Fuel-cell engine stream conditioning system
DuBose, Ronald Arthur
2002-01-01
A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.
Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience
NASA Astrophysics Data System (ADS)
Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.
2005-05-01
Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.
Fuel cell gas management system
DuBose, Ronald Arthur
2000-01-11
A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.
Stream processing health card application.
Polat, Seda; Gündem, Taflan Imre
2012-10-01
In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.
Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.
Davids, Jeffrey C; Mehl, Steffen W
2015-01-01
Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.
NPS pollution related to forest management activities in southern states
Johnny M. Grace
2004-01-01
Road systems on the nationâs public lands are vital links; providing access to perform management prescriptions, fire management, and recreation opportunities. Sediment movement downslope of forest road systems is a concern because these sediments have the potential to reach stream systems. Filter strips and stream side management zones (SMZs) are recommended and...
Wayne Elmore
1989-01-01
The management and recovery of degraded riparian systems is a major conservation issue. Presently there are many grazing management strategies being applied based on the name of the technique with little incorporation of basic stream processes. Managers must understand the exact workings of grazing strategies and the individual processes of each stream before...
Global perspectives on the urban stream syndrome
Roy, Allison; Booth, Derek B.; Capps, Krista A.; Smith, Benjamin
2016-01-01
Urban streams commonly express degraded physical, chemical, and biological conditions that have been collectively termed the “urban stream syndrome”. The description of the syndrome highlights the broad similarities among these streams relative to their less-impaired counterparts. Awareness of these commonalities has fostered rapid improvements in the management of urban stormwater for the protection of downstream watercourses, but the focus on the similarities among urban streams has obscured meaningful differences among them. Key drivers of stream responses to urbanization can vary greatly among climatological and physiographic regions of the globe, and the differences can be manifested in individual stream channels even through the homogenizing veneer of urban development. We provide examples of differences in natural hydrologic and geologic settings (within similar regions) that can result in different mechanisms of stream ecosystem response to urbanization and, as such, should lead to different management approaches. The idea that all urban streams can be cured using the same treatment is simplistic, but overemphasizing the tremendous differences among natural (or human-altered) systems also can paralyze management. Thoughtful integration of work that recognizes the commonalities of the urban stream syndrome across the globe has benefitted urban stream management. Now we call for a more nuanced understanding of the regional, subregional, and local attributes of any given urban stream and its watershed to advance the physical, chemical, and ecological recovery of these systems.
Emma L. Witt; Christopher D. Barton; Jeffrey W. Stringer; Daniel W. Bowker; Randall K. Kolka
2011-01-01
Most states in the United States have established forestry best management practices to protect water quality and maintain aquatic habitat in streams. However, guidelines are generally focused on minimizing impacts to perennial streams. Ephemeral channels (or streams), which function as important delivery systems for carbon, nutrients, and sediment to perennial streams...
Conjunctive-management models for sustained yield of stream-aquifer systems
Barlow, P.M.; Ahlfeld, D.P.; Dickerman, D.C.
2003-01-01
Conjunctive-management models that couple numerical simulation with linear optimization were developed to evaluate trade-offs between groundwater withdrawals and streamflow depletions for alluvial-valley stream-aquifer systems representative of those of the northeastern United States. A conjunctive-management model developed for a hypothetical stream-aquifer system was used to assess the effect of interannual hydrologic variability on minimum monthly streamflow requirements. The conjunctive-management model was applied to the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system of central Rhode Island. Results show that it is possible to increase the amount of current withdrawal from the aquifer by as much as 50% by modifying current withdrawal schedules, modifying the number and configuration of wells in the supply-well network, or allowing increased streamflow depletion in the Annaquatucket and Pettaquamscutt rivers. Alternatively, it is possible to reduce current rates of streamflow depletion in the Hunt River by as much as 35% during the summer, but such reductions would result increases in groundwater withdrawals.
Acquisition and management of continuous data streams for crop water management
USDA-ARS?s Scientific Manuscript database
Wireless sensor network systems for decision support in crop water management offer many advantages including larger spatial coverage and multiple types of data input. However, collection and management of multiple and continuous data streams for near real-time post analysis can be problematic. Thi...
NASA Astrophysics Data System (ADS)
Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.
2016-08-01
An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater should be prioritized in management efforts to improve stream restoration by locating hydrologic hot spots where stream restoration is most likely to succeed.
Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...
Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...
Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail
2017-01-01
Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource-intensive stream-specific models for runoff-dominated systems containing high-priority fisheries resources (e.g. trophy individuals, endangered species) that will be directly impacted by projected stream warming.
Markstrom, Steven L.
2012-01-01
A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.
Scalable Video Streaming in Wireless Mesh Networks for Education
ERIC Educational Resources Information Center
Liu, Yan; Wang, Xinheng; Zhao, Liqiang
2011-01-01
In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…
EFFECTS OF STREAM RESTORATION ON IN-STREAM WATER QUALITY IN AN URBAN WATERSHED
The purpose of this on-going project is to provide information to Municipal Separate Storm Sewer System (MS4s) operators and states on the performance of selected best management practices (BMPs), specifically, stream restoration techniques, on improving biological and in-stream ...
Bellucci, Christopher J; Becker, Mary E; Beauchene, Mike; Dunbar, Lee
2013-06-01
Bioassessments have formed the foundation of many water quality monitoring programs throughout the United States. Like many state water quality programs, Connecticut has developed a relational database containing information about species richness, species composition, relative abundance, and feeding relationships among macroinvertebrates present in stream and river systems. Geographic Information Systems can provide estimates of landscape condition and watershed characteristics and when combined with measurements of stream biology, provide a useful visual display of information that is useful in a management context. The objective of our study was to estimate the stream health for all wadeable stream kilometers in Connecticut using a combination of macroinvertebrate metrics and landscape variables. We developed and evaluated models using an information theoretic approach to predict stream health as measured by macroinvertebrate multimetric index (MMI) and identified the best fitting model as a three variable model, including percent impervious land cover, a wetlands metric, and catchment slope that best fit the MMI scores (adj-R (2) = 0.56, SE = 11.73). We then provide examples of how modeling can augment existing programs to support water management policies under the Federal Clean Water Act such as stream assessments and anti-degradation.
Optimizing the well pumping rate and its distance from a stream
NASA Astrophysics Data System (ADS)
Abdel-Hafez, M. H.; Ogden, F. L.
2008-12-01
Both ground water and surface water are very important component of the water resources. Since they are coupled systems in riparian areas, management strategies that neglect interactions between them penalize senior surface water rights to the benefit of junior ground water rights holders in the prior appropriation rights system. Water rights managers face a problem in deciding which wells need to be shut down and when, in the case of depleted stream flow. A simulation model representing a combined hypothetical aquifer and stream has been developed using MODFLOW 2000 to capture parameter sensitivity, test management strategies and guide field data collection campaigns to support modeling. An optimization approach has been applied to optimize both the well distance from the stream and the maximum pumping rate that does not affect the stream discharge downstream the pumping wells. Conjunctive management can be modeled by coupling the numerical simulation model with the optimization techniques using the response matrix technique. The response matrix can be obtained by calculating the response coefficient for each well and stream. The main assumption of the response matrix technique is that the amount of water out of the stream to the aquifer is linearly proportional to the well pumping rate (Barlow et al. 2003). The results are presented in dimensionless form, which can be used by the water managers to solve conflicts between surface water and ground water holders by making the appropriate decision to choose which well need to be shut down first.
Modeling stream temperature in the Anthropocene: An earth system modeling approach
Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu; ...
2015-10-29
A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less
Stream biogeochemical resilience in the age of Anthropocene
NASA Astrophysics Data System (ADS)
Dong, H.; Creed, I. F.
2017-12-01
Recent evidence indicates that biogeochemical cycles are being pushed beyond the tolerance limits of the earth system in the age of the Anthropocene placing terrestrial and aquatic ecosystems at risk. Here, we explored the question: Is there empirical evidence of global atmospheric changes driving losses in stream biogeochemical resilience towards a new normal? Stream biogeochemical resilience is the process of returning to equilibrium conditions after a disturbance and can be measured using three metrics: reactivity (the highest initial response after a disturbance), return rate (the rate of return to equilibrium condition after reactive changes), and variance of the stationary distribution (the signal to noise ratio). Multivariate autoregressive models were used to derive the three metrics for streams along a disturbance gradient - from natural systems where global drivers would dominate, to relatively managed or modified systems where global and local drivers would interact. We observed a loss of biogeochemical resilience in all streams. The key biogeochemical constituent(s) that may be driving loss of biogeochemical resilience were identified from the time series of the stream biogeochemical constituents. Non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals were analyzed to determine if there was an increase in SD over time that would indicate a pending shift towards a new normal. We observed that nitrate-N and total phosphorus showed behaviours indicative of a pending shift in natural and managed forest systems, but not in agricultural systems. This study provides empirical support that stream ecosystems are showing signs of exceeding planetary boundary tolerance levels and shifting towards a "new normal" in response to global changes, which can be exacerbated by local management activities. Future work will consider the potential for cascading effects on downstream systems.
Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Brian K.
2014-08-01
This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.
Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export
Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...
Installation of best management practices (BMPs) in watersheds or streams is widely used as a means of reducing, eliminating, or controlling the input of human-based physical, chemical, or hydrologic stressors to those systems. Although BMPs may be effective in managing a partic...
Using Financial Incentives to Manage the Solid Waste Stream.
ERIC Educational Resources Information Center
Spindler, Charles J.
1991-01-01
This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…
Hydrologic trade-offs in conjunctive use management.
Bredehoeft, John
2011-01-01
An aquifer, in a stream/aquifer system, acts as a storage reservoir for groundwater. Groundwater pumping creates stream depletion that recharges the aquifer. As wells in the aquifer are moved away from the stream, the aquifer acts to filter out annual fluctuations in pumping; with distance the stream depletion tends to become equal to the total pumping averaged as an annual rate, with only a small fluctuation. This is true for both a single well and an ensemble of wells. A typical growing season in much of the western United States is 3 to 4 months. An ensemble of irrigation wells spread more or less uniformly across an aquifer several miles wide, pumping during the growing season, will deplete the stream by approximately one-third of the total amount of water pumped during the growing season. The remaining two-thirds of stream depletion occurs outside the growing season. Furthermore, it takes more than a decade of pumping for an ensemble of wells to reach a steady-state condition in which the impact on the stream is the same in succeeding years. After a decade or more of pumping, the depletion is nearly constant through the year, with only a small seasonal fluctuation: ±10%. Conversely, stream depletion following shutting down the pumping from an ensemble of wells takes more than a decade to fully recover from the prior pumping. Effectively managing a conjunctive groundwater and surface water system requires integrating the entire system into a single management institution with a long-term outlook. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
The GOES-R Rebroadcast (GRB) Data Stream Simulator
NASA Astrophysics Data System (ADS)
Dittberner, G. J.; Gibbons, K.; Czopkiewicz, E.; Miller, C.; Brown-Bergtold, B.; Haman, B.; Marley, S.
2013-12-01
GOES Rebroadcast (GRB) signals in the GOES-R era will replace the current legacy GOES Variable (GVAR) signal and will have substantially different characteristics, including a change in data rate from a single 2.1 Mbps stream to two digital streams of 15.5 Mbps each. Five GRB Simulators were developed as portable systems that output a high-fidelity stream of Consultative Committee for Space Data Systems (CCSDS) formatted GRB packet data equivalent to live GRB data. The data are used for on-site testing of user ingest and data handling systems known as field terminal sites. The GRB Simulator is a fully self-contained system which includes all software and hardware units needed for operation. The operator manages configurations to edit preferences, define individual test scenarios, and manage event logs and reports. Simulations are controlled by test scenarios, which are scripts that specify the test data and provide a series of actions for the GRB Simulator to perform when generating GRB output. Scenarios allow for the insertion of errors or modification of GRB packet headers for testing purposes. The GRB Simulator provides a built-in editor for managing scenarios. The GRB Simulator provides GRB data as either baseband (digital) or Intermediate Frequency (IF) output to the test system. GRB packet data are sent in the same two output streams used in the operational system: one for Left Hand Circular Polarization (LHCP) and one for Right Hand Circular Polarization (RHCP). Use of circular polarization in the operational system allows the transmitting antenna to multiplex the two digital streams into the same signal, thereby doubling the available bandwidth. The GRB Simulator is designed to be used at sites that receive the GRB downlink.
Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients.
Triantafyllopoulos, Dimitrios; Korvesis, Panagiotis; Mporas, Iosif; Megalooikonomou, Vasileios
2016-03-01
New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient's physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.
A PC-based telemetry system for acquiring and reducing data from multiple PCM streams
NASA Astrophysics Data System (ADS)
Simms, D. A.; Butterfield, C. P.
1991-07-01
The Solar Energy Research Institute's (SERI) Wind Research Program is using Pulse Code Modulation (PCM) Telemetry Data-Acquisition Systems to study horizontal-axis wind turbines. Many PCM systems are combined for use in test installations that require accurate measurements from a variety of different locations. SERI has found them ideal for data-acquisition from multiple wind turbines and meteorological towers in wind parks. A major problem has been in providing the capability to quickly combine and examine incoming data from multiple PCM sources in the field. To solve this problem, SERI has developed a low-cost PC-based PCM Telemetry Data-Reduction System (PC-PCM System) to facilitate quick, in-the-field multiple-channel data analysis. The PC-PCM System consists of two basic components. First, PC-compatible hardware boards are used to decode and combine multiple PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for use under DOS was developed to simplify data-acquisition control and management. The software, called the Quick-Look Data Management Program, provides a quick, easy-to-use interface between the PC and multiple PCM data streams. The Quick-Look Data Management Program is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. The paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data from multiple PCM streams. Also discussed are problems and techniques associated with PC-based telemetry data-acquisition, processing, and real-time display.
7 CFR 650.24 - Scenic beauty (visual resource).
Code of Federal Regulations, 2010 CFR
2010-01-01
... consideration of alternative management and development systems that preserve scenic beauty or improve the... resource values particularly in waste management systems; field borders, field windbreaks, wetland management, access roads, critical area treatment; design and management of ponds, stream margins, odd areas...
Stream and River Condition Across the BLM's National System of Public Lands
Meeting Abstract: The Bureau of Land Management (BLM), in collaboration with the U.S. Environmental Protection Agency, conducted the first ever Western Rivers and Streams Assessment (WRSA), a survey of the condition of BLM streams and rivers throughout the contiguous western U.S...
Stream and River Condition Across the BLM's National System of Public Lands.
The Bureau of Land Management (BLM), in collaboration with the U.S. Environmental Protection Agency, conducted the first ever Western Rivers and Streams Assessment (WRSA), a survey of the condition of BLM streams and rivers throughout the contiguous western U.S. The WRSA was desi...
Research and implementation on improving I/O performance of streaming media storage system
NASA Astrophysics Data System (ADS)
Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song
2008-12-01
In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.
Barlow, Paul M.; Dickerman, David C.
2001-01-01
This report describes the development, application, and evaluation of numerical-simulation and conjunctive-management models of the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system in central Rhode Island. Steady-state transient numerical models were developed to improve the understanding of the hydrologic budget of the system, the interaction of ground-water and surface-water components of the system, and the contributing areas and sources of water to supply wells in the system. The numerical models were developed and calibrated on the basis of hydrologic data collected during this and previous investigations. These data include lithologic information for the aquifer; hydraulic properties of aquifer and streambed materials; recharge to the aquifer; water levels measured in wells, ponds, and streambed piezometers; streamflow measurements for various streams within the system; and ground-water withdrawal rates from, and wastewater discharge to, the aquifer.
Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles
2014-03-01
Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.
Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA
NASA Astrophysics Data System (ADS)
Sophocleous, Marios; Perkins, Samuel P.
1993-12-01
We address the problem of declining streamflows in interconnected stream-aquifer systems and explore possible management options to address the problem for two areas of central Kansas: the Arkansas River valley from Kinsley to Great Bend and the lower Rattlesnake Creek-Quivira National Wildlife Refuge area. The approach we followed implements, calibrates, and partially validates for the study areas a stream-aquifer numerical model combined with a parameter estimation package and sensitivity analysis. Hydrologic budgets for both predevelopment and developed conditions indicate significant differences in the hydrologic components of the study areas resulting from development. The predevelopment water budgets give an estimate of natural ground-water recharge, whereas the budgets for developed conditions give an estimate of induced recharge, indicating that major ground-water development changes the recharge-discharge regime of the model areas with time. Such stream-aquifer models serve to link proposed actions to hydrologic effects, as is clearly demonstrated by the effects of various management alternatives on the streamflows of the Arkansas River and Rattlesnake Creek. Thus we show that a possible means of restoring specified streamflows in the area is to implement protective stream corridors with restricted ground-water extraction.
Streamstats: U.S. Geological Survey Web Application for Streamflow Statistics for Connecticut
Ahearn, Elizabeth A.; Ries, Kernell G.; Steeves, Peter A.
2006-01-01
Introduction An important mission of the U. S. Geological Survey (USGS) is to provide information on streamflow in the Nation's rivers. Streamflow statistics are used by water managers, engineers, scientists, and others to protect people and property during floods and droughts, and to manage land, water, and biological resources. Common uses for streamflow statistics include dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower-facility design and regulation; and flood-plain mapping for establishing flood-insurance rates and land-use zones. In an effort to improve access to published streamflow statistics, and to make the process of computing streamflow statistics for ungaged stream sites easier, more accurate, and more consistent, the USGS and the Environmental Systems Research Institute, Inc. (ESRI) developed StreamStats (Ries and others, 2004). StreamStats is a Geographic Information System (GIS)-based Web application for serving previously published streamflow statistics and basin characteristics for USGS data-collection stations, and computing streamflow statistics and basin characteristics for ungaged stream sites. The USGS, in cooperation with the Connecticut Department of Environmental Protection and the Connecticut Department of Transportation, has implemented StreamStats for Connecticut.
Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA
Sophocleous, M.; Perkins, S.P.
1993-01-01
We address the problem of declining streamflows in interconnected stream-aquifer systems and explore possible management options to address the problem for two areas of central Kansas: the Arkansas River valley from Kinsley to Great Bend and the lower Rattlesnake Creek-Quivira National Wildlife Refuge area. The approach we followed implements, calibrates, and partially validates for the study areas a stream-aquifer numerical model combined with a parameter estimation package and sensitivity analysis. Hydrologic budgets for both predevelopment and developed conditions indicate significant differences in the hydrologic components of the study areas resulting from development. The predevelopment water budgets give an estimate of natural ground-water recharge, whereas the budgets for developed conditions give an estimate of induced recharge, indicating that major ground-water development changes the recharge-discharge regime of the model areas with time. Such stream-aquifer models serve to link proposed actions to hydrologic effects, as is clearly demonstrated by the effects of various management alternatives on the streamflows of the Arkansas River and Rattlesnake Creek. Thus we show that a possible means of restoring specified streamflows in the area is to implement protective stream corridors with restricted ground-water extraction. ?? 1993.
Temporal and spatial variability in North Carolina piedmont stream temperature
J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer
2009-01-01
Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...
Physical consequences of large organic debris in Pacific Northwest streams.
Frederick J. Swanson; George W. Lienkaemper
1978-01-01
Large organic debris in streams controls the distribution of aquatic habitats, the routing of sediment through stream systems, and the stability of streambed and banks. Management activities directly alter debris loading by addition or removal of material and indirectly by increasing the probability of debris torrents and removing standing streamside trees. We propose...
USDA-ARS?s Scientific Manuscript database
Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...
The evaluation of the current condition is critical to the management of streams impaired by sediment and other non-point source stressors, which adversely affect both physical habitat and water quality. Several rating and classification systems based on geomorphic data exist for...
A Stream Runs through IT: Using Streaming Video to Teach Information Technology
ERIC Educational Resources Information Center
Nicholson, Jennifer; Nicholson, Darren B.
2010-01-01
Purpose: The purpose of this paper is to report student and faculty perceptions from an introductory management information systems course that uses multimedia, specifically streaming video, as a vehicle for teaching students skills in Microsoft Excel and Access. Design/methodology/approach: Student perceptions are captured via a qualitative…
An Approach for Removing Redundant Data from RFID Data Streams
Mahdin, Hairulnizam; Abawajy, Jemal
2011-01-01
Radio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches. PMID:22163730
NASA Astrophysics Data System (ADS)
Kidd, Kathryn R.; Aust, W. Michael; Copenheaver, Carolyn A.
2014-09-01
Trail-based recreation has increased over recent decades, raising the environmental management issue of soil erosion that originates from unsurfaced, recreational trail systems. Trail-based soil erosion that occurs near stream crossings represents a non-point source of pollution to streams. We modeled soil erosion rates along multiple-use (hiking, mountain biking, and horseback riding) recreational trails that approach culvert and ford stream crossings as potential sources of sediment input and evaluated whether recreational stream crossings were impacting water quality based on downstream changes in macroinvertebrate-based indices within the Poverty Creek Trail System of the George Washington and Jefferson National Forest in southwestern Virginia, USA. We found modeled soil erosion rates for non-motorized recreational approaches that were lower than published estimates for an off-road vehicle approach, bare horse trails, and bare forest operational skid trail and road approaches, but were 13 times greater than estimated rates for undisturbed forests and 2.4 times greater than a 2-year old clearcut in this region. Estimated soil erosion rates were similar to rates for skid trails and horse trails where best management practices (BMPs) had been implemented. Downstream changes in macroinvertebrate-based indices indicated water quality was lower downstream from crossings than in upstream reference reaches. Our modeled soil erosion rates illustrate recreational stream crossing approaches have the potential to deliver sediment into adjacent streams, particularly where BMPs are not being implemented or where approaches are not properly managed, and as a result can negatively impact water quality below stream crossings.
NASA Astrophysics Data System (ADS)
Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.
2005-05-01
Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.
E.M. Hagen; J.R. Webster; E.F. Benfield
2006-01-01
Biological indicators often are used to assess and manage water quality in anthropogenically altered stream systems. Leaf breakdown has the potential to be a good indicator of stream integrity because it integrates a varietyof biological, chemical, and physical conditions. Red maple (Acer rubrum L.) leaf breakdown rates were measured along a gradient...
The US EPA’s National Rivers and Streams Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the continental US (CONUS) that fail to support healthy biological communities. However, to manage these systems, we also must understand...
Woody debris in north Iberian streams: influence of geomorphology, vegetation, and management.
Diez, J R; Elosegi, A; Pozo, J
2001-11-01
The effect of stream geomorphology, maturity, and management of riparian forests on abundance, role, and mobility of wood was evaluated in 20 contrasting reaches in the Agüera stream catchment (northern Iberian Peninsula). During 1 year the volume of woody debris exceeding 1 cm in diameter was measured in all reaches. All large woody debris (phi > 5 cm) pieces were tagged, their positions mapped, and their subsequent changes noted. Volume of woody debris was in general low and ranged from 40 to 22,000 cm3 m-2; the abundance of debris dams ranged from 0 to 5.5 per 100 m of channel. Wood was especially rare and unstable in downstream reaches, or under harvested forests (both natural or plantations). Results stress that woody debris in north Iberian streams has been severely reduced by forestry and log removal. Because of the important influence of woody debris on structure and function of stream systems, this reduction has likely impacted stream communities. Therefore, efforts to restore north Iberian streams should include in-channel and riparian management practices that promote greater abundance and stability of large woody debris whenever possible.
Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus.
Rousis, K; Moustakas, K; Malamis, S; Papadopoulos, A; Loizidou, M
2008-01-01
Waste from electrical and electronic equipment (WEEE) constitutes one of the most complicated solid waste streams in terms of its composition, and, as a result, it is difficult to be effectively managed. In view of the environmental problems derived from WEEE management, many countries have established national legislation to improve the reuse, recycling and other forms of recovery of this waste stream so as to apply suitable management schemes. In this work, alternative systems are examined for the WEEE management in Cyprus. These systems are evaluated by developing and applying the Multi-Criteria Decision Making (MCDM) method PROMETHEE. In particular, through this MCDM method, 12 alternative management systems were compared and ranked according to their performance and efficiency. The obtained results show that the management schemes/systems based on partial disassembly are the most suitable for implementation in Cyprus. More specifically, the optimum scenario/system that can be implemented in Cyprus is that of partial disassembly and forwarding of recyclable materials to the native existing market and disposal of the residues at landfill sites.
Adams, S Marshall; Ham, Kenneth D
2011-06-01
Recovery dynamics in a previously disturbed stream were investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.
Beyond the edge: Linking agricultural landscapes, stream networks, and best management practices
Kreiling, Rebecca M.; Thoms, Martin C.; Richardson, William B.
2018-01-01
Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited cohesiveness between agricultural landscape-focused research and river science, despite similar end goals. Interdisciplinary research into stream networks that drain agricultural landscapes is expanding but is fraught with problems. Conceptual frameworks are useful tools to order phenomena, reveal patterns and processes, and in interdisciplinary river science, enable the joining of multiple areas of understanding into a single conceptual–empirical structure. We present a framework for the interdisciplinary study and management of agricultural and riverine landscapes. The framework includes components of an ecosystems approach to the study of catchment–stream networks, resilience thinking, and strategic adaptive management. Application of the framework is illustrated through a study of the Fox Basin in Wisconsin, USA. To fully realize the goal of nutrient reduction in the basin, we suggest that greater emphasis is needed on where best management practices (BMPs) are used within the spatial context of the combined watershed–stream network system, including BMPs within the river channel. Targeted placement of BMPs throughout the riverine landscape would increase the overall buffering capacity of the system to nutrient runoff and thus its resilience to current and future disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu
A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less
The effects of logging road construction on insect drop into a small coastal stream
Lloyd J. Hess
1969-01-01
Abstract - Because stream fisheries are so closely associated with forested watersheds, it is necessary that the streams and forests be managed jointly under a system of multiple use. This requires a knowledge of the interrelationships between these resources to yield maximum returns from both. It is the purpose of this paper to relate logging practices to fish...
An Efficient Resource Management System for a Streaming Media Distribution Network
ERIC Educational Resources Information Center
Cahill, Adrian J.; Sreenan, Cormac J.
2006-01-01
This paper examines the design and evaluation of a TV on Demand (TVoD) system, consisting of a globally accessible storage architecture where all TV content broadcast over a period of time is made available for streaming. The proposed architecture consists of idle Internet Service Provider (ISP) servers that can be rented and released dynamically…
A low-cost PC-based telemetry data-reduction system
NASA Astrophysics Data System (ADS)
Simms, D. A.; Butterfield, C. P.
1990-04-01
The Solar Energy Research Institute's (SERI) Wind Research Branch is using Pulse Code Modulation (PCM) telemetry data-acquisition systems to study horizontal-axis wind turbines. PCM telemetry systems are used in test installations that require accurate multiple-channel measurements taken from a variety of different locations. SERI has found them ideal for use in tests requiring concurrent acquisition of data-reduction system to facilitate quick, in-the-field multiple-channel data analysis. Called the PC-PCM System, it consists of two basic components. First, AT-compatible hardware boards are used for decoding and combining PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for the DOS operating system was developed to simplify data-acquisition control and management. The software provides a quick, easy-to-use interface between the PC and PCM data streams. Called the Quick-Look Data Management Program, it is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. This paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data. Also discussed are problems and techniques associated with PC-based telemetry data acquisition, processing, and real-time display.
USING TRADABLE CREDITS TO MANAGE STORMWATER
Excess stormwater runoff causes degradation of urban stream habitat through conveyance of pollutants and disruption of normal stream flow regimes. Following on acceptance of tradable permits as a mechanism for reducing certain air pollutants, we propose the use of a system of tra...
NASA Astrophysics Data System (ADS)
Dovciak, A. L.; Perry, J. A.
2002-09-01
Our lack of understanding of relationships between stream biotic communities and surrounding landscape conditions makes it difficult to determine the spatial scale at which management practices are best assessed. We investigated these relationships in the Minnesota River Basin, which is divided into major watersheds and agroecoregions which are based on soil type, geologic parent material, landscape slope steepness, and climatic factors affecting crop productivity. We collected macroinvertebrate and stream habitat data from 68 tributaries among three major watersheds and two agroecoregions. We tested the effectiveness of the two landscape classification systems (i.e., watershed, agroecoregion) in explaining variance in habitat and macroinvertebrate metrics, and analyzed the relative influence on macroinvertebrates of local habitat versus regional characteristics. Macroinvertebrate community composition was most strongly influenced by local habitat; the variance in habitat conditions was best explained at the scale of intersection of major watershed and agroecoregion (i.e., stream habitat conditions were most homogeneous within the physical regions of intersection of these two landscape classification systems). Our results are consistent with findings of other authors that most variation in macroinvertebrate community data from large agricultural catchments is attributable to local physical conditions. Our results are the first to test the hypothesis and demonstrate that the scale of intersection best explains these variances. The results suggest that management practices adjusted for both watershed and ecoregion characteristics, with the goal of improving physical habitat characteristics of local streams, may lead to better basin-wide water quality conditions and stream biological integrity.
NASA Astrophysics Data System (ADS)
Snitgen, J. L.; Moren, M. M.
2005-05-01
During rainfall and snow melt events, a first order, cold-water stream was receiving varying amounts of liquefied manure from a concentrated feed lot. Stream restoration efforts included the implementation of best management practices to prevent further discharge of the water/manure mixture to the stream. Physical, chemical and biological data were collected pre-construction and two years post-construction of the containment system at a fixed location downstream of the feedlot. Hilsenhoff Biotic Index scores improved significantly, from 6.79 or "Fairly Poor" before the installation of the manure containment system, to 5.28 or "Good" after the installation of the manure containment system. Taxa richness improved from 25 to 34 and the EPT score improved from 0 to 4. Key words: macroinvertebrate, community response, manure, feedlot runoff, stream restoration
M.W. Griswold; R.T. Winn; T.L. Crisman; W.R. White
2006-01-01
Streamside Management Zones (SMZs) are meant to protect riparian habitat and the stream ecosystem. Benthic macroinvertebrates are recognized bioindicators of water quality in streams, typically occupying multiple trophic levels in these systems and providing food for vertebrates. Thus, it is important to understand the effects of harvest within and adjacent to the SMZ...
EPA’s Risk-Informed Materials Management (RIMM) tool system is a modeling approach that helps risk assessors evaluate the safety of managing raw, reused, or waste material streams via a variety of common scenarios (e.g., application to farms, use as a component in road cons...
Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective
NASA Astrophysics Data System (ADS)
Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.
2017-12-01
Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.
Ladd, David E.; Law, George S.
2007-01-01
The U.S. Geological Survey (USGS) provides streamflow and other stream-related information needed to protect people and property from floods, to plan and manage water resources, and to protect water quality in the streams. Streamflow statistics provided by the USGS, such as the 100-year flood and the 7-day 10-year low flow, frequently are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. In addition to streamflow statistics, resource managers often need to know the physical and climatic characteristics (basin characteristics) of the drainage basins for locations of interest to help them understand the mechanisms that control water availability and water quality at these locations. StreamStats is a Web-enabled geographic information system (GIS) application that makes it easy for users to obtain streamflow statistics, basin characteristics, and other information for USGS data-collection stations and for ungaged sites of interest. If a user selects the location of a data-collection station, StreamStats will provide previously published information for the station from a database. If a user selects a location where no data are available (an ungaged site), StreamStats will run a GIS program to delineate a drainage basin boundary, measure basin characteristics, and estimate streamflow statistics based on USGS streamflow prediction methods. A user can download a GIS feature class of the drainage basin boundary with attributes including the measured basin characteristics and streamflow estimates.
Smith, Joseph M.; Wells, Sarah P.; Mather, Martha E.; Muth, Robert M.
2014-01-01
When researchers and managers initiate sampling on a new stream or river system, they do not know how effective each gear type is and whether their sampling effort is adequate. Although the types and amount of gear may be different for other studies, systems, and research questions, the five-step process described here for making sampling decisions and evaluating sampling efficiency can be applied widely to any system to restore, manage, and conserve aquatic ecosystems. It is believed that incorporating this gear-evaluation process into a wide variety of studies and ecosystems will increase rigour within and across aquatic biodiversity studies.
Squaring the circle of healthcare supplies.
Böhme, Tillmann; Williams, Sharon; Childerhouse, Paul; Deakins, Eric; Towill, Denis
2014-01-01
The purpose of this paper is to use a systems lens to assess the comparative performance of healthcare supply chains and provide guidance for their improvement. A well-established and rigorous multi-method audit methodology, based on the uncertainty circle model, yields an objective assessment of value stream performance in eight Australasian public sector hospitals. Cause-effect analysis identifies the major barriers to achieving smooth, seamless flows. Potentially high-leverage remedial actions identified using systems thinking are examined with the aid of an exemplar case. The majority of the healthcare value streams studied are underperforming compared with those in the European automotive industry. Every public hospital appears to be caught in the grip of vicious circles of system uncertainty, in large part being caused by problems of their own making. The single exception is making good progress towards seamless functional integration, which has been achieved by elevating supply chain management to a core competence; having a clearly articulated supply chain vision; adopting a systems approach; and, managing supplies with accurate information. The small number of cases limits the generalisability of the findings at this time. Hospital supply chain managers endeavouring to achieve smooth and seamless supply flows should attempt to elevate the status of supplies management within their organisation to that of a core competence, and should use accurate information to manage their value streams holistically as a set of interwoven processes. A four-level prism model is proposed as a useful framework for thus improving healthcare supply delivery systems. Material flow concepts originally developed to provide objective assessments of value stream performance in commercial settings are adapted for use in a healthcare setting. The ability to identify exemplar organisations via a context-free uncertainty measure, and to use systems thinking to identify high-leverage solutions, supports the transfer of appropriate best practices even between organisations in dissimilar business and economic settings.
Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia
2009-01-01
StreamStats is a Web-based Geographic Information System (GIS) application that was developed by the U.S. Geological Survey (USGS) in cooperation with Environmental Systems Research Institute, Inc. (ESRI) to provide access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and selected ungaged sites. StreamStats also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that can affect streamflow conditions. This functionality can be accessed through a map-based interface with the user's Web browser or through individual functions requested remotely through other Web applications.
Land Cover and Hydrologic Variability in Residential Watersheds: Drivers of N Loss in Sacramento CA
NASA Astrophysics Data System (ADS)
McConaghie, J. B.; Zhou, W.; Cadenasso, M. L.
2011-12-01
A key aspect to understanding N loss from urban systems is the link between landscape heterogeneity and variability in non-point source (NPS) nitrogen (N) flux. Because water transports N across the landscape and into receiving streams as runoff, understanding how landscape heterogeneity influences water quantity and movement is also needed. High variability in N loss has been documented from urban systems. However, typical NPS studies characterize landscape heterogeneity by land use and only weakly explain variability in stream N. Focusing on land cover, rather than land use, may better explain observed variability in N loss because land cover elements may better indicate major drivers of N loss. Also, most studies have been conducted in temperate urban systems with stream flow year round. In semi-arid urban systems, storm flow accounts for the majority of stream discharges, and residential irrigation contributes significantly to flows in the dry season. To address how landscape heterogeneity affects variability in water quantity and quality in urban streams, we examined how land cover influences stream flows and N loss in residential streams of metropolitan Sacramento, CA. We analyzed fine-scale variation in land cover and stream N during base flow and storm events in 4 residential watersheds which differ substantially in land cover. We classified land cover using HERCULES (High Ecological Resolution Classification for Urban Landscapes and Environmental Systems) which was developed specifically for urban systems. HERCULES classifies high-resolution aerial photographs into 5 elements: buildings, pavement, herbaceous and woody vegetation, and bare soil. Streams were sampled for discharge, NO3, and Total N using auto samplers during storms in the 2010-2011 rainy season and monthly in the dry season. Partial correlation analysis and multivariate models describe the relationships between land cover elements, water retention, and stream N in these watersheds. We found an early season flush of N from streams during the first storms, and N levels diminished through progressive storms. Also, N concentrations were higher during the rainy season compared to the dry season. High proportion of impervious cover was associated with greater flow rates overall, while high proportion of herbaceous cover was associated with reduced flow rates during storms. The proportion of pavement in the watersheds, a commonly used indicator of urban intensity, did not strongly correlate with increased levels of stream N except during the flush, but did correlate with the magnitude and timing of flows during storms. However, high proportions of building cover, e.g. residential homes, did correlate with higher N fluxes. The use of fertilizers or enhanced N cycling through vegetation management near residential buildings is a possible source of increased N. Management to reduce aquatic enrichment of N from urban ecosystems may be best directed toward identifying N sources and sinks associated with specific land covers. Management must also account for seasonal dynamics, such as annual hydrologic patterns, which drive the loss of N.
Governance, legislation and protection of intermittent rivers and ephemeral streams
Institutions and processes governing the conveyance and control of water have a long history. In this chapter, we discuss the extent to which water governance systems consider the management of intermittent rivers and ephemeral streams (IRES) and identify where research could inf...
Minimizing the Impacts of the Forest Road System
Johnny M. Grace
2003-01-01
Sediment movement from forest road systems is a major concern in forest management due to the degrading impacts of stream sedimentation. Controlling sediment movement from road systems is a key objective to achieve the goat of reducing the impact of forest management activities. Sediment control systems minimizing sediment travel distances downslope are likely...
Web Audio/Video Streaming Tool
NASA Technical Reports Server (NTRS)
Guruvadoo, Eranna K.
2003-01-01
In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.
Are Urban Stream Restoration Plans Worth Implementing?
NASA Astrophysics Data System (ADS)
Sarvilinna, Auri; Lehtoranta, Virpi; Hjerppe, Turo
2017-01-01
To manage and conserve ecosystems in a more sustainable way, it is important to identify the importance of the ecosystem services they provide and understand the connection between natural and socio-economic systems. Historically, streams have been an underrated part of the urban environment. Many of them have been straightened and often channelized under pressure of urbanization. However, little knowledge exists concerning the economic value of stream restoration or the value of the improved ecosystem services. We used the contingent valuation method to assess the social acceptability of a policy-level water management plan in the city of Helsinki, Finland, and the values placed on improvements in a set of ecosystem services, accounting for preference uncertainty. According to our study, the action plan would provide high returns on restoration investments, since the benefit-cost ratio was 15-37. Moreover, seventy-two percent of the respondents willing to pay for stream restoration chose "I want to conserve streams as a part of urban nature for future generations" as the most motivating reason. Our study indicates that the water management plan for urban streams in Helsinki has strong public support. If better marketed to the population within the watershed, the future projects could be partly funded by the local residents, making the projects easier to accomplish. The results of this study can be used in planning, management and decision making related to small urban watercourses.
Hydrology and Geomorphology of Tallgrass Prairie Intermittent Headwater Streams
NASA Astrophysics Data System (ADS)
Daniels, M. D.; Grudzinski, B.
2011-12-01
The arid to semi-arid Great Plains region of the United States covers more than 1 million km2, yet virtually nothing is known about the geomorphology of its intermittent headwater streams. These streams and the perennial rivers they feed support a unique and increasingly endangered assemblage of endemic fish species. While human impacts in the region are not at first glace significant, the reality is that the Great Plains are an intensively managed landscape, with pervasive cattle grazing, channelization, and groundwater over-pumping affecting these systems. These stresses will only increase with potential climate and related land use changes. Few natural remnants of native grassland remain today, limiting opportunities to study the natural dynamics of these systems in contrast to the anthropogenically modified systems. This paper presents a review of the existing geomorphological and hydrological knowledge of Great Plains headwater streams and presents the initial analysis of an 18 year intermittent headwater stream record from the tallgrass Konza Prairie LTER, Kansas. Results suggest that fire frequency and grazing and the resultant riparian vegetation composition strongly influence stream flow dynamics as well as stream geomorphology.
