Predictive Mapping of the Biotic Condition of Conterminous U.S. Rivers and Streams
Understanding and mapping the spatial variations in the biological condition of streams could provide an important tool for assessment and restoration of stream ecosystems. The US EPA’s National Rivers and Streams Assessment (NRSA) summarizes the percent of stream lengths within ...
Mapping the biological condition of USA rivers and streams
We predicted the probable (pr) biological condition (BC) of ~5.4 million km of stream within the conterminous USA (CONUS). National maps of prBC could provide an important tool for prioritizing monitoring and restoration of streams. The USEPA uses a spatially balanced survey desi...
Rath, Frank
2008-01-01
This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings.
Using Value Stream Mapping to improve quality of care in low-resource facility settings.
Ramaswamy, Rohit; Rothschild, Claire; Alabi, Funmi; Wachira, Eric; Muigai, Faith; Pearson, Nick
2017-11-01
Jacaranda Health (JH) is a Kenya-based organization that attempts to provide affordable, high-quality maternal and newborn healthcare through a chain of private health facilities in Nairobi. JH needed to adopted quality improvement as an organization-wide strategy to optimize effectiveness and efficiency. Value Stream Mapping, a Lean Management tool, was used to engage staff in prioritizing opportunities to improve clinical outcomes and patient-centered quality of care. Implementation was accomplished through a five-step process: (i) leadership engagement and commitment; (ii) staff training; (iii) team formation; (iv) process walkthrough; and (v) construction and validation. The Value Stream Map allowed the organization to come together and develop an end-to-end view of the process of care at JH and to select improvement opportunities for the entire system. The Value Stream Map is a simple visual tool that allows organizations to engage staff at all levels to gain commitment around quality improvement efforts. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Ziegeweid, Jeffrey R.; Lorenz, David L.; Sanocki, Chris A.; Czuba, Christiana R.
2015-12-24
Equations developed in this study apply only to stream locations where flows are not substantially affected by regulation, diversion, or urbanization. All equations presented in this study will be incorporated into StreamStats, a web-based geographic information system tool developed by the U.S. Geological Survey. StreamStats allows users to obtain streamflow statistics, basin characteristics, and other information for user-selected locations on streams through an interactive map.
NASA Astrophysics Data System (ADS)
Omran, Adel; Dietrich, Schröder; Abouelmagd, Abdou; Michael, Märker
2016-09-01
Damages caused by flash floods hazards are an increasing phenomenon, especially in arid and semi-arid areas. Thus, the need to evaluate these areas based on their flash flood risk using maps and hydrological models is also becoming more important. For ungauged watersheds a tentative analysis can be carried out based on the geomorphometric characteristics of the terrain. To process regions with larger watersheds, where perhaps hundreds of watersheds have to be delineated, processed and classified, the overall process need to be automated. GIS packages such as ESRI's ArcGIS offer a number of sophisticated tools that help regarding such analysis. Yet there are still gaps and pitfalls that need to be considered if the tools are combined into a geoprocessing model to automate the complete assessment workflow. These gaps include issues such as i) assigning stream order according to Strahler theory, ii) calculating the threshold value for the stream network extraction, and iii) determining the pour points for each of the nodes of the Strahler ordered stream network. In this study a complete automated workflow based on ArcGIS Model Builder using standard tools will be introduced and discussed. Some additional tools have been implemented to complete the overall workflow. These tools have been programmed using Python and Java in the context of ArcObjects. The workflow has been applied to digital data from the southwestern Sinai Peninsula, Egypt. An optimum threshold value has been selected to optimize drainage configuration by statistically comparing all of the extracted stream configuration results from DEM with the available reference data from topographic maps. The code has succeeded in estimating the correct ranking of specific stream orders in an automatic manner without additional manual steps. As a result, the code has proven to save time and efforts; hence it's considered a very useful tool for processing large catchment basins.
Manufacturing Enhancement through Reduction of Cycle Time using Different Lean Techniques
NASA Astrophysics Data System (ADS)
Suganthini Rekha, R.; Periyasamy, P.; Nallusamy, S.
2017-08-01
In recent manufacturing system the most important parameters in production line are work in process, TAKT time and line balancing. In this article lean tools and techniques were implemented to reduce the cycle time. The aim is to enhance the productivity of the water pump pipe by identifying the bottleneck stations and non value added activities. From the initial time study the bottleneck processes were identified and then necessary expanding processes were also identified for the bottleneck process. Subsequently the improvement actions have been established and implemented using different lean tools like value stream mapping, 5S and line balancing. The current state value stream mapping was developed to describe the existing status and to identify various problem areas. 5S was used to implement the steps to reduce the process cycle time and unnecessary movements of man and material. The improvement activities were implemented with required suggested and the future state value stream mapping was developed. From the results it was concluded that the total cycle time was reduced about 290.41 seconds and the customer demand has been increased about 760 units.
Fault-Tolerant and Elastic Streaming MapReduce with Decentralized Coordination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumbhare, Alok; Frincu, Marc; Simmhan, Yogesh
2015-06-29
The MapReduce programming model, due to its simplicity and scalability, has become an essential tool for processing large data volumes in distributed environments. Recent Stream Processing Systems (SPS) extend this model to provide low-latency analysis of high-velocity continuous data streams. However, integrating MapReduce with streaming poses challenges: first, the runtime variations in data characteristics such as data-rates and key-distribution cause resource overload, that inturn leads to fluctuations in the Quality of the Service (QoS); and second, the stateful reducers, whose state depends on the complete tuple history, necessitates efficient fault-recovery mechanisms to maintain the desired QoS in the presence ofmore » resource failures. We propose an integrated streaming MapReduce architecture leveraging the concept of consistent hashing to support runtime elasticity along with locality-aware data and state replication to provide efficient load-balancing with low-overhead fault-tolerance and parallel fault-recovery from multiple simultaneous failures. Our evaluation on a private cloud shows up to 2:8 improvement in peak throughput compared to Apache Storm SPS, and a low recovery latency of 700 -1500 ms from multiple failures.« less
Development of a simulation of the surficial groundwater system for the CONUS
NASA Astrophysics Data System (ADS)
Zell, W.; Sanford, W. E.
2016-12-01
Water resource and environmental managers across the country face a variety of questions involving groundwater availability and/or groundwater transport pathways. Emerging management questions require prediction of groundwater response to changing climate regimes (e.g., how drought-induced water-table recession may degrade near-stream vegetation and result in increased wildfire risks), while existing questions can require identification of current groundwater contributions to surface water (e.g., groundwater linkages between landscape contaminant inputs and receiving streams may help explain in-stream phenomena such as fish intersex). At present, few national-coverage simulation tools exist to help characterize groundwater contributions to receiving streams and predict potential changes in base-flow regimes under changing climate conditions. We will describe the Phase 1 development of a simulation of the water table and shallow groundwater system for the entire CONUS. We use national-scale datasets such as the National Recharge Map and the Map Database for Surficial Materials in the CONUS to develop groundwater flow (MODFLOW) and transport (MODPATH) models that are calibrated against groundwater level and stream elevation data from NWIS and NHD, respectively. Phase 1 includes the development of a national transmissivity map for the surficial groundwater system and examines the impact of model-grid resolution on the simulated steady-state discharge network (and associated recharge areas) and base-flow travel time distributions for different HUC scales. In the course of developing the transmissivity map we show that transmissivity in fractured bedrock systems is dependent on depth to water. Subsequent phases of this work will simulate water table changes at a monthly time step (using MODIS-dependent recharge estimates) and serve as a critical complement to surface-water-focused USGS efforts to provide national coverage hydrologic modeling tools.
Neural bases of imitation and pantomime in acute stroke patients: distinct streams for praxis.
Hoeren, Markus; Kümmerer, Dorothee; Bormann, Tobias; Beume, Lena; Ludwig, Vera M; Vry, Magnus-Sebastian; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius
2014-10-01
Apraxia is a cognitive disorder of skilled movements that characteristically affects the ability to imitate meaningless gestures, or to pantomime the use of tools. Despite substantial research, the neural underpinnings of imitation and pantomime have remained debated. An influential model states that higher motor functions are supported by different processing streams. A dorso-dorsal stream may mediate movements based on physical object properties, like reaching or grasping, whereas skilled tool use or pantomime rely on action representations stored within a ventro-dorsal stream. However, given variable results of past studies, the role of the two streams for imitation of meaningless gestures has remained uncertain, and the importance of the ventro-dorsal stream for pantomime of tool use has been questioned. To clarify the involvement of ventral and dorsal streams in imitation and pantomime, we performed voxel-based lesion-symptom mapping in a sample of 96 consecutive left-hemisphere stroke patients (mean age ± SD, 63.4 ± 14.8 years, 56 male). Patients were examined in the acute phase after ischaemic stroke (after a mean of 5.3, maximum 10 days) to avoid interference of brain reorganization with a reliable lesion-symptom mapping as best as possible. Patients were asked to imitate 20 meaningless hand and finger postures, and to pantomime the use of 14 common tools depicted as line drawings. Following the distinction between movement engrams and action semantics, pantomime errors were characterized as either movement or content errors, respectively. Whereas movement errors referred to incorrect spatio-temporal features of overall recognizable movements, content errors reflected an inability to associate tools with their prototypical actions. Both imitation and pantomime deficits were associated with lesions within the lateral occipitotemporal cortex, posterior inferior parietal lobule, posterior intraparietal sulcus and superior parietal lobule. However, the areas specifically related to the dorso-dorsal stream, i.e. posterior intraparietal sulcus and superior parietal lobule, were more strongly associated with imitation. Conversely, in contrast to imitation, pantomime deficits were associated with ventro-dorsal regions such as the supramarginal gyrus, as well as brain structures counted to the ventral stream, such as the extreme capsule. Ventral stream involvement was especially clear for content errors which were related to anterior temporal damage. However, movement errors were not consistently associated with a specific lesion location. In summary, our results indicate that imitation mainly relies on the dorso-dorsal stream for visuo-motor conversion and on-line movement control. Conversely, pantomime additionally requires ventro-dorsal and ventral streams for access to stored action engrams and retrieval of tool-action relationships. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pierce, M. E.; Aktas, M. S.; Aydin, G.; Fox, G. C.; Gadgil, H.; Sayar, A.
2005-12-01
We examine the application of Web Service Architectures and Grid-based distributed computing technologies to geophysics and geo-informatics. We are particularly interested in the integration of Geographical Information System (GIS) services with distributed data mining applications. GIS services provide the general purpose framework for building archival data services, real time streaming data services, and map-based visualization services that may be integrated with data mining and other applications through the use of distributed messaging systems and Web Service orchestration tools. Building upon on our previous work in these areas, we present our current research efforts. These include fundamental investigations into increasing XML-based Web service performance, supporting real time data streams, and integrating GIS mapping tools with audio/video collaboration systems for shared display and annotation.
NASA Astrophysics Data System (ADS)
Delong, Michael D.; Brusven, Merlyn A.
1991-07-01
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.
Human Behavior Based Exploratory Model for Successful Implementation of Lean Enterprise in Industry
ERIC Educational Resources Information Center
Sawhney, Rupy; Chason, Stewart
2005-01-01
Currently available Lean tools such as Lean Assessments, Value Stream Mapping, and Process Flow Charting focus on system requirements and overlook human behavior. A need is felt for a tool that allows one to baseline personnel, determine personnel requirements and align system requirements with personnel requirements. Our exploratory model--The…
Lean manufacturing analysis to reduce waste on production process of fan products
NASA Astrophysics Data System (ADS)
Siregar, I.; Nasution, A. A.; Andayani, U.; Sari, R. M.; Syahputri, K.; Anizar
2018-02-01
This research is based on case study that being on electrical company. One of the products that will be researched is the fan, which when running the production process there is a time that is not value-added, among others, the removal of material which is not efficient in the raw materials and component molding fan. This study aims to reduce waste or non-value added activities and shorten the total lead time by using the tools Value Stream Mapping. Lean manufacturing methods used to analyze and reduce the non-value added activities, namely the value stream mapping analysis tools, process mapping activity with 5W1H, and tools 5 whys. Based on the research note that no value-added activities in the production process of a fan of 647.94 minutes of total lead time of 725.68 minutes. Process cycle efficiency in the production process indicates that the fan is still very low at 11%. While estimates of the repair showed a decrease in total lead time became 340.9 minutes and the process cycle efficiency is greater by 24%, which indicates that the production process has been better.
Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models
Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin
2018-01-01
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.
Ground-penetrating radar--A tool for mapping reservoirs and lakes
Truman, C.C.; Asmussen, L.E.; Allison, H.D.
1991-01-01
Ground-penetrating radar was evaluated as a tool for mapping reservoir and lake bottoms and providing stage-storage information. An impulse radar was used on a 1.4-ha (3.5-acre) reservoir with 31 transects located 6.1 m (20 feet) apart. Depth of water and lateral extent of the lake bottom were accurately measured by ground-penetrating radar. A linear (positive) relationship existed between measured water depth and ground-penetrating radar-determined water depth (R2=0.989). Ground-penetrating radar data were used to create a contour map of the lake bottom. Relationships between water (contour) elevation and water surface area and volume were established. Ground-penetrating radar proved to be a useful tool for mapping lakes, detecting lake bottom variations, locating old stream channels, and determining water depths. The technology provides accurate, continuous profile data in a relatively short time compared to traditional surveying and depth-sounding techniques.
Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping
NASA Astrophysics Data System (ADS)
Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.
2017-12-01
Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.
User’s guide for the Delaware River Basin Streamflow Estimator Tool (DRB-SET)
Stuckey, Marla H.; Ulrich, James E.
2016-06-09
IntroductionThe Delaware River Basin Streamflow Estimator Tool (DRB-SET) is a tool for the simulation of streamflow at a daily time step for an ungaged stream location in the Delaware River Basin. DRB-SET was developed by the U.S. Geological Survey (USGS) and funded through WaterSMART as part of the National Water Census, a USGS research program on national water availability and use that develops new water accounting tools and assesses water availability at the regional and national scales. DRB-SET relates probability exceedances at a gaged location to those at an ungaged stream location. Once the ungaged stream location has been identified by the user, an appropriate streamgage is automatically selected in DRB-SET using streamflow correlation (map correlation method). Alternately, the user can manually select a different streamgage or use the closest streamgage. A report file is generated documenting the reference streamgage and ungaged stream location information, basin characteristics, any warnings, baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) daily mean streamflow, and the mean and median streamflow. The estimated daily flows for the ungaged stream location can be easily exported as a text file that can be used as input into a statistical software package to determine additional streamflow statistics, such as flow duration exceedance or streamflow frequency statistics.
NASA Astrophysics Data System (ADS)
Sembiring, N.; Nasution, A. H.
2018-02-01
Corrective maintenance i.e replacing or repairing the machine component after machine break down always done in a manufacturing company. It causes the production process must be stopped. Production time will decrease due to the maintenance team must replace or repair the damage machine component. This paper proposes a preventive maintenance’s schedule for a critical component of a critical machine of an crude palm oil and kernel company due to increase maintenance efficiency. The Reliability Engineering & Maintenance Value Stream Mapping is used as a method and a tool to analize the reliability of the component and reduce the wastage in any process by segregating value added and non value added activities.
NASA Astrophysics Data System (ADS)
Rossi, Pekka M.; Korkka-Niemi, Kirsti; Rautio, Anne; Jyväsjärvi, Jussi; Isokangas, Elina; Jaros, Anna; Kløve, Bjørn
2017-04-01
Remote thermal infrared imaging (TIR) is a rapid and feasible method to map groundwater seepages in different surroundings. As the thermal cameras are more available, TIR could be more used as a mapping and management tool for groundwater dependent ecosystems (GDEs). This study demonstrates how TIR was used in a boreal esker aquifer where springs, peatlands, lakes and stream ecosystems are present. Two esker aquifer areas in Finland were mapped with a two-day helicopter based thermal imaging campaign. Imaging included 67 lakes, a bog mire, three headwater streams and a peatland forestry area with ditches. The results of the TIR indicated that many of the lakes had shore seepage points or longer shoreline seepage areas of groundwater. When compared to a previous groundwater dependence study with stable water isotopes of the same lakes, a one-way analysis of covariate (ANCOVA) indicated a correlation between the groundwater dependence and the seepages of a selected lake. The studied mire bog had unmapped springs 0.5 - 1 km beyond the current groundwater protection area of the esker. Also the temperature of the headwater streams referred to a groundwater connection beyond protection limits. The forestry ditches of the discharge zone had a complex temperature pattern due to groundwater seepage. With carefully planned imaging route the TIR resulted to be highly informative and an efficient method to study different GDEs on varying surroundings. The study results emphasize the use of TIR as a standard tool in GDE management planning of boreal eskers comparable to the vegetation based mapping.
New Jersey StreamStats: A web application for streamflow statistics and basin characteristics
Watson, Kara M.; Janowicz, Jon A.
2017-08-02
StreamStats is an interactive, map-based web application from the U.S. Geological Survey (USGS) that allows users to easily obtain streamflow statistics and watershed characteristics for both gaged and ungaged sites on streams throughout New Jersey. Users can determine flood magnitude and frequency, monthly flow-duration, monthly low-flow frequency statistics, and watershed characteristics for ungaged sites by selecting a point along a stream, or they can obtain this information for streamgages by selecting a streamgage location on the map. StreamStats provides several additional tools useful for water-resources planning and management, as well as for engineering purposes. StreamStats is available for most states and some river basins through a single web portal.Streamflow statistics for water resources professionals include the 1-percent annual chance flood flow (100-year peak flow) used to define flood plain areas and the monthly 7-day, 10-year low flow (M7D10Y) used in water supply management and studies of recreation, wildlife conservation, and wastewater dilution. Additionally, watershed or basin characteristics, including drainage area, percent area forested, and average percent of impervious areas, are commonly used in land-use planning and environmental assessments. These characteristics are easily derived through StreamStats.
Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia
2009-01-01
StreamStats is a Web-based Geographic Information System (GIS) application that was developed by the U.S. Geological Survey (USGS) in cooperation with Environmental Systems Research Institute, Inc. (ESRI) to provide access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and selected ungaged sites. StreamStats also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that can affect streamflow conditions. This functionality can be accessed through a map-based interface with the user's Web browser or through individual functions requested remotely through other Web applications.
2012-01-01
Background There are numerous applications for Health Information Systems (HIS) that support specific tasks in the clinical workflow. The Lean method has been used increasingly to optimize clinical workflows, by removing waste and shortening the delivery cycle time. There are a limited number of studies on Lean applications related to HIS. Therefore, we applied the Lean method to evaluate the clinical processes related to HIS, in order to evaluate its efficiency in removing waste and optimizing the process flow. This paper presents the evaluation findings of these clinical processes, with regards to a critical care information system (CCIS), known as IntelliVue Clinical Information Portfolio (ICIP), and recommends solutions to the problems that were identified during the study. Methods We conducted a case study under actual clinical settings, to investigate how the Lean method can be used to improve the clinical process. We used observations, interviews, and document analysis, to achieve our stated goal. We also applied two tools from the Lean methodology, namely the Value Stream Mapping and the A3 problem-solving tools. We used eVSM software to plot the Value Stream Map and A3 reports. Results We identified a number of problems related to inefficiency and waste in the clinical process, and proposed an improved process model. Conclusions The case study findings show that the Value Stream Mapping and the A3 reports can be used as tools to identify waste and integrate the process steps more efficiently. We also proposed a standardized and improved clinical process model and suggested an integrated information system that combines database and software applications to reduce waste and data redundancy. PMID:23259846
Yusof, Maryati Mohd; Khodambashi, Soudabeh; Mokhtar, Ariffin Marzuki
2012-12-21
There are numerous applications for Health Information Systems (HIS) that support specific tasks in the clinical workflow. The Lean method has been used increasingly to optimize clinical workflows, by removing waste and shortening the delivery cycle time. There are a limited number of studies on Lean applications related to HIS. Therefore, we applied the Lean method to evaluate the clinical processes related to HIS, in order to evaluate its efficiency in removing waste and optimizing the process flow. This paper presents the evaluation findings of these clinical processes, with regards to a critical care information system (CCIS), known as IntelliVue Clinical Information Portfolio (ICIP), and recommends solutions to the problems that were identified during the study. We conducted a case study under actual clinical settings, to investigate how the Lean method can be used to improve the clinical process. We used observations, interviews, and document analysis, to achieve our stated goal. We also applied two tools from the Lean methodology, namely the Value Stream Mapping and the A3 problem-solving tools. We used eVSM software to plot the Value Stream Map and A3 reports. We identified a number of problems related to inefficiency and waste in the clinical process, and proposed an improved process model. The case study findings show that the Value Stream Mapping and the A3 reports can be used as tools to identify waste and integrate the process steps more efficiently. We also proposed a standardized and improved clinical process model and suggested an integrated information system that combines database and software applications to reduce waste and data redundancy.
Lean implementation in primary care health visiting services in National Health Service UK.
Grove, A L; Meredith, J O; Macintyre, M; Angelis, J; Neailey, K
2010-10-01
This paper presents the findings of a 13-month lean implementation in National Health Service (NHS) primary care health visiting services from May 2008 to June 2009. Lean was chosen for this study because of its reported success in other healthcare organisations. Value-stream mapping was utilised to map out essential tasks for the participating health visiting service. Stakeholder mapping was conducted to determine the links between all relevant stakeholders. Waste processes were then identified through discussions with these stakeholders, and a redesigned future state process map was produced. Quantitative data were provided through a 10-day time-and-motion study of a selected number of staff within the service. This was analysed to provide an indication of waste activity that could be removed from the system following planned improvements. The value-stream map demonstrated that there were 67 processes in the original health visiting service studied. Analysis revealed that 65% of these processes were waste and could be removed in the redesigned process map. The baseline time-and-motion data demonstrate that clinical staff performed on average 15% waste activities, and the administrative support staff performed 46% waste activities. Opportunities for significant waste reduction have been identified during the study using the lean tools of value-stream mapping and a time-and-motion study. These opportunities include simplification of standard tasks, reduction in paperwork and standardisation of processes. Successful implementation of these improvements will free up resources within the organisation which can be redirected towards providing better direct care to patients.
NASA Astrophysics Data System (ADS)
Rizzo, D. M.; Fytilis, N.; Stevens, L.
2012-12-01
Environmental managers are increasingly required to monitor and forecast long-term effects and vulnerability of biophysical systems to human-generated stresses. Ideally, a study involving both physical and biological assessments conducted concurrently (in space and time) could provide a better understanding of the mechanisms and complex relationships. However, costs and resources associated with monitoring the complex linkages between the physical, geomorphic and habitat conditions and the biological integrity of stream reaches are prohibitive. Researchers have used classification techniques to place individual streams and rivers into a broader spatial context (hydrologic or health condition). Such efforts require environmental managers to gather multiple forms of information - quantitative, qualitative and subjective. We research and develop a novel classification tool that combines self-organizing maps with a Naïve Bayesian classifier to direct resources to stream reaches most in need. The Vermont Agency of Natural Resources has developed and adopted protocols for physical stream geomorphic and habitat assessments throughout the state of Vermont. Separate from these assessments, the Vermont Department of Environmental Conservation monitors the biological communities and the water quality in streams. Our initial hypothesis is that the geomorphic reach assessments and water quality data may be leveraged to reduce error and uncertainty associated with predictions of biological integrity and stream health. We test our hypothesis using over 2500 Vermont stream reaches (~1371 stream miles) assessed by the two agencies. In the development of this work, we combine a Naïve Bayesian classifier with a modified Kohonen Self-Organizing Map (SOM). The SOM is an unsupervised artificial neural network that autonomously analyzes inherent dataset properties using input data only. It is typically used to cluster data into similar categories when a priori classes do not exist. The incorporation of a Bayesian classifier allows one to explicitly incorporate existing knowledge and expert opinion into the data analysis. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of proactive adaptive watershed management applications.
NASA Astrophysics Data System (ADS)
Syed, N. H.; Rehman, A. A.; Hussain, D.; Ishaq, S.; Khan, A. A.
2017-11-01
Morphometric analysis is vital for any watershed investigation and it is inevitable for flood risk assessment in sub-watershed basins. Present study undertaken to carry out critical evaluation and assessment of sub watershed morphological parameters for flood risk assessment of Central Karakorum National Park (CKNP), where Geographical information system and remote sensing (GIS & RS) approach used for quantifying the parameter and mapping of sub watershed units. ASTER DEM used as a geo-spatial data for watershed delineation and stream network. Morphometric analysis carried out using spatial analyst tool of ArcGIS 10.2. The parameters included were bifurcation ratio (Rb), Drainage Texture (Rt), Circulatory ratio (Rc), Elongated ratio (Re), Drainage density (Dd), Stream Length (Lu), Stream order (Su), Slope and Basin length (Lb) have calculated separately. The analysis revealed that the stream order varies from order 1 to 6 and the total numbers of stream segments of all orders were 52. Multi criteria analysis process used to calculate the risk factor. As an accomplished result, map of sub watershed prioritization developed using weighted standardized risk factor. These results helped to understand sensitivity of flush floods in different sub watersheds of the study area and leaded to better management of the mountainous regions in prospect of flush floods.
NASA Astrophysics Data System (ADS)
Nelson, J.; Ames, D. P.; Jones, N.; Souffront, M.
2016-12-01
Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts that are increasingly available in native as well as other derived products. The European Centre for Medium Range Weather Forecasts (ECMWF) have developed such products for global flood awareness which can be downscaled to smaller regions and used for stream flow prediction in underserved areas such as the Hindu Kush-Himalaya. Combined with digital elevation data, now available at 30 meters through the Shuttle Radar Topography Mission (SRTM) reconnaissance-level flood maps can be generated across wide regions that would otherwise not be possible and where increased information to drive higher resolution models are available the same forecasts can be used to provide forcing inflows for improved flood maps. Advances in cloud computing offer a unique opportunity to facilitate deployment of water resources models as decision-making tools in the cloud-based ICIMOD Water Resources App Portal or IWRAP. The interactive nature of web apps makes this an excellent medium for creating decision support tools that harness cutting edge modeling techniques. Thin client apps hosted in a cloud portal eliminates the need for the decision makers to procure and maintain the high performance hardware required by the models, deal with issues related to software installation and platform incompatibilities, or monitor and install software updates, a problem that is exacerbated in the Hindu Kush-Himalaya where both financial and technical capacity are limited. All that is needed to use the system is an Internet connection and a web browser. We will take advantage of these technologies to develop tools which can be centrally maintained but openly accessible. Advanced mapping and visualization will make results intuitive and information derived actionable. We will also take advantage of the emerging standards for sharing water information across the web using the OGC and WMO approved WaterML standards. This will make our tools interoperable and we will help train those we work with so that tools and data from other projects can both consume and share with the tools developed in our project.
EPA Office of Water (OW): 2002 SPARROW Total NP (Catchments)
SPARROW (SPAtially Referenced Regressions On Watershed attributes) is a watershed modeling tool with output that allows the user to interpret water quality monitoring data at the regional and sub-regional scale. The model relates in-stream water-quality measurements to spatially referenced characteristics of watersheds, including pollutant sources and environmental factors that affect rates of pollutant delivery to streams from the land and aquatic, in-stream processing . The core of the model consists of a nonlinear regression equation describing the non-conservative transport of contaminants from point and non-point (or ??diffuse??) sources on land to rivers and through the stream and river network. SPARROW estimates contaminant concentrations, loads (or ??mass,?? which is the product of concentration and streamflow), and yields in streams (mass of nitrogen and of phosphorus entering a stream per acre of land). It empirically estimates the origin and fate of contaminants in streams and receiving bodies, and quantifies uncertainties in model predictions. The model predictions are illustrated through detailed maps that provide information about contaminant loadings and source contributions at multiple scales for specific stream reaches, basins, or other geographic areas.
Accuracy and precision of stream reach water surface slopes estimated in the field and from maps
Isaak, D.J.; Hubert, W.A.; Krueger, K.L.
1999-01-01
The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.
A River Runs Under It: Modeling the Distribution of Streams and Stream Burial in Large River Basins
NASA Astrophysics Data System (ADS)
Elmore, A. J.; Julian, J.; Guinn, S.; Weitzell, R.; Fitzpatrick, M.
2011-12-01
Stream network density exerts a strong control on hydrologic processes in watersheds. Over land and through soil and bedrock substrate, water moves slowly and is subject to chemical transformations unique to conditions of continuous contact with geologic materials. In contrast, once water enters stream channels it is efficiently transported out of watersheds, reducing the amount of time for biological uptake and stream nutrient processing. Therefore, stream network density dictates both the relative importance of terrestrial and aquatic influences to stream chemistry and the residence time of water in watersheds, and is critical to modeling and empirical studies aimed at understanding the impact of land use on stream water quantity and quality. Stream network density is largely a function of the number and length of the smallest streams. Methods for mapping and measuring these headwater streams range from simple measurement of stream length from existing maps, to detailed field mapping efforts, which are difficult to implement over large areas. Confounding the simplest approaches, many headwater stream reaches are not included in hydrographical maps, such as the U.S. National Hydrography Dataset (NHD), either because they were buried during the course of urban development or because they were seen as smaller than the minimum mapping size at the time of map generation. These "missing streams" severely limit the effective analyses of stream network density based on the NHD, constituting a major problem for many efforts to understand land-use impacts on streams. Here we report on research that predicts stream presence and absence by coupling field observations of headwater stream channels with maximum entropy models (MaxEnt) commonly implemented in biogeographical studies to model species distributions. The model utilizes terrain variables that are continuously accumulated along hydrologic flowpaths derived from a 10-m digital elevation model. In validation, the model correctly predicts the presence of 91% of all 10-m stream segments, and rarely miscalculates tributary numbers. We apply this model to the entire Potomac River Basin (37,800 km2) and several adjacent basins to map stream channel density and compare our results with NHD flowline data. We find that NHD underestimates stream channel density by a factor of two in most sub watersheds and this effect is strongest in the densely urbanized cities of Washington, DC and Baltimore, MD. We then apply a second predictive model based on impervious surface area data to map the extent of stream burial. Results demonstrate that the extent of stream burial increases with decreasing stream catchment area. When applied at four time steps (1975, 1990, 2001, and 2006), we find that although stream burial rates have slowed in the recent decade, streams that are not mapped in NHD flowline data continue to be buried during development. This work is the most ambitious attempt yet to map stream network density over a large region and will have lasting implications for modeling and conservation efforts.
Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.
2014-01-01
The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.
Mapping Active Stream Lengths as a Tool for Understanding Spatial Variations in Runoff Generation
NASA Astrophysics Data System (ADS)
Erwin, E. G.; Gannon, J. P.; Zimmer, M. A.
2016-12-01
Recent studies have shown temporary stream channels respond in complex ways to precipitation. By investigating how stream networks expand and recede throughout rain events, we may further develop our understanding of runoff generation. This study focused on mapping the expansion and contraction of the stream network in two headwater catchments characterized by differing soil depths and slopes, located in North Carolina, USA. The first is a 43 ha catchment located in the Southern Appalachian region, characterized by incised, steep slopes and soils of varying thickness. The second is a 3.3 ha catchment located in the Piedmont region, characterized as low relief with deep, highly weathered soils. Over a variety of flow conditions, surveys of the entire stream network were conducted at 10 m intervals to determine presence or absence of surface water. These surveys revealed several reaches within the networks that were intermittent, with perennial flow upstream and downstream. Furthermore, in some tributaries, the active stream head moved up the channel in response to precipitation and at others it remained anchored in place. Moreover, when repeat surveys were performed during the same storm, hysteresis was observed in active stream length variations: stream length was not the same on the rising limb and falling limb of the hydrograph. These observations suggest there are different geomorphological controls or runoff generation processes occurring spatially throughout these catchments. Observations of wide spatial and temporal variability of active stream length over a variety of flow conditions suggest runoff dynamics, generation mechanisms, and contributing flowpath depths producing streamflow may be highly variable and not easily predicted from streamflow observations at a fixed point. Finally, the observation of similar patterns in differing geomorphic regions suggests these processes extend beyond unique site characterizations.
NASA Astrophysics Data System (ADS)
Jeyaraj, K. L.; Muralidharan, C.; Mahalingam, R.; Deshmukh, S. G.
2013-01-01
The purpose of this paper is to explain how value stream mapping (VSM) is helpful in lean implementation and to develop the road map to tackle improvement areas to bridge the gap between the existing state and the proposed state of a manufacturing firm. Through this case study, the existing stage of manufacturing is mapped with the help of VSM process symbols and the biggest improvement areas like excessive TAKT time, production, and lead time are identified. Some modifications in current state map are suggested and with these modifications future state map is prepared. Further TAKT time is calculated to set the pace of production processes. This paper compares the current state and future state of a manufacturing firm and witnessed 20 % reduction in TAKT time, 22.5 % reduction in processing time, 4.8 % reduction in lead time, 20 % improvement in production, 9 % improvement in machine utilization, 7 % improvement in man power utilization, objective improvement in workers skill level, and no change in the product and semi finished product inventory level. The findings are limited due to the focused nature of the case study. This case study shows that VSM is a powerful tool for lean implementation and allows the industry to understand and continuously improve towards lean manufacturing.
U.S. Geological Survey water resources Internet tools
Shaffer, Kimberly H.
2013-11-07
The U.S. Geological Fact Sheet (USGS) provides a wealth of information on hydrologic data, maps, graphs, and other resources for your State.Sources of water resources information are listed below.WaterWatchWaterQualityWatchGroundwater WatchWaterNowWaterAlertUSGS Flood Inundation MapperNational Water Information System (NWIS)StreamStatsNational Water Quality Assessment (NAWOA)
NASA Astrophysics Data System (ADS)
Bratcher, Tim; Kroutil, Robert; Lanouette, André; Lewis, Paul E.; Miller, David; Shen, Sylvia; Thomas, Mark
2013-05-01
The development concept paper for the MSIC system was first introduced in August 2012 by these authors. This paper describes the final assembly, testing, and commercial availability of the Mapping System Interface Card (MSIC). The 2.3kg MSIC is a self-contained, compact variable configuration, low cost real-time precision metadata annotator with embedded INS/GPS designed specifically for use in small aircraft. The MSIC was specifically designed to convert commercial-off-the-shelf (COTS) digital cameras and imaging/non-imaging spectrometers with Camera Link standard data streams into mapping systems for airborne emergency response and scientific remote sensing applications. COTS digital cameras and imaging/non-imaging spectrometers covering the ultraviolet through long-wave infrared wavelengths are important tools now readily available and affordable for use by emergency responders and scientists. The MSIC will significantly enhance the capability of emergency responders and scientists by providing a direct transformation of these important COTS sensor tools into low-cost real-time aerial mapping systems.
