by applying statistical and graphical methods to precipitation, stream-discharge, and ground-water-level data from selected monitoring sites; (2) evaluates the relation between water levels in the upper glacial aquifer and those in the underlying Magothy aquifer; (3) defines trends in stream discharge and ground-water levels that might indicate the onset of drought conditions or the effects of excessive pumping; and (4) discusses the long-term records that were used to select sites for a Long Island drought-monitoring network.Long Island’s long-term hydrologic records indicated that the available data provide a basis for development of a drought-monitoring network. The data from 36 stations that were selected as possible drought-monitoring sites—8 precipitation-monitoring stations, 8 streamflow-gaging (discharge) stations, 15 monitoring wells screened in the upper glacial aquifer under water-table (unconfined) conditions, and 5 monitoring wells screened in the underlying Magothy aquifer under semi-confined conditions—indicate that water levels in western parts of Long Island have fallen and risen markedly (more than 15 ft) in response to fluctuations in pumpage, and have declined from the increased use of sanitary- and storm-sewer systems. Water levels in the central and eastern parts, in contrast, remain relatively unaffected compared to the western parts, although the effects of human activity are discernible in the records.The value of each site as a drought-monitoring indicator was assessed through an analysis of trends in the records. Fifty-year annual and monthly data sets were created and combined into three composite-average hydrographs—precipitation, stream discharge, and ground-water levels. Three zones representing the range of human effect on ground-water levels were delineated to help evaluate islandwide hydrologic conditions and to quantify the indices. Data from the three indices can be used to assess current conditions in the ground-water system underlying Long Island and evaluate water-level declines during periods of drought.
Fast algorithm for automatically computing Strahler stream order
Lanfear, Kenneth J.
1990-01-01
An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.
The physical behavior and geologic control of radon in mountain streams
Rogers, Allen S.
1956-01-01
Radon measurement were made in several small, turbulent mountain streams in the Wasatch Mountains near Salt Lake City and Ogden, Utah, to determine the relationship between the distribution of radon and its geologic environment. In this area, the distribution of radon in streams can be sued to locate points where relatively large amounts of radon-bearing ground water enter the stream, although other evidence of spring activity may be lacking. These points of influence ground water are marked by abrupt increases (as much as two orders of magnitude within a distance of 50 feet) in the radon content of the stream waters. The excess radon in the stream water is then rapidly lost to the atmosphere through stream turbulence. The rate of radon dissipation is an exponential function, of different slopes, with respect to distance of streamflow, and depend upon the rate and volume of streamflow, and the gradient and nature of the stream channel. The higher radon concentration can be generally related to specific stratigraphic horizons in several different drainage area. Thus, lithologic units which act as the primary aquifers can be identifies. In one area, thrust faults were found to control he influx of ground water into the stream. Estimates, based on radon concentration in stream and related spring waters, can also be made of the major increments of addition of ground water to streamflow where conventional methods such as stream gaging are not practical. The radon in the waters studied was found to be almost completely unsupported by radium in solution.
Etheridge, Alexandra B.
2015-12-07
Ninety-eight percent of the estimated total mercury load transported downstream of the study area is attributable to Sugar Creek. A maximum concentration of 26 micrograms per liter was measured in Sugar Creek during May 2013 when snowmelt runoff occurred during a single peak in the hydrograph. Monitoring and modeling results indicate sediment and sediment-associated constituent concentrations and loads increase along Meadow Creek, likely because of the inflow of the East Fork of Meadow Creek, and decrease between sites 3 and 4 because the Glory Hole is trapping sediments. Sugar Creek (site 5) accounted for most of the sediment and sediment-associated constituent loading leaving the study area because loads from the East Fork of Meadow Creek remained trapped in the Glory Hole. Additionally, total mercury was detected at all five streamflow-gaging stations, and sampled mercury concentrations exceeded Idaho ambient water-quality criteria at all five streamflow-gaging stations.
Slade, Raymond M.; Bentley, J. Taylor; Michaud, Dana
2002-01-01
Data for all 366 known streamflow gain-loss studies conducted by the U.S. Geological Survey in Texas were aggregated. A water-budget equation that includes discharges for main channels, tributaries, return flows, and withdrawals was used to document the channel gain or loss for each of 2,872 subreaches for the studies. The channel gain or loss represents discharge from or recharge to aquifers crossed by the streams. Where applicable, the major or minor aquifer outcrop traversed by each subreach was identified, as was the length and location for each subreach. These data will be used to estimate recharge or discharge for major and minor aquifers in Texas, as needed by the Ground-Water Availability Modeling Program being conducted by the Texas Water Development Board. The data also can be used, along with current flow rates for streamflow-gaging stations, to estimate streamflow at sites remote from gaging stations, including sites where streamflow availability is needed for permitted withdrawals.
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2004-01-01
Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 114 streamflow-gaging stations; stage or content records for 4 lakes and large reservoirs and content for 26 smaller reservoirs; water-quality records for 76 streamflow stations (11 ungaged), and 3 lakes; water-level records for 53 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2006-01-01
Water resources data for Montana for the 2005 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 120 streamflow-gaging stations; stage or content records for 22 lakes and reservoirs; water-quality records for 86 streamflow stations (32 ungaged), and 25 ground-water wells; water-level records for 25 observation wells; and precipitation records for 2 atmospheric-deposition stations. Additional water year 2005 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2005-01-01
Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 119 streamflow-gaging stations; stage or content records for 21 lakes and reservoirs; and water-quality records for 69 streamflow stations (17 ungaged), and 3 lake sites; water-level records for 51 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Peak-flow frequency estimates through 1994 for gaged streams in South Dakota
Burr, M.J.; Korkow, K.L.