Integrating complex business processes for knowledge-driven clinical decision support systems.
Kamaleswaran, Rishikesan; McGregor, Carolyn
2012-01-01
This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS.
A policy evaluation tool: Management of a multiaquifer system using controlled stream recharge
Danskin, Wesley R.; Gorelick, Steven M.
1985-01-01
A model for the optimal allocation of water resources was developed for a multiaquifer groundwater and surface water system near Livermore, California. The complex groundwater system was analyzed using a transient, quasi-three-dimensional model that considers the nonlinear behavior of the unconfined aquifer. The surface water system consists of a reservoir that discharges water to three streams which in turn recharge the upper aquifer. Nonlinear streamflow-recharge relationships were developed based upon synoptic field measurements of streamflow. The management model uses constrained optimization to minimize the cost of allocating surface water subject to physical and economic restrictions. Results indicate that a combined hydrologic and economic management model can be used to evaluate management practices of a complex hydrogeologic system. Questions can be posed which either would be impossible or extremely difficult to solve without the management model. We demonstrate the utility of such a model in three areas. First, the efficiency of intra-basin water allocations is evaluated. Second, critical factors that control management decisions of the basin are identified. Third, the influence of economic incentives that can best satisfy the conflicting objectives of various water users is explored.
Real Time Flood Alert System (RTFAS) for Puerto Rico
Lopez-Trujillo, Dianne
2010-01-01
The Real Time Flood Alert System is a web-based computer program, developed as a data integration tool, and designed to increase the ability of emergency managers to rapidly and accurately predict flooding conditions of streams in Puerto Rico. The system includes software and a relational database to determine the spatial and temporal distribution of rainfall, water levels in streams and reservoirs, and associated storms to determine hazardous and potential flood conditions. The computer program was developed as part of a cooperative agreement between the U.S. Geological Survey Caribbean Water Science Center and the Puerto Rico Emergency Management Agency, and integrates information collected and processed by these two agencies and the National Weather Service.
In urban and exurban areas, stormwater runoff is a primary stressor on surface waters (streams, wetlands, lakes, estuaries, and coastal waters). Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs a...
NASA Technical Reports Server (NTRS)
Burgy, R. H.
1972-01-01
Data relating to hydrologic and water resource systems and subsystems management are reported. Systems models, user application, and remote sensing technology are covered. Parameters governing water resources include evaportranspiration, vegetation, precipitation, streams and estuaries, reservoirs and lakes, and unsaturate and saturated soil zones.
McCarthy, Peter M.; Dutton, DeAnn M.; Sando, Steven K.; Sando, Roy
2016-04-05
The U.S. Geological Survey (USGS) provides streamflow characteristics and other related information needed by water-resource managers to protect people and property from floods, plan and manage water-resource activities, and protect water quality. Streamflow characteristics provided by the USGS, such as peak-flow and low-flow frequencies for streamflow-gaging stations, are frequently used by engineers, flood forecasters, land managers, biologists, and others to guide their everyday decisions. In addition to providing streamflow characteristics at streamflow-gaging stations, the USGS also develops regional regression equations and drainage area-adjustment methods for estimating streamflow characteristics at locations on ungaged streams. Regional regression equations can be complex and often require users to determine several basin characteristics, which are physical and climatic characteristics of the stream and its drainage basin. Obtaining these basin characteristics for streamflow-gaging stations and ungaged sites traditionally has been time consuming and subjective, and led to inconsistent results.StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. StreamStats allows users to easily obtain streamflow and basin characteristics for USGS streamflow-gaging stations and user-selected locations on ungaged streams. The USGS, in cooperation with Montana Department of Transportation, Montana Department of Environmental Quality, and Montana Department of Natural Resources and Conservation, completed a study to develop a StreamStats application for Montana, compute streamflow characteristics at streamflow-gaging stations, and develop regional regression equations to estimate streamflow characteristics at ungaged sites. Chapter A of this Scientific Investigations Report describes the Montana StreamStats application and the datasets, streamflow-gaging stations, streamflow characteristics, and regression equations (as described fully in Chapters B through G of this report) that are used for development of the StreamStats application for Montana.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Grondona, M
2002-12-19
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, scheduling and stream copy modules. This paper presents an overview of the SLURM architecture and functionality.
SLURM: Simplex Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Grondona, M
2003-04-22
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, scheduling, and stream copy modules. This paper presents an overview of the SLURM architecture and functionality.
Modeling Alpine Meadow Restoration Techniques and their Effects on Stream Stage Regimes
NASA Astrophysics Data System (ADS)
Moore, C. E.; Lundquist, J. D.; Loheide, S. P.
2010-12-01
Meadow ecosystems in the Sierra Nevada of California often suffer from negative anthropogenic impacts, resulting in stream incision and meadow aridification. Groundwater dependent ecosystems, such as meadows, are especially vulnerable to channel degradation because alteration of stream stage propagates through the groundwater system to affect riparian vegetation. Restoration aimed at raising water table elevation of degraded meadow systems is becoming a salient and viable option as managers recognize the importance of intact headwaters. Stream stage controls groundwater levels and thus, vegetation communities, more dramatically than stream discharge in groundwater dependent ecosystems. Here we use a one dimensional hydraulic model, Hydraulic Engineering Center - River Analysis System (HEC-RAS) to model stream stage along the Tuolumne River, given a time series of stream discharge. Extensive hydroclimatic monitoring since 2001, and groundwater monitoring since 2006, make Tuolumne Meadows, in Yosemite National Park, California a prime location for a validated case study, applicable to other snow dominated basins. In order to determine the most plausible, efficient and effective strategy of restoring impacted meadows, different management scenarios are modeled. HEC-RAS modeling provides critical stream stage boundary conditions for groundwater modeling. Scenarios are chosen that are most effective at increasing stream stage and therefore water table levels. The effectiveness is quantified by modeling how each scenario changes the rating curve for a particular channel. Additionally, surface stage modeling allows decision makers to see under what flow conditions and what time period of the hydrograph is affected by restoration. Quantification of stream stage alterations is key for understanding restoration impacts during the short growing season in alpine meadows. Results of HEC-RAS modeling at Tuolumne Meadows are presented in the following formats to highlight the ways in which this work can be used as a vital tool in management decisions regarding meadow restoration. First, direct changes to the resulting stream stage time series are used to illustrate the magnitude of change among scenarios. Second, synthetic rating curves are compared so that the flow regimes which are highly sensitive to a particular restoration strategy can be readily identified. Third, an empirical probability density function describing the stream stage regime will be provided for each scenario to illustrate the overall effectiveness of each restoration technique in changing water levels. Finally, the probability of exceedance for bankfull stage, the depth associated with the onset of oxygen stress, and the depth associated with the onset of water stress will be presented to demonstrate changes to stream levels that are believed to have ecological significance. Investigation of multiple scenarios allows an informed decision based on sound science that will help achieve restoration goals in the future.
Understanding and managing the effects of groundwater pumping on streamflow
Leake, Stanley A.; Barlow, Paul M.
2013-01-01
Groundwater is a critical resource in the United States because it provides drinking water, irrigates crops, supports industry, and is a source of water for rivers, streams, lakes, and springs. Wells that pump water out of aquifers can reduce the amount of groundwater that flows into rivers and streams, which can have detrimental impacts on aquatic ecosystems and the availability of surface water. Estimation of rates, locations, and timing of streamflow depletion due to groundwater pumping is needed for water-resource managers and users throughout the United States, but the complexity of groundwater and surface-water systems and their interactions presents a major challenge. The understanding of streamflow depletion and evaluation of water-management practices have improved during recent years through the use of computer models that simulate aquifer conditions and the effects of pumping groundwater on streams.
NASA Astrophysics Data System (ADS)
Akrout, Nabil M.; Gordon, Howard; Palisson, Patrice M.; Prost, Remy; Goutte, Robert
1996-05-01
Facing a world undergoing fundamental and rapid change, healthcare organizations are seeking ways to increase innovation, quality, productivity, and patient value, keys to more effective care. Individual clinics acting alone can respond in only a limited way, so re- engineering the process key which services are delivered demands real-time collaborative technology that provides immediate information sharing, improving the management and coordination of information in cross-functional teams. StreamWorks is a development stage architecture that uses a distribution technique to deliver an advanced information management system for telemedicine. The challenge of StreamWorks in telemedicine is to enable equity of the quality of Health Care of Telecommunications and Information Technology also to patients in less favored regions, like India or China, where the quality of medical care varies greatly by region, but where there are some very current communications facilities.
ICMS. Chemical Tracking, Management, and Reporting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramlette, J.; Miles, R.; Carlson, M.
1997-10-10
The ICMS provides: management and system users a cost-effective method for identifying, reporting, and tracking chemicals from identifying the chemical when it is received until it enters a waste stream for a facility or area.
Reeves, Howard W.; Seelbach, Paul W.; Nicholas, James R.; Hamilton, David A.; Potter, Kenneth W.; Frevert, Donald K.
2010-01-01
In 2008, the State of Michigan enacted legislation requiring that new or increased high-capacity withdrawals (greater than 100,000 gallons per day) from either surface water or groundwater be reviewed to prevent Adverse Resource Impacts (ARI). Science- based guidance was sought in defining how groundwater or surface-water withdrawals affect streamflow and in quantifying the relation between reduced streamflow and changes in stream ecology. The implementation of the legislation led to a risk-based system based on a gradient of risk, ecological response curves, and estimation of groundwater-surface water interaction. All Michigan streams are included in the legislation, and, accordingly, all Michigan streams were classified into management types defined by size of watershed, stream-water temperature, and predicted fish assemblages. Different streamflow removal percentages define risk-based thresholds allowed for each type. These removal percentages were informed by ecological response curves of characteristic fish populations and finalized through a legislative workgroup process. The assessment process includes an on-line screening tool that may be used to evaluate new or increased withdrawals against the risk-based zones and allows withdrawals that are not likely to cause an ARI to proceed to water-use registration. The system is designed to consider cumulative impacts of high-capacity withdrawals and to promote user involvement in water resource management by the establishment of water-user committees as cumulative withdrawals indicate greater potential for ARI in the watershed.
A Knowledge-Based Information Management System for Watershed Analysis in the Pacific Northwest U.S.
Keith Reynolds; Patrick Cunningham; Larry Bednar; Michael Saunders; Michael Foster; Richard Olson; Daniel Schmoldt; Donald Latham; Bruce Miller; John Steffenson
1996-01-01
The Pacific Northwest Research Station (USDA Forest Service) is developing a knowledge-based information management system to provide decision support for watershed analysis. The system includes: (1) a GIS interface that allows users to navigate graphically to specific provinces and watersheds and display a variety of themes (vegetation, streams, roads, topography, etc...
OCEANIDS: Autonomous Data Acquisition, Management and Distribution System
NASA Technical Reports Server (NTRS)
Bingham, Andrew; Rigor, Eric; Cervantes, Alex; Armstrong, Edward
2004-01-01
OCEANIDS is a clearinghouse for mission essential and near-real-time satellite data streams. This viewgraph presentation describes this mission, and includes the following topics: 1) OCEANIDS Motivation; 2) High-Level Architecture; 3) OCEANIDS Features; 4) OCEANIDS GUI: Nodes; 5) OCEANIDS GUI: Cluster; 6) Data Streams; 7) Statistics; and 8) GHRSST-PP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elicio, Andy U.
My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform amore » review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.« less
Kirsch, Joseph; Peterson, James T.
2014-01-01
There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.
Geza, Mengistu; McCray, John E; Murray, Kyle E
2010-01-01
Nutrient loading to surface water systems has traditionally been associated with agricultural sources. Sources such as on-site wastewater systems (OWS) may be of concern especially in rural, nonagricultural watersheds. The impact of various point and nonpoint sources including OWS in Turkey Creek Watershed was evaluated using the Watershed Analysis Risk Management Framework, which was calibrated using 10 yr of observed stream flow and total P concentrations. Doubling the population in the watershed or OWS septic tank effluent P concentration increased mean stream total P concentration by a factor of 1.05. Converting all the OWS to a conventional sewer system with a removal efficiency of 93% at the wastewater treatment plant increased the mean total P concentration at the watershed outlet by a factor of 1.26. Reducing the soil adsorption capacity by 50% increased the mean stream total P concentration by a factor of 3.2. Doubling the initial P concentration increased the mean stream total P concentration by a factor of 1.96. Stream flow and sediment transport also substantially affected stream P concentration. The results suggest that OWS contribution to stream P in this watershed is minimal compared with other factors within the simulated time frame of 10 yr.
Influence of forest management on headwater stream amphibians at multiple spatial scales
Stoddard, Margo; Hayes, John P.; Erickson, Janet L.
2004-01-01
Background Amphibians are important components of headwater streams in forest ecosystems of the Pacific Northwest (PNW). They comprise the highest vertebrate biomass and density in these systems and are integral to trophic dynamics both as prey and as predators. The most commonly encountered amphibians in PNW headwater streams include the Pacific giant salamander (Dicamptodon tenebrosus), the tailed frog (Ascaphus truei), the southern torrent salamander (Rhyacotriton variegatus), and the Columbia torrent salamander (R. kezeri).
On the patterns and processes of wood in northern California streams
NASA Astrophysics Data System (ADS)
Benda, Lee; Bigelow, Paul
2014-03-01
Forest management and stream habitat can be improved by clarifying the primary riparian and geomorphic controls on streams. To this end, we evaluated the recruitment, storage, transport, and the function of wood in 95 km of streams (most drainage areas < 30 km2) in northern California, crossing four coastal to inland regions with different histories of forest management (managed, less-managed, unmanaged). The dominant source of variability in stream wood storage and recruitment is driven by local variation in rates of bank erosion, forest mortality, and mass wasting. These processes are controlled by changes in watershed structure, including the location of canyons, floodplains and tributary confluences; types of geology and topography; and forest types and management history. Average wood storage volumes in coastal streams are 5 to 20 times greater than inland sites primarily from higher riparian forest biomass and growth rates (productivity), with some influence by longer residence time of wood in streams and more wood from landsliding and logging sources. Wood recruitment by mortality (windthrow, disease, senescence) was substantial across all sites (mean 50%) followed by bank erosion (43%) and more locally by mass wasting (7%). The distances to sources of stream wood are controlled by recruitment process and tree height. Ninety percent of wood recruitment occurs within 10 to 35 m of channels in managed and less-managed forests and upward of 50 m in unmanaged Sequoia and coast redwood forests. Local landsliding extends the source distance. The recruitment of large wood pieces that create jams (mean diameter 0.7 m) is primarily by bank erosion in managed forests and by mortality in unmanaged forests. Formation of pools by wood is more frequent in streams with low stream power, indicating the further relevance of environmental context and watershed structure. Forest management influences stream wood dynamics, where smaller trees in managed forests often generate shorter distances to sources of stream wood, lower stream wood storage, and smaller diameter stream wood. These findings can be used to improve riparian protection and inform spatially explicit riparian management.
Redesigning Urban Carbon Cycles: from Waste Stream to Commodity
NASA Astrophysics Data System (ADS)
Brabander, D. J.; Fitzstevens, M. G.
2013-12-01
While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in supporting urban agriculture. We are now extending this approach to additional large U.S. and European urban centers where different philosophical and technological approaches to managing urban waste carbon have resulted in a range of infrastructures, from highly distributed systems (Germany) to centralized mega facilities (London). Ultimately, this research will lead to a decision-making matrix model that will permit cities to customize their urban carbon waste stream facilities and transform this waste into a usable commodity.
NASA Astrophysics Data System (ADS)
Smucker, N. J.; Detenbeck, N. E.; Kuhn, A.
2013-12-01
Watershed development is a leading cause of stream impairment and increasingly threatens the availability, quality, and sustainability of freshwater resources. In a recent global meta-analysis, we found that measures of desirable ecological structure (e.g., algal, macroinvertebrate, and fish communities) and functions (e.g., metabolism, nutrient uptake, and denitrification) in streams with developed watersheds were only 23% and 34%, respectively, of those in minimally disturbed reference streams. As humans continue to alter watersheds in response to growing and migrating populations, characterizing ecological responses to watershed development and management practices is urgently needed to inform future development practices, decisions, and policy. In a study of streams in New England, we found that measures of macroinvertebrate and algal communities had threshold responses between 1-10% and 1-5% impervious cover, respectively. Macroinvertebrate communities had decreases in sensitive taxa and predators occurring from 1-3.5% and transitions in trophic and habitat guilds from 4-9% impervious cover. Sensitive algal taxa declined at 1%, followed by increases in tolerant taxa at 3%. Substantially altered algal communities persisted above 5% impervious cover and were dominated by motile taxa (sediment resistant) and those with high nutrient demands. Boosted regression tree analysis showed that sites with >65% and ideally >80% forest and wetland cover in near-stream buffers were associated with a 13-34% decrease in the effects of watershed impervious cover on algal communities. While this reduction is substantial, additional out-of-stream management efforts are needed to protect and restore stream ecosystems (e.g., created wetlands and stormwater ponds), but understanding their effectiveness is greatly limited by sparse ecological monitoring. Our meta-analysis found that restoration improved ecological structure and functions in streams by 48% and 14%, respectively, when compared to streams with developed watersheds and no management practices in place. However, ecosystem measures at restored sites were still only 53% of those in minimally disturbed reference streams. Some of our ongoing work further examines how watershed development and riparian condition affect stream ecosystem functions by altering the sources and delivery of nutrients and carbon. Our results can help inform management priorities and expectations, and they emphasize the importance of implementing mindful development and protective actions in a watershed context, especially in watersheds near impervious cover thresholds. Continued research on linked terrestrial-aquatic systems, improved BMP tracking, and ongoing monitoring will be essential to conserving and restoring the mechanisms that sustain valued ecological attributes and ecosystem services of streams.
The Stream Depletion Model Paradox and a First Solution
NASA Astrophysics Data System (ADS)
Malama, B.
2017-12-01
Hitherto, stream depletion models available in the hydrogeology literature use the xed head Dirichletboundary condition at the stream, and as such do not account for groundwater pumping induced streamdrawdown. They simply treat stream depletion as the decrease in stream discharge due capture by pumping,the groundwater that would discharge to the stream without pumping. We refer to this model predictedstream depletion without stream drawdown as the depletion paradox. It is intuitively clear, however, thatadverse impacts of long-term groundwater abstraction in the neighborhood of a stream include streamdrawdown, which has led to many a dry streambed in the American west and other arid regions. Streamdrawdown is especially acute for low stream ows. A mathematical model that allows for transient streamdrawdown is proposed by introducing the concept of stream storage. The model simply extends the constanthead model at the stream by including a mass-balance condition. The model is developed for a fullypenetrating stream and groundwater abstraction in a conned aquifer. The dependence of model predictedstream depletion and drawdown on stream storage, streambed conductance, aquifer anisotropy, and radialdistance to the pumping well is evaluated. The model is shown to reduce to that of Hantush in the limitas stream storage becomes innitely large, and to the Theis solution with a no- ow boundary at the streamlocation when stream storage gets vanishingly small. The results suggest that using xed stream stage modelsleads to an underestimation the late-time aquifer drawdwon response to pumping in the neighborhood of astream because it correspond to innite stream storage. This is especially critical for management of surfacewater and groundwater resources in systems subjected to prolonged groundwater abstraction and measurablestream drawdown. The model also shows a maximum stream depletion rate, beyond which stream ow to thewell diminishes and eventually vanishes. This suggests that models with xed stream stage overestimate theavailable groundwater supply from streams to pumping wells because of the inherent assumption of innitestream storage. This has implications for sustainable management of groundwater resources near streams.
Peterson, James T; Freeman, Mary C
2016-12-01
Stream ecosystems provide multiple, valued services to society, including water supply, waste assimilation, recreation, and habitat for diverse and productive biological communities. Managers striving to sustain these services in the face of changing climate, land uses, and water demands need tools to assess the potential effectiveness of alternative management actions, and often, the resulting tradeoffs between competing objectives. Integrating predictive modeling with monitoring data in an adaptive management framework provides a process by which managers can reduce model uncertainties and thus improve the scientific bases for subsequent decisions. We demonstrate an integration of monitoring data with a dynamic, metapopulation model developed to assess effects of streamflow alteration on fish occupancy in a southeastern US stream system. Although not extensive (collected over three years at nine sites), the monitoring data allowed us to assess and update support for alternative population dynamic models using model probabilities and Bayes rule. We then use the updated model weights to estimate the effects of water withdrawal on stream fish communities and demonstrate how feedback in the form of monitoring data can be used to improve water resource decision making. We conclude that investment in more strategic monitoring, guided by a priori model predictions under alternative hypotheses and an adaptive sampling design, could substantially improve the information available to guide decision-making and management for ecosystem services from lotic systems. Published by Elsevier Ltd.
JXTA: A Technology Facilitating Mobile P2P Health Management System
Rajkumar, Rajasekaran; Nallani Chackravatula Sriman, Narayana Iyengar
2012-01-01
Objectives Mobile JXTA (Juxtapose) gaining momentum and has attracted the interest of doctors and patients through P2P service that transmits messages. Audio and video can also be transmitted through JXTA. The use of mobile streaming mechanism with the support of mobile hospital management and healthcare system would enable better interaction between doctors, nurses, and the hospital. Experimental results demonstrate good performance in comparison with conventional systems. This study evaluates P2P JXTA/JXME (JXTA functionality to MIDP devices.) which facilitates peer-to-peer application+ using mobile-constraint devices. Also a proven learning algorithm was used to automatically send and process sorted patient data to nurses. Methods From December 2010 to December 2011, a total of 500 patients were referred to our hospital due to minor health problems and were monitored. We selected all of the peer groups and the control server, which controlled the BMO (Block Medical Officer) peer groups and BMO through the doctor peer groups, and prescriptions were delivered to the patient’s mobile phones through the JXTA/ JXME network. Results All 500 patients were registered in the JXTA network. Among these, 300 patient histories were referred to the record peer group by the doctors, 100 patients were referred to the external doctor peer group, and 100 patients were registered as new users in the JXTA/JXME network. Conclusion This system was developed for mobile streaming applications and was designed to support the mobile health management system using JXTA/ JXME. The simulated results show that this system can carry out streaming audio and video applications. Controlling and monitoring by the doctor peer group makes the system more flexible and structured. Enhanced studies are needed to improve knowledge mining and cloud-based M health management technology in comparison with the traditional system. PMID:24159509
NASA Astrophysics Data System (ADS)
Delong, Michael D.; Brusven, Merlyn A.
1991-07-01
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.
Nelson, Kären C.; Palmer, Margaret A.; Pizzuto, James E.; Moglen, Glenn E.; Angermeier, Paul L.; Hilderbrand, Robert H.; Dettinger, Mike; Hayhoe, Katharine
2009-01-01
Synthesis and applications. The interaction of climate change and urban growth may entail significant reconfiguring of headwater streams, including a loss of ecosystem structure and services, which will be more costly than climate change alone. On local scales, stakeholders cannot control climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve stream ecosystems, we recommend that proactive measures be taken to insure against species loss or severe population declines. Delays will inevitably exacerbate the impacts of both climate change and urbanization on headwater systems.
Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.
2017-01-01
Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.
Grazed Riparian Management and Stream Channel Response in Southeastern Minnesota (USA) Streams
NASA Astrophysics Data System (ADS)
Magner, Joseph A.; Vondracek, Bruce; Brooks, Kenneth N.
2008-09-01
The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response.
Grazed riparian management and stream channel response in southeastern Minnesota (USA) streams
Magner, J.A.; Vondracek, B.; Brooks, K.N.
2008-01-01
The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response. ?? 2008 Springer Science+Business Media, LLC.
Burns, Alan W.
1981-01-01
Digital computer models were developed and used to simulate the hydrologic effects of hypothetical water-management alternatives on the wetland habitat area near Grand Island, Nebr. Areally distributed recharge to and discharge from the aquifer system adjacent to the Platte River between Overton and Grand Island were computed for four hypothetical water-management alternatives. Using stream-aquifer response functions, the stream depletions resulting from the different alternatives ranged from 53,000 acre-feet per year for increased surface-water irrigation to 177,000 acre-feet per year for increased ground-water pumpage. Current conditions would result in stream depletions of 125,000 acre-feet per year. Using the relationship between discharge and river stage, frequency curves of the stage in the river near the wildlife habitat area were computed using a 50-year sequence of historical streamflow at Overton, minus the stream depletions resulting from various management practices. For the management alternatives previously discussed, differences in the stage-frequency curves were minimal. For comparative purposes, three additional water-management alternatives whose application would change the incoming streamflow at Overton were simulated. Although in these alternatives the amounts of water that were diverted or imported were similar to the amounts in the previous alternatives, their effects on the stage-frequency curves were much more dramatic. (USGS)
ERIC Educational Resources Information Center
Chadwick, Clint; Way, Sean A.; Kerr, Gerry; Thacker, James W.
2013-01-01
Although a few published, multiindustry, firm-level, empirical studies have linked systems of high-investment or high-performance human resource management practices to enhanced small-firm performance, this stream of strategic human resource management research is underdeveloped and equivocal. Accordingly, in this study, we use a sample of…
A Riparian Wildlife Habitat Evaluation Scheme Developed Using GIS
Louis R. Iverson; Diane L. Szafoni; Sharon E. Baum; Elizabeth A. Cook; Elizabeth A. Cook
2001-01-01
To evaluate riparian habitat for wildlife, we used a geographic information system (GIS) that prioritized individual streams (for acquisition or management) by habitat ranking. We demonstrate this methodology for the Vermilion River basin in east-central Illinois, USA. Three data sets were used to evaluate land cover encompassing 300 m on either side of the streams: (1...
Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.
2015-01-01
Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
NASA Astrophysics Data System (ADS)
Midor, Katarzyna; Jąderko, Karolina
2017-11-01
The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Dunlap, C; Garlick, J
2002-07-08
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, scheduling and stream copy modules. The design also includes a scalable, general-purpose communication infrastructure. This paper presents a overview of the SLURM architecture and functionality.
A Control Chart Approach for Representing and Mining Data Streams with Shape Based Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A
The mining of data streams for online condition monitoring is a challenging task in several domains including (electric) power grid system, intelligent manufacturing, and consumer science. Considering a power grid application in which thousands of sensors, called the phasor measurement units, are deployed on the power grid network to continuously collect streams of digital data for real-time situational awareness and system management. Depending on design, each sensor could stream between ten and sixty data samples per second. The myriad of sensory data captured could convey deeper insights about sequence of events in real-time and before major damages are done. However,more » the timely processing and analysis of these high-velocity and high-volume data streams is a challenge. Hence, a new data processing and transformation approach, based on the concept of control charts, for representing sequence of data streams from sensors is proposed. In addition, an application of the proposed approach for enhancing data mining tasks such as clustering using real-world power grid data streams is presented. The results indicate that the proposed approach is very efficient for data streams storage and manipulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauriello, P.J.; Ragbeer, D.
1997-12-01
In the wake of the U.S. Supreme Court decision in the Carbone vs. Clarkstown case striking down waste flow control as unconstitutional, Dade County, Florida, one of the most severely impacted communities in the nation, has managed to stabilize its waste stream and balance its solid waste department finances; although the road taken to restabilization has been a difficult one. At its peak in 1995, Dade County experienced an annual loss of solid waste in excess of 1,000,000 tons, or over 40 percent of the waste stream normally handled by the County. This diversion of waste was accompanied by amore » net revenue loss of $30 million per year. The County lost its ability to plan for future capacity needs, or to assure sufficient future waste flows to meet its put-or-pay obligation to the County`s Resources Recovery plant operator. The County`s solid waste management system bonds were downgraded by Moody`s Investors Service and Standard and Poors. With the help of a special solid waste management team, appointed by the County Manager, the department was able to rightsize its waste disposal operations to fit its reduced waste flows, stabilize its waste stream, and develop strategies to solve its long-term funding shortfall.« less
NASA Technical Reports Server (NTRS)
Keith, Bruce; Ford, David N.; Horton, Radley M.
2016-01-01
The purpose of this study is to evaluate simulated fill rate scenarios for the Grand Ethiopian Renaissance Dam while taking into account plausible climate change outcomes for the Nile River Basin. The region lacks a comprehensive equitable water resource management strategy, which creates regional security concerns and future possible conflicts. We employ climate estimates from 33 general circulation models within a system dynamics model as a step in moving toward a feasible regional water resource management strategy. We find that annual reservoir fill rates of 8-15% are capable of building hydroelectric capacity in Ethiopia while concurrently ensuring a minimum level of stream flow disruption into Egypt before 2039. Insofar as climate change estimates suggest a modest average increase in stream flow into the Aswan, climate changes through 2039 are unlikely to affect the fill rate policies. However, larger fill rates will have a more detrimental effect on stream flow into the Aswan, particularly beyond a policy of 15%. While this study demonstrates that a technical solution for reservoir fill rates is feasible, the corresponding policy challenge is political. Implementation of water resource management strategies in the Nile River Basin specifically and Africa generally will necessitate a national and regional willingness to cooperate.
Impact of lateral flow on the transition from connected to disconnected stream-aquifer systems
NASA Astrophysics Data System (ADS)
Xian, Yang; Jin, Menggui; Liu, Yanfeng; Si, Aonan
2017-05-01
Understanding the mechanisms by which stream water infiltrates through streambeds to recharge groundwater systems is essential to sustainable management of scarce water resources in arid and semi-arid areas. An inverted water table (IWT) can develop under a stream in response to the desaturation between the stream and underlying aquifer as the system changes from a connected to disconnected status. However, previous studies have suggested that the IWT can only occur at the bottom of a low permeability streambed in which only the vertical flow between the stream and groundwater during disconnection was assumed. In the present study, numerical simulations revealed that the lateral flow induced by capillarity or heterogeneity also plays an essential role on interactions between streams and aquifers. Three pathways were identified for the transition from connection to disconnection in homogenous systems; notably, the lowest point of an IWT can develop not only at the bottom of the streambed but also within the streambed or the aquifer in response to the initial desaturation at, above, or below the interface between the streambed and aquifer (IBSA), respectively. A sensitivity analysis indicated that in wide streams, the lowest point of an IWT only occurs at the bottom of the streambed; however, for a stream half width of 1 m above a 6 m thick sandy loam streambed, the lowest point occurs in the streambed as stream depth is less than 0.5 m. This critical stream depth increases with streambed thickness and decreases with stream width. Thus, in narrow streams the lowest point can also develop in a thick streambed under a shallow stream. In narrow streams, the lowest point also forms in the aquifer if the ratio of the hydraulic conductivity of the streambed to that of the aquifer is greater than the ratio of the streambed thickness to the sum of the stream depth and the streambed thickness; correspondingly, the streambed is thin but relatively permeable and the stream is deep. Furthermore, in heterogeneous streambed systems, two or three pathways can simultaneously occur and various parts of the IWT occur at distinct positions relative to the IBSA. This challenges the commonly held assumption that streambed under a disconnected stream is always fully saturated, and limits the methods which introduce a negative or atmospheric pressure value at the IBSA to calculate seepage rate or assess stream-aquifer connectivity.
NASA Astrophysics Data System (ADS)
O'Connor, B. L.; Carr, A.; Patton, T.; Hamada, Y.
2011-12-01
The Bureau of Land Management (BLM) and the Department of Energy are preparing a joint programmatic environmental impact statement (PEIS) assessing the potential impacts of utility-scale solar energy development on BLM-administered lands in six southwestern states. One of the alternatives considered in the PEIS involves development within identified solar energy zones (SEZs) that individually cover approximately 10 to 1,000 km2, located primarily in desert valleys of the Basin and Range physiographic region. Land-disturbing activities in these alluvium-filled valleys have the potential to adversely affect ephemeral streams with respect to their hydrologic, geomorphic, and ecologic functions. Regulation and management of ephemeral streams typically falls under the spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. The PEIS analysis attempts to identify critical ephemeral streams by evaluating the integral functions of flood conveyance, sediment transport, groundwater recharge, and supporting ecological habitats. The initial approach to classifying critical ephemeral streams involved identifying large, erosional features using available flood hazards mapping, historical peak discharges, and aerial photographs. This approach identified ephemeral features not suitable for development (based primarily on the likelihood of damaging floods and debris flows) to address flood conveyance and sediment transport functions of ephemeral streams. Groundwater recharge and the maintenance of riparian vegetation and wildlife habitats are other functions of ephemeral streams. These functions are typically associated with headwater reaches rather than large-scale erosional features. Recognizing that integral functions of ephemeral streams occur over a range of spatial scales and are driven by varying climatic-hydrologic events, the PEIS analysis assesses ephemeral streams according to their position in the basin, stream order, and the recurrence intervals of runoff events in the basin. A key constraint on this approach is the lack of high-resolution hydrologic, geomorphic, and ecological data for ephemeral streams in remote desert basins of the southwest United States. Consultation with stakeholders and management agencies is an additional component to assist with our analysis where data limitations exist. Results from these analyses identify critical ephemeral stream reaches to be avoided during development activities based on a mix of quantitative and qualitative measures. Long-term monitoring of these systems is needed to assess the avoidance criteria and to help advance development of the tools needed to help manage and protect the integral functions of ephemeral stream networks in arid environments.
Matisse: A Visual Analytics System for Exploring Emotion Trends in Social Media Text Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Drouhard, Margaret MEG G; Beaver, Justin M
Dynamically mining textual information streams to gain real-time situational awareness is especially challenging with social media systems where throughput and velocity properties push the limits of a static analytical approach. In this paper, we describe an interactive visual analytics system, called Matisse, that aids with the discovery and investigation of trends in streaming text. Matisse addresses the challenges inherent to text stream mining through the following technical contributions: (1) robust stream data management, (2) automated sentiment/emotion analytics, (3) interactive coordinated visualizations, and (4) a flexible drill-down interaction scheme that accesses multiple levels of detail. In addition to positive/negative sentiment prediction,more » Matisse provides fine-grained emotion classification based on Valence, Arousal, and Dominance dimensions and a novel machine learning process. Information from the sentiment/emotion analytics are fused with raw data and summary information to feed temporal, geospatial, term frequency, and scatterplot visualizations using a multi-scale, coordinated interaction model. After describing these techniques, we conclude with a practical case study focused on analyzing the Twitter sample stream during the week of the 2013 Boston Marathon bombings. The case study demonstrates the effectiveness of Matisse at providing guided situational awareness of significant trends in social media streams by orchestrating computational power and human cognition.« less
Verification testing of the Practical Best Management, Inc., CrystalStream™ stormwater treatment system was conducted over a 15-month period starting in March, 2003. The system was installed in a test site in Griffin, Georgia, and served a drainage basin of approximately 4 ...
R. Bruce Medhurst; Mark S. Wipfli; Chris Binckley; Karl Polivka; Paul F. Hessburg; R. Brion. Salter
2010-01-01
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that...
Diagnostic-management system and test pulse acquisition for WEST plasma measurement system
NASA Astrophysics Data System (ADS)
Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Juszczyk, B.; Zabolotny, W.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.; Mazon, D.; Malard, P.
2014-11-01
This paper describes current status of electronics, firmware and software development for new plasma measurement system for use in WEST facility. The system allows to perform two dimensional plasma visualization (in time) with spectrum measurement. The analog front-end is connected to Gas Electron Multiplier detector (GEM detector). The system architecture have high data throughput due to use of PCI-Express interface, Gigabit Transceivers and sampling frequency of ADC integrated circuits. The hardware is based on several years of experience in building X-ray spectrometer system for Joint European Torus (JET) facility. Data streaming is done using Artix7 FPGA devices. The system in basic configuration can work with up to 256 channels, while the maximum number of measurement channels is 2048. Advanced firmware for the FPGA is required in order to perform high speed data streaming and analog signal sampling. Diagnostic system management has been developed in order to configure measurement system, perform necessary calibration and prepare hardware for data acquisition.
Assessing the chemical contamination dynamics in a mixed land use stream system.
Sonne, Anne Th; McKnight, Ursula S; Rønde, Vinni; Bjerg, Poul L
2017-11-15
Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The results emphasize that future investigations should include multiple compounds and stream compartments, and highlight the need for holistic approaches when risk assessing these dynamic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of management legacies on stream fish and aquatic benthic macroinvertebrate assemblages
Quist, Michael C.; Schultz, Randall D.
2014-01-01
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002–2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence–absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.
Effects of Management Legacies on Stream Fish and Aquatic Benthic Macroinvertebrate Assemblages
NASA Astrophysics Data System (ADS)
Quist, Michael C.; Schultz, Randall D.
2014-09-01
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002-2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence-absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.
Effects of management legacies on stream fish and aquatic benthic macroinvertebrate assemblages.
Quist, Michael C; Schultz, Randall D
2014-09-01
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002-2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence-absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.
NASA Astrophysics Data System (ADS)
Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.
2017-12-01
In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for multiple sectors of activities including electrical resources adequacy studies over the southeastern U.S.
Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.
2013-01-01
Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.
Simulation of Tasks Distribution in Horizontally Scalable Management System
NASA Astrophysics Data System (ADS)
Kustov, D.; Sherstneva, A.; Botygin, I.
2016-08-01
This paper presents an imitational model of the task distribution system for the components of territorially-distributed automated management system with a dynamically changing topology. Each resource of the distributed automated management system is represented with an agent, which allows to set behavior of every resource in the best possible way and ensure their interaction. The agent work load imitation was done via service query imitation formed in a system dynamics style using a stream diagram. The query generation took place in the abstract-represented center - afterwards, they were sent to the drive to be distributed to management system resources according to a ranking table.
Hydrologic modeling of detention pond
USDA-ARS?s Scientific Manuscript database
Urban watersheds produce an instantaneous response to rainfall. That results in stormwater runoff in excess of the capacity of drainage systems. The excess stormwater must be managed to prevent flooding and erosion of streams. Management can be achieved with the help of structural stormwater Best...
NASA Astrophysics Data System (ADS)
Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.
2017-07-01
Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.
Physical habitat simulation system reference manual: version II
Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.
1989-01-01
There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.
The QuakeSim Project: Web Services for Managing Geophysical Data and Applications
NASA Astrophysics Data System (ADS)
Pierce, Marlon E.; Fox, Geoffrey C.; Aktas, Mehmet S.; Aydin, Galip; Gadgil, Harshawardhan; Qi, Zhigang; Sayar, Ahmet
2008-04-01
We describe our distributed systems research efforts to build the “cyberinfrastructure” components that constitute a geophysical Grid, or more accurately, a Grid of Grids. Service-oriented computing principles are used to build a distributed infrastructure of Web accessible components for accessing data and scientific applications. Our data services fall into two major categories: Archival, database-backed services based around Geographical Information System (GIS) standards from the Open Geospatial Consortium, and streaming services that can be used to filter and route real-time data sources such as Global Positioning System data streams. Execution support services include application execution management services and services for transferring remote files. These data and execution service families are bound together through metadata information and workflow services for service orchestration. Users may access the system through the QuakeSim scientific Web portal, which is built using a portlet component approach.