From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing
NASA Astrophysics Data System (ADS)
Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda
2017-12-01
Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.
NASA Astrophysics Data System (ADS)
Fytilis, N.; Rizzo, D. M.
2012-12-01
Environmental managers are increasingly required to forecast the long-term effects and the resilience or vulnerability of biophysical systems to human-generated stresses. Mitigation strategies for hydrological and environmental systems need to be assessed in the presence of uncertainty. An important aspect of such complex systems is the assessment of variable uncertainty on the model response outputs. We develop a new classification tool that couples a Naïve Bayesian Classifier with a modified Kohonen Self-Organizing Map to tackle this challenge. For proof-of-concept, we use rapid geomorphic and reach-scale habitat assessments data from over 2500 Vermont stream reaches (~1371 stream miles) assessed by the Vermont Agency of Natural Resources (VTANR). In addition, the Vermont Department of Environmental Conservation (VTDEC) estimates stream habitat biodiversity indices (macro-invertebrates and fish) and a variety of water quality data. Our approach fully utilizes the existing VTANR and VTDEC data sets to improve classification of stream-reach habitat and biological integrity. The combined SOM-Naïve Bayesian architecture is sufficiently flexible to allow for continual updates and increased accuracy associated with acquiring new data. The Kohonen Self-Organizing Map (SOM) is an unsupervised artificial neural network that autonomously analyzes properties inherent in a given a set of data. It is typically used to cluster data vectors into similar categories when a priori classes do not exist. The ability of the SOM to convert nonlinear, high dimensional data to some user-defined lower dimension and mine large amounts of data types (i.e., discrete or continuous, biological or geomorphic data) makes it ideal for characterizing the sensitivity of river networks in a variety of contexts. The procedure is data-driven, and therefore does not require the development of site-specific, process-based classification stream models, or sets of if-then-else rules associated with expert systems. This has the potential to save time and resources, while enabling a truly adaptive management approach using existing knowledge (expressed as prior probabilities) and new information (expressed as likelihood functions) to update estimates (i.e., in this case, improved stream classifications expressed as posterior probabilities). The distribution parameters of these posterior probabilities are used to quantify uncertainty associated with environmental data. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of engineering applications. The ability of the new classification neural network to characterize streams with high environmental risk is essential for a proactive adaptive watershed management approach.
Hopkins, Kristina G.; Bain, Daniel J.
2018-01-01
Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.
NASA Astrophysics Data System (ADS)
Jonny; Nasution, Januar
2013-06-01
Value stream mapping is a tool which is needed to let the business leader of XYZ Hospital to see what is actually happening in its business process that have caused longer lead time for self-produced medicines in its pharmacy unit. This problem has triggered many complaints filed by patients. After deploying this tool, the team has come up with the fact that in processing the medicine, pharmacy unit does not have any storage and capsule packing tool and this condition has caused many wasting times in its process. Therefore, the team has proposed to the business leader to procure the required tools in order to shorten its process. This research has resulted in shortened lead time from 45 minutes to 30 minutes as required by the government through Indonesian health ministry with increased %VA (valued added activity) or Process Cycle Efficiency (PCE) from 66% to 68% (considered lean because it is upper than required 30%). This result has proved that the process effectiveness has been increase by the improvement.
Potential Stream Density in Mid-Atlantic U.S. Watersheds
Elmore, Andrew J.; Julian, Jason P.; Guinn, Steven M.; Fitzpatrick, Matthew C.
2013-01-01
Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (<1%) for catchments larger than 10 ha. We apply this model to the entire Potomac River watershed (37,800 km2) and several adjacent watersheds to map stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts. PMID:24023704
Bioassessment in nonperennial streams: Hydrologic stability influences assessment validity
NASA Astrophysics Data System (ADS)
Mazor, R. D.; Stein, E. D.; Schiff, K.; Ode, P.; Rehn, A.
2011-12-01
Nonperennial streams pose a challenge for bioassessment, as assessment tools developed in perennial streams may not work in these systems. For example, indices of biotic integrity (IBIs) developed in perennial streams may give improper indications of impairment in nonperennial streams, or may be unstable. We sampled benthic macroinvertebrates from 12 nonperennial streams in southern California. In addition, we deployed loggers to obtain continuous measures of flow. 3 sites were revisited over 2 years. For each site, we calculated several metrics, IBIs, and O/E scores to determine if assessments were consistent and valid throughout the summer. Hydrology varied widely among the streams, with several streams drying between sampling events. IBIs suggested good ecological health at the beginning of the study, but declined sharply at some sites. Multivariate ordination suggested that, despite differences among sites, changes in community structure were similar, with shifts from Ephemeroptera, Plecoptera, and Trichoptera to Coleoptera and more tolerant organisms. Site revisits revealed a surprising level of variability, as 2 of the 3 revisited sites had perennial or near-perennial flow in the second year of sampling. IBI scores were more consistent in streams with stable hydrographs than in those with strongly intermittent hydrographs. These results suggest that nonperennial streams can be monitored successfully, but they may require short index periods and distinct metrics from those used in perennial streams. In addition, better approaches to mapping nonperennial streams are required.
StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.
Li, Chenhui; Baciu, George; Han, Yu
2018-03-01
Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.
Fifty-year flood-inundation maps for Siguatepeque, Honduras
Kresch, David L.; Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Siguatepeque that would be inundated by 50-year floods on Rio Selguapa, Rio Guique, Rio Celan, Rio Calan, and Quebrada Chalantuma. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Siguatepeque as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on each of the streams studied were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at six bridges. There are no nearby long-term stream-gaging stations on any of the streams studied; therefore, the 50-year-flood discharges were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The 50-year-flood discharges estimated for Rio Selguapa, Rio Guique, Rio Celan, Rio Calan, and Quebrada Chalantuma are 323, 168, 161, 146, and 90 cubic meters per second, respectively.
Acoustic mapping of shallow water gas releases using shipborne multibeam systems
NASA Astrophysics Data System (ADS)
Urban, Peter; Köser, Kevin; Weiß, Tim; Greinert, Jens
2015-04-01
Water column imaging (WCI) shipborne multibeam systems are effective tools for investigating marine free gas (bubble) release. Like single- and splitbeam systems they are very sensitive towards gas bubbles in the water column, and have the advantage of the wide swath opening angle, 120° or more allowing a better mapping and possible 3D investigations of targets in the water column. On the downside, WCI data are degraded by specific noise from side-lobe effects and are usually not calibrated for target backscattering strength analysis. Most approaches so far concentrated on manual investigations of bubbles in the water column data. Such investigations allow the detection of bubble streams (flares) and make it possible to get an impression about the strength of detected flares/the gas release. Because of the subjective character of these investigations it is difficult to understand how well an area has been investigated by a flare mapping survey and subjective impressions about flare strength can easily be fooled by the many acoustic effects multibeam systems create. Here we present a semi-automated approach that uses the behavior of bubble streams in varying water currents to detect and map their exact source positions. The focus of the method is application of objective rules for flare detection, which makes it possible to extract information about the quality of the seepage mapping survey, perform automated noise reduction and create acoustic maps with quality discriminators indicating how well an area has been mapped.
Surficial geologic map of the greater Omaha area, Nebraska and Iowa
Shroba, R.R.; Brandt, T.R.; Blossom, J.C.
2001-01-01
Geologic mapping, in support of the USGS Omaha-Kansas City Geologic Mapping Project, shows the spatial distribution of artificial-fill, alluvial, eolian, and glacial deposits and bedrock in and near Omaha, Nebraska. Artificial fill deposits are mapped chiefly beneath commercial structures, segments of interstate highways and other major highways, railroad tracks, airport runways, and military facilities, and in landfills and earth fills. Alluvial deposits are mapped beneath flood plains, in stream terraces, and on hill slopes. They include flood-plain and stream-channel alluvium, sheetwash alluvium, and undivided sheetwash alluvium and stream alluvium. Wind-deposited loess forms sheets that mantle inter-stream areas and late Wisconsin terrace alluvium. Peoria Loess is younger of the two loess sheets and covers much of the inter-stream area in the map area. Loveland Loess is older and is exposed in a few small areas in the eastern part of the map area. Glacial deposits are chiefly heterogeneous, ice-deposited, clayey material (till) and minor interstratified stream-deposited sand and gravel. Except for small outcrops, glacial deposits are covered by eolian and alluvial deposits throughout most of the map area. Bedrock is locally exposed in natural exposures along the major streams and in quarries. It consists of Dakota Sandstone and chiefly limestone and shale of the Lansing and Kansas City Groups. Sand and gravel in flood plain and stream-channel alluvium in the Platte River valley are used mainly for concrete aggregate. Limestone of the Lansing and Kansas City Groups is used for road-surfacing material, rip rap, and fill material.
Implementation of lean manufacturing for frozen fish process at PT. XYZ
NASA Astrophysics Data System (ADS)
Setiyawan, D. T.; Pertiwijaya, H. R.; Effendi, U.
2018-03-01
PT. XYZ is a company specialized in the processing of fishery products particularly in frozen fish fillet. The purpose of this research was to identify the type of waste and determine the recommendations of minimizing waste Lean manufacturing approach was used in the identification of waste by describing the Value Stream Mapping (VSM) and selecting tools in the Value Stream Analysis Tools (VALSAT). The results of this research showed that the highest waste that generated was the defect of leak packaging on fillet products with an average of 1.21%. In addition to defect, other insufficiencies were found such as: unnecessary motion, unnecessary overhead, and waiting time. Recommendations for improvements that given include reduction of time at several stages of the process, making production schedules, and conducting regular machine maintenance. VSM analysis shows reduced lead time of 582.04 minutes to 572.01 minutes.
NASA Astrophysics Data System (ADS)
Lea, Devin M.
Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study used remote sensing and GIS tools along with field data to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from light detection and ranging (LiDAR) data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Results indicated a lack of strong correlation between stream power gradients and sediment response, highlighting the geomorphic complexity of Soda Butte Creek and the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in dynamic natural rivers.
Nowak, Marina; Pfaff, Holger; Karbach, Ute
2017-08-24
Quality improvement within health and social care facilities is needed and has to be evidence-based and patient-centered. Value Stream Mapping, a method of Lean management, aims to increase the patients' value and quality of care by a visualization and quantification of the care process. The aim of this research is to examine the effectiveness of Value Stream Mapping on structure, process, and outcome quality in care facilities. A systematic review is conducted. PubMed, EBSCOhost, including Business Source Complete, Academic Search Complete, PSYCInfo, PSYNDX, SocINDEX with Full Text, Web of Knowledge, and EMBASE ScienceDirect are searched in February 2016. All peer-reviewed papers evaluating Value Stream Mapping and published in English or German from January 2000 are included. For data synthesis, all study results are categorized into Donabedian's model of structure, process, and outcome quality. To assess and interpret the effectiveness of Value Stream Mapping, the frequencies of the results statistically examined are considered. Of the 903 articles retrieved, 22 studies fulfill the inclusion criteria. Of these, 11 studies are used to answer the research question. Value Stream Mapping has positive effects on the time dimension of process and outcome quality. It seems to reduce non-value-added time (e.g., waiting time) and length of stay. All study designs are before and after studies without control, and methodologically sophisticated studies are missing. For a final conclusion about Value Stream Mapping's effectiveness, more research with improved methodology is needed. Despite this lack of evidence, Value Stream Mapping has the potential to improve quality of care on the time dimension. The contextual influence has to be investigated to make conclusions about the relationship between different quality domains when applying Value Stream Mapping. However, for using this review's conclusion, the limitation of including heterogeneous and potentially biased results has to be considered.
Flood-inundation maps for the Susquehanna River near Harrisburg, Pennsylvania, 2013
Roland, Mark A.; Underwood, Stacey M.; Thomas, Craig M.; Miller, Jason F.; Pratt, Benjamin A.; Hogan, Laurie G.; Wnek, Patricia A.
2014-01-01
A series of 28 digital flood-inundation maps was developed for an approximate 25-mile reach of the Susquehanna River in the vicinity of Harrisburg, Pennsylvania. The study was selected by the U.S. Army Corps of Engineers (USACE) national Silver Jackets program, which supports interagency teams at the state level to coordinate and collaborate on flood-risk management. This study to produce flood-inundation maps was the result of a collaborative effort between the USACE, National Weather Service (NWS), Susquehanna River Basin Commission (SRBC), The Harrisburg Authority, and the U.S. Geological Survey (USGS). These maps are accessible through Web-mapping applications associated with the NWS, SRBC, and USGS. The maps can be used in conjunction with the real-time stage data from the USGS streamgage 01570500, Susquehanna River at Harrisburg, Pa., and NWS flood-stage forecasts to help guide the general public in taking individual safety precautions and will provide local municipal officials with a tool to efficiently manage emergency flood operations and flood mitigation efforts. The maps were developed using the USACE HEC–RAS and HEC–GeoRAS programs to compute water-surface profiles and to delineate estimated flood-inundation areas for selected stream stages. The maps show estimated flood-inundation areas overlaid on high-resolution, georeferenced, aerial photographs of the study area for stream stages at 1-foot intervals between 11 feet and 37 feet (which include NWS flood categories Action, Flood, Moderate, and Major) and the June 24, 1972, peak-of-record flood event at a stage of 33.27 feet at the Susquehanna River at Harrisburg, Pa., streamgage.
White matter anisotropy in the ventral language pathway predicts sound-to-word learning success
Wong, Francis C. K.; Chandrasekaran, Bharath; Garibaldi, Kyla; Wong, Patrick C. M.
2011-01-01
According to the dual stream model of auditory language processing, the dorsal stream is responsible for mapping sound to articulation while the ventral stream plays the role of mapping sound to meaning. Most researchers agree that the arcuate fasciculus (AF) is the neuroanatomical correlate of the dorsal steam, however, less is known about what constitutes the ventral one. Nevertheless two hypotheses exist, one suggests that the segment of the AF that terminates in middle temporal gyrus corresponds to the ventral stream and the other suggests that it is the extreme capsule that underlies this sound to meaning pathway. The goal of this study is to evaluate these two competing hypotheses. We trained participants with a sound-to-word learning paradigm in which they learned to use a foreign phonetic contrast for signaling word meaning. Using diffusion tensor imaging (DTI), a brain imaging tool to investigate white matter connectivity in humans, we found that fractional anisotropy in the left parietal-temporal region positively correlated with the performance in sound-to-word learning. In addition, fiber tracking revealed a ventral pathway, composed of the extreme capsule and the inferior longitudinal fasciculus, that mediated auditory comprehension. Our findings provide converging evidence supporting the importance of the ventral steam, an extreme capsule system, in the frontal-temporal language network. Implications for current models of speech processing will also be discussed. PMID:21677162
Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.
2012-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.
2011-12-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
Flood Risk Management in Iowa through an Integrated Flood Information System
NASA Astrophysics Data System (ADS)
Demir, Ibrahim; Krajewski, Witold
2013-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
6th Annual National Small Business Conference
2009-06-03
Extension Partnership – MIT Lean Advancement Initiative – Customers • Lean Tools – Value Stream Mapping – Kaizen Events Center for Management...Blue denotes kaizen events Most suppliers did not have in-house lean capability therefore the OEM and customer facilitated the events 36 Center for...Management & Economic Research 37 Kaizen Events • Kaizen is the process of: – Identifying & eliminating waste – as quickly as possible – at the
Malleable architecture generator for FPGA computing
NASA Astrophysics Data System (ADS)
Gokhale, Maya; Kaba, James; Marks, Aaron; Kim, Jang
1996-10-01
The malleable architecture generator (MARGE) is a tool set that translates high-level parallel C to configuration bit streams for field-programmable logic based computing systems. MARGE creates an application-specific instruction set and generates the custom hardware components required to perform exactly those computations specified by the C program. In contrast to traditional fixed-instruction processors, MARGE's dynamic instruction set creation provides for efficient use of hardware resources. MARGE processes intermediate code in which each operation is annotated by the bit lengths of the operands. Each basic block (sequence of straight line code) is mapped into a single custom instruction which contains all the operations and logic inherent in the block. A synthesis phase maps the operations comprising the instructions into register transfer level structural components and control logic which have been optimized to exploit functional parallelism and function unit reuse. As a final stage, commercial technology-specific tools are used to generate configuration bit streams for the desired target hardware. Technology- specific pre-placed, pre-routed macro blocks are utilized to implement as much of the hardware as possible. MARGE currently supports the Xilinx-based Splash-2 reconfigurable accelerator and National Semiconductor's CLAy-based parallel accelerator, MAPA. The MARGE approach has been demonstrated on systolic applications such as DNA sequence comparison.
Hung, Sheng-Hui; Wang, Pa-Chun; Lin, Hung-Chun; Chen, Hung-Ying; Su, Chao-Ton
2015-01-01
Specimen handling is a critical patient safety issue. Problematic handling process, such as misidentification (of patients, surgical site, and specimen counts), specimen loss, or improper specimen preparation can lead to serious patient harms and lawsuits. Value stream map (VSM) is a tool used to find out non-value-added works, enhance the quality, and reduce the cost of the studied process. On the other hand, healthcare failure mode and effect analysis (HFMEA) is now frequently employed to avoid possible medication errors in healthcare process. Both of them have a goal similar to Six Sigma methodology for process improvement. This study proposes a model that integrates VSM and HFMEA into the framework, which mainly consists of define, measure, analyze, improve, and control (DMAIC), of Six Sigma. A Six Sigma project for improving the process of surgical specimen handling in a hospital was conducted to demonstrate the effectiveness of the proposed model.
Michael, Claire W; Naik, Kalyani; McVicker, Michael
2013-05-01
We developed a value stream map (VSM) of the Papanicolaou test procedure to identify opportunities to reduce waste and errors, created a new VSM, and implemented a new process emphasizing Lean tools. Preimplementation data revealed the following: (1) processing time (PT) for 1,140 samples averaged 54 hours; (2) 27 accessioning errors were detected on review of 357 random requisitions (7.6%); (3) 5 of the 20,060 tests had labeling errors that had gone undetected in the processing stage. Four were detected later during specimen processing but 1 reached the reporting stage. Postimplementation data were as follows: (1) PT for 1,355 samples averaged 31 hours; (2) 17 accessioning errors were detected on review of 385 random requisitions (4.4%); and (3) no labeling errors were undetected. Our results demonstrate that implementation of Lean methods, such as first-in first-out processes and minimizing batch size by staff actively participating in the improvement process, allows for higher quality, greater patient safety, and improved efficiency.
Evaluating the perennial stream using logistic regression in central Taiwan
NASA Astrophysics Data System (ADS)
Ruljigaljig, T.; Cheng, Y. S.; Lin, H. I.; Lee, C. H.; Yu, T. T.
2014-12-01
This study produces a perennial stream head potential map, based on a logistic regression method with a Geographic Information System (GIS). Perennial stream initiation locations, indicates the location of the groundwater and surface contact, were identified in the study area from field survey. The perennial stream potential map in central Taiwan was constructed using the relationship between perennial stream and their causative factors, such as Catchment area, slope gradient, aspect, elevation, groundwater recharge and precipitation. Here, the field surveys of 272 streams were determined in the study area. The areas under the curve for logistic regression methods were calculated as 0.87. The results illustrate the importance of catchment area and groundwater recharge as key factors within the model. The results obtained from the model within the GIS were then used to produce a map of perennial stream and estimate the location of perennial stream head.
Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew
2012-01-01
This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.
Chen, Juan; Snow, Jacqueline C; Culham, Jody C; Goodale, Melvyn A
2018-04-01
Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.
Chaffee, Maurice A.
1986-01-01
Map A shows the locations of all sites where rock samples were collected for this report and the distributions of anomalous concentrations for 12 elements in the 127 rock samples collected. In a similar manner, map B shows the collection sites for 59 samples of minus-60-mesh stream sediment, and 59 samples of nonmagnetic heavy-mineral concentrate derived from stream sediment and also shows the distributions of anomalous concentrations for 13 elements in the stream-sediment samples and 17 elements in the concentrate samples. Map C shows outlines of those drainage basins containing samples of stream sediment and concentrate with anomalous element concentrations and also shows weighted values for each outlined basin based on the number of elements with anomalous concentrations in each stream-sediment and concentrate sample and on the degree to which these concentrations are anomalous in each sample.
Teichgräber, Ulf K; de Bucourt, Maximilian
2012-01-01
OJECTIVES: To eliminate non-value-adding (NVA) waste for the procurement of endovascular stents in interventional radiology services by applying value stream mapping (VSM). The Lean manufacturing technique was used to analyze the process of material and information flow currently required to direct endovascular stents from external suppliers to patients. Based on a decision point analysis for the procurement of stents in the hospital, a present state VSM was drawn. After assessment of the current status VSM and progressive elimination of unnecessary NVA waste, a future state VSM was drawn. The current state VSM demonstrated that out of 13 processes for the procurement of stents only 2 processes were value-adding. Out of the NVA processes 5 processes were unnecessary NVA activities, which could be eliminated. The decision point analysis demonstrated that the procurement of stents was mainly a forecast driven push system. The future state VSM applies a pull inventory control system to trigger the movement of a unit after withdrawal by using a consignment stock. VSM is a visualization tool for the supply chain and value stream, based on the Toyota Production System and greatly assists in successfully implementing a Lean system. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Ries, Kernell G.; Newson, Jeremy K.; Smith, Martyn J.; Guthrie, John D.; Steeves, Peter A.; Haluska, Tana L.; Kolb, Katharine R.; Thompson, Ryan F.; Santoro, Richard D.; Vraga, Hans W.
2017-10-30
IntroductionStreamStats version 4, available at https://streamstats.usgs.gov, is a map-based web application that provides an assortment of analytical tools that are useful for water-resources planning and management, and engineering purposes. Developed by the U.S. Geological Survey (USGS), the primary purpose of StreamStats is to provide estimates of streamflow statistics for user-selected ungaged sites on streams and for USGS streamgages, which are locations where streamflow data are collected.Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (which is exceeded, on average, once in 100 years and has a 1-percent chance of exceedance in any year) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; permitting of water withdrawals and wastewater and industrial discharges; hydropower facility design and regulation; and setting of minimum allowed streamflows to protect freshwater ecosystems. Streamflow statistics can be computed from available data at USGS streamgages depending on the type of data collected at the stations. Most often, however, streamflow statistics are needed at ungaged sites, where no streamflow data are available to determine the statistics.
Methods to estimate historical daily streamflow for ungaged stream locations in Minnesota
Lorenz, David L.; Ziegeweid, Jeffrey R.
2016-03-14
Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water; however, streamgages cannot be installed at every location where streamflow information is needed. Therefore, methods for estimating streamflow at ungaged stream locations need to be developed. This report presents a statewide study to develop methods to estimate the structure of historical daily streamflow at ungaged stream locations in Minnesota. Historical daily mean streamflow at ungaged locations in Minnesota can be estimated by transferring streamflow data at streamgages to the ungaged location using the QPPQ method. The QPPQ method uses flow-duration curves at an index streamgage, relying on the assumption that exceedance probabilities are equivalent between the index streamgage and the ungaged location, and estimates the flow at the ungaged location using the estimated flow-duration curve. Flow-duration curves at ungaged locations can be estimated using recently developed regression equations that have been incorporated into StreamStats (http://streamstats.usgs.gov/), which is a U.S. Geological Survey Web-based interactive mapping tool that can be used to obtain streamflow statistics, drainage-basin characteristics, and other information for user-selected locations on streams.
Ground-penetrating radar: A tool for monitoring bridge scour
Anderson, N.L.; Ismael, A.M.; Thitimakorn, T.
2007-01-01
Ground-penetrating radar (GPR) data were acquired across shallow streams and/or drainage ditches at 10 bridge sites in Missouri by maneuvering the antennae across the surface of the water and riverbank from the bridge deck, manually or by boat. The acquired two-dimensional and three-dimensional data sets accurately image the channel bottom, demonstrating that the GPR tool can be used to estimate and/or monitor water depths in shallow fluvial environments. The study results demonstrate that the GPR tool is a safe and effective tool for measuring and/or monitoring scour in proximity to bridges. The technique can be used to safely monitor scour at assigned time intervals during peak flood stages, thereby enabling owners to take preventative action prior to potential failure. The GPR tool can also be used to investigate depositional and erosional patterns over time, thereby elucidating these processes on a local scale. In certain instances, in-filled scour features can also be imaged and mapped. This information may be critically important to those engaged in bridge design. GPR has advantages over other tools commonly employed for monitoring bridge scour (reflection seismic profiling, echo sounding, and electrical conductivity probing). The tool doesn't need to be coupled to the water, can be moved rapidly across (or above) the surface of a stream, and provides an accurate depth-structure model of the channel bottom and subchannel bottom sediments. The GPR profiles can be extended across emerged sand bars or onto the shore.
Ahmed, S. Sohail; Oviedo-Orta, Ernesto; Mekaru, Sumiko R.; Freifeld, Clark C.; Tougas, Gervais; Brownstein, John S.
2015-01-01
Background While formal reporting, surveillance, and response structures remain essential to protecting public health, a new generation of freely accessible, online, and real-time informatics tools for disease tracking are expanding the ability to raise earlier public awareness of emerging disease threats. The rationale for this study is to test the hypothesis that the HealthMap informatics tools can complement epidemiological data captured by traditional surveillance monitoring systems for meningitis due to Neisseria meningitides (N. meningitides) by highlighting severe transmissible disease activity and outbreaks in the United States. Methods Annual analyses of N. meningitides disease alerts captured by HealthMap were compared to epidemiological data captured by the Centers for Disease Control’s Active Bacterial Core surveillance (ABCs) for N. meningitides. Morbidity and mortality case reports were measured annually from 2010 to 2013 (HealthMap) and 2005 to 2012 (ABCs). Findings HealthMap N. meningitides monitoring captured 80-90% of alerts as diagnosed N. meningitides, 5-20% of alerts as suspected cases, and 5-10% of alerts as related news articles. HealthMap disease alert activity for emerging disease threats related to N. meningitides were in agreement with patterns identified historically using traditional surveillance systems. HealthMap’s strength lies in its ability to provide a cumulative “snapshot” of weak signals that allows for rapid dissemination of knowledge and earlier public awareness of potential outbreak status while formal testing and confirmation for specific serotypes is ongoing by public health authorities. Conclusions The underreporting of disease cases in internet-based data streaming makes inadequate any comparison to epidemiological trends illustrated by the more comprehensive ABCs network published by the Centers for Disease Control. However, the expected delays in compiling confirmatory reports by traditional surveillance systems (at the time of writing, ABCs data for 2013 is listed as being provisional) emphasize the helpfulness of real-time internet-based data streaming to quickly fill gaps including the visualization of modes of disease transmission in outbreaks for better resource and action planning. HealthMap can also contribute as an internet-based monitoring system to provide real-time channel for patients to report intervention-related failures. PMID:25992552
NASA Astrophysics Data System (ADS)
Liu, Jiping; Kang, Xiaochen; Dong, Chun; Xu, Shenghua
2017-12-01
Surface area estimation is a widely used tool for resource evaluation in the physical world. When processing large scale spatial data, the input/output (I/O) can easily become the bottleneck in parallelizing the algorithm due to the limited physical memory resources and the very slow disk transfer rate. In this paper, we proposed a stream tilling approach to surface area estimation that first decomposed a spatial data set into tiles with topological expansions. With these tiles, the one-to-one mapping relationship between the input and the computing process was broken. Then, we realized a streaming framework towards the scheduling of the I/O processes and computing units. Herein, each computing unit encapsulated a same copy of the estimation algorithm, and multiple asynchronous computing units could work individually in parallel. Finally, the performed experiment demonstrated that our stream tilling estimation can efficiently alleviate the heavy pressures from the I/O-bound work, and the measured speedup after being optimized have greatly outperformed the directly parallel versions in shared memory systems with multi-core processors.
E3 Value Stream Mapping How-to Guide
Presentations and PDFs on value stream mapping for various sectors, which can reveal substantial opportunities to reduce costs, enhance production flow, save time, reduce inventory, and improve environmental performance.
Zhou, Lianjie; Chen, Nengcheng; Chen, Zeqiang
2017-01-01
The efficient data access of streaming vehicle data is the foundation of analyzing, using and mining vehicle data in smart cities, which is an approach to understand traffic environments. However, the number of vehicles in urban cities has grown rapidly, reaching hundreds of thousands in number. Accessing the mass streaming data of vehicles is hard and takes a long time due to limited computation capability and backward modes. We propose an efficient streaming spatio-temporal data access based on Apache Storm (ESDAS) to achieve real-time streaming data access and data cleaning. As a popular streaming data processing tool, Apache Storm can be applied to streaming mass data access and real time data cleaning. By designing the Spout/bolt workflow of topology in ESDAS and by developing the speeding bolt and other bolts, Apache Storm can achieve the prospective aim. In our experiments, Taiyuan BeiDou bus location data is selected as the mass spatio-temporal data source. In the experiments, the data access results with different bolts are shown in map form, and the filtered buses’ aggregation forms are different. In terms of performance evaluation, the consumption time in ESDAS for ten thousand records per second for a speeding bolt is approximately 300 milliseconds, and that for MongoDB is approximately 1300 milliseconds. The efficiency of ESDAS is approximately three times higher than that of MongoDB. PMID:28394287
Zhou, Lianjie; Chen, Nengcheng; Chen, Zeqiang
2017-04-10
The efficient data access of streaming vehicle data is the foundation of analyzing, using and mining vehicle data in smart cities, which is an approach to understand traffic environments. However, the number of vehicles in urban cities has grown rapidly, reaching hundreds of thousands in number. Accessing the mass streaming data of vehicles is hard and takes a long time due to limited computation capability and backward modes. We propose an efficient streaming spatio-temporal data access based on Apache Storm (ESDAS) to achieve real-time streaming data access and data cleaning. As a popular streaming data processing tool, Apache Storm can be applied to streaming mass data access and real time data cleaning. By designing the Spout/bolt workflow of topology in ESDAS and by developing the speeding bolt and other bolts, Apache Storm can achieve the prospective aim. In our experiments, Taiyuan BeiDou bus location data is selected as the mass spatio-temporal data source. In the experiments, the data access results with different bolts are shown in map form, and the filtered buses' aggregation forms are different. In terms of performance evaluation, the consumption time in ESDAS for ten thousand records per second for a speeding bolt is approximately 300 milliseconds, and that for MongoDB is approximately 1300 milliseconds. The efficiency of ESDAS is approximately three times higher than that of MongoDB.
Flow-aggregated traffic-driven label mapping in label-switching networks
NASA Astrophysics Data System (ADS)
Nagami, Kenichi; Katsube, Yasuhiro; Esaki, Hiroshi; Nakamura, Osamu
1998-12-01
Label switching technology enables high performance, flexible, layer-3 packet forwarding based on the fixed length label information mapped to the layer-3 packet stream. A Label Switching Router (LSR) forwards layer-3 packets based on their label information mapped to the layer-3 address information as well as their layer-3 address information. This paper evaluates the required number of labels under traffic-driven label mapping policy using the real backbone traffic traces. The evaluation shows that the label mapping policy requires a large number of labels. In order to reduce the required number of labels, we propose a label mapping policy which is a traffic-driven label mapping for the traffic toward the same destination network. The evaluation shows that the proposed label mapping policy requires only about one tenth as many labels compared with the traffic-driven label mapping for the host-pair packet stream,and the topology-driven label mapping for the destination network packet stream.
Utilizing lean tools to improve value and reduce outpatient wait times in an Indian hospital.
Miller, Richard; Chalapati, Nirisha
2015-01-01
This paper aims to demonstrate how lean tools were applied to some unique issues of providing healthcare in a developing country where many patients face challenges not found in developed countries. The challenges provide insight into how lean tools can be utilized to provide similar results across the world. This paper is based on a qualitative case study carried out by a master's student implementing lean at a hospital in India. This paper finds that lean tools such as value-stream mapping and root cause analysis can lead to dramatic reductions in waste and improvements in productivity. The problems of the majority of patients paying for their own healthcare and lacking transportation created scheduling problems that required patients to receive their diagnosis and pay for treatment within a single day. Many additional wastes were identified that were significantly impacting the hospital's ability to provide care. As a result of this project, average outpatient wait times were reduced from 1 hour to 15 minutes along with a significant increase in labor productivity. The results demonstrate how lean tools can increase value to the patients. It also provides are framework that can be utilized for healthcare providers in developed and developing countries to analyze their value streams to reduce waste. This paper is one of the first to address the unique issues of implementing lean to a healthcare setting in a developing country.
Kang, Joo-Hyon; Lee, Seung Won; Cho, Kyung Hwa; Ki, Seo Jin; Cha, Sung Min; Kim, Joon Ha
2010-07-01
This study reveals land-use factors that explain stream water quality during wet and dry weather conditions in a large river basin using two different linear models-multiple linear regression (MLR) models and constrained least squares (CLS) models. Six land-use types and three topographical parameters (size, slope, and permeability) of the watershed were incorporated into the models as explanatory variables. The suggested models were then demonstrated using a digitized elevation map in conjunction with the land-use and the measured concentration data for Escherichia coli (EC), Enterococci bacteria (ENT), and six heavy metal species collected monthly during 2007-2008 at 50 monitoring sites in the Yeongsan Watershed, Korea. The results showed that the MLR models can be a powerful tool for predicting the average concentrations of pollutants in stream water (the Nash-Sutcliffe (NS) model efficiency coefficients ranged from 0.67 to 0.95). On the other hand, the CLS models, with moderately good prediction performance (the NS coefficients ranged 0.28-0.85), were more suitable for quantifying contributions of respective land-uses to the stream water quality. The CLS models suggested that industrial and urban land-uses are major contributors to the stream concentrations of EC and ENT, whereas agricultural, industrial, and mining areas were significant sources of many heavy metal species. In addition, the slope, size, and permeability of the watershed were found to be important factors determining the extent of the contribution from each land-use type to the stream water quality. The models proposed in this paper can be considered useful tools for developing land cover guidelines and for prioritizing locations for implementing management practices to maintain stream water quality standard in a large river basin. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dierickx, Marion I. P.; Loeb, Abraham, E-mail: mdierickx@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu
The extensive span of the Sagittarius (Sgr) stream makes it a promising tool for studying the gravitational potential of the Milky Way (MW). Characterizing its stellar kinematics can constrain halo properties and provide a benchmark for the paradigm of galaxy formation from cold dark matter. Accurate models of the disruption dynamics of the Sgr progenitor are necessary to employ this tool. Using a combination of analytic modeling and N -body simulations, we build a new model of the Sgr orbit and resulting stellar stream. In contrast to previous models, we simulate the full infall trajectory of the Sgr progenitor frommore » the time it first crossed the MW virial radius 8 Gyr ago. An exploration of the parameter space of initial phase-space conditions yields tight constraints on the angular momentum of the Sgr progenitor. Our best-fit model is the first to accurately reproduce existing data on the 3D positions and radial velocities of the debris detected 100 kpc away in the MW halo. In addition to replicating the mapped stream, the simulation also predicts the existence of several arms of the Sgr stream extending to hundreds of kiloparsecs. The two most distant stars known in the MW halo coincide with the predicted structure. Additional stars in the newly predicted arms can be found with future data from the Large Synoptic Survey Telescope. Detecting a statistical sample of stars in the most distant Sgr arms would provide an opportunity to constrain the MW potential out to unprecedented Galactocentric radii.« less
Spatial heterogeneity of within-stream methane concentrations
NASA Astrophysics Data System (ADS)
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-05-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4 and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming
Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.