1996-01-01
Annual peak-flow data are listed for 250 continuous-record and crest-stage gaging stations in South Dakota. Peak-flow frequency estimates for selected recurrence intervals ranging from 2 to 500 years are given for 234 of these 250 stations. The log-Pearson Type III procedure was used to compute the frequency relations for the 234 stations, which in 1994 included 105 active and 129 inactive stations. The log-Pearson Type III procedure is recommended by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data, 1982, "Guidelines for Determining Flood Flow Frequency."No peak-flow frequency estimates are given for 16 of the 250 stations because: (1) of extreme variability in data set; (2) more than 20 percent of years had no flow; (3) annual peak flows represent large outflow from a spring; (4) of insufficient peak-flow record subsequent to reservoir regulation; and (5) peak-flow records were combined with records from nearby stations.
Streamflow characteristics and trends in New Jersey, water years 1897-2003
Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.
2005-01-01
Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.
Hydrology of the Chicod Creek basin, North Carolina, prior to channel improvements
Simmons, Clyde E.; Aldridge, Mary C.
1980-01-01
Extensive modification and excavation of stream channels in the 6-square mile Chicod Creek basin began in mid-1979 to reduce flooding and improve stream runoff conditions. The effects of channel improvements on this Coastal Pain basin 's hydrology will be determined from data collected prior to, during, and for several years following channel alternations. This report summarizes the findings of data collected prior to these improvements. During the 3-year study period, flow data collected from four stream gaging stations in the basin show that streams are dry approximately 10 percent of the time. Chemical analyses of water samples from the streams and from eight shallow groundwater observation wells indicate that water discharge from the surficial aquifer is the primary source of streamflow during rainless periods. Concentrations of Kjeldahl nitrogen, total nitrogen, and total phosphorus were often 5 to 10 times greater at Chicod Creek sites than those at nearby baseline sites. It is probable that runoff from farming and livestock operations contributes significantly to these elevated concentrations in Chicod Creek. The only pesticides detected in stream water were low levels of DDT and dieldrin, which occurred during storm runoff. A much wider range of pesticides, however, are found associated with streambed materials. The ratio of fecal coliform counts to those of fecal streptococcus indicate that the streams receive fecal wastes from livestock and poultry operations.
NASA Astrophysics Data System (ADS)
Wei, Chengying; Xiong, Cuilian; Liu, Huanlin
2017-12-01
Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.
Drainage areas of the Potomac River basin, West Virginia
Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.
1996-01-01
This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.
Polinoski, K.G.; Hoffman, E.B.; Smith, G.B.; Bowers, J.C.
1989-01-01
Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 17 lakes and reservoirs; and water quality for 24 streams. Also included are 10 crest-stage partial-record stations, 5 miscellaneous measurement sites, and 16 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.
1988-01-01
Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 16 lakes and reservoirs; and water quality for 16 streams. Also included are 10 crest-stage partial-record stations, 3 miscellaneous measurement sites, and 10 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
,
1982-01-01
Water-resources data for the 1981 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 169 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 42 streams and 21 wells; water levels for 169 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
J. Hwang; S.W. Oak; S.N. Jeffers
2011-01-01
To evaluate the number of stream sample sites needed to effectively survey a given stream network for species of Phytophthora, two stream networks, Davidson River and Cathey's Creek, in western North Carolina (USA) were studied. One-litre water samples were collected from the terminal drainage points and most of the tributaries in each stream...
Scalable Video Streaming in Wireless Mesh Networks for Education
ERIC Educational Resources Information Center
Liu, Yan; Wang, Xinheng; Zhao, Liqiang
2011-01-01
In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…
Analysis of trends in climate, streamflow, and stream temperature in north coastal California
Madej, Mary Ann; Medley, C. Nicholas; Patterson, Glenn; Parker, Melanie J.
2011-01-01
As part of a broader project analyzing trends in climate, streamflow, vegetation, salmon, and ocean conditions in northern California national park units, we compiled average monthly air temperature and precipitation data from 73 climate stations, streamflow data from 21 river gaging stations, and limited stream temperature data from salmon-bearing rivers in north coastal California. Many climate stations show a statistically significant increase in both average maximum and average minimum air temperature in early fall and midwinter during the last century. Concurrently, average September precipitation has decreased. In many coastal rivers, summer low flow has decreased and summer stream temperatures have increased, which affects summer rearing habitat for salmonids. Nevertheless, because vegetative cover has also changed during this time period, we cannot ascribe streamflow changes to climate change without first assessing water budgets. Although shifts in the timing of the centroid of runoff have been documented in snowmelt-dominated watersheds in the western United States, this was not the case in lower elevation coastal rivers analyzed in this study.
Cost-effectiveness of the stream-gaging program in Missouri
Waite, L.A.
1987-01-01
This report documents the results of an evaluation of the cost effectiveness of the 1986 stream-gaging program in Missouri. Alternative methods of developing streamflow information and cost-effective resource allocation were used to evaluate the Missouri program. Alternative methods were considered statewide, but the cost effective resource allocation study was restricted to the area covered by the Rolla field headquarters. The average standard error of estimate for records of instantaneous discharge was 17 percent; assuming the 1986 budget and operating schedule, it was shown that this overall degree of accuracy could be improved to 16 percent by altering the 1986 schedule of station visitations. A minimum budget of $203,870, with a corresponding average standard error of estimate 17 percent, is required to operate the 1986 program for the Rolla field headquarters; a budget of less than this would not permit proper service and maintenance of the stations or adequate definition of stage-discharge relations. The maximum budget analyzed was $418,870, which resulted in an average standard error of estimate of 14 percent. Improved instrumentation can have a positive effect on streamflow uncertainties by decreasing lost records. An earlier study of data uses found that data uses were sufficient to justify continued operation of all stations. One of the stations investigated, Current River at Doniphan (07068000) was suitable for the application of alternative methods for simulating discharge records. However, the station was continued because of data use requirements. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Kentel, E.; Cetinkaya, M. A.
2013-12-01
Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.