Water Resources Data, Florida, Water Year 2003, Volume 4. Northwest Florida
prepared by Blum, Darlene A.; Alvarez, A. Ernie
2004-01-01
The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, obtains a large amount of data on the water resources of the State of Florida each water year. These data, accumulated during many water years, constitute a valuable database that is used by water-resources managers, emergency-management officials, and many others to develop an improved understanding of water resources within the State. This report series for the 2003 water year for the state of Florida consists of records for continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water for 133 surface-water sites and 308 wells. This volume (Volume 4, Northwest Florida)contains records of continuous or daily discharge for 72 streams, periodic discharge for 3 stream, continuous or daily stage for 13 streams, periodic stage for 0 stream, peak stage and discharge for 28 streams, continuous or daily elevations for 1 lake, periodic elevations for 0 lakes, continuous ground-water levels for 3 wells, periodic ground-water levels for 0 wells, and quality-of-water for 3 surface-water sites and 0 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Florida.
Development of a simulation of the surficial groundwater system for the CONUS
NASA Astrophysics Data System (ADS)
Zell, W.; Sanford, W. E.
2016-12-01
Water resource and environmental managers across the country face a variety of questions involving groundwater availability and/or groundwater transport pathways. Emerging management questions require prediction of groundwater response to changing climate regimes (e.g., how drought-induced water-table recession may degrade near-stream vegetation and result in increased wildfire risks), while existing questions can require identification of current groundwater contributions to surface water (e.g., groundwater linkages between landscape contaminant inputs and receiving streams may help explain in-stream phenomena such as fish intersex). At present, few national-coverage simulation tools exist to help characterize groundwater contributions to receiving streams and predict potential changes in base-flow regimes under changing climate conditions. We will describe the Phase 1 development of a simulation of the water table and shallow groundwater system for the entire CONUS. We use national-scale datasets such as the National Recharge Map and the Map Database for Surficial Materials in the CONUS to develop groundwater flow (MODFLOW) and transport (MODPATH) models that are calibrated against groundwater level and stream elevation data from NWIS and NHD, respectively. Phase 1 includes the development of a national transmissivity map for the surficial groundwater system and examines the impact of model-grid resolution on the simulated steady-state discharge network (and associated recharge areas) and base-flow travel time distributions for different HUC scales. In the course of developing the transmissivity map we show that transmissivity in fractured bedrock systems is dependent on depth to water. Subsequent phases of this work will simulate water table changes at a monthly time step (using MODIS-dependent recharge estimates) and serve as a critical complement to surface-water-focused USGS efforts to provide national coverage hydrologic modeling tools.
Land use, spatial scale, and stream systems: Lessons from an agricultural region
Vondracek, B.; Blann, K.L.; Cox, C.B.; Nerbonne, J.F.; Mumford, K.G.; Nerbonne, B.A.; Sovell, L.A.; Zimmerman, J.K.H.
2005-01-01
We synthesized nine studies that examined the influence of land use at different spatial scales in structuring biotic assemblages and stream channel characteristics in southeastern Minnesota streams. Recent studies have disagreed about the relative importance of catchment versus local characteristics in explaining variation in fish assemblages. Our synthesis indicates that both riparian- and catchment-scale land use explained significant variation in water quality, channel morphology, and fish distribution and density. Fish and macroinvertebrate assemblages can be positively affected by increasing the extent of perennial riparian and upland vegetation. Our synthesis is robust; more than 425 stream reaches were examined in an area that includes a portion of three ecoregions. Fishes ranged from coldwater to warmwater adapted. We suggest that efforts to rehabilitate stream system form and function over the long term should focus on increasing perennial vegetation in both riparian areas and uplands and on managing vegetation in large, contiguous blocks. ?? 2005 Springer Science+Business Media, Inc.
ERIC Educational Resources Information Center
Jaradat, Suhair; Qablan, Ahmad; Barham, Areej
2011-01-01
This paper explains how the activity theory is used as a framework to analyze the barriers to a virtual Management Information Stream (MIS) Curriculum in Jordanian schools, from both the sociocultural and pedagogical perspectives. Taking the activity system as a unit of analysis, this study documents the processes by which activities shape and are…
Slope failure as an upslope source of stream wood
Daniel Miller
2013-01-01
Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...
Making decisions in complex landscapes: Headwater stream management across multiple federal agencies
Katz, Rachel; Grant, Evan H. Campbell; Runge, Michael C.; Connery, Bruce; Crockett, Marquette; Herland, Libby; Johnson, Sheela; Kirk, Dawn; Wofford, Jeb; Bennett, Rick; Nislow, Keith; Norris, Marian; Hocking, Daniel; Letcher, Benjamin; Roy, Allison
2014-01-01
Headwater stream ecosystems are vulnerable to numerous threats associated with climate and land use change. In the northeastern US, many headwater stream species (e.g., brook trout and stream salamanders) are of special conservation concern and may be vulnerable to climate change influences, such as changes in stream temperature and streamflow. Federal land management agencies (e.g., US Fish and Wildlife Service, National Park Service, USDA Forest Service, Bureau of Land Management and Department of Defense) are required to adopt policies that respond to climate change and may have longer-term institutional support to enforce such policies compared to state, local, non-governmental, or private land managers. However, federal agencies largely make management decisions in regards to headwater stream ecosystems independently. This fragmentation of management resources and responsibilities across the landscape may significantly impede the efficiency and effectiveness of conservation actions, and higher degrees of collaboration may be required to achieve conservation goals. This project seeks to provide an example of cooperative landscape decision-making to address the conservation of headwater stream ecosystems. We identified shared and contrasting objectives of each federal agency and potential collaboration opportunities that may increase efficient and effective management of headwater stream ecosystems in two northeastern US watersheds. These workshops provided useful insights into the adaptive capacity of federal institutions to address threats to headwater stream ecosystems. Our ultimate goal is to provide a decision-making framework and analysis that addresses large-scale conservation threats across multiple stakeholders, as a demonstration of cooperative landscape conservation for aquatic ecosystems. Additionally, we aim to provide new scientific knowledge and a regional perspective to resource managers to help inform local management decisions.
Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard
2010-01-01
This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.
Tracer gauge: An automated dye dilution gauging system for ice‐affected streams
Clow, David W.; Fleming, Andrea C.
2008-01-01
In‐stream flow protection programs require accurate, real‐time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in‐channel ice causes variable backwater conditions and alters the stage‐discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice‐affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root‐mean‐square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in‐stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow‐weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.
Prescribed-fire effects on an aquatic community of a southwest montane grassland system
Caldwell, Colleen A.; Jacobi, Gerald Z.; Anderson, Michael C.; Parmenter, Robert R.; McGann, Jeanine; Gould, William R.; DuBey, Robert; Jacobi, M. Donna
2013-01-01
The use of prescription fire has long been recognized as a reliable management tool to suppress vegetative succession processes and to reduce fuel loading to prevent catastrophic wildfires, but very little attention has been paid to the effects on aquatic systems. A late-fall prescribed burn was implemented to characterize effects on an aquatic community within a montane grassland system in north-central New Mexico. The fire treatment was consistent with protocols of a managed burn except that the fire was allowed to burn through the riparian area to the treatment stream to replicate natural fire behavior. In addition to summer and fall preburn assessment of the treatment and reference stream, we characterized immediate postfire effects (within a week for macroinvertebrates and within 6 months for fish) and seasonal effects over a 2-year period. Responses within the treatment stream were compared with an unburned reference stream adjacent to the prescription burn. During the burn, the diel range in air temperature increased by 5°C while diel range in water temperature did not change. Carbon–nitrogen ratios did not differ between treatment and reference streams, indicating the contribution of ash from the surrounding grassland was negligible. Although total taxa and species richness of aquatic macroinvertebrates were not altered, qualitative indices revealed departure from preburn condition due to loss of sensitive taxa (mayflies [order Ephemeroptera] and stoneflies [order Plecoptera]) and an increase in tolerant taxa (midges [order Chironomidae]) following the burn. Within 1 year of the burn, these attributes returned to preburn conditions. The density and recruitment of adult Brown Trout Salmo trutta did not differ between pre- and postburn collections, nor did fish condition differ. Fire is rarely truly replicated within a given study. Although our study represents one replication, the results will inform managers about the importance in timing (seasonality) of prescription burn and anticipated effects on aquatic communities.
Stream dynamics: An overview for land managers
Burchard H. Heede
1980-01-01
Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.
Regional-scale, fully coupled modelling of stream aquifer interaction in a tropical catchment
NASA Astrophysics Data System (ADS)
Werner, Adrian D.; Gallagher, Mark R.; Weeks, Scott W.
2006-09-01
SummaryThe planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance.
Effects of fire and fuels management on water quality in eastern North America
R. K. Kolka
2012-01-01
Fuels management, especially prescribed fire, can have direct impacts on aquatic resources through deposition of ash to surface waters. On the terrestrial side, fuels management leads to changes in vegetative structure and potentially soil properties that affect ecosystem cycling of water and inorganic and organic constituents. Because surface water systems (streams,...
Insights on the energy-water nexus through modeling of the integrated water cycle
NASA Astrophysics Data System (ADS)
Leung, L. R.; Li, H. Y.; Zhang, X.; Wan, W.; Voisin, N.; Leng, G.
2016-12-01
For sustainable energy planning, understanding the impacts of climate change, land use change, and water management is essential as they all exert notable controls on streamflow and stream temperature that influence energy production. An integrated water model representing river processes, irrigation water use and water management has been developed and coupled to a land surface model to investigate the energy-water nexus. Simulations driven by two climate change projections with the RCP 4.5 and RCP 8.5 emissions scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature. The simulations revealed important impacts of climate change and water management on both floods and droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the climate mitigation (RCP 4.5) and business as usual (RCP 8.5) scenarios that influence streamflow and stream temperature, with important consequences to energy production. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME) to enable investigation of the energy-water nexus in the fully coupled Earth system.
Masoner, Jason R.; Haggard, Brian E.; Rea, Alan
2002-01-01
The U.S.Environmental Protection Agency has developed nutrient criteria using ecoregions to manage and protect rivers and streams in the United States. Individual states and tribes are encouraged by the U.S. Environmental Protection Agency to modify or improve upon the ecoregion approach. The Oklahoma Water Resources Board uses a dichotomous process that stratifies streams using environmental characteristics such as stream order and stream slope. This process is called the Use Support Assessment Protocols, subchapter15. The Use Support Assessment Protocols can be used to identify streams threatened by excessive amounts of nutrients, dependant upon a beneficial use designation for each stream. The Use Support Assessment Protocols, subchapter 15 uses nutrient and environmental characteristic thresholds developed from a study conducted in the Netherlands, but the Oklahoma Water Resources Board wants to modify the thresholds to reflect hydrologic and ecological conditions relevant to Oklahoma streams and rivers. Environmental characteristics thought to affect impairment from nutrient concentrations in Oklahoma streams and rivers were determined for 798 water-quality sites in Oklahoma. Nutrient, chlorophyll, water-properties, and location data were retrieved from the U.S. Environmental Protection Agency STORET database including data from the U.S. Geological Survey, Oklahoma Conservation Commission, and Oklahoma Water Resources Board. Drainage-basin area, stream order, stream slope, and land-use proportions were determined for each site using a Geographic Information System. The methods, procedures, and data sets used to determine the environmental characteristics are described.
NASA Astrophysics Data System (ADS)
Kasprak, A.; Wheaton, J. M.; Bouwes, N.; Weber, N. P.; Trahan, N. C.; Jordan, C. E.
2012-12-01
River managers often seek to understand habitat availability and quality for riverine organisms within the physical template provided by their landscape. Yet the large amount of natural heterogeneity in landscapes gives rise to stream systems which are highly variable over small spatial scales, potentially complicating site selection for surveying aquatic habitat while simultaneously making a simple, wide-reaching management strategy elusive. This is particularly true in the rugged John Day River Basin of northern Oregon, where efforts as part of the Columbia Habitat Monitoring Program to conduct site-based surveys of physical habitat for endangered steelhead salmon (Oncorhynchus mykiss) are underway. As a complete understanding of the type and distribution of habitat available to these fish would require visits to all streams in the basin (impractical due to its large size), here we develop an approach for classifying channel types which combines remote desktop GIS analyses with rapid field-based stream and landscape surveys. At the core of this method, we build off of the River Styles Framework, an open-ended and process-based approach for classifying streams and informing management decisions. This framework is combined with on-the-ground fluvial audits, which aim to quickly and continuously map sediment dynamics and channel behavior along selected channels. Validation of this classification method is completed by on-the-ground stream surveys using a digital iPad platform and by rapid small aircraft overflights to confirm or refine predictions. We further compare this method with existing channel classification approaches for the region (e.g. Beechie, Montgomery and Buffington). The results of this study will help guide both the refinement of site stratification and selection for salmonid habitat monitoring within the basin, and will be vital in designing and prioritizing restoration and management strategies tailored to the distribution of river styles found across the region.
Richard E. Wehnes
1989-01-01
The quality of streams and stream habitat for aquatic life and terrestrial animals in the central hardwood forest can be maintained or enhanced through careful protection, management, and re-establishment of streamside forests.
Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul L.
2016-01-01
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow-regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Beaver, Justin M; BogenII, Paul L.
In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing thesemore » contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.« less
Multiple bio-monitoring system using visible light for electromagnetic-wave free indoor healthcare
NASA Astrophysics Data System (ADS)
An, Jinyoung; Pham, Ngoc Quan; Chung, Wan-Young
2017-12-01
In this paper, a multiple biomedical data transmission system with visible light communication (VLC) is proposed for an electromagnetic-wave-free indoor healthcare. VLC technology has emerged as an alternative solution to radio-frequency (RF) wireless systems, due to its various merits, e.g., ubiquity, power efficiency, no RF radiation, and security. With VLC, critical bio-medical signals, including electrocardiography (ECG), can be transmitted in places where RF radiation is restricted. This potential advantage of VLC could save more lives in emergency situations. A time hopping (TH) scheme is employed to transfer multiple medical-data streams in real time with a simple system design. Multiple data streams are transmitted using identical color LEDs and go into an optical detector. The received multiple data streams are demodulated and rearranged using a TH-based demodulator. The medical data is then monitored and managed to provide the necessary medical care for each patient.
NASA Astrophysics Data System (ADS)
Livers, B.; Wohl, E.
2015-12-01
Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.
NASA Astrophysics Data System (ADS)
Fytilis, N.; Rizzo, D. M.
2012-12-01
Environmental managers are increasingly required to forecast the long-term effects and the resilience or vulnerability of biophysical systems to human-generated stresses. Mitigation strategies for hydrological and environmental systems need to be assessed in the presence of uncertainty. An important aspect of such complex systems is the assessment of variable uncertainty on the model response outputs. We develop a new classification tool that couples a Naïve Bayesian Classifier with a modified Kohonen Self-Organizing Map to tackle this challenge. For proof-of-concept, we use rapid geomorphic and reach-scale habitat assessments data from over 2500 Vermont stream reaches (~1371 stream miles) assessed by the Vermont Agency of Natural Resources (VTANR). In addition, the Vermont Department of Environmental Conservation (VTDEC) estimates stream habitat biodiversity indices (macro-invertebrates and fish) and a variety of water quality data. Our approach fully utilizes the existing VTANR and VTDEC data sets to improve classification of stream-reach habitat and biological integrity. The combined SOM-Naïve Bayesian architecture is sufficiently flexible to allow for continual updates and increased accuracy associated with acquiring new data. The Kohonen Self-Organizing Map (SOM) is an unsupervised artificial neural network that autonomously analyzes properties inherent in a given a set of data. It is typically used to cluster data vectors into similar categories when a priori classes do not exist. The ability of the SOM to convert nonlinear, high dimensional data to some user-defined lower dimension and mine large amounts of data types (i.e., discrete or continuous, biological or geomorphic data) makes it ideal for characterizing the sensitivity of river networks in a variety of contexts. The procedure is data-driven, and therefore does not require the development of site-specific, process-based classification stream models, or sets of if-then-else rules associated with expert systems. This has the potential to save time and resources, while enabling a truly adaptive management approach using existing knowledge (expressed as prior probabilities) and new information (expressed as likelihood functions) to update estimates (i.e., in this case, improved stream classifications expressed as posterior probabilities). The distribution parameters of these posterior probabilities are used to quantify uncertainty associated with environmental data. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of engineering applications. The ability of the new classification neural network to characterize streams with high environmental risk is essential for a proactive adaptive watershed management approach.
NASA Astrophysics Data System (ADS)
Rook, S. P.; Vidon, P.; Walter, M. T.
2011-12-01
The management of riparian buffer strips is often regarded as one of the most economical and sustainable methods of managing non-point source pollution and water quality. However, current riparian management often follows a 'one size fits all' design, which fails to recognize the complexity of the many biogeochemical processes that regulate pollutant transformation and retention in these systems. This study addresses two critical gaps in knowledge: (1) How carbon, nitrogen, phosphorous, and iron cycles interact with one another (rather than individually). (2) How stream channel geometry and evolution regulate these nutrient cycles and greenhouse gas (GHG) dynamics in the near stream zone. This project specifically explores the hydrological and biogeochemical functioning of riparian zones across a gradient of stream meander evolution stages, with the primary goal of understanding and predicting potential interactions between nutrient dynamics in these systems. Key research questions include: (1) How does stream meander curvature affect riparian zone hydrology? (2) How does stream meander curvature influence riparian zone biogeochemistry? (3) What relationships exist among N, P, Fe, and GHG dynamics? We instrumented three riparian sites near Ithaca, NY, with a dense network of wells, piezometers, and static chambers. These sites represent three riparian zones along three evolution stages of stream meanders: an inner meander, a straight stream section, and an outer bend of the stream with an oxbow lake formation. In spring through fall 2011, water samples and gas samples were collected at a tri-weekly bases at each of the three sites. Water samples were analyzed for oxidation-reduction potential, dissolved oxygen, temperature, FeII/FeIII, nutrients (NO3-, NH4+, PO43-) and dissolved organic carbon (DOC). GHG fluxes at the soil-atmosphere interface were measured for N2O, CO2, and CH4 gases. We predict that stream curvature will significantly affect groundwater flow direction in the riparian zones. Owing to more prolonged saturation, we expect that the oxbow setting will exhibit anoxic conditions, and associated biogeochemistry. Finally, we hypothesize clear relationships among N, P, Fe, and GHG dynamics. In areas of significant denitrification, we expect to see an increase in Fe reduction, PO43- release, N2O emission, and CH4 emission, and a decrease in CO2 emission. Quantifying these interactions will enhance our ability to model riparian biogeochemical processes, promote water quality, and comprehend to what extent the promotion of riparian zones for nitrate removal is done at the expense of air quality (with respect to GHG emissions) and/or water quality (with respect to P).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations. That simulant can be used in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. This document describes the method used to formulate a simulant of this LAW Melter Off-Gas Condensate stream, which, after pH adjustment, is the feed to the evaporator in the EMF.« less
Adapting inland fisheries management to a changing climate
Paukert, Craig P.; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.
2016-01-01
Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.
Household hazardous waste management: a review.
Inglezakis, Vassilis J; Moustakas, Konstantinos
2015-03-01
This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hydrologic landscape units and adaptive management of intermountain wetlands
Custer, Stephen G.; Sojda, R.S.
2006-01-01
daptive management is often proposed to assist in the management of national wildlife refuges and allows the exploration of alternatives as well as the addition of ne w knowledge as it becomes available. The hydrological landscape unit can be a good foundation for such efforts. Red Rock Lakes National Wildlife Refuge (NWR) is in an intermountain basin dominated by vertical tectonics in the Northern Rocky Mountains. A geographic information system was used to define the boundaries for the hydrologic landscape units there. Units identified include alluvial fan, interfan, stream alluvi um and basin flat. Management alternatives can be informed by ex amination of processes that occu r on the units. For example, an ancient alluvial fan unit related to Red Rock Creek appear s to be isolated from stream flow today, with recharge dominated by precipitation and bedrock springs; while other alluvial fan units in the area have shallow ground water recharged from mountain streams and precipitation. The scale of hydrologic processes in interfan units differs from that in alluvial fan hydrologic landscape units. These differences are important when the refuge is evaluating habitat management activities. Hydrologic landscape units provide scientific unde rpinnings for the refuge’s comprehensive planning process. New geologic, hydrologic, and biologic knowledge can be integrated into the hydrologic landscape unit definition and improve adaptive management.
F. Worrall; Wayne T. Swank; T. P. Burt
2003-01-01
This study uses time series analysis to examine long-term stream water nitrate concentration records from a pair of forested catchments at the Coweeta Hydrologic Laboratory, North Carolina, USA. Monthly average concentrations were available from 1970 through 1997 for two forested catchments, one of which was clear-felled in 1977 and the other maintained as a control....
Kashuba, Roxolana; McMahon, Gerard; Cuffney, Thomas F.; Qian, Song; Reckhow, Kenneth; Gerritsen, Jeroen; Davies, Susan
2012-01-01
In realization of the aforementioned advantages, a Bayesian network model was constructed to characterize the effect of urban development on aquatic macroinvertebrate stream communities through three simultaneous, interacting ecological pathways affecting stream hydrology, habitat, and water quality across watersheds in the Northeastern United States. This model incorporates both empirical data and expert knowledge to calculate the probabilities of attaining desired aquatic ecosystem conditions under different urban stress levels, environmental conditions, and management options. Ecosystem conditions are characterized in terms of standardized Biological Condition Gradient (BCG) management endpoints. This approach to evaluating urban development-induced perturbations in watersheds integrates statistical and mechanistic perspectives, different information sources, and several ecological processes into a comprehensive description of the system that can be used to support decision making. The completed model can be used to infer which management actions would lead to the highest likelihood of desired BCG tier achievement. For example, if best management practices (BMP) were implemented in a highly urbanized watershed to reduce flashiness to medium levels and specific conductance to low levels, the stream would have a 70-percent chance of achieving BCG Tier 3 or better, relative to a 24-percent achievement likelihood for unmanaged high urban land cover. Results are reported probabilistically to account for modeling uncertainty that is inherent in sources such as natural variability and model simplification error.
Managing and Transforming Waste Streams – A Tool for Communities
The Managing and Transforming Waste Streams Tool features 100 policy and program options communities can pursue to increase rates of recycling, composting, waste reduction, and materials reuse across waste stream generators.
A special planning technique for stream-aquifer systems
Jenkins, C.T.; Taylor, O. James
1974-01-01
The potential effects of water-management plans on stream-aquifer systems in several countries have been simulated using electric-analog or digital-computer models. Many of the electric-analog models require large amounts of hardware preparation for each problem to be solved and some become so bulky that they present serious space and access problems. Digital-computer models require no special hardware preparation but often they require so many repetitive solutions of equations that they result in calculations that are unduly unwieldy and expensive, even on the latest generation of computers. Further, the more detailed digital models require a vast amount of core storage, leaving insufficient storage for evaluation of the many possible schemes of water-management. A concept introduced in 1968 by the senior author of this report offers a solution to these problems. The concept is that the effects on streamflow of ground-water withdrawal or recharge (stress) at any point in such a system can be approximated using two classical equations and a value of time that reflects the integrated effect of the following: irregular impermeable boundaries; stream meanders; aquifer properties and their areal variations; distance of the point from the stream; and imperfect hydraulic connection between the stream and the aquifer. The value of time is called the stream depletion factor (sdf). Results of a relatively few tests on detailed models can be summarized on maps showing lines through points of equal sdf. Sensitivity analyses of models of two large stream-aquifer systems in the State of Colorado show that the sdf technique described in this report provides results within tolerable ranges of error. The sdf technique is extremely versatile, allowing water managers to choose the degree of detail that best suits their needs and available computational hardware. Simple arithmetic, using, for example, only a slide rule and charts or tables of dimensionless values, will be sufficient for many calculations. If a large digital computer is available, detailed description of the system and its stresses will require only a fraction of the core storage, leaving the greater part of the storage available for sophisticated analyses, such as optimization. Once these analyses have been made, the model then is ready to perform its principal task--prediction of streamflow and changes in ground-water storage. In the two systems described in this report, direct diversion from the streams is the principal source of irrigation water, but it is supplemented by numerous wells. The streamflow depends largely on snowmelt. Estimates of both the amount and timing of runoff from snowmelt during the irrigation season are available on a monthly basis during the spring and early summer. These estimates become increasingly accurate as the season progresses, hence frequent changes of stress on the predictive model are necessary. The sdf technique is especially well suited to this purpose, because it is very easy to make such changes, resulting in more up-todate estimates of the availability of streamflow and ground-water storage. These estimates can be made for any time and any location in the system.
PAD_AUDIT -- PAD Auditing Package
NASA Astrophysics Data System (ADS)
Clayton, C. A.
The PAD (Packet Assembler Disassembler) utility is the part of the VAX/VMS Coloured Book Software (CBS) which allows a user to log onto remote computers from a local VAX. Unfortunately, logging into a computer via either the Packet SwitchStream (PSS) or the International Packet SwitchStream (IPSS) costs real money. Some users either do not appreciate this or do not care and have been known to clock up rather large quarterly bills. This software package allows a system manager to determine who has used PAD to call where and (most importantly) how much it has cost. The system manager can then take appropriate action - either charging the individuals, warning them to use the facility with more care or even denying access to a greedy user to one or more sites.
Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat
NASA Astrophysics Data System (ADS)
Jackson, C. R.
2002-12-01
Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships, specifically the role of woody debris in habitat formation, documented for larger streams do not apply to headwater streams. Relatively small wood (diameters between 10 and 40 cm), inorganic material, and organic debris (diameters less than 10 cm) were major step-forming agents while big woody debris pieces (> 40 cm dia.) created less than 10% of steps. Streams in virgin and managed stands did not differ in relative importance of very large woody debris. Due to low fluvial power, pool habitat was rare. These streams featured mostly step-riffle morphology, not step-pool, indicating insufficient flow for pool-scour. Stream power and unit stream power were dominant channel shaping factors.
NASA Astrophysics Data System (ADS)
Karpov, A. V.; Yumagulov, E. Z.
2003-05-01
We have restored and ordered the archive of meteor observations carried out with a meteor radar complex ``KGU-M5'' since 1986. A relational database has been formed under the control of the Database Management System (DBMS) Oracle 8. We also improved and tested a statistical method for studying the fine spatial structure of meteor streams with allowance for the specific features of application of the DBMS. Statistical analysis of the results of observations made it possible to obtain information about the substance distribution in the Quadrantid, Geminid, and Perseid meteor streams.
Urbanization and urban land use leads to degradation of local stream habitat generally termed as ‘urban stream syndrome.’ Best Management Practices (BMPs) are often used in an attempt to mitigate water quality and water quantity degradation in urban streams. Traditional developme...
Laura R. Wear; Michael W. Aust; M. Chad Bolding; Brian D. Strahm; C. Andrew Dolloff
2013-01-01
Temporary skid trail stream crossings have repeatedly been identified as having considerable potential to introduce sediment to streams. Forestry Best Management Practices (BMPs) have proven to be effective for controlling erosion and subsequent sedimentation, yet few studies have quantified sedimentation associated with various levels of BMPs for skidder stream...
Barlow, Paul M.; Leake, Stanley A.
2012-11-02
Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.
[Various aspects of public health system development under market economy].
Polyakov, I V; Uvarov, S A
1995-01-01
Transfer from administrative methods of management to economic relationships in the public health system leads to reevaluation of the regularities in the development of the system of population health protection under conditions of marketing relations. The paper presents the logistic aspects of public health management under new conditions: positive and negative features in the development of medical insurance and offers a concept of introduction of a system of synchronous regulation of material, financial, and information streams in public health.
Dahlström, Niklas; Nilsson, Christer
2004-03-01
Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.
Trophic state, eutrophication and nutrient criteria in streams.
Dodds, Walter K
2007-12-01
Trophic state is the property of energy availability to the food web and defines the foundation of community integrity and ecosystem function. Describing trophic state in streams requires a stoichiometric (nutrient ratio) approach because carbon input rates are linked to nitrogen and phosphorus supply rates. Light determines the source of carbon. Cross system analyses, small experiments and ecosystem level manipulations have recently advanced knowledge about these linkages, but not to the point of building complex predictive models that predict all effects of nutrient pollution. Species diversity could indicate the natural distribution of stream trophic status over evolutionary time scales. Delineation of factors that control trophic state and relationships with biological community properties allows determination of goals for management of stream biotic integrity.
David K. Radabaugh; Hal O. Liechty; James M. Guldin
2004-01-01
Abstract - Ephemeral streams frequently occur in shortleaf pine (Pinus echinata Mill.) hardwood stands that grow on the upper and mid-slopes of the Ouachita Mountains in Arkansas. Stream management zones are established around these ephemeral streams in the Ouachita National Forest to minimize impacts of adjacent forest management...
Forestry best management practices and sediment control at skidder stream crossings
Laura R. Wear; W. Michael Aust; M. Chad Bolding; Brian D. Strahm; Andrew C. Dolloff
2015-01-01
Stream crossings for skid trails have high sediment delivery ratios. Forestry Best Management Practices (BMPs) have proven to be effective for erosion control, but few studies have quantified the impact of various levels of BMPs on sedimentation. In this study, three skid-trail stream-crossing BMP treatments were installed on nine operational stream crossings (three...
Riparian management in forests of the continental eastern United States
Elon S. Verry; James W. Hornbeck; C. Andrew Dolloff
2000-01-01
As we meditate on the management of stream riparian areas, it is clear that the input of "debris" from terrestrial plants falling into streams is one of the most significant processes occurring at the interface of terrestrial and stream ecosystems. Organic matter - leaves. twigs, branches, and whole trees - provides energy, nutrients, and structure to streams...
Gomi, T.; Johnson, A.C.; Deal, R.L.; Hennon, P.E.; Orlikowska, E.H.; Wipfli, M.S.
2006-01-01
Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.) - conifer riparian forests (40 years old) remained in channels and provided sites for sediment and organic matter storage. Despite various alder-conifer mixtures and past harvesting effects, the abundance of large wood, fine wood, and detritus accumulations significantly decreased with increasing channel bank-full width (0.5-3.5 m) along relatively short channel distances (up to 700 m). Changes in wood, detritus, and sediment accumulations together with changes in riparian stand characteristics create spatial and temporal variability of in-channel conditions in headwater systems. A component of alder within young-growth riparian forests may benefit both wood production and biological recovery in disturbed headwater stream channels. ?? 2006 NRC.
It Systems Supporting the Management of Production Capacity
NASA Astrophysics Data System (ADS)
Milewska, Elżbieta
2017-03-01
The paper presents the problem of manufacturing process flexibility in view of a company's material and information flow stream management. The author of the article has described the functions of a production process control system and presented the characteristics of production capacity intensive and extensive reserves. The MRP II/ERP, MES and APS class IT tools supporting the process of production planning, organization and control have also been discussed.
Rowe, David K; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K; Maxted, John; Moore, Stephen
2009-06-01
A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types.
James Glover; James Omernik; Robert Hughes; Glenn Griffith; Marc Weber
2016-01-01
It has long been recognized that conditions at a point on a stream are highly dependent on conditions upgradient within the topographic watershed. The hydrologic unit (HU) system has provided a useful set of nationally consistent, hydrologically based polygons that has allowed for the generalization and tabulation of various conditions within the stream and its valley...
The architecture of the management system of complex steganographic information
NASA Astrophysics Data System (ADS)
Evsutin, O. O.; Meshcheryakov, R. V.; Kozlova, A. S.; Solovyev, T. M.
2017-01-01
The aim of the study is to create a wide area information system that allows one to control processes of generation, embedding, extraction, and detection of steganographic information. In this paper, the following problems are considered: the definition of the system scope and the development of its architecture. For creation of algorithmic maintenance of the system, classic methods of steganography are used to embed information. Methods of mathematical statistics and computational intelligence are used to identify the embedded information. The main result of the paper is the development of the architecture of the management system of complex steganographic information. The suggested architecture utilizes cloud technology in order to provide service using the web-service via the Internet. It is meant to provide streams of multimedia data processing that are streams with many sources of different types. The information system, built in accordance with the proposed architecture, will be used in the following areas: hidden transfer of documents protected by medical secrecy in telemedicine systems; copyright protection of online content in public networks; prevention of information leakage caused by insiders.
Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz
2014-01-01
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.
Iñiguez–Armijos, Carlos; Leiva, Adrián; Frede, Hans–Georg; Hampel, Henrietta; Breuer, Lutz
2014-01-01
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments. PMID:25147941
Riparian Restoration and Watershed Management: Some Examples from the California Coast
Laurel Marcus
1989-01-01
Managing and restoring watersheds often involves recreation of riparian habitats. The natural functions of riparian forest natural to slow flood water, stabilize stream banks and trap sediments can be used in restoring disturbed creek systems. The State Coastal Conservancy's wetland enhancement program is preserving wetlands on the California coast through repair...
Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring
NASA Astrophysics Data System (ADS)
Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin
2017-04-01
Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.
Raymond, K.L.; Vondracek, B.
2011-01-01
Cattle grazing in riparian areas can reduce water quality, alter stream channel characteristics, and alter fish and macroinvertebrate assemblage structure. The U.S. Department of Agriculture, Natural Resources Conservation Services has recommended Rotational Grazing (RG) as an alternative management method on livestock and dairy operations to protect riparian areas and water quality. We evaluated 13 stream channel characteristics, benthic macroinvertebrate larvae (BML), and chironomid pupal exuviae (CPE) from 18 sites in the Upper Midwest of the United States in relation to RG and conventional grazing (CG). A Biotic Composite Score comprised of several macroinvertebrate metrics was developed for both the BML assemblage and the CPE assemblage. Multi-Response Permutation Procedures (MRPP) indicated a significant difference in stream channel characteristics between RG and CG. Nonmetric Multidimensional Scaling indicated that RG sites were associated with more stable stream banks, higher quality aquatic habitat, lower soil compaction, and larger particles in the streambed. However, neither MRPP nor Mann-Whitney U tests demonstrated a difference in Biotic Composite Scores for BML or CPE along RG and CG sites. The BML and CPE metrics were significantly correlated, indicating that they were likely responding to similar variables among the study sites. Although stream channel characteristics appeared to respond to grazing management, BML and CPE may have responded to land use throughout the watershed, as well as local land use. ?? 2011 Springer Science+Business Media B.V. (outside the USA).
Applications of turbidity monitoring to forest management in California.
Harris, Richard R; Sullivan, Kathleen; Cafferata, Peter H; Munn, John R; Faucher, Kevin M
2007-09-01
Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.
J. R. Svec; R. K. Kolka; J. W. Stringer
2003-01-01
In Kentucky stream classification is used to determine which forestry best management practice (BMP) to apply in riparian zones. Kentucky defines stream classes as follows (Stringer and others 1998): a) perennial streams that hold water throughout the year, b) intermittent streams that hold water during wet portions of the year, and c) ephemeral channels that hold...
Saving streams at their source: managing for amphibian diversity in headwater forests.
Jonathan Thompson
2008-01-01
Although stream protection has become a central tenet of forest management in the Pacific Northwest, it is often only the larger, fish-bearing streams that are afforded the strongest safeguards. Yet, even without fish, headwater streams and riparian areas are hotspots of biodiversity, and they are the source of much of the water, gravel, and nutrients that subsidize...
SOA approach to battle command: simulation interoperability
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.
2010-04-01
NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.
Effects of groundwater pumping in the lower Apalachicola-Chattahoochee-Flint River basin
Jones, L. Elliott
2012-01-01
USGS developed a groundwater-flow model of the Upper Floridan aquifer in lower Apalachicola-Chattahoochee-Flint River basin in southwest Georgia and adjacent parts of Alabama and Florida to determine the effect of agricultural groundwater pumping on aquifer/stream flow within the basin. Aquifer/stream flow is the sum of groundwater outflow to and inflow from streams, and is an important consideration for water managers in the development of water-allocation and operating plans. Specifically, the model was used to evaluate how agricultural pumping relates to 7Q10 low streamflow, a statistical low flow indicative of drought conditions that would occur during seven consecutive days, on average, once every 10 years. Argus ONETM, a software package that combines a geographic information system (GIS) and numerical modeling in an Open Numerical Environment, facilitated the design of a detailed finite-element mesh to represent the complex geometry of the stream system in the lower basin as a groundwater-model boundary. To determine the effects on aquifer/stream flow of pumping at different locations within the model area, a pumping rate equivalent to a typical center-pivot irrigation system (50,000 ft3/d) was applied individually at each of the 18,951 model nodes in repeated steady-state simulations that were compared to a base case representing drought conditions during October 1999. Effects of nodal pumping on aquifer/stream flow and other boundary flows, as compared with the base-case simulation, were computed and stored in a response matrix. Queries to the response matrix were designed to determine the sensitivity of targeted stream reaches to agricultural pumping. Argus ONE enabled creation of contour plots of query results to illustrate the spatial variation across the model area of simulated aquifer/streamflow reductions, expressed as a percentage of the long-term 7Q10 low streamflow at key USGS gaging stations in the basin. These results would enable water managers to assess the relative impact of agricultural pumping and drought conditions on streamflow throughout the basin, and to develop mitigation strategies to conserve water resources and preserve aquatic habitat.
NASA Astrophysics Data System (ADS)
Rumph Frederiksen, R.; Rasmussen, K. R.; Christensen, S.
2015-12-01
Qualifying and quantifying water, nutrient and contaminant exchange at the groundwater-surface water interface are becoming increasingly important for water resources management. The objectives of this study are to characterise an alluvial stream using geophysics in addition to traditional geological and geomorphological data and quantify the groundwater seepage to the stream on point-to-reach scale using both hydraulic and tracer methods. We mapped the very shallow subsurface along an alluvial stream using a GCM system (DUALEM421S, an electromagnetic system that can be operated behind a boat or towed behind a motorized vehicle) as well as using geological logs from a large number of old wells. Furthermore we made geomorphological observations through digital maps (old topographical maps and aerial photos) and field observations. We measured stream discharge (quasi-) simultaneously at several positions along the stream using both an Ott-C31 propeller instrument and an Acoustic Doppler Current Profiler instrument. The measurements were made during dry summer periods when baseflow is expected to be the dominating contribution to streamflow. Preliminary findings show that the GCM system reveals small-scale structures not seen with other data types. Furthermore, based on the GCM results and stream discharge results we have identified gaining, losing and zero exchange sections of the stream. During late summer 2015 we will collect additional hydrological data in order to support or modify our preliminary findings. To further investigate the spatial and temporal variations of the groundwater-surface water interactions along the stream we will measure groundwater seepage to the stream using: seepage meter (point-scale) DTS (reach-scale) temperature stick measurements (point-in-space-and-time-scale) temperature loggers installed in the streambed (month-scale) The measurement sites are chosen based on our geophysical, geological, and geomorphological mapping as well as our stream discharge measurements.
Instream investigations in the Beaver Creek Watershed in West Tennessee, 1991-95
Byl, T.D.; Carney, K.A.