2015-01-01
The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.
Martin, Markus; Dressing, Andrea; Bormann, Tobias; Schmidt, Charlotte S M; Kümmerer, Dorothee; Beume, Lena; Saur, Dorothee; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius
2017-08-01
The study aimed to elucidate areas involved in recognizing tool-associated actions, and to characterize the relationship between recognition and active performance of tool use.We performed voxel-based lesion-symptom mapping in a prospective cohort of 98 acute left-hemisphere ischemic stroke patients (68 male, age mean ± standard deviation, 65 ± 13 years; examination 4.4 ± 2 days post-stroke). In a video-based test, patients distinguished correct tool-related actions from actions with spatio-temporal (incorrect grip, kinematics, or tool orientation) or conceptual errors (incorrect tool-recipient matching, e.g., spreading jam on toast with a paintbrush). Moreover, spatio-temporal and conceptual errors were determined during actual tool use.Deficient spatio-temporal error discrimination followed lesions within a dorsal network in which the inferior parietal lobule (IPL) and the lateral temporal cortex (sLTC) were specifically relevant for assessing functional hand postures and kinematics, respectively. Conversely, impaired recognition of conceptual errors resulted from damage to ventral stream regions including anterior temporal lobe. Furthermore, LTC and IPL lesions impacted differently on action recognition and active tool use, respectively.In summary, recognition of tool-associated actions relies on a componential network. Our study particularly highlights the dissociable roles of LTC and IPL for the recognition of action kinematics and functional hand postures, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Exit Gradient As a Measure of Groundwater Dependency of Watershed Ecosystem Services
NASA Astrophysics Data System (ADS)
Faulkner, B. R.; Canfield, T. J.; Justin, G. F.
2014-12-01
Flux of groundwater to surface water is often of great interest for the determination of the groundwater dependency of ecosystem services, such as maintenance of wetlands and of baseflow as a contributor to stream channel storage. It is difficult to measure. Most methods are based on coarse mass balance estimates or seepage meters. One drawback of these methods is they are not entirely spatially explicit. The exit gradient is commonly used in engineering studies of hydraulic structures affected by groundwater flow. It can be simply defined in the groundwater modeling context as the ratio of the difference between the computed head and the land surface elevation, for each computational cell, to the thickness of the cell, as it varies in space. When combined with calibrated groundwater flow models, it also has the potential to be useful in watershed scale evaluations of groundwater dependency in a spatially explicit way. We have taken advantage of calibrated models for the Calapooia watershed, Oregon, to map exit gradients for the watershed. Streams in the Calapooia are hydraulically well connected with groundwater. Not surprisingly, we found large variations in exit gradients between wet and dry season model runs, supporting the notion of stream expansion, as observed in the field, which may have a substantial influence on water quality. We have mapped the exit gradients in the wet and dry seasons, and compared them to regions which have been mapped in wetland surveys. Those classified as Palustrine types fell largest in the area of contribution from groundwater. In many cases, substantially high exit gradients, even on average, did not correspond to mapped wetland areas, yet nutrient retention ecosystem services may still be playing a role in these areas. The results also reinforce the notion of the importance of baseflow to maintenance of stream flow, even in the dry summer season in this Temperate/Mediterranean climate. Exit gradient mapping is a simple, yet potentially very useful and underutilized tool for measuring groundwater dependency in watershed scale ecosystem services studies, and could potentially be used to predict effects due to groundwater stresses resulting from water withdrawals. This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.
Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health
NASA Astrophysics Data System (ADS)
Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.
2002-12-01
Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.
Influence of geomorphological properties and stage on in-stream travel time
NASA Astrophysics Data System (ADS)
Åkesson, Anna; Wörman, Anders
2014-05-01
The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream networks (representing catchments of the spatial scale of a few hundred km2) in different geographic regions in Sweden displaying different geomorphological properties. Results show that the geomorphological properties (data that is often available in the form of maps and/or DEMs) of individual stream networks have major influence on the stream network travel times. By coupling the geomorphological information to general expressions for stage dependency, catchment-specific relationships of how the travel times within stream networks can be determined. Basing the parameterisation procedure of a hydrological model in physical catchment properties and process understanding rather than statistical parameterisation (based in how a catchment has responded in the past) - is believed to lead to more reliable hydrological predictions - during extreme conditions as well as during changing conditions such as climate change and landscape modifications, and/or when making predictions in ungauged basins.
Modelling threats to water quality from fire suppression chemicals and post-fire erosion
NASA Astrophysics Data System (ADS)
Hyde, Kevin; Ziemniak, Chris; Elliot, William; Samuels, William
2014-05-01
Misapplication of fire retardant chemicals into streams and rivers may threaten aquatic life. The possible threat depends on the contaminant concentration that, in part, is controlled by dispersion within flowing water. In the event of a misapplication, methods are needed to rapidly estimate the chemical mass entering the waterway and the dispersion and transport within the system. Here we demonstrate a new tool that calculates the chemical mass based on aircraft delivery system, fire chemical type, and stream and intersect geometry. The estimated mass is intended to be transferred into a GIS module that uses real-time stream data to map and simulate the dispersion and transport downstream. This system currently accounts only for aqueous transport. We envision that the GIS module can be modified to incorporate sediment transport, specifically to model movement of sediments from post-fire erosion. This modification could support assessment of threats of post-fire erosion to water quality and water supply systems.
Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.
1985-01-01
Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle.
Whittington, Charles L.; Leinz, Reinhard W.; Grimes, David J.
1985-01-01
Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle.
Interpreting geologic maps for engineering purposes: Hollidaysburg quadrangle, Pennsylvania
,
1953-01-01
This set of maps has been prepared to show the kinds of information, useful to engineers, that can be derived from ordinary geologic maps. A few additional bits of information, drawn from other sources, are mentioned below. Some of the uses of such maps are well known; they are indispensable tools in the modern search for oil or ore deposits; they are the first essential step in unraveling the story of the earth we live on. Less well known, perhaps, is the fact that topographic and geologic maps contain many of the basic data needed for planning any engineering construction job, big or little. Any structure built by man must fit into the topographic and geologic environment shown on such maps. Moreover, most if not all construction jobs must be based on knowledge of the soils and waters, which also are intimately related to this same environment. The topographic map shows the shape of the land the hills and valleys, the streams and swamps, the man-made features such as roads, railroads, and towns. The geologic map shows the kinds and shapes of the rock bodies that form the land surface and that lie beneath it. These are the facts around which the engineer must build.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.
Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less
Mapping and Monitoring Stream Aquatic Habitat With a Narrow-Beam Green Lidar
NASA Astrophysics Data System (ADS)
McKean, J.; Wright, W.; Kinzel, P.; Isaak, D.
2006-12-01
Stream environments are structured by complex biophysical processes that operate across multiple spatial and temporal scales. Disentangling these multiscalar and multicausal relationships is difficult, but fundamental to understanding, managing, and monitoring channel aquatic ecosystems. Standard field wading surveys of stream physical habitat are limited by cost and logistics to relatively small, isolated samples. Traditional remotely sensed surveys, including methods such as photogrammetry and near-infrared lidar, suffer from attenuation by water and do not directly map submerged channel topography. The Experimental Advanced Airborne Research Lidar (EAARL) is a full-waveform lidar with a unique ability to simultaneously map, with relatively high resolution, subaqueous and subaerial topography and the vegetation canopy. We have used the EAARL instrument to investigate two dissimilar stream ecosystems. We mapped 40km of low gradient, meandering, gravel-bed streams in central Idaho that are spawning habitat for threatened Chinook salmon. We are using the continuous three-dimensional channel maps to quantitatively explore how channel features affect the distribution of salmon spawning at multiple spatial scales and how modern stream and floodplain topography is related to post-glacial valley evolution. In contrast, the Platte River in central Nebraska is a wide and shallow, sand-bedded river that provides habitat for migratory water birds, including endangered species such as the whooping crane and least tern. Multi-temporal EAARL data are being used to map and monitor the physical response of the Platte River to habitat improvement projects that include in-channel and riparian vegetation removal and river flow augmentation to limit vegetation encroachment.
NASA Astrophysics Data System (ADS)
Ploum, Stefan; Kuglerová, Lenka; Leach, Jason; Laudon, Hjalmar
2017-04-01
Stream chemistry in boreal regions is for a large degree defined by the riparian zone. Within the riparian zone, groundwater hotspots represent a very small area, but likely play a major role in controlling stream water quality. Hotspots have shown to be unique in their plant species richness, soil texture and biogeochemistry. Also in terms of stream metabolism, hotspots show different responses, either due to local biotic or abiotic conditions. Readily available hydrological mapping tools, combined with biogeochemical data (stream temperature and stable water isotopes) show that there is great potential in predicting groundwater hotspots using terrain-based approaches. However, the role of individual hotspots varies in time. Presumably their hydrological regime is highly dependent on landscape properties of the upstream area. To improve the predictability of hotspots in space and time, a mechanistic understanding is needed. We achieve this by a combined approach including a damming experiment, high resolution optic fiber stream temperature measurements (DTS), a dense groundwater well network, stream and groundwater trace element analysis, frost monitoring and infrared (IR) imagery. This field-based strategy sheds light on the underlying drivers of groundwater hotspots and links them to landscape characteristics. This allows to move away from highly monitored reaches, and evaluate the relation between upland landscape features and the temporal variability of groundwater exfiltration rates on a catchment scale.
APPLICATION OF THE AERIAL PROFILING OF TERRAIN SYSTEM.
Cyran, Edward J.
1985-01-01
The U. S. Geological Survey has completed the performance evaluation flight tests of the Aerial Profiling of Terrain System (APTS) and is now performing a series of application tests to determine its effectiveness and efficiency as an earth-science data collection tool. These tests are designed to evaluate the APTS at such tasks as positioning water wells, testing reliability of older maps, measuring elevations of kettle ponds, and profiling stream valleys for flood studies. The results of three application tests in Massachusetts are discussed: positioning water wells and measuring elevations along the Charles River; testing four older 1:24,000-scale quadrangle maps in the Plymouth area; and measuring elevations of several hundred kettle ponds near the Cape Cod Canal.
Bent, Gardner C.; Steeves, Peter A.
2006-01-01
A revised logistic regression equation and an automated procedure were developed for mapping the probability of a stream flowing perennially in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection a method for assessing whether streams are intermittent or perennial at a specific site in Massachusetts by estimating the probability of a stream flowing perennially at that site. This information could assist the environmental agencies who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending from the mean annual high-water line along each side of a perennial stream, with exceptions for some urban areas. The equation was developed by relating the observed intermittent or perennial status of a stream site to selected basin characteristics of naturally flowing streams (defined as having no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, wastewater discharge, and so forth) in Massachusetts. This revised equation differs from the equation developed in a previous U.S. Geological Survey study in that it is solely based on visual observations of the intermittent or perennial status of stream sites across Massachusetts and on the evaluation of several additional basin and land-use characteristics as potential explanatory variables in the logistic regression analysis. The revised equation estimated more accurately the intermittent or perennial status of the observed stream sites than the equation from the previous study. Stream sites used in the analysis were identified as intermittent or perennial based on visual observation during low-flow periods from late July through early September 2001. The database of intermittent and perennial streams included a total of 351 naturally flowing (no regulation) sites, of which 85 were observed to be intermittent and 266 perennial. Stream sites included in the database had drainage areas that ranged from 0.04 to 10.96 square miles. Of the 66 stream sites with drainage areas greater than 2.00 square miles, 2 sites were intermittent and 64 sites were perennial. Thus, stream sites with drainage areas greater than 2.00 square miles were assumed to flow perennially, and the database used to develop the logistic regression equation included only those stream sites with drainage areas less than 2.00 square miles. The database for the equation included 285 stream sites that had drainage areas less than 2.00 square miles, of which 83 sites were intermittent and 202 sites were perennial. Results of the logistic regression analysis indicate that the probability of a stream flowing perennially at a specific site in Massachusetts can be estimated as a function of four explanatory variables: (1) drainage area (natural logarithm), (2) areal percentage of sand and gravel deposits, (3) areal percentage of forest land, and (4) region of the state (eastern region or western region). Although the equation provides an objective means of determining the probability of a stream flowing perennially at a specific site, the reliability of the equation is constrained by the data used in its development. The equation is not recommended for (1) losing stream reaches or (2) streams whose ground-water contributing areas do not coincide with their surface-water drainage areas, such as many streams draining the Southeast Coastal Region-the southern part of the South Coastal Basin, the eastern part of the Buzzards Bay Basin, and the entire area of the Cape Cod and the Islands Basins. If the equation were used on a regulated stream site, the estimated intermittent or perennial status would reflect the natural flow conditions for that site. An automated mapping procedure was developed to determine the intermittent or perennial status of stream sites along reaches throughout a basin. The procedure delineates the drainage area boundaries, determines values for the four explanatory variables, and solves the equation for estimating the probability of a stream flowing perennially at two locations on a headwater (first-order) stream reach-one near its confluence or end point and one near its headwaters or start point. The automated procedure then determines the intermittent or perennial status of the reach on the basis of the calculated probability values and a probability cutpoint (a stream is considered to flow perennially at a cutpoint of 0.56 or greater for this study) for the two locations or continues to loop upstream or downstream between locations less than and greater than the cutpoint of 0.56 to determine the transition point from an intermittent to a perennial stream. If the first-order stream reach is determined to be intermittent, the procedure moves to the next downstream reach and repeats the same process. The automated procedure then moves to the next first-order stream and repeats the process until the entire basin is mapped. A map of the intermittent and perennial stream reaches in the Shawsheen River Basin is provided on a CD-ROM that accompanies this report. The CD-ROM also contains ArcReader 9.0, a freeware product, that allows a user to zoom in and out, set a scale, pan, turn on and off map layers (such as a USGS topographic map), and print a map of the stream site with a scale bar. Maps of the intermittent and perennial stream reaches in Massachusetts will provide city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing the intermittent or perennial status of stream sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
Various topics in the field of photogrammetry are addressed. Among the subjects discussed are: remote sensing of Gulf Stream dynamics using VHRR satellite imagery an interactive rectification system for remote sensing imagery use of a single photo and digital terrain matrix for point positioning crop type analysis using Landsat digital data use of a fisheye lens in solar energy assessment remote sensing inventory of Rocky Mountain elk habitat Washington state's large scale ortho program educational image processing. Also discussed are: operational advantages of on-line photogrammetric triangulation analysis of fracturation field photogrammetry as a tool for measuring glacier movement double modelmore » orthophotos used for forest inventory mapping map revisioning module for the Kern PG2 stereoplotter assessing accuracy of digital land-use and terrain data accuracy of earthwork calculations from digital elevation data.« less
NASA Astrophysics Data System (ADS)
Powley, C.; Alian, S.; Mayer, A.
2017-12-01
In the 2004 National Water Quality Report to the Congress, the US EPA states that about 44% of the streams, 64% of lakes and 30% of estuaries that were assessed were not suitable for basic use like fishing and swimming. Pollutants from nonpoint sources are most likely the cause. The needs of landowners to use their land for other uses is enormous and most are likely willing to forgo the potential damage to achieve monetary gains. These are difficult decisions as there are many positive gains in commercialized development, although this comes with a cost. So it is imperative for all entities to work together in developing an awareness that benefits all stakeholders. We used this water quality management context to prepare lessons for high school students to map water quality problem areas in Rifle River and the West Branch in Ogemaw County, Michigan based on field samples and by using ESRI online data entry and mapping tools. The students also used Long Term Hydrologic Impact Analysis (L-THIA) to evaluate the impacts of different land use/cover types, developing an understanding of the implication of land management on surface water quality.
StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.
Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei
2017-10-18
Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.
Long-term morphological evolution of a morphologically active man-made stream in the Netherlands
NASA Astrophysics Data System (ADS)
Eekhout, J.; Hoitink, T.
2010-12-01
Around 1770, a straight artificial canal (Gelderns-Nierskanaal) has been constructed between the River Niers and the River Meuse, crossing the border between Germany and the Netherlands, with the purpose of reducing flood risk in the downstream reaches of the River Niers. Whereas the German part of the canal is kept straight throughout time, the Dutch part was left unprotected and developed into a morphodynamically active stream featuring a meandering planform. The current planform and in-channel morphology are analyzed using airborne LiDAR data and historical topographic maps. Around the turn of the 18th century, the first attempts were made to make detailed topographic maps. From this time on, at least 16 topographic maps of the area around the stream were made. With the use of these historical topographic maps, a reconstruction is made of the planimetric shape of the stream over a period of 240 years. The LiDAR data show old meander belts at several places around the stream. Those belts compare well with the topographic maps. The sinuosity increases from upstream to downstream. This could be a consequence of the valley slope, where the upper part is flat and the slope increases in downstream direction. Besides, the LiDAR data show that erosion resulted in an incised valley, with dimensions to 50 m in width and 6 m in depth. Both the datasets are combined to make an estimate of the historical sediment budget of the stream.
Spatial heterogeneity of within-stream methane concentrations
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-01-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen; ...
2016-05-06
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick
2015-01-01
UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R2-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R2-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications. PMID:26437410
Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick
2015-09-30
UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications.
NASA Astrophysics Data System (ADS)
Rumph Frederiksen, R.; Rasmussen, K. R.; Christensen, S.
2015-12-01
Qualifying and quantifying water, nutrient and contaminant exchange at the groundwater-surface water interface are becoming increasingly important for water resources management. The objectives of this study are to characterise an alluvial stream using geophysics in addition to traditional geological and geomorphological data and quantify the groundwater seepage to the stream on point-to-reach scale using both hydraulic and tracer methods. We mapped the very shallow subsurface along an alluvial stream using a GCM system (DUALEM421S, an electromagnetic system that can be operated behind a boat or towed behind a motorized vehicle) as well as using geological logs from a large number of old wells. Furthermore we made geomorphological observations through digital maps (old topographical maps and aerial photos) and field observations. We measured stream discharge (quasi-) simultaneously at several positions along the stream using both an Ott-C31 propeller instrument and an Acoustic Doppler Current Profiler instrument. The measurements were made during dry summer periods when baseflow is expected to be the dominating contribution to streamflow. Preliminary findings show that the GCM system reveals small-scale structures not seen with other data types. Furthermore, based on the GCM results and stream discharge results we have identified gaining, losing and zero exchange sections of the stream. During late summer 2015 we will collect additional hydrological data in order to support or modify our preliminary findings. To further investigate the spatial and temporal variations of the groundwater-surface water interactions along the stream we will measure groundwater seepage to the stream using: seepage meter (point-scale) DTS (reach-scale) temperature stick measurements (point-in-space-and-time-scale) temperature loggers installed in the streambed (month-scale) The measurement sites are chosen based on our geophysical, geological, and geomorphological mapping as well as our stream discharge measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Gautam S; Bhaduri, Budhendra L; Piburn, Jesse O
Geospatial intelligence has traditionally relied on the use of archived and unvarying data for planning and exploration purposes. In consequence, the tools and methods that are architected to provide insight and generate projections only rely on such datasets. Albeit, if this approach has proven effective in several cases, such as land use identification and route mapping, it has severely restricted the ability of researchers to inculcate current information in their work. This approach is inadequate in scenarios requiring real-time information to act and to adjust in ever changing dynamic environments, such as evacuation and rescue missions. In this work, wemore » propose PlanetSense, a platform for geospatial intelligence that is built to harness the existing power of archived data and add to that, the dynamics of real-time streams, seamlessly integrated with sophisticated data mining algorithms and analytics tools for generating operational intelligence on the fly. The platform has four main components i) GeoData Cloud a data architecture for storing and managing disparate datasets; ii) Mechanism to harvest real-time streaming data; iii) Data analytics framework; iv) Presentation and visualization through web interface and RESTful services. Using two case studies, we underpin the necessity of our platform in modeling ambient population and building occupancy at scale.« less
NASA Astrophysics Data System (ADS)
Chien, H.; McGlinn, L.
2017-12-01
The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.
Vaupel, Donald E.; Prince, K.R.; Koehler, A.J.; Runco, Mario
1977-01-01
A brief text describes the two major aquifers and the discharge pattern of major streams on Long Island. Four water-table maps for the years 1943, 1959, 1966, and 1972, an average water-table map for the period 1943-72 supplemented by five well hydrographs representing Kings, Queens, western Nassau, eastern Nassau, and Suffolk Counties, and three potentiometric- surface maps of the Magothy aquifer for the years 1959, 1966, and 1972 are included. A statistical summary of stream discharge presents average annual discharges, annual average discharges, and average 7-day, 10-year low-flow discharges for major streams.
A statistical software tool, Stream Fish Community Predictor (SFCP), based on EMAP stream sampling in the mid-Atlantic Highlands, was developed to predict stream fish communities using stream and watershed characteristics. Step one in the tool development was a cluster analysis t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.C.; King, H.D.; O'Leary, R.M.
Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1{degree} by 3{degree} quadrangles, Seward Peninsula, Alaska is presented.
The Advantage of the Second Military Survey in Fluvial Measures
NASA Astrophysics Data System (ADS)
Kovács, G.
2009-04-01
The Second Military Survey of the Habsburg Empire, completed in the 19th century, can be very useful in different scientific investigations owing to its accuracy and data content. The fact, that the mapmakers used geodetic projection, and the high accuracy of the survey guarantee that scientists can use these maps and the represented objects can be evaluated in retrospective studies. Among others, the hydrological information of the map sheets is valuable. The streams were drawn with very thin lines that also ascertain the high accuracy of their location, provided that the geodetic position of the sheet can be constructed with high accuracy. After geocoding these maps we faced the high accuracy of line elements. Not only the location of these lines but the form of the creeks are usually almost the same as recent shape. The goal of our study was the neotectonic evaluation of the western part of the Pannonian Basin, bordered by Pinka, Rába and Répce Rivers. The watercourses, especially alluvial ones, react very sensitively to tectonic forcing. However, the present-day course of the creeks and rivers are mostly regulated, therefore they are unsuitable for such studies. Consequently, the watercourses should be reconstructed from maps surveyed prior to the main water control measures. The Second Military Survey is a perfect source for such studies because it is the first survey has drawn in geodetic projection but the creeks haven't been regulated yet. The maps show intensive agricultural cultivation and silviculture in the study area. Especially grazing cultivation precincts of the streams is important for us. That phenomenon and data from other sources prove that the streams haven't been regulated in that time. The streams were able to meander, and flood its banks, and only natural levees are present. The general morphology south from the Kőszegi Mountains shows typical SSE slopes with low relief cut off by 30-60 meter high scarps followed by streams. That suggested us to investigate the neotectonic features, what also indicated by the alternate meandering of surveyed streams. After geocoding the maps of the area, the streams were digitised, and their sinuosity values were calculated. At places significant difference of sinuosity has been observed along the streams, it can be considered as indicators of differential uplift or subsidence of the bedrock/alluvium. This method can be useful in general, if the watercourses mapped in the historical map are assumed to be unaffected by human.
The value of DCIP geophysical surveys for contaminated site investigations
NASA Astrophysics Data System (ADS)
Balbarini, N.; Rønde, V.; Maurya, P. K.; Møller, I.; McKnight, U. S.; Christiansen, A. V.; Binning, P. J.; Bjerg, P. L.
2017-12-01
Geophysical methods are increasingly being used in contaminant hydrogeology to map lithology, hydraulic properties, and contaminant plumes with a high ionic strength. Advances in the Direct Current resistivity and Induced Polarization (DCIP) method allow the collection of high resolution three dimensional (3D) data sets. The DC resistivity can describe both soil properties and the water electrical conductivity, while the IP can describe the lithology and give information on hydrogeological properties. The aim of the study was to investigate a large contaminant plume discharging to a stream from an old factory site by combining traditional geological, hydrological, and contaminant concentration data with DCIP surveys. The plume consisted of xenobiotic organic compounds and inorganics. The study assesses benefits and limitations of DCIP geophysics for contaminated site investigations. A 3D geological model was developed from borehole logs and DCIP data as framework for the complex transport pathways near the meandering stream. IP data were useful in indicating the continuity and the changes in thickness of local clay layers between the borehole logs. The geological model was employed to develop a groundwater flow model describing groundwater flows to the stream. The hydraulic conductivity distribution was based on IP data, slug tests and grain size analysis. The distribution of contaminant concentrations revealed two chemically distinct plumes, separated by a clay layer, with different transport paths to the stream. The DC resistivity was useful in mapping ionic compounds, but also organic compounds whose spatial distribution coincided with the ionic compounds. A conceptual model describing the contaminant plume was developed, and it matched well with contaminant concentrations in stream water and below the streambed. Surface DCIP surveys supported the characterization of the spatial variability in geology, hydraulic conductivity and contaminant concentration. Though DCIP data interpretation required additional borehole data, the DCIP survey reduced the number of boreholes required and helped design field campaigns. The results suggest DCIP surveys are useful and inexpensive tools, which has potential as an integrated part of contaminated site investigations.
Managing and Transforming Waste Streams – A Tool for Communities
The Managing and Transforming Waste Streams Tool features 100 policy and program options communities can pursue to increase rates of recycling, composting, waste reduction, and materials reuse across waste stream generators.
NASA Astrophysics Data System (ADS)
Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin
2010-05-01
This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.
Surficial Geologic Map of the Roanoke Rapids 30' x 60' Quadrangle, North Carolina
Weems, Robert E.; Lewis, William C.; Aleman-Gonzalez, Wilma
2009-01-01
The Roanoke Rapids 1:100,000 map sheet is located in northeastern North Carolina. Most of the area is flat to gently rolling, though steep slopes occur occasionally along some of the larger streams. Total relief in the area is slightly less than 400 feet (ft), with elevations ranging from sea level east of Murfreesboro in the far northeastern corner of the map to 384 ft near the northwestern map border near Littleton. The principal streams are the Roanoke River and Fishing Creek, which on average flow from northwest to southeast in the map area. The principal north-south roads are Interstate Route 95, U.S. Route 258, and U.S. Route 301. Two lines of the CSX railroad also cross the area in a north-south and northeast-southwest direction. This part of North Carolina is primarily rural and agricultural. The only large community in the area is Roanoke Rapids. The map lies astride the Tidewater Fall Line, a prominent physiographic feature marked by rapids and waterfalls that separate the rocky streams of the eastern Piedmont physiographic province from the sandy and alluviated streams of the western Atlantic Coastal Plain physiographic province. The energy from the Roanoke River descending the Tidewater Fall Line has been harnessed by dams to produce hydroelectric power, and this source of energy was a major factor in the growth and development of Roanoke Rapids. The Piedmont in the western part of the map area is underlain by Neoproterozoic to Cambrian metavolcanic and metasedimentary rocks that are intruded by granite in some areas. In the central and eastern part of the map area, the folded and faulted igneous and metamorphic rocks of the Piedmont, as well as tilted sedimentary rocks in a buried Triassic basin, are all overlain with profound unconformity by generally unlithified and only slightly eastward-tilted Cretaceous, Paleogene, and Neogene sediments of the Atlantic Coastal Plain. The Coastal Plain sediments lap westward onto the eastern Piedmont along the high divides between streams and locally along the valley walls of major streams, thereby creating a complex erosional and depositional map pattern across the western and central map area. The Coastal Plain sedimentary deposits described here are mostly allostratigraphic units, bounded above and below by mappable unconformities.
The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled streams,...
Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão
2018-05-24
A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.
Lesion correlates of impairments in actual tool use following unilateral brain damage.
Salazar-López, E; Schwaiger, B J; Hermsdörfer, J
2016-04-01
To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blair, R.W.; Yager, D.B.; Church, S.E.
2002-01-01
This product consists of Adobe Acrobat .PDF format documents for 10 surficial geologic strip maps along the Animas River watershed from its major headwater tributaries, south to Durango, Colorado. The Animas River originates in the San Juan Mountains north of the historic mining town of Silverton, Colorado. The surficial geologic maps identify surficial deposits, such as flood-plain and terrace gravels, alluvial fans, glacial till, talus, colluvium, landslides, and bogs. Sixteen primary units were mapped that included human-related deposits and structures, eight alluvial, four colluvial, one glacial, travertine deposits, and undifferentiated bedrock. Each of the surficial geologic strip maps has .PDF links to surficial geology photographs, which enable the user to take a virtual tour of these deposits. Geochemical data collected from mapped surficial deposits that pre- and postdate mining activity have aided in determining the geochemical baseline in the watershed. Several photographs with their corresponding geochemical baseline profiles are accessible through .PDF links from several of the maps. A single coverage for all surficial deposits mapped is included as an ArcInfo shape file as an Arc Export format .e00 file. A gradient map for major headwater tributary streams to the Animas River is also included. The gradient map has stream segments that are color-coded based on relative variations in slope and .PDF format links to each stream gradient profile. Stream gradients were derived from U.S. Geological Survey 10-m digital elevation model data. This project was accomplished in support of the U.S. Geological Survey's Abandoned Mine Lands Initiative in the San Juan Mountains, Colorado.
A shower look-up table to trace the dynamics of meteoroid streams and their sources
NASA Astrophysics Data System (ADS)
Jenniskens, Petrus
2018-04-01
Meteor showers are caused by meteoroid streams from comets (and some primitive asteroids). They trace the comet population and its dynamical evolution, warn of dangerous long-period comets that can pass close to Earth's orbit, outline volumes of space with a higher satellite impact probability, and define how meteoroids evolve in the interplanetary medium. Ongoing meteoroid orbit surveys have mapped these showers in recent years, but the surveys are now running up against a more and more complicated scene. The IAU Working List of Meteor Showers has reached 956 entries to be investigated (per March 1, 2018). The picture is even more complicated with the discovery that radar-detected streams are often different, or differently distributed, than video-detected streams. Complicating matters even more, some meteor showers are active over many months, during which their radiant position gradually changes, which makes the use of mean orbits as a proxy for a meteoroid stream's identity meaningless. The dispersion of the stream in space and time is important to that identity and contains much information about its origin and dynamical evolution. To make sense of the meteor shower zoo, a Shower Look-Up Table was created that captures this dispersion. The Shower Look-Up Table has enabled the automated identification of showers in the ongoing CAMS video-based meteoroid orbit survey, results of which are presented now online in near-real time at http://cams.seti.org/FDL/. Visualization tools have been built that depict the streams in a planetarium setting. Examples will be presented that sample the range of meteoroid streams that this look-up table describes. Possibilities for further dynamical studies will be discussed.
NASA Astrophysics Data System (ADS)
Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.
2016-12-01
Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of vulnerable stream ecosystems were developed, which can be used in the watershed management decision-making process.
Nelson, George H.
1984-01-01
U.S. Army Corps of Engineers permits are required for discharges of dredged or fill-material downstream from the ' headwaters ' of specified streams. The term ' headwaters ' is defined as the point of a freshwater (non-tidal) stream above which the average flow is less than 5 cu ft/s. Maps of the Mobile District area showing (1) lines of equal average streamflow, and (2) lines of equal drainage areas required to produce an average flow of 5 cu ft/s are contained in this report. These maps are for use by the Corps of Engineers in their permitting program. (USGS)
Stream piracy in the Black Hills: A geomorphology lab exercise
Zaprowski, B.J.; Evenson, E.B.; Epstein, J.B.
2002-01-01
The Black Hills of South Dakota exhibits many fine examples of stream piracy that are very suitable for teaching geomorphology lab exercises. This lab goes beyond standard topographic map interpretation by using geologic maps, well logs, gravel provenance and other types of data to teach students about stream piracy. Using a step-by-step method in which the lab exercises ramp up in difficulty, students hone their skills in deductive reasoning and data assimilation. The first exercises deal with the identification of stream piracy at a variety of spatial scales and the lab culminates with an exercise on landscape evolution and drainage rearrangement.
StreamStats: A water resources web application
Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.
2008-01-01
Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations. Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives.StreamStats is a Web-based Geographic Information System (GIS) application that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI’s ArcHydro Data Model and Tools, described on the Web at http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user’s Web browser, or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques.StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1997-01-01
Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.
Adjusting stream-sediment geochemical maps in the Austrian Bohemian Massif by analysis of variance
Davis, J.C.; Hausberger, G.; Schermann, O.; Bohling, G.
1995-01-01
The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed geochemical survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik O??sterreich, and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the model to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the geochemical map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types. ?? 1995 International Association for Mathematical Geology.
Progress of Interoperability in Planetary Research for Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Hare, T. M.; Gaddis, L. R.
2015-12-01
For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.
Surficial geologic map along the Castle Mountain Fault between Houston and Hatcher Pass Road, Alaska
Haeussler, Peter J.