Influence of geomorphological properties and stage on in-stream travel time
NASA Astrophysics Data System (ADS)
Åkesson, Anna; Wörman, Anders
2014-05-01
The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream networks (representing catchments of the spatial scale of a few hundred km2) in different geographic regions in Sweden displaying different geomorphological properties. Results show that the geomorphological properties (data that is often available in the form of maps and/or DEMs) of individual stream networks have major influence on the stream network travel times. By coupling the geomorphological information to general expressions for stage dependency, catchment-specific relationships of how the travel times within stream networks can be determined. Basing the parameterisation procedure of a hydrological model in physical catchment properties and process understanding rather than statistical parameterisation (based in how a catchment has responded in the past) - is believed to lead to more reliable hydrological predictions - during extreme conditions as well as during changing conditions such as climate change and landscape modifications, and/or when making predictions in ungauged basins.
Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change
Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy
2015-01-01
Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.
Wireless Zigbee strain gage sensor system for structural health monitoring
NASA Astrophysics Data System (ADS)
Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce
2009-05-01
A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.
Field evaluation of shallow-water acoustic doppler current profiler discharge measurements
Rehmel, M.S.
2007-01-01
In 2004, the U.S. Geological Survey (USGS) Office of Surface Water staff and USGS Water Science employees began testing the StreamPro, an acoustic Doppler current profiler (ADCP) for shallow-water discharge measurements. Teledyne RD Instruments introduced the StreamPro in December of 2003. The StreamPro is designed to make a "moving boat" discharge measurement in streams with depths between 0.15 and 2 m. If the StreamPro works reliably in these conditions, it will allow for use of ADCPs in a greater number of streams than previously possible. Evaluation sites were chosen to test the StreamPro over a range of conditions. Simultaneous discharge measurements with mechanical and other acoustic meters, along with stable rating curves at established USGS streamflow-gaging stations, were used for comparisons. The StreamPro measurements ranged in mean velocity from 0.076 to 1.04 m/s and in discharge from 0.083 m 3/s to 43.4 m 3/s. Tests indicate that discharges measured with the StreamPro compare favorably to the discharges measured with the other meters when the mean channel velocity is greater than 0.25 m/s. When the mean channel velocity is less than 0.25 m/s, the StreamPro discharge measurements for individual transects have greater variability than those StreamPro measurements where the mean channel velocity is greater than 0.25 m/s. Despite this greater variation in individual transects, there is no indication that the StreamPro measured discharges (the mean discharge for all transects) are biased, provided that enough transects are used to determine the mean discharge. ?? 2007 ASCE.
Water Stage Forecasting in Tidal streams during High Water Using EEMD
NASA Astrophysics Data System (ADS)
Chen, Yen-Chang; Kao, Su-Pai; Su, Pei-Yi
2017-04-01
There are so many factors may affect the water stages in tidal streams. Not only the ocean wave but also the stream flow affects the water stage in a tidal stream. During high water, two of the most important factors affecting water stages in tidal streams are flood and tide. However the hydrological processes in tidal streams during high water are nonlinear and nonstationary. Generally the conventional methods used for forecasting water stages in tidal streams are very complicated. It explains the accurately forecasting water stages, especially during high water, in tidal streams is always a difficult task. The study makes used of Ensemble Empirical Model Decomposition (EEMD) to analyze the water stages in tidal streams. One of the advantages of the EEMD is it can be used to analyze the nonlinear and nonstationary data. The EEMD divides the water stage into several intrinsic mode functions (IMFs) and a residual; meanwhile, the physical meaning still remains during the process. By comparing the IMF frequency with tidal frequency, it is possible to identify if the IMF is affected by tides. Then the IMFs is separated into two groups, affected by tide or not by tide. The IMFs in each group are assembled to become a factor. Therefore the water stages in tidal streams are only affected by two factors, tidal factor and flood factor. Finally the regression analysis is used to establish the relationship between the factors of the gaging stations in the tidal stream. The available data during 15 typhoon periods of the Tanshui River whose downstream reach is in estuary area is used to illustrate the accuracy and reliability of the proposed method. The results show that the simple but reliable method is capable of forecasting water stages in tidal streams.
Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams
Stuckey, Marla H.
2006-01-01
Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.
Magnitude and frequency of floods in the United States. Part 13. Snake River basin
Thomas, C.A.; Broom, H.C.; Cummans, J.E.
1963-01-01
The magnitude of a flood of any selected frequency up to 50 years for any site on any stream in the Snake River basin can be determined by methods outlined in this report, with some limitations. The methods are not applicable for regulated streams, for drainage basins smaller than 10 or larger than 5,000 square miles, for streams fed by large springs, or for streams that have flow characteristics materially different from the regional pattern. The magnitude of a flood for a selected frequency at a given site is determined by using the appropriate composite frequency curve and the mean annual flood for the given site. The mean annual flood is computed from either a formula or a nomograph in which drainage area, mean annual precipitation, and a geographic factor are used as independent variables. The standard error of estimate for the computation of mean annual floods is plus 17 percent and minus 15 percent.Nine flood-frequency regions (A-I) are defined. In all except regions B and I, frequency relations vary with the mean altitude of the basin as well as with the geographic location; therefore, families of curves are required for 7 of the 9 flood-frequency regions.The report includes a brief description of the physiography and climate of the Snake River basin to explain the reason for the large variation in mean annual floods, which range from zero to about 27 cubic feet per second per square mile.Composite frequency curves and formulas for computing mean annual floods are based on all suitable flood data collected in the Snake River basin. Tables show the data used to derive the formula. Following the analysis of data are station descriptions and lists of peak stages and discharges for 295 gaging stations at which 5 or more years of annual flood records were collected pr'or to Sept. 30, 1957. Many flood peak data are not usable in defining the frequency curves and deriving the formula because of large diversions and regulation upstream from the gaging stations.
Applications of spatial statistical network models to stream data
Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal
2014-01-01
Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.
A compendium of millimeter wave propagation studies performed by NASA
NASA Technical Reports Server (NTRS)
Kaul, R.; Rogers, D.; Bremer, J.