1996-01-01
The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Agriculture, began a long-term scientific investigation in 1989 to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. In 1993 as a part of this study, the USGS, in cooperation with the Natural Resources Conservation Service, Shelby County Soil Conservation District, and the Tennessee Soybean Promotion Board, began an evaluation of the physical, chemical, biological and hydrological factors that affect water quality in streams and wetlands, and instream resource-management systems to treat agricultural nonpoint-source runoff and improve water quality. The purpose of this report is to present the results of three studies of stream and wetland investigations and a study on the transport of aldicarb from an agricultural field in the Beaver Creek watershed. A natural bottomland hardwood wetland and an artificially constructed wetland were evaluated as instream resource-management systems. These two studies showed that wetlands are an effective way to improve the quality of agricultural nonpoint-source runoff. The wetlands reduced concentrations and loads of suspended sediments, nutrients, and pesticides in the streams. A third paper documents the influence of riparian vegetation on the biological structure and water quality of a small stream draining an agricultural field. A comparison of the upper reach lined with herbaceous plants and the lower reach with mature woody vegetation showed a more stable biological community structure and Water- quality characteristics in the woody reach than in the herbaceous reach. The water-quality characteristics monitored were pH, temperature, dissolved oxygen, and specific conductance. The herbaceous reach had a greater diversity and abundance of organisms during spring and early summer, but the abundance dropped by approximately 85 percent during late summer. A fourth study describes the transport of aldicarb and its metabolites--aldicarb sulfoxide and aldicarb sulfone-in runoff at a small stream draining a cotton field. During 1991 to 1995, aldicarb and its metabolites were detected in runoff events. The highest concentrations occurred when aldicarb was applied to the field just hours before a rain storm. Aldicarb was not detectable in runoff a few weeks after application. The metabolites of aldicarb were detectable for 76 days after application. These studies demonstrate streambank vegetation and wetlands have a significant influence on stream water quality. The importance of weather conditions to herbicide application and runoff also is evident. This information can be used by resource managers to sustain and improve our Nation's streams for future generations.
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine A.; Donner, Deahn M.; Beck, Albert J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs. PMID:28081271
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.
Ribic, Christine A; Donner, Deahn M; Beck, Albert J; Rugg, David J; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Beaver colony density trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
ERIC Educational Resources Information Center
Anderson, Talea
2015-01-01
In 2013-2014, Brooks Library at Central Washington University (CWU) launched library content in three systems: a digital asset-management system, an institutional repository (IR), and a web-based discovery layer. In early 2014, the archives at the library began to use these systems to disseminate media recently digitized from legacy formats. As…
NASA Astrophysics Data System (ADS)
Rizzo, D. M.; Fytilis, N.; Stevens, L.
2012-12-01
Environmental managers are increasingly required to monitor and forecast long-term effects and vulnerability of biophysical systems to human-generated stresses. Ideally, a study involving both physical and biological assessments conducted concurrently (in space and time) could provide a better understanding of the mechanisms and complex relationships. However, costs and resources associated with monitoring the complex linkages between the physical, geomorphic and habitat conditions and the biological integrity of stream reaches are prohibitive. Researchers have used classification techniques to place individual streams and rivers into a broader spatial context (hydrologic or health condition). Such efforts require environmental managers to gather multiple forms of information - quantitative, qualitative and subjective. We research and develop a novel classification tool that combines self-organizing maps with a Naïve Bayesian classifier to direct resources to stream reaches most in need. The Vermont Agency of Natural Resources has developed and adopted protocols for physical stream geomorphic and habitat assessments throughout the state of Vermont. Separate from these assessments, the Vermont Department of Environmental Conservation monitors the biological communities and the water quality in streams. Our initial hypothesis is that the geomorphic reach assessments and water quality data may be leveraged to reduce error and uncertainty associated with predictions of biological integrity and stream health. We test our hypothesis using over 2500 Vermont stream reaches (~1371 stream miles) assessed by the two agencies. In the development of this work, we combine a Naïve Bayesian classifier with a modified Kohonen Self-Organizing Map (SOM). The SOM is an unsupervised artificial neural network that autonomously analyzes inherent dataset properties using input data only. It is typically used to cluster data into similar categories when a priori classes do not exist. The incorporation of a Bayesian classifier allows one to explicitly incorporate existing knowledge and expert opinion into the data analysis. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of proactive adaptive watershed management applications.
Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics
NASA Astrophysics Data System (ADS)
Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.
2015-12-01
Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in NetCDF format has been implemented and will be demonstrated at AGU.
An industrial ecology approach to municipal solid waste ...
Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.
A streaming-based solution for remote visualization of 3D graphics on mobile devices.
Lamberti, Fabrizio; Sanna, Andrea
2007-01-01
Mobile devices such as Personal Digital Assistants, Tablet PCs, and cellular phones have greatly enhanced user capability to connect to remote resources. Although a large set of applications are now available bridging the gap between desktop and mobile devices, visualization of complex 3D models is still a task hard to accomplish without specialized hardware. This paper proposes a system where a cluster of PCs, equipped with accelerated graphics cards managed by the Chromium software, is able to handle remote visualization sessions based on MPEG video streaming involving complex 3D models. The proposed framework allows mobile devices such as smart phones, Personal Digital Assistants (PDAs), and Tablet PCs to visualize objects consisting of millions of textured polygons and voxels at a frame rate of 30 fps or more depending on hardware resources at the server side and on multimedia capabilities at the client side. The server is able to concurrently manage multiple clients computing a video stream for each one; resolution and quality of each stream is tailored according to screen resolution and bandwidth of the client. The paper investigates in depth issues related to latency time, bit rate and quality of the generated stream, screen resolutions, as well as frames per second displayed.
Bisinger, J J; Russell, J R; Morrical, D G; Isenhart, T M
2014-08-01
For 2 grazing seasons, effects of pasture size, stream access, and off-stream water on cow distribution relative to a stream were evaluated in six 12.1-ha cool-season grass pastures. Two pasture sizes (small [4.0 ha] and large [12.1 ha]) with 3 management treatments (unrestricted stream access without off-stream water [U], unrestricted stream access with off-stream water [UW], and stream access restricted to a stabilized stream crossing [R]) were alternated between pasture sizes every 2 wk for 5 consecutive 4-wk intervals in each grazing season. Small and large pastures were stocked with 5 and 15 August-calving cows from mid May through mid October. At 10-min intervals, cow location was determined with Global Positioning System collars fitted on 2 to 3 cows in each pasture and identified when observed in the stream (0-10 m from the stream) or riparian (0-33 m from the stream) zones and ambient temperature was recorded with on-site weather stations. Over all intervals, cows were observed more (P ≤ 0.01) frequently in the stream and riparian zones of small than large pastures regardless of management treatment. Cows in R pastures had 24 and 8% less (P < 0.01) observations in the stream and riparian zones than U or UW pastures regardless of pasture size. Off-stream water had little effect on the presence of cows in or near pasture streams regardless of pasture size. In 2011, the probability of cow presence in the stream and riparian zones increased at greater (P < 0.04) rates as ambient temperature increased in U and UW pastures than in 2010. As ambient temperature increased, the probability of cow presence in the stream and riparian zones increased at greater (P < 0.01) rates in small than large pastures. Across pasture sizes, the probability of cow presence in the stream and riparian zone increased less (P < 0.01) with increasing ambient temperatures in R than U and UW pastures. Rates of increase in the probability of cow presence in shade (within 10 m of tree drip lines) in the total pasture with increasing temperatures did not differ between treatments. However, probability of cow presence in riparian shade increased at greater (P < 0.01) rates in small than large pastures. Pasture size was a major factor affecting congregation of cows in or near pasture streams with unrestricted access.
StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.
Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei
2017-10-18
Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.
NASA Astrophysics Data System (ADS)
Kuwayama, Y.; Brozovic, N.
2012-12-01
Groundwater pumping from aquifers can reduce the flow of surface water in nearby streams through a process known as stream depletion. In the United States, recent awareness of this externality has led to intra- and inter-state conflict and rapidly-changing water management policies and institutions. A factor that complicates the design of groundwater management policies to protect streams is the spatial heterogeneity of the stream depletion externality; the marginal damage of groundwater use on stream flows depends crucially on the location of pumping relative to streams. Under these circumstances, economic theory predicts that spatially differentiated policies can achieve an aggregate reduction in stream depletion cost effectively. However, whether spatially differentiated policies offer significant abatement cost savings and environmental improvements over simpler, alternative policies is an empirical question. In this paper, we analyze whether adopting a spatially differentiated groundwater permit system can lead to significant savings in compliance costs while meeting targets on stream protection. Using a population data set of active groundwater wells in the Nebraska portion of the Republican River Basin, we implement an optimization model of each well owner's crop choice, land use, and irrigation decisions to determine the distribution of regulatory costs. We model the externality of pumping on streams by employing an analytical solution from the hydrology literature that determines reductions in stream flow caused by groundwater pumping over space and time. The economic and hydrologic model components are then combined into one optimization framework, which allows us to measure farmer abatement costs and stream flow benefits under a constrained optimal market that features spatially differentiated, tradable groundwater permits. We compare this outcome to the efficiency of alternative second-best policies, including spatially uniform permit markets and pumping restrictions based on geographic zones. Our analysis considers static policies for which abatement is fixed over time, as well as dynamic policies that allow abatement to vary over time and future compliance costs to be subject to a discount rate. We find that if current levels of stream flow in the Republican River Basin are held fixed, regulators can generate most of the potential abatement cost savings by establishing a one-to-one tradable permit system that does not account for spatial heterogeneity. We obtain this surprising result because the agronomic and climatic parameters in our data set that determine farmer abatement costs are spatially correlated with hydrologic parameters that determine the marginal damage of groundwater use on streams. However, we also find that if future legal or ecological circumstances require regulators to increase significantly the protection of streams from current levels, spatially differentiated policies will generate sizable cost savings compared to policies that ignore spatial heterogeneity.
Estimation of potential maximum biomass of trout in Wyoming streams to assist management decisions
Hubert, W.A.; Marwitz, T.D.; Gerow, K.G.; Binns, N.A.; Wiley, R.W.
1996-01-01
Fishery managers can benefit from knowledge of the potential maximum biomass (PMB) of trout in streams when making decisions on the allocation of resources to improve fisheries. Resources are most likely to he expended on streams with high PMB and with large differences between PMB and currently measured biomass. We developed and tested a model that uses four easily measured habitat variables to estimate PMB (upper 90th percentile of predicted mean bid mass) of trout (Oncorhynchus spp., Salmo trutta, and Salvelinus fontinalis) in Wyoming streams. The habitat variables were proportion of cover, elevation, wetted width, and channel gradient. The PMB model was constructed from data on 166 stream reaches throughout Wyoming and validated on an independent data set of 50 stream reaches. Prediction of PMB in combination with estimation of current biomass and information on habitat quality can provide managers with insight into the extent to which management actions may enhance trout biomass.
Developing recommendations to improve the quality of diabetes care in Ireland: a policy analysis.
Mc Hugh, Sheena M; Perry, Ivan J; Bradley, Colin; Brugha, Ruairí
2014-09-18
In 2006, the Health Service Executive (HSE) in Ireland established an Expert Advisory Group (EAG) for Diabetes, to act as its main source of operational policy and strategic advice for this chronic condition. The process was heralded as the starting point for the development of formal chronic disease management programmes. Although recommendations were published in 2008, implementation did not proceed as expected. Our aim was to examine the development of recommendations by the EAG as an instrumental case study of the policy formulation process, in the context of a health system undergoing organisational and financial upheaval. This study uses Kingdon's Multiple Streams Theory to examine the evolution of the EAG recommendations. Semi-structured interviews were conducted with a purposive sample of 15 stakeholders from the advisory group. Interview data were supplemented with documentary analysis of published and unpublished documents. Thematic analysis was guided by the propositions of the Kingdon model. In the problem stream, the prioritisation of diabetes within the policy arena was a gradual process resulting from an accumulation of evidence, international comparison, and experience. The policy stream was bolstered by group consensus rather than complete agreement on the best way to manage the condition. The EAG assumed the politics stream was also on course to converge with the other streams, as the group was established by the HSE, which had the remit for policy implementation. However, the politics stream did not converge due to waning support from health service management and changes to the organisational structure and financial capacity of the health system. These changes trumped the EAG process and the policy window remained closed, stalling implementation. Our results reflect the dynamic nature of the policy process and the importance of timing. The results highlight the limits of rational policy making in the face of organisational and fiscal upheaval. Diabetes care is coming on to the agenda again in Ireland under the National Clinical Care Programme. This may represent the opening of a new policy window for diabetes services, the challenge will be maintaining momentum and interest in the absence of dedicated resources.
Principles for urban stormwater management to protect stream ecosystems
Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela
2016-01-01
Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly insurmountable historical constraints, which guarantee future, ongoing degradation.
The watershed-riparian connection: A recent concern?
Warren Clary; Larry Schmidt; Leonard DeBano
2000-01-01
Management impacts on a watershed can cause a variety of complex responses by the encompassed riparian-stream system. Information about these responses will help land managers select practices that provide the riparian area with the best chance for future health and stability. Since we now recognize that people have been impacting riparian areas for a long time through...
Predicting forest road surface erosion and storm runoff from high-elevation sites
J. M. Grace III
2017-01-01
Forest roads are a concern in management because they represent areas of elevated risks associated with soil erosion and storm runoff connectivity to stream systems. Storm runoff emanating from forest roads and their connectivity to downslope resources can be influenced by a myriad of factors, including storm characteristics, management practices, and the interaction...
A Conceptual Model For Effluent-Dependent Riverine Environments
NASA Astrophysics Data System (ADS)
Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.
2001-12-01
The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We structured the conceptual model around accepted riverine ecological models but with important departures signaling the unique characteristics of EDW communities. In many cases, in-stream habitat values were naturally limited by substrate, flow regimes, or other pre-discharge conditions. Our model is designed to give terrestrial habitat equal footing with in-stream resources in ecological assessment techniques. In the arid West, where in-stream water resources are becoming increasingly limited, EDWs offer important refugia and corridors for neotropical migratory birds and other habitat-limited wildlife species. These beneficial uses require different hydrological tools than in-stream systems for assessing habitat health.
EPA’s Experimental Stream Facility: Design and Research Supporting Watershed Management
The EPA’s Experimental Stream Facility (ESF) represents an important tool in research that is underway to further understanding of the relative importance of stream ecosystems and the services they provide for effective watershed management. The ESF is operated under the goal of ...
NASA Astrophysics Data System (ADS)
Pennino, M. J.; Kaushal, S. S.; Mayer, P. M.; Utz, R. M.; Cooper, C. A.
2015-12-01
An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d-1) compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d-1) draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d-1). Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 g ha-1 yr-1) were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05) and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow), similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped infrastructure. Urban groundwater contamination was also suggested by additional tracer measurements including fluoride (added to drinking water) and iodide (contained in dietary salt). Our results suggest that integrating stream restoration with restoration of aging sanitary infrastructure can be critical to more effectively minimize watershed nutrient export. Given that both stream restoration and sanitary pipe repairs both involve extensive channel manipulation, they can be considered simultaneously in management strategies. In addition, ground water can be a major source of nutrient fluxes in urban watersheds, which has been less considered compared with upland sources and storm drains. Goundwater sources, fluxes, and flowpath should also be targeted in efforts to improve stream restoration strategies and prioritize hydrologic "hot spots" along watersheds where stream restoration is most likely to succeed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... its Electronic Document Management System (EDOCS): http://hraunfoss.fcc.gov/edocs_public/SilverStream... Communications Commission. ACTION: Notice. SUMMARY: In this document, comment is sought on a December 17, 2009...'s Electronic Comment Filing System (ECFS), (2) the Federal Government's eRulemaking Portal, or (3...
The Stream-Catchment (StreamCat) and Lake-Catchment ...
Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate
NASA Astrophysics Data System (ADS)
Pucci, Amleto A.; Pope, Daryll A.
1995-05-01
Stream flow in the Coastal Plain of New Jersey is primarily controlled by ground-water discharge. Ground-water flow in a 400 square mile area (1035 km 2) of the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey was simulated to examine development effects on water resources. Simulations showed that historical development caused significant capture of regional ground-water discharge to streams and wetlands. The Cretaceous PRMA primarily is composed of fine to coarse sand, clays and silts which form the Upper and Middle aquifers and their confining units. The aquifer outcrops are the principal areas of recharge and discharge for the regional flow system and have many traversing streams and surface-water bodies. A quasi-three-dimensional numerical model that incorporated ground-water/surface-water interactions and boundary flows from a larger regional model was used to represent the PRMA. To evaluate the influence of ground-water development on interactions in different areas, hydrogeologically similar and contiguous model stream cells were aggregated as 'stream zones'. The model representation of surface-water and ground-water interaction was limited in the areas of confining unit outcrops and because of this, simulated ground-water discharge could not be directly compared with base flow. Significant differences in simulated ground-water and surface-water interactions between the predevelopment and developed system, include; (1) redistribution of recharge and discharge areas; (2) reduced ground-water discharge to streams. In predevelopment, the primary discharge for the Upper and Middle aquifers is to low-lying streams and wetlands; in the developed system, the primary discharge is to ground-water withdrawals. Development reduces simulated ground-water discharge to streams in the Upper Aquifer from 61.4 to 10% of the Upper Aquifer hydrologic budget (28.9%, if impounded stream flow is included). Ground-water discharge to streams in the Middle Aquifer decreases from 80.0 to 22% of the Middle Aquifer hydrologic budget. The utility of assessing ground-water/surface-water interaction in a regional hydrogeologic system by simulation responses to development is demonstrated and which can compensate for lack of long-term stream-gaging data in determining management decisions.
About the Managing and Transforming Waste Streams Tool
The Managing and Transforming Waste Streams Tool was developed by a team of zero waste consultants and solid waste program managers making informed observations from hands-on work in communities, with contributions from EPA.
Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.
Four, Brian; Arce, Evelyne; Danger, Michaël; Gaillard, Juliette; Thomas, Marielle; Banas, Damien
2017-02-01
Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between autochthonous and allochthonous OM) that control ecosystem functioning in different contexts in order to optimize barrage fishpond management.
Modeling ecohydrological impacts of land management and water use in the Silver Creek basin, Idaho
NASA Astrophysics Data System (ADS)
Loinaz, Maria C.; Gross, Dayna; Unnasch, Robert; Butts, Michael; Bauer-Gottwein, Peter
2014-03-01
A number of anthropogenic stressors, including land use change and intensive water use, have caused stream habitat deterioration in arid and semiarid climates throughout the western U.S. These often contribute to high stream temperatures, a widespread water quality problem. Stream temperature is an important indicator of stream ecosystem health and is affected by catchment-scale climate and hydrological processes, morphology, and riparian vegetation. To properly manage affected systems and achieve ecosystem sustainability, it is important to understand the relative impact of these factors. In this study, we predict relative impacts of different stressors using an integrated catchment-scale ecohydrological model that simulates hydrological processes, stream temperature, and fish growth. This type of model offers a suitable measure of ecosystem services because it provides information about the reproductive capability of fish under different conditions. We applied the model to Silver Creek, Idaho, a stream highly valued for its world-renowned trout fishery. The simulations indicated that intensive water use by agriculture and climate change are both major contributors to habitat degradation in the study area. Agricultural practices that increase water use efficiency and mitigate drainage runoff are feasible and can have positive impacts on the ecosystem. All of the mitigation strategies simulated reduced stream temperatures to varying degrees; however, not all resulted in increases in fish growth. The results indicate that temperature dynamics, rather than point statistics, determine optimal growth conditions for fish. Temperature dynamics are influenced by surface water-groundwater interactions. Combined restoration strategies that can achieve ecosystem stability under climate change should be further explored.
We compared stream channel structure (width, depth, substrate composition) and riparian canopy with transient storage and nutrient uptake in 32 streams draining old-growth and managed watersheds in the Appalachian Mountains (North Carolina), Ouachita Mountains (Arkansas), Cascade...
Justin M. Louen; Christopher G. Surfleet
2017-01-01
Stream temperature impacts have resulted in increased restrictions on land management, such as timber harvest and riparian restoration, creating considerable uncertainty for future planning and management of redwood (Sequoia sempervirens (D.Don) Endl.) forestlands. Challenges remain in the assessment of downstream cumulative stream...
Applying four principles of headwater system aquatic biology to forest management
Robert J. Danehy; Sherri L. Johnson
2013-01-01
Headwater systems, including the channel and the adjacent riparian forest, are a dominant landscape feature in forested watersheds, draining most of the watershed area, and comprising the majority of channel length in drainage networks. Being at the upper extent of watersheds, these systems are smaller and steeper than large streams, and create microhabitats that...
Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew
2012-01-01
This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.
Habitat associations of age-0 cutthroat trout in a spring stream improved for adult salmonids
Hubert, W.A.; Joyce, M.P.
2005-01-01
Native cutthroat trout (Oncorhynchus clarki) in the Snake River watershed use streams formed by large springs for spawning and nursery habitat. Several spring streams have been modified to enhance abundance of adult salmonids, but the habitat associations of age-0 cutthroat trout in these systems are undescribed. We assessed the frequency of collection of age-0 cutthroat trout in riffles, riffle margins, pool margins, and backwaters from late June to the middle of August 2000 in a spring stream with such modifications. The proportion of sites in which age-0 cutthroat trout were collected increased up to the middle of July and then decreased. We found substantially lower frequencies of collection of age-0 cutthroat trout in riffles compared to the three stream-margin habitat types. Age-0 cutthroat trout appeared to select shallow, low-velocity, stream-margin habitat with cover that provided protection from piscivorous adult salmonids and avian predators. Our observations suggest that modification of spring streams for production of cutthroat trout should include efforts to manage stream margins so they provide cover in the form of aquatic macrophytes or overhanging vegetation for age-0 fish.
Remote Sensing Applications to Water Quality Management in Florida
Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...
Smith, Douglas G.; Ferrell, G.M.; Harned, Douglas A.; Cuffney, Thomas F.
2011-01-01
The effects of agricultural best management practices and in-stream restoration on suspended-sediment concentrations, stream habitat, and benthic macroinvertebrate assemblages were examined in a comparative study of three small, rural stream basins in the Piedmont and Blue Ridge Physiographic Provinces of North Carolina and Virginia between 2004 and 2007. The study was designed to assess changes in stream quality associated with stream-improvement efforts at two sites in comparison to a control site (Hogan Creek), for which no improvements were planned. In the drainage basin of one of the stream-improvement sites (Bull Creek), several agricultural best management practices, primarily designed to limit cattle access to streams, were implemented during this study. In the drainage basin of the second stream-improvement site (Pauls Creek), a 1,600-foot reach of the stream channel was restored and several agricultural best management practices were implemented. Streamflow conditions in the vicinity of the study area were similar to or less than the long-term annual mean streamflows during the study. Precipitation during the study period also was less than normal, and the geographic distribution of precipitation indicated drier conditions in the southern part of the study area than in the northern part. Dry conditions during much of the study limited opportunities for acquiring high-flow sediment samples and streamflow measurements. Suspended-sediment yields for the three basins were compared to yield estimates for streams in the southeastern United States. Concentrations of suspended sediment and nutrients in samples from Bull Creek, the site where best management practices were implemented, were high compared to the other two sites. No statistically significant change in suspended-sediment concentrations occurred at the Bull Creek site following implementation of best management practices. However, data collected before and after channel stabilization at the Pauls Creek site indicated a statistically significant (p<0.05) decrease in suspended-sediment discharge following in-stream restoration. Stream habitat characteristics were similar at the Bull Creek and Hogan Creek reaches. However, the Pauls Creek reach was distinguished from the other two sites by a lack of pools, greater bankfull widths, greater streamflow and velocity, and larger basin size. Historical changes in the stream channel in the vicinity of the Pauls Creek streamgage are evident in aerial photographs dating from 1936 to 2005 and could have contributed to stream-channel instability. The duration of this study likely was inadequate for detecting changes in stream habitat characteristics. Benthic macroinvertebrate assemblages differed by site and changed during the course of the study. Bull Creek, the best management practices site, stood out as the site having the poorest overall conditions and the greatest improvement in benthic macroinvertebrate communities during the study period. Richness and diversity metrics indicated that benthic macroinvertebrate community conditions at the Hogan Creek and Pauls Creek sites declined during the study, although the status was excellent based on the North Carolina Index of Biotic Integrity. Experiences encountered during this study exemplify the difficulties of attempting to assess the short-term effects of stream-improvement efforts on a watershed scale and, in particular, the difficulty of finding similar basins for a comparative study. Data interpretation was complicated by dry climatic conditions and unanticipated land disturbances that occurred during the study in each of the three study basins. For example, agricultural best management practices were implemented in the drainage basin of the control site prior to and during the study. An impoundment on Bull Creek upstream from the streamgaging station probably influenced water-quality conditions and streamflow. Road construction in the vicinity of the Pauls Creek site potentially masked changes related to stream-improvement efforts. In addition, stream-improvement activities occurred in each of the three study basins over a period of several years prior to and during the study so that there were no discrete before and after periods available for meaningful comparisons. Historical and current land-use activities in each of the three study basins likely affected observed stream conditions. The duration of this study probably was insufficient to detect changes associated with agricultural best management practices and stream-channel restoration.
Keeton, William S; Kraft, Clifford E; Warren, Dana R
2007-04-01
Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in-stream habitat features that have not been widely recognized in eastern North America, representing a potential benefit from late-successional riparian forest management and conservation. Riparian management practices (including buffer delineation and restorative silvicultural approaches) that emphasize development and maintenance of late-successional characteristics are recommended where the associated in-stream effects are desired.
NASA Astrophysics Data System (ADS)
Hall, S. J.; Hale, R. L.; Baker, M. A.; Bowling, D. R.; Ehleringer, J. R.
2014-12-01
Urban and suburban streams typically receive anthropogenic nitrogen (N) from multiple sources, and their identification and partitioning is a prerequisite for effective water quality management. However, stream N fluxes and sources are often highly variable, limiting the utility of water samples for source identification. Nitrate in perennial streams can provide an important N source for riparian vegetation in semi-arid environments. Thus, riparian plant tissue may integrate the stable isotope composition (δ15N) of stream nitrate over longer timescales and assist in source identification. Here, we tested whether δ15N of riparian plant leaves could provide an effective indicator of spatial variation in N sources across land use gradients spanning wildland to urban ecosystems in Salt Lake City, Utah, and the surrounding Wasatch Range Megapolitan Area. We found that leaf δ15N varied systematically within and among eight streams and rivers (n = 378 leaf samples) consistent with spatial land use variations. Plants from a suburban stream adjacent to homes with septic systems (δ15N = 5.1‰) were highly enriched relative to similar species from an adjacent undeveloped stream (δ15N = -0.7 ‰), suggesting an important contribution of enriched human fecal N to the suburban stream. Plants from a montane stream in a largely undeveloped recreational canyon that permitted off-leash dogs (δ15N = 1.8 ‰) were enriched relative to an adjacent canyon with similar land use that strictly prohibited dogs but had comparable vehicle traffic (δ15N = -0.7 ‰), suggesting the contribution of dog waste to stream N. Plants from urban stream reaches were enriched by 1.3 - 2.8 ‰ relative to upstream wildland reaches, and δ15N increased by 0.2 ‰ per km in the urban streams. Mechanisms leading to this urban enrichment could include leaky municipal sewers, atmospheric N deposition, and/or increased rates of N cycling and gaseous losses. Overall, our results demonstrate the potential utility of riparian plant N isotopes as a simple diagnostic of N source inputs to inform watershed management.
Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.
2014-01-01
Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We found that riparian restoration could prevent the extirpation of Chinook salmon from the more altered stream, and could also restrict bass from occupying the upper 31 km of salmon rearing habitat. The proposed methodology and model predictions are critical for prioritizing climate-change adaptation strategies before salmonids are exposed to both warmer water and greater predation risk by non-native species.
Lawrence, David J; Stewart-Koster, Ben; Olden, Julian D; Ruesch, Aaron S; Torgersen, Christian E; Lawler, Joshua J; Butcher, Don P; Crown, Julia K
2014-06-01
Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use-related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory, nonnative smallmouth bass have also been introduced into many northwestern streams, and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and nonnative species on stream-rearing salmon and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin. We compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of chinook salmon-rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing chinook salmon and potentially predatory bass in the early summer (two- to fourfold increase) and greater abundance of bass. We found that riparian restoration could prevent the extirpation of chinook salmon from the more altered stream and could also restrict bass from occupying the upper 31 km of salmon-rearing habitat. The proposed methodology and model predictions are critical for prioritizing climate-change adaptation strategies before salmonids are exposed to both warmer water and greater predation risk by nonnative species.
1986-04-01
benefits to the user, and economic benefits to the host country. Figure 2 shows the develop- ment of the NATO Infrastructure Pro- grams since 1951. FH...generalized benefits of stream- classified programs work with less dollar expenditures based solely on the lined specialized management include: than one-third...for contractors to demon- significant cost and schedule benefits on-site visits by the SPO are strate their management integrity, and new improvements
Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing.
Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng
2014-10-01
Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA's CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream . Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels.
W. J. Conroy; R. H. Hotchkiss; W. J. Elliot
2006-01-01
This article describes a prototype modeling system for assessing forest management-related erosion at its source and predicting sediment transport from hillslopes to stream channels and through channel networks to a watershed outlet. We demonstrate that it is possible to develop a land management tool capable of accurately assessing the primary impacts of...
2017-05-23
We experienced some technical issues during our live stream of Behind The Scenes at NASA’s Kennedy Space Center. In case you missed it, please enjoy the show with Director Bob Cabana, and an exclusive tour inside the Vehicle Assembly Building (VAB) with Ground Systems Development Office (GSDO) Associate Program Manager Shawn Quinn
Matthew R. Kluber; Deanna H. Olson; Klaus J. Puettmann
2008-01-01
Over the past 50 years, forested landscapes of the Pacific Northwest have become increasingly patchy, dominated by early-successional forests. Several amphibian species associated with forested headwater systems have emerged as management concerns, especially after dearcutting. Given that headwater streams comprise a large portion of the length of flowing waterways in...
Johnny M. Grace
2002-01-01
Nonpoint source pollution is a major concern related to natural resource management throughout the United States. Undisturbed forest lands typically have minimal erosion, less than 0.13 ton/acre (0.30 ton/hectare), due to the increased cover and surface roughness found in these areas. However, disturbances caused by forest management practices can result in...
Closing the Loop on Space Waste
NASA Astrophysics Data System (ADS)
Meier, A. J.; Hintze, P. E.
2018-02-01
A heat transfer study of mission mixed waste streams in a reactor hot zone, along with solid, tar, and water recovery. This research enables reliability and benefit on waste conversion systems to manage our environmental impact, on- and off-Earth.
NASA Astrophysics Data System (ADS)
Hawley, R. J.; Vietz, G. J.; Wooten, M. S.
2016-12-01
The threshold discharge that initiates streambed mobilization (Qcritical) is one of the most mechanistically-important flows for geomorphic function and biological integrity in stream ecosystems. Increased frequency and duration of flows that exceed Qcritical are a dominant driver of geomorphic instability and excess benthic disturbance in urban/suburban streams (i.e. the urban disturbance regime). Qcritical frequency also corresponds to measures of stream integrity in reference streams, with both geomorphic stability and biological indices significantly correlated to time since a Qcritical event in one 7-y study. Indeed, reference site macroinvertebrate communities during years with atypically frequent Qcritical events were more similar to sites draining watersheds with 30% imperviousness than to reference site communities of more typical rainfall years. Despite its biophysical relevance to stream ecosystems, Qcritical is one of the most overlooked and misunderstood flows in the stormwater management and stream restoration fields. Regional stormwater policies and stream restoration design guidance are often based on the misplaced assumption that streambed erosion does not occur at sub-bankfull events (often assumed to correspond to the 1-y recurrence discharge). Using an international database of nearly 200 sites we show that Qcritical varies by several orders of magnitude as a function of streambed particle size. Qcritical in sand-dominated streams is likely to be orders of magnitude less than the 1-yr discharge, whereas Qcritical in cobble/boulder dominated streams could be much larger than the 1-yr discharge, implying that stormwater/restoration policies focused on the 1-yr event could lack efficacy in many stream settings. Qcritical is a geomorphically- and biologically-relevant discharge threshold when developing stormwater management policies intended to protect streams from excess erosion, designing watershed-scale restoration efforts to restore a more natural disturbance regime, or reconstructing stream reaches designed to restore sediment continuity. Incorporation of Qcritical into such restoration and management efforts ensures that designs are actually tailored to the mechanisms that drive channel erosion and disturbance to the benthos.
Robust media processing on programmable power-constrained systems
NASA Astrophysics Data System (ADS)
McVeigh, Jeff
2005-03-01
To achieve consumer-level quality, media systems must process continuous streams of audio and video data while maintaining exacting tolerances on sampling rate, jitter, synchronization, and latency. While it is relatively straightforward to design fixed-function hardware implementations to satisfy worst-case conditions, there is a growing trend to utilize programmable multi-tasking solutions for media applications. The flexibility of these systems enables support for multiple current and future media formats, which can reduce design costs and time-to-market. This paper provides practical engineering solutions to achieve robust media processing on such systems, with specific attention given to power-constrained platforms. The techniques covered in this article utilize the fundamental concepts of algorithm and software optimization, software/hardware partitioning, stream buffering, hierarchical prioritization, and system resource and power management. A novel enhancement to dynamically adjust processor voltage and frequency based on buffer fullness to reduce system power consumption is examined in detail. The application of these techniques is provided in a case study of a portable video player implementation based on a general-purpose processor running a non real-time operating system that achieves robust playback of synchronized H.264 video and MP3 audio from local storage and streaming over 802.11.
Simon, A.; Doyle, M.; Kondolf, M.; Shields, F.D.; Rhoads, B.; Grant, G.; Fitzpatrick, F.; Juracek, K.; McPhillips, M.; MacBroom, J.
2005-01-01
Over the past 10 years the Rosgen classification system and its associated methods of "natural channel design" have become synonymous (to many without prior knowledge of the field) with the term "stream restoration" and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely, and perhaps dominantly adopted by governmental agencies, particularly those funding restoration projects. For example, in a request for proposals for the restoration of Trout Creek in Montana, the Natural Resources Conservation Service required "experience in the use and application of a stream classification system and its implementation." Similarly, classification systems have been used in evaluation guides for riparian areas and U.S. Forest Service management plans. Most notably, many highly trained geomorphologists and hydraulic engineers are often held suspect, or even thought incorrect, if their approach does not include reference to or application of a classification system. This, combined with the para-professional training provided by some involved in "natural channel design" empower individuals and groups with limited backgrounds in stream and watershed sciences to engineer wholesale re-patterning of stream reaches using 50-year old technology that was never intended for engineering design. At Level I, the Rosgen classification system consists of eight or nine major stream types, based on hydraulic-geometry relations and four other measures of channel shape to distinguish the dimensions of alluvial stream channels as a function of the bankfull stage. Six classes of the particle size of the boundary sediments are used to further sub-divide each of the major stream types, resulting in 48 or 54 stream types. Aside from the difficulty in identifying bankfull stage, particularly in incising channels, and the issue of sampling from two distinct populations (beds and banks) to classify the boundary sediments, the classification provides a consistent and reproducible means for practitioners to describe channel morphology although difficulties have been encountered in lower-gradient stream systems. Use of the scheme to communicate between users or as a conceptual model, however, has not justified its use for engineering design or for predicting river behavior; its use for designing mitigation projects, therefore, seems beyond its technical scope. Copyright ASCE 2005.
NASA Astrophysics Data System (ADS)
Ward, Adam; Cwiertny, David; Kolodziej, Edward; Brehm, Colleen
2016-04-01
The product-to-parent reversion of metabolites of trenbolone acetate (TBA), a steroidal growth promoter used widely in beef cattle production, was recently observed to occur in environmental waters. The rapid forward reaction is by direct photolysis (i.e., photohydration), with the much slower reversion reaction occurring via dehydration in the dark. The objective of this study is to quantify the potential effect of this newly discovered reversible process on TBA metabolite concentrations and total bioactivity exposure in fluvial systems. Here, we demonstrate increased persistence of TBA metabolites in the stream and hyporheic zone due to the reversion process, increasing chronic and acute exposure to these endocrine-active compounds along a stream. The perpetually dark hyporheic zone is a key location for reversion in the system, ultimately providing a source of the parent compound to the stream and increasing mean in-stream concentration of 17α-trenbolone (17α-TBOH) by 40% of the input concentration under representative fluvial conditions. We demonstrate generalized cases for prediction of exposure for species with product-to-parent reversion in stream-hyporheic systems. Recognizing this risk, regulatory frameworks for compounds undergoing product-to-parent reversion will require new approaches for assessing total exposure to bioactive compounds. We discuss the role of regulating "joint" or "mixture" bioactivity as an emerging paradigm for more meaningful management of micropollutants.
Fuzzy rule based estimation of agricultural diffuse pollution concentration in streams.
Singh, Raj Mohan
2008-04-01
Outflow from the agricultural fields carries diffuse pollutants like nutrients, pesticides, herbicides etc. and transports the pollutants into the nearby streams. It is a matter of serious concern for water managers and environmental researchers. The application of chemicals in the agricultural fields, and transport of these chemicals into streams are uncertain that cause complexity in reliable stream quality predictions. The chemical characteristics of applied chemical, percentage of area under the chemical application etc. are some of the main inputs that cause pollution concentration as output in streams. Each of these inputs and outputs may contain measurement errors. Fuzzy rule based model based on fuzzy sets suits to address uncertainties in inputs by incorporating overlapping membership functions for each of inputs even for limited data availability situations. In this study, the property of fuzzy sets to address the uncertainty in input-output relationship is utilized to obtain the estimate of concentrations of a herbicide, atrazine, in a stream. The data of White river basin, a part of the Mississippi river system, is used for developing the fuzzy rule based models. The performance of the developed methodology is found encouraging.
D'Ambrosio, Jessica L; Williams, Lance R; Witter, Jonathan D; Ward, Andy
2009-01-01
In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.
Modeling fecal contamination in the Aljezur coastal stream (Portugal)
NASA Astrophysics Data System (ADS)
Rodrigues, Marta; Oliveira, Anabela; Guerreiro, Martha; Fortunato, André Bustorff; Menaia, José; David, Luís Mesquita; Cravo, Alexandra
2011-06-01
This study aims at understanding the fecal contamination behavior in a small coastal stream (Aljezur, Portugal), which has significant economic and ecological values. Like in most small coastal systems, circulation and water renewal in the Aljezur stream exhibit a strong variability due to their dependence on tides, waves, intermittent river flows, and a highly variable morphology. Hence, the problem was approached through a combination of field surveys and the development and application of a hard-coupled three-dimensional hydrodynamic and fecal contamination model. Salinity and temperature results have shown that mixing and transport in the stream are very sensitive to the river flow and wind forcing. The model is able to represent the main patterns and trends observed in Escherichia coli and fecal enterococcus concentrations along the stream, for different environmental and contamination conditions, suggesting die-off rates on the order of 0.50-0.55 day-1. Die-off rate and the representation of the sediment-associated processes were identified as the major remaining sources of uncertainty in the model. Results show that, owing to the processes that occur along the stream, fecal bacteria reach the beaches water in numbers that comply with the European Bathing Waters Directive, even during the summer periods when the upstream concentrations are larger. In particular, results suggest a direct relation between the tidal propagation upstream and the reduction of the fecal bacteria concentrations along the stream that can be relevant for the development of a strategy for the management of the system's water safety.
K.J. Anlauf; D.W. Jensen; K.M. Burnett; E.A. Steel; K. Christiansen; J.C. Firman; B.E. Feist; D.P. Larsen
2011-01-01
1. The distribution and composition of in-stream habitats are reflections of landscape scale geomorphic and climatic controls. Correspondingly, Pacific salmon (Oncorhynchus spp.) are largely adapted to and constrained by the quality and complexity of those in-stream habitat conditions. The degree to which lands have been fragmented and managed can...
Rehabilitation and Flood Management Planning in a Steep, Boulder-Bedded Stream
NASA Astrophysics Data System (ADS)
Caruso, Brian S.; Downs, Peter W.