1998-01-01
The surficial geology of the map area is dominated by sedimentary deposits laid down during and after the Naptowne glaciation (Karlstrom, 1964) of late Pleistocene age. During this episode, a large valley glacier flowed westward down the Matanuska Valley along the southern flank of the Talkeetna Mountains. The youngest of two documented advances has been referred to as the Elmendorf stade, which reached its maximum extent about 12,000 radiocarbon years ago (Schmoll and others, 1972; Reger and Updike, 1983). Deposits from this stade in the map area include: glacial till (Qg), lateral moraine (Qml) and kame terrace (Qk) deposits. Older episodes of glaciation have been inferred by a number of workers (e.g., Karlstrom, 1964; Reger and Updike, 1983; Reger and Updike, 1989; Schmoll and Yehle, 1986). The ridge above and north of the map area, Bald Mountain Ridge, is rounded in contrast to higher areas of the Talkeetna Mountains to the east. Therefore, within the map area older glacial deposits (Qg2) are inferred to lie above the highest Naptowne deposits. After reaching its maximum extent the valley glacier stagnated (Reger and Updike, 1983), as indicated by a crevasse-fill-ridge complex south of Houston in the map area, perched drainages along the sides of the Talkeetna Mountains, and an esker (unit Qe in the middle of the western map area). The ancient stream deposits (unit Qad) are perched on the southern flanks of the Talkeetna Mountains and were deposited by westward flowing streams as the valley glacier stagnated. These sinuous ancient drainages commonly incised up to 20 m into the underlying glacial till. Because stream flow is not as high today as when the drainages formed, the modern streams flowing within these drainages are underfit, and the ancient drainage courses are commonly filled with peat deposits (Qp). After ice of the Elmendorf stade melted, modern stream courses were established. These include the southward flowing streams on the flank of the Talkeetna Mountains as well as the west-southwestward flowing Little Susitna River. The Little Susitna River cut down through older river terrace deposits (Qat) to form the active alluvial plain (Qaa). Alluvium from the southward flowing streams (Qas) forms alluvial fans on top of, and presumably interfingering with, active alluvium along the Little Susitna River.
StreamStats in North Carolina: a water-resources Web application
Weaver, J. Curtis; Terziotti, Silvia; Kolb, Katharine R.; Wagner, Chad R.
2012-01-01
A statewide StreamStats application for North Carolina was developed in cooperation with the North Carolina Department of Transportation following completion of a pilot application for the upper French Broad River basin in western North Carolina (Wagner and others, 2009). StreamStats for North Carolina, available at http://water.usgs.gov/osw/streamstats/north_carolina.html, is a Web-based Geographic Information System (GIS) application developed by the U.S. Geological Survey (USGS) in consultation with Environmental Systems Research Institute, Inc. (Esri) to provide access to an assortment of analytical tools that are useful for water-resources planning and management (Ries and others, 2008). The StreamStats application provides an accurate and consistent process that allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and user-selected ungaged sites. In the North Carolina application, users can compute 47 basin characteristics and peak-flow frequency statistics (Weaver and others, 2009; Robbins and Pope, 1996) for a delineated drainage basin. Selected streamflow statistics and basin characteristics for data-collection sites have been compiled from published reports and also are immediately accessible by querying individual sites from the web interface. Examples of basin characteristics that can be computed in StreamStats include drainage area, stream slope, mean annual precipitation, and percentage of forested area (Ries and others, 2008). Examples of streamflow statistics that were previously available only through published documents include peak-flow frequency, flow-duration, and precipitation data. These data are valuable for making decisions related to bridge design, floodplain delineation, water-supply permitting, and sustainable stream quality and ecology. The StreamStats application also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that may affect streamflow conditions. This functionality can be accessed through a map-based interface with the user’s Web browser, or individual functions can be requested remotely through Web services (Ries and others, 2008).
A Software Tool for Quantitative Seismicity Analysis - ZMAP
NASA Astrophysics Data System (ADS)
Wiemer, S.; Gerstenberger, M.
2001-12-01
Earthquake catalogs are probably the most basic product of seismology, and remain arguably the most useful for tectonic studies. Modern seismograph networks can locate up to 100,000 earthquakes annually, providing a continuous and sometime overwhelming stream of data. ZMAP is a set of tools driven by a graphical user interface (GUI), designed to help seismologists analyze catalog data. ZMAP is primarily a research tool suited to the evaluation of catalog quality and to addressing specific hypotheses; however, it can also be useful in routine network operations. Examples of ZMAP features include catalog quality assessment (artifacts, completeness, explosion contamination), interactive data exploration, mapping transients in seismicity (rate changes, b-values, p-values), fractal dimension analysis and stress tensor inversions. Roughly 100 scientists worldwide have used the software at least occasionally. About 30 peer-reviewed publications have made use of ZMAP. ZMAP code is open source, written in the commercial software language Matlab by the Mathworks, a widely used software in the natural sciences. ZMAP was first published in 1994, and has continued to grow over the past 7 years. Recently, we released ZMAP v.6. The poster will introduce the features of ZMAP. We will specifically focus on ZMAP features related to time-dependent probabilistic hazard assessment. We are currently implementing a ZMAP based system that computes probabilistic hazard maps, which combine the stationary background hazard as well as aftershock and foreshock hazard into a comprehensive time dependent probabilistic hazard map. These maps will be displayed in near real time on the Internet. This poster is also intended as a forum for ZMAP users to provide feedback and discuss the future of ZMAP.
Henriksen, James A.; Heasley, John; Kennen, Jonathan G.; Nieswand, Steven
2006-01-01
Applying the Hydroecological Integrity Assessment Process involves four steps: (1) a hydrologic classification of relatively unmodified streams in a geographic area using long-term gage records and 171 ecologically relevant indices; (2) the identification of statistically significant, nonredundant, hydroecologically relevant indices associated with the five major flow components for each stream class; and (3) the development of a stream-classification tool and a hydrologic assessment tool. Four computer software tools have been developed.
Distribution of fishes in U. S. streams tributary to Lake Superior
Moore, Harry H.; Braem, Robert A.
1965-01-01
Experimental sea lamprey control by the Bureau of Commercial Fisheries on Lake Superior streams provided many new distributional records of the fish fauna. Seventy-one species were recorded from 175 streams. Specimens were collected at the electromechanical barriers, with electric shockers, with fyke nets, and during chemical treatment of streams. Maps showing stream records of each species are presented.
Tile prediction schemes for wide area motion imagery maps in GIS
NASA Astrophysics Data System (ADS)
Michael, Chris J.; Lin, Bruce Y.
2017-11-01
Wide-area surveillance, traffic monitoring, and emergency management are just several of many applications benefiting from the incorporation of Wide-Area Motion Imagery (WAMI) maps into geographic information systems. Though the use of motion imagery as a GIS base map via the Web Map Service (WMS) standard is not a new concept, effectively streaming imagery is particularly challenging due to its large scale and the multidimensionally interactive nature of clients that use WMS. Ineffective streaming from a server to one or more clients can unnecessarily overwhelm network bandwidth and cause frustratingly large amounts of latency in visualization to the user. Seamlessly streaming WAMI through GIS requires good prediction to accurately guess the tiles of the video that will be traversed in the near future. In this study, we present an experimental framework for such prediction schemes by presenting a stochastic interaction model that represents a human user's interaction with a GIS video map. We then propose several algorithms by which the tiles of the stream may be predicted. Results collected both within the experimental framework and using human analyst trajectories show that, though each algorithm thrives under certain constraints, the novel Markovian algorithm yields the best results overall. Furthermore, we make the argument that the proposed experimental framework is sufficient for the study of these prediction schemes.
Future of Hydroinformatics: Towards Open, Integrated and Interactive Online Platforms
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-12-01
Hydroinformatics is a domain of science and technology dealing with the management of information in the field of hydrology (IWA, 2011). There is the need for innovative solutions to the challenges towards open information, integration, and communication in the Internet. This presentation provides an overview of the trends and challenges in the future of hydroinformatics, and demonstrates an information system, Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for more than 1000 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.
High-latitude observations of solar wind streams and coronal holes
NASA Technical Reports Server (NTRS)
Ricket, B. J.; Sime, D. G.; Crockett, W. R.; Tousey, R.; Sheeley, N. R., Jr.
1976-01-01
Interplanetary scintillation observations of the solar wind velocity during 1973 and the first part of 1974 reveal several corotating high-speed streams. These streams, of heliographic latitudes from +40 deg to -60 deg, have been mapped back to the vicinity of the sun and have been compared with coronal holes identified in wide band XUV solar images taken during the manned portions of the Skylab mission. There is some evidence that the high-speed streams are preferentially associated with coronal holes and that they can spread out from the hole boundaries up to about 20 deg in latitude. However, this association is not one to one; streams are observed which do not map back to coronal holes, and holes are observed which do not lie at the base of streams. To the extent that a statistical interpretation is possible the association is not highly significant, but individual consideration of streams and holes suggests that the statistical result is biased somewhat against a strong correlation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, H.D.; Smith, S.C.; Sutley, S.J.
Geochemical maps showing the distribution and abundance of selected elements in nonmagnetic heavy-mineral-concentrate samples from stream sediment, Solomon and Bendelehen 1{degree} by 3{degree} Quadrangles , Seward Peninsula, Alaska is presented.
NASA Technical Reports Server (NTRS)
Singh, Sandipa; Kelly, Kathryn A.
1997-01-01
Monthly Maps of sea surface height are constructed for the North Atlantic Ocean using TOPEX/Poseidon altimeter data. Mean sea surface height is reconstructed using a weighted combination of historical, hydrographic data and a synthetic mean obtained by fitting a Gaussian model of the Gulf Stream jet to altimeter data. The resultant mean shows increased resolution over the hydrographic mean, and incorporates recirculation information that is absent in the synthetic mean. Monthly maps, obtained by adding the mean field to altimeter sea surface height residuals, are used to derive a set of zonal indices that describe the annual cycle of meandering as well as position and strength of the Gulf Stream.
The WHAM Hα Magellanic Stream Survey: Progress and Early Results
NASA Astrophysics Data System (ADS)
Smart, Brianna; Haffner, L. Matthew; Barger, Kat; Krishnarao, Dhanesh
2017-01-01
We present early analysis of the Hα survey of the Magellanic Stream using the Wisconsin H-Alpha Mapper (WHAM). The neutral component of the Stream extends some 200° across the sky (Nidever et al. 2010). However, the full extent of the ionized gas has not been mapped in detail. Previous studies (e.g., Putman et al. 2003; Weiner & Williams 1996) suggest that ionized gas is likely to be found all along the length of the Stream, and may extend beyond the current neutral boundaries as traced by 21 cm. Barger et al. (2013) used WHAM to map ionized gas throughout the Magellanic Bridge between the Magellanic Clouds. Although ionized emission tracks the neutral emission for the most part, it often spans a few degrees away from the H I at slightly offset velocities. Additionally, Fox et al. (2014) find evidence in an absorption line study that the tidal debris in the Magellanic System contains twice as much ionized gas as neutral material and may extend 30° away from 21-cm sensitivity boundaries. We are now compiling the first comprehensive picture of the ionized component of the Magellanic Stream using WHAM's unprecedented sensitivity to trace diffuse emission (~tens of mR), its velocity resolution (12 km/s) to separate the Stream from the Milky Way, and its multiwavelength capabilities (e.g., [S II] and [N II]) to examine the physical conditions of the gas. Much of the data along the primary axis of the Stream has been collected for the first phase of this extensive study, a complete kinematic Hα survey of the Stream. We present survey progress, challenges in extracting Stream emission, and first-look kinematic maps at select positions along the Stream.
Scientific Overview /Regional Analyses and Approaches
A workshop, Tools for Assessing Stream Dissolved Minerals, will introduce approaches and EPA tools for regional and site specific development of water quality criteria based on observations from Arkansas streams. In this presentation regional approaches and tools are described. ...
NASA Astrophysics Data System (ADS)
Cerovski-Darriau, C.; Stock, J. D.
2017-12-01
Coral reef ecosystems, and the fishing and tourism industries they support, depend on clean waters. Fine sediment pollution from nearshore watersheds threatens these enterprises in West Maui, Hawai'i. To effectively mitigate sediment pollution, we first have to know where the sediment is coming from, and how fast it erodes. In West Maui, we know that nearshore sediment plumes originate from erosion of fine sand- to silt-sized air fall deposits where they are exposed by grazing, agriculture, or other disturbances. We identified and located these sediment sources by mapping watershed geomorphological processes using field traverses, historic air photos, and modern orthophotos. We estimated bank lowering rates using erosion pins, and other surface erosion rates were extrapolated from data collected elsewhere on the Hawaiian Islands. These measurements and mapping led to a reconnaissance sediment budget which showed that annual loads are dominated by bank erosion of legacy terraces. Field observations during small storms confirm that nearshore sediment plumes are sourced from bank erosion of in-stream, legacy agricultural deposits. To further verify this sediment budget, we used geochemical fingerprinting to uniquely identify each potential source (e.g. stream banks, agricultural fields, roads, other human modified soils, and hillslopes) from the Wahikuli watershed (10 km2) and analyzed the fine fraction using ICP-MS for elemental geochemistry. We propose to apply this the fingerprinting results to nearshore suspended sediment samples taken during storms to identify the proportion of sediment coming from each source. By combining traditional geomorphic mapping, monitoring and geochemistry, we hope to provide a powerful tool to verify the primary source of sediment reaching the nearshore.
Depletion Mapping and Constrained Optimization to Support Managing Groundwater Extraction.
Fienen, Michael N; Bradbury, Kenneth R; Kniffin, Maribeth; Barlow, Paul M
2018-01-01
Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping-showing the model-calculated potential impacts that wells have on stream baseflow-can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States-home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices. © 2017, National Ground Water Association.
The Stream-Catchment (StreamCat) and Lake-Catchment ...
Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate
Rallis, Austin; Fercho, Kelene A; Bosch, Taylor J; Baugh, Lee A
2018-01-31
Tool use is associated with three visual streams-dorso-dorsal, ventro-dorsal, and ventral visual streams. These streams are involved in processing online motor planning, action semantics, and tool semantics features, respectively. Little is known about the way in which the brain represents virtual tools. To directly assess this question, a virtual tool paradigm was created that provided the ability to manipulate tool components in isolation of one another. During functional magnetic resonance imaging (fMRI), adult participants performed a series of virtual tool manipulation tasks in which vision and movement kinematics of the tool were manipulated. Reaction time and hand movement direction were monitored while the tasks were performed. Functional imaging revealed that activity within all three visual streams was present, in a similar pattern to what would be expected with physical tool use. However, a previously unreported network of right-hemisphere activity was found including right inferior parietal lobule, middle and superior temporal gyri and supramarginal gyrus - regions well known to be associated with tool processing within the left hemisphere. These results provide evidence that both virtual and physical tools are processed within the same brain regions, though virtual tools recruit bilateral tool processing regions to a greater extent than physical tools. Copyright © 2017 Elsevier Ltd. All rights reserved.
Towards national mapping of aquatic condition (I): The Stream-Catchment (StreamCat) Dataset
Stream environments reflect, in part, the hydrologic integration of upstream landscapes. Characterizing upstream features is critical for effectively understanding, managing, and conserving riverine ecosystems. However, watershed delineation is a major challenge if hundreds to th...
Web Audio/Video Streaming Tool
NASA Technical Reports Server (NTRS)
Guruvadoo, Eranna K.
2003-01-01
In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.
Chemical character of streams in the Delaware River basin
Anderson, Peter W.; McCarthy, Leo T.
1963-01-01
The water chemistry of streams in the Delaware River basin falls into eight general groups, when mapped according to the prevalent dissolved-solids content and the predominant ions normally found in the water. The approximate regions representing each of these iso-chemical quality groups are shown on the accompanying base map of the drainage basin.
A simplified gis-based model for large wood recruitment and connectivity in mountain basins
NASA Astrophysics Data System (ADS)
Franceschi, Silvia; Antonello, Andrea; Vela, Ana Lucia; Cavalli, Marco; Crema, Stefano; Comiti, Francesco; Tonon, Giustino
2015-04-01
During the last 50 years in the Alps the decline of the rural and forest economy and at the depopulation of the mountain areas caused the progressive abandon of the land in general and in particular of the riparian zones and the consequent increment of the vegetation extension. On one hand the wood increases the availability of organic matter and has positive effects on mountain river systems. However, during flooding events large woods that reach the stream cause the clogging of bridges with an increase of flood hazard. The approach to the evaluation of the availability of large wood during flooding events is still a challenge. There are models that simulate the propagation of the logs downstream, but the evaluation of the trees that can reach the stream is still done using simplified GIS procedures. These procedures are the base for our research which will include LiDAR derived information on vegetation to evaluate large wood recruitment extreme events. Within the last Google Summer of Code (2014) we developed a set of tools to evaluate large wood recruitment and propagation along the channel network based on a simplified methodology for monitoring and modeling large wood recruitment and transport in mountain basins implemented by Lucía et 2014. These tools are integrated in the JGrassTools project as a dedicated section in the Hydro-Geomorphology library. The section LWRecruitment contains 10 simple modules that allow the user to start from very simple information related to geomorphology, flooding areas and vegetation cover and obtain a map of the most probable critical sections on the streams. The tools cover the two main aspects related to the iteration of large wood with the rivers: the recruitment mechanisms and the propagation downstream. While the propagation tool is very simple and does not consider the hydrodynamic of the problem, the recruitment algorithms are more specific and consider the influence of hillslopes stability and the flooding extension. The modules are available for download at www.jgrasstools.org. A simple and easy to use graphical interface to run the models is available at https://github.com/moovida/STAGE/releases.
EnviroAtlas - 303(d) Impairments by 12-digit HUC for the Conterminous United States
This EnviroAtlas dataset depicts the total length of stream or river flowlines that have impairments submitted to the EPA by states under section 303(d) of the Clean Water Act. It also contains the total lengths of streams, rivers, and canals, total waterbody area, and stream density (stream length per area) from the US Geological Survey's high-resolution National Hydrography Dataset (NHD).This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boddu, S; Morrow, A; Krishnamurthy, N
Purpose: Our goal is to implement lean methodology to make our current process of CT simulation to treatment more efficient. Methods: In this study, we implemented lean methodology and tools and employed flowchart in excel for process-mapping. We formed a group of physicians, physicists, dosimetrists, therapists and a clinical physics assistant and huddled bi-weekly to map current value streams. We performed GEMBA walks and observed current processes from scheduling patient CT Simulations to treatment plan approval. From this, the entire workflow was categorized into processes, sub-processes, and tasks. For each process we gathered data on touch time, first time quality,more » undesirable effects (UDEs), and wait-times from relevant members of each task. UDEs were binned per frequency of their occurrence. We huddled to map future state and to find solutions to high frequency UDEs. We implemented visual controls, hard stops, and documented issues found during chart checks prior to treatment plan approval. Results: We have identified approximately 64 UDEs in our current workflow that could cause delays, re-work, compromise the quality and safety of patient treatments, or cause wait times between 1 – 6 days. While some UDEs are unavoidable, such as re-planning due to patient weight loss, eliminating avoidable UDEs is our goal. In 2015, we found 399 issues with patient treatment plans, of which 261, 95 and 43 were low, medium and high severity, respectively. We also mapped patient-specific QA processes for IMRT/Rapid Arc and SRS/SBRT, involving 10 and 18 steps, respectively. From these, 13 UDEs were found and 5 were addressed that solved 20% of issues. Conclusion: We have successfully implemented lean methodology and tools. We are further mapping treatment site specific workflows to identify bottlenecks, potential breakdowns and personnel allocation and employ tools like failure mode effects analysis to mitigate risk factors to make this process efficient.« less
Watershed Health Assessment Tools Investigating Fisheries
WHATIF is software that integrates a number of calculators, tools, and models for assessing the health of watersheds and streams with an emphasis on fish communities. The tool set consists of hydrologic and stream geometry calculators, a fish assemblage predictor, a fish habitat ...
Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter
2013-01-01
In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...
Emerging Technologies for Assessing Physical Activity Behaviors in Space and Time
Hurvitz, Philip M.; Moudon, Anne Vernez; Kang, Bumjoon; Saelens, Brian E.; Duncan, Glen E.
2014-01-01
Precise measurement of physical activity is important for health research, providing a better understanding of activity location, type, duration, and intensity. This article describes a novel suite of tools to measure and analyze physical activity behaviors in spatial epidemiology research. We use individual-level, high-resolution, objective data collected in a space-time framework to investigate built and social environment influences on activity. First, we collect data with accelerometers, global positioning system units, and smartphone-based digital travel and photo diaries to overcome many limitations inherent in self-reported data. Behaviors are measured continuously over the full spectrum of environmental exposures in daily life, instead of focusing exclusively on the home neighborhood. Second, data streams are integrated using common timestamps into a single data structure, the “LifeLog.” A graphic interface tool, “LifeLog View,” enables simultaneous visualization of all LifeLog data streams. Finally, we use geographic information system SmartMap rasters to measure spatially continuous environmental variables to capture exposures at the same spatial and temporal scale as in the LifeLog. These technologies enable precise measurement of behaviors in their spatial and temporal settings but also generate very large datasets; we discuss current limitations and promising methods for processing and analyzing such large datasets. Finally, we provide applications of these methods in spatially oriented research, including a natural experiment to evaluate the effects of new transportation infrastructure on activity levels, and a study of neighborhood environmental effects on activity using twins as quasi-causal controls to overcome self-selection and reverse causation problems. In summary, the integrative characteristics of large datasets contained in LifeLogs and SmartMaps hold great promise for advancing spatial epidemiologic research to promote healthy behaviors. PMID:24479113
MPEG-4 AVC saliency map computation
NASA Astrophysics Data System (ADS)
Ammar, M.; Mitrea, M.; Hasnaoui, M.
2014-02-01
A saliency map provides information about the regions inside some visual content (image, video, ...) at which a human observer will spontaneously look at. For saliency maps computation, current research studies consider the uncompressed (pixel) representation of the visual content and extract various types of information (intensity, color, orientation, motion energy) which are then fusioned. This paper goes one step further and computes the saliency map directly from the MPEG-4 AVC stream syntax elements with minimal decoding operations. In this respect, an a-priori in-depth study on the MPEG-4 AVC syntax elements is first carried out so as to identify the entities appealing the visual attention. Secondly, the MPEG-4 AVC reference software is completed with software tools allowing the parsing of these elements and their subsequent usage in objective benchmarking experiments. This way, it is demonstrated that an MPEG-4 saliency map can be given by a combination of static saliency and motion maps. This saliency map is experimentally validated under a robust watermarking framework. When included in an m-QIM (multiple symbols Quantization Index Modulation) insertion method, PSNR average gains of 2.43 dB, 2.15dB, and 2.37 dB are obtained for data payload of 10, 20 and 30 watermarked blocks per I frame, i.e. about 30, 60, and 90 bits/second, respectively. These quantitative results are obtained out of processing 2 hours of heterogeneous video content.
Flynn, Robert H.; Johnston, Craig M.; Hays, Laura
2012-01-01
Digital flood-inundation maps for a 16.5-mile reach of the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, N.H., from the confluence with the Merrimack River to U.S. Geological Survey (USGS) Suncook River streamgage 01089500 at Depot Road in North Chichester, N.H., were created by the USGS in cooperation with the New Hampshire Department of Homeland Security and Emergency Management. The inundation maps presented in this report depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suncook River at North Chichester, N.H. (station 01089500). The current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/nh/nwis/uv/?site_no=01089500&PARAmeter_cd=00065,00060). The National Weather Service forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) flood-warning system site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. These maps along with real-time stream stage data from the USGS Suncook River streamgage (station 01089500) and forecasted stream stage from the NWS will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations, road closures, disaster declarations, and post-flood recovery. The maps, along with current stream-stage data from the USGS Suncook River streamgage and forecasted stream-stage data from the NWS, can be accessed at the USGS Flood Inundation Mapping Science Web site http://water.usgs.gov/osw/flood_inundation/.
Spatial Statistical Network Models for Stream and River Temperatures in the Chesapeake Bay Watershed
Numerous metrics have been proposed to describe stream/river thermal regimes, and researchers are still struggling with the need to describe thermal regimes in a parsimonious fashion. Regional temperature models are needed for characterizing and mapping current stream thermal re...
Digital Bathymetric Model of Mono Lake, California
Raumann, Christian G.; Stine, Scott; Evans, Alexander; Wilson, Jerry
2002-01-01
In 1986 and 1987, Pelagos Corporation of San Diego (now Racal Pelagos) undertook a bathymetric survey of Mono Lake in eastern California for the Los Angeles Department of Water and Power (DWP). The result of that survey was a series of maps at various scales and contour intervals. From these maps, the DWP hoped to predict consequences of the drop in lake level that resulted from their diversion of streams in the Mono Basin. No digital models, including shaded-relief and perspective-view renderings, were made from the data collected during the survey. With the permission of Pelagos Corporation and DWP, these data are used to produce a digital model of the floor of Mono Lake. The model was created using a geographic information system (GIS) to incorporate these data with new observations and measurements made in the field. This model should prove to be a valuable tool for enhanced visualization and analyses of the floor of Mono Lake.
RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.
Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip
2012-01-01
RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Johansen, Kasper; Grove, James; Denham, Robert; Phinn, Stuart
2013-01-01
Stream bank condition is an important physical form indicator for streams related to the environmental condition of riparian corridors. This research developed and applied an approach for mapping bank condition from airborne light detection and ranging (LiDAR) and high-spatial resolution optical image data in a temperate forest/woodland/urban environment. Field observations of bank condition were related to LiDAR and optical image-derived variables, including bank slope, plant projective cover, bank-full width, valley confinement, bank height, bank top crenulation, and ground vegetation cover. Image-based variables, showing correlation with the field measurements of stream bank condition, were used as input to a cumulative logistic regression model to estimate and map bank condition. The highest correlation was achieved between field-assessed bank condition and image-derived average bank slope (R2=0.60, n=41), ground vegetation cover (R=0.43, n=41), bank width/height ratio (R=0.41, n=41), and valley confinement (producer's accuracy=100%, n=9). Cross-validation showed an average misclassification error of 0.95 from an ordinal scale from 0 to 4 using the developed model. This approach was developed to support the remotely sensed mapping of stream bank condition for 26,000 km of streams in Victoria, Australia, from 2010 to 2012.
NASA Astrophysics Data System (ADS)
Sujatha, Evangelin Ramani; Sridhar, Venkataramana
2017-12-01
Rapid debris flows, a mixture of unconsolidated sediments and water travelling at speeds > 10 m/s are the most destructive water related mass movements that affect hill and mountain regions. The predisposing factors setting the stage for the event are the availability of materials, type of materials, stream power, slope gradient, aspect and curvature, lithology, land use and land cover, lineament density, and drainage. Rainfall is the most common triggering factor that causes debris flow in the Palar subwatershed and seismicity is not considered as it is a stable continental region and moderate seismic zone. Also, there are no records of major seismic activities in the past. In this study, one of the less explored heuristic methods known as the analytical network process (ANP) is used to map the spatial propensity of debris flow. This method is based on top-down decision model and is a multi-criteria, decision-making tool that translates subjective assessment of relative importance to weights or scores and is implemented in the Palar subwatershed which is part of the Western Ghats in southern India. The results suggest that the factors influencing debris flow susceptibility in this region are the availability of material on the slope, peak flow, gradient of the slope, land use and land cover, and proximity to streams. Among all, peak discharge is identified as the chief factor causing debris flow. The use of micro-scale watersheds demonstrated in this study to develop the susceptibility map can be very effective for local level planning and land management.
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin
NASA Astrophysics Data System (ADS)
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
NASA Astrophysics Data System (ADS)
Shepherd, S. L.; Davis, R. K.; Dixon, J. C.; Cothren, J. D.
2008-12-01
George H. Dury (1964) proposed eight theoretical combinations of stream pattern and valley pattern that represent underfit streams; claiming underfit is a climate induced condition caused by a significant decrease in channel forming discharge. One combination was defined by the Osage River in the northeastern Ozark Plateaus of Missouri. Osage underfit streams fail to meander within a meandering valley. The mean channel meander wavelength and channel width of the stream is much less than the valley resulting in valley-stream ratios of up to 40:1 in contrast to his expected values of approximately 11:1. Dury's model is generally applied to the entire Ozarks including the Illinois River watershed without field data support. The Illinois River is located on the western flank of the Ozark Plateaus physiographic region on the Springfield Plateau which has different lithology than the Salem Plateau where the Osage River is located. To test the assumption that streams in the Illinois River watershed are underfit a combination of field, map, and GIS data were collected. Geomorphic surveys of ten reaches along eight first order streams were completed. The average stream widths of the ten reaches were compared to valley widths measured from USGS 1:24000 Quadrangle maps. The valley to stream ratios ranged from 1 to 15. Forested watersheds exhibited the highest width ratios, ranging from 12 to 15, while ratios in urban and agricultural watersheds were less than 2. This finding is consistent with observed changes in stream morphology caused by anthropogenic influences. To extrapolate to the larger watershed thirteen valley and stream widths along the Illinois River and two higher order tributaries, Osage Creek and Clear Creek, were measured from USGS maps. These ratios ranged from 2.8 to 5.7. Additionally, stream and valley wavelengths are being analyzed in a GIS using the USGS medium resolution hydrology data set and a LiDAR derived 8 m DEM for the watershed. These data suggest it is invalid to apply the Osage underfit model to this watershed. These findings are being validated with additional stream and valley width measurements in the field along the first order streams, Osage Creek, Clear Creek, and the Illinois River.
Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.
2009-01-01
This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).
NASA Technical Reports Server (NTRS)
Herzfeld, Ute C.
2002-01-01
The central objective of this project has been the development of geostatistical methods fro mapping elevation and ice surface characteristics from satellite radar altimeter (RA) and Syntheitc Aperture Radar (SAR) data. The main results are an Atlas of elevation maps of Antarctica, from GEOSAT RA data and an Atlas from ERS-1 RA data, including a total of about 200 maps with 3 km grid resolution. Maps and digital terrain models are applied to monitor and study changes in Antarctic ice streams and glaciers, including Lambert Glacier/Amery Ice Shelf, Mertz and Ninnis Glaciers, Jutulstraumen Glacier, Fimbul Ice Shelf, Slessor Glacier, Williamson Glacier and others.
DeWeber, Jefferson Tyrell; Wagner, Tyler
2015-01-01
The Brook Trout Salvelinus fontinalis is an important species of conservation concern in the eastern USA. We developed a model to predict Brook Trout population status within individual stream reaches throughout the species’ native range in the eastern USA. We utilized hierarchical logistic regression with Bayesian estimation to predict Brook Trout occurrence probability, and we allowed slopes and intercepts to vary among ecological drainage units (EDUs). Model performance was similar for 7,327 training samples and 1,832 validation samples based on the area under the receiver operating curve (∼0.78) and Cohen's kappa statistic (0.44). Predicted water temperature had a strong negative effect on Brook Trout occurrence probability at the stream reach scale and was also negatively associated with the EDU average probability of Brook Trout occurrence (i.e., EDU-specific intercepts). The effect of soil permeability was positive but decreased as EDU mean soil permeability increased. Brook Trout were less likely to occur in stream reaches surrounded by agricultural or developed land cover, and an interaction suggested that agricultural land cover also resulted in an increased sensitivity to water temperature. Our model provides a further understanding of how Brook Trout are shaped by habitat characteristics in the region and yields maps of stream-reach-scale predictions, which together can be used to support ongoing conservation and management efforts. These decision support tools can be used to identify the extent of potentially suitable habitat, estimate historic habitat losses, and prioritize conservation efforts by selecting suitable stream reaches for a given action. Future work could extend the model to account for additional landscape or habitat characteristics, include biotic interactions, or estimate potential Brook Trout responses to climate and land use changes.
Evolution of large, organic debris after timber harvest: Maybeso Creek, 1949 to1978
Mason D. Bryant
1980-01-01
The Maybeso Creek valley was logged from 1953 to 1960. Stream maps showing large accumulations of debris and stream channel features were made in 1949 and updated to 1960. The objectives of this paper are to document the effects of natural and logging debris on channel morphome try and to examine the fate of logging debris during and after logging. Map sections from...
NASA Astrophysics Data System (ADS)
Wu, T.; Li, T.; Li, J.; Wang, G.
2017-12-01
Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.
JPL Earth Science Center Visualization Multitouch Table
NASA Astrophysics Data System (ADS)
Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.
2014-12-01
JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.
Hydropower Resource Assessment of Brazilian Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas G. Hall
The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information systemmore » (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.« less
Wood, Molly S.; Rea, Alan; Skinner, Kenneth D.; Hortness, Jon E.
2009-01-01
Many State and Federal agencies use information regarding the locations of streams having intermittent or perennial flow when making management and regulatory decisions. For example, the application of some Idaho water quality standards depends on whether streams are intermittent. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 ft3/s. However, there is a general recognition that the cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not as accurate or consistent as desirable from one map to another, which makes broad management and regulatory assessments difficult and inconsistent. To help resolve this problem, the USGS has developed a methodology for predicting the locations of perennial streams based on regional generalized least-squares (GLS) regression equations for Idaho streams for the 7Q2 low-flow statistic. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams in most areas in Idaho. The use of these equations in conjunction with a geographic information system (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along stream reaches. The USGS has developed a GIS-based map of the locations of streams in Idaho with perennial flow based on a 7Q2 of 0.1 ft3/s and a transition zone of plus or minus 1 standard error. Idaho State cooperators plan to use this information to make regulatory and water-quality management decisions. Originally, 7Q2 equations were developed for eight regions of similar hydrologic characteristics in the study area, using long-term data from 234 streamflow-gaging stations. Equations in five of the regions were revised based on spatial patterns observed in the initial perennial streams map and unrealistic behavior of the equations in extrapolation. The standard errors of prediction for the final equations ranged from a minimum of +75.0 to -42.9 percent in the central part of the study area to a maximum of +277 to -73.5 percent in the southern part of the study area. The equations are applicable only to unregulated, naturally-flowing streams and may produce unreliable results outside the range of explanatory variables used for equation development. Extrapolation outside the range of available data was necessary, however, to predict perennial flow initiation points and transition zones along stream reaches. The map of perennial streams was evaluated by comparing predicted stream classifications with four independent datasets, including field observations by other government agencies. Overall, 81 percent of the comparison data points agreed with the USGS perennial streams model. Regions with the highest number of disagreements had a high percentage of mountainous and forested area with potential mountain front recharge zones, and regions with the highest agreements had a high percentage of low gradient, low elevation area. As a whole, the USGS model predicted a higher number of perennial streams than predictions made with the independent datasets. Some disagreements were due to poor site location coordinates, timing of the comparison site visits during unusually wet or dry years, discrepancies in classification criteria, and variable ground water contributions to flow in some areas. The Idaho Department of Environmental Quality Beneficial Use Reconnaissance Program (BURP) dataset is considered the most representative dataset for comparison because it covered a range of climate conditions and the number of sites visited were consistent from year to year during the study period. Eighty-five percent of BURP comparison data points agreed with the USGS perennial streams model. Although site-specific flow data may be needed to correctly classify streams in some areas, this information rarely is available and is not always practical to o
Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.; ...