1977-01-01
Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems.
Groschen, George E.; King, Robin B.
2005-01-01
Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.
NASA Astrophysics Data System (ADS)
Smith, J. D.; Kean, J. W.
2003-12-01
Accurate empirical determination of river discharge during an extreme event is very difficult even at a gage site. Moreover, the procurement of extreme flow measurements at many locations in an ungaged drainage basin often is necessary to relate the surface-water flow in the drainage network during a flood to the spatial distribution of intense rainfall. Consequently, paleo-hydrologic methods have to be employed to estimate peak discharges. These methods, however, require the application of some type of flow model. Often the flow models used with paleo-hydrologic data are over simplified and embody low-flow or extrapolated roughness coefficients that are inappropriate for the high flow of interest and that substantially reduce the reliability of the estimated discharge. Models that permit calculation of flow resistance from measured or calculated pre-flood, post-flood, or evolving channel and floodplain geometries and roughnesses can yield the most accurate results for these extreme situations. We have developed a procedure for directly calculating flow discharge as a function of stage in reaches a few tens of river widths in length. The foundation for this approach is a set of algorithms that permits computation of the form drag on topographic elements and woody vegetation. Its application requires an initial survey of the channel and floodplain topography and roughness. The method can be used either with stage determined from a set of pressure gages distributed throughout a drainage basin to monitor discharge in a drainage network or with paleo-hydrologic data to determine discharge from extreme events. Currently, our method of determining discharge from stage is being tested at various sites in the drainage basin of the Whitewater River, Kansas. Two of these sites are just downstream of USGS gages, and a third is a short distance downstream from the outlet pipe of a man-made lake. These tests are for a full range of hydrologic conditions in order to demonstrate that the model-based method for converting stage to discharge can be employed with confidence (1) in ungaged drainage basins where a large number of discharge measurements are required for hydrologic research, (2) at locations where rated USGS stage gages are too expensive, (3) near the sites of USGS stage gages for floods during which the discharge exceeds those for which the gage has been rated, and (4) for situations where paleo-flood methods have to be used to obtain a peak discharge. Model calculated rating curves are compared to measured ones for one of the USGS gage sites. Model calculations also are used to show that Manning's and other friction coefficients are functions of stage at this site. An approach such as the one described here is essential for the quantitative investigation of fluvial geomorphic processes caused by very large floods.
Evidence for fish dispersal from spatial analysis of stream network topology
Hitt, N.P.; Angermeier, P.L.
2008-01-01
Developing spatially explicit conservation strategies for stream fishes requires an understanding of the spatial structure of dispersal within stream networks. We explored spatial patterns of stream fish dispersal by evaluating how the size and proximity of connected streams (i.e., stream network topology) explained variation in fish assemblage structure and how this relationship varied with local stream size. We used data from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program in wadeable streams of the Mid-Atlantic Highlands region (n = 308 sites). We quantified stream network topology with a continuous analysis based on the rate of downstream flow accumulation from sites and with a discrete analysis based on the presence of mainstem river confluences (i.e., basin area >250 km2) within 20 fluvial km (fkm) from sites. Continuous variation in stream network topology was related to local species richness within a distance of ???10 fkm, suggesting an influence of fish dispersal within this spatial grain. This effect was explained largely by catostomid species, cyprinid species, and riverine species, but was not explained by zoogeographic regions, ecoregions, sampling period, or spatial autocorrelation. Sites near mainstem river confluences supported greater species richness and abundance of catostomid, cyprinid, and ictalurid fishes than did sites >20 fkm from such confluences. Assemblages at sites on the smallest streams were not related to stream network topology, consistent with the hypothesis that local stream size regulates the influence of regional dispersal. These results demonstrate that the size and proximity of connected streams influence the spatial distribution of fish and suggest that these influences can be incorporated into the designs of stream bioassessments and reserves to enhance management efficacy. ?? 2008 by The North American Benthological Society.
Sophocleous, M.A.
1991-01-01
The hypothesis is explored that groundwater-level rises in the Great Bend Prairie aquifer of Kansas are caused not only by water percolating downward through the soil but also by pressure pulses from stream flooding that propagate in a translatory motion through numerous high hydraulic diffusivity buried channels crossing the Great Bend Prairie aquifer in an approximately west to east direction. To validate this hypothesis, two transects of wells in a north-south and east-west orientation crossing and alongside some paleochannels in the area were instrumented with water-level-recording devices; streamflow data from all area streams were obtained from available stream-gaging stations. A theoretical approach was also developed to conceptualize numerically the stream-aquifer processes. The field data and numerical simulations provided support for the hypothesis. Thus, observation wells located along the shoulders or in between the inferred paleochannels show little or no fluctuations and no correlations with streamflow, whereas wells located along paleochannels show high water-level fluctuations and good correlation with the streamflows of the stream connected to the observation site by means of the paleochannels. The stream-aquifer numerical simulation results demonstrate that the larger the hydraulic diffusivity of the aquifer, the larger the extent of pressure pulse propagation and the faster the propagation speed. The conceptual simulation results indicate that long-distance propagation of stream floodwaves (of the order of tens of kilometers) through the Great Bend aquifer is indeed feasible with plausible stream and aquifer parameters. The sensitivity analysis results indicate that the extent and speed of pulse propagation is more sensitive to variations of stream roughness (Manning's coefficient) and stream channel slope than to any aquifer parameter. ?? 1991.
Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H
2010-03-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.
Stream network and stream segment temperature models software
Bartholow, John
2010-01-01
This set of programs simulates steady-state stream temperatures throughout a dendritic stream network handling multiple time periods per year. The software requires a math co-processor and 384K RAM. Also included is a program (SSTEMP) designed to predict the steady state stream temperature within a single stream segment for a single time period.
Weaver, J. Curtis; Fine, Jason M.