2007-08-01
This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.
Stream and riparian management for freshwater turtles.
Bodie, J R
2001-08-01
The regulation and management of stream ecosystems worldwide have led to irreversible loss of wildlife species. Due to recent scrutiny of water policy and dam feasibility, there is an urgent need for fundamental research on the biotic integrity of streams and riparian zones. Although riverine turtles rely on stream and riparian zones to complete their life cycle, are vital producers and consumers, and are declining worldwide, they have received relatively little attention. I review the literature on the impacts of contemporary stream management on freshwater turtles. Specifically, I summarize and discuss 10 distinct practices that produce five potential biological repercussions. I then focus on the often-overlooked use of riparian zones by freshwater turtles, calculate a biologically determined riparian width, and offer recommendations for ecosystem management. Migration data were summarized on 10 species from eight US states and four countries. A riparian zone encompassing the majority of freshwater turtle migrations would need to span 150 m from the stream edge. Freshwater turtles primarily chose high, open sandy habitats to nest. Nests in North America contained eggs and hatchlings during April through September and often through the winter. In addition, freshwater turtles utilized diverse riparian habitats for feeding, nesting, and overwintering. Additional documentation of stream and riparian habitat use by turtles is needed.
Restoration of lowland streams: an introduction
Osborne, L.L.; Bayley, P.B.; Higler, L.W.G.; Statzner, B.; Triska, F.; Iverson, T. Moth
1993-01-01
1 This paper introduces the Lowland Streams Restoration Workshop that was held in Lund, Sweden in August 1991.2 Attenders at the Workshop participated in working groups which discussed and reported on the state of knowledge of stream restoration and identified critical areas of information need. Currently, most restoration efforts are emission-orientated (i.e. waste-water management), while the imitation of the geomorphology or of the riparian vegetation of a quasi-natural or natural reference channel receives less attention.3 Successful stream restoration requires a multidisciplinary approach within a holistic system framework. Monitoring the outcome of past, existing and future steam-restoration projects is required for information on the feasibility of alternative techniques and approaches.4 It was recommended that systems in pristine condition serve as a point of reference and not as a goal for most stream restoration projects. Restoration goals must be carefully defined so that everyone at every level understands the aim of the project. At the very least, all restoration programmes should consider geomorphic, hydrological, biological, aesthetic, and water quality aspects of the system.5 Restoration programmes should aim to create a system with a stable channel, or a channel in dynamic equilibrium that supports a self-sustaining and functionally diverse community assemblage; it should not concentrate on one species or group, except at the local level. Preserving the terrestrial -aquatic interface by setting aside riparian land corridors is critical to all stages of restoration. Additional information on the temporal and regional variability in important system processes and functions is needed.
Schwarte, K A; Russell, J R; Morrical, D G
2011-10-01
A 2-yr grazing experiment was conducted to assess the effects of grazing management on cattle distribution and pasture and stream bank characteristics. Six 12.1-ha cool-season grass pastures in central Iowa were allotted to 1 of 3 treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with stream access restricted to 4.9-m-wide stabilized crossings (CSR), or rotational stocking with stream access restricted to a riparian paddock (RP). Pastures were stocked with 15 fall-calving Angus cows (Bos taurus L.) from mid-May to mid-October for 153 d in 2008 and 2009. A global positioning system (GPS) collar recording cow position every 10 min was placed on at least 1 cow per pasture for 2 wk of each month from May through September. Off-stream water was provided to cattle in CSU and CSR treatments during the second of the 2 wk when GPS collars were on the cattle. A black globe temperature relative humidity index (BGTHI) was measured at 10-min intervals to match the time of the GPS measurements. Each month of the grazing season, forage characteristics (sward height, forage mass, and CP, IVDMD, and P concentrations) and bare and fecal-covered ground were measured. Stream bank erosion susceptibility was visually scored in May, August, and October (pre-, mid-, and post-stocking). Cattle in RP and CSR treatments spent less time (P < 0.10) within the stream zone (0 to 3 m from stream center) in June and August and in the streamside zone (0 to 33 m from stream zone) in May through August and May through September, respectively, than cattle in CSU pastures. However, off-stream water had no effect on cattle distribution. Compared with the CSU treatment, the CSR treatment reduced the probability (P < 0.10) that cattle were within the riparian zone (0 to 36 m from stream center) at BGTHI of 50 to 100. Bare ground was greater (P < 0.10) in pastures with the CSU than CSR and RP treatments in the stream and streamside zones in September and October and in July and September. Streams in pastures with the CSU treatment had less stable banks (P < 0.10) mid- and post-stocking than RP or CSR treatments. Results show that time spent by cattle near pasture streams can be reduced by RP or CSR treatments, thereby decreasing risks of sediment and nutrient loading of pasture streams even during periods of increased BGTHI.
A stream temperature model for the Peace-Athabasca River basin
NASA Astrophysics Data System (ADS)
Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.
2017-12-01
Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.
StreamStats: a U.S. geological survey web site for stream information
Kernell, G. Ries; Gray, John R.; Renard, Kenneth G.; McElroy, Stephen A.; Gburek, William J.; Canfield, H. Evan; Scott, Russell L.
2003-01-01
The U.S. Geological Survey has developed a Web application, named StreamStats, for providing streamflow statistics, such as the 100-year flood and the 7-day, 10-year low flow, to the public. Statistics can be obtained for data-collection stations and for ungaged sites. Streamflow statistics are needed for water-resources planning and management; for design of bridges, culverts, and flood-control structures; and for many other purposes. StreamStats users can point and click on data-collection stations shown on a map in their Web browser window to obtain previously determined streamflow statistics and other information for the stations. Users also can point and click on any stream shown on the map to get estimates of streamflow statistics for ungaged sites. StreamStats determines the watershed boundaries and measures physical and climatic characteristics of the watersheds for the ungaged sites by use of a Geographic Information System (GIS), and then it inserts the characteristics into previously determined regression equations to estimate the streamflow statistics. Compared to manual methods, StreamStats reduces the average time needed to estimate streamflow statistics for ungaged sites from several hours to several minutes.
System metabolism in the Kanawha River basin: comparing two models
Resource managers and regulatory agencies typically monitor aquatic ecosystem condition using a combination of measures that describe stream structure (e.g. physical habitat variables, species richness metrics) and physiochemical properties (e.g., pH, DO, turbidity). Recently, me...
Contaminants in urban waters—Science capabilities of the U.S. Geological Survey
Jastram, John D.; Hyer, Kenneth E.
2016-04-29
Streams and estuaries with urban watersheds commonly exhibit increased streamflow and decreased base flow; diminished stream-channel stability; excessive amounts of contaminants such as pesticides, metals, industrial and municipal waste, and combustion products; and alterations to biotic community structure. Collectively, these detrimental effects have been termed the “urban-stream syndrome.” Water-resource managers seek to lessen the effects on receiving water bodies of new urban development and remediate the effects in areas of existing urbanization. Similarly, the scientific community has produced extensive research on these topics, with researchers from the U.S. Geological Survey (USGS) leading many studies of urban streams and the processes responsible for the urban-stream syndrome. Increasingly, USGS studies are evaluating the effects of management and restoration activities to better understand how urban waters respond to the implementation of management practices. The USGS has expertise in collecting and interpreting data for many physical, chemical, and ecological processes in urban waters and, thus, provides holistic assessments to inform managers of urban water resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, Jr., Neil; McLellan, Jason G; Crossley, Brian
The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managersmore » to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project began to address some of the identified data gaps, throughout the blocked area, with a variety of newly developed sampling projects, as well as, continuing with ongoing data collection of established projects.« less
Weaver, D.; Kwak, Thomas J.
2013-01-01
Fisheries managers are faced with the challenge of balancing the management of recreational fisheries with that of conserving native species and preserving ecological integrity. The negative effects that nonnative trout species exert on native trout are well documented and include alteration of competitive interactions, habitat use, and production. However, the effects that nonnative trout may exert on nongame fish assemblages are poorly understood. Our objectives were to quantify the effects of trout stocking on native nongame fish assemblages intensively on one newly stocked river, the North Toe River, North Carolina, and extensively on other southern Appalachian Mountain streams that are annually stocked with trout. In the intensive study, we adopted a before-after, control-impact (BACI) experimental design to detect short-term effects on the nongame fish assemblage and found no significant differences in fish density, species richness, species diversity, or fish microhabitat use associated with trout stocking. We observed differences in fish microhabitat use between years, however, which suggests there is a response to environmental changes, such as the flow regime, which influence available habitat. In the extensive study, we sampled paired stocked and unstocked stream reaches to detect long-term effects from trout stocking; however, we detected no differences in nongame fish density, species richness, species diversity, or population size structure between paired sites. Our results revealed high inherent system variation caused by natural and anthropogenic factors that appear to overwhelm any acute or chronic effect of stocked trout. Furthermore, hatchery-reared trout may be poor competitors in a natural setting and exert a minimal or undetectable impact on native fish assemblages in these streams. These findings provide quantitative results necessary to assist agencies in strategic planning and decision making associated with trout fisheries, stream management, and conservation of native fishes.
NASA Astrophysics Data System (ADS)
Yu, M.; Rhoads, B. L.; Stumpf, A.
2017-12-01
The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.
Keith H. Nislow; John D. Armstrong; Simon McKelvey
2004-01-01
Little is known concerning the role of Atlantic salmon (Salmo salar) in the transport of nutrients to and from river systems. We used demographic data from the River Bran, an oligotrophic river in Scotland, UK, to construct a budget for the transport of phosphorus (P) and applied it to investigate the effects of management strategies and demographic...
Impact of Stream Management Zones and Road Beautifying Buffers on Long-Term Fiber Supply in Georgia
Michal Zasada; Chris J. Cieszewski; Roger C. Lowe
2005-01-01
Streamside management zones (SMZs) and road beautifying buffers (RBBs) in Georgia have had an unknown impact on the available wood supply in the state. We used Forest Inventory and Analysis data, Landsat Thematic Mapper imagery, Gap Analysis Program and other geographic information system data to estimate the potential impact of SMZs and RBBs in the current and future...
Tracing seasonal groundwater contributions to stream flow using a suite of environmental isotopes
NASA Astrophysics Data System (ADS)
Pritchard, J. L.; Herczeg, A. L.; Lamontagne, S.
2003-04-01
Groundwater discharge to streams is important for delivering essential solutes to maintain ecosystem health and flow throughout dry seasons. However, managing the groundwater components of stream flow is difficult because several sources of water can contribute, including delayed drainage from bank storage and regional groundwater. In this study we assessed the potential for a variety of environmental tracers to discriminate between different sources of water to stream flow. A case study comparing Cl-, delta O-18 &delta H-2, Rn-222 and 87Sr/86Sr to investigate the spatial and temporal variability of groundwater inputs to stream flow was conducted in the Wollombi Brook Catchment (SE Australia). The objectives were to characterise the three potential sources of water to stream flow (surface water, groundwater from the near-stream sandy alluvial aquifer system, and groundwater from the regional sandstone aquifer system) and estimate their relative contributions to stream discharge at flood recession and baseflow. Surface water was sampled at various locations along the Wollombi Brook and from its tributaries during flood recession (Mar-01) and under baseflow conditions (Oct-01). Alluvial groundwater was sampled from a piezometer network and regional groundwater from deeper bores in the lower to mid-catchment biannually over two years to characterise these potential sources of water to stream flow. Chloride identified specific reaches of the catchment that were either subjected to evaporation or received regional groundwater contributions to stream flow. The water isotopes verified which of these reaches were dominated by evaporation versus groundwater contributions. They also revealed that the predominant sources of water to stream flow during flood recession were either rainfall and storm runoff or regional groundwater, and that during baseflow the predominant source of water to stream flow was alluvial groundwater. Radon showed that there was a greater proportion of groundwater contributing to stream flow in the upper part of the catchment than the lower catchment during both flood recession and baseflow. Strontium isotopes showed that regional groundwater contributed less than 10% to stream flow in all parts of the catchment under baseflow conditions.
Obtaining Streamflow Statistics for Massachusetts Streams on the World Wide Web
Ries, Kernell G.; Steeves, Peter A.; Freeman, Aleda; Singh, Raj
2000-01-01
A World Wide Web application has been developed to make it easy to obtain streamflow statistics for user-selected locations on Massachusetts streams. The Web application, named STREAMSTATS (available at http://water.usgs.gov/osw/streamstats/massachusetts.html ), can provide peak-flow frequency, low-flow frequency, and flow-duration statistics for most streams in Massachusetts. These statistics describe the magnitude (how much), frequency (how often), and duration (how long) of flow in a stream. The U.S. Geological Survey (USGS) has published streamflow statistics, such as the 100-year peak flow, the 7-day, 10-year low flow, and flow-duration statistics, for its data-collection stations in numerous reports. Federal, State, and local agencies need these statistics to plan and manage use of water resources and to regulate activities in and around streams. Engineering and environmental consulting firms, utilities, industry, and others use the statistics to design and operate water-supply systems, hydropower facilities, industrial facilities, wastewater treatment facilities, and roads, bridges, and other structures. Until now, streamflow statistics for data-collection stations have often been difficult to obtain because they are scattered among many reports, some of which are not readily available to the public. In addition, streamflow statistics are often needed for locations where no data are available. STREAMSTATS helps solve these problems. STREAMSTATS was developed jointly by the USGS and MassGIS, the State Geographic Information Systems (GIS) agency, in cooperation with the Massachusetts Departments of Environmental Management and Environmental Protection. The application consists of three major components: (1) a user interface that displays maps and allows users to select stream locations for which they want streamflow statistics (fig. 1), (2) a data base of previously published streamflow statistics and descriptive information for 725 USGS data-collection stations, and (3) an automated procedure that determines characteristics of the land-surface area (basin) that drains to the stream and inserts those characteristics into equations that estimate the streamflow statistics. Each of these components is described and guidance for using STREAMSTATS is provided below.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, Alex D.; McCabe, Daniel J.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to themore » LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations and use it in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. The objective of this task was to test immobilization options for this evaporator bottoms aqueous stream. This document describes the method used to formulate a simulant of this EMF evaporator bottoms stream, immobilize it, and determine if the immobilized waste forms meet disposal criteria.« less
Stream ichthyofauna of the Tapajós National Forest, Pará, Brazil
Silva-Oliveira, Cárlison; Canto, André Luiz Colares; Ribeiro, Frank Raynner Vasconcelos
2016-01-01
Abstract The fish fauna of freshwater streams in the Tapajos National Forest was surveyed and a list of species is presented. The sampling was conducted from 2012 to 2013 during the dry season. Fish were collected with dip nets and seine nets in 22 streams of 1st to 3rd order. Sampling resulted in 3035 specimens belonging to 117 species, 27 families and six orders. The most abundant species were Bryconops aff. melanurus, Hemigrammus belottii, and Hemigrammus analis. Four undescribed species were recognized, one of which is known only from the area of this study. A significant dissimilarity was observed in fish species composition among drainage systems. This is the first survey of the stream ichthyofauna in the Tapajós National Forest, and it presents relevant information for future studies and decision-making in the management and conservation of fish fauna in this conservation unit. PMID:27110209
Vertebrate assemblages associated with headwater hydrology in western Oregon managed forests.
D.H. Olson; G. Weaver
2007-01-01
We characterized headwater stream habitats, fish, and amphibian fauna, in and along 106 headwater stream reaches at 12 study sites within managed forest stands 40 to 70 years old in western Oregon. Headwater stream types in our sample included perennial, spatially intermittent, and dry reaches. We captured 454 fish of three species groups and 1,796 amphibians of 12...
ERIC Educational Resources Information Center
Coler, Robert A.; Zatryka, Simon A.
1974-01-01
This article describes a stream management course designed to give non-science majors an in-depth study of water quality. The course includes work in determining and measuring water quality parameters and the discussion of management techniques. Construction of a Hewitt Ramp and wing deflectors are illustrated in the article. (MA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.
There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations increased in groundwater post-treatment to < 2 mg N L -1, and these concentrations were below the U.S. drinking water standard (10 mg N L -1). Applied pesticides were almost always below detection in streams and groundwater. Overall, these findings highlight that current forestry BMPs can protect stream water quality from intensive pine management for bioenergy in the first 3.5 years. However, groundwater quality and transit times need to be considered in these low-gradient watersheds of the southeastern U.S. that are likely to become an important location for woody bioenergy feedstock production.« less
Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.; ...
2017-06-12
There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations increased in groundwater post-treatment to < 2 mg N L -1, and these concentrations were below the U.S. drinking water standard (10 mg N L -1). Applied pesticides were almost always below detection in streams and groundwater. Overall, these findings highlight that current forestry BMPs can protect stream water quality from intensive pine management for bioenergy in the first 3.5 years. However, groundwater quality and transit times need to be considered in these low-gradient watersheds of the southeastern U.S. that are likely to become an important location for woody bioenergy feedstock production.« less
Botwe, Paul K; Barmuta, Leon A; Magierowski, Regina; McEvoy, Paul; Goonan, Peter; Carver, Scott
2015-01-01
Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments.
Temporal Patterns and Environmental Correlates of Macroinvertebrate Communities in Temporary Streams
Botwe, Paul K.; Barmuta, Leon A.; Magierowski, Regina; McEvoy, Paul; Goonan, Peter; Carver, Scott
2015-01-01
Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments. PMID:26556711
Movements by adult cutthroat trout in a lotic system: Implications for watershed-scale management
Sanderson, T.B.; Hubert, W.A.
2009-01-01
Movements by adult cutthroat trout, Oncorhynchus clarkii (Richardson), were assessed from autumn to summer in the Salt River watershed, Wyoming-Idaho, USA by radio telemetry. Adult cutthroat trout were captured during September and October 2005 in the main stem of the Salt River, surgically implanted with radio transmitters, and tracked through to August 2006. Adult cutthroat trout were relatively sedentary and resided primarily in pools from October to March, but their movement rates increased during April. Higher movement rates were observed among tagged fish during May and early June. Among 43 fish residing in the Salt River during April 2006, 44% remained in the river, 37% moved into mountain tributaries and 19% moved into spring streams during the spawning season. Fish did not use segments of mountain tributaries or the upstream Salt River where fish passage was blocked by anthropogenic barriers or the channel was dewatered during summer. Almost all the fish that moved into spring streams used spring streams where pools and gravel-cobble riffles had been constructed by landowners. The results suggest that adult Snake River cutthroat move widely during May and early June to use spawning habitat in mountain tributaries and improved spring streams. Maintaining the ability of adult fish to move into mountain streams with spawning habitat, preserving spawning habitat in accessible mountain tributaries and removing barriers to upstream movements, and re-establishing summer stream flows in mountain tributaries affected by dams appear to be habitat management alternatives to preserve the Snake River cutthroat trout fishery in the Salt River. ?? 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Chao, Woodrew; Ho, Bruce K. T.; Chao, John T.; Sadri, Reza M.; Huang, Lu J.; Taira, Ricky K.
1995-05-01
Our tele-medicine/PACS archive system is based on a three-tier distributed hierarchical architecture, including magnetic disk farms, optical jukebox, and tape jukebox sub-systems. The hierarchical storage management (HSM) architecture, built around a low cost high performance platform [personal computers (PC) and Microsoft Windows NT], presents a very scaleable and distributed solution ideal for meeting the needs of client/server environments such as tele-medicine, tele-radiology, and PACS. These image based systems typically require storage capacities mirroring those of film based technology (multi-terabyte with 10+ years storage) and patient data retrieval times at near on-line performance as demanded by radiologists. With the scaleable architecture, storage requirements can be easily configured to meet the needs of the small clinic (multi-gigabyte) to those of a major hospital (multi-terabyte). The patient data retrieval performance requirement was achieved by employing system intelligence to manage migration and caching of archived data. Relevant information from HIS/RIS triggers prefetching of data whenever possible based on simple rules. System intelligence embedded in the migration manger allows the clustering of patient data onto a single tape during data migration from optical to tape medium. Clustering of patient data on the same tape eliminates multiple tape loading and associated seek time during patient data retrieval. Optimal tape performance can then be achieved by utilizing the tape drives high performance data streaming capabilities thereby reducing typical data retrieval delays associated with streaming tape devices.
40 CFR 63.136 - Process wastewater provisions-individual drain systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements of § 63.148 and the control device shall be designed, operated, and inspected in accordance with... that receives or manages a Group 1 wastewater stream or a residual removed from a Group 1 wastewater... cover and if vented, route the vapors to a process or through a closed vent system to a control device...
40 CFR 63.136 - Process wastewater provisions-individual drain systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements of § 63.148 and the control device shall be designed, operated, and inspected in accordance with... that receives or manages a Group 1 wastewater stream or a residual removed from a Group 1 wastewater... cover and if vented, route the vapors to a process or through a closed vent system to a control device...
40 CFR 63.136 - Process wastewater provisions-individual drain systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements of § 63.148 and the control device shall be designed, operated, and inspected in accordance with... that receives or manages a Group 1 wastewater stream or a residual removed from a Group 1 wastewater... cover and if vented, route the vapors to a process or through a closed vent system to a control device...
40 CFR 63.136 - Process wastewater provisions-individual drain systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements of § 63.148 and the control device shall be designed, operated, and inspected in accordance with... that receives or manages a Group 1 wastewater stream or a residual removed from a Group 1 wastewater... cover and if vented, route the vapors to a process or through a closed vent system to a control device...
WCATS: Waste Documentation, Course No. 8504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Sandy
2016-04-14
This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.
Urbanization and stream ecology: Diverse mechanisms of change
Roy, Allison; Capps, Krista A.; El-Sabaawi, Rana W.; Jones, Krista L.; Parr, Thomas B.; Ramirez, Alonso; Smith, Robert F.; Walsh, Christopher J.; Wenger, Seth J.
2016-01-01
The field of urban stream ecology has evolved rapidly in the last 3 decades, and it now includes natural scientists from numerous disciplines working with social scientists, landscape planners and designers, and land and water managers to address complex, socioecological problems that have manifested in urban landscapes. Over the last decade, stream ecologists have met 3 times at the Symposium on Urbanization and Stream Ecology (SUSE) to discuss current research, identify knowledge gaps, and promote future research collaborations. The papers in this special series on urbanization and stream ecology include both primary research studies and conceptual synthesis papers spurred from discussions at SUSE in May 2014. The themes of the meeting are reflected in the papers in this series emphasizing global differences in mechanisms and responses of stream ecosystems to urbanization and management solutions in diverse urban streams. Our hope is that this series will encourage continued interdisciplinary and collaborative research to increase the global understanding of urban stream ecology toward stream protection and restoration in urban landscapes.
Scale-Independent Relational Query Processing
2013-10-04
source options are also available, including Postgresql, MySQL , and SQLite. These mod- ern relational databases are generally very complex software systems...and Their Application to Data Stream Management. IGI Global, 2010. [68] George Reese. Database Programming with JDBC and Java , Second Edition. Ed. by
3 CFR 8421 - Proclamation 8421 of September 22, 2009. National Hunting and Fishing Day, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
...-sustainability. Today's hunters and anglers bring this spirit to life in the forests and streams they visit. If... Nation would not enjoy sound game management; a system of ethical, science-based game laws; and an...
Decomposition analysis of the waste generation and management in 30 European countries.
Korica, Predrag; Cirman, Andreja; Žgajnar Gotvajn, Andreja
2016-11-01
An often suggested method for waste prevention is substitution of currently-used materials with materials which are less bulky, contain less hazardous components or are easier to recycle. For policy makers it is important to have tools available that provide information on the impact of this substitution on the changes in total amounts of waste generated and managed. The purpose of this paper is to see how much changes in the mix of 15 waste streams generated in eight economic sectors from 30 European countries have influenced the amounts of waste generated and managed in the period 2004-2012. In order to determine these impacts, two variations of the logarithmic mean Divisia index (LMDI) analysis model were developed and applied. The results show that the changes in the mix of waste streams in most cases did not have a considerable influence on the changes in the amounts of generated waste. In the analyses of waste sent for landfill, incineration without energy recovery, incineration with energy recovery and recovery other than energy recovery, the results also show that the changes in the mix of waste streams in most cases did not have the expected/desired influence on the changes in the amounts of managed waste. This paper provides an example on the possibilities of applying the LMDI analysis as a tool for quantifying the potential of effects which implemented or planned measures could have on the changes in waste management systems. © The Author(s) 2016.
Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.
2003-01-01
Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.
Adaptive Management of Bull Trout Populations in the Lemhi Basin
Peterson, James T.; Tyre, Andrew J.; Converse, Sarah J.; Bogich, Tiffany L.; Miller, Damien; Post van der Burg, Max; Thomas, Carmen; Thompson, Ralph J.; Wood, Jeri; Brewer, Donna; Runge, Michael C.
2011-01-01
The bull trout Salvelinus confluentus, a stream-living salmonid distributed in drainages of the northwestern United States, is listed as threatened under the Endangered Species Act because of rangewide declines. One proposed recovery action is the reconnection of tributaries in the Lemhi Basin. Past water use policies in this core area disconnected headwater spawning sites from downstream habitat and have led to the loss of migratory life history forms. We developed an adaptive management framework to analyze which types of streams should be prioritized for reconnection under a proposed Habitat Conservation Plan. We developed a Stochastic Dynamic Program that identified optimal policies over time under four different assumptions about the nature of the migratory behavior and the effects of brook trout Salvelinus fontinalis on subpopulations of bull trout. In general, given the current state of the system and the uncertainties about the dynamics, the optimal policy would be to connect streams that are currently occupied by bull trout. We also estimated the value of information as the difference between absolute certainty about which of our four assumptions were correct, and a model averaged optimization assuming no knowledge. Overall there is little to be gained by learning about the dynamics of the system in its current state, although in other parts of the state space reducing uncertainties about the system would be very valuable. We also conducted a sensitivity analysis; the optimal decision at the current state does not change even when parameter values are changed up to 75% of the baseline values. Overall, the exercise demonstrates that it is possible to apply adaptive management principles to threatened and endangered species, but logistical and data availability constraints make detailed analyses difficult.
NASA Astrophysics Data System (ADS)
McKnight, U. S.; Sonne, A. T.; Rasmussen, J. J.; Rønde, V.; Traunspurger, W.; Höss, S.; Bjerg, P. L.
2017-12-01
Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead to critical underestimations of the combined impact caused by interactions occurring between stressors not typically evaluated together, e.g. xenobiotic groundwater pollutants and trace metals. To address this issue, we identified sources and levels of chemical stressors along a 16-km groundwater-fed stream corridor (Grindsted, Denmark), representative for a mixed land use stream system. Potential pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas. Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities.The stream was substantially impaired by both geogenic and anthropogenic sources of metals throughout the investigated corridor, with concentrations close to or above threshold values for barium, copper, lead, nickel and zinc in the stream water, hyporheic zone and streambed sediment. The groundwater plume from the factory site caused elevated concentrations of chlorinated ethenes, benzene and pharmaceuticals in both the hyporheic zone and stream, persisting for several km downstream. Impaired ecological conditions, represented by a lower abundance of meiobenthic individuals, were found in zones where the groundwater plume discharges to the stream. The effect was only pronounced in areas characterized by high xenobiotic organic concentrations and elevated dissolved iron and arsenic levels - linked to the dissolution of iron hydroxides caused by the degradation of xenobiotic compounds in the plume. The results thus provide ecological evidence for the interaction of organic and inorganic chemical stressors, which may provide a missing link enabling the reconnection of chemical and ecological findings. This study highlights the importance of stream-aquifer interfaces for ecosystem functioning in terms of biological habitat, and that multiple stressor systems need to be tackled from a holistic perspective.
Kusnierz, Paul C.; Holbrook, Christopher; Feldman, David L.
2015-01-01
Managers of aquatic resources benefit from indices of habitat quality that are reproducible and easy to measure, demonstrate a link between habitat quality and biota health, and differ between human-impacted (i.e., managed) and reference (i.e., nonimpacted or minimally impacted) conditions. The instability index (ISI) is an easily measured index that describes the instability of a streambed by relating the tractive force of a stream at bankfull discharge to the median substrate size. Previous studies have linked ISI to biological condition but have been limited to comparisons of sites within a single stream or among a small number of streams. We tested ISI as an indicator of human impact to habitat and biota in mountain streams of the northwestern USA. Among 1428 sites in six northwestern states, ISI was correlated with other habitat measures (e.g., residual pool depth, percent fine sediment) and indices of biotic health (e.g., number of intolerant macroinvertebrate taxa, fine sediment biotic index) and differed between managed and reference sites across a range of stream types and ecoregions. While ISI could be useful in mountain streams throughout the world, this index may be of particular interest to aquatic resource managers in the northwestern USA where a large dataset, from which ISI can be calculated, exists.
Legal ecotones: A comparative analysis of riparian policy protection in the Oregon Coast Range, USA.
Boisjolie, Brett A; Santelmann, Mary V; Flitcroft, Rebecca L; Duncan, Sally L
2017-07-15
Waterways of the USA are protected under the public trust doctrine, placing responsibility on the state to safeguard public resources for the benefit of current and future generations. This responsibility has led to the development of management standards for lands adjacent to streams. In the state of Oregon, policy protection for riparian areas varies by ownership (e.g., federal, state, or private), land use (e.g., forest, agriculture, rural residential, or urban) and stream attributes, creating varying standards for riparian land-management practices along the stream corridor. Here, we compare state and federal riparian land-management standards in four major policies that apply to private and public lands in the Oregon Coast Range. We use a standard template to categorize elements of policy protection: (1) the regulatory approach, (2) policy goals, (3) stream attributes, and (4) management standards. All four policies have similar goals for achieving water-quality standards, but differ in their regulatory approach. Plans for agricultural lands rely on outcome-based standards to treat pollution, in contrast with the prescriptive policy approaches for federal, state, and private forest lands, which set specific standards with the intent of preventing pollution. Policies also differ regarding the stream attributes considered when specifying management standards. Across all policies, 25 categories of unique standards are identified. Buffer widths vary from 0 to ∼152 m, with no buffer requirements for streams in agricultural areas or small, non-fish-bearing, seasonal streams on private forest land; narrow buffer requirements for small, non-fish-bearing perennial streams on private forest land (3 m); and the widest buffer requirements for fish-bearing streams on federal land (two site-potential tree-heights, up to an estimated 152 m). Results provide insight into how ecosystem concerns are addressed by variable policy approaches in multi-ownership landscapes, an important consideration to recovery-planning efforts for threatened species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Roth, T R; Westhoff, M C; Huwald, H; Huff, J A; Rubin, J F; Barrenetxea, G; Vetterli, M; Parriaux, A; Selkeer, J S; Parlange, M B
2010-03-15
Elevated in-stream temperature has led to a surge in the occurrence of parasitic intrusion proliferative kidney disease and has resulted in fish kills throughout Switzerland's waterways. Data from distributed temperature sensing (DTS) in-stream measurements for three cloud-free days in August 2007 over a 1260 m stretch of the Boiron de Merges River in southwest Switzerland were used to calibrate and validate a physically based one-dimensional stream temperature model. Stream temperature response to three distinct riparian conditions were then modeled: open, in-stream reeds, and forest cover. Simulation predicted a mean peak stream temperature increase of 0.7 °C if current vegetation was removed, an increase of 0.1 °C if dense reeds covered the entire stream reach, and a decrease of 1.2 °C if a mature riparian forest covered the entire reach. Understanding that full vegetation canopy cover is the optimal riparian management option for limiting stream temperature, in-stream reeds, which require no riparian set-aside and grow very quickly, appear to provide substantial thermal control, potentially useful for land-use management.
NASA Astrophysics Data System (ADS)
Battin, Tom J.; Dzubakova, Katharina; Boodoo, Kyle; Ulseth, Amber
2017-04-01
Streams and rivers are increasingly exposed to environmental change across various spatial and temporal scales. Consequently, ecosystem health and integrity are becoming compromised. Most management strategies designed to recover and maintain stream ecosystem health involve engineering measures of geomorphology. The success of such engineering measures relies on a thorough understanding of the underlying physical, chemical and biological process coupling across scales. First, we present results from experimental work unraveling the relevance of streambed heterogeneity for the resilience of phototrophic biofilms. This is critical as phototrophic biofilms are key for nutrient removal and hence for keeping the water clean. These biofilms are also the machinery of primary production and related carbon fluxes in stream ecosystems. Next, we show how climate change may affect primary production, including CO2, in streams and the networks they form. In fact, streams are now recognized as major sources of CO2 to the atmosphere and contributors to the global carbon cycle. Despite this, we do not yet understand how geomorphological features, themselves continuously reworked by hydrology and sedimentary dynamics, affect CO2 fluxes in streams. We show that gravel bars, clearly conspicuous geomorphological features, are hotspots of CO2 fluxes compared to the streamwater itself. This has major implications for carbon cycling and stream ecosystem functioning. Finally, we discuss what stream management could learn from ecohydraulic insights from young scientists doing excellent basic research.
Watershed morphology of highland and mountain ecoregions in eastern Oklahoma
Splinter, D.K.; Dauwalter, D.C.; Marston, R.A.; Fisher, W.L.
2011-01-01
The fluvial system represents a nested hierarchy that reflects the relationship among different spatial and temporal scales. Within the hierarchy, larger scale variables influence the characteristics of the next lower nested scale. Ecoregions represent one of the largest scales in the fluvial hierarchy and are defined by recurring patterns of geology, climate, land use, soils, and potential natural vegetation. Watersheds, the next largest scale, are often nested into a single ecoregion and therefore have properties that are indicative of a given ecoregion. Differences in watershed morphology (relief, drainage density, circularity ratio, relief ratio, and ruggedness number) were evaluated among three ecoregions in eastern Oklahoma: Ozark Highlands, Boston Mountains, and Ouachita Mountains. These ecoregions were selected because of their high-quality stream resources and diverse aquatic communities and are of special management interest to the Oklahoma Department of Wildlife Conservation. One hundred thirty-four watersheds in first-through fourth-order streams were compared. Using a nonparametric, two-factor analysis of variance (?? = 0.05) we concluded that the relief, drainage density, relief ratio, and ruggedness number all changed among ecoregion and stream order, whereas circularity ratio only changed with stream order. Our study shows that ecoregions can be used as a broad-scale framework for watershed management. ?? 2011 by Association of American Geographers.
Remembering the Important Things: Semantic Importance in Stream Reasoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Rui; Greaves, Mark T.; Smith, William P.
Reasoning and querying over data streams rely on the abil- ity to deliver a sequence of stream snapshots to the processing algo- rithms. These snapshots are typically provided using windows as views into streams and associated window management strategies. Generally, the goal of any window management strategy is to preserve the most im- portant data in the current window and preferentially evict the rest, so that the retained data can continue to be exploited. A simple timestamp- based strategy is rst-in-rst-out (FIFO), in which items are replaced in strict order of arrival. All timestamp-based strategies implicitly assume that a temporalmore » ordering reliably re ects importance to the processing task at hand, and thus that window management using timestamps will maximize the ability of the processing algorithms to deliver accurate interpretations of the stream. In this work, we explore a general no- tion of semantic importance that can be used for window management for streams of RDF data using semantically-aware processing algorithms like deduction or semantic query. Semantic importance exploits the infor- mation carried in RDF and surrounding ontologies for ranking window data in terms of its likely contribution to the processing algorithms. We explore the general semantic categories of query contribution, prove- nance, and trustworthiness, as well as the contribution of domain-specic ontologies. We describe how these categories behave using several con- crete examples. Finally, we consider how a stream window management strategy based on semantic importance could improve overall processing performance, especially as available window sizes decrease.« less
Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing
Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng
2015-01-01
Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA’s CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream. Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels. PMID:26566545
Design of real-time voice over internet protocol system under bandwidth network
NASA Astrophysics Data System (ADS)
Zhang, Li; Gong, Lina
2017-04-01
With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.
Hydrology of Channelized and Natural Headwater Streams
USDA-ARS?s Scientific Manuscript database
Understanding hydrology is paramount for optimal ecologic function and management of headwater streams. The objective of this study was to characterize and compare headwater streams within the Upper Big Walnut Creek watershed in Ohio. Two channelized and two unchannelized streams were instrumented w...
Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.
2002-01-01
Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.
Assessing Wetland Anthropogenic Stress using GIS; a Multi-scale Watershed Approach
Watersheds are widely recognized as essential summary units for ecosystem research and management, particularly in aquatic systems. As the drainage basin in which surface water drains toward a lake, stream, river, or wetland at a lower elevation, watersheds represent spatially e...
CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES
Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...
Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams
NASA Astrophysics Data System (ADS)
Smith, Rose M.; Kaushal, Sujay S.; Beaulieu, Jake J.; Pennino, Michael J.; Welty, Claire
2017-06-01
Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3- ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3- and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 = 0.78), carbon dioxide (CO2, r2 = 0.78), and methane (CH4, r2 = 0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality.
Dana L. Abell
1989-01-01
The nearly 100 papers in these proceedings are aimed at a diverse audience of resource managers, environmental con-sultants, researchers, landowners, environmental activists, and a variety of user groups. Some of the papers explain how streams interact with the plants and animals at their margins and with the land that they occupy to accomplish a range of important...
Matthew R. Kluber; Deanna H. Olson; Klaus J. Puettmann
2013-01-01
Th ere are emerging concerns for wildlife species associated with forested headwater systems. Given that headwater streams comprise a large portion of the length of fl owing waterways in western Oregon forests, there is a need to better understand how forest management aff ects headwater forest taxa and their habitats. Forest management strategies that consist of only...
StreamStats in North Carolina: a water-resources Web application
Weaver, J. Curtis; Terziotti, Silvia; Kolb, Katharine R.; Wagner, Chad R.
2012-01-01
A statewide StreamStats application for North Carolina was developed in cooperation with the North Carolina Department of Transportation following completion of a pilot application for the upper French Broad River basin in western North Carolina (Wagner and others, 2009). StreamStats for North Carolina, available at http://water.usgs.gov/osw/streamstats/north_carolina.html, is a Web-based Geographic Information System (GIS) application developed by the U.S. Geological Survey (USGS) in consultation with Environmental Systems Research Institute, Inc. (Esri) to provide access to an assortment of analytical tools that are useful for water-resources planning and management (Ries and others, 2008). The StreamStats application provides an accurate and consistent process that allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and user-selected ungaged sites. In the North Carolina application, users can compute 47 basin characteristics and peak-flow frequency statistics (Weaver and others, 2009; Robbins and Pope, 1996) for a delineated drainage basin. Selected streamflow statistics and basin characteristics for data-collection sites have been compiled from published reports and also are immediately accessible by querying individual sites from the web interface. Examples of basin characteristics that can be computed in StreamStats include drainage area, stream slope, mean annual precipitation, and percentage of forested area (Ries and others, 2008). Examples of streamflow statistics that were previously available only through published documents include peak-flow frequency, flow-duration, and precipitation data. These data are valuable for making decisions related to bridge design, floodplain delineation, water-supply permitting, and sustainable stream quality and ecology. The StreamStats application also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that may affect streamflow conditions. This functionality can be accessed through a map-based interface with the user’s Web browser, or individual functions can be requested remotely through Web services (Ries and others, 2008).
The Cheetah data management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, P.F.; Word, G.B.