2016-03-26
In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.
In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less
Dittinger, Eva; Valizadeh, Seyed Abolfazl; Jäncke, Lutz; Besson, Mireille; Elmer, Stefan
2018-02-01
Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning. © 2017 Wiley Periodicals, Inc.
Sugianto, Jessica Z; Stewart, Brian; Ambruzs, Josephine M; Arista, Amanda; Park, Jason Y; Cope-Yokoyama, Sandy; Luu, Hung S
2015-01-01
To implement Lean principles to accommodate expanding volumes of gastrointestinal biopsies and to improve laboratory processes overall. Our continuous improvement (kaizen) project analyzed the current state for gastrointestinal biopsy handling using value-stream mapping for specimens obtained at a 487-bed tertiary care pediatric hospital in Dallas, Texas. We identified non-value-added time within the workflow process, from receipt of the specimen in the histology laboratory to the delivery of slides and paperwork to the pathologist. To eliminate non-value-added steps, we implemented the changes depicted in a revised-state value-stream map. Current-state value-stream mapping identified a total specimen processing time of 507 minutes, of which 358 minutes were non-value-added. This translated to a process cycle efficiency of 29%. Implementation of a revised-state value stream resulted in a total process time reduction to 238 minutes, of which 89 minutes were non-value-added, and an improved process cycle efficiency of 63%. Lean production principles of continuous improvement and waste elimination can be successfully implemented within the clinical laboratory.
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator); Hallberg, G. R.
1973-01-01
The author has identified the following significant results. Maps at 1:1 million scale exemplifying the first phase of the investigation (which consists of the identification and mapping of landform and land use characteristics and surficial geologic materials directly from the ERTS-1 images without use of additional data) were prepared. For areas that have not been mapped at 1:500,000 or larger scales, maps will provide the first moderately detailed information on landform features and surficial materials. Much of the information mapped is significant for exploration and development of ground (and, locally, petroleum) and for applications in engineering and environmental geology, including land use planning. Analysis of drainage patterns, stream-divide relations and land use patterns has revealed several possible moraine-controlled divices of middle and early Pleistocene age. One is an extension of the Cedar Bluffs moraine of southeastern Nebraska. Another of these divides may correspond to the terminus of Nebraska drift in the Kansas City study area. The trends of parts of various ancient filled valleys also have been identified by analysis of charges in width of the present stream valleys. The alinements of certain segments of stream valleys in Kansas and Missouri appear to be controlled by regional faults or other structural features.
Geochemical map of the Rattlesnake Roadless Area, Coconino and Yavapai counties, Arizona
Gerstel, W.J.
1985-01-01
The geochemical survey of the Rattlesnake Roadless Area was conducted in May 1982 by the U.S. Geological Survey to aid in a mineral resource appraisal of the area. A total of 114 stream-sediment samples, 68 heavy-mineral concentrates from stream sediment, 20 rock samples, and 4 water samples was collected by S.C. Rose, D.E. Hendzel, and W.J. Gerstel, with helicopter support from Jack Ruby, pilot for Helicopters Unlimited. All sample localities are plotted on the map; sample localities showing anomalous barium and lead are also indicated on the map.
Incorporation of water-use summaries into the StreamStats web application for Maryland
Ries, Kernell G.; Horn, Marilee A.; Nardi, Mark R.; Tessler, Steven
2010-01-01
Approximately 25,000 new households and thousands of new jobs will be established in an area that extends from southwest to northeast of Baltimore, Maryland, as a result of the Federal Base Realignment and Closure (BRAC) process, with consequent new demands on the water resources of the area. The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment, has extended the area of implementation and added functionality to an existing map-based Web application named StreamStats to provide an improved tool for planning and managing the water resources in the BRAC-affected areas. StreamStats previously was implemented for only a small area surrounding Baltimore, Maryland, and it was extended to cover all BRAC-affected areas. StreamStats could provide previously published streamflow statistics, such as the 1-percent probability flood and the 7-day, 10-year low flow, for U.S. Geological Survey data-collection stations and estimates of streamflow statistics for any user-selected point on a stream within the implemented area. The application was modified for this study to also provide summaries of water withdrawals and discharges upstream from any user-selected point on a stream. This new functionality was made possible by creating a Web service that accepts a drainage-basin delineation from StreamStats, overlays it on a spatial layer of water withdrawal and discharge points, extracts the water-use data for the identified points, and sends it back to StreamStats, where it is summarized for the user. The underlying water-use data were extracted from the U.S. Geological Survey's Site-Specific Water-Use Database System (SWUDS) and placed into a Microsoft Access database that was created for this study for easy linkage to the Web service and StreamStats. This linkage of StreamStats with water-use information from SWUDS should enable Maryland regulators and planners to make more informed decisions on the use of water resources in the BRAC area, and the technology should be transferrable to other geographic areas.
SOMKE: kernel density estimation over data streams by sequences of self-organizing maps.
Cao, Yuan; He, Haibo; Man, Hong
2012-08-01
In this paper, we propose a novel method SOMKE, for kernel density estimation (KDE) over data streams based on sequences of self-organizing map (SOM). In many stream data mining applications, the traditional KDE methods are infeasible because of the high computational cost, processing time, and memory requirement. To reduce the time and space complexity, we propose a SOM structure in this paper to obtain well-defined data clusters to estimate the underlying probability distributions of incoming data streams. The main idea of this paper is to build a series of SOMs over the data streams via two operations, that is, creating and merging the SOM sequences. The creation phase produces the SOM sequence entries for windows of the data, which obtains clustering information of the incoming data streams. The size of the SOM sequences can be further reduced by combining the consecutive entries in the sequence based on the measure of Kullback-Leibler divergence. Finally, the probability density functions over arbitrary time periods along the data streams can be estimated using such SOM sequences. We compare SOMKE with two other KDE methods for data streams, the M-kernel approach and the cluster kernel approach, in terms of accuracy and processing time for various stationary data streams. Furthermore, we also investigate the use of SOMKE over nonstationary (evolving) data streams, including a synthetic nonstationary data stream, a real-world financial data stream and a group of network traffic data streams. The simulation results illustrate the effectiveness and efficiency of the proposed approach.
This EnviroAtlas dataset shows the percentages of stream and water body shoreline lengths within 30 meters of impervious cover by 12-digit Hydrologic Unit (HUC) subwatershed in the contiguous U.S. Impervious cover alters the hydrologic behavior of streams and water bodies, promoting increased storm water runoff and lower stream flow during periods in between rainfall events. Impervious cover also promotes increased pollutant loads in receiving waters and degraded streamside habitat. This dataset shows were impervious cover occurs close to streams and water bodies, where it is likely to have a greater adverse impact on receiving waters. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
About the Managing and Transforming Waste Streams Tool
The Managing and Transforming Waste Streams Tool was developed by a team of zero waste consultants and solid waste program managers making informed observations from hands-on work in communities, with contributions from EPA.
PREDICTION OF FUNDAMENTAL ASSEMBLAGES OF MID-ATLANTIC HIGHLAND STREAM FISHES
A statistical software tool, the Stream Fish Assemblage Predictor (SFAP), based on stream sampling data collected by the EPA in the mid-Atlantic Highlands, was developed to predict potential stream fish communities using characteristics of the stream and its watershed.
Step o...
Cartwright, Jennifer M.; Diehl, Timothy H.
2017-01-17
High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.
StreamStats: a U.S. geological survey web site for stream information
Kernell, G. Ries; Gray, John R.; Renard, Kenneth G.; McElroy, Stephen A.; Gburek, William J.; Canfield, H. Evan; Scott, Russell L.
2003-01-01
The U.S. Geological Survey has developed a Web application, named StreamStats, for providing streamflow statistics, such as the 100-year flood and the 7-day, 10-year low flow, to the public. Statistics can be obtained for data-collection stations and for ungaged sites. Streamflow statistics are needed for water-resources planning and management; for design of bridges, culverts, and flood-control structures; and for many other purposes. StreamStats users can point and click on data-collection stations shown on a map in their Web browser window to obtain previously determined streamflow statistics and other information for the stations. Users also can point and click on any stream shown on the map to get estimates of streamflow statistics for ungaged sites. StreamStats determines the watershed boundaries and measures physical and climatic characteristics of the watersheds for the ungaged sites by use of a Geographic Information System (GIS), and then it inserts the characteristics into previously determined regression equations to estimate the streamflow statistics. Compared to manual methods, StreamStats reduces the average time needed to estimate streamflow statistics for ungaged sites from several hours to several minutes.
Engineering fluid flow using sequenced microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino
2013-05-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
Running key mapping in a quantum stream cipher by the Yuen 2000 protocol
NASA Astrophysics Data System (ADS)
Shimizu, Tetsuya; Hirota, Osamu; Nagasako, Yuki
2008-03-01
A quantum stream cipher by Yuen 2000 protocol (so-called Y00 protocol or αη scheme) consisting of linear feedback shift register of short key is very attractive in implementing secure 40 Gbits/s optical data transmission, which is expected as a next-generation network. However, a basic model of the Y00 protocol with a very short key needs a careful design against fast correlation attacks as pointed out by Donnet This Brief Report clarifies an effectiveness of irregular mapping between running key and physical signals in the driver for selection of M -ary basis in the transmitter, and gives a design method. Consequently, quantum stream cipher by the Y00 protocol with our mapping has immunity against the proposed fast correlation attacks on a basic model of the Y00 protocol even if the key is very short.
NASA satellite helps airliners avoid ozone concentrations
NASA Technical Reports Server (NTRS)
1981-01-01
Results from a test to determine the effectiveness of satellite data for helping airlines avoid heavy concentrations of ozone are reported. Information from the Total Ozone Mapping Spectrometer, aboard the Nimbus-7 was transmitted, for use in meteorological forecast activities. The results show: (1) Total Ozone Mapping Spectrometer profile of total ozone in the atmosphere accurately represents upper air patterns and can be used to locate meteorological activity; (2) route forecasting of highly concentrated ozone is feasible; (3) five research aircraft flights were flown in jet stream regions located by the Total Ozone Mapping Spectrometer to determine winds, temperatures, and air composition. It is shown that the jet stream is coincides with the area of highest total ozone gradient, and low total ozone amounts are found where tropospheric air has been carried along above the tropopause on the anticyclonic side of the subtropical jet stream.
Nowlan, G.A.; Ficklin, Walter H.; Dover, Robert A.
1985-01-01
This report presents results of geochemical studies carried out in June and July of 1982 in the Buffalo Peaks Wilderness Study Area, Colo. (see index map). Samples of water were collected from 84 streams and 18 springs draining the study area. Tabulations of the analyses and a sample locality map are in Ficklin and others (1984). The geochemistry of stream sediments and panned concentrates of the study area is in Nowlan and Gerstel (1985). The geology of the study area and vicinity is in Hedlund (1985). The mineral resource potential of the study area is described in Hedlund and others (1983). This report (1) assists in the assessment of the mineral resource potential of the Buffalo Peaks Wilderness Study Area; and (2) compares analyses of water samples with analyses of stream-sediment and panned-concentrate samples (Nowlan and Gerstel, 1985).
ABSTRACT: Recent US Supreme Court cases have questioned the jurisdictional scope of the Clean Water Act. Headwater streams are central to this issue because many headwater streams do not have year-round flow, and also because little is known about their contributions to navigable...
Urbanization has been associated with changes in stream flow regime, morphology, and water
quality of rural watersheds being developed. Most studies of the effect of urbanization on stream morphology have been done post hoc -after development has occurred -and involve the ext...
State-wide monitoring based on probability survey designs requires a spatially explicit representation of all streams and rivers of interest within a state, i.e., a sample frame. The sample frame should be the best available map representation of the resource. Many stream progr...
The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled st...
The current state of Lean implementation in health care: literature review.
Poksinska, Bozena
2010-01-01
The purpose of this article is to discuss the current state of implementation of Lean production in health care. The study focuses on the definition of Lean in health care and implementation process, barriers, challenges, enablers, and outcomes of implementing Lean production methods in health care. A comprehensive search of the literature concerning the implementation of Lean production in health care was used to generate a synthesis of the literature around the chosen research questions. Lean production in health care is mostly used as a process improvement approach and focuses on 3 main areas: (1) defining value from the patient point of view, (2) mapping value streams, and (3) eliminating waste in an attempt to create continuous flow. Value stream mapping is the most frequently applied Lean tool in health care. The usual implementation steps include conducting Lean training, initiating pilot projects, and implementing improvements using interdisciplinary teams. One of the barriers is lack of educators and consultants who have their roots in the health care sector and can provide support by sharing experience and giving examples from real-life applications of Lean in health care. The enablers of Lean in health care seem not to be different from the enablers of any other change initiative. The outcomes can be divided into 2 broad areas: the performance of the health care system and the development of employees and work environment.
This dataset represents the dam density and storage volumes within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on National Inventory of Dams (NID) data. Attributes were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics.(See Supplementary Info for Glossary of Terms) The NID database contains information about the dam??s location, size, purpose, type, last inspection, regulatory facts, and other technical data. Structures on streams reduce the longitudinal and lateral hydrologic connectivity of the system. For example, impoundments above dams slow stream flow, cause deposition of sediment and reduce peak flows. Dams change both the discharge and sediment supply of streams, causing channel incision and bed coarsening downstream. Downstream areas are often sediment deprived, resulting in degradation, i.e., erosion of the stream bed and stream banks. This database was improved upon by locations verified by work from the USGS National Map (Jeff Simley Group). It was observed that some dams, some of them major and which do exist, were not part of the 2009 NID, but were represented in the USGS National Map dataset, and had been in the 2006 NID. Approximately 1,100 such dams were added, based on the USGS National Map lat/long and the 2006 NID attributes (dam height, storage, etc.) Finally, as clean-up, a) about 600 records with duplicate NIDID were removed, and b) about 300 reco
Minimal Data and Site Specific Approaches
As part of a workshop, Tools for Assessing Stream Dissolved Minerals, approaches and EPA tools are described for site specific development of water quality criteria based on observations from Arkansas streams using minimal data. Discussion topics will include site-specific appro...
System and method for forward error correction
NASA Technical Reports Server (NTRS)
Cole, Robert M. (Inventor); Bishop, James E. (Inventor)
2006-01-01
A system and method are provided for transferring a packet across a data link. The packet may include a stream of data symbols which is delimited by one or more framing symbols. Corruptions of the framing symbol which result in valid data symbols may be mapped to invalid symbols. If it is desired to transfer one of the valid data symbols that has been mapped to an invalid symbol, the data symbol may be replaced with an unused symbol. At the receiving end, these unused symbols are replaced with the corresponding valid data symbols. The data stream of the packet may be encoded with forward error correction information to detect and correct errors in the data stream.
System and method for transferring data on a data link
NASA Technical Reports Server (NTRS)
Cole, Robert M. (Inventor); Bishop, James E. (Inventor)
2007-01-01
A system and method are provided for transferring a packet across a data link. The packet may include a stream of data symbols which is delimited by one or more framing symbols. Corruptions of the framing symbol which result in valid data symbols may be mapped to invalid symbols. If it is desired to transfer one of the valid data symbols that has been mapped to an invalid symbol, the data symbol may be replaced with an unused symbol. At the receiving end, these unused symbols are replaced with the corresponding valid data symbols. The data stream of the packet may be encoded with forward error correction information to detect and correct errors in the data stream.
Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014
This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water temperatures, and red circles represent warming trends in stream water temperatures. Data were analyzed by Mike Kolian of EPA in partnership with John Jastram and Karen Rice of the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators
Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil.
Reis, D R; Plangg, R; Tundisi, J G; Quevedo, D M
2015-12-01
Remote sensing and geoprocessing are essential tools for obtaining and maintaining records of human actions on space over the course of time; these tools offer the basis for diagnoses of land use, environmental interference and local development. The Schmidt stream watershed, located in the Sinos River basin, in southern Brazil, has an environmental situation similar to that of the majority of small streams draining rural and urban areas in southern Brazil: agricultural and urbanization practices do not recognize the riparian area and there is removal of original vegetation, disregarding the suitability of land use; removal of wetlands; intensive water use for various activities; and lack of control and monitoring in the discharge of wastewater, among other factors, deteriorate the quality of this important environment.This article aims to achieve a physical characterization of the Schmidt stream watershed (Sinos river basin) identifying elements such as land use and occupation, soil science, geology, climatology, extent and location of watershed, among others, so as to serve as the basis for a tool that helps in the integrated environmental management of watersheds. By applying geographic information system - GIS to the process of obtaining maps of land use and occupation, pedologicaland geological, and using climatological data from the Campo Bom meteorological station, field visit, review of literature and journals, and publicly available data, the physical characterization of the Schmidt stream watershed was performed, with a view to the integrated environmental management of this watershed. Out of the total area of the Schmidt stream watershed (23.92 km(2)), in terms of geology, it was observed that 23.7% consist of colluvial deposits, 22.6% consist of grass facies, and 53.7% consist of Botucatu formation. Major soil types of the watershed: 97.4% Argisols and only 2.6% Planosols. Land use and occupation is characterized by wetland (0.5%), Native Forest (12.83%), Native Forest + Rural Anthropic + Secondary Vegetation + Forestry (43.81%), Urban Anthropic/Urban Area (39.85%), and also Urban Anthropic/Expansion areas (3.01%). Mean annual rainfall is 1337 mm, maximum temperatures range from 10.5°C to 41.6°C and minimum temperatures range from -1.80°C and 26°C, weak winds, occasionally over 5 m/s. Conducting an environmental assessment in this watershed is essential for environmental and land management. However, these assessments are not conducted in all watersheds and, when they are, their frequency is not sufficiency to allow for continuous monitoring, in order to model and predict scenarios, with a view to adopt medium and long-term measures for environmental protection.
Habitat sequencing and the importance of discharge in inferences
Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff
1999-01-01
The authors constructed stream maps for a low-Âgradient trout stream in southwestern Virginia during autumn (base flow) and spring (elevated flows) to compare spatial and temporal variation in stream habitats. Pool-riffle sequencing and total area occupied by pools and riffles changed substantially depending on the level of discharge: reduced discharge resulted in an...
Improving stream studies with a small-footprint green lidar
Jim McKean; Dan Isaak; Wayne Wright
2009-01-01
Technology is changing how scientists and natural resource managers describe and study streams and rivers. A new generation of airborne aquatic-terrestrial lidars is being developed that can penetrate water and map the submerged topography inside a stream as well as the adjacent subaerial terrain and vegetation in one integrated mission. A leading example of these new...
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.; Stevens, K.
1984-01-01
Implicit approximate-factored algorithms have certain properties that are suitable for parallel processing. A particular computational fluid dynamics (CFD) code, using this algorithm, is mapped onto a multiple-instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this mapping procedure is presented, as well as some of the difficulties encountered when trying to run the code concurrently. Timing results are given for runs on the Ames Research Center's MIMD test facility which consists of two VAX 11/780's with a common MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were indicated by the timing results.
A novel image encryption algorithm based on chaos maps with Markov properties
NASA Astrophysics Data System (ADS)
Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang
2015-02-01
In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.
The Influence of Landslides on Channel Flood Response: A Case Study from the Colorado Front Range
NASA Astrophysics Data System (ADS)
Bennett, G. L.; Ryan, S. E.; Sholtes, J.; Rathburn, S. L.
2016-12-01
Studies have identified the role of thresholds and gradients in stream power in inducing geomorphic change during floods. At much longer time scales, empirical and modeling studies suggest the role of landslides in modifying channel response to external forcing (e.g. tectonic uplift); landslide-delivered sediment may behave as a tool, enhancing channel incision, or as cover, reducing channel incision. However, the influence of landslides on channel response to an individual flood event remains to be elucidated. Here we explore the influence of landslides on channel response to a 200-yr flood in Colorado, USA. From 9 - 15th September 2013 up to 450 mm of rain fell across a 100 km-wide swath of the Colorado Front Range, triggering >1000 landslides and inducing major flooding in several catchments. The flood caused extensive channel erosion, deposition and planform change, resulting in significant damage to property and infrastructure and even loss of life. We use a combination of pre and post flood LiDAR and field mapping to quantify geomorphic change in several catchments spanning the flooded region. We make a reach-by-reach analysis of channel geomorphic change metrics (e.g. volume of erosion) in relation to landslide sediment input and total stream power as calculated from radar-based rainfall measurements. Preliminary results suggest that landslide-sediment input may complicate the predictive relationship between channel erosion and stream power. Low volumes of landslide sediment input appear to enhance channel erosion (a tools effect), whilst very large volumes appear to reduce channel erosion (a cover effect). These results have implications for predicting channel response to floods and for flood planning and mitigation.
The dorsal stream contribution to phonological retrieval in object naming
Faseyitan, Olufunsho; Kim, Junghoon; Coslett, H. Branch
2012-01-01
Meaningful speech, as exemplified in object naming, calls on knowledge of the mappings between word meanings and phonological forms. Phonological errors in naming (e.g. GHOST named as ‘goath’) are commonly seen in persisting post-stroke aphasia and are thought to signal impairment in retrieval of phonological form information. We performed a voxel-based lesion-symptom mapping analysis of 1718 phonological naming errors collected from 106 individuals with diverse profiles of aphasia. Voxels in which lesion status correlated with phonological error rates localized to dorsal stream areas, in keeping with classical and contemporary brain-language models. Within the dorsal stream, the critical voxels were concentrated in premotor cortex, pre- and postcentral gyri and supramarginal gyrus with minimal extension into auditory-related posterior temporal and temporo-parietal cortices. This challenges the popular notion that error-free phonological retrieval requires guidance from sensory traces stored in posterior auditory regions and points instead to sensory-motor processes located further anterior in the dorsal stream. In a separate analysis, we compared the lesion maps for phonological and semantic errors and determined that there was no spatial overlap, demonstrating that the brain segregates phonological and semantic retrieval operations in word production. PMID:23171662
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, R.B.; Tones, P.L.
1978-11-01
Stream sediment and stream water samples were collected from small streams at 980 sites for a nominal density of one site per 18 square kilometers in rural areas. Ground water samples were collected at 1251 sites for a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water and surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and amore » brief description of results are given. A generalized geologic map and a summary of the geology of the area are included.« less
Risk Assessment and Mapping of Fecal Contamination in the Ohio River Basin
NASA Astrophysics Data System (ADS)
Cabezas, A.; Morehead, D.; Teklitz, A.; Yeghiazarian, L.
2014-12-01
Decisions in many problems in engineering planning are invariably made under conditions of uncertainty imposed by the inherent randomness of natural phenomena. Water quality is one such problem. For example, the leading cause of surface-water impairment in the US is fecal microbial contamination, which can potentially trigger massive outbreaks of gastrointestinal disease. It is well known that the difficulty in prediction of water contamination is rooted in the stochastic variability of microbes in the environment, and in the complexity of environmental systems.To address these issues, we employ a risk-based design format to compute the variability in microbial concentrations and the probability of exceeding the E. Coli target in the Ohio River Basin (ORB). This probability is then mapped onto the basin's stream network within the ArcGIS environment. We demonstrate how spatial risk maps can be used in support of watershed management decisions, in particular in the assessment of best management practices for reduction of E. Coli load in surface water. The modeling environment selected for the analysis is the Schematic Processor (SP), a suite of geoprocessing ArcGIS tools. SP operates on a schematic, link-and-node network model of the watershed. The National Hydrography Dataset (NHD) is used as the basis for this representation, as it provides the stream network, lakes, and catchment definitions. Given the schematic network of the watershed, SP adds the capability to perform mathematical computations along the links and at the nodes. This enables modeling fate and transport of any entity over the network. Data from various sources have been integrated for this analysis. Catchment boundaries, lake locations, the stream network and flow data have been retrieved from the NHDPlus. Land use data come from the National Land Cover Database (NLCD), and microbial observations data from the Ohio River Sanitation Committee. The latter dataset is a result of a 2003-2007 longitudinal study. Samples for E. coli analysis were collected approximately every five miles along the entire length of the Ohio River, with additional samples collected at the mouths of over 125 direct tributaries to the Ohio River.
NASA Astrophysics Data System (ADS)
McCleary, R. J.; Hassan, M. A.
2006-12-01
An automated procedure was developed to model spatial fish distributions within small streams in the Foothills of Alberta. Native fish populations and their habitats are susceptible to impacts arising from both industrial forestry and rapid development of petroleum resources in the region. Knowledge of fish distributions and the effects of industrial activities on their habitats is required to help conserve native fish populations. Resource selection function (RSF) models were used to explain presence/absence of fish in small streams. Target species were bull trout, rainbow trout and non-native brook trout. Using GIS, the drainage network was divided into reaches with uniform slope and drainage area and then polygons for each reach were created. Predictor variables described stream size, stream energy, climate and land-use. We identified a set of candidate models and selected the best model using a standard Akaike Information Criteria approach. The best models were validated with two external data sets. Drainage area and basin slope parameters were included in all best models. This finding emphasizes the importance of controlling for the energy dimension at the basin scale in investigations into the effects of land-use on aquatic resources in this transitional landscape between the mountains and plains. The best model for bull trout indicated a relation between the presence of artificial migration barriers in downstream areas and the extirpation of the species from headwater reaches. We produced reach-scale maps by species and summarized this information within all small catchments across the 12,000 km2 study area. These maps had included three categories based on predicted probability of capture for individual reaches. The high probability category had a 78 percent accuracy for correctly predicting both fish present and fish not-present reaches. Basin scale maps highlight specific watersheds likely to support both native bull trout and invasive brook trout, while reach-scale maps indicate specific reaches where interactions between these two species are likely to occur. With regional calibration, this automated modeling and mapping procedure could apply in headwater catchments throughout the Rocky Mountain Foothills and other areas where sporadic waterfalls or other natural migration barriers are not an important feature limiting fish distribution.
NASA Astrophysics Data System (ADS)
Saghafian, B.; Mohammadi, A.
2003-04-01
Most studies involving water resources allocation, water quality, hydropower generation, and allowable water withdrawal and transfer require estimation of low flows. Normally, frequency analysis on at-station D-day low flow data is performed to derive various T-yr return period values. However, this analysis is restricted to the location of hydrometric stations where the flow discharge is measured. Regional analysis is therefore conducted to relate the at-station low flow quantiles to watershed characteristics. This enables the transposition of low flow quantiles to ungauged sites. Nevertheless, a procedure to map the regional regression relations for the entire stream network, within the bounds of the relations, is particularly helpful when one studies and weighs alternative sites for certain water resources project. In this study, we used a GIS-aided procedure for low flow mapping in Gilan province, part of northern region in Iran. Gilan enjoys a humid climate with an average of 1100 mm annual precipitation. Although rich in water resources, the highly populated area is quite dependent on minimum amount of water to sustain the vast rice farming and to maintain required flow discharge for quality purposes. To carry out the low flow analysis, a total of 36 hydrometric stations with sufficient and reliable discharge data were identified in the region. The average area of the watersheds was 250 sq. km. Log Pearson type 3 was found the best distribution for flow durations over 60 days, while log normal fitted well the shorter duration series. Low flows with return periods of 2, 5, 10, 25, 50, and 100 year were then computed. Cluster analysis identified two homogeneous areas. Although various watershed parameters were examined in factor analysis, the results showed watershed area, length of the main stream, and annual precipitation were the most effective low flow parameters. The regression equations were then mapped with the aid of GIS based on flow accumulation maps and the corresponding spatially averaged values of other parameters over the upslope area of all stream pixels exceeding a certain threshold area. Such map clearly shows the spatial variation of low flow quantiles along the stream network and enables the study of low flow profiles along any stream.
Using LiDAR to Estimate Surface Erosion Volumes within the Post-storm 2012 Bagley Fire
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Mondry, Z. J.
2014-12-01
The total post-storm 2012 Bagley fire sediment budget of the Squaw Creek watershed in the Shasta-Trinity National Forest was estimated using many methods. A portion of the budget was quantitatively estimated using LiDAR. Simple workflows were designed to estimate the eroded volume's of debris slides, fill failures, gullies, altered channels and streams. LiDAR was also used to estimate depositional volumes. Thorough manual mapping of large erosional features using the ArcGIS 10.1 Geographic Information System was required as these mapped features determined the eroded volume boundaries in 3D space. The 3D pre-erosional surface for each mapped feature was interpolated based on the boundary elevations. A surface difference calculation was run using the estimated pre-erosional surfaces and LiDAR surfaces to determine volume of sediment potentially delivered into the stream system. In addition, cross sections of altered channels and streams were taken using stratified random selection based on channel gradient and stream order respectively. The original pre-storm surfaces of channel features were estimated using the cross sections and erosion depth criteria. Open source software Inkscape was used to estimate cross sectional areas for randomly selected channel features and then averaged for each channel gradient and stream order classes. The average areas were then multiplied by the length of each class to estimate total eroded altered channel and stream volume. Finally, reservoir and in-channel depositional volumes were estimated by mapping channel forms and generating specific reservoir elevation zones associated with depositional events. The in-channel areas and zones within the reservoir were multiplied by estimated and field observed sediment thicknesses to attain a best guess sediment volume. In channel estimates included re-occupying stream channel cross sections established before the fire. Once volumes were calculated, other erosion processes of the Bagley sedimentation study, such as surface soil erosion were combined to estimate the total fire and storm sediment budget for the Squaw Creek watershed. The LiDAR-based measurement workflows can be easily applied to other sediment budget studies using one high resolution LiDAR dataset.
Vanderhoof, Melanie; Distler, Hayley; Lang, Megan W.; Alexander, Laurie C.
2018-01-01
The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., <10 m). Depending on the datasets used, 12–60% of wetlands by count (21–93% of wetlands by area) experienced surface-water interactions with streams during spring 2015. This translated into a range of 50–94% of the watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, M.S.; Gent, C.A.; Bradley, L.A.
1989-01-01
A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho
NASA Astrophysics Data System (ADS)
O'Connor, B. L.; Carr, A.; Patton, T.; Hamada, Y.
2011-12-01
The Bureau of Land Management (BLM) and the Department of Energy are preparing a joint programmatic environmental impact statement (PEIS) assessing the potential impacts of utility-scale solar energy development on BLM-administered lands in six southwestern states. One of the alternatives considered in the PEIS involves development within identified solar energy zones (SEZs) that individually cover approximately 10 to 1,000 km2, located primarily in desert valleys of the Basin and Range physiographic region. Land-disturbing activities in these alluvium-filled valleys have the potential to adversely affect ephemeral streams with respect to their hydrologic, geomorphic, and ecologic functions. Regulation and management of ephemeral streams typically falls under the spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. The PEIS analysis attempts to identify critical ephemeral streams by evaluating the integral functions of flood conveyance, sediment transport, groundwater recharge, and supporting ecological habitats. The initial approach to classifying critical ephemeral streams involved identifying large, erosional features using available flood hazards mapping, historical peak discharges, and aerial photographs. This approach identified ephemeral features not suitable for development (based primarily on the likelihood of damaging floods and debris flows) to address flood conveyance and sediment transport functions of ephemeral streams. Groundwater recharge and the maintenance of riparian vegetation and wildlife habitats are other functions of ephemeral streams. These functions are typically associated with headwater reaches rather than large-scale erosional features. Recognizing that integral functions of ephemeral streams occur over a range of spatial scales and are driven by varying climatic-hydrologic events, the PEIS analysis assesses ephemeral streams according to their position in the basin, stream order, and the recurrence intervals of runoff events in the basin. A key constraint on this approach is the lack of high-resolution hydrologic, geomorphic, and ecological data for ephemeral streams in remote desert basins of the southwest United States. Consultation with stakeholders and management agencies is an additional component to assist with our analysis where data limitations exist. Results from these analyses identify critical ephemeral stream reaches to be avoided during development activities based on a mix of quantitative and qualitative measures. Long-term monitoring of these systems is needed to assess the avoidance criteria and to help advance development of the tools needed to help manage and protect the integral functions of ephemeral stream networks in arid environments.
NASA Astrophysics Data System (ADS)
Norris, Sophie L.; Evans, David J. A.; Cofaigh, Colm Ó.
2018-04-01
A multidimensional study, utilising geomorphological mapping and the analysis of regional borehole stratigraphy, is employed to elucidate the regional till architecture of terrestrial palaeo-ice streams relating to the Late Wisconsinan southwest Laurentide Ice Sheet. Detailed mapping over a 57,400 km2 area of southwestern Saskatchewan confirms previous reconstructions of a former southerly flowing ice stream, demarcated by a 800 km long corridor of megaflutes and mega-scale glacial lineations (Ice Stream 1) and cross cut by three, formerly southeast flowing ice streams (Ice Streams 2A, B and C). Analysis of the lithologic and geophysical characteristics of 197 borehole samples within these corridors reveals 17 stratigraphic units comprising multiple tills and associated stratified sediments overlying preglacial deposits, the till thicknesses varying with both topography and distance down corridor. Reconciling this regional till architecture with the surficial geomorphology reveals that surficial units are spatially consistent with a dynamic switch in flow direction, recorded by the cross cutting corridors of Ice Streams 1, 2A, B and C. The general thickening of tills towards lobate ice stream margins is consistent with subglacial deformation theory and variations in this pattern on a more localised scale are attributed to influences of subglacial topography including thickening at buried valley margins, thinning over uplands and thickening in overridden ice-marginal landforms.
NASA Astrophysics Data System (ADS)
Oh, Hyun-Joo; Pradhan, Biswajeet
2011-09-01
This paper presents landslide-susceptibility mapping using an adaptive neuro-fuzzy inference system (ANFIS) using a geographic information system (GIS) environment. In the first stage, landslide locations from the study area were identified by interpreting aerial photographs and supported by an extensive field survey. In the second stage, landslide-related conditioning factors such as altitude, slope angle, plan curvature, distance to drainage, distance to road, soil texture and stream power index (SPI) were extracted from the topographic and soil maps. Then, landslide-susceptible areas were analyzed by the ANFIS approach and mapped using landslide-conditioning factors. In particular, various membership functions (MFs) were applied for the landslide-susceptibility mapping and their results were compared with the field-verified landslide locations. Additionally, the receiver operating characteristics (ROC) curve for all landslide susceptibility maps were drawn and the areas under curve values were calculated. The ROC curve technique is based on the plotting of model sensitivity — true positive fraction values calculated for different threshold values, versus model specificity — true negative fraction values, on a graph. Landslide test locations that were not used during the ANFIS modeling purpose were used to validate the landslide susceptibility maps. The validation results revealed that the susceptibility maps constructed by the ANFIS predictive models using triangular, trapezoidal, generalized bell and polynomial MFs produced reasonable results (84.39%), which can be used for preliminary land-use planning. Finally, the authors concluded that ANFIS is a very useful and an effective tool in regional landslide susceptibility assessment.