2003-01-01
An understanding of the magnitude and frequency of low-flow discharges is an important part of protecting surface-water resources and planning for municipal and industrial economic expansion. Low-flow characteristics are summarized for 12 continuous-record gaging stations and 44 partial-record measuring sites in the Rocky River basin in North Carolina. Records of discharge collected through the 2002 water year at continuous-record gaging stations and through the 2001 water year at partial-record measuring sites were used. Flow characteristics included in the summary are (1) average annual unit flow; (2) 7Q10 low-flow discharge, the minimum average discharge for a 7-consecutive-day period occurring, on average, once in 10 years; (3) 30Q2 low-flow discharge; (4) W7Q10 low-flow discharge, which is similar to 7Q10 discharge but is based only on flow during the winter months of November through March; and (5) 7Q2 low-flow discharge. The Rocky River basin drains 1,413 square miles (mi2) of the southern Piedmont Province in North Carolina. The Rocky River is about 91 miles long and merges with the Yadkin River in eastern Stanly County to form the Pee Dee River, which discharges into the Atlantic Ocean in South Carolina. Low-flow characteristics compiled for selected sites in the Rocky River basin indicated that the potential for sustained base flows in the upper half of the basin is relatively higher than for streams in the lower half of the basin. The upper half of the basin is underlain by the Charlotte Belt, where streams have been identified as having moderate potentials for sustained base flows. In the lower half of the basin, many streams were noted as having little to no potential for sustained base flows. Much of the decrease in base-flow potential is attributed to the underlying rock types of the Carolina Slate Belt. Of the 19 sites in the basin having minimal (defined as less than 0.05 cubic foot per second) or zero 7Q10 discharges, 18 sites are located in the lower half of the basin underlain by the Carolina Slate Belt. Assessment of these 18 sites indicates that streams that have drainage areas less than about 25 square miles are likely to have minimal or zero 7Q10 discharges. No drainage-area threshold for minimal or zero 7Q10 discharges was identified for the upper half of the basin, which is underlain by the Charlotte Belt. Tributaries to the Rocky River include the West Branch Rocky River (22.8 mi2), Clarke Creek (28.2 mi2), Mallard Creek (41.2 mi2), Coddle Creek (78.8 mi2), Reedy Creek (43.0 mi2), Irish Buffalo/Coldwater Creeks (110 mi2), Dutch Buffalo Creek (99 mi2), Long Creek (200 mi2), Richardson Creek (234 mi2), and Lanes Creek (135 mi2). In the 20-mile reach upstream from the mouth (about 22 percent of the river length), the drainage area increases by 648 mi2, or about 46 percent of the total drainage area as a result of the confluences with Long Creek, Richardson Creek, and Lanes Creek. Low-flow discharge profiles for the Rocky River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included. At the gaging stations above Irish Buffalo Creek and near Stanfield, the 7Q10 discharges are 25.2 and 42.3 cubic feet per second, corresponding to 0.09 and 0.07 cubic feet per second per square mile, respectively. At the gaging station near Norwood, the 7Q10 discharge is 45.8 cubic feet per second, equivalent to 0.03 cubic foot per second per square mile. Low-flow discharge profiles reflect the presence of several major flow diversions in the reaches upstream from Stanfield and an apparent losing reach between the continuous-record gaging stations near Stanfield and Norwood, North Carolina.
Applications of Polarimetric Radar to the Hydrometeorology of Urban Floods in St. Louis
NASA Astrophysics Data System (ADS)
Chaney, M. M.; Smith, J. A.; Baeck, M. L.
2017-12-01
Predicting and responding to flash flooding requires accurate spatial and temporal representation of rainfall rates. The polarimetric upgrade of all US radars has led to optimism about more accurate rainfall rate estimation from the NEXRAD network of WSR-88D radars in the US. Previous work has proposed different algorithms to do so, but significant uncertainties remain, especially for extreme short-term rainfall rates that control flash floods in urban settings. We will examine the relationship between radar rainfall estimates and gage rainfall rates for a catalog of 30 storms in St. Louis during the period of polarimetric radar measurements, 2012-2016. The storms are selected to provide a large sample of extreme rainfall measurements at the 15-minute to 3-hour time scale. A network of 100 rain gages and a lack of orographic or coastal effects make St. Louis an interesting location to study these relationships. A better understanding of the relationships between polarimetric radar measurements and gage rainfall rates will aid in refining polarimetric radar rainfall algorithms, in turn helping hydrometeorologists predict flash floods and other hazards associated with severe rainfall. Given the fact that St. Louis contains some of the flashiest watersheds in the United States (Smith and Smith, 2015), it is an especially important urban area in which to have accurate, real-time rainfall data. Smith, Brianne K, and James A Smith. "The Flashiest Watersheds in the Contiguous United States." American Meteorological Society (2015): 2365-2381. Web.
Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.
2003-01-01
Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.
Cost-effectiveness of the stream-gaging program in Nebraska
Engel, G.B.; Wahl, K.L.; Boohar, J.A.
1984-01-01
This report documents the results of a study of the cost-effectiveness of the streamflow information program in Nebraska. Presently, 145 continuous surface-water stations are operated in Nebraska on a budget of $908,500. Data uses and funding sources are identified for each of the 145 stations. Data from most stations have multiple uses. All stations have sufficient justification for continuation, but two stations primarily are used in short-term research studies; their continued operation needs to be evaluated when the research studies end. The present measurement frequency produces an average standard error for instantaneous discharges of about 12 percent, including periods when stage data are missing. Altering the travel routes and the measurement frequency will allow a reduction in standard error of about 1 percent with the present budget. Standard error could be reduced to about 8 percent if lost record could be eliminated. A minimum budget of $822,000 is required to operate the present network, but operations at that funding level would result in an increase in standard error to about 16 percent. The maximum budget analyzed was $1,363,000, which would result in an average standard error of 6 percent. (USGS)
A fully distributed implementation of mean annual streamflow regional regression equations
Verdin, K.L.; Worstell, B.