1992-09-01
Cheetah is a data management system based on the C programming language, with support for other languages. Its main goal is to transfer data between memory and I/O steams in a general way. The streams are either associated with disk files or are network data stems. Cheetah provides optional convenience functions to assist in the management of C structures. Cheetah steams are self-describing so that general purpose applications can fully understand an incoming steam. This information can be used to display the data in an incoming steam to the user of an interactive general application, complete with variable names andmore » optional comments.« less
Jeremy D. Groom
2013-01-01
Studies over the past 40 years have established that riparian buff er retention along streams protects against stream temperature increase. Th is protection is neither universal nor complete; some buff ered streams still warm, while other streamsâ temperatures remain stable. Oregon Department of Forestry developed riparian rules in the Forest Practices Act (FPA) to...
EVALUATION OF ECONOMIC INCENTIVES FOR DECENTRALIZED STORMWATER RUNOFF MANAGEMENT
Impervious surfaces in urban and suburban areas can lead to excess stormwater runoff throughout a watershed, typically resulting in widespread hydrologic and ecological alteration of receiving streams. Decentralized stormwater management may improve stream ecosystems by reducing ...
Sediment loads and erosion in forest headwater streams of the Sierra Nevada, California
Carolyn T. Hunsaker; Daniel G. Neary
2012-01-01
Defining best management practices for forests requires quantification of the variability of stream sediment loads for managed and unmanaged forest conditions and their associated sediment sources. Although "best management practices" are used, the public has concerns about effects from forest restoration activities and commercial timber harvests. It is...
Joseph M. Secoges; Wallace M. Aust; John R. Seiler; C. Andrew Dolloff; William A. Lakel
2013-01-01
Forestry best management practices (BMP) recommendations for streamside management zones (SMZs) are based on limited data regarding SMZ width, partial harvests, and nutrient movements after forest fertilization. Agricultural fertilization is commonly linked to increased stream nutrients. However, less is known about effectiveness of SMZ options for controlling nutrient...
Intermittent and ephemeral (IE) streams can provide important functions within stream networks. Understanding the relative benefit provided to downstream waters is needed to better inform watershed management. Although the potential functions of IE streams are relatively well kn...
David G. Jones; William B. Summer; Masato Miwa; C. Rhett Jackson
2004-01-01
Stream hydrology and water quality in headwater streams are important components of ecosystem health. The Dry Creek Long-Term Watershed Study is designed to evaluate the effects of upland forestry operations and stream management zone (SMZ) thinning on stream hydrology, water quality, benthic macroinvertebrates, and other biologicindicators. The study also tests the...
InSTREAM: the individual-based stream trout research and environmental assessment model
Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson
2009-01-01
This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...
Michael Zasada; Chris J. Cieszewski; Roger C. Lowe; Jarek Zawadzki; Mike Clutter; Jacek P. Siry
2005-01-01
Georgia Stream Management Zones (SMZ) are voluntary and have an unknown extent and impact. We use FIA data, Landsat TM imagery, and GAP and other GIS data to estimate the acreages and volumes of these buffers. We use stream data classified into trout, perennial, and intermittent, combined with DEM files containing elevation values, to assess buffers with widths...
The Wabash River is a tributary of the Ohio River. This river system consists of headwaters and small streams, medium river reaches in the upper Wabash watershed, and large river reaches in the lower Wabash watershed. A large part of the river system is situated in agricultural a...
NASA Astrophysics Data System (ADS)
Weitzell, R.; Guinn, S. M.; Elmore, A. J.
2012-12-01
The process of directing streams into culverts, pipes, or concrete-lined ditches during urbanization, known as stream burial, alters the primary physical, chemical, and biological processes of streams. Knowledge of the cumulative impacts of reduced structure and ecological function within buried stream networks is crucial for informing management of stream ecosystems, in light of continued growth in urban areas, and the uncertain response of freshwater ecosystems to the stresses of global climate change. To address this need, we utilized recently improved stream maps for the Potomac River Basin (PRB) to describe the extent and severity of stream burial across the basin. Observations of stream burial made from high resolution aerial photographs (>1% of total basin area) and a decision tree using spatial statistics from impervious cover data were used to predict stream burial at 4 time-steps (1975, 1990, 2001, 2006). Of the roughly 95,500 kilometers (km) of stream in the PRB, approximately 4551 km (4.76%) were buried by urban development as of 2001. Analysis of county-level burial trends shows differential patterns in the timing and rates of headwater stream burial, which may be due to local development policies, topographical constraints, and/or time since development. Consistently higher rates of stream burial were observed for small streams, decreasing with stream order. Headwater streams (1st-2nd order) are disproportionately affected, with burial rates continuing to increase over time in relation to larger stream orders. Beyond simple habitat loss, headwater burial decreases connectivity among headwater populations and habitats, with potential to affect a wide range of important ecological processes. To quantify changes to regional headwater connectivity we applied a connectivity model based on electrical circuit theory. Circuit-theoretical models function by treating the landscape as a resistance surface, representing hypothesized relationships between landscape features and their differential "resistance" to movement by organisms. A landscape resistance layer was developed and fine-tuned in terms of the habitat use/needs of aquatic invertebrates with terrestrial adult stages, organisms of critical importance to riparian and aquatic ecosystem health. Initial results show significant increases in landscape resistance (isolation) among headwater systems, and corresponding decreases in current flow (movement of organisms) across the increasingly urbanized PRB landscape. Of particular interest, the circuit model highlighted the importance of stream confluences and zero-order (non-channel) headwater areas for movement of organisms between headwater systems that are otherwise highly disconnected, and for which the latter currently receives no legal protection from development.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a b Waste management unit identification c Description d Wastewater stream(s) received or...
NASA Astrophysics Data System (ADS)
Kirkham, K. G.; Perry, W. L.
2005-05-01
Headwater streams in central Illinois have been dredged and channelized to drain surrounding agricultural fields and has led to extensive erosion and eutrophication. Restoration of these systems through farmer implementation of Best Management Practices (BMPs) may be one solution. Examination of algal population dynamics may be useful in assessment of BMP effectiveness. We have monitored two small headwater streams, Bray Creek and Frog Alley, for a suite of physicochemical parameters focusing on dissolved oxygen, nitrogen, and phosphorus for three years. Nutrient concentrations suggested potential nutrient limitation by nitrates during late summer and phosphorus limitation in early summer. To determine seasonal algal dynamics with seasonally varying nutrient limitation in agricultural headwater streams, we used nutrient diffusing substrata (NDS). NDS with agar (controls) or amended with either nitrogen, phosphorus, or both were deployed for 21-24 days in both streams each month for a year. Slight nutrient limitation was observed in Bray Creek during August and November while phosphorus was limiting in September (P<0.05). We suggest agricultural streams are more dynamic than previously thought and algal populations may be seasonally nutrient limited and with consequent effects on dissolved oxygen concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, C; Baikadi, M; Peters, C
2015-06-15
Purpose: Using systems engineering to design HDR skin treatment operation for small lesions using shielded applicators to enhance patient safety. Methods: Systems engineering is an interdisciplinary field that offers formal methodologies to study, design, implement, and manage complex engineering systems as a whole over their life-cycles. The methodologies deal with human work-processes, coordination of different team, optimization, and risk management. The V-model of systems engineering emphasize two streams, the specification and the testing streams. The specification stream consists of user requirements, functional requirements, and design specifications while the testing on installation, operational, and performance specifications. In implementing system engineering tomore » this project, the user and functional requirements are (a) HDR unit parameters be downloaded from the treatment planning system, (b) dwell times and positions be generated by treatment planning system, (c) source decay be computer calculated, (d) a double-check system of treatment parameters to comply with the NRC regulation. These requirements are intended to reduce human intervention to improve patient safety. Results: A formal investigation indicated that the user requirements can be satisfied. The treatment operation consists of using the treatment planning system to generate a pseudo plan that is adjusted for different shielded applicators to compute the dwell times. The dwell positions, channel numbers, and the dwell times are verified by the medical physicist and downloaded into the HDR unit. The decayed source strength is transferred to a spreadsheet that computes the dwell times based on the type of applicators and prescribed dose used. Prior to treatment, the source strength, dwell times, dwell positions, and channel numbers are double-checked by the radiation oncologist. No dosimetric parameters are manually calculated. Conclusion: Systems engineering provides methodologies to effectively design the HDR treatment operation that minimize human intervention and improve patient safety.« less
Developing a national stream morphology data exchange: needs, challenges, and opportunities
Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.
2012-01-01
Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.
Developing a national stream morphology data exchange: Needs, challenges, and opportunities
NASA Astrophysics Data System (ADS)
Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.
2012-05-01
Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.
Brand, Genevieve; Vondracek, Bruce C.; Jordan, Nicholas R.
2015-01-01
Rotational grazing (RG) is a livestock management practice that rotates grazing cattle on a scale of hours to days among small pastures termed paddocks. It may beneficially affect stream channels, relative to other livestock management practices. Such effects and other beneficial effects on hydrology are important to RG's potential to provide a highly multifunctional mode of livestock farming. Previous comparisons of effects of RG and confinement dairy (CD) on adjoining streams have been restricted in scale and scope. We examined 11 stream-channel characteristics on a representative sample of 37 small dairy farms that used either RG or CD production methods. Our objectives were: (1) to compare channel characteristics on RG and CD farms, as these production methods are implemented in practice, in New York, Pennsylvania and Wisconsin, USA; and (2) to examine land use on these farms that may affect stream-channel characteristics. To help interpret channel characteristic findings, we examined on-farm land use in riparian areas 50 m in width along both sides of stream reaches and whole-farm land use. In all states, stream-channel characteristics on RG and CD farms did not differ. Whole-farm land use differed significantly between farm types; CD farms allocated more land to annual row crops, whereas RG farms allocated more land to pasture and grassland. However, land cover in 50 m riparian areas was not different between farm types within states; in particular, many RG and CD farms had continuously grazed pastures in riparian areas, typically occupied by juvenile and non-lactating cows, which may have contributed sediment and nutrients to streams. This similarity in riparian management practices may explain the observed similarity of farm types with respect to stream-channel characteristics. To realize the potential benefits of RG on streams, best management practices that affect stream-channel characteristics, such as protection of riparian areas, may improve aggregate effects of RG on stream quality and also enhance other environment, economic and social benefits of RG.
Distributed Common Ground System-Navy Increment 2 (DCGS-N Inc 2)
2016-03-01
15 minutes Enter and be Managed in the Network: Reference SvcV-7, Consolidated Afloat Networks and Enterprise Services ( CANES ) CDD, DCGS-N Inc 2...Red, White , Gray Data and Tracks to Command and Control System. Continuous Stream from SCI Common Intelligence Picture to General Service (GENSER...AIS - Automatic Information System AOC - Air Operations Command CANES - Consolidated Afloat Networks and Enterprise Services CID - Center for
Using Video to Communicate Scientific Findings -- Habitat Connections in Urban Streams
NASA Astrophysics Data System (ADS)
Harned, D. A.; Moorman, M.; Fitzpatrick, F. A.; McMahon, G.
2011-12-01
The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film examining effects of urbanization on stream habitat. "Habitat Connections in Urban Streams" explores how urbanization changes some of the physical features that provide in-stream habitat and examines examples of stream restoration projects designed to improve stream form and function. The "connections" theme is emphasized, including the connection of in-stream habitats from the headwaters to the stream mouth; connections between stream habitat and the surrounding floodplains, wetlands and basin; and connections between streams and people-- resource managers, public officials, scientists, and the general public. Examples of innovative stream restoration projects in Baltimore Maryland; Milwaukee, Wisconsin; and Portland Oregon are shown with interviews of managers, engineers, scientists, and others describing the projects. The film is combined with a website with links to extended film versions of the stream-restoration project interviews. The website and films are an example of USGS efforts aimed at improving science communication to a general audience. The film is available for access from the EUSE website: http://water.usgs.gov/nawqa/urban/html/podcasts.html. Additional films are planned to be released in 2012 on other USGS project results and programs.
DECENTRALIZED STORMWATER MANAGEMENT: RETROFITTING HOMES, RESTORING WATERSHEDS
Stormwater runoff from impervious surfaces in urban and suburban areas has led to human safety risks and widespread stream ecosystem impairment. While centralized stormwater management can minimize large fluctuations in stream flows and flooding risk to urban areas, this approac...
Encouraging stormwater management using a reverse auction: potential to restore stream ecosystems
Stormwater runoff is the primary mechanism by which urbanizing landscapes disrupt natural, stream ecosystems. Source control management has been demonstrated as an effective and cost-efficient method for reducing stormwater runoff; however, sufficiently widespread implementation...
NOAA Ecosystem Data Assembly Center for the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Parsons, A. R.; Beard, R. H.; Arnone, R. A.; Cross, S. L.; Comar, P. G.; May, N.; Strange, T. P.
2006-12-01
Through research programs at the NOAA Northern Gulf of Mexico Cooperative Institute (CI), NOAA is establishing an Ecosystem Data Assembly Center (EDAC) for the Gulf of Mexico. The EDAC demonstrates the utility of integrating many heterogeneous data types and streams used to characterized and identify ecosystems for the purpose of determining the health of ecosystems and identifying applications of the data within coastal resource management activities. Data streams include meteorological, physical oceanographic, ocean color, benthic, biogeochemical surveys, fishery, as well as fresh water fluxes (rainfall and river flow). Additionally the EDAC will provide an interface to the ecosystem data through an ontology based on the Coastal/Marine Ecological Classification System (CMECS). Applications of the ontological approach within the EDAC will be applied to increase public knowledge on habitat and ecosystem awareness. The EDAC plans to leverage companion socioeconomic studies to identify the essential data needed for continued EDAC operations. All data-management architectures and practices within the EDAC ensure interoperability with the Integrated Ocean Observing System (IOOS) national backbone by incorporating the IOOS Data Management and Communications Plan. Proven data protocols, standards, formats, applications, practices and architectures developed by the EDAC will be transitioned to the NOAA National Data Centers.
The use of ecological classification in management
Constance A. Carpenter; Wolf-Dieter Busch; David T. Cleland; Juan Gallegos; Rick Harris; ray Holm; Chris Topik; Al Williamson
1999-01-01
Ecological classificafion systems range over a variety of scales and reflect a variety of scientific viewpoints. They incorporate or emphasize varied arrays of environmental factors. Ecological classifications have been developed for marine, wetland, lake, stream, and terrestrial ecosystems. What are the benefits of ecological classification for natural resource...
RESEARCH IN THERMAL BIOLOGY: BURNING QUESTIONS FOR COLDWATER STREAM FISHES
With the increasing appreciation of global warming impacts on ecological systems in addition to the myriad of land management effects on water quality, the number of literature citations dealing with the effects of water temperature on freshwater fish has escalated in the past de...
Riparian buffers have been well studied as best management practices for nutrient reduction at field scales yet their effectiveness for bettering water quality at watershed scales has been difficult to determine. Seasonal dynamics of the stream network are often overlooked when ...
What's a stream without water? Disproportionality in headwater regions impacting water quality.
Armstrong, Andrea; Stedman, Richard C; Bishop, Joseph A; Sullivan, Patrick J
2012-11-01
Headwater streams are critical components of the stream network, yet landowner perceptions, attitudes, and property management behaviors surrounding these intermittent and ephemeral streams are not well understood. Our research uses the concept of watershed disproportionality, where coupled social-biophysical conditions bear a disproportionate responsibility for harmful water quality outcomes, to analyze the potential influence of riparian landowner perceptions and attitudes on water quality in headwater regions. We combine social science survey data, aerial imagery, and an analysis of spatial point processes to assess the relationship between riparian landowner perceptions and attitudes in relation to stream flow regularity. Stream flow regularity directly and positively shapes landowners' water quality concerns, and also positively influences landowners' attitudes of stream importance-a key determinant of water quality concern as identified in a path analysis. Similarly, riparian landowners who do not notice or perceive a stream on their property are likely located in headwater regions. Our findings indicate that landowners of headwater streams, which are critical areas for watershed-scale water quality, are less likely to manage for water quality than landowners with perennial streams in an obvious, natural channel. We discuss the relationships between streamflow and how landowners develop understandings of their stream, and relate this to the broader water quality implications of headwater stream mismanagement.
NASA Astrophysics Data System (ADS)
Gleason, J. L.; Hillyer, T. N.; Wilkins, J.
2012-12-01
The CERES Science Team integrates data from 5 CERES instruments onboard the Terra, Aqua and NPP missions. The processing chain fuses CERES observations with data from 19 other unique sources. The addition of CERES Flight Model 5 (FM5) onboard NPP, coupled with ground processing system upgrades further emphasizes the need for an automated job-submission utility to manage multiple processing streams concurrently. The operator-driven, legacy-processing approach relied on manually staging data from magnetic tape to limited spinning disk attached to a shared memory architecture system. The migration of CERES production code to a distributed, cluster computing environment with approximately one petabyte of spinning disk containing all precursor input data products facilitates the development of a CERES-specific, automated workflow manager. In the cluster environment, I/O is the primary system resource in contention across jobs. Therefore, system load can be maximized with a throttling workload manager. This poster discusses a Java and Perl implementation of an automated job management tool tailored for CERES processing.
Influence of infrastructure on water quality and greenhouse gasdynamics in urban streams
Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4), and watershed management can alter greenhouse gas emissions from streams. GHG emissions from streams in agricultural watersheds have been investigated in numerous studies,...
NASA Astrophysics Data System (ADS)
Araya, F. Z.; Abdul-Aziz, O. I.
2017-12-01
This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.
Large-Scale Effects of Timber Harvesting on Stream Systems in the Ouachita Mountains, Arkansas, USA
NASA Astrophysics Data System (ADS)
Williams, Lance R.; Taylor, Christopher M.; Warren, Melvin L., Jr.; Clingenpeel, J. Alan
2002-01-01
Using Basin Area Stream Survey (BASS) data from the United States Forest Service, we evaluated how timber harvesting influenced patterns of variation in physical stream features and regional fish and macroinvertebrate assemblages. Data were collected for three years (1990-1992) from six hydrologically variable streams in the Ouachita Mountains, Arkansas, USA that were paired by management regime within three drainage basins. Specifically, we used multivariate techniques to partition variability in assemblage structure (taxonomic and trophic) that could be explained by timber harvesting, drainage basin differences, year-to-year variability, and their shared variance components. Most of the variation in fish assemblages was explained by drainage basin differences, and both basin and year-of-sampling influenced macroinvertebrate assemblages. All three factors modeled, including interactions between drainage basins and timber harvesting, influenced variability in physical stream features. Interactions between timber harvesting and drainage basins indicated that differences in physical stream features were important in determining the effects of logging within a basin. The lack of a logging effect on the biota contradicts predictions for these small, hydrologically variable streams. We believe this pattern is related to the large scale of this study and the high levels of natural variability in the streams. Alternatively, there may be time-specific effects we were unable to detect with our sampling design and analyses.
Partial oxidation power plant with reheating and method thereof
Newby, Richard A.; Yang, Wen-Ching; Bannister, Ronald L.
1999-01-01
A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.
Status of surface-water modeling in the U.S. Geological Survey
Jennings, Marshall E.; Yotsukura, Nobuhiro
1979-01-01
The U.S. Geological Survey is active in the development and use of models for the analysis of various types of surface-water problems. Types of problems for which models have been, or are being developed, include categories such as the following: (1)specialized hydraulics, (2)flow routing in streams, estuaries, lakes, and reservoirs, (3) sedimentation, (4) transport of physical, chemical, and biological constituents, (5) surface exchange of heat and mass, (6) coupled stream-aquifer flow systems, (7) physical hydrology for rainfall-runoff relations, stream-system simulations, channel geometry, and water quality, (8) statistical hydrology for synthetic streamflows, floods, droughts, storage, and water quality, (9) management and operation problems, and (10) miscellaneous hydrologic problems. Following a brief review of activities prior to 1970, the current status of surface-water modeling is given as being in a developmental, verification, operational, or continued improvement phase. A list of recently published selected references, provides useful details on the characteristics of models.
Chen, Yong; Sun, Li-Ping; Liu, Zhi-Hui; Martin, Greg; Sun, Zheng
2017-11-27
Managing waste is an increasing problem globally. Microalgae have the potential to help remove contaminants from a range of waste streams and convert them into useful biomass. This article presents a critical review of recent technological developments in the production of chemicals and other materials from microalgae grown using different types of waste. A range of novel approaches are examined for efficiently capturing CO 2 in flue gas via photosynthetic microalgal cultivation. Strategies for using microalgae to assimilate nitrogen, organic carbon, phosphorus, and metal ions from wastewater are considered in relation to modes of production. Generally, more economical open cultivation systems such as raceway ponds are better suited for waste conversion than more expensive closed photobioreactor systems, which might have use for higher-value products. The effect of cultivation methods and the properties of the waste streams on the composition the microalgal biomass is discussed relative to its utilization. Possibilities include the production of biodiesel via lipid extraction, biocrude from hydrothermal liquefaction, and bioethanol or biogas from microbial conversion. Microalgal biomass produced from wastes may also find use in higher-value applications including protein feeds or for the production of bioactive compounds such as astaxanthin or omega-3 fatty acids. However, for some waste streams, further consideration of how to manage potential microbial and chemical contaminants is needed for food or health applications. The use of microalgae for waste valorization holds promise. Widespread implementation of the available technologies will likely follow from further improvements to reduce costs, as well as the increasing pressure to effectively manage waste.
Linking river management to species conservation using dynamic landscape scale models
Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.
2013-01-01
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.
The Stream-Catchment (StreamCat) Dataset
Stream environments reflect, in part, the hydrologic integration of upstream landscapes. Characterizing upstream landscape features is critical for effectively understanding, managing, and conserving riverine ecosystems. However, watershed delineation is a major challenge if hund...
Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays
NASA Astrophysics Data System (ADS)
Park, Jahng-Hyon; Shin, Wanjae
It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which includes instability and inaccuracy. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to a constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input intervals. That means the entire system has a large control bandwidth. The validity of the proposed method is demonstrated by experiments of teleoperation from USC (University of Southern California in U. S.A.) to HYU (Hanyang Univ. in Korea) through the Internet. The proposed method is also demonstrated by experiments of teleoperation through the wireless internet.
NASA Astrophysics Data System (ADS)
Tseng, Kuo-Kun; Lo, Jiao; Liu, Yiming; Chang, Shih-Hao; Merabti, Madjid; Ng, Felix, C. K.; Wu, C. H.
2017-10-01
The rapid development of the internet has brought huge benefits and social impacts; however, internet security has also become a great problem for users, since traditional approaches to packet classification cannot achieve satisfactory detection performance due to their low accuracy and efficiency. In this paper, a new stateful packet inspection method is introduced, which can be embedded in the network gateway and used by a streaming application detection system. This new detection method leverages the inexact automaton approach, using part of the header field and part of the application layer data of a packet. Based on this approach, an advanced detection system is proposed for streaming applications. The workflow of the system involves two stages: the training stage and the detection stage. In the training stage, the system initially captures characteristic patterns from a set of application packet flows. After this training is completed, the detection stage allows the user to detect the target application by capturing new application flows. This new detection approach is also evaluated using experimental analysis; the results of this analysis show that this new approach not only simplifies the management of the state detection system, but also improves the accuracy of data flow detection, making it feasible for real-world network applications.
M.D. Bryant; R.T. Edwards; R.D. Woodsmith
2005-01-01
Rivers and streams that support anadromous salmonids are an important part of land management planning in southeastern Alaska and the Pacific Northwest of North America. Land managers and planners require a consistent set of protocols that include both the physical and biological aspects of the stream for effectiveness monitoring procedures to evaluate management...
Eric K. Zenner; Michelle A. Martin; Brian J. Palik; Jerilynn E. Peck; Charles R. Blinn
2013-01-01
Partial timber harvest within riparian management zones (RMZs) may permit active management of riparian forests while protecting stream ecosystems, but impacts on herbaceous communities are poorly understood. We compared herbaceous plant community abundance, diversity and composition in RMZs along small streams in northern Minnesota, USA, among four treatments before...
Conrads, Paul; Edwin Roehl, Jr.
2017-01-01
Natural-resource managers and stakeholders face difficult challenges when managing interactions between natural and societal systems. Potential changes in climate could alter interactions between environmental and societal systems and adversely affect the availability of water resources in many coastal communities. The availability of freshwater in coastal streams can be threatened by saltwater intrusion. Even though the collective interests and computer skills of the community of managers, scientists and other stakeholders are quite varied, there is an overarching need for equal access by all to the scientific knowledge needed to make the best possible decisions. This paper describes a decision support system, PRISM-2, developed to evaluate salinity intrusion due to potential climate change along the South Carolina coast in southeastern USA. The decision support system is disseminated as a spreadsheet application and integrates the output of global circulation models, watershed models and salinity intrusion models with real-time databases for simulation, graphical user interfaces, and streaming displays of results. The results from PRISM-2 showed that a 31-cm and 62-cm increase in sea level reduced the daily availability of freshwater supply to a coastal municipal intake by 4% and 12% of the time, respectively. Future climate change projections by a global circulation model showed a seasonal change in salinity intrusion events from the summer to the fall for the majority of events.
Loar, James M; Stewart, Arthur J; Smith, John G
2011-06-01
In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.
NASA Astrophysics Data System (ADS)
Loar, James M.; Stewart, Arthur J.; Smith, John G.
2011-06-01
In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.
NASA Astrophysics Data System (ADS)
Springer, A. E.; Stevens, L. E.
2008-12-01
Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in the groundwater basin. The process was developed to allow water managers to assess and prioritize potential impacts to the biological, historical, or cultural aspects of the four types of systems from groundwater abstraction. These approaches can be adapted to other baseflow dependent, unregulated rivers or to assess risks to natural features associated with water sources in other regions.
Effects of stormwater management and stream restoration on watershed nitrogen retention
Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influ...
USING MARKET INCENTIVES TO PROMOTE DECENTRALIZED STORMWATER MANAGEMENT
Stormwater runoff from impervious surfaces in urban and suburban areas has led to human safety risks and widespread stream ecosystem impairment. While centralized stormwater management can minimize large fluctuations in stream flows and flooding risk to urban areas, this approac...
NASA Astrophysics Data System (ADS)
Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos
2012-06-01
When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.
Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.
S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx
1999-01-01
Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...
Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning
Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann
2016-01-01
Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...
Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo
2012-12-01
Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins could be self-sufficient units so long as the response of the main hydrological components to external forces that produce water scarcity, as climate change or human pressures, is appropriately considered in water resource planning. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, D.; Nash, C.; Howe, A.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to themore » LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF evaporator to aid in planning for their disposition, and (3) generate concentrated evaporator bottoms for use in immobilization testing.« less
Grazing management effects on stream bank erosion and phosphorus delivery to a pasture stream
USDA-ARS?s Scientific Manuscript database
Pasture lands may deliver significant sediment and phosphorus (P) to surface waters. To determine the effects of beef (Bos taurus) grazing practices on stream bank erosion and P losses, three treatments [rotational stocking (RS), continuous stocking with restricted stream access (CSR), and continuou...
Applications of spatial statistical network models to stream data
Daniel J. Isaak; Erin E. Peterson; Jay M. Ver Hoef; Seth J. Wenger; Jeffrey A. Falke; Christian E. Torgersen; Colin Sowder; E. Ashley Steel; Marie-Josee Fortin; Chris E. Jordan; Aaron S. Ruesch; Nicholas Som; Pascal Monestiez
2014-01-01
Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for...
Multistressor predictive models of invertebrate condition in the Corn Belt, USA
Waite, Ian R.; Van Metre, Peter C.
2017-01-01
Understanding the complex relations between multiple environmental stressors and ecological conditions in streams can help guide resource-management decisions. During 14 weeks in spring/summer 2013, personnel from the US Geological Survey and the US Environmental Protection Agency sampled 98 wadeable streams across the Midwest Corn Belt region of the USA for water and sediment quality, physical and habitat characteristics, and ecological communities. We used these data to develop independent predictive disturbance models for 3 macroinvertebrate metrics and a multimetric index. We developed the models based on boosted regression trees (BRT) for 3 stressor categories, land use/land cover (geographic information system [GIS]), all in-stream stressors combined (nutrients, habitat, and contaminants), and for GIS plus in-stream stressors. The GIS plus in-stream stressor models had the best overall performance with an average cross-validation R2 across all models of 0.41. The models were generally consistent in the explanatory variables selected within each stressor group across the 4 invertebrate metrics modeled. Variables related to riparian condition, substrate size or embeddedness, velocity and channel shape, nutrients (primarily NH3), and contaminants (pyrethroid degradates) were important descriptors of the invertebrate metrics. Models based on all measured in-stream stressors performed comparably to models based on GIS landscape variables, suggesting that the in-stream stressor characterization reasonably represents the dominant factors affecting invertebrate communities and that GIS variables are acting as surrogates for in-stream stressors that directly affect in-stream biota.
Camille Flinders; Daniel L. McLaughlin; Larry Korhnak; William J. Arthurs; Joan Ikoma; Matthew J. Cohen; Erik B. Schilling
2016-01-01
Watersheds dominated by forest cover typically have high quality water. In managed forests, fertilizers may be periodically applied during the growing period. The Florida Forest Service has developed Best Management Practices (BMPs) for managed forests to minimize the potential impacts of forestry operations, including fertilization, to forest streams and maintain ...
Partial oxidation power plant with reheating and method thereof
Newby, R.A.; Yang, W.C.; Bannister, R.L.
1999-08-10
A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.
Summaries of Minnehaha Creek Watershed District Plans/Studies/Reports
2004-01-30
34+ Management of all wetland functional assessment data in a Microsoft Access© database "+ Development of a GIS wetland data management system "+ Recommendations...General Task B Design GIS -Based Decision Making Model: Scenario-Based $125,000 $125,000 Model of Landuse Hydro Data Monitoring Task C Water Quality...Landuse and Land cover data + Watershed GIS data layers + Flood Insurance Rate Maps + Proposed project locations + Stream miles, reaches and conditions
Agriculture and stream water quality: A biological evaluation of erosion control practices
NASA Astrophysics Data System (ADS)
Lenat, David R.
1984-07-01
Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.
An integrated approach for the management of demolition waste in Cyprus.
Kourmpanis, Basilis; Papadopoulos, Achilleas; Moustakas, Konstantinos; Kourmoussis, Fotis; Stylianou, Marinos; Loizidou, Maria
2008-12-01
This study investigated the generation and management of demolition waste (DW) in Cyprus. A methodology has been developed and applied for the estimation of the quantities of the waste stream under examination, since quantitative primary data were not available. The existing situation relating to the practices applied for the management of DW was investigated and assessed. Furthermore, a multi-criteria analysis method (PROMETHEE II) was developed and applied in order to examine alternative systems that could be implemented for the management of the DW in the country. In particular, nine management systems (scenarios) were examined, evaluated and ranked according to their efficiency using seventeen individual criteria, divided into four groups (social-legislative, environmental, economic and technical). The ranking of the alternative waste management scenarios indicated that the optimum management system for possible implementation in the island included complete selective demolition procedures and transfer of mixed recyclable materials to the recycling centre and non-recyclable material to landfill.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... vegetation management and road system modifications and maintenance. DATES: Comments concerning the project..., especially in streams occupied by ESA-listed fishes and in designated critical habitat; (5) reduce road-related accelerated sediment and other road related impacts; (6) restore riparian vegetation and...
The Canaan Valley Institute (CVI) is dedicated to addressing the environmental problems in the Mid-Atlantic Highlands (MAH). Their goal is to develop and implement solutions to restore damaged areas and protect aquatic systems. In most wadeable streams of the Mid-Atlantic Highlan...
Preventing and managing aggression and violence in the NHS.
Bleetman, Anthony; Fayeye, Oloruntoba O
2003-12-01
Streaming in emergency departments reduces waiting times and stress, and removes the causes of most violent attacks against staff. In spite of this some people will still attack staff. Staff must be protected by a sound trust policy and effective and realistic training, monitored by a good reporting system.
Source Separation and Composting of Organic Municipal Solid Waste.
ERIC Educational Resources Information Center
Gould, Mark; And Others
1992-01-01
Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…
40 CFR 63.137 - Process wastewater provisions-oil-water separators.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (2) The control device shall be designed, operated, and inspected in accordance with the requirements... receives, manages, or treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater... control device. The fixed roof, closed-vent system, and control device shall meet the requirements...
40 CFR 63.137 - Process wastewater provisions-oil-water separators.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (2) The control device shall be designed, operated, and inspected in accordance with the requirements... receives, manages, or treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater... control device. The fixed roof, closed-vent system, and control device shall meet the requirements...
40 CFR 63.137 - Process wastewater provisions-oil-water separators.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (2) The control device shall be designed, operated, and inspected in accordance with the requirements... receives, manages, or treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater... control device. The fixed roof, closed-vent system, and control device shall meet the requirements...
FUEL FLEXIBLE LOW EMISSIONS BURNER FOR WASTE-TO-ENERGY SYSTEMS - PHASE I
NASA Astrophysics Data System (ADS)
Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.
2012-12-01
Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity, geomorphology, and biology during development while implementing advanced sediment and erosion control BMPs are discussed. Also, effects of centralized versus distributed stormwater BMPs and land cover on stream water quantity and quality following suburban development are presented. This includes stream response to precipitation events, baseflow and stormflow export of water, and water chemistry data. Results from this work have informed land use planning at the local level and are being incorporated through adaptive management to maintain the high-quality stream resources in the CSPA. More generally, results from this work could inform urban development stakeholders on effective strategies to curtail urban stream syndrome.
NASA Astrophysics Data System (ADS)
Gries, C.; Winslow, L.; Shin, P.; Hanson, P. C.; Barseghian, D.
2010-12-01
At the North Temperate Lakes Long Term Ecological Research (NTL LTER) site six buoys and one met station are maintained, each equipped with up to 20 sensors producing up to 45 separate data streams at a 1 or 10 minute frequency. Traditionally, this data volume has been managed in many matrix type tables, each described in the Ecological Metadata Language (EML) and accessed online by a query system based on the provided metadata. To develop a more flexible information system, several technologies are currently being experimented with. We will review, compare and evaluate these technologies and discuss constraints and advantages of network memberships and implementation of standards. A Data Turbine server is employed to stream data from data logger files into a database with the Real-time Data Viewer being used for monitoring sensor health. The Kepler work flow processor is being explored to introduce quality control routines into this data stream taking advantage of the Data Turbine actor. Kepler could replace traditional database triggers while adding visualization and advanced data access functionality for downstream modeling or other analytical applications. The data are currently streamed into the traditional matrix type tables and into an Observation Data Model (ODM) following the CUAHSI ODM 1.1 specifications. In parallel these sensor data are managed within the Global Lake Ecological Observatory Network (GLEON) where the software package Ziggy streams the data into a database of the VEGA data model. Contributing data to a network implies compliance with established standards for data delivery and data documentation. ODM or VEGA type data models are not easily described in EML, the metadata exchange standard for LTER sites, but are providing many advantages from an archival standpoint. Both GLEON and CUAHSI have developed advanced data access capabilities based on their respective data models and data exchange standards while LTER is currently in a phase of intense technology developments which will eventually provide standardized data access that includes ecological data set types currently not covered by either ODM or VEGA.
Urban wastewater and stormwater management practices are one of the primary pathways through which urbanization degrades streams. In particular the long-term development and management phases create a complex spatiotemporal layering of infrastructure technologies. These phases re...
NASA Astrophysics Data System (ADS)
Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao
2015-04-01
Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.
Source, Use, and Disposition of Freshwater in Puerto Rico, 2005
Molina-Rivera, Wanda L.
2010-01-01
Water diverted from streams and pumped from wells constitutes the main sources of water for the 78 municipios of the Commonwealth of Puerto Rico. A better understanding is needed about water-use patterns, particularly about the amount of water used, where and how this water is used and disposed, and how human activities impact water resources. Irrigation practices, indoor and outdoor household uses, industrial uses, and commercial and mining withdrawals affect reservoirs, streams, and aquifers. Accurate and accessible water information for Puerto Rico is critical to ensure that water managers have the ability to protect and conserve this natural resource. The population of Puerto Rico increased 15 percent, from 3.4 million in 1985 to 3.9 million people 2005 and resulted in an increased demand for freshwater, mostly for the public-supply water use category. Almost 99 percent of the residents in Puerto Rico were served by public-supply water systems in 2005. One of the major challenges that water managers confront is the need to provide sufficient freshwater availability in the densely populated areas. Public-supply water is provided by the Puerto Rico Aqueducts and Sewers Authority (PRASA) and by non-PRASA systems. Non-PRASA systems refer to community-operated water systems (water systems that serve a rural or suburban housing area).
NASA Astrophysics Data System (ADS)
Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.
2017-12-01
Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how these are related to different flocculation processes and affected by land use. This study improves our understanding on OC flocculation dynamics on a local catchment scale and how POC fate is affected by changed water quality in streams perturbed by land use change.
Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.
Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery
2009-06-01
For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning, engineering, and management.
Booth, N.L.; Everman, E.J.; Kuo, I.-L.; Sprague, L.; Murphy, L.
2011-01-01
The U.S. Geological Survey National Water Quality Assessment Program has completed a number of water-quality prediction models for nitrogen and phosphorus for the conterminous United States as well as for regional areas of the nation. In addition to estimating water-quality conditions at unmonitored streams, the calibrated SPAtially Referenced Regressions On Watershed attributes (SPARROW) models can be used to produce estimates of yield, flow-weighted concentration, or load of constituents in water under various land-use condition, change, or resource management scenarios. A web-based decision support infrastructure has been developed to provide access to SPARROW simulation results on stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via a graphical user interface with familiar controls. The SPARROW decision support system (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions and to describe, test, and share modeled scenarios of future conditions. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Patricia Gradek; Lawrence Saslaw; Steven Nelson
1989-01-01
The Bakersfield District of the Bureau of Land Management conducted an inventory of rangeland riparian systems using a new method developed by a Bureau-wide task force to inventory, monitor and classify riparian areas. Data on vegetation composition were collected for 65 miles of streams and entered into a hierarchical vegetation classification system. Ratings of...
Stream chemistry responses to four range management strategies in eastern Oregon.
A.R. Tiedemann; D.A. Higgins; T.M. Quigley; H.R. Sanderson
1989-01-01
Responses of stream chemistry parameters, nitrate-N (NO3-N), phosphate (PO4), calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), and hydrogen ion activity (pH) were measured on 13 wildland watersheds managed at four different grazing strategies. Range management strategies tested were (A) no grazing, (B) grazing without control of livestock distribution (8.2 ha/...
R. Governo; B. G. Lockaby; Robert B. Rummer; C. Colson
2004-01-01
The purpose of this watershed study on three intermittent streams was to evaluate responses of riparian processes to three streamside management zone (SMZ) treatments; no harvest, clearcut, and partial hawest (50% basal area removal). Riparian response variables measured included litter$all, leaf litter decomposition, understory vegetation, soil temperature and water...
The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks
Kasprak, Alan; Hough-Snee, Nate
2016-01-01
Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segment’s dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a) spatial scale of input data used, (b) the requisite metrics and their order in completing a framework’s decision tree and/or, (c) whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These form-based criticisms may also ignore the geomorphic tenet that channel form reflects formative hydrogeomorphic processes across a given landscape. PMID:26982076
NASA Astrophysics Data System (ADS)
Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-11-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
The dynamics of software development project management: An integrative systems dynamic perspective
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.; Abdel-Hamid, T.