Sour streams in appalachia: mapping nature’s buffer against sulfur deposition
Natasha Vizcarra; Nicholas Povak; Paul Hessburg; Keith Reynolds
2015-01-01
Even while emissions are in decline, sulfur released into the air primarily by coal- and oil-burning power plants continues to acidify streams in the eastern United States, stressing vegetation and harming aquatic life. Watersheds rich in base cationsânutrients that attract and bind acidic moleculesânaturally buffer streams against acidification. These watersheds can...
Stream channel reference sites: An illustrated guide to field technique
Cheryl C Harrelson; C. L. Rawlins; John P. Potyondy
1994-01-01
This document is a guide to establishing permanent reference sites for gathering data about the physical characteristics of streams and rivers. The minimum procedure consists of the following: (1) select a site, (2) map the site and location, (3) measure the channel cross-section, (4) survey a longitudinal profile of the channel, (5) measure stream flow, (6) measure...
Mitigating the effects of landscape development on streams in urbanizing watersheds
Hogan, Dianna M.; Jarnagin, S. Taylor; Loperfido, John V.; Van Ness, Keith
2013-01-01
This collaborative study examined urbanization and impacts on area streams while using the best available sediment and erosion control (S&EC) practices in developing watersheds in Maryland, United States. During conversion of the agricultural and forested watersheds to urban land use, land surface topography was graded and vegetation was removed creating a high potential for sediment generation and release during storm events. The currently best available S&EC facilities were used during the development process to mitigate storm runoff water quality, quantity, and timing before entering area streams. Detailed Geographic Information System (GIS) maps were created to visualize changing land use and S&EC practices, five temporal collections of LiDAR (light detection and ranging) imagery were used to map the changing landscape topography, and streamflow, physical geomorphology, and habitat data were used to assess the ability of the S&EC facilities to protect receiving streams during development. Despite the use of the best available S&EC facilities, receiving streams experienced altered flow, geomorphology, and decreased biotic community health. These impacts on small streams during watershed development affect sediment and nutrient loads to larger downstream aquatic ecosystems such as the Chesapeake Bay.
ALIENS IN WESTERN STREAM ECOSYSTEMS
The USEPA's Environmental Monitoring and Assessment Program conducted a five year probability sample of permanent mapped streams in 12 western US states. The study design enables us to determine the extent of selected riparian invasive plants, alien aquatic vertebrates, and some ...
Digital terrain tapes: user guide
,
1980-01-01
DMATC's digital terrain tapes are a by-product of the agency's efforts to streamline the production of raised-relief maps. In the early 1960's DMATC developed the Digital Graphics Recorder (DGR) system that introduced new digitizing techniques and processing methods into the field of three-dimensional mapping. The DGR system consisted of an automatic digitizing table and a computer system that recorded a grid of terrain elevations from traces of the contour lines on standard topographic maps. A sequence of computer accuracy checks was performed and then the elevations of grid points not intersected by contour lines were interpolated. The DGR system produced computer magnetic tapes which controlled the carving of plaster forms used to mold raised-relief maps. It was realized almost immediately that this relatively simple tool for carving plaster molds had enormous potential for storing, manipulating, and selectively displaying (either graphically or numerically) a vast number of terrain elevations. As the demand for the digital terrain tapes increased, DMATC began developing increasingly advanced digitizing systems and now operates the Digital Topographic Data Collection System (DTDCS). With DTDCS, two types of data elevations as contour lines and points, and stream and ridge lines are sorted, matched, and resorted to obtain a grid of elevation values for every 0.01 inch on each map (approximately 200 feet on the ground). Undefined points on the grid are found by either linear or or planar interpolation.
A synoptic approach for analyzing erosion as a guide to land-use planning
Brown, William M.; Hines, Walter G.; Rickert, David A.; Beach, Gary L.
1979-01-01
A synoptic approach has been devised to delineate the relationships that exist' between physiographic factors, land-use activities, and resultant erosional problems. The approach involves the development of an erosional-depositional province map and a numerical impact matrix for rating the potential for erosional problems. The province map is prepared by collating data on the natural terrain factors that exert the dominant controls on erosion and deposition in each basin. In addition, existing erosional and depositional features are identified and mapped from color-infrared, high-altitude aerial imagery. The axes of the impact matrix are composed of weighting values for the terrain factors used in developing the map and by a second set of values for the prevalent land-use activities. The body of the matrix is composed of composite erosional-impact ratings resulting from the product of the factor sets. Together the province map and problem matrix serve as practical tools for estimating the erosional impact of human activities on different types of terrain. The approach has been applied to the Molalla River basin, Oregon, and has proven useful for the recognition of problem areas. The same approach is currently being used by the State of Oregon (in the 208 assessment of nonpoint-source pollution under Public Law 92-500) to evaluate the impact of land-management practices on stream quality.
What puts the how in where? Tool use and the divided visual streams hypothesis.
Frey, Scott H
2007-04-01
An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.
Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria
2010-01-01
As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.
NASA Astrophysics Data System (ADS)
Mokadem, Naziha; Boughariou, Emna; Mudarra, Matías; Ben Brahim, Fatma; Andreo, Bartolome; Hamed, Younes; Bouri, Salem
2018-05-01
With the progressive evolution of industrial sector, agricultural, urbanization, population and drinking water supply, the water demand continuously increases which necessitates the planning of groundwater recharge particularly in arid and semi-arid regions. This paper gives a comprehensive review of various recharges studies in the North Gafsa basin (South Tunisia). This latter is characterized by a natural groundwater recharge that is deeply affected by the lack of precipitations. The aim of this study is to determine the recharge potential zones and to quantify (or estimate) the rainfall recharge of the shallow aquifers. The mapping of the potential recharge zones was established in North Gafsa basin, using geological and hydrological parameters such as slope, lithology, topography and stream network. Indeed, GIS provide tools to reclassify these input layers to produce the final map of groundwater potential zones of the study area. The final output map reveals two distinct zones representing moderate and low groundwater potential recharge. Recharge estimations were based on the four methods: (1) Chloride Method, (2) ERAS Method, (3) DGRE coefficient and (4) Fersi equations. Therefore, the overall results of the different methods demonstrate that the use of the DGRE method applying on the potential zones is more validated.
NASA Astrophysics Data System (ADS)
Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.
2017-12-01
Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.
NASA Astrophysics Data System (ADS)
Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.
2004-12-01
We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.
On the usefulness of 'what' and 'where' pathways in vision.
de Haan, Edward H F; Cowey, Alan
2011-10-01
The primate visual brain is classically portrayed as a large number of separate 'maps', each dedicated to the processing of specific visual cues, such as colour, motion or faces and their many features. In order to understand this fractionated architecture, the concept of cortical 'pathways' or 'streams' was introduced. In the currently prevailing view, the different maps are organised hierarchically into two major pathways, one involved in recognition and memory (the ventral stream or 'what' pathway) and the other in the programming of action (the dorsal stream or 'where' pathway). In this review, we question this heuristically influential but potentially misleading linear hierarchical pathway model and argue instead for a 'patchwork' or network model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chaos based encryption system for encrypting electroencephalogram signals.
Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De
2014-05-01
In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.
Wanty, Richard B.; Wang, Bronwen; Vohden, Jim; Day, Warren C.; Gough, Larry P.; Gough, Larry P.; Day, Warren C.
2007-01-01
The thickest (>3 meters) and most extensive aufeis (100’s of meters to kilometers along valleys) coincided with locations of laterally extensive (>5 kilometers) mapped high-angle brittle fault zones, suggesting that the fault zones are hydraulically conductive. Additional evidence of water flow is provided by observed changes in stream-water chemistry in reaches in which aufeis forms, despite a lack of surface tributaries. Minor or no aufeis was observed in many other drainage valleys where no laterally extensive structures have been mapped, implying that aufeis formation results from more than a topographic effect or discharge from bank storage. Thus, the presence of thick, laterally extensive aufeis in highgradient streams may be a useful aid to geologic structural mapping in arctic and subarctic climates.
THE EMERGING USE OF LIDAR AS A TOOL FOR ASSESSING WATERSHED MORPHOLOGY
Stream channel morphology is an integral component of the stream fluvial process and is inherently related to the stability of stream aquatic ecology. Numerous studies have shown that changes in stream channel geometry are related to changes in biotic integrity. In urbanizing la...
Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo
2016-01-01
This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685
Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience
NASA Astrophysics Data System (ADS)
Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.
2005-05-01
Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.
Lee, Emily; Grooms, Richard; Mamidala, Soumya; Nagy, Paul
2014-12-01
Value stream mapping (VSM) is a very useful technique to visualize and quantify the complex workflows often seen in clinical environments. VSM brings together multidisciplinary teams to identify parts of processes, collect data, and develop interventional ideas. An example involving pediatric MRI with general anesthesia VSM is outlined. As the process progresses, the map shows a large delay between the fax referral and the date of the scheduled and registered appointment. Ideas for improved efficiency and metrics were identified to measure improvement within a 6-month period, and an intervention package was developed for the department. Copyright © 2014. Published by Elsevier Inc.
Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa
2017-01-01
The successful clinical application of High Intensity Focused Ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic Motion Imaging guided Focused Ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The HMI lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map to be streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r2 = 0.81, slope = 0.90), width (r2 = 0.85, slope = 1.12) and area (r2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesion and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring. PMID:28323638
Visual saliency in MPEG-4 AVC video stream
NASA Astrophysics Data System (ADS)
Ammar, M.; Mitrea, M.; Hasnaoui, M.; Le Callet, P.
2015-03-01
Visual saliency maps already proved their efficiency in a large variety of image/video communication application fields, covering from selective compression and channel coding to watermarking. Such saliency maps are generally based on different visual characteristics (like color, intensity, orientation, motion,…) computed from the pixel representation of the visual content. This paper resumes and extends our previous work devoted to the definition of a saliency map solely extracted from the MPEG-4 AVC stream syntax elements. The MPEG-4 AVC saliency map thus defined is a fusion of static and dynamic map. The static saliency map is in its turn a combination of intensity, color and orientation features maps. Despite the particular way in which all these elementary maps are computed, the fusion techniques allowing their combination plays a critical role in the final result and makes the object of the proposed study. A total of 48 fusion formulas (6 for combining static features and, for each of them, 8 to combine static to dynamic features) are investigated. The performances of the obtained maps are evaluated on a public database organized at IRCCyN, by computing two objective metrics: the Kullback-Leibler divergence and the area under curve.
Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...
ASSESSING THE IMPACT OF LANDUSE/LANDCOVER ON STREAM CHEMISTRY IN MARYLAND
Spatial and statistical analyses were conducted to investigate the relationships between stream chemistry (nitrate, sulfate, dissolved organic carbon, etc.), habitat and satellite-derived landuse maps for the state of Maryland. Hydrologic Unit Code (HUC) watershed boundaries (8-...
Palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment, West Antarctica
NASA Astrophysics Data System (ADS)
Klages, Johann P.; Kuhn, Gerhard; Graham, Alastair G. C.; Smith, James A.; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Larter, Rob D.; Gohl, Karsten
2015-04-01
Multibeam swath bathymetry datasets collected over the past two decades have been compiled to identify palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment. We mapped 3010 glacial landforms to reconstruct palaeo-ice flow in the ~250 km-long Abbot Glacial Trough that was occupied by a large palaeo-ice stream, fed by two tributaries (Cosgrove and Abbot) that reached the continental shelf edge during the last maximum ice-sheet advance. The mapping has enabled a clear differentiation between glacial landforms interpreted as indicative of wet- (e.g. mega-scale glacial lineations) and cold-based ice (e.g. hill-hole pairs) during the last glaciation of the continental shelf. Both the regions of fast palaeo-ice flow within the palaeo-ice stream troughs, and the regions of slow palaeo-ice flow on adjacent seafloor highs (referred to as inter-ice stream ridges) additionally record glacial landforms such as grounding-zone wedges and recessional moraines that indicate grounding line stillstands of the ice sheet during the last deglaciation from the shelf. As the palaeo-ice stream flowed along a trough with variable geometry and variable subglacial substrate, it appears that trough sections characterized by constrictions and outcropping hard substrate that changes the bed gradient, led the pace of grounding-line retreat to slow and subsequently pause, resulting in the deposition of grounding-zone wedges. The stepped retreat recorded within the Abbot Glacial Trough corresponds well to post-glacial stepped retreat interpreted for the neighbouring Pine Island-Thwaites Palaeo-Ice Stream trough, thus suggesting a uniform pattern of episodic retreat across the eastern Amundsen Sea Embayment. The correlation of episodic retreat features with geological boundaries further emphasises the significance of subglacial geology in steering ice stream flow. Our new geomorphological map of the easternmost Amundsen Sea Embayment resolves the pathways of palaeo-ice streams that were probably all active during the last maximum extent of the ice sheet on this part of the shelf, and reveals the style of postglacial grounding-line retreat. Both are important input variables in ice sheet models and therefore can be used for validating the reliability of these models.
NASA Astrophysics Data System (ADS)
Nguyen, Tuyen Van; Cho, Woon-Seok; Kim, Hungsoo; Jung, Il Hyo; Kim, YongKuk; Chon, Tae-Soo
2014-03-01
Definition of ecological integrity based on community analysis has long been a critical issue in risk assessment for sustainable ecosystem management. In this work, two indices (i.e., Shannon index and exergy) were selected for the analysis of community properties of benthic macroinvertebrate community in streams in Korea. For this purpose, the means and variances of both indices were analyzed. The results found an extra scope of structural and functional properties in communities in response to environmental variabilities and anthropogenic disturbances. The combination of these two parameters (four indices) was feasible in identification of disturbance agents (e.g., industrial pollution or organic pollution) and specifying states of communities. The four-aforementioned parameters (means and variances of Shannon index and exergy) were further used as input data in a self-organizing map for the characterization of water quality. Our results suggested that Shannon index and exergy in combination could be utilized as a suitable reference system and would be an efficient tool for assessment of the health of aquatic ecosystems exposed to environmental disturbances.
2011-04-28
Data from NASA Cassini spacecraft have enabled scientists to create this map of the heliosphere, the bubble of charged particles around our sun. Charged particles stream out from our sun in a phenomenon known as solar wind.
Emergence of kinetic behavior in streaming ultracold neutral plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuillen, P.; Castro, J.; Bradshaw, S. J.
2015-04-15
We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.
Ontology-Based Multimedia Authoring Tool for Adaptive E-Learning
ERIC Educational Resources Information Center
Deng, Lawrence Y.; Keh, Huan-Chao; Liu, Yi-Jen
2010-01-01
More video streaming technologies supporting distance learning systems are becoming popular among distributed network environments. In this paper, the authors develop a multimedia authoring tool for adaptive e-learning by using characterization of extended media streaming technologies. The distributed approach is based on an ontology-based model.…
A geochemical atlas of North Carolina, USA
Reid, J.C.
1993-01-01
A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only very general indication of geochemical distribution patterns and should not be used for site specific studies. The atlas maps for each element were computer-generated at the state's geographic information system (Center for Geographic Information and Analysis [CGIA]). The Division of Statistics and Information Services provided input files. The maps in the atlas are point maps. Each sample is represented by a symbol generally corresponding to a quartile class. Other reports will transmit sample and analytical data for state regions. Data are tentatively planned to be available on disks in spreadsheet format for personal computers. During the second phase of this project, stream-sediment samples are being assigned to state geologic map unit names using a GIS system to determine background and anomaly values. Subsequent publications will make this geochemical data and accompanying interpretations available to a wide spectrum of interdisciplinary users. ?? 1993.
Investigation of watercourses by comparison of successive historical map surveys of Western Hungary
NASA Astrophysics Data System (ADS)
Kovács, Gábor
2010-05-01
The Second (Timár et al., 2006) and Third Military Survey (Biszak et al., 2007) of the Habsburg Empire, completed in the 19th century (1806-69 and 1869-87), can be very useful in different scientific investigations because of their accuracy and data content. The mapmakers used geodetic projections and survey technologies provided high accuracy. Therefore, scientists can use these maps and the represented objects in retrospective studies. The streams were drawn with very thin lines that also ascertain the high accuracy of their location. Previous study used the Second Military Survey to examine the neotectonic evaluation of the western part of the Pannonian Basin, bordered by Pinka, Rába and Répce Rivers (Kovács, 2010). The watercourses, especially alluvial ones, react very sensitively to tectonic forcing (Schumm & Khan, 1972; Ouchi, 1985). However, the present-day course of the creeks and rivers are mostly regulated, therefore they are unsuitable for such studies. The watercourses have reconstructed from maps surveyed prior to the main water control measures. The Second Military Survey was a perfect source for such studies. The investigated streams were free meandering ones. They could flood their banks, and only natural levees were present. After georeferencing the maps of the area, the streams were digitized, and their sinuosity values were computed. Where significant sinuosity changes have been detected along the streams, it can be considered as indicators of differential uplift or subsidence of the bedrock/alluvium. The goal of this study is to decide the character of several stream sections: were they free meandering ones or not? Some of the sections are antecedent ones, especially at the Vas Mountain at the present Austrian-Hungarian border. If the shapes of the watercourses on the different surveys are almost the same, the sinuosity refers to a prior, forced state of the stream. After digitizing the watercourses on the Third Military Survey sheets, some newly regulated sections are recognized as well as forced and free meandering ones. Thus, the neotectonic evaluation of the study area can be made more accurate. References - Biszak, S., Timár, G., Molnár, G., Jankó, A. (2007): Digitized maps of the Habsburg Empire - The third military survey, Ungarn, Siebenbürgen, Kroatien-Slawonien, 1867-1887, 1:25000. Arcanum, Budapest, DVD-issue. - Kovács, G. (2010): The advantages of using the Second Military Survey maps in fluvial studies. Acta Geodaetica et Geophysica Hungarica 45(1): 64-70. - Ouchi, S. (1985): Response of alluvial rivers to slow active tectonic movement. Geol. Soc. Am. Bull. 96: 504-515. - Schumm, S. A., Khan, H. R. (1972): Experimental study of channel patterns. Geol. Soc. Am. Bull. 83: 1755-1770. - Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p.
De Steur, Hans; Wesana, Joshua; Dora, Manoj K; Pearce, Darian; Gellynck, Xavier
2016-12-01
The interest to reduce food losses and wastes has grown considerably in order to guarantee adequate food for the fast growing population. A systematic review was used to show the potential of Value Stream Mapping (VSM) not only to identify and reduce food losses and wastes, but also as a way to establish links with nutrient retention in supply chains. The review compiled literature from 24 studies that applied VSM in the agri-food industry. Primary production, processing, storage, food service and/or consumption were identified as susceptible hotspots for losses and wastes. Results further revealed discarding and nutrient loss, most especially at the processing level, as the main forms of loss/waste in food, which were adapted to four out of seven lean manufacturing wastes (i.e. defect, unnecessary inventory, overproduction and inappropriate processing). This paper presents the state of the art of applying lean manufacturing practices in the agri-food industry by identifying lead time as the most applicable performance indicator. VSM was also found to be compatible with other lean tools such as Just-In-Time and 5S which are continuous improvement strategies, as well as simulation modelling that enhances adoption. In order to ensure successful application of lean practices aimed at minimizing food or nutrient losses and wastes, multi-stakeholder collaboration along the entire food supply chain is indispensable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rea, A.H.; Tortorelli, R.L.
1997-01-01
This digital report contains two digital-map grids of data that were used to develop peak-flow regression equations in Tortorelli, 1997, 'Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 97-4202. One data set is a grid of mean annual precipitation, in inches, based on the period 1961-90, for Oklahoma. The data set was derived from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) mean annual precipitation grid for the United States, developed by Daly, Neilson, and Phillips (1994, 'A statistical-topographic model for mapping climatological precipitation over mountainous terrain:' Journal of Applied Meteorology, v. 33, no. 2, p. 140-158). The second data set is a grid of generalized skew coefficients of logarithms of annual maximum streamflow for Oklahoma streams less than or equal to 2,510 square miles in drainage area. This grid of skew coefficients is taken from figure 11 of Tortorelli and Bergman, 1985, 'Techniques for estimating flood peak discharges for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 84-4358. To save disk space, the skew coefficient values have been multiplied by 100 and rounded to integers with two significant digits. The data sets are provided in an ASCII grid format.
Developing a National Stream Morphology Data Exchange: Needs, Challenges, and Opportunities.
Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal ...
77 FR 55785 - Proposed Flood Elevation Determinations; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... stream reach between the referenced locations above. Please refer to the revised Flood Insurance Rate Map located at the community map repository (see below) for exact locations of all BFEs to be changed. Send... Mechanicsville Maps are available for inspection at the Borough Hall, 1342 Pottsville Street, Mechanicsville, PA...
Semi-automatic Data Integration using Karma
NASA Astrophysics Data System (ADS)
Garijo, D.; Kejriwal, M.; Pierce, S. A.; Houser, P. I. Q.; Peckham, S. D.; Stanko, Z.; Hardesty Lewis, D.; Gil, Y.; Pennington, D. D.; Knoblock, C.
2017-12-01
Data integration applications are ubiquitous in scientific disciplines. A state-of-the-art data integration system accepts both a set of data sources and a target ontology as input, and semi-automatically maps the data sources in terms of concepts and relationships in the target ontology. Mappings can be both complex and highly domain-specific. Once such a semantic model, expressing the mapping using community-wide standard, is acquired, the source data can be stored in a single repository or database using the semantics of the target ontology. However, acquiring the mapping is a labor-prone process, and state-of-the-art artificial intelligence systems are unable to fully automate the process using heuristics and algorithms alone. Instead, a more realistic goal is to develop adaptive tools that minimize user feedback (e.g., by offering good mapping recommendations), while at the same time making it intuitive and easy for the user to both correct errors and to define complex mappings. We present Karma, a data integration system that has been developed over multiple years in the information integration group at the Information Sciences Institute, a research institute at the University of Southern California's Viterbi School of Engineering. Karma is a state-of-the-art data integration tool that supports an interactive graphical user interface, and has been featured in multiple domains over the last five years, including geospatial, biological, humanities and bibliographic applications. Karma allows a user to import their own ontology and datasets using widely used formats such as RDF, XML, CSV and JSON, can be set up either locally or on a server, supports a native backend database for prototyping queries, and can even be seamlessly integrated into external computational pipelines, including those ingesting data via streaming data sources, Web APIs and SQL databases. We illustrate a Karma workflow at a conceptual level, along with a live demo, and show use cases of Karma specifically for the geosciences. In particular, we show how Karma can be used intuitively to obtain the mapping model between case study data sources and a publicly available and expressive target ontology that has been designed to capture a broad set of concepts in geoscience with standardized, easily searchable names.
Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT
NASA Astrophysics Data System (ADS)
Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier
2017-04-01
Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.
Telis, Pamela A.
1992-01-01
Mississippi State water laws require that the 7-day, 10-year low-flow characteristic (7Q10) of streams be used as a criterion for issuing wastedischarge permits to dischargers to streams and for limiting withdrawals of water from streams. This report presents techniques for estimating the 7Q10 for ungaged sites on streams in Mississippi based on the availability of baseflow discharge measurements at the site, location of nearby gaged sites on the same stream, and drainage area of the ungaged site. These techniques may be used to estimate the 7Q10 at sites on natural, unregulated or partially regulated, and non-tidal streams. Low-flow characteristics for streams in the Mississippi River alluvial plain were not estimated because the annual lowflow data exhibit decreasing trends with time. Also presented are estimates of the 7Q10 for 493 gaged sites on Mississippi streams.Techniques for estimating the 7Q10 have been developed for ungaged sites with base-flow discharge measurements, for ungaged sites on gaged streams, and for ungaged sites on ungaged streams. For an ungaged site with one or more base-flow discharge measurements, base-flow discharge data at the ungaged site are related to concurrent discharge data at a nearby gaged site. For ungaged sites on gaged streams, several methods of transferring the 7Q10 from a gaged site to an ungaged site were developed; the resulting 7Q10 values are based on drainage area prorations for the sites. For ungaged sites on ungaged streams, the 7Q10 is estimated from a map developed for. this study that shows the unit 7Q10 (7Q10 per square mile of drainage area) for ungaged basins in the State. The mapped values were estimated from the unit 7Q10 determined for nearby gaged basins, adjusted on the basis of the geology and topography of the ungaged basins.
Experiences with Acquiring Highly Redundant Spatial Data to Support Driverless Vehicle Technologies
NASA Astrophysics Data System (ADS)
Koppanyi, Z.; Toth, C. K.
2018-05-01
As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors' quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.
NASA Astrophysics Data System (ADS)
Papaioannou, George; Vasiliades, Lampros; Loukas, Athanasios; Aronica, Giuseppe T.
2017-04-01
Probabilistic flood inundation mapping is performed and analysed at the ungauged Xerias stream reach, Volos, Greece. The study evaluates the uncertainty introduced by the roughness coefficient values on hydraulic models in flood inundation modelling and mapping. The well-established one-dimensional (1-D) hydraulic model, HEC-RAS is selected and linked to Monte-Carlo simulations of hydraulic roughness. Terrestrial Laser Scanner data have been used to produce a high quality DEM for input data uncertainty minimisation and to improve determination accuracy on stream channel topography required by the hydraulic model. Initial Manning's n roughness coefficient values are based on pebble count field surveys and empirical formulas. Various theoretical probability distributions are fitted and evaluated on their accuracy to represent the estimated roughness values. Finally, Latin Hypercube Sampling has been used for generation of different sets of Manning roughness values and flood inundation probability maps have been created with the use of Monte Carlo simulations. Historical flood extent data, from an extreme historical flash flood event, are used for validation of the method. The calibration process is based on a binary wet-dry reasoning with the use of Median Absolute Percentage Error evaluation metric. The results show that the proposed procedure supports probabilistic flood hazard mapping at ungauged rivers and provides water resources managers with valuable information for planning and implementing flood risk mitigation strategies.
Using Remote Sensing, Geomorphology, and Soils to Map Episodic Streams in Drylands
NASA Astrophysics Data System (ADS)
Thibodeaux-Yost, S. N. S.
2016-12-01
Millions of acres of public land in the California deserts are currently being evaluated and permitted for the construction of large-scale renewable energy projects. The absence of a standard method for identifying episodic streams in arid and semi-arid (dryland) regions is a source of conflict between project developers and the government agencies responsible for conserving natural resources and permitting renewable energy projects. There is a need for a consistent, efficient, and cost-effective dryland stream delineation protocol that accurately reflects the extent and distribution of active watercourses. This thesis evaluates the stream delineation method and results used by the developer for the proposed Ridgecrest Solar Power Project on the El Paso Fan, Ridgecrest, Kern County, California. This evaluation is then compared and contrasted with results achieved using remote sensing, geomorphology, soils, and GIS analysis to identify stream presence on the site. This study's results identified 105 acres of watercourse, a value 10 times greater than that originally identified by the project developer. In addition, the applied methods provide an ecohydrologic base map to better inform project siting and potential project impact mitigation opportunities. This study concludes that remote sensing, geomorphology, and dryland soils can be used to accurately and efficiently identify episodic stream activity and the extent of watercourses in dryland environments.
Developing user-friendly habitat suitability tools from regional stream fish survey data
Zorn, T.G.; Seelbach, P.; Wiley, M.J.
2011-01-01
We developed user-friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low-flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.
Ludwig, Karin; Kathmann, Norbert; Sterzer, Philipp; Hesselmann, Guido
2015-01-01
Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action-related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the "vision-for-perception" versus "vision-for-action" distinction of the influential dual-stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action-relevant category representations in dorsal visual cortex. To approach this question, we investigated category- and shape-selective functional magnetic resonance imaging-blood-oxygen level-dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non-elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category-selective activity. Together, our data provide evidence for shape-selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal "vision-for-action" processing is exclusively preserved under interocular suppression. © 2014 Wiley Periodicals, Inc.
Chemistry of Stream Sediments and Surface Waters in New England
Robinson, Gilpin R.; Kapo, Katherine E.; Grossman, Jeffrey N.
2004-01-01
Summary -- This online publication portrays regional data for pH, alkalinity, and specific conductance for stream waters and a multi-element geochemical dataset for stream sediments collected in the New England states of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. A series of interpolation grid maps portray the chemistry of the stream waters and sediments in relation to bedrock geology, lithology, drainage basins, and urban areas. A series of box plots portray the statistical variation of the chemical data grouped by lithology and other features.
Map of National Aquatic Resource Surveys Sampling Locations
This map displays all of the lakes, rivers and streams, wetlands, and coastal waters sampled by the National Aquatic Resource Surveys, a collaborative EPA program that assesses the condition of the nation's waters using statistical designs.
Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park
Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.
2008-01-01
This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.
Multivariate statistical analysis of stream-sediment geochemistry in the Grazer Paläozoikum, Austria
Weber, L.; Davis, J.C.
1990-01-01
The Austrian reconnaissance study of stream-sediment composition — more than 30000 clay-fraction samples collected over an area of 40000 km2 — is summarized in an atlas of regional maps that show the distributions of 35 elements. These maps, rich in information, reveal complicated patterns of element abundance that are difficult to compare on more than a small number of maps at one time. In such a study, multivariate procedures such as simultaneous R-Q mode components analysis may be helpful. They can compress a large number of variables into a much smaller number of independent linear combinations. These composite variables may be mapped and relationships sought between them and geological properties. As an example, R-Q mode components analysis is applied here to the Grazer Paläozoikum, a tectonic unit northeast of the city of Graz, which is composed of diverse lithologies and contains many mineral deposits.
The structure of the inner heliosphere from Pioneer Venus and IMP observations
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1992-01-01
The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.
NASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
galstreams: Milky Way streams footprint library and toolkit
NASA Astrophysics Data System (ADS)
Mateu, Cecilia
2017-11-01
galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).
Hoang, Thu-Huong; Aliane, Verena; Manahan-Vaughan, Denise
2018-05-01
The specific roles of hippocampal subfields in spatial information processing and encoding are, as yet, unclear. The parallel map theory postulates that whereas the CA1 processes discrete environmental features (positional cues used to generate a "sketch map"), the dentate gyrus (DG) processes large navigation-relevant landmarks (directional cues used to generate a "bearing map"). Additionally, the two-streams hypothesis suggests that hippocampal subfields engage in differentiated processing of information from the "where" and the "what" streams. We investigated these hypotheses by analyzing the effect of exploration of discrete "positional" features and large "directional" spatial landmarks on hippocampal neuronal activity in rats. As an indicator of neuronal activity we measured the mRNA induction of the immediate early genes (IEGs), Arc and Homer1a. We observed an increase of this IEG mRNA in CA1 neurons of the distal neuronal compartment and in proximal CA3, after novel spatial exploration of discrete positional cues, whereas novel exploration of directional cues led to increases in IEG mRNA in the lower blade of the DG and in proximal CA3. Strikingly, the CA1 did not respond to directional cues and the DG did not respond to positional cues. Our data provide evidence for both the parallel map theory and the two-streams hypothesis and suggest a precise compartmentalization of the encoding and processing of "what" and "where" information occurs within the hippocampal subfields. © 2018 The Authors. Hippocampus Published by Wiley Periodicals, Inc.
Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India
NASA Astrophysics Data System (ADS)
Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter
2013-04-01
Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be beneficial in constructing decision support tools for regional land-use planning and management.
Schwarz, Patric; Pannes, Klaus Dieter; Nathan, Michel; Reimer, Hans Jorg; Kleespies, Axel; Kuhn, Nicole; Rupp, Anne; Zügel, Nikolaus Peter
2011-10-01
The decision to optimize the processes in the operating tract was based on two factors: competition among clinics and a desire to optimize the use of available resources. The aim of the project was to improve operating room (OR) capacity utilization by reduction of change and throughput time per patient. The study was conducted at Centre Hospitalier Emil Mayrisch Clinic for specialized care (n = 618 beds) Luxembourg (South). A prospective analysis was performed before and after the implementation of optimized processes. Value stream analysis and design (value stream mapping, VSM) were used as tools. VSM depicts patient throughput and the corresponding information flows. Furthermore it is used to identify process waste (e.g. time, human resources, materials, etc.). For this purpose, change times per patient (extubation of patient 1 until intubation of patient 2) and throughput times (inward transfer until outward transfer) were measured. VSM, change and throughput times for 48 patient flows (VSM A(1), actual state = initial situation) served as the starting point. Interdisciplinary development of an optimized VSM (VSM-O) was evaluated. Prospective analysis of 42 patients (VSM-A(2)) without and 75 patients (VSM-O) with an optimized process in place were conducted. The prospective analysis resulted in a mean change time of (mean ± SEM) VSM-A(2) 1,507 ± 100 s versus VSM-O 933 ± 66 s (p < 0.001). The mean throughput time VSM-A(2) (mean ± SEM) was 151 min (±8) versus VSM-O 120 min (±10) (p < 0.05). This corresponds to a 23% decrease in waiting time per patient in total. Efficient OR capacity utilization and the optimized use of human resources allowed an additional 1820 interventions to be carried out per year without any increase in human resources. In addition, perioperative patient monitoring was increased up to 100%.
NASA Astrophysics Data System (ADS)
Wright, D. J.; Raad, M.; Hoel, E.; Park, M.; Mollenkopf, A.; Trujillo, R.
2016-12-01
Introduced is a new approach for processing spatiotemporal big data by leveraging distributed analytics and storage. A suite of temporally-aware analysis tools summarizes data nearby or within variable windows, aggregates points (e.g., for various sensor observations or vessel positions), reconstructs time-enabled points into tracks (e.g., for mapping and visualizing storm tracks), joins features (e.g., to find associations between features based on attributes, spatial relationships, temporal relationships or all three simultaneously), calculates point densities, finds hot spots (e.g., in species distributions), and creates space-time slices and cubes (e.g., in microweather applications with temperature, humidity, and pressure, or within human mobility studies). These "feature geo analytics" tools run in both batch and streaming spatial analysis mode as distributed computations across a cluster of servers on typical "big" data sets, where static data exist in traditional geospatial formats (e.g., shapefile) locally on a disk or file share, attached as static spatiotemporal big data stores, or streamed in near-real-time. In other words, the approach registers large datasets or data stores with ArcGIS Server, then distributes analysis across a cluster of machines for parallel processing. Several brief use cases will be highlighted based on a 16-node server cluster at 14 Gb RAM per node, allowing, for example, the buffering of over 8 million points or thousands of polygons in 1 minute. The approach is "hybrid" in that ArcGIS Server integrates open-source big data frameworks such as Apache Hadoop and Apache Spark on the cluster in order to run the analytics. In addition, the user may devise and connect custom open-source interfaces and tools developed in Python or Python Notebooks; the common denominator being the familiar REST API.