2008-01-01
Estimates of mean annual streamflow are needed for a variety of hydrologic assessments. Away from gage locations, regional regression equations that are a function of upstream area, precipitation, and temperature are commonly used. Geographic information systems technology has facilitated their use for projects, but traditional approaches using the polygon overlay operator have been too inefficient for national scale applications. As an alternative, the Elevation Derivatives for National Applications (EDNA) database was used as a framework for a fully distributed implementation of mean annual streamflow regional regression equations. The raster “flow accumulation” operator was used to efficiently achieve spatially continuous parameterization of the equations for every 30 m grid cell of the conterminous United States (U.S.). Results were confirmed by comparing with measured flows at stations of the Hydro-Climatic Data Network, and their applications value demonstrated in the development of a national geospatial hydropower assessment. Interactive tools at the EDNA website make possible the fast and efficient query of mean annual streamflow for any location in the conterminous U.S., providing a valuable complement to other national initiatives (StreamStats and the National Hydrography Dataset Plus).
Smith, Winchell
1971-01-01
Current-meter measurements of high accuracy will be required for calibration of an acoustic flow-metering system proposed for installation in the Sacramento River at Chipps Island in California. This report presents an analysis of the problem of making continuous accurate current-meter measurements in this channel where the flow regime is changing constantly in response to tidal action. Gaging-system requirements are delineated, and a brief description is given of the several applicable techniques that have been developed by others. None of these techniques provides the accuracies required for the flowmeter calibration. A new system is described--one which has been assembled and tested in prototype and which will provide the matrix of data needed for accurate continuous current-meter measurements. Analysis of a large quantity of data on the velocity distribution in the channel of the Sacramento River at Chipps Island shows that adequate definition of the velocity can be made during the dominant flow periods--that is, at times other than slack-water periods--by use of current meters suspended at elevations 0.2 and 0.8 of the depth below the water surface. However, additional velocity surveys will be necessary to determine whether or not small systematic corrections need be applied during periods of rapidly changing flow. In the proposed system all gaged parameters, including velocities, depths, position in the stream, and related times, are monitored continuously as a boat moves across the river on the selected cross section. Data are recorded photographically and transferred later onto punchcards for computer processing. Computer programs have been written to permit computation of instantaneous discharges at any selected time interval throughout the period of the current meter measurement program. It is anticipated that current-meter traverses will be made at intervals of about one-half hour over periods of several days. Capability of performance for protracted periods was, consequently, one of the important elements in system design. Analysis of error sources in the proposed system indicates that errors in individual computed discharges can be kept smaller than 1.5 percent if the expected precision in all measured parameters is maintained.
Brown, Christopher R.
2014-01-01
In 2013, the U.S. Geological Survey (USGS), in cooperation with the U. S. Department of the Army, compiled available precipitation and streamflow data for the years of 2008–2012 from the Fort Carson Military Reservation (Fort Carson) near Colorado Springs, Colo., and precipitation, streamflow, and suspended-sediment loads from the Piñon Canyon Maneuver Site (PCMS) near Trinidad, Colo. Graphical representations of the data presented herein are a continuation of work completed by the USGS in 2008 to gain a better understanding of spatial and temporal trends within the hydrologic data. Precipitation stations at Fort Carson and the PCMS were divided into groups based on their land-surface altitude (LSA) to determine if there is a spatial difference in precipitation amounts based on LSA for either military facility. Two-sample t-tests and Wilcoxon rank-sum tests indicated statistically significant differences exist between precipitation values at different groups for Fort Carson but not for the PCMS. All five precipitation stations at Fort Carson exhibit a decrease in median daily total precipitation from years 2002–2007 to 2008–2012. For the PCMS, median precipitation values decreased from the first study period to the second for the 13 stations monitored year-round except for Burson and Big Hills. Mean streamflow for 2008–2012 is less than mean streamflow for 1983–2007 for all stream-gaging stations at Fort Carson and at the PCMS. During the study period, each of the stream-gaging stations within the tributary channels at the PCMS accounted for less than three percent of the total streamflow at the Purgatoire River at Rock Crossing gage. Peak streamflow for 2008–2012 is less than peak streamflow for 2002–2007 at both Fort Carson and the PCMS. At the PCMS, mean suspended-sediment yield for 2008–2012 increased by 54 percent in comparison to the mean yield for 2002–2007. This increase is likely related to the destruction of groundcover by a series of wildfires within the PCMS in 2008 and 2011.
History of natural flows--Kansas River
Leeson, Elwood R.
1958-01-01
Through its Water Resources Division, the United States Geological Survey has become the major water-resources historian for the nation. The Geological Survey's collection of streamflow records in Kansas began on a very small scale in 1895 in response to some early irrigation interest, Since that time the program has grown, and we now have about 21 350 station-years of record accumulated. A station-year of record is defined as a continuous record of flow collected at a fixed point for a period of one year. Volume of data at hand, however, is not in itself an, adequate measure of its usefullness. An important element in historical streamflow data which enhances its value as a tool for the prediction of the future is the length of continuous records available in the area being studied. The records should be of sufficient length that they may be regarded as a reasonable sample of what has gone before and may be expected in the future. Table 1 gives a graphical inventory of the available streamflow records in Kansas. It shows that, in general, there is a fair coverage of stations with records of about thirty-seven years in length, This is not a long period as history goes but it does include considerable experience with floods and droughts.Although a large quantity of data on Kansas streamflow has been accumulated, hydrologists and planning engineers find that stream flow information for many areas of the State is considerably less than adequate. The problem of obtaining adequate coverage has been given careful study by the Kansas Water Resources Board in cooperation with the U. S. Geological Survey and a report entitled "Development of A Balanced Stream-Gaging Program For Kansas", has been published by the Board as Bulletin No. 4, That report presents an analysis of the existing stream-gaging program and recommendations for a program to meet the rapidly expanding needs for more comprehensive basic data.The Kansas River is formed near Junction City, Kansas, by the confluence of the Smoky Hill and Republican Rivers, From that point the river flows eastward about 175 miles to Kansas City where it empties into the Missouri River. The basic history of its natural flow can be depicted in general by the records from three gaging stations. The one at Bonner Springs, about 21 miles upstream from the mouth, may be considered as representing the total outflow from the basin; the one at Ogden, about 8 miles downstream from the confluence of the Smoky Hill and Republican Rivers, may be considered as representing the combined contribution of those streams to the Kansas River flow; and the one at Topeka, being only about 16 river miles nearer to Ogden than to Bonner Springs, may be considered as representing flows at the mid-point along the river.