1984-01-01
Rather than continuing to focus on software development projects per se, the system dynamics modeling approach outlined is extended to investigate a broader set of issues pertaining to the software development organization. Rather than trace the life cycle(s) of one or more software projects, the focus is on the operations of a software development department as a continuous stream of software products are developed, placed into operation, and maintained. A number of research questions are ""ripe'' for investigating including: (1) the efficacy of different organizational structures in different software development environments, (2) personnel turnover, (3) impact of management approaches such as management by objectives, and (4) the organizational/environmental determinants of productivity.
NASA Astrophysics Data System (ADS)
Conallin, John; Wilson, Emma; Campbell, Josh
2018-03-01
Anthropogenic pressure on freshwater ecosystems is increasing, and often leading to unacceptable social-ecological outcomes. This is even more prevalent in intermittent river systems where many are already heavily modified, or human encroachment is increasing. Although adaptive management approaches have the potential to aid in providing the framework to consider the complexities of intermittent river systems and improve utility within the management of these systems, success has been variable. This paper looks at the application of an adaptive management pilot project within an environmental flows program in an intermittent stream (Tuppal Creek) in the Murray Darling Basin, Australia. The program focused on stakeholder involvement, participatory decision-making, and simple monitoring as the basis of an adaptive management approach. The approach found that by building trust and ownership through concentrating on inclusiveness and transparency, partnerships between government agencies and landholders were developed. This facilitated a willingness to accept greater risks and unintended consequences allowing implementation to occur.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and liquid streams in... to your wastewater streams and liquid streams in open systems within an MCPU, except as specified in...
Chizinski, Christopher J.; Vondracek, Bruce C.; Blinn, Charles R.; Newman, Raymond M.; Atuke, Dickson M.; Fredricks, Keith; Hemstad, Nathaniel A.; Merten, Eric; Schlesser, Nicholas
2010-01-01
Relatively few evaluations of aquatic macroinvertebrate and fish communities have been published in peer-reviewed literature detailing the effect of varying residual basal area (RBA) after timber harvesting in riparian buffers. Our analysis investigated the effects of partial harvesting within riparian buffers on aquatic macroinvertebrate and fish communities in small streams from two experiments in northern Minnesota northern hardwood-aspen forests. Each experiment evaluated partial harvesting within riparian buffers. In both experiments, benthic macroinvertebrates and fish were collected 1 year prior to harvest and in each of 3 years after harvest. We observed interannual variation for the macroinvertebrate abundance, diversity and taxon richness in the single-basin study and abundance and diversity in the multiple-basin study, but few effects related to harvest treatments in either study. However, interannual variation was not evident in the fish communities and we detected no significant changes in the stream fish communities associated with partially harvested riparian buffers in either study. This would suggest that timber harvesting in riparian management zones along reaches ≤200 m in length on both sides of the stream that retains RBA ≥ 12.4 ± 1.3 m2 ha−1 or on a single side of the stream that retains RBA ≥ 8.7 ± 1.6 m2 ha−1 may be adequate to protect macroinvertebrate and fish communities in our Minnesota study systems given these specific timber harvesting techniques.
NASA Astrophysics Data System (ADS)
O'Connor, B. L.; Hamada, Y.; Bowen, E. E.; Wuthrich, K. K.; Grippo, M. A.
2013-12-01
Land development and associated disturbances in arid environments can adversely affect the ecological functionality of ephemeral stream channels. Land use managers have limited methodologies available for assessing low-impact development plans, or for monitoring changes in stream functionality as land use changes are implemented. The development of utility-scale solar energy facilities is underway in the southwestern United States. Federal and state agencies have developed plans to concentrate facilities in specific regions to minimize transmission limitations (e.g., the Bureau of Land Management's Solar Energy Zones cover 1,100 km2). However, multiple facility footprints in a single desert valley have the potential to drastically alter the natural pattern of ephemeral stream networks. This study focuses on quantifying the sensitivity of ephemeral streams with respect to land disturbance impacts on flow and sediment conveyance, groundwater recharge, and the loss of soil and vegetative habitats. An initial assessment used publicly-available geospatial data (typically 10- to 30-m resolution) on topography, surficial geology, and soil characteristics, as well as data on historical peak discharges and aerial photographs. These datasets were used to inform a professional judgment, score-based ranking of potential land disturbance impacts on the functionality of ephemeral streams. The results were limited to mapped stream channels in the National Hydrography Dataset, but suggested that hydrological and geomorphic impacts were a greater concern in valley piedmont regions, and that habitat concerns were greater in the valley regions where vegetation is sparsely distributed. Current efforts are focused on using a remote sensing approach to obtain high-resolution information on topography, soil, and vegetation in order to map detailed ephemeral stream networks, measure channel bathymetry characteristics, and use spectral indices of soil and vegetation to develop surrogate measures of stream ecological functionality. The initial results for a small watershed (110 km2) using stereoscopic, sub-meter resolution aerial images, detected an increase of more than 100% in identified ephemeral stream channels and habitat patterns were more spatially correlated with ephemeral stream networks than was observed for the initial assessment approach. The eventual goal of these efforts is to refine the methodology for quantifying the disturbance sensitivity of ephemeral streams, from professional judgment rankings to spectral indices of stream functionality, and to close the spatial gap between the need for large-scale assessments for land management planning and the small-scale analyses and data requirements for quantifying ephemeral stream functionality.
NASA Astrophysics Data System (ADS)
Yu, Mingjing; Rhoads, Bruce L.
2018-05-01
The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on eroding floodplain surfaces and channel banks within heavily grazed reaches of the stream.
NASA Astrophysics Data System (ADS)
McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.
2006-12-01
Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U.S.A. Midwestern states). We also discuss how the insights gained from our approach cannot be achieved with modeling tools that are not both spatially explicit and process-based.
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun
2014-08-01
In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.
INTERACTIVE HABITAT SUITABILITY MODELS FOR STREAM FISHES IN THE MID-ATLANTIC HIGHLANDS
Models that predict the presence of stream fish species based on habitat characteristics can be useful in watershed management. We developed such models for each of fourteen Mid-Atlantic Highlands stream fish species/groups.
D.H. Olson; P.D. Anderson; C.A. Frissell; H.H. Welsh; D.F. Bradford
2007-01-01
New science insights are redefining stream riparian zones, particularly relative to headwaters, microclimate conditions, and fauna such as amphibians. We synthesize data on these topics, and propose management approaches to target sensitive biota at reach to landscape scales.
HIV/AIDS policy agenda setting in Iran
Khodayari - Zarnaq, Rahim; Ravaghi, Hamid; Mohammad Mosaddeghrad, Ali; Sedaghat, Abbas; Mohraz, Minoo
2016-01-01
Background: HIV/AIDS control are one of the most important goals of the health systems. The aim of this study was to determine how HIV/AIDS control was initiated among policy makers’ agenda setting in Iran. Methods: A qualitative research (semi-structured interview) was conducted using Kingdon’s framework (problem, policy and politics streams, and policy windows and policy entrepreneurs) to analysis HIV/AIDS agenda setting in Iran. Thirty-two policy makers, managers, specialists, and researchers were interviewed. Also, 30 policy documents were analyzed. Framework analysis method was used for data analysis. Results: the increase of HIV among Injecting drug users (IDUs) and Female Sex Workers (FSWs), lack of control of their high-risk behaviors, and exceeding the HIV into concentrated phase were examples of problem stream. Policy stream was evidence-based solutions that highlighted the need for changing strategies for dealing with such a problem and finding technically feasible and acceptable solutions. Iran’s participation in United Nations General Assembly special sessions on HIV/AIDS (UNGASS), the establishment of National AIDS Committee; highlighting AIDS control in Iran’s five years development program and the support of the judiciary system of harm reduction policies were examples of politics stream. Policy entrepreneurs linking these streams put the HIV/AIDS on the national agenda (policy windows) and provide their solutions. Conclusion: There were mutual interactions among these three streams and sometimes, they weakened or reinforced each other. Future studies are recommended to understand the interactions between these streams’ parts and perhaps develop further Kingdon’s framework, especially in the health sector. PMID:27579283
Wood, Molly S.; Rea, Alan; Skinner, Kenneth D.; Hortness, Jon E.
2009-01-01
Many State and Federal agencies use information regarding the locations of streams having intermittent or perennial flow when making management and regulatory decisions. For example, the application of some Idaho water quality standards depends on whether streams are intermittent. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 ft3/s. However, there is a general recognition that the cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not as accurate or consistent as desirable from one map to another, which makes broad management and regulatory assessments difficult and inconsistent. To help resolve this problem, the USGS has developed a methodology for predicting the locations of perennial streams based on regional generalized least-squares (GLS) regression equations for Idaho streams for the 7Q2 low-flow statistic. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams in most areas in Idaho. The use of these equations in conjunction with a geographic information system (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along stream reaches. The USGS has developed a GIS-based map of the locations of streams in Idaho with perennial flow based on a 7Q2 of 0.1 ft3/s and a transition zone of plus or minus 1 standard error. Idaho State cooperators plan to use this information to make regulatory and water-quality management decisions. Originally, 7Q2 equations were developed for eight regions of similar hydrologic characteristics in the study area, using long-term data from 234 streamflow-gaging stations. Equations in five of the regions were revised based on spatial patterns observed in the initial perennial streams map and unrealistic behavior of the equations in extrapolation. The standard errors of prediction for the final equations ranged from a minimum of +75.0 to -42.9 percent in the central part of the study area to a maximum of +277 to -73.5 percent in the southern part of the study area. The equations are applicable only to unregulated, naturally-flowing streams and may produce unreliable results outside the range of explanatory variables used for equation development. Extrapolation outside the range of available data was necessary, however, to predict perennial flow initiation points and transition zones along stream reaches. The map of perennial streams was evaluated by comparing predicted stream classifications with four independent datasets, including field observations by other government agencies. Overall, 81 percent of the comparison data points agreed with the USGS perennial streams model. Regions with the highest number of disagreements had a high percentage of mountainous and forested area with potential mountain front recharge zones, and regions with the highest agreements had a high percentage of low gradient, low elevation area. As a whole, the USGS model predicted a higher number of perennial streams than predictions made with the independent datasets. Some disagreements were due to poor site location coordinates, timing of the comparison site visits during unusually wet or dry years, discrepancies in classification criteria, and variable ground water contributions to flow in some areas. The Idaho Department of Environmental Quality Beneficial Use Reconnaissance Program (BURP) dataset is considered the most representative dataset for comparison because it covered a range of climate conditions and the number of sites visited were consistent from year to year during the study period. Eighty-five percent of BURP comparison data points agreed with the USGS perennial streams model. Although site-specific flow data may be needed to correctly classify streams in some areas, this information rarely is available and is not always practical to o
Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems
NASA Astrophysics Data System (ADS)
Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin
2016-02-01
Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.
Climate change mitigation for agriculture: water quality benefits and costs.
Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John
2008-01-01
New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances impair wetland function to intercept and remove nitrate from drainage water, or even add to the overall N loading to waterways. DCD is water soluble and degrades rapidly in warm soil conditions. The recommended application rate of 10 kg DCD/ha corresponds to 6 kg N/ha and may be exceeded in warm climates. Of the N2O produced by agricultural systems, approximately 30% is emitted from indirect sources, which are waterways draining agriculture. It is important therefore to focus strategies for managing N inputs to agricultural systems generally to reduce inputs to wetlands and streams where these might be reduced to N2O. Waste management options include utilizing the CH4 resource produced in farm waste treatment ponds as a source of energy, with conversion to CO2 via combustion achieving a 21-fold reduction in GHG emissions. Both of these have co-benefits for waterways as a result of reduced loadings. A conceptual model derived showing the linkages between key land management practices for greenhouse gas mitigation and key waterway values and ecosystem attributes is derived to aid resource managers making decisions affecting waterways and atmospheric GHG emissions. Copyright (c) IWA Publishing 2008.
Medhurst, R. Bruce; Wipfli, Mark S.; Binckley, Chris; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion
2010-01-01
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.
A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Eddy, Pat
1987-01-01
The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.
M.D. O' Connor; C.H. Perry; W. McDavitt
2007-01-01
According to the State of California, most of North Coastâs watersheds are impaired by sediment. This study quantified sediment yield from watersheds under different management conditions. Temporary sedimentation basins were installed in 30 randomly chosen first-order streams in two watersheds in Humboldt County, California. Most treatment sites were clearcuts, but two...
1983-07-01
Distributed Computing Systems impact DrnwrR - aehR on Sotwar Quaity. PERFORMING 010. REPORT NUMBER 7. AUTNOW) S. CONTRACT OR GRANT "UMBER(*)IS ThomasY...C31 Application", "Space Systems Network", "Need for Distributed Database Management", and "Adaptive Routing". This is discussed in the last para ...data reduction, buffering, encryption, and error detection and correction functions. Examples of such data streams include imagery data, video
StreamStats: A water resources web application
Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.
2008-01-01
Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations. Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives.StreamStats is a Web-based Geographic Information System (GIS) application that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI’s ArcHydro Data Model and Tools, described on the Web at http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user’s Web browser, or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques.StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Requirements for Wastewater Streams... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Requirements for Wastewater Streams... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...
Availability and distribution of low flow in Anahola Stream, Kauaʻi, Hawaiʻi
Cheng, Chui Ling; Wolff, Reuben H.
2012-01-01
Anahola Stream is a perennial stream in northeast Kauaʻi, Hawaiʻi, that supports agricultural, domestic, and cultural uses within its drainage basin. Beginning in the late 19th century, Anahola streamflow was diverted by Makee Sugar Company at altitudes of 840 feet (upper intake) and 280 feet (lower intake) for irrigating sugarcane in the Keālia area. When sugarcane cultivation in the Keālia area ceased in 1988, part of the Makee Sugar Company’s surface-water collection system (Makee diversion system) in the Anahola drainage basin was abandoned. In an effort to better manage available surface-water resources, the State of Hawaiʻi Department of Hawaiian Home Lands is considering using the existing ditches in the Anahola Stream drainage basin to provide irrigation water for Native Hawaiian farmers in the area. To provide information needed for successful management of the surface-water resources, the U.S. Geological Survey investigated the availability and distribution of natural low flow in Anahola Stream and also collected low-flow data in Goldfish Stream, a stream that discharges into Kaneha Reservoir, which served as a major collection point for the Makee diversion system. Biological surveys of Anahola Stream were conducted as part of a study to determine the distribution of native and nonnative aquatic stream fauna. Results of the biological surveys indicated the presence of the following native aquatic species in Anahola Stream: ʻoʻopu ʻakupa (Sandwich Island sleeper) and ʻoʻopu naniha (Tear-drop goby) in the lower stream reaches surveyed; and ʻoʻopu nākea (Pacific river goby), ʻoʻopu nōpili (Stimpson’s goby), and ʻōpae kalaʻole (Mountain shrimp) in the middle and upper stream reaches surveyed. Nonnative aquatic species were found in all of the surveyed stream reaches along Anahola Stream. The availability and distribution of natural low flow were determined using a combination of discharge measurements made from February 2011 to May 2012 at low-flow partial-record and seepage-run stations established at locations of interest along study-area streams. Upstream of the upper intake, the estimated natural (undiverted) median flow in Anahola Stream is 2.7 million gallons per day, and the flow is expected to be greater than or equal to 0.97 million gallons per day 95 percent of the time. About 0.7 mile upstream of the lower intake and downstream from the confluence with Keaʻoʻopu Stream, the estimated natural (undiverted) median flow in Anahola Stream is 6.3 million gallons per day, and the flow is expected to be greater than or equal to 2.7 million gallons per day 95 percent of the time. In Goldfish Stream, about 0.4 mile upstream from the point of discharge into Kaneha Reservoir, the estimated natural median flow is 0.54 million gallons per day, and the flow is expected to be greater than or equal to 0.23 million gallons per day 95 percent of the time. The discharge estimates are representative of low-flow conditions in the study-area streams, and they are applicable to the base period (water years 1961–2011) over which they have been computed. The distribution of natural low flow in Anahola Stream was characterized through data collected during wet- and dry-season seepage runs. Seepage-run results show that Anahola Stream was generally a gaining stream under natural low-flow conditions. During the wet-season seepage run, Anahola Stream at the station located upstream of tributary Kaʻalula Stream had more than five times the flow that was measured upstream from the upper intake. The estimated total gain (including tributary inflow) in the 6.1-mile seepage-run reach was 6.97 million gallons per day; about 42 percent of that gain was groundwater discharge to the main channel of Anahola Stream. During the dry-season seepage run, about 34 percent of the estimated total gain of 3.93 million gallons per day in the same seepage-run reach was groundwater discharge to the main channel of Anahola Stream. A 15-percent seepage loss was estimated in a 0.3-mile reach downstream from the confluence of Anahola and Keaʻoʻopu Streams. The report summarizes scenarios that describe (1) surface-water availability under regulated conditions of Anahola Stream if the upper and lower intakes are restored in the future; and (2) amount of flow available for agricultural use at the upper intake under a variety of potential instream-flow standards that may be established by the State of Hawaiʻi for the protection of instream uses.
Sediment deposition from forest roads at stream crossings as influenced by road characteristics
A.J. Lang; W.M. Aust; M.C. Bolding; K.J. McGuire
2015-01-01
Recent controversies associated with ditched forest roads and stream crossings in the Pacific Northwest have focused national attention on sediment production and best management practices (BMPs) at stream crossings. Few studies have quantified soil erosion rates at stream crossings as influenced by road characteristics and compared them to modeled rates. Soil erosion...
The USEPA Mid-Atlantic Highlands Streams Assessment (MAHA) report concluded that over 31% of stream miles in the Mid-Atlantic Highlands were in poor condition, and only 17% stream miles could be considered to be in good condition, based on their fish populations. Insect populatio...
Effectiveness of forestry BMPS for stream crossing sediment reduction using rainfall simulation
Brian C. Morris; M. Chad Bolding; W. Michael Aust
2015-01-01
Recent decisions by the United States Supreme Court and United States Environmental Protection Agency (EPA) have re-emphasized the importance of forestry best management practices (BMPs) at stream crossings. Stream crossings are potential major sources of sediment due to their direct connectivity between the potential erosion source and the stream, which eliminates...
Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter
2013-01-01
In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...
Discussion of the enabling environments for decentralised water systems.
Moglia, M; Alexander, K S; Sharma, A
2011-01-01
Decentralised water supply systems are becoming increasingly affordable and commonplace in Australia and have the potential to alleviate urban water shortages and reduce pollution into natural receiving marine and freshwater streams. Learning processes are necessary to support the efficient implementation of decentralised systems. These processes reveal the complex socio-technical and institutional factors to be considered when developing an enabling environment supporting decentralised water and wastewater servicing solutions. Critical to the technological transition towards established decentralised systems is the ability to create strategic and adaptive capacity to promote learning and dialogue. Learning processes require institutional mechanisms to ensure the lessons are incorporated into the formulation of policy and regulation, through constructive involvement of key government institutions. Engagement of stakeholders is essential to the enabling environment. Collaborative learning environments using systems analysis with communities (social learning) and adaptive management techniques are useful in refining and applying scientists' and managers' knowledge (knowledge management).
Yeung, Chiu W.; Fontaine, Richard A.
2007-01-01
For nearly a century, the Waiahole Ditch System has diverted an average of approximately 27 million gallons per day of water from the wet, northeastern part of windward O`ahu, Hawai`i, to the dry, central part of the island to meet irrigation needs. The system intercepts large amounts of dike-impounded ground water at high altitudes (above approximately 700 to 800 ft) that previously discharged to Waiahole (and its tributaries Waianu and Uwao), Waikane, and Kahana Streams through seeps and springs. Diversion of this ground water has significantly diminished low flows in these streams. Estimates of natural and diverted flows are needed by water managers for (1) setting permanent instream flow standards to protect, enhance, and reestablish beneficial instream uses of water in the diverted streams and (2) allocating the diverted water for instream and offstream uses. Data collected before construction of the Waiahole Ditch System reflect natural (undiverted) flow conditions. Natural low-flow duration discharges for percentiles ranging from 50 to 99 percent were estimated for four sites at altitudes of 75 to 320 feet in Waiahole Stream (and its tributaries Waianu and Uwao Streams), for six sites at altitudes of 10 to 220 feet in Waikane Stream, and for three sites at altitudes of 30 to 80 feet in Kahana Stream. Among the available low-flow estimates along each affected stream, the highest natural Q50 (median) flows on Waiahole (altitude 250 ft), Waianu (altitude 75 ft), Waikane (altitude 75 ft), and Kahana Streams (altitude 30 ft) are 13, 7.0, 5.5, and 22 million gallons per day, respectively. Q50 (median) is just one of five duration percentiles presented in this report to quantify low-flow discharges. All flow-duration estimates were adjusted to a common period of 1960-2004 (called the base period). Natural flow-duration estimates compared favorably with limited pre-ditch streamflow data available for Waiahole and Kahana Streams. Data collected since construction of the ditch system reflect diverted flow conditions, which can be further divided into pre-release and post-release periods - several flow releases to Waiahole, Waianu, and Waikane Streams were initiated between December 1994 and October 2002. Comparison of pre-release to natural flows indicate that the effects of the Waiahole Ditch System diversion are consistently greater at lower low-flow conditions (Q99 to Q90) than at higher low-flow conditions (Q75 to Q50). Results also indicate that the effects of the diversion become less significant as the streams gain additional ground water at lower altitudes. For Waiahole Stream, pre-release flows range from 25 to 28 percent of natural flows at an altitude of 250 feet and from 19 to 20 percent at an altitude of 320 feet. For Waikane Stream, pre-release flows range from 30 to 46 percent of natural flows at an altitude of 10 feet and from 7 to 19 percent at an altitude of 220 feet. For Kahana Stream, pre-release flows range from 65 to 72 percent of natural flows at an altitude of 30 feet and from 58 to 71 percent at an altitude of 80 feet. Estimates of post-release flows were compared with estimates of natural flows to assess how closely current streamflows are to natural conditions. For Waianu Stream, post-release flows at an altitude of 75 feet are 41 to 46 percent lower than corresponding natural flows. For Waikane Stream, post-release flows at an altitude of 75 feet are within 12 percent of the corresponding natural flows. Comparisons of pre-release and post-release flows for Waikane Stream at altitudes of 10 to 220 feet were used to assess downstream changes in flow along the stream reach where flow releases were made. For a particular stream altitude, proportions of pre-release to post-release flows associated with median flows are consistently greater than proportions associated with lower low flows because the relative effect of the flow release is smaller at higher low flows. Similarly, for a particular f
Applications of spatial statistical network models to stream data
Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal
2014-01-01
Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.
Science in Action: Aesthetic Considerations for Stream Restoration
Aesthetics are an integral component of the social and economic benefits of stream restoration and should be considered in restoration projects for sustainable management. According to Bernhardt et al. (2005), aesthetics is one of the frequently listed goals for stream restoratio...
MODELING STREAM-AQUIFIER INTERACTIONS WITH LINEAR RESPONSE FUNCTIONS
The problem of stream-aquifer interactions is pertinent to conjunctive-use management of water resources and riparian zone hydrology. Closed form solutions are derived for stream-aquifer interactions in rates and volumes expressed as convolution integrals of impulse response and ...
Towards national mapping of aquatic condition (I): The Stream-Catchment (StreamCat) Dataset
Stream environments reflect, in part, the hydrologic integration of upstream landscapes. Characterizing upstream features is critical for effectively understanding, managing, and conserving riverine ecosystems. However, watershed delineation is a major challenge if hundreds to th...
Stream Restoration to Manage Nutrients in Degraded Watersheds
Historic land-use change can reduce water quality by impairing the ability of stream ecosystems to efficiently process nutrients such as nitrogen. Study results of two streams (Minebank Run and Big Spring Run) affected by urbanization, quarrying, agriculture, and impoundments in...
Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?
Weaver, David; Summers, Robert
2014-05-01
Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (<2 mm) compared with stream bank soil (<2 mm) and the <75-μm fraction of stream bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport processes.
To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff, as well as minimize pollutants and other stressors contained in stormwater runoff. It is well known that land use practice...
The U.S. EPA is evaluating the effectiveness of green infrastructure (GI) stormwater best management practices (BMPs) on stream habitat at the small watershed (< HUC12) scale in New England. Predictive models for thermal regime and substrate characteristics (substrate size, % em...
USDA-ARS?s Scientific Manuscript database
Pasture-based best management practices (BMPs), including stream bank fencing, stream crossings, and bank stabilization, improved water quality ten years after installation by reducing sediment, but did not affect nitrogen concentration. Abundance and diversity of aquatic macroinvertebrates increas...
Julia W. Gaskin; James E. Douglass; Wayne T. Swank; [Compilers
1984-01-01
A collection of 470 citations and annotations for papers published by scientists associated with theCoweeta Hydrologic Laboratory. Major categories in a subject index include watershed management, hydrometeorology, plant-water relationships, soil relationships, stream-flow relationships, ground water, stream ecology, and terrestrial ecology.
Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water
USDA-ARS?s Scientific Manuscript database
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...
Best management practices for riparian areas
Michael J. Phillips; Lloyd W. Swift; Charles R. Blinn
2000-01-01
Forest streams, lakes, and other water bodies create unique conditions along their margins that control and influence transfers of energy, nutrients, and sediments between aquatic and terrestrial systems. These riparian areas are among the most critical features of the landscape because they contain a rich diversity of plants and animals and help to maintain water...
Taking the High Road: Privacy in the Age of Drones
ERIC Educational Resources Information Center
Hamilton, Lucas; Harrington, Michael; Lawrence, Cameron; Perrot, Remy; Studer, Severin
2017-01-01
This case examines the technological, ethical and legal issues surrounding the use of drones in business. Mary McKay, a recent Management Information Systems (MIS) graduate sets up a professional photography and videography business. She gains a leg up on the competition with drone-mounted cameras and live video streaming through the free…
ERIC Educational Resources Information Center
Sparrow, Gregory S.
2017-01-01
Professional membership organizations have long maintained their exposure and revenue stream through a variety of traditional avenues, most notably memberships, sponsored conferences, and professional journals. The synergy of this three-tiered model has depended on a certain enhanced status derived from membership benefits and proprietary…
USDA-ARS?s Scientific Manuscript database
A watershed’s riparian corridor presents opportunities to stabilize streambanks, intercept runoff, and influence shallow groundwater with riparian buffers. This paper presents a system to classify these riparian opportunities and apply it towards riparian management planning in HUC12 watersheds. Hig...
Modeling erosion from forest roads with WEPP
J. McFero Grace
2007-01-01
Forest roads can be major sources of soil erosion from forest watersheds. Sediments from forest roads are a concern due to their potential delivery to stream systems resulting in degradation of water quality. The Water Erosion Prediction Project (WEPP) was used to predict erosion from forest road components under different management practices. WEPP estimates are...
Channel morphology investigations using Geographic Information Systems and field research
Scott N. Miller; Ann Youberg; D. Phillip Guertin; David C. Goodrich
2000-01-01
Stream channels are integral to watershed function and are affected by watershed management decisions. Given an understanding of the relationships among channel and watershed variables, they may serve as indicators of upland condition or used in distributed rainfall-runoff models. This paper presents a quantitative analysis of fluvial morphology as related to watershed...
Availability of ground water in the Branch River basin; Providence County, Rhode Island
Johnston, H.E.; Dickerman, D.C.
1974-01-01
Stratified glacial drift consisting largely of sand and gravel constitutes the only aquifer capable of supporting continuous yields of 100 gpm (6.3 1/s) or more to individual wells. The aquifer covers about a third of the 79 mi 2 (205 km2) study area, occurring mainly in stream valleys that are less than a mi le wide. Its saturated thickness is commonly 40 to 60ft (12 to 18 m); its transmissivity is commonly 5,000 to 8,000 ft 2/day (460 to 740m2 /day). The aquifer is hydraulically connected to streams that cross it and much of the water from heavily pumped wells will consist of infiltration induced from them. Potential sustained yield from most parts of the aquifer is limited chiefly by the rate at which infiltration can be induced from streams or low streamflow, whichever is smaller. Ground-water withdrawals deplete streamflow; and if large-scale development of ground water is not carefully planned and managed, periods of no streamflow may result during dry weather. Potential sustained yield varies with the scheme of well development, and is evaluated for selected areas by mathematically simulating pumping from assumed schemes of well Is in models of the stream-aquifer system. Results indicate that sustained yields of 5.5, 3.4, 1.6, and 1.3 mgd (0.24, 0.15, 0.07, and 0.06 m3 /s) can be obtained from the stratified-drift aquifer near Slatersville, Oakland, Harrisville, and Chepachet, respectively. Pumping at these rates will not cause streams to go dry, if the water is returned to streams near points of withdrawal. A larger ground-water yield can be obtained, if periods of no streamflow along reaches of principal streams are acceptable. Inorganic chemical quality of water in the stream-aquifer system is suitable for most purposes; the water is soft, slightly acidic, and generally contains less than 100 milligrams per litre of dissolved sol ids. Continued good quality ground water depends on maintenance of good quality of water in streams, because much of the water pumped from wells will be infiltrated from streams.
Description of water-resource-related data compiled for Reno County, south-central Kansas
Hansen, C.V.
1993-01-01
Water-resource-related data for sites in Reno County, Kansas were compiled in cooperation with the Reno County Health Department as part of the Kansas Department of Health and Environment's Local Environmental Protection Program (LEPP). These data were entered into a relational data-base management system (RDBMS) to facilitate the spatial analysis required to meet the LEPP goals of developing plans for nonpoint-source management and for public- water-supply protection. The data in the RDBMS are organized into digital data sets. The data sets contain the water-resource-related data compiled by the U.S. Geological Survey for 958 wells; by the Kansas Department of Health and Environment for 3,936 wells; by the Kansas Department of Health and Environment for 51 wells, 18 public-water-supply distribution systems, and 7 streams; by the Kansas State Board of Agriculture for 643 wells and 23 streams or surface-water impoundments; and by well-drilling contractors and the Kansas Geological Survey for 96 wells. The data in these five data sets are available from the Reno County Health Department in Hutchinson, Kansas. (USGS)
NASA Astrophysics Data System (ADS)
Xiao, Jian; Zhang, Mingqiang; Tian, Haiping; Huang, Bo; Fu, Wenlong
2018-02-01
In this paper, a novel prognostics and health management system architecture for hydropower plant equipment was proposed based on fog computing and Docker container. We employed the fog node to improve the real-time processing ability of improving the cloud architecture-based prognostics and health management system and overcome the problems of long delay time, network congestion and so on. Then Storm-based stream processing of fog node was present and could calculate the health index in the edge of network. Moreover, the distributed micros-service and Docker container architecture of hydropower plants equipment prognostics and health management was also proposed. Using the micro service architecture proposed in this paper, the hydropower unit can achieve the goal of the business intercommunication and seamless integration of different equipment and different manufacturers. Finally a real application case is given in this paper.
Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P.
1999-01-01
The objective of this article is to develop and implement a comprehensive computer model that is capable of simulating the surface-water, ground-water, and stream-aquifer interactions on a continuous basis for the Rattlesnake Creek basin in south-central Kansas. The model is to be used as a tool for evaluating long-term water-management strategies. The agriculturally-based watershed model SWAT and the ground-water model MODFLOW with stream-aquifer interaction routines, suitably modified, were linked into a comprehensive basin model known as SWATMOD. The hydrologic response unit concept was implemented to overcome the quasi-lumped nature of SWAT and represent the heterogeneity within each subbasin of the basin model. A graphical user-interface and a decision support system were also developed to evaluate scenarios involving manipulation of water fights and agricultural land uses on stream-aquifer system response. An extensive sensitivity analysis on model parameters was conducted, and model limitations and parameter uncertainties were emphasized. A combination of trial-and-error and inverse modeling techniques were employed to calibrate the model against multiple calibration targets of measured ground-water levels, streamflows, and reported irrigation amounts. The split-sample technique was employed for corroborating the calibrated model. The model was run for a 40 y historical simulation period, and a 40 y prediction period. A number of hypothetical management scenarios involving reductions and variations in withdrawal rates and patterns were simulated. The SWATMOD model was developed as a hydrologically rational low-flow model for analyzing, in a user-friendly manner, the conditions in the basin when there is a shortage of water.
Gates, M Carolyn; Holmstrom, Lindsey K; Biggers, Keith E; Beckham, Tammy R
2015-01-01
Reducing the burden of emerging and endemic infectious diseases on commercial livestock production systems will require the development of innovative technology platforms that enable information from diverse animal health resources to be collected, analyzed, and communicated in near real-time. In this paper, we review recent initiatives to leverage data routinely observed by farmers, production managers, veterinary practitioners, diagnostic laboratories, regulatory officials, and slaughterhouse inspectors for disease surveillance purposes. The most commonly identified challenges were (1) the lack of standardized systems for recording essential data elements within and between surveillance data streams, (2) the additional time required to collect data elements that are not routinely recorded by participants, (3) the concern over the sharing and use of business sensitive information with regulatory authorities and other data analysts, (4) the difficulty in developing sustainable incentives to maintain long-term program participation, and (5) the limitations in current methods for analyzing and reporting animal health information in a manner that facilitates actionable response. With the significant recent advances in information science, there are many opportunities to develop more sophisticated systems that meet national disease surveillance objectives, while still providing participants with valuable tools and feedback to manage routine animal health concerns.
Gates, M. Carolyn; Holmstrom, Lindsey K.; Biggers, Keith E.; Beckham, Tammy R.
2015-01-01
Reducing the burden of emerging and endemic infectious diseases on commercial livestock production systems will require the development of innovative technology platforms that enable information from diverse animal health resources to be collected, analyzed, and communicated in near real-time. In this paper, we review recent initiatives to leverage data routinely observed by farmers, production managers, veterinary practitioners, diagnostic laboratories, regulatory officials, and slaughterhouse inspectors for disease surveillance purposes. The most commonly identified challenges were (1) the lack of standardized systems for recording essential data elements within and between surveillance data streams, (2) the additional time required to collect data elements that are not routinely recorded by participants, (3) the concern over the sharing and use of business sensitive information with regulatory authorities and other data analysts, (4) the difficulty in developing sustainable incentives to maintain long-term program participation, and (5) the limitations in current methods for analyzing and reporting animal health information in a manner that facilitates actionable response. With the significant recent advances in information science, there are many opportunities to develop more sophisticated systems that meet national disease surveillance objectives, while still providing participants with valuable tools and feedback to manage routine animal health concerns. PMID:25973416
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Requirements for Wastewater Streams and... of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU As... wastewater streams and liquid streams in open systems within an MCPU: For each . . . You must . . . 1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Requirements for Wastewater Streams and... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...
Real-Time Analysis of a Sensor's Data for Automated Decision Making in an IoT-Based Smart Home.
Khan, Nida Saddaf; Ghani, Sayeed; Haider, Sajjad
2018-05-25
IoT devices frequently generate large volumes of streaming data and in order to take advantage of this data, their temporal patterns must be learned and identified. Streaming data analysis has become popular after being successfully used in many applications including forecasting electricity load, stock market prices, weather conditions, etc. Artificial Neural Networks (ANNs) have been successfully utilized in understanding the embedded interesting patterns/behaviors in the data and forecasting the future values based on it. One such pattern is modelled and learned in the present study to identify the occurrence of a specific pattern in a Water Management System (WMS). This prediction aids in making an automatic decision support system, to switch OFF a hydraulic suction pump at the appropriate time. Three types of ANN, namely Multi-Input Multi-Output (MIMO), Multi-Input Single-Output (MISO), and Recurrent Neural Network (RNN) have been compared, for multi-step-ahead forecasting, on a sensor's streaming data. Experiments have shown that RNN has the best performance among three models and based on its prediction, a system can be implemented to make the best decision with 86% accuracy.
Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.
Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework,more » to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.« less
Ahlfeld, David P.; Barlow, Paul M.; Baker, Kristine M.
2011-01-01
Many groundwater-management problems are concerned with the control of one or more variables that reflect the state of a groundwater-flow system or a coupled groundwater/surface-water system. These system state variables include the distribution of heads within an aquifer, streamflow rates within a hydraulically connected stream, and flow rates into or out of aquifer storage. This report documents the new State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005). The new package provides a means to explicitly represent heads, streamflows, and changes in aquifer storage as state variables in a GWM-2005 simulation. The availability of these state variables makes it possible to include system state in the objective function and enhances existing capabilities for constructing constraint sets for a groundwater-management formulation. The new package can be used to address groundwater-management problems such as the determination of withdrawal strategies that meet water-supply demands while simultaneously maximizing heads or streamflows, or minimizing changes in aquifer storage. Four sample problems are provided to demonstrate use of the new package for typical groundwater-management applications.
Sindt, Anthony R.; Fischer, Jesse R.; Quist, Michael C.; Pierce, Clay
2011-01-01
Anthropogenic alterations to Iowa’s landscape have greatly altered lotic systems with consequent effects on the biodiversity of freshwater fauna. Ictalurids are a diverse group of fishes and play an important ecological role in aquatic ecosystems. However, little is known about their distribution and status in lotic systems throughout Iowa. The purpose of this study was to describe the distribution of ictalurids in Iowa and examine their relationship with ecological integrity of streams and rivers. Historical data (i.e., 1884–2002) compiled for the Iowa Aquatic Gap Analysis Project (IAGAP) were used to detect declines in the distribution of ictalurids in Iowa streams and rivers at stream segment and watershed scales. Eight variables characterizing ictalurid assemblages were used to evaluate relationships with index of biotic integrity (IBI) ratings. Comparisons of recent and historic data from the IAGAP database indicated that 9 of Iowa’s 10 ictalurid species experienced distribution declines at one or more spatial scales. Analysis of variance indicated that ictalurid assemblages differed among samples with different IBI ratings. Specifically, total ictalurid, sensitive ictalurid, and Noturus spp. richness increased as IBI ratings increased. Results indicate declining ictalurid species distributions and biotic integrity are related, and management strategies aimed to improve habitat and increase biotic integrity will benefit ictalurid species.
A catchment scale evaluation of multiple stressor effects in headwater streams.
Rasmussen, Jes J; McKnight, Ursula S; Loinaz, Maria C; Thomsen, Nanna I; Olsson, Mikael E; Bjerg, Poul L; Binning, Philip J; Kronvang, Brian
2013-01-01
Mitigation activities to improve water quality and quantity in streams as well as stream management and restoration efforts are conducted in the European Union aiming to improve the chemical, physical and ecological status of streams. Headwater streams are often characterised by impairment of hydromorphological, chemical, and ecological conditions due to multiple anthropogenic impacts. However, they are generally disregarded as water bodies for mitigation activities in the European Water Framework Directive despite their importance for supporting a higher ecological quality in higher order streams. We studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchment scale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological quality in these streams. The SPEcies At Risk (SPEAR) index explained most of the variability in the macroinvertebrate community structure, and notably, SPEAR index scores were often very low (<10% SPEAR abundance). An extensive re-sampling of a subset of the streams provided evidence that especially insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in future management and mitigation plans. Catchment-based management is necessary because several anthropogenic stressors exceeded problematic thresholds, suggesting that more holistic approaches should be preferred. Copyright © 2012 Elsevier B.V. All rights reserved.
Hupp, C.R.; Pierce, Aaron R.; Noe, G.B.
2009-01-01
Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.
A web-based Decision Support System for the optimal management of construction and demolition waste.
Banias, G; Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, N; Papaioannou, I
2011-12-01
Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece. Copyright © 2011 Elsevier Ltd. All rights reserved.
Missouri StreamStats—A water-resources web application
Ellis, Jarrett T.
2018-01-31
The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged locations.