The USEPA Mid-Atlantic Highlands Streams Assessment (MAHA) report concluded that over 31% of stream miles in the Mid-Atlantic Highlands were in poor condition, and only 17% stream miles could be considered to be in good condition, based on their fish populations. Insect populatio...
Using Snorkeling to Quantify Fish Assemblage Structure in Arkansas Streams
David G. Lonzarich; Mary E. Lonzarich; Melvin L. Warren
2004-01-01
Abstract - As a technique for surveying fish populations in low diversity, clear streams of the Pacific Northwest, snorkeling is a commonly used alternative to electrofishing. While the method is becoming more widely used in the high diversity streams of eastern North America, its efficacy as a tool for surveying fish assemblages in these streams is...
Stewart, Jana S.; Covert, S. Alex; Estes, Nick J.; Westenbroek, Stephen M.; Krueger, Damon; Wieferich, Daniel J.; Slattery, Michael T.; Lyons, John D.; McKenna, James E.; Infante, Dana M.; Bruce, Jennifer L.
2016-10-13
Climate change is expected to alter the distributions and community composition of stream fishes in the Great Lakes region in the 21st century, in part as a result of altered hydrological systems (stream temperature, streamflow, and habitat). Resource managers need information and tools to understand where fish species and stream habitats are expected to change under future conditions. Fish sample collections and environmental variables from multiple sources across the United States Great Lakes Basin were integrated and used to develop empirical models to predict fish species occurrence under present-day climate conditions. Random Forests models were used to predict the probability of occurrence of 13 lotic fish species within each stream reach in the study area. Downscaled climate data from general circulation models were integrated with the fish species occurrence models to project fish species occurrence under future climate conditions. The 13 fish species represented three ecological guilds associated with water temperature (cold, cool, and warm), and the species were distributed in streams across the Great Lakes region. Vulnerability (loss of species) and opportunity (gain of species) scores were calculated for all stream reaches by evaluating changes in fish species occurrence from present-day to future climate conditions. The 13 fish species included 4 cold-water species, 5 cool-water species, and 4 warm-water species. Presently, the 4 cold-water species occupy from 15 percent (55,000 kilometers [km]) to 35 percent (130,000 km) of the total stream length (369,215 km) across the study area; the 5 cool-water species, from 9 percent (33,000 km) to 58 percent (215,000 km); and the 4 warm-water species, from 9 percent (33,000 km) to 38 percent (141,000 km).Fish models linked to projections from 13 downscaled climate models projected that in the mid to late 21st century (2046–65 and 2081–2100, respectively) habitats suitable for all 4 cold-water species and 4 of 5 cool-water species under present-day conditions will decline as much as 86 percent and as little as 33 percent, and habitats suitable for all 4 warm-water species will increase as much as 33 percent and as little as 7 percent. This report documents the approach and data used to predict and project fish species occurrence under present-day and future climate conditions for 13 lotic fish species in the United States Great Lakes Basin. A Web-based decision support mapping application termed “FishVis” was developed to provide a means to integrate, visualize, query, and download the results of these projected climate-driven responses and help inform conservation planning efforts within the region.
Car Assembly Line Efficiency Improvement by Lean Principle
NASA Astrophysics Data System (ADS)
Sawassalung, Suwalee; Chutima, Parames
2017-06-01
This research aimed to increase the efficiency of actual working time to compare to design standard time ratio (DSTR) as per analysing process of Lean System of the assembly line in a car manufacturer in Thailand. Currently, the case study factory and its group of factories, which have many branches all over the world, have competed with each other on quality, delivered time and production cost. The production cost which can reduce without affecting quality and acceptable by clients is the manpower cost. The index of competition is DSTR. The factory now has DSTR of 6.13 and DSTR of the assembly department is 4.24 which is very high comparing to other departments. The low DSTR indicates that the factory has good quality. The ways to solve the problem are to apply the following tools, i.e. Lean principle, Value Stream Mapping (VSM), Waste Analysis and ECRS. After implementing the above tools, the results showed that DSTR decreased from 4.24 to 4.06 or 4.25%.
Selecting the optimum plot size for a California design-based stream and wetland mapping program.
Lackey, Leila G; Stein, Eric D
2014-04-01
Accurate estimates of the extent and distribution of wetlands and streams are the foundation of wetland monitoring, management, restoration, and regulatory programs. Traditionally, these estimates have relied on comprehensive mapping. However, this approach is prohibitively resource-intensive over large areas, making it both impractical and statistically unreliable. Probabilistic (design-based) approaches to evaluating status and trends provide a more cost-effective alternative because, compared with comprehensive mapping, overall extent is inferred from mapping a statistically representative, randomly selected subset of the target area. In this type of design, the size of sample plots has a significant impact on program costs and on statistical precision and accuracy; however, no consensus exists on the appropriate plot size for remote monitoring of stream and wetland extent. This study utilized simulated sampling to assess the performance of four plot sizes (1, 4, 9, and 16 km(2)) for three geographic regions of California. Simulation results showed smaller plot sizes (1 and 4 km(2)) were most efficient for achieving desired levels of statistical accuracy and precision. However, larger plot sizes were more likely to contain rare and spatially limited wetland subtypes. Balancing these considerations led to selection of 4 km(2) for the California status and trends program.
EnviroAtlas - Percent Stream Buffer Zone As Natural Land Cover for the Conterminous United States
This EnviroAtlas dataset shows the percentage of land area within a 30 meter buffer zone along the National Hydrography Dataset (NHD) high resolution stream network, and along water bodies such as lakes and ponds that are connected via flow to the streams, that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006 National Land Cover Dataset (NLCD) for each Watershed Boundary Dataset (WBD) 12-digit hydrological unit (HUC) in the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Hydrologic Modeling of Relatively Recent Martian Streams and Lake
2016-09-15
This map of an area within the Arabia Terra region on Mars shows where hydrologic modeling predicts locations of depressions that would have been lakes (black), overlaid with a map of the preserved valleys (blue lines, with width exaggerated for recognition) that would have been streams. The area today holds numerous features called "fresh shallow valleys." Research findings in 2016 interpret the fresh shallow valleys as evidence for flows of liquid water that occurred several hundred million years -- up to about a billion years -- after the ancient lakes and streams previously documented on Mars. Most of the fresh shallow valleys in this northern portion of Arabia Terra terminate at the margins of model-predicted submerged basins, consistent with an interpretation of flows into lakes and out of lakes. Some valley segments connect to form longer systems, consistent with connections forged by flowing water between interspersed lakes. In the area mapped here, for example, valleys connect basin "A" to basin "B," and basin B to "Heart Lake," each lower in elevation in that chain. http://photojournal.jpl.nasa.gov/catalog/PIA20839
NASA Astrophysics Data System (ADS)
Hao, Ming; Rohrdantz, Christian; Janetzko, Halldór; Keim, Daniel; Dayal, Umeshwar; Haug, Lars-Erik; Hsu, Mei-Chun
2012-01-01
Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator); Hallberg, G. R.
1973-01-01
The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be determined primarily by information on landforms and soils (obtained by analysis of stream dissection and drainage and stream-divide patterns, land use patterns, etc.). Maps showing the Quaternary geologic-terrain units that can be distinguished on the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps of 1:1,000,000 scale are included for three of the study areas: the Grand Island and Fremont, Nebraska, and the Davenport, Iowa-Illinois, 1 deg x 2 deg quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from the ERTS-1 images alone, with no additional information. These maps show that commonly the boundaries of geologic-terrain units can be delineated more accurately on ERTS-1 images than on topographic maps at 1:250,000 scale.
Bauer, C R K D; Ganslandt, T; Baum, B; Christoph, J; Engel, I; Löbe, M; Mate, S; Stäubert, S; Drepper, J; Prokosch, H-U; Winter, A; Sax, U
2016-01-01
In recent years, research data warehouses moved increasingly into the focus of interest of medical research. Nevertheless, there are only a few center-independent infrastructure solutions available. They aim to provide a consolidated view on medical data from various sources such as clinical trials, electronic health records, epidemiological registries or longitudinal cohorts. The i2b2 framework is a well-established solution for such repositories, but it lacks support for importing and integrating clinical data and metadata. The goal of this project was to develop a platform for easy integration and administration of data from heterogeneous sources, to provide capabilities for linking them to medical terminologies and to allow for transforming and mapping of data streams for user-specific views. A suite of three tools has been developed: the i2b2 Wizard for simplifying administration of i2b2, the IDRT Import and Mapping Tool for loading clinical data from various formats like CSV, SQL, CDISC ODM or biobanks and the IDRT i2b2 Web Client Plugin for advanced export options. The Import and Mapping Tool also includes an ontology editor for rearranging and mapping patient data and structures as well as annotating clinical data with medical terminologies, primarily those used in Germany (ICD-10-GM, OPS, ICD-O, etc.). With the three tools functional, new i2b2-based research projects can be created, populated and customized to researcher's needs in a few hours. Amalgamating data and metadata from different databases can be managed easily. With regards to data privacy a pseudonymization service can be plugged in. Using common ontologies and reference terminologies rather than project-specific ones leads to a consistent understanding of the data semantics. i2b2's promise is to enable clinical researchers to devise and test new hypothesis even without a deep knowledge in statistical programing. The approach presented here has been tested in a number of scenarios with millions of observations and tens of thousands of patients. Initially mostly observant, trained researchers were able to construct new analyses on their own. Early feedback indicates that timely and extensive access to their "own" data is appreciated most, but it is also lowering the barrier for other tasks, for instance checking data quality and completeness (missing data, wrong coding).
The National Hydrography and updated Watershed Boundary Datasets provide a ready-made framework for hydrographic modeling. Determining particular stream reaches or watersheds in poor ecological condition across large regions is an essential goal for monitoring and management. T...
NASA Astrophysics Data System (ADS)
Hamada, Y.; O'Connor, B. L.
2012-12-01
Development in arid environments often results in the loss and degradation of the ephemeral streams that provide habitat and critical ecosystem functions such as water delivery, sediment transport, and groundwater recharge. Quantification of these ecosystem functions is challenging because of the episodic nature of runoff events in desert landscapes and the large spatial scale of watersheds that potentially can be impacted by large-scale development. Low-impact development guidelines and regulatory protection of ephemeral streams are often lacking due to the difficulty of accurately mapping and quantifying the critical functions of ephemeral streams at scales larger than individual reaches. Renewable energy development in arid regions has the potential to disturb ephemeral streams at the watershed scale, and it is necessary to develop environmental monitoring applications for ephemeral streams to help inform land management and regulatory actions aimed at protecting and mitigating for impacts related to large-scale land disturbances. This study focuses on developing remote sensing methodologies to identify and monitor impacts on ephemeral streams resulting from the land disturbance associated with utility-scale solar energy development in the desert southwest of the United States. Airborne very high resolution (VHR) multispectral imagery is used to produce stereoscopic, three-dimensional landscape models that can be used to (1) identify and map ephemeral stream channel networks, and (2) support analyses and models of hydrologic and sediment transport processes that pertain to the critical functionality of ephemeral streams. Spectral and statistical analyses are being developed to extract information about ephemeral channel location and extent, micro-topography, riparian vegetation, and soil moisture characteristics. This presentation will demonstrate initial results and provide a framework for future work associated with this project, for developing the necessary field measurements necessary to verify remote sensing landscape models, and for generating hydrologic models and analyses.
NASA Astrophysics Data System (ADS)
Jensen, C.; McGuire, K. J.
2017-12-01
Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.
Ahmad, Rohani; Ali, Wan N W M; Nor, Zurainee M; Ismail, Zamree; Hadi, Azahari A; Ibrahim, Mohd N; Lim, Lee H
2011-12-13
The application of the Geographic Information Systems (GIS) to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species. As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats. Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of Anopheles maculatus s.s. immature habitats were found within the buffer zone. This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level.
NASA Astrophysics Data System (ADS)
Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa
2017-04-01
The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2 = 0.81, slope = 0.90), width (r 2 = 0.85, slope = 1.12) and area (r 2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.
2011-01-01
Background The application of the Geographic Information Systems (GIS) to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species. Methods As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats. Results Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of Anopheles maculatus s.s. immature habitats were found within the buffer zone. Conclusions This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level. PMID:22166101
Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa
2017-04-21
The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2 = 0.81, slope = 0.90), width (r 2 = 0.85, slope = 1.12) and area (r 2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.
NASA Astrophysics Data System (ADS)
Yilmaz, Işık
2009-06-01
The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.
The hydrological modeling in terms of determining the potential European beaver effect
NASA Astrophysics Data System (ADS)
Szostak, Marta; Jagodzińska, Jadwiga
2017-06-01
The objective of the paper was the hydrological analysis, in terms of categorizing main watercourses (based on coupled catchments) and marking areas covered by potential impact of the occurrence and activities of the European beaver Castor fiber. At the analysed area - the Forest District Głogów Małopolski there is a population of about 200 beavers in that Forest District. Damage inflicted by beavers was detected on 33.0 ha of the Forest District, while in the area of 13.9 ha the damage was small (below 10%). The monitoring of the beavers' behaviour and the analysis of their influence on hydrology of the area became an important element of using geoinformationtools in the management of forest areas. ArcHydro ArcGIS Esri module was applied, as an integrated set of tools for hydrographical analysis and modelling. Further steps of the procedure are hydrologic analyses such as: marking river networks on the DTM, filling holes, making maps of the flow direction, making the map of the accumulation flow, defining and segmentation of streams, marking elementary basins, marking coupled basins, making dams in the places, where beavers occur and localization of the area with a visible impact of damming. The result of the study includes maps prepared for the Forest District: the map of main rivers and their basins, categories of watercourses and compartments particularly threatened by beaver's foraging.
Alpha-band rhythm modulation under the condition of subliminal face presentation: MEG study.
Sakuraba, Satoshi; Kobayashi, Hana; Sakai, Shinya; Yokosawa, Koichi
2013-01-01
The human brain has two streams to process visual information: a dorsal stream and a ventral stream. Negative potential N170 or its magnetic counterpart M170 is known as the face-specific signal originating from the ventral stream. It is possible to present a visual image unconsciously by using continuous flash suppression (CFS), which is a visual masking technique adopting binocular rivalry. In this work, magnetoencephalograms were recorded during presentation of the three invisible images: face images, which are processed by the ventral stream; tool images, which could be processed by the dorsal stream, and a blank image. Alpha-band activities detected by sensors that are sensitive to M170 were compared. The alpha-band rhythm was suppressed more during presentation of face images than during presentation of the blank image (p=.028). The suppression remained for about 1 s after ending presentations. However, no significant difference was observed between tool and other images. These results suggest that alpha-band rhythm can be modulated also by unconscious visual images.
Remote sensing of land use and water quality relationships - Wisconsin shore, Lake Michigan
NASA Technical Reports Server (NTRS)
Haugen, R. K.; Marlar, T. L.
1976-01-01
This investigation assessed the utility of remote sensing techniques in the study of land use-water quality relationships in an east central Wisconsin test area. The following types of aerial imagery were evaluated: high altitude (60,000 ft) color, color infrared, multispectral black and white, and thermal; low altitude (less than 5000 ft) color infrared, multispectral black and white, thermal, and passive microwave. A non-imaging hand-held four-band radiometer was evaluated for utility in providing data on suspended sediment concentrations. Land use analysis includes the development of mapping and quantification methods to obtain baseline data for comparison to water quality variables. Suspended sediment loads in streams, determined from water samples, were related to land use differences and soil types in three major watersheds. A multiple correlation coefficient R of 0.85 was obtained for the relationship between the 0.6-0.7 micrometer incident and reflected radiation data from the hand-held radiometer and concurrent ground measurements of suspended solids in streams. Applications of the methods and baseline data developed in this investigation include: mapping and quantification of land use; input to watershed runoff models; estimation of effects of land use changes on stream sedimentation; and remote sensing of suspended sediment content of streams. High altitude color infrared imagery was found to be the most acceptable remote sensing technique for the mapping and measurement of land use types.
Beyond Event Segmentation: Spatial- and Social-Cognitive Processes in Verb-to-Action Mapping
ERIC Educational Resources Information Center
Friend, Margaret; Pace, Amy
2011-01-01
The present article investigates spatial- and social-cognitive processes in toddlers' mapping of concepts to real-world events. In 2 studies we explore how event segmentation might lay the groundwork for extracting actions from the event stream and conceptually mapping novel verbs to these actions. In Study 1, toddlers demonstrated the ability to…
NASA Astrophysics Data System (ADS)
Prentice, C. S.; Crosby, C. J.; Harding, D. J.; Haugerud, R. A.; Merritts, D. J.; Gardner, T. W.; Koehler, R. D.; Baldwin, J. N.
2003-12-01
Recent acquisition of airborne LIDAR (also known as ALSM) data covering approximately 418 square kilometers of coastal northern California provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault and coastal uplift. LIDAR data has been previously used in the Puget Lowland region of Washington to identify and map Holocene faults and uplifted shorelines concealed under dense vegetation (Haugerud et al., 2003; see http://pugetsoundlidar.org). Our effort represents the first use of LIDAR data for this purpose along the San Andreas Fault. This data set is the result of a collaborative effort between NASA Solid Earth and Natural Hazards Program, Goddard Space Flight Center, Stennis Space Center, USGS, and TerraPoint, LLC. The coverage extends from near Fort Ross, California, in Sonoma County, along the coast northward to the town of Mendocino, in Mendocino County, and as far inland as about 1-3 km east of the San Andreas Fault. The survey area includes about 70 km of the northern San Andreas Fault under dense redwood forest, and Pleistocene coastal marine terraces both north and south of the fault. The average data density is two laser pulses per square meter, with up to four LIDAR returns per pulse. Returns are classified as ground or vegetation, allowing construction of both canopy-top and bare-earth DEMs with 1.8m grid spacing. Vertical accuracy is better than 20 cm RMSE, confirmed by a network of ground-control points established using high-precision GPS surveying. We are using hillshade images generated from the bare-earth DEMs to begin detailed mapping of geomorphic features associated with San Andreas Fault traces, such as scarps, offset streams, linear valleys, shutter ridges, and sag ponds. In addition, we are using these data in conjunction with field mapping and interpretation of conventional 1:12,000 and 1:6000 scale aerial photographs to map and correlate marine terraces to better understand rates of coastal uplift, and rates of strike-slip motion across the San Andreas Fault.
Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.
2011-01-01
Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period, possibly contributing to a reduction in snow cover. In addition, the strong relationship between percent of basin that was snow covered, and maximum monthly streamflow indicates that MODIS snow-cover maps are useful for predicting streamflow, and can be used to improve management of water resources in the drought-prone western United States.
The Infrared Astronomical Satellite /IRAS/ Scientific Data Analysis System /SDAS/ sky flux subsystem
NASA Technical Reports Server (NTRS)
Stagner, J. R.; Girard, M. A.
1980-01-01
The sky flux subsystem of the Infrared Astronomical Satellite Scientific Data Analysis System is described. Its major output capabilities are (1) the all-sky lune maps (8-arcminute pixel size), (2) galactic plane maps (2-arcminute pixel size) and (3) regional maps of small areas such as extended sources greater than 1-degree in extent. The major processing functions are to (1) merge the CRDD and pointing data, (2) phase the detector streams, (3) compress the detector streams in the in-scan and cross-scan directions, and (4) extract data. Functional diagrams of the various capabilities of the subsystem are given. Although this device is inherently nonimaging, various calibrated and geometrically controlled imaging products are created, suitable for quantitative and qualitative scientific interpretation.
Collaborative GIS for flood susceptibility mapping: An example from Mekong river basin of Viet Nam
NASA Astrophysics Data System (ADS)
Thanh, B.
2016-12-01
Flooding is one of the most dangerous natural disasters in Vietnam. Floods have caused serious damages to people and made adverse impact on social economic development across the country, especially in lower river basin where there is high risk of flooding as consequences of the climate change and social activities. This paper presents a collaborative platform of a combination of an interactive web-GIS framework and a multi-criteria evaluation (MCE) tool. MCE is carried out in server side through web interface, in which parameters used for evaluation are groups into three major categories, including (1) climatic factor: precipitation, typhoon frequency, temperature, humidity (2) physiographic data: DEM, topographic wetness index, NDVI, stream power index, soil texture, distance to river (3) social factor: NDBI, land use pattern. Web-based GIS is based on open-source technology that includes an information page, a page for MCE tool that users can interactively alter parameters in flood susceptible mapping, and a discussion page. The system is designed for local participation in prediction of the flood risk magnitude under impacts of natural processes and human intervention. The proposed flood susceptibility assessment prototype was implemented in the Mekong river basin, Viet Nam. Index images were calculated using Landsat data, and other were collected from authorized agencies. This study shows the potential to combine web-GIS and spatial analysis tool to flood hazard risk assessment. The combination can be a supportive solution that potentially assists the interaction between stakeholders in information exchange and in disaster management, thus provides for better analysis, control and decision-making.
Develop a land use-peak runoff classification system for highway engineering purposes
NASA Technical Reports Server (NTRS)
Stoeckeler, E. G. (Principal Investigator); Farrell, R. S.; Woodman, R. G.
1974-01-01
The author has identified the following significant results. Based on the detail study of the Sunkhaze Stream Watershed, it is believed that good detailed drainage studies can be derived from repetitive ERTS imagery. Land use maps tailored to hydrologic study can be prepared from ERTS imagery. Significant changes in the Sunkhaze Stream and Otter Stream Watersheds at spring flood conditions have given important information on the causes for flooding in the town of Bradley.
Ayele, Roman A; Lawrence, Emily; McCreight, Marina; Fehling, Kelty; Peterson, Jamie; Glasgow, Russell E; Rabin, Borsika A; Burke, Robert; Battaglia, Catherine
2017-02-10
The process of transitioning Veterans to primary care following a non-Veterans Affairs (VA) hospitalization can be challenging. Poor transitions result in medical complications and increased hospital readmissions. The goal of this transition of care quality improvement (QI) project is to identify gaps in the current transition process and implement an intervention that bridges the gap and improves the current transition of care process within the Eastern Colorado Health Care System (ECHCS). We will employ qualitative methods to understand the current transition of care process back to VA primary care for Veterans who received care in a non-VA hospital in ECHCS. We will conduct in-depth semi-structured interviews with Veterans hospitalized in 2015 in non-VA hospitals as well as both VA and non-VA providers, staff, and administrators involved in the current care transition process. Participants will be recruited using convenience and snowball sampling. Qualitative data analysis will be guided by conventional content analysis and Lean Six Sigma process improvement tools. We will use VA claim data to identify the top ten non-VA hospitals serving rural and urban Veterans by volume and Veterans that received inpatient services at non-VA hospitals. Informed by both qualitative and quantitative data, we will then develop a transitions care coordinator led intervention to improve the transitions process. We will test the transition of care coordinator intervention using repeated improvement cycles incorporating salient factors in value stream mapping that are important for an efficient and effective transition process. Furthermore, we will complete a value stream map of the transition process at two other VA Medical Centers and test whether an implementation strategy of audit and feedback (the value stream map of the current transition process with the Transition of Care Dashboard) versus audit and feedback with Transition Nurse facilitation of the process using the Resource Guide and Transition of Care Dashboard improves the transition process, continuity of care, patient satisfaction and clinical outcomes. Our current transition of care process has shortcomings. An intervention utilizing a transition care coordinator has the potential to improve this process. Transitioning Veterans to primary care following a non-VA hospitalization is a crucial step for improving care coordination for Veterans.
Smith, S. Jerrod; Esralew, Rachel A.
2010-01-01
The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the drainage-basin outlet for the period 1961-1990, 10-85 channel slope (slope between points located at 10 percent and 85 percent of the longest flow-path length upstream from the outlet), and percent impervious area. The Oklahoma StreamStats application interacts with the National Streamflow Statistics database, which contains the peak-flow regression equations in a previously published report. Fourteen peak-flow (flood) frequency statistics are available for computation in the Oklahoma StreamStats application. These statistics include the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural, unregulated streams; and the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural streams that are regulated by Natural Resources Conservation Service floodwater retarding structures. Basin characteristics and streamflow statistics cannot be computed for locations in playa basins (mostly in the Oklahoma Panhandle) and along main stems of the largest river systems in the state, namely the Arkansas, Canadian, Cimarron, Neosho, Red, and Verdigris Rivers, because parts of the drainage areas extend outside of the processed hydrologic units.
EPA’s Experimental Stream Facility: Design and Research Supporting Watershed Management
The EPA’s Experimental Stream Facility (ESF) represents an important tool in research that is underway to further understanding of the relative importance of stream ecosystems and the services they provide for effective watershed management. The ESF is operated under the goal of ...
THE USE OF GEOMORPHOLOGY IN THE ASSESSMENT OF STREAM STABILITY
Various applications of geomorphic data and stream stability rating systems are being considered in order to establish tools for the development of TMDLs for clean sediment in streams. The transport of "clean" sediment, as opposed to contaminated sediment, is of concern to the en...
Future climates may warm stream temperatures altering aquatic communities and threatening socioeconomically-important species. These impacts will vary across large spatial extents and require special evaluation tools. Statistical stream network models (SSNs) account for spatial a...
Tree Cover Mapping Tool—Documentation and user manual
Cotillon, Suzanne E.; Mathis, Melissa L.
2016-06-02
The Tree Cover Mapping (TCM) tool was developed by scientists at the U.S. Geological Survey Earth Resources Observation and Science Center to allow a user to quickly map tree cover density over large areas using visual interpretation of high resolution imagery within a geographic information system interface. The TCM tool uses a systematic sample grid to produce maps of tree cover. The TCM tool allows the user to define sampling parameters to estimate tree cover within each sample unit. This mapping method generated the first on-farm tree cover maps of vast regions of Niger and Burkina Faso. The approach contributes to implementing integrated landscape management to scale up re-greening and restore degraded land in the drylands of Africa. The TCM tool is easy to operate, practical, and can be adapted to many other applications such as crop mapping, settlements mapping, or other features. This user manual provides step-by-step instructions for installing and using the tool, and creating tree cover maps. Familiarity with ArcMap tools and concepts is helpful for using the tool.
Development of online tools to support GIS watershed analyses
William J. Elliot
2016-01-01
In 1996 there was a meeting in Tucson of hydrologists from every Forest Service region, as well as Forest Service research scientists engaged in watershed-related activities. This meeting was organized by the Stream Team (which has since been enveloped by the National Stream and Aquatic Ecology Center). The focus of the meeting was to identify tools that needed to be...
WEPPCAT is an on-line tool that provides a flexible capability for creating user-determined climate change scenarios for assessing the potential impacts of climate change on sediment loading to streams using the USDA’s Water Erosion Prediction Project (WEPP) Model. In combination...
Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R
2016-05-01
Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Gaber, Ahmed; Amarah, Bassam A.; Abdelfattah, Mohamed; Ali, Sarah
2017-12-01
Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2]) using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand). The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ°) and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7) of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological observations support the existence of paleo-fresh water lagoon at the northwestern corner of the study area, which might have been the discharge lagoon of the revealed hidden stream.
Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.
2007-01-01
The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.
Ecological Condition of Streams in Northern Nevada EPA R-MAP Humboldt Basin Project
This report presents stream data on the Humboldt River Basin in northern Nevada using the R-EMAP Program. Water is of primary importance to both the economy and the ecology of the region. Many of the waters of Nevada have previously received relatively little attention in regar...
USDA-ARS?s Scientific Manuscript database
Laser scanning data streams, when linked with multi-spectral, hyperspectral, apparent soil electro-conductivity (ECa), or other kinds of geo-referenced data streams, aid in the creation of maps that allow useful applications in agricultural systems. These combinations of georeferenced information p...
Modeling streams and hydrogeomorphic attributes in Oregon from digital and field data
Sharon E. Clarke; Kelly M. Burnett; Daniel J. Miller
2008-01-01
Managers, regulators, and researchers of aquatic ecosystems are increasingly pressed to consider large areas. However, accurate stream maps with geo-referenced attributes are uncommon over relevant spatial extents. Field inventories provide high-quality data, particularly for habitat characteristics at fine spatial resolutions (e.g., large wood), but are costly and so...
SSWR 3.01B.1: National maps of watershed integrity and stream condition
This presentation reports on two separate studies conducted under SSWR 3.01B as part of an FY16 Annual Performance Reporting (APR) product for the Office of Management and Budget. Three separate but related studies were conducted. The first study used EPA’s StreamCat data...
Event-Related Potentials Index Segmentation of Nonsense Sounds
ERIC Educational Resources Information Center
Sanders, Lisa D.; Ameral, Victoria; Sayles, Kathryn
2009-01-01
To understand the world around us, continuous streams of information including speech must be segmented into units that can be mapped onto stored representations. Recent evidence has shown that event-related potentials (ERPs) can index the online segmentation of sound streams. In the current study, listeners were trained to recognize sequences of…
Estimation of selected flow and water-quality characteristics of Alaskan streams
Parks, Bruce; Madison, R.J.
1985-01-01
Although hydrologic data are either sparse or nonexistent for large areas of Alaska, the drainage area, area of lakes, glacier and forest cover, and average precipitation in a hydrologic basin of interest can be measured or estimated from existing maps. Application of multiple linear regression techniques indicates that statistically significant correlations exist between properties of basins determined from maps and measured streamflow characteristics. This suggests that corresponding characteristics of ungaged basins can be estimated. Streamflow frequency characteristics can be estimated from regional equations developed for southeast, south-central and Yukon regions. Statewide or modified regional equations must be used, however, for the southwest, northwest, and Arctic Slope regions where there is a paucity of data. Equations developed from basin characteristics are given to estimate suspended-sediment values for glacial streams and, with less reliability, for nonglacial streams. Equations developed from available specific conductance data are given to estimate concentrations of major dissolved inorganic constituents. Suggestions are made for expanding the existing data base and thus improving the ability to estimate hydrologic characteristics for Alaskan streams. (USGS)
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle shows the regional distribution of copper in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle shows the regional distribution of barium in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
1981-12-01
file.library-unit{.subunit).SYMAP Statement Map: library-file. library-unit.subunit).SMAP Type Map: 1 ibrary.fi le. 1 ibrary-unit{.subunit). TMAP The library...generator SYMAP Symbol Map code generator SMAP Updated Statement Map code generator TMAP Type Map code generator A.3.5 The PUNIT Command The P UNIT...Core.Stmtmap) NAME Tmap (Core.Typemap) END Example A-3 Compiler Command Stream for the Code Generator Texas Instruments A-5 Ada Optimizing Compiler
New Splitting Criteria for Decision Trees in Stationary Data Streams.
Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej
2018-06-01
The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.
Drainage areas in the Vermillion River basin in eastern South Dakota
Benson, Rick D.; Freese, M.D.; Amundson, Frank D.
1988-01-01
Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)
Harkins, Joe R.; Green, Mark E.
1981-01-01
Drainage areas for about 1,600 surface-water sites on streams and lakes in Florida are contained in this report. The sites are generally either U.S. Geological Survey gaging stations or the mouths of gaged streas. Each site is identified by latitude and longitude, by the general stream type, and by the U.S. Geological Survey 7.5-minute topographic map on which it can be located. The gaging stations are furhter identified by a downstream order number, a county code, and a nearby city or town. In addition to drainage areas, the surface areas of lakes are shown for the elevation given on the topographic map. These data were retrieved from the Surface Water Index developed and maintained by the Hydrologic Surveillance section of the Florida District Office, U.S. Geological Survey. (USGS)
Coynel, Alexandra; Blanc, Gérard; Marache, Antoine; Schäfer, Jörg; Dabrin, Aymeric; Maneux, Eric; Bossy, Cécile; Masson, Matthieu; Lavaux, Gilbert
2009-05-01
The Riou Mort River watershed (SW France), representative of a heavily polluted, small, heterogeneous watershed, represents a major source for the polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system due to former mining and ore-treatment activities. In order to assess spatial distribution of the metal/metalloid contamination in the watershed, a high resolution hydrological and geochemical monitoring were performed during one year at four permanent observation stations. Additionally, thirty-five stream sediment samples were collected at representative key sites and analyzed for metal/metalloid (Cd, Zn, Cu, Pb, As, Sb, Mo, V, Cr, Co, Ni, Th, U and Hg) concentrations. The particulate concentrations in water and stream sediments show high spatial differences for most of the studied elements suggesting strong anthropogenic and/or lithogenic influences; for stream sediments, the sequence of the highest variability, ranging from 100% to 300%, is the following: Mo < Cu < Hg < As < Sb < Cd < Zn < Pb. Multidimensional statistical analyses combined with metal/metalloid maps generated by GIS tool were used to establish relationships between elements, to identify metal/metalloid sources and localize geochemical anomalies attributed to local geochemical background, urban and industrial activities. Finally, this study presents an approach to assess anthropogenic trace metal inputs within this watershed by combining lithology-dependent geochemical background values, metal/metalloid concentrations in stream sediments and mass balances of element fluxes at four key sites. The strongest anthropogenic contributions to particulate element fluxes are 90-95% for Cd, Zn and Hg in downstream sub-catchments. The localisation of anthropogenic metal/metalloid sources in restricted areas offers a great opportunity to further significantly reduce metal emissions and restore the Lot-Garonne-Gironde fluvial-estuarine ecosystem.
A deeper look at the GD1 stream: density variations and wiggles
NASA Astrophysics Data System (ADS)
de Boer, T. J. L.; Belokurov, V.; Koposov, S. E.; Ferrarese, L.; Erkal, D.; Côté, P.; Navarro, J. F.