Wireless network interface energy consumption implications of popular streaming formats
NASA Astrophysics Data System (ADS)
Chandra, Surendar
2001-12-01
With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.
A remote-sensing driven tool for estimating crop stress and yields
USDA-ARS?s Scientific Manuscript database
Biophysical crop simulation models are normally forced with precipitation data recorded with either gages or ground-based radar. However, ground based recording networks are not available at spatial and temporal scales needed to drive the models at many critical places on earth. An alternative would...
Innovative Remote Sensors for Streamflow Measurement
NASA Astrophysics Data System (ADS)
Gourley, J. J.; Fulton, J. W.; Daniel, W.
2016-12-01
The United States Geological Survey operates and maintains over 7000 streamgages across the United States., Conventional streamgages have several important limitations: annual maintenance cost of approximately $15k makes gaging smaller basins uneconomical, manual updating of stage-discharge rating curves is inefficient and can be hazardous to operators, and instruments in contact with the water are sometimes damaged or lost during flood events. A suite of new, non-contact sensors is proposed to address these limitations and add new, previously unmeasured variables. First, a commercially available radar system has been fielded in a very dynamic stream environment and successfully used to measure stage height and stream velocity at high temporal resolution, on the order of a few minutes. Second, a custom water-penetrating lidar has been developed and demonstrated to map 1-D bathymetry (cross-section) in clear streams. Combined with stage and velocity measurements from the radar, this will allow for computation of discharge using non-contact methods without the need to update and maintain an empirical rating curve. Once mature, these technologies promise to reduce cost and manual intervention, allow proliferation of measurements to smaller streams, and introduce previously unmeasured variables to the hydrological scientist's toolbox.
Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming
NASA Astrophysics Data System (ADS)
Faruq Ibn Ibrahimy, Abdullah; Rafiqul, Islam Md; Anwar, Farhat; Ibn Ibrahimy, Muhammad
2013-12-01
The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper.
NASA Astrophysics Data System (ADS)
Assendelft, Rick; van Meerveld, Ilja; Seibert, Jan
2017-04-01
Streams are dynamic features in the landscape. The flowing stream network expands and contracts, connects and disconnects in response to rainfall events and seasonal changes in catchment wetness. Sections of the river system that experience these wet and dry cycles are often referred to as temporary streams. Temporary streams are abundant and widely distributed freshwater ecosystems. They account for more than half of the total length of the global stream network, are unique habitats and form important hydrological and ecological links between the uplands and perennial streams. However, temporary streams have been largely unstudied, especially in mountainous headwater catchments. The dynamic character of these systems makes it difficult to monitor them. We describe a low-cost, do-it-yourself strategy to monitor the occurrence of water and flow in temporary streams. We evaluate this strategy in two headwater catchments in Switzerland. The low cost sensor network consists of electrical resistivity sensors, water level switches, temperature sensors and flow sensors. These sensors are connected to Arduino microcontrollers and data loggers, which log the data every 5 minutes. The data from the measurement network are compared with observations (mapping of the temporary stream network) as well as time lapse camera data to evaluate the performance of the sensors. We look at how frequently the output of the sensors (presence and absence of water from the ER and water level data, and flow or no-flow from the flow sensors) corresponds to the observed channel state. This is done for each sensor, per sub-catchment, per precipitation event and per sensor location to determine the best sensor combination to monitor temporary streams in mountainous catchments and in which situation which sensor combination works best. The preliminary results show that the sensors and monitoring network work well. The data from the sensors corresponds with the observations and provides information on the expansion of the stream network pattern.
Petkewich, Matthew D.; Conrads, Paul
2013-01-01
The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.
Dai, Hongbo; Thostenson, Erik T.; Schumacher, Thomas
2015-01-01
This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity. PMID:26197323
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B
NASA Technical Reports Server (NTRS)
Frederick, Michael; Ratnayake, Nalin
2011-01-01
The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.
Flood of May 26-27, 1984 in Tulsa, Oklahoma
Bergman, DeRoy L.; Tortorelli, Robert L.
1988-01-01
The greatest flood disaster in the history of Tulsa, Oklahoma occurred during 8 hours from 2030 hours May 26 to 0430 hours May 27, 1984, as a result of intense rainfall centered over the metropolitan area. Storms of the magnitude that caused this flood are not uncommon to the southern great plains. Such storms are seldom documented in large urban areas. Total rainfall depth and rainfall distribution in the Tulsa metropolitan area during the May 26-27 storm were recorded by 16 recording rain gages. This report presents location of recording rain gages with corresponding rainfall histograms and mass curves, lines of equal rainfall depth (map A), and flood magnitudes and inundated areas of selected streams within the city (map B). The limits of the study areas (fig. 1) are the corporate boundaries of Tulsa, an area of about 185 square miles. Streams draining the city are: Dirty Butter, Coal, and Mingo Creeks which drain northward into Bird Creek along the northern boundary of the city; and Cherry, Crow, Harlow, Joe Haikey, Fry, Vensel, Fred, and Mooser Creeks which flow into the Arkansas River along the southern part of the city. Flooding along Haikey, Fry, Fred, Vensel, and Mooser Creeks was not documented for this report. The Arkansas River is regulated by Keystone Dam upstream from Tulsa (fig. 1). The Arkansas River remained below flood stage during the storm. Flooded areas in Tulsa (map B) were delineated on the topographic maps using flood profiles based on surveys of high-water marks identified immediately after the flood. The flood boundaries show the limits of stream flooding. Additional areas flooded because of overfilled storm drains or by sheet runoff are not shown in this report. Data presented in this report, including rainfall duration and frequency, and flood discharges and elevations, provide city officials and consultants a technical basis for making flood-plain management decisions.