Chang, Yao-Jen; Chu, Chien-Wei; Lin, Min-Der
2012-05-01
Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. For sustainable MSWM strategies, the critical management factors to be considered include not only economic efficiency of MSW treatment but also life-cycle assessment of the environmental impact. This paper employed linear programming technique to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of a MSWM system, and investigated the correlations between the economical optimization and pollutant emissions. A case study based on real-world MSW operating parameters in Taichung City is also presented. The results showed that the costs, benefits, streams of MSW, and throughputs of incinerators and landfills will be affected if pollution emission reductions are implemented in the MSWM strategies. In addition, the quantity of particulate matter is the best pollutant indicator for the MSWM system performance of emission reduction. In particular this model will assist the decision maker in drawing up a friendly MSWM strategy for Taichung City in Taiwan. Recently, life-cycle assessments of municipal solid waste management (MSWM) strategies have been given more considerations. However, what seems to be lacking is the consideration of economic factors and environmental impacts simultaneously. This work analyzed real-world data to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of the MSWM system. The results indicated that the consideration of environmental impacts will affect the costs, benefits, streams of MSW, and throughputs of incinerators and landfills. This work is relevant to public discussion and may establish useful guidelines for the MSWM policies.
Beyond cool: adapting upland streams for climate change using riparian woodlands.
Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J
2016-01-01
Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem consequences of climate change adaptation to guide future actions. © 2015 John Wiley & Sons Ltd.
Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary
2015-07-14
Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in turn, how these changes affect Moapa dace abundance. Such tools are critical for devising management strategies to achieve recovery goals.
An assessment methodology for determining historical changes in mountain streams
Mark G. Smelser; John C. Schmidt
1998-01-01
Successful management of water in mountain streams by the USDA Forest Service requires that the link between resource development and channel change be documented and quantified. The characteristics of that linkage are unclear in mountain streams, and the adjustability of these streams to land-use and hydrologic change has been argued in court. One way to quantify the...
Mary Beth Adams; James N. Kochenderfer
2007-01-01
Long-term monitoring of stream chemistry of forested watersheds on the Fernow Experimental Forest in West Virginia has been conducted to determine the effects of both human induced and natural disturbances on nutrient cycling and stream chemistry. We compare mean annual stream water pH, and nitrate (NO3), sulfate (SO4), and...
An unexpected truth: increasing nitrate loading can decrease nitrate export from watersheds
NASA Astrophysics Data System (ADS)
Askarizadeh Bardsiri, A.; Grant, S. B.; Rippy, M.
2015-12-01
The discharge of anthropogenic nitrate (e.g., from partially treated sewage, return flows from agricultural irrigation, and runoff from animal feeding operations) to streams can negatively impact both human and ecosystem health. Managing these many point and non-point sources to achieve some specific end-point—for example, reducing the annual mass of nitrate exported from a watershed—can be a challenge, particularly in rapidly growing urban areas. Adding to this complexity is the fact that streams are not inert: they too can add or remove nitrate through assimilation (e.g., by stream-associated plants and animals) and microbially-mediated biogeochemical reactions that occur in streambed sediments (e.g., respiration, ammonification, nitrification, denitrification). By coupling a previously published correlation for in-stream processing of nitrate [Mulholland et al., Nature, 2008, 452, 202-205] with a stream network model of the Jacksons Creek watershed (Victoria, Australia) I demonstrate that managing anthropogenic sources of stream nitrate without consideration of in-stream processing can result in a number of non-intuitive "surprises"; for example, wastewater effluent discharges that increase nitrate loading but decrease in-stream nitrate concentrations can reduce the mass of nitrate exported from a watershed.
Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan
2015-06-01
This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed.
USDA-ARS?s Scientific Manuscript database
Instream wood is an important resource for stream biota because it provides cover for fishes, substrate for macroinvertebrates, and increases habitat diversity. However, current management of instream wood within channelized agricultural headwater streams (drainage ditches) involves removing instrea...
Newton, Michael; Ice, George
2016-01-01
Forested riparian buffers isolate streams from the influence of harvesting operations that can lead to water temperature increases. Only forest cover between the sun and stream limits stream warming, but that cover also reduces in-stream photosynthesis, aquatic insect production, and fish productivity. Water temperature increases that occur as streams flow through canopy openings decrease rapidly downstream, in as little as 150 m. Limiting management options in riparian forests restricts maintenance and optimization of various buffer contributions to beneficial uses, including forest products, fish, and their food supply. Some riparian disturbance, especially along cold streams, appears to benefit fish productivity. Options for enhancing environmental investments in buffers should include flexibility in application of water quality standards to address the general biological needs of fish and temporary nature of clearing induced warming. Local prescriptions for optimizing riparian buffers and practices that address long-term habitat needs deserve attention. Options and incentives are needed to entice landowners to actively manage for desirable riparian forest conditions.
Linked in: connecting riparian areas to support forest biodiversity
Marie Oliver; Kelly Burnett; Deanna Olson
2010-01-01
Many forest-dwelling species rely on both terrestrial and aquatic habitat for their survival. These species, including rare and little-understood amphibians and arthropods, live in and around headwater streams and disperse overland to neighboring headwater streams. Forest management policies that rely on riparian buffer strips and structurebased managementâpractices...
Simulating the consequences of land management.
Jonathan. Thompson
2007-01-01
How do you project the effects of management decisions made today on future conditions of riparian forests, stream habitat, and fish abundance in the streams and rivers of the interior Columbia Basin? Researchers at PNW Research Station have developed some novel analytical tools to help answer this question. Their work is part of the Interior Northwest Landscape...
Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R
2016-05-01
Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.
2016-04-01
Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused elevated concentrations of chlorinated ethenes, benzene and site specific pharmaceuticals in both the hyporheic zone and the stream water. Observed stream water vinyl chloride concentrations (up to 6 μg/L) are far above the Danish EQS (0.05 μg/L) for several km downstream of the discharge area. For heavy metals, comparison with EQS in stream water, the hyporheic zone and streambed showed concentrations around or above the threshold values for barium, copper, lead, nickel and zinc. The calculated TU was generally similar along the stream, but for arsenic and nickel higher values were observed where the groundwater plume discharges into the stream. Also, log TU sum values for organic contaminants were elevated in both the hyporheic zone and stream. Thus, the overall chemical stress in the main discharge area is much higher than upstream, while it gradually decreases downstream. In conclusion, this work clearly shows that groundwater contaminant plumes can impact stream water quality significantly in discharge areas, and extend far downstream. A surprisingly high impact of heavy metals with diffuse and/or biogenic origin on stream quality was identified. This work highlights the importance of a holistic assessment of stream water quality to identify and quantify the main contaminant sources and resulting chemical stream stressors leading to potential ecological impacts.
Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W
2016-05-01
In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.
NASA Astrophysics Data System (ADS)
Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.
2010-12-01
Wall Creek, tributary to the North Fork John Day River in eastern Oregon, was identified as a priority watershed by the Umatilla National Forest for restoration in 2002. Most streams in this 518 km2 multi-ownership watershed are designated critical habitat for threatened steelhead. Eight streams are listed on the Oregon 303(d) list for elevated temperatures and excess sedimentation. Over 1000 km of public and private roads in the watershed present a major source of potential water quality and habitat impairment. We conducted a watershed-wide inventory of roads using the Geomorphic Roads Analysis and Inventory Package (GRAIP) in 2009 to quantify sediment contributions from roads to streams. GRAIP is a field and GIS-based model developed by the Forest Service Rocky Mountain Research Station and Utah State University that georeferences and quantifies road hydrologic connectivity, sediment production and delivery, mass wasting, and risk of diversion and plugging at stream crossings. Field survey and modeling produced data for 6,473 drainage locations on 726 km of road (most of the publically owned roads) quantifying the location and mass of sediment produced and delivered to streams. Findings indicate a relatively small subset of roads deliver the majority of road-produced fine sediment; 12 percent of the road length delivers 90 percent of the total fine sediment to streams. Overall fine sediment production in the watershed is relatively low (with an estimated background erosion rate of 518,000 kg/yr for the watershed) and sediment produced and delivered from the road system appears to be a modest addition. Road surfaces produce approximately 81,455 kg of fine sediment per year, with 20,976 kg/year delivered to the stream network. Fifty-nine gullies were observed, 41 of which received road runoff. Sixteen road-related landslides were also observed. The excavated volume of these features totals 3,922,000 kg which is equivalent to 175 years of fine sediment delivery at the current rate. These data are being used by the Umatilla National Forest to prioritize road rehabilitation activities including storm risk reduction and road decommissioning, and to move toward an ecologically and economically sustainable road system. The highest sediment-delivering road segments were evaluated in 2010 to prioritize stabilization and storm damage risk reduction projects. Approximately 30 km of hydrologically connected road segments will be proposed for treatments including closure, decommissioning, and stabilization activities. Once complete, these improvements would result in the reduction of about 7,000 kg/year of fine sediment delivered to the fluvial system from the road network, or a third of the total road contribution to stream sedimentation. Methods and results presented are part of federal land management agency involvement in Total Maximum Daily Load development in the John Day Basin. The project is a collaborative effort with funding and support from the Environmental Protection Agency, Bureau of Land Management, and Oregon Department of Environmental Quality.
NASA Astrophysics Data System (ADS)
Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.
2017-12-01
Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.
ANNOTATED BIBLIOGRAPHY OF HISTORICAL CONDITIONS IN STREAMS AND RIVERS OF THE WESTERN UNITED STATES
Resource managers are often challenged by the lack of adequate benchmarks, or reference conditions, for assessing the biological condition of streams. Increasing human alteration of landscapes reduces the availability of minimally-disturbed stream sites that can be used to repre...
Low-flow characteristics for selected streams in Indiana
Fowler, Kathleen K.; Wilson, John T.
2015-01-01
The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.
A Decision Support System for Mitigating Stream Temperature Impacts in the Sacramento River
NASA Astrophysics Data System (ADS)
Caldwell, R. J.; Zagona, E. A.; Rajagopalan, B.
2014-12-01
Increasing demands on the limited and variable water supply across the West can result in insufficient streamflow to sustain healthy fish habitat. We develop an integrated decision support system (DSS) for modeling and mitigating stream temperature impacts and demonstrate it on the Sacramento River system in California. Water management in the Sacramento River is a complex task with a diverse set of demands ranging from municipal supply to mitigation of fisheries impacts due to high water temperatures. Current operations utilize the temperature control device (TCD) structure at Shasta Dam to mitigate these high water temperatures downstream at designated compliance points. The TCD structure at Shasta Dam offers a rather unique opportunity to mitigate water temperature violations through adjustments to both release volume and temperature. In this study, we develop and evaluate a model-based DSS with four broad components that are coupled to produce the decision tool for stream temperature mitigation: (i) a suite of statistical models for modeling stream temperature attributes using hydrology and climate variables of critical importance to fish habitat; (ii) a reservoir thermal model for modeling the thermal structure and, consequently, the water release temperature, (iii) a stochastic weather generator to simulate weather sequences consistent with seasonal outlooks; and, (iv) a set of decision rules (i.e., 'rubric') for reservoir water releases in response to outputs from the above components. Multiple options for modifying releases at Shasta Dam were considered in the DSS, including mixing water from multiple elevations through the TCD and using different acceptable levels of risk. The DSS also incorporates forecast uncertainties and reservoir operating options to help mitigate stream temperature impacts for fish habitat, while efficiently using the reservoir water supply and cold pool storage. The use of these coupled tools in simulating impacts of future climate on stream temperature variability is also demonstrated. Results indicate that the DSS could substantially reduce the number of violations of thermal criteria, while ensuring maintenance of the cold pool storage throughout the summer.
D.H. Olson; C. Rugger
2007-01-01
We conducted a preliminary examination of the responses of stream amphibians and instream habitat conditions to alternative riparian buffer zones with forest thinning upslope. Pre- and posttreatment surveys were carried out on 68 headwater stream reaches (including 23 unthinned reference reaches) at 11 sites in western Oregon. Streams were in managed conifer stands 40...
Management history of eastside ecosystems: changes in fish habitat over 50 years, 1935-1992.
Bruce A. McIntosh; James R. Sedell; Jeanette E. Smith; Robert C. Wissmar; Sharon E. Clarke; Gordon H. Reeves; Lisa A. Brown
1994-01-01
From 1934 to 1942, the Bureau of Fisheries surveyed over 8000 km of streams in the Columbia River basin to determine the condition of fish habitat. To evaluate changes in stream habitat over time, a portion of the historically surveyed streams in the Grande Ronde, Methow, Wenatchee, and Yakima River basins were resurveyed from 1990 to 1992. Streams were chosen where...
Stream Temperature Climate in a Set of Southern Appalachian Streams
Lloyd W. Swift; Patsy P. Clinton
1997-01-01
Water temperature patterns are described for five streams on forested watersheds in western North Carolina as part of stream monitoring in the Wine Spring Ecosystem Management Area. Elevation ranged from 918 m at Nantahaia Lake to 1660 m at Wine Spring Bald with, four temperature measurement sites Itied between 1145 m and 1200 m elevation, and one site at 925 m. Summer...
NASA Astrophysics Data System (ADS)
Macmannis, K. R.; Hawley, R. J.
2013-12-01
The mechanisms controlling stability on small streams in steep settings are not well documented but have many implications related to stream integrity and water quality. For example, channel instability on first and second order streams is a potential source of sediment in regulated areas with Total Maximum Daily Loads (TMDLs) on water bodies that are impaired for sedimentation, such as the Chesapeake Bay. Management strategies that preserve stream integrity and protect channel stability are critical to communities that may otherwise require large capital investments to meet TMDLs and other water quality criteria. To contribute to an improved understanding of ephemeral step-pool systems, we collected detailed hydrogeomorphic data on 4 steep (0.06 - 0.12 meter/meter) headwater streams draining to lower relief alluvial valleys in Spencer County, Kentucky, USA. The step-pool streams (mean step height of 0.47 meter, mean step spacing of 4 meters) drained small undeveloped catchments dominated by early successional forest. Data collection for each of the 4 streams included 2 to 3 cross section surveys, bed material particle counts at cross section locations, and profile surveys ranging from approximately 125 to 225 meters in length. All survey data was systematically processed to understand geometric parameters such as cross sectional area, depth, and top width; bed material gradations; and detailed profile measurements such as slope, pool and riffle lengths, pool spacing, pool depth, step height, and step length. We documented the location, frequency, and type of step-forming materials (i.e., large woody debris (LWD), rock, and tree roots), compiling a database of approximately 130 total steps. Lastly, we recorded a detailed tree assessment of all trees located within 2 meters of the top of bank, detailing the species of tree, trunk diameter, and approximate distance from the top of bank. Analysis of geometric parameters illustrated correlations between channel characteristics (e.g., step height was positively correlated to slope while pool spacing was inversely correlated to slope). Most importantly, we assessed the step-forming materials with respect to channel stability. LWD has been widely documented as an important component of geomorphic stability and habitat diversity across many settings; however, our research highlights the importance of roots in providing bed stability in steep, first and second-order ephemeral streams, as 40 percent of the steps in these step-pool systems were controlled by tree roots. Similar to the key member in naturally-occurring log jams, lateral tree roots frequently served as the anchor for channel steps that were often supplemented by rocks or LWD. Assessment of the trees throughout the riparian zone suggested average tree densities of 0.30 trees/square meter or 0.40 trees/meter could provide adequate riparian zone coverage to promote channel stability. These results have implications to land use planning and stormwater management. For example, on developments draining to step-pool systems, maintaining the integrity of the riparian zone would seem to be as important as ensuring hydrologic mimicry if channel integrity is to be preserved.
Modeling the Capacity of Riverscapes to Support Dam-Building Beaver
NASA Astrophysics Data System (ADS)
Macfarlane, W.; Wheaton, J. M.
2012-12-01
Beaver (Castor canadensis) dam-building activities lead to a cascade of aquatic and riparian effects that increase the complexity of streams. As a result, beaver are increasingly being used as a critical component of passive stream and riparian restoration strategies. We developed the spatially-explicit Beaver Assessment and Restoration Tool (BRAT) to assess the capacity of the landscape in and around streams and rivers to support dam-building activity for beaver. Capacity was assessed in terms of readily available nation-wide GIS datasets to assess key habitat capacity indicators: water availability, relative abundance of preferred food/building materials and stream power. Beaver capacity was further refined by: 1) ungulate grazing capacity 2) proximity to human conflicts (e.g., irrigation diversions, settlements) 3) conservation/management objectives (endangered fish habitat) and 4) projected benefits related to beaver re-introductions (e.g., repair incisions). Fuzzy inference systems were used to assess the relative importance of these inputs which allowed explicit incorporation of uncertainty resulting from categorical ambiguity of inputs into the capacity model. Results indicate that beaver capacity varies widely within the study area, but follows predictable spatial patterns that correspond to distinct River Styles and landscape units. We present a case study application and verification/validation data from the Escalante River Watershed in southern Utah, and show how the models can be used to help resource managers develop and implement restoration and conservation strategies employing beaver that will have the greatest potential to yield increases in biodiversity and ecosystem services.
Slip stream apparatus and method for treating water in a circulating water system
Cleveland, J.R.
1997-03-18
An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.
Riparian Forest Buffers - Function for Protection and Enhancement of Water Resources
David J. Welsch
1991-01-01
Streamside forests are crucial to the protection and enhancement of the water resources of the Eastern United States. They are extremely complex ecosystems that help provide optimum food and habitat for stream communities as well as being useful in mitigating or controlling nonpoint source pollution (NPS). Used as a component of an integrated management system...
Northwest Forest Plan—the first 20 years (1994–2013): watershed condition status and trends
Stephanie A. Miller; Sean N. Gordon; Peter Eldred; Ronald M. Beloin; Steve Wilcox; Mark Raggon; Heidi Andersen; Ariel. Muldoon
2017-01-01
The Aquatic and Riparian Effectiveness Monitoring Program focuses on assessing the degree to which federal land management under the aquatic conservation strategy (ACS) of the Northwest Forest Plan (NWFP) has been effective in maintaining and improving watershed conditions. We used stream sampling data and upslope/riparian geographic information system (GIS) and remote...
Urban development and the corresponding increases in impervious surfaces associated with that development have long been known to have adverse impacts upon urban riparian systems, water quality and quantity, groundwater recharge, streamflow, and aquatic ecosystem integrity. The ...
Dotan, Pniela; Yeshayahu, Maayan; Odeh, Wa'd; Gordon-Kirsch, Nina; Groisman, Ludmila; Al-Khateeb, Nader; Abed Rabbo, Alfred; Tal, Alon; Arnon, Shai
2017-12-15
Endocrine disrupting compounds (EDCs) frequently enter surface waters via discharges from wastewater treatment plants (WWTPs), as well as from industrial and agricultural activities, creating environmental and health concerns. In this study, selected EDCs were measured in water and sediments along two transboundary streams flowing from the Palestinian Authority (PA) into Israel (the Zomar-Alexander and Hebron-Beer Sheva Streams). We assessed how the complicated conflict situation between Israel and the PA and the absence of a coordinated strategy and joint stream management commission influence effective EDC control. Both streams receive raw Palestinian wastewater in their headwaters, which flows through rural areas and is treated via sediment settling facilities after crossing the 1949 Armistice Agreement Line. Four sampling campaigns were conducted over two years, with concentrations of selected EDCs measured in both the water and the sediments. Results show asymmetrical pollution profiles due to socio-economic differences and contrasting treatment capacities. No in-stream attenuation was observed along the stream and in the sediments within the Palestinian region. After sediment settling in treatment facilities at the Israeli border, however, significant reductions in the EDC concentrations were measured both in the sediments and in the water. Differences in sedimentation technologies had a substantial effect on EDC removal at the treatment location, positively affecting the streams' ability to further remove EDCs downstream. The prevailing approach to addressing the Israeli-Palestinian transboundary wastewater contamination reveals a narrow perspective among water managers who on occasion only take local interests into consideration, with interventions focused solely on improving stream water quality in isolated segments. Application of the "proximity principle" through the establishment of WWTPs at contamination sources constitutes a preferable strategy for reducing contamination by EDCs and other pollutants to ensure minimization of public health risks due to the pollution of streams and underlying potable groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ng, Bernard J H; Zhou, Jin; Giannis, Apostolos; Chang, Victor W-C; Wang, Jing-Yuan
2014-07-01
To enhance local water security, the Singapore government promotes two water conservation policies: the use of eco-friendly toilets to reduce yellow water (YW) disposal and the installation of water efficient devices to minimize gray water (GW) discharge. The proposed water conservation policies have different impacts on the environmental performance of local wastewater management. The main purpose of this study is to examine and compare the impacts of different domestic wastewater streams and the effectiveness of two water conservation policies by means of life cycle assessment (LCA). LCA is used to compare three scenarios, including a baseline scenario (BL), YW-reduced scenario (YWR) and GW-reduced scenario (GWR). The BL is designed based on the current wastewater management system, whereas the latter two scenarios are constructed according to the two water conservation policies that are proposed by the Singapore government. The software SIMPARO 7.3 with local data and an eco-invent database is used to build up the model, and the functional unit is defined as the daily wastewater disposal of a Singapore resident. Due to local water supply characteristics, the system boundary is extended to include the sewage sludge management and tap water production processes. The characterization results indicate that the GWR has a significant impact reduction (22-25%) while the YWR has only a 2-4% impact reduction compared with the BL. The contribution analysis reveals that the GW dominates many impact categories except eutrophication potential. The tap water production is identified as the most influential process due to its high embodied energy demand in a local context. Life cycle costing analysis shows that both YWR and GWR are financially favorable. It is also revealed that the current water conservation policies could only achieve Singapore's short-term targets. Therefore, two additional strategies are recommended for achieving long-term goals. This study provides a comprehensive and reliable environmental profile of Singapore's wastewater management with the help of extended system boundary and local data. This work also fills the research gap of previous studies by identifying the contribution of different wastewater streams, which would serve as a good reference for source-separating sanitation system design. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Developing a comprehensive framework for eutrophication management in off-stream artificial lakes
NASA Astrophysics Data System (ADS)
Khorasani, Hamed; Kerachian, Reza; Malakpour-Estalaki, Siamak
2018-07-01
In this paper, a comprehensive and interdisciplinary framework for management of eutrophication in off-stream artificial lakes in semi-arid and arid regions is proposed. Identification of the lake's water resources system components and stakeholders, simulation of Phosphorus (P) export from upstream watershed, simulation of the lake water quality as well as simulation of water demands and supply, development of management scenarios for the lake and selecting the best scenario using social choice methods (i.e. discrete and fuzzy Borda counts) are the four main parts of the framework. The proposed framework is applied on Chitgar Artificial Lake (ChAL), the largest intra-urban artificial lake in Tehran which has been constructed in 2010-2013 for recreational purposes. The Load Apportionment Model (LAM) is used for the simulation of P loads from the point and non-point (diffusive) sources and the LakeMab model is used for the simulation of P dynamics in the lake. The management scenarios contain optimized rule curves for water intake/outtake blended with P management plans (i.e. removal of point sources of P load in the upstream watershed, construction of a hydroponic bio-filter or an advanced water treatment plant beside the lake for reduction of external loading of P and recycling lake water, alum treatment of lake sediments for controlling the internal loading of P as well as construction of a dry detention basin). The most preferred scenarios selected by the discrete Borda count are the low-cost alum treatment and dry detention basin, while the most preferred scenario according to fuzzy Borda count, which considers the uncertainty of model inputs, is the costly water treatment plant. In all preferred scenarios, water intake is conducted from flood flows in order to avoid conflict with downstream agricultural demands. In addition to decentralized decision making and stakeholders' participation, the proposed framework promotes the integration of the technical aspects such as the role of internal loading in lake eutrophication and separation of flood and non-flood flows in the off-stream lakes' systems.
Perry, Russell W.; Plumb, John M.; Jones, Edward C.; Som, Nicholas A.; Hetrick, Nicholas J.; Hardy, Thomas B.
2018-04-06
Fisheries and water managers often use population models to aid in understanding the effect of alternative water management or restoration actions on anadromous fish populations. We developed the Stream Salmonid Simulator (S3) to help resource managers evaluate the effect of management alternatives on juvenile salmonid populations. S3 is a deterministic stage-structured population model that tracks daily growth, movement, and survival of juvenile salmon. A key theme of the model is that river flow affects habitat availability and capacity, which in turn drives density dependent population dynamics. To explicitly link population dynamics to habitat quality and quantity, the river environment is constructed as a one-dimensional series of linked habitat units, each of which has an associated daily time series of discharge, water temperature, and usable habitat area or carrying capacity. The physical characteristics of each habitat unit and the number of fish occupying each unit, in turn, drive survival and growth within each habitat unit and movement of fish among habitat units.The purpose of this report is to outline the underlying general structure of the S3 model that is common among different applications of the model. We have developed applications of the S3 model for juvenile fall Chinook salmon (Oncorhynchus tshawytscha) in the lower Klamath River. Thus, this report is a companion to current application of the S3 model to the Trinity River (in review). The general S3 model structure provides a biological and physical framework for the salmonid freshwater life cycle. This framework captures important demographics of juvenile salmonids aimed at translating management alternatives into simulated population responses. Although the S3 model is built on this common framework, the model has been constructed to allow much flexibility in application of the model to specific river systems. The ability for practitioners to include system-specific information for the physical stream structure, survival, growth, and movement processes ensures that simulations provide results that are relevant to the questions asked about the population under study.
Niesen, Shelley L.; Christensen, Eric D.
2015-01-01
Water-quality, hydrological, and ecological data collected from June 2005 through September 2013 from the Little Blue River and smaller streams within the City of Independence, Missouri, are presented in this report. These data were collected as a part of an ongoing cooperative study between the U.S. Geological Survey and the City of Independence Water Pollution Control Department to characterize the water quality and ecological condition of Independence streams. The quantities, sources of selected constituents, and processes affecting water quality and aquatic life were evaluated to determine the resulting ecological condition of streams within Independence. Data collected for this study fulfill the municipal separate sewer system permit requirements for the City of Independence and can be used to provide a baseline with which city managers can determine the effectiveness of current (2014) and future best management practices within Independence. Continuous streamflow and water-quality data, collected during base flow and stormflow, included physical and chemical properties, inorganic constituents, common organic micro-constituents, pesticides in streambed sediment and surface water, fecal indicator bacteria and microbial source tracking data, and suspended sediment. Dissolved oxygen, pH, specific conductance, water temperature, and turbidity data were measured continuously at seven sites within Independence. Base-flow and stormflow samples were collected at eight gaged and two ungaged sites. Fecal sources samples were collected for reference for microbial source tracking, and sewage influent samples were collected as additional source samples. Dry-weather screening was done on 11 basins within Independence to identify potential contaminant sources to the streams. Benthic macroinvertebrate community surveys and habitat assessments were done on 10 stream sites and 2 comparison sites outside the city. Sampling and laboratory procedures and quality-assurance and quality-control methods used in data collection for this study are described in this report.
Roy, Suvendu; Sahu, Abhay Sankar
2017-07-15
Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p < 0.001) growth of total road length and number of road-stream crossing in the last five decades (1970s-2010s) contribute to making longitudinal and lateral disconnection in the fluvial system of Kunur River Basin. Channel geometry from ten road-stream crossings shows significant (p = 0.01) differences between upstream and downstream of crossing structure and created problems like downstream scouring, increased drop height at outlet, formation of stable bars, severe bank erosion, and make barriers for river biota. The hydro-geomorphic processes are also adversely affected due to lateral disconnection and input of fine to coarse sediments from the river side growth of unpaved road (1922%). Limited streamside development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Godsey, S.; Kirchner, J. W.; Whiting, J. A.
2016-12-01
Temporary headwater streams - both intermittent and ephemeral waterways - supply water to approximately 1/3 of the US population, and 60% of streams used for drinking water are temporary. Stream ecologists increasingly recognize that a gradient of processes across the drying continuum affect ecosystems at dynamic terrestrial-aquatic interfaces. Understanding the hydrological controls across that gradient of drying may improve management of these sensitive systems. One possible control on surface flows includes transpiration losses from either the riparian zone or the entire watershed. We mapped several stream networks under extreme low flow conditions brought on by severe drought in central Idaho and California in 2015. Compared to previous low-flow stream length estimates, the active drainage network had generally decreased by a very small amount across these sites, perhaps because stored water buffered the precipitation decrease, or because flowing channel heads are fixed by focused groundwater flow emerging at springs. We also examined the apparent sources of water for both riparian and hillslope trees using isotopic techniques. During drought conditions, we hypothesized that riparian trees - but not those far from flowing streams - would be sustained by streamflow recharging riparian aquifers, and thus would transpire water that was isotopically similar to streamflow because little soil water would remain available below the wilting point and stream water would be sustain those trees. We found a more complex pattern, but in most places stream water and water transpired by trees were isotopically distinct regardless of flow intermittency or tree location. We also found that hillslope trees outside of the riparian zone appeared to be using different waters from those used by riparian trees. Finally, we explore subsurface controls on network extent, showing that bedrock characteristics can influence network stability and contraction patterns.
Mallari, Neil Aldrin D; Collar, Nigel J; McGowan, Philip J K; Marsden, Stuart J
2016-04-01
Aichi Target 11 of the Convention on Biological Diversity urges, inter alia, that nations protect at least 17 % of their land, and that protection is effective and targets areas of importance for biodiversity. Five years before reporting on Aichi targets is due, we assessed the Philippines' current protected area system for biodiversity coverage, appropriateness of management regimes and capacity to deliver protection. Although protected estate already covers 11 % of the Philippines' land area, 64 % of its key biodiversity areas (KBAs) remain unprotected. Few protected areas have appropriate management and governance infrastructures, funding streams, management plans and capacity, and a serious mismatch exists between protected area land zonation regimes and conservation needs of key species. For the Philippines to meet the biodiversity coverage and management effectiveness elements of Aichi Target 11, protected area and KBA boundaries should be aligned, management systems reformed to pursue biodiversity-led targets and effective management capacity created.
Small, upland, coldwater streams are an important resource for watershed management. In the Mid-Atlantic region, these streams are affected by acid deposition, mountaintop removal and valley fill for mineral extraction, and the effects of historical timber harvests. Small strea...
Bedload transport in SE Asian streams: Uncertainties and implications for reservoir management
This paper reviews the current state of knowledge regarding bedload transport in SE Asian streams and presents the results from a case study on bedload transport in a mountain stream in northern Thailand. Together, the review and new data help contextualize the paucity of work do...
Building Partnerships to Monitor the Conditions of Streams and Rivers on Public Lands
The Bureau of Land Management (BLM), in collaboration with the U.S. Environmental Protection Agency (EPA), will conduct its first Western Rivers and Streams Assessment (WRSA), a survey of the condition of BLM streams and rivers throughout the contiguous western U.S. The objective...
Many stream restoration projects do not include a requirement for long-term monitoring after the project has been completed, resulting in a lack of information about the success or failure of certain restoration techniques. The National Risk Management Research Laboratory (NRMRL...
Preliminary Results from the BLM’s Western Rivers and Streams Assessment
The Bureau of Land Management (BLM), in collaboration with the U.S. Environmental Protection Agency, is conducting its first Western Rivers and Streams Assessment (WRSA), a survey of the condition of BLM streams and rivers throughout the contiguous western U.S. The WRSA will answ...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
Heed the head: buffer benefits along headwater streams
Rhonda Mazza; Deanna (Dede) Olson
2015-01-01
Since the Northwest Forest Plan implemented riparian buffers along non-fish bearing streams in 1994, there have been questions about how wide those buffers need to be to protect aquatic and riparian resources from upland forest management activities. The Density Management and Riparian Buffer Study of western Oregon, also initiated in 1994, examines the effects of...
Robert S. Pierce; James W. Hornbeck; Wayne C. Martin; Louise M. Tritton; Tattersall C. Smith; Anthony C. Federer; Harry W. Yawney
1993-01-01
Studies of impacts of whole-tree clearcutting in spruce-fir, northern hardwood, and central hardwood forest types are summarized for use by practicing foresters, land managers, environmental protection agencies and organizations, and the general public. Guidelines are given for protecting soils, stream water quality, nutrient cycles, and site productivity.
Does it work? Monitoring the effectiveness of stream management practices in Alaska.
Jonathan Thompson
2006-01-01
The condition of aquatic habitat and the health of aquatic species, particularly salmon, are a significant concern in the Pacific Northwest. Land management agencies use fish and riparian guidelines intended to maintain or improve aquatic habitat. Gauging whether or not those guidelines are effectively meeting their objectives requires careful monitoring of stream...
ERIC Educational Resources Information Center
Palmer, Stuart
2007-01-01
A recent television documentary on the Columbia space shuttle disaster was converted to streaming digital video format for educational use by on- and off-campus students in an engineering management study unit examining issues in professional engineering ethics. An evaluation was conducted to assess the effectiveness of this new resource. Use of…
William Lakel; Wallace Aust; M. Aust; Chad Bolding; C. Dolloff; Patrick Keyser; Robert Feldt
2010-01-01
Recommended widths for streamside management zones (SMZs) for sediment protection vary. The objectives of this study were to compare the effects of SMZ widths and thinning levels on sediment moving through SMZs. Four SMZ treatments were installed within 16 harvested watersheds where intermittent streams graded into small perennial streams. Sites were clearcut,...
Spatial dynamics of overbank sedimentation in floodplain systems
Pierce, Aaron R.; King, S.L.
2008-01-01
Floodplains provide valuable social and ecological functions, and understanding the rates and patterns of overbank sedimentation is critical for river basin management and rehabilitation. Channelization of alluvial systems throughout the world has altered hydrological and sedimentation processes within floodplain ecosystems. In the loess belt region of the Lower Mississippi Alluvial Valley of the United States, channelization, the geology of the region, and past land-use practices have resulted in the formation of dozens of valley plugs in stream channels and the formation of shoals at the confluence of stream systems. Valley plugs completely block stream channels with sediment and debris and can result in greater deposition rates on floodplain surfaces. Presently, however, information is lacking on the rates and variability of overbank sedimentation associated with valley plugs and shoals. We quantified deposition rates and textures in floodplains along channelized streams that contained valley plugs and shoals, in addition to floodplains occurring along an unchannelized stream, to improve our understanding of overbank sedimentation associated with channelized streams. Feldspar clay marker horizons and marker poles were used to measure floodplain deposition from 2002 to 2005 and data were analyzed with geospatial statistics to determine the spatial dynamics of sedimentation within the floodplains. Mean sediment deposition rates ranged from 0.09 to 0.67??cm/y at unchannelized sites, 0.16 to 2.27??cm/y at shoal sites, and 3.44 to 6.20??cm/y at valley plug sites. Valley plug sites had greater rates of deposition, and the deposited sediments contained more coarse sand material than either shoal or unchannelized sites. A total of 59 of 183 valley plug study plots had mean deposition rates > 5??cm/y. The geospatial analyses showed that the spatial dynamics of sedimentation can be influenced by the formation of valley plugs and shoals on channelized streams; however, responses can vary. Restoration efforts in the region need to have basinwide collaboration with landowners and address catchment-scale processes, including the geomorphic instability of the region, to be successful. ?? 2008 Elsevier B.V. All rights reserved.
Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.
2017-01-01
Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.
Machine vision system for automated detection of stained pistachio nuts
NASA Astrophysics Data System (ADS)
Pearson, Tom C.
1995-01-01
A machine vision system was developed to separate stained pistachio nuts, which comprise of about 5% of the California crop, from unstained nuts. The system may be used to reduce labor involved with manual grading or to remove aflatoxin contaminated product from low grade process streams. The system was tested on two different pistachio process streams: the bi- chromatic color sorter reject stream and the small nut shelling stock stream. The system had a minimum overall error rate of 14% for the bi-chromatic sorter reject stream and 15% for the small shelling stock stream.
Slip stream apparatus and method for treating water in a circulating water system
Cleveland, Joe R.
1997-01-01
An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).
Research gaps related to forest management and stream sediment in the United States.
Anderson, Christopher J; Lockaby, B Graeme
2011-02-01
Water quality from forested landscapes tends to be very high but can deteriorate during and after silvicultural activities. Practices such as forest harvesting, site preparation, road construction/use, and stream crossings have been shown to contribute sediment, nutrients, and other pollutants to adjacent streams. Although advances in forest management accompanied with Best Management Practices (BMPs) have been very effective at reducing water quality impacts from forest operations, projected increases in demand for forest products may result in unintended environmental degradation. Through a review of the pertinent literature, we identified several research gaps related to water yield, aquatic habitat, sediment source and delivery, and BMP effectiveness that should be addressed for streams in the United States to better understand and address the environmental ramifications of current and future levels of timber production. We explored the current understanding of these topics based on relevant literature and the possible implications of increased demand for forest products in the United States.
SIRSALE: integrated video database management tools
NASA Astrophysics Data System (ADS)
Brunie, Lionel; Favory, Loic; Gelas, J. P.; Lefevre, Laurent; Mostefaoui, Ahmed; Nait-Abdesselam, F.
2002-07-01
Video databases became an active field of research during the last decade. The main objective in such systems is to provide users with capabilities to friendly search, access and playback distributed stored video data in the same way as they do for traditional distributed databases. Hence, such systems need to deal with hard issues : (a) video documents generate huge volumes of data and are time sensitive (streams must be delivered at a specific bitrate), (b) contents of video data are very hard to be automatically extracted and need to be humanly annotated. To cope with these issues, many approaches have been proposed in the literature including data models, query languages, video indexing etc. In this paper, we present SIRSALE : a set of video databases management tools that allow users to manipulate video documents and streams stored in large distributed repositories. All the proposed tools are based on generic models that can be customized for specific applications using ad-hoc adaptation modules. More precisely, SIRSALE allows users to : (a) browse video documents by structures (sequences, scenes, shots) and (b) query the video database content by using a graphical tool, adapted to the nature of the target video documents. This paper also presents an annotating interface which allows archivists to describe the content of video documents. All these tools are coupled to a video player integrating remote VCR functionalities and are based on active network technology. So, we present how dedicated active services allow an optimized video transport for video streams (with Tamanoir active nodes). We then describe experiments of using SIRSALE on an archive of news video and soccer matches. The system has been demonstrated to professionals with a positive feedback. Finally, we discuss open issues and present some perspectives.
Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel
2017-01-01
Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100sâ10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...
Limitations and implications of stream classification
Juracek, K.E.; Fitzpatrick, F.A.
2003-01-01
Stream classifications that are based on channel form, such as the Rosgen Level II classification, are useful tools for the physical description and grouping of streams and for providing a means of communication for stream studies involving scientists and (or) managers with different backgrounds. The Level II classification also is used as a tool to assess stream stability, infer geomorphic processes, predict future geomorphic response, and guide stream restoration or rehabilitation activities. The use of the Level II classification for these additional purposes is evaluated in this paper. Several examples are described to illustrate the limitations and management implications of the Level II classification. Limitations include: (1) time dependence, (2) uncertain applicability across physical environments, (3) difficulty in identification of a true equilibrium condition, (4) potential for incorrect determination of bankfull elevation, and (5) uncertain process significance of classification criteria. Implications of using stream classifications based on channel form, such as Rosgen's, include: (1) acceptance of the limitations, (2) acceptance of the risk of classifying streams incorrectly, and (3) classification results may be used inappropriately. It is concluded that use of the Level II classification for purposes beyond description and communication is not appropriate. Research needs are identified that, if addressed, may help improve the usefulness of the Level II classification.
NASA Astrophysics Data System (ADS)
Chien, H.; McGlinn, L.
2017-12-01
The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.