NASA Astrophysics Data System (ADS)
Turnbull, S. J.
2017-12-01
Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.
Senior, Lisa A.
2017-09-15
Several streams used for recreational activities, such as fishing, swimming, and boating, in Chester County, Pennsylvania, are known to have periodic elevated concentrations of fecal coliform bacteria, a type of bacteria used to indicate the potential presence of fecally related pathogens that may pose health risks to humans exposed through water contact. The availability of near real-time continuous stream discharge, turbidity, and other water-quality data for some streams in the county presents an opportunity to use surrogates to estimate near real-time concentrations of fecal coliform (FC) bacteria and thus provide some information about associated potential health risks during recreational use of streams.The U.S. Geological Survey (USGS), in cooperation with the Chester County Health Department (CCHD) and the Chester County Water Resources Authority (CCWRA), has collected discrete stream samples for analysis of FC concentrations during March–October annually at or near five gaging stations where near real-time continuous data on stream discharge, turbidity, and water temperature have been collected since 2007 (or since 2012 at 2 of the 5 stations). In 2014, the USGS, in cooperation with the CCWRA and CCHD, began to develop regression equations to estimate FC concentrations using available near real-time continuous data. Regression equations included possible explanatory variables of stream discharge, turbidity, water temperature, and seasonal factors calculated using Julian Day with base-10 logarithmic (log) transformations of selected variables.The regression equations were developed using the data from 2007 to 2015 (101–106 discrete bacteria samples per site) for three gaging stations on Brandywine Creek (West Branch Brandywine Creek at Modena, East Branch Brandywine Creek below Downingtown, and Brandywine Creek at Chadds Ford) and from 2012 to 2015 (37–38 discrete bacteria samples per site) for one station each on French Creek near Phoenixville and White Clay Creek near Strickersville. Fecal coliform bacteria data collected by USGS in 2016 (about nine samples per site) were used to validate the equations. The best-fit regression equations included log turbidity and seasonality factors computed using Julian Day as explanatory variables to estimate log FC concentrations at all five stream sites. The adjusted coefficient of determination for the equations ranged from 0.61 to 0.76, with the strength of the regression equations likely affected in part by the limited amount and variability of FC bacteria data. During summer months, the estimated and measured FC concentrations commonly were greater than the Pennsylvania Department of Environmental Protection established standards of 200 and 400 colonies per 100 milliliters for water contact from May through September at the 5 stream sites, with concentrations typically higher at 2 sites (White Clay Creek and West Branch Brandywine Creek at Modena) than at the other 3 sites. The estimated concentrations of FC bacteria during the summer months commonly were higher than measured concentrations and therefore could be considered cautious estimates of potential human-health risk. Additional water-quality data are needed to maintain and (or) improve the ability of regression equations to estimate FC concentrations by use of surrogate data.
Controls on stream network branching angles, tested using landscape evolution models
NASA Astrophysics Data System (ADS)
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.
New metrics for evaluating channel networks extracted in grid digital elevation models
NASA Astrophysics Data System (ADS)
Orlandini, S.; Moretti, G.
2017-12-01
Channel networks are critical components of drainage basins and delta regions. Despite the important role played by these systems in hydrology and geomorphology, there are at present no well-defined methods to evaluate numerically how two complex channel networks are geometrically far apart. The present study introduces new metrics for evaluating numerically channel networks extracted in grid digital elevation models with respect to a reference channel network (see the figure below). Streams of the evaluated network (EN) are delineated as in the Horton ordering system and examined through a priority climbing algorithm based on the triple index (ID1,ID2,ID3), where ID1 is a stream identifier that increases as the elevation of lower end of the stream increases, ID2 indicates the ID1 of the draining stream, and ID3 is the ID1 of the corresponding stream in the reference network (RN). Streams of the RN are identified by the double index (ID1,ID2). Streams of the EN are processed in the order of increasing ID1 (plots a-l in the figure below). For each processed stream of the EN, the closest stream of the RN is sought by considering all the streams of the RN sharing the same ID2. This ID2 in the RN is equal in the EN to the ID3 of the stream draining the processed stream, the one having ID1 equal to the ID2 of the processed stream. The mean stream planar distance (MSPD) and the mean stream elevation drop (MSED) are computed as the mean distance and drop, respectively, between corresponding streams. The MSPD is shown to be useful for evaluating slope direction methods and thresholds for channel initiation, whereas the MSED is shown to indicate the ability of grid coarsening strategies to retain the profiles of observed channels. The developed metrics fill a gap in the existing literature by allowing hydrologists and geomorphologists to compare descriptions of a fixed physical system obtained by using different terrain analysis methods, or different physical systems described by using the same methods.
Wagar, Brandon M; Thagard, Paul
2004-01-01
The authors present a neurological theory of how cognitive information and emotional information are integrated in the nucleus accumbens during effective decision making. They describe how the nucleus accumbens acts as a gateway to integrate cognitive information from the ventromedial prefrontal cortex and the hippocampus with emotional information from the amygdala. The authors have modeled this integration by a network of spiking artificial neurons organized into separate areas and used this computational model to simulate 2 kinds of cognitive-affective integration. The model simulates successful performance by people with normal cognitive-affective integration. The model also simulates the historical case of Phineas Gage as well as subsequent patients whose ability to make decisions became impeded by damage to the ventromedial prefrontal cortex.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Ratnayake, Nalin A.
2010-01-01
The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Ratnayake, Nalin A.
2011-01-01
The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.
Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul
2012-11-01
Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.