2018-06-01
Using deep photometric data from Canada-France-Hawaii Telescope/Megacam, we study the morphology and density of the GD-1 stream, one of the longest and coldest stellar streams in the Milky Way. Our deep data recovers the lower main sequence of the stream with unprecedented quality, clearly separating it from Milky Way foreground and background stars. An analysis of the distance to different parts of the stream shows that GD-1 lies at a heliocentric distance between 8 and 10 kpc, with only a shallow gradient across 45° on the sky. Matched filter maps of the stream density show clear density variations, such as deviations from a single orbital track and tentative evidence for stream fanning. We also detect a clear underdensity in the middle of the stream track at φ1 = -45° surrounded by overdense stream segments on either side. This location is a promising candidate for the elusive missing progenitor of the GD-1 stream. We conclude that the GD-1 stream has clearly been disturbed by interactions with the Milky Way disc or other subhaloes.
NASA Astrophysics Data System (ADS)
Lea, Devin M.; Legleiter, Carl J.
2016-01-01
Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in dynamic natural rivers.
NASA Astrophysics Data System (ADS)
Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.
2012-12-01
A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.
NASA Astrophysics Data System (ADS)
Haskins, M. N.; Vollmer, F. W.; Rayburn, J. A.; Gurdak, J. J.
2010-12-01
To investigate joint control on hydrology as well as tectonic implications, we conducted a study of joint orientations near the Stony Clove and Warner Creek drainages of the Catskill Mountains, Eastern New York. Specific goals of this research were to determine joint control on stream orientations and groundwater flow, to compare results with previous studies in the area, and to investigate their tectonic significance. Trails, streams, and road cuts were traversed to locate bedrock outcrops whose positions were determined using topographic maps and a handheld GPS unit. Additional outcrops were located using aerial photographs and GIS data. Joint orientations were measured using a standard Brunton pocket transit. The data was analyzed using Orient (Vollmer, 2010), an orientation analysis program, to plot joint and stream orientations on rose diagrams. ArcGIS was used to produce topographic, hill-shade, and stream drainage maps. Over 500 joint orientations at over 100 outcrop stations were collected. The data were plotted on a rose diagrams, and two major joint sets were found, one with a mean strike of 021° and one with a mean strike of 096°. Stream orientations were also plotted on a rose diagram showing an axial mean of 022°, and indicate that the joint set with mean strike of 021 may have a significant control on stream orientations. The hill-shade maps also demonstrate clearly the strong control of jointing on the topography. The data collected in this research expands on previous joint orientation studies of Engelder and Geiser (1980) in the southwestern and central Catskills, and is similar to joint orientations found by Isachsen et al. (1977) in their study of the Panther Mountain circular structure, a possible impact-related feature. The origin of this jointing is thought to be related to Alleghanian (Permian) and possibly Acadian (Devonian) orogenic events.
Ki, Seo Jin; Kang, Joo-Hyon; Lee, Seung Won; Lee, Yun Seok; Cho, Kyung Hwa; An, Kwang-Guk; Kim, Joon Ha
2011-08-01
Stormwater runoff poses a great challenge to the scientific assessment of the effects of diffuse pollution sources on receiving waters. In this study, a self-organizing map (SOM), a research tool for analyzing specific patterns in a large array of data, was applied to the monitoring data obtained from a stormwater monitoring survey to acquire new insights into stream water quality profiles under different rainfall conditions. The components of the input data vectors used by the SOM included concentrations of 10 metal elements, river discharge, and rainfall amount which were collected at the inlet and endpoint of an urban segment of the Yeongsan River, Korea. From the study, it was found that the SOM displayed significant variability in trace metal concentrations for different monitoring sites and rainfall events, with a greater impact of stormwater runoff on stream water quality at the upstream site than at the downstream site, except under low rainfall conditions (≤ 4 mm). In addition, the SOM clearly determined the water quality characteristics for "non-storm" and "storm" data, where the parameters nickel and arsenic and the parameters chromium, cadmium, and lead played an important role in reflecting the spatial and temporal water quality, respectively. When the SOM was used to examine the efficacy of stormwater quality monitoring programs, between 34 and 64% of the sample size in the current data set was shown to be sufficient for estimating the stormwater pollutant loads. The observed errors were small, generally being below 10, 6, and 20% for load estimation, map resolution, and clustering accuracy, respectively. Thus, the method recommended may be used to minimize monitoring costs if both the efficiency and accuracy are further determined by examining a large existing data set. Copyright © 2011 Elsevier Ltd. All rights reserved.
Auto-Generated Semantic Processing Services
NASA Technical Reports Server (NTRS)
Davis, Rodney; Hupf, Greg
2009-01-01
Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.
Improving stream studies with a small-footprint green lidar
McKean, Jim; Isaak, Dan; Wright, Wayne
2009-01-01
Technology is changing how scientists and natural resource managers describe and study streams and rivers. A new generation of airborne aquatic-terrestrial lidars is being developed that can penetrate water and map the submerged topography inside a stream as well as the adjacent subaerial terrain and vegetation in one integrated mission. A leading example of these new cross-environment instruments is the Experimental Advanced Airborne Research Lidar (EAARL), a NASAbuilt sensor now operated by the U.S. Geological Survey (USGS) [Wright and Brock, 2002].
NASA Astrophysics Data System (ADS)
Li, Z.
2003-12-01
Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also helped to identify the temporal changes induced by human activities, such as pumping. For the San Jose area, a regional-scale ground-water/surface-water flow model was developed with 6 model layers, 360 monthly stress periods, and complex flow components. The model was visualized by creating animations for both hydraulic head and land subsidence. Cell-by-cell flow of individual flow components was also animated. These included simulated infiltration from climatically variable natural recharge, interlayer flow through multi-aquifer well bores, flow gains and losses along stream channels, and storage change in response to system recharge and discharge. These animations were used to examine consistency with other independent observations, such as measured water-level distribution, mapped gaining and losing stream reaches, and INSAR-interpreted subsidence and uplift. In addition, they revealed enormous detail on the spatial and temporal variation of both individual flow components as well as the entire flow system, and thus significantly increased understanding of system dynamics and improved the accuracy of model simulations.
NASA Astrophysics Data System (ADS)
Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye
2018-04-01
Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models. However, the NSE values were lower than those of the hydroclimatological model, indicating that more model verification needs to be done. The equilibrium temperature model uses existing SWAT meteorological data as input, can be calibrated using fewer parameters and less effort and has an overall better performance in stream temperature simulation. Thus, it can be used as an effective tool for predicting the changes in stream temperature regimes under varying hydrological and meteorological conditions. In addition, the impact of the stream temperature simulations on chemical reaction rates and concentrations was tested. The results indicate that the improved performance of the stream temperature simulation could significantly affect chemical reaction rates and the simulated concentrations, and the equilibrium temperature model could be a potential tool to model stream temperature in water quality simulations.
Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus
Holtschlag, David J.
2009-01-01
AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.
NASA Astrophysics Data System (ADS)
Troiani, Francesco; Piacentini, Daniela; Seta Marta, Della
2016-04-01
Many researches successfully focused on stream longitudinal profiles analysis through Stream Length-gradient (SL) index for detecting, at different spatial scales, either tectonic structures or hillslope processes. The analysis and interpretation of spatial variability of SL values, both at a regional and local scale, is often complicated due to the concomitance of different factors generating SL anomalies, including the bedrock composition. The creation of lithologically-filtered SL maps is often problematic in areas where homogeneously surveyed geological maps, with a sufficient resolution are unavailable. Moreover, both the SL map classification and the unbiased anomaly detection are rather difficult. For instance, which is the best threshold to define the anomalous SL values? Further, is there a minimum along-channel extent of anomalous SL values for objectively defining over-steeped segments on long-profiles? This research investigates the relevance and potential of a new approach based on Hotspot and Cluster Analysis of SL values (SL-HCA) for detecting knickzones on long-profiles at a regional scale and for fine-tuning the interpretation of their geological-geomorphological meaning. We developed this procedure within a 2800 km2-wide area located in the mountainous sector of the Northern Apennines of Italy. The Getis-Ord Gi∗ statistic is applied for the SL-HCA approach. The value of SL, calculated starting from a 5x5 m Digital Elevation Model, is used as weighting factor and the Gi∗ index is calculated for each 50 m-long channel segment for the whole fluvial system. The outcomes indicate that high positive Gi∗ values imply the clustering of SL anomalies, thus the occurrence of knickzones on the stream long-profiles. Results show that high and very high Gi* values (i.e. values beyond two standard deviations from the mean) correlate well with the principal knickzones detected with existent lithologically-filtered SL maps. Field checks and remote sensing analysis conducted on 52 clusters of high and very high Gi* values indicate that mass movement of slope material represents the dominant process producing over-steeped long-profiles along connected streams, whereas the litho-structure accounts for the main anomalies along disconnected steams. Tectonic structures generally provide to the largest clusters. Our results demonstrate that SL-HCA maps have the same potential of lithologically-filtered SL maps for detecting knickzones due to hillslope processes and/or tectonic structures. The reduced-complexity model derived from SL-HCA approach highly improve the readability of the morphometric outcomes, thus the interpretation at a regional scale of the geological-geomorphological meaning of over-steeped segments on long-profiles. SL-HCA maps are useful to investigate and better interpret knickzones within regions poorly covered by geological data and where field surveys are difficult to be performed.
A GIS tool to analyze forest road sediment production and stream impacts
Ajay Prasad; David G. Tarboton; Charles H. Luce; Thomas A. Black
2005-01-01
A set of GIS tools to analyze the impacts of forest roads on streams considering sediment production, mass wasting risk, and fish passage barriers, has been developed. Sediment production for each road segment is calculated from slope, length, road surface condition and road-side drain vegetation gathered by a GPS inventory and by overlaying the road path on a Digital...
Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica
Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.
1994-01-01
Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.
Aflalo, T. N.
2011-01-01
How is the macaque monkey extrastriate cortex organized? Is vision divisible into separate tasks, such as object recognition and spatial processing, each emphasized in a different anatomical stream? If so, how many streams exist? What are the hierarchical relationships among areas? The present study approached the organization of the extrastriate cortex in a novel manner. A principled relationship exists between cortical function and cortical topography. Similar functions tend to be located near each other, within the constraints of mapping a highly dimensional space of functions onto the two-dimensional space of the cortex. We used this principle to re-examine the functional organization of the extrastriate cortex given current knowledge about its topographic organization. The goal of the study was to obtain a model of the functional relationships among the visual areas, including the number of functional streams into which they are grouped, the pattern of informational overlap among the streams, and the hierarchical relationships among areas. To test each functional description, we mapped it to a model cortex according to the principle of optimal continuity and assessed whether it accurately reconstructed a version of the extrastriate topography. Of the models tested, the one that best reconstructed the topography included four functional streams rather than two, six levels of hierarchy per stream, and a specific pattern of informational overlap among streams and areas. A specific mixture of functions was predicted for each visual area. This description matched findings in the physiological literature, and provided predictions of functional relationships that have yet to be tested physiologically. PMID:21068269
Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D
2015-09-01
To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.
Accuracy of stream habitat interpolations across spatial scales
Sheehan, Kenneth R.; Welsh, Stuart A.
2013-01-01
Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2 . Analysis of predictive maps showed a logarithmic linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate study areas became coarser. Proportional accuracy of interpolated models (r2 ) decreased, but it was maintained up to 78% as interpolation scale moved from 0.11 m2 to 16 m2 . Results indicated that accuracy retention was suitable for assessment and management purposes at various scales different from the data collection scale. Our study is relevant to spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets.
A new application of value-stream mapping in new drug development: a case study within Novartis.
Heinzen, Mareike; Mettler, Samuel; Coradi, Annina; Boutellier, Roman
2015-03-01
In this case study, we evaluated the effect of colocation on the drug development process using value-stream mapping (VSM) on the Novartis Campus in Basel, Switzerland. We compared a colocated team with a control group that was not colocated. The data showed that colocation was not associated with increased process speed in terms of lead lines. However, the colocated team communicated more and reported beneficial experiences, such as faster working processes or improved mutual understanding. VSM workshops revealed not only performance indicators about colocation, but also enhanced communication and cooperation through the evolving discussion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tools for educational access to seismic data
NASA Astrophysics Data System (ADS)
Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.
2017-12-01
Student engagement can be increased both by providing easy access to real data, and by addressing newsworthy events such as recent large earthquakes. IRIS EPO has a suite of access and visualization tools that can be used for such engagement, including a set of three tools that allow students to explore global seismicity, use seismic data to determine Earth structure, and view and analyze near-real-time ground motion data in the classroom. These tools are linked to online lessons that are designed for use in middle school through introductory undergraduate classes. The IRIS Earthquake Browser allows discovery of key aspects of plate tectonics, earthquake locations (in pseudo 3D) and seismicity rates and patterns. IEB quickly displays up to 20,000 seismic events over up to 30 years, making it one of the most responsive, practical ways to visualize historical seismicity in a browser. Maps are bookmarkable and preserve state, meaning IEB map links can be shared or worked into a lesson plan. The Global Seismogram Plotter automatically creates visually clear seismic record sections from selected large earthquakes that are tablet-friendly and can also to be printed for use in a classroom without computers. The plots are designed to be appropriate for use with no parameters to set, but users can also modify the plots, such as including a recording station near a chosen location. A guided exercise is provided where students use the record section to discover the diameter of Earth's outer core. Students can pick and compare phase arrival times onscreen which is key to performing the exercise. A companion station map shows station locations and further information and is linked to the record section. jAmaSeis displays seismic data in real-time from either a local instrument and/or from remote seismic stations that stream data using standard seismic data protocols, and can be used in the classroom or as a public display. Users can filter data, fit a seismogram to travel time curves, triangulate event epicenters on a globe, estimate event magnitudes, and generate images showing seismograms and corresponding calculations. All three tools access seismic databases curated by IRIS Data Services. In addition, jAmaseis also can access data from non-IRIS sources.
Limitations and implications of stream classification
Juracek, K.E.; Fitzpatrick, F.A.
2003-01-01
Stream classifications that are based on channel form, such as the Rosgen Level II classification, are useful tools for the physical description and grouping of streams and for providing a means of communication for stream studies involving scientists and (or) managers with different backgrounds. The Level II classification also is used as a tool to assess stream stability, infer geomorphic processes, predict future geomorphic response, and guide stream restoration or rehabilitation activities. The use of the Level II classification for these additional purposes is evaluated in this paper. Several examples are described to illustrate the limitations and management implications of the Level II classification. Limitations include: (1) time dependence, (2) uncertain applicability across physical environments, (3) difficulty in identification of a true equilibrium condition, (4) potential for incorrect determination of bankfull elevation, and (5) uncertain process significance of classification criteria. Implications of using stream classifications based on channel form, such as Rosgen's, include: (1) acceptance of the limitations, (2) acceptance of the risk of classifying streams incorrectly, and (3) classification results may be used inappropriately. It is concluded that use of the Level II classification for purposes beyond description and communication is not appropriate. Research needs are identified that, if addressed, may help improve the usefulness of the Level II classification.
User Guide for the Anvil Threat Cooridor Forecast Tool V2.4 for AWIPS
NASA Technical Reports Server (NTRS)
Barett, Joe H., III; Bauman, William H., III
2008-01-01
The Anvil Tool GUI allows users to select a Data Type, toggle the map refresh on/off, place labels, and choose the Profiler Type (source of the KSC 50 MHz profiler data), the Date- Time of the data, the Center of Plot, and the Station (location of the RAOB or 50 MHz profiler). If the Data Type is Models, the user selects a Fcst Hour (forecast hour) instead of Station. There are menus for User Profiles, Circle Label Options, and Frame Label Options. Labels can be placed near the center circle of the plot and/or at a specified distance and direction from the center of the circle (Center of Plot). The default selection for the map refresh is "ON". When the user creates a new Anvil Tool map with Refresh Map "ON, the plot is automatically displayed in the AWIPS frame. If another Anvil Tool map is already displayed and the user does not change the existing map number shown at the bottom of the GUI, the new Anvil Tool map will overwrite the old one. If the user turns the Refresh Map "OFF", the new Anvil Tool map is created but not automatically displayed. The user can still display the Anvil Tool map through the Maps dropdown menu* as shown in Figure 4.
Making Space for Place: Mapping Tools and Practices to Teach for Spatial Justice
ERIC Educational Resources Information Center
Rubel, Laurie H.; Hall-Wieckert, Maren; Lim, Vivian Y.
2017-01-01
This article presents a set of spatial tools for classroom learning about spatial justice. As part of a larger team, we designed a curriculum that engaged 10 learners with 3 spatial tools: (a) an oversized floor map, (b) interactive geographic information systems (GIS) maps, and (c) participatory mapping. We analyze how these tools supported…
NASA Astrophysics Data System (ADS)
Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.
2013-06-01
The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.
NASA Astrophysics Data System (ADS)
Dinsmore, P.; Prepas, E.; Putz, G.; Smith, D.
2008-12-01
The Forest Watershed and Riparian Disturbance (FORWARD) Project has collected data on weather, soils, vegetation, streamflow and stream water quality under relatively undisturbed conditions, as well as after experimental forest harvest, in partnership with industrial forest operations within the Boreal Plain and Boreal Shield ecozones of Canada. Research-based contributions from FORWARD were integrated into our Boreal Plain industry partner's 2007-2016 Detailed Forest Management Plan. These contributions consisted of three components: 1) A GIS watershed and stream layer that included a hydrological network, a Digital Elevation Model, and Strahler classified streams and watersheds for 1st- and 3rd-order watersheds; 2) a combined soil and wetland GIS layer that included maps and associated datasets for relatively coarse mineral soils (which drain quickly) and wetlands (which retain water), which were the key features that needed to be identified for the FORWARD modelling effort; and 3) a lookup table was developed that permits planners to determine runoff coefficients (the variable selected for hydrological modelling) for 1st-order watersheds, based upon slope, vegetation and soil attributes in forest polygons. The lookup table was populated with output from the deterministic Soil and Water Assessment Tool (SWAT), adapted for boreal forest vegetation with a version of the plant growth model, ALMANAC. The runoff coefficient lookup table facilitated integration of predictions of hydrologic impacts of forest harvest into planning. This pilot-scale effort will ultimately be extended to the Boreal Shield study area.
Landscape Ecotoxicology of Coho Salmon Spawner Mortality in Urban Streams
Feist, Blake E.; Buhle, Eric R.; Arnold, Paul; Davis, Jay W.; Scholz, Nathaniel L.
2011-01-01
In the Pacific Northwest of the United States, adult coho salmon (Oncorhynchus kisutch) returning from the ocean to spawn in urban basins of the Puget Sound region have been prematurely dying at high rates (up to 90% of the total runs) for more than a decade. The current weight of evidence indicates that coho deaths are caused by toxic chemical contaminants in land-based runoff to urban streams during the fall spawning season. Non-point source pollution in urban landscapes typically originates from discrete urban and residential land use activities. In the present study we conducted a series of spatial analyses to identify correlations between land use and land cover (roadways, impervious surfaces, forests, etc.) and the magnitude of coho mortality in six streams with different drainage basin characteristics. We found that spawner mortality was most closely and positively correlated with the relative proportion of local roads, impervious surfaces, and commercial property within a basin. These and other correlated variables were used to identify unmonitored basins in the greater Seattle metropolitan area where recurrent coho spawner die-offs may be likely. This predictive map indicates a substantial geographic area of vulnerability for the Puget Sound coho population segment, a species of concern under the U.S. Endangered Species Act. Our spatial risk representation has numerous applications for urban growth management, coho conservation, and basin restoration (e.g., avoiding the unintentional creation of ecological traps). Moreover, the approach and tools are transferable to areas supporting coho throughout western North America. PMID:21858112
Stream temperature monitoring and modeling: Recent advances and new tools for managers
Daniel J. Isaak
2011-01-01
Stream thermal regimes are important within regulatory contexts, strongly affect the functioning of aquatic ecosystems, and are a primary determinant of habitat suitability for many sensitive species. The diverse landscapes and topographies inherent to National Forests and Grasslands create mosaics of stream thermal conditions that are intermingled with strong...
Streaming Audio and Video: New Challenges and Opportunities for Museums.
ERIC Educational Resources Information Center
Spadaccini, Jim
Streaming audio and video present new challenges and opportunities for museums. Streaming media is easier to author and deliver to Internet audiences than ever before; digital video editing is commonplace now that the tools--computers, digital video cameras, and hard drives--are so affordable; the cost of serving video files across the Internet…
Stable isotope analyses of stream organisms usually are performed as discrete site experiments (e.g., to study the effect of a direct manipulation), synoptically (e.g. to illustrate effects of longitudinal variation of influencing factors), or, less frequently, over the course of...
Stable isotope analyses of stream organisms are performed usually as discrete site experiments (e.g., to study the effect of a direct manipulation), synoptically (e.g. to illustrate effects of longitudinal variation of influencing factors), or, less frequently, over the course of...
Ken Vance-Borland; Kelly Burnett; Sharon Clarke
2009-01-01
1. Digital hydrographic data are commonly employed in research, planning, and monitoring for freshwater conservation, but hydrographic data sets differ in spatial resolution and accuracy of spatial representation, possibly leading to inaccurate conclusions or unsuitable policies for streams and streamside areas. 2. To examine and illustrate the potential for...
Using DoD Maps to Examine the Influence of Large Wood on Channel Morphodynamics
NASA Astrophysics Data System (ADS)
MacKenzie, L. C.; Eaton, B. C.
2012-12-01
Since the advent of logging and slash burning, many streams in British Columbia have experienced changes to the amount of large wood added to or removed from these systems, which has, in turn, influenced the storage and movement of sediment within these channels. This set of flume experiments examines and quantifies the impacts of large wood on the reach-scale morphodynamics. Understanding the relation between the wood load and channel morphodynamics is important when assessing the quality of the aquatic habitat of a stream. The experiments were conducted using a fixed-bank, mobile bed Froude-scaled physical model of Fishtrap Creek, British Columbia, built in a shallow flume that is 1.5 m wide and 11 m long. The stream table was run without wood until it reached equilibrium at which point wood pieces of varying sizes were added to the channel. The bed morphology was surveyed using a laser profiling system at five-hour intervals. The laser profiles were then interpolated to create digital elevation models (DEM) from which DEM of difference (DoD) maps were produced. Analysis of the DoD maps focused on quantifying and locating differences in the distribution of sediment storage, erosion, and deposition between the runs as well as those induced by the addition of large wood into the stream channel. We then assessed the typical influence of individual pieces and of jams on pool frequency, size and distribution along the channels.
Exploring the Realized Niche: Simulated Ecological Mapping with a Microcomputer.
ERIC Educational Resources Information Center
Kent, J. W.
1983-01-01
Describes a computer program based upon field observations of littoral zonation modified by a small stream. The program employs user-defined color graphic characters to display simulated ecological maps representing the patterning of organisms in response to local values of niche limiting factors. (Author/JN)
Basal melt beneath whillans ice stream and ice streams A and C
NASA Technical Reports Server (NTRS)
Joughin, I.; Teluezyk, S.; Engelhardt, H.
2002-01-01
We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.
Concept Mapping Using Cmap Tools to Enhance Meaningful Learning
NASA Astrophysics Data System (ADS)
Cañas, Alberto J.; Novak, Joseph D.
Concept maps are graphical tools that have been used in all facets of education and training for organizing and representing knowledge. When learners build concept maps, meaningful learning is facilitated. Computer-based concept mapping software such as CmapTools have further extended the use of concept mapping and greatly enhanced the potential of the tool, facilitating the implementation of a concept map-centered learning environment. In this chapter, we briefly present concept mapping and its theoretical foundation, and illustrate how it can lead to an improved learning environment when it is combined with CmapTools and the Internet. We present the nationwide “Proyecto Conéctate al Conocimiento” in Panama as an example of how concept mapping, together with technology, can be adopted by hundreds of schools as a means to enhance meaningful learning.
Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.
2003-01-01
Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.
Lestander, Ragna; Löfgren, Stefan; Henrikson, Lennart; Ågren, Anneli M
2015-04-01
Forestry may cause adverse impacts on water quality, and the forestry planning process is a key factor for the outcome of forest operation effects on stream water. To optimise environmental considerations and to identify actions needed to improve or maintain the stream biodiversity, two silvicultural water management tools, BIS+ (biodiversity, impact, sensitivity and added values) and Blue targeting, have been developed. In this study, we evaluate the links between survey variables, based on BIS+ and Blue targeting data, and water chemistry in 173 randomly selected headwater streams in the hemiboreal zone. While BIS+ and Blue targeting cannot replace more sophisticated monitoring methods necessary for classifying water quality in streams according to the EU Water Framework Directive (WFD, 2000/60/EC), our results lend support to the idea that the BIS+ protocol can be used to prioritise the protection of riparian forests. The relationship between BIS+ and water quality indicators (concentrations of nutrients and organic matter) together with data from fish studies suggests that this field protocol can be used to give reaches with higher biodiversity and conservation values a better protection. The tools indicate an ability to mitigate forestry impacts on water quality if the operations are adjusted to this knowledge in located areas.
Stellar Streams in the Andromeda Halo
NASA Astrophysics Data System (ADS)
Fardal, Mark A.; PAndAS Collaboration
2011-05-01
The PAndAS survey detects RGB and AGB stars in our neighbor galaxy M31, out to 150 kpc from the galaxy center with an extension to M33. Maps of this survey display a spectacular collection of stellar streams extending tens to hundreds of kpc in length. Many of these streams overlap with each other or with M31's central regions, making it difficult to disentangle the different streams. I discuss what is currently known about the nature, origin, significance, and eventual fate of these stellar streams. Photometric observations from the PAndAS survey and follow-up work constrain the metallicity, age, luminosity, and stellar mass of the stellar population. I discuss scenarios for how some of these streams formed, while for others their origin remains a mystery. I present observationally constrained numerical simulations for the formation of some of the streams. The streams also are probes of the mass profile and lumpiness of M31's dark matter halo. Spectroscopic samples are used to constrain M31's halo mass at large radius.
Fifty-year flood-inundation maps for El Progreso, Honduras
Kresch, David L.; Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of El Progreso that would be inundated by a 50-year flood of Rio Pelo. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of El Progreso as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Pelo at El Progreso were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Pelo; therefore, the 50-year-flood discharge for Rio Pelo, 235 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Pelo at El Progreso are 47.4 square kilometers and 1,920 millimeters, respectively.
Fifty-year flood-inundation maps for Choloma, Honduras
Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Choloma that would be inundated by a 50-year flood of Rio Choloma. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Choloma as part of the in the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Choloma at Choloma were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light detection and ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Choloma; therefore, the 50-year-flood discharge for Rio Choloma, 370 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Choloma at Choloma are 89.5 square kilometers and 2,164 millimeters, respectively.
Fifty-year flood-inundation maps for Catacamas, Honduras
Kresch, David L.; Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Catacamas that would be inundated by a 50-year-flood of Rio Catacamas. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Catacamas as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/ floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Catacamas at Catacamas were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Catacamas at Catacamas, 216 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation because there are no long-term stream-gaging stations on the river from which to estimate the discharge. The drainage area and mean annual precipitation estimated for Rio Catacamas at Catacamas are 45.4 square kilometers and 1,773 millimeters, respectively.
Fifty-year flood-inundation maps for Olanchito, Honduras
Kresch, David L.; Mastin, M.C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Olanchito that would be inundated by a 50-year-flood of Rio Uchapa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Olanchito as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood discharge of 243 cubic meters per second on Rio Uchapa at Olanchito were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Uchapa; therefore, the 50-year-flood discharge for Rio Uchapa was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Uchapa at Olanchito are 97.1 square kilometers and 1,178 millimeters, respectively.
Fifty-year flood-inundation maps for La Ceiba, Honduras
Kresch, David L.; Mastin, M.C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of La Ceiba that would be inundated by a 50-year-flood of Rio Cangrejal. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of La Ceiba as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood discharge of 1,030 cubic meters per second on Rio Cangrejal at La Ceiba were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Cangrejal; therefore, the 50-year-flood discharge for Rio Cangrejal at La Ceiba was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Cangrejal at La Ceiba are 498 square kilometers and 2,306 millimeters, respectively.
NASA Astrophysics Data System (ADS)
Naghibi, Seyed Amir; Moradi Dashtpagerdi, Mostafa
2017-01-01
One important tool for water resources management in arid and semi-arid areas is groundwater potential mapping. In this study, four data-mining models including K-nearest neighbor (KNN), linear discriminant analysis (LDA), multivariate adaptive regression splines (MARS), and quadric discriminant analysis (QDA) were used for groundwater potential mapping to get better and more accurate groundwater potential maps (GPMs). For this purpose, 14 groundwater influence factors were considered, such as altitude, slope angle, slope aspect, plan curvature, profile curvature, slope length, topographic wetness index (TWI), stream power index, distance from rivers, river density, distance from faults, fault density, land use, and lithology. From 842 springs in the study area, in the Khalkhal region of Iran, 70 % (589 springs) were considered for training and 30 % (253 springs) were used as a validation dataset. Then, KNN, LDA, MARS, and QDA models were applied in the R statistical software and the results were mapped as GPMs. Finally, the receiver operating characteristics (ROC) curve was implemented to evaluate the performance of the models. According to the results, the area under the curve of ROCs were calculated as 81.4, 80.5, 79.6, and 79.2 % for MARS, QDA, KNN, and LDA, respectively. So, it can be concluded that the performances of KNN and LDA were acceptable and the performances of MARS and QDA were excellent. Also, the results depicted high contribution of altitude, TWI, slope angle, and fault density, while plan curvature and land use were seen to be the least important factors.
Application of the Hydroecological Integrity Assessment Process for Missouri Streams
Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.
2009-01-01
Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.
Benedict, Stephen T.; Caldwell, Andral W.; Clark, Jimmy M.
2013-01-01
Digital flood-inundation maps for a 3.95-mile reach of the Saluda River from approximately 815 feet downstream from Old Easley Bridge Road to approximately 150 feet downstream from Saluda Lake Dam near Greenville, South Carolina, were developed by the U.S. Geological Survey (USGS). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Saluda River near Greenville, South Carolina (station 02162500). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/sc/nwis/uv/?site_no=02162500&PARAmeter_cd=00065,00060,00062. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the NWS Advanced Hydrologic Prediction Service (AHPS) flood-warning system Web site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-streamflow relations at USGS streamgage station 02162500, Saluda River near Greenville, South Carolina. The hydraulic model was then used to determine water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from approximately bankfull to 2 feet higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then exported to a geographic information system, ArcGIS, and combined with a digital elevation model (derived from Light Detection and Ranging [LiDAR] data with a 0.6-foot vertical Root Mean Square Error [RMSE] and a 3.0-foot horizontal RMSE), using HEC-GeoRAS tools in order to delineate the area flooded at each water level. The availability of these maps, along with real-time stage data from the USGS streamgage station 02162500 and forecasted stream stages from the NWS, can provide emergency management personnel and residents with information that is critical during flood-response and flood-recovery activities, such as evacuations, road closures, and disaster declarations.
Stream Lifetimes Against Planetary Encounters
NASA Technical Reports Server (NTRS)
Valsecchi, G. B.; Lega, E.; Froeschle, Cl.
2011-01-01
We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.
NASA Astrophysics Data System (ADS)
Jensen, C.; McGuire, K. J.
2015-12-01
One of the most basic descriptions of streams is the presence of channelized flow. However, this seemingly simple query goes unanswered for the majority of headwater networks, as stream length expands and contracts with the wetness of catchments seasonally, interannually, and in response to storm events. Although streams are known to grow and shrink, a lack of information on longitudinal dynamics across different geographic regions precludes effective management. Understanding the temporal variation in temporary network length over a broad range of settings is critical for policy decisions that impact aquatic ecosystem health. This project characterizes changes in active stream length for forested headwater catchments spanning four physiographic provinces of the Appalachian Highlands: the New England at Hubbard Brook Experimental Forest, New Hampshire; Valley and Ridge at Poverty Creek and the North Fork of Big Stony Creek in Jefferson National Forest, Virginia; Blue Ridge at Coweeta Hydrologic Laboratory, North Carolina; and Appalachian Plateau at Fernow Experimental Forest, West Virginia. Multivariate statistical analysis confirms these provinces exhibit characteristic topographies reflecting differences in climate, geology, and environmental history and, thus, merit separate consideration. The active streams of three watersheds (<45 ha) in each study area were mapped six times to capture a variety of moderate flow conditions that can be expected most of the time (i.e., exceedance probabilities between 25 to 75%). The geomorphic channel and channel heads were additionally mapped to determine how active stream length variability relates to the development of the geomorphic network. We found that drainage density can vary up to four-fold with discharge. Stream contraction primarily proceeds by increasing disconnection and disintegration into pools, while the number of flow origins remains constant except at high and low extremes of discharge. This work demonstrates that streams can remain active in the form of isolated, disconnected sections along even the most upstream reaches during low flows. This finding suggests that we must consider the maximum stream extent for conservation and management strategies much more frequently than for just periods of high stream flow.
McCartan, L.; Peper, J.D.; Bachman, L.J.; Horton, J. Wright
1999-01-01
Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
75 FR 5930 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... include BFEs located on the stream reach between the referenced locations above. Please refer to the... 20472. ADDRESSES City of Fort Ransom Maps are available for inspection at P.O. Box 17, Fort Ransom, ND 58033. City of Lisbon Maps are available for inspection at P.O. Box 1079, Lisbon, ND 58054...
Dennis A. Albert
1995-01-01
Describes the landscape ecosystems (ecoregions) of Michigan, Minnesota, and Wisconsin and includes maps of all three states. Regional descriptions include climate, bedrock geology, landforms, lakes and streams, soils, presettlement vegetation, natural disturbance, present vegetation and land use, rare biota, natural areas, public land managers, and conservation...
Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.
2007-01-01
This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation LULC at the reach scale (arc); stream reaches (arc); longitudinal LULC at the reach scale (arc); frequency of gaps in woody vegetation LULC at the segment scale (arc); stream segments (arc); and longitudinal LULC at the segment scale (arc).
Background/Question/Methods What species of fish might someone find in a local stream? How might that community change as a result of changes to characteristics of the stream and its watershed? PiSCES is a browser-based toolkit developed to predict a fish community for any NHD-Pl...
Map reading tools for map libraries.
Greenberg, G.L.
1982-01-01
Engineers, navigators and military strategists employ a broad array of mechanical devices to facilitate map use. A larger number of map users such as educators, students, tourists, journalists, historians, politicians, economists and librarians are unaware of the available variety of tools which can be used with maps to increase the speed and efficiency of their application and interpretation. This paper identifies map reading tools such as coordinate readers, protractors, dividers, planimeters, and symbol-templets according to a functional classification. Particularly, arrays of tools are suggested for use in determining position, direction, distance, area and form (perimeter-shape-pattern-relief). -from Author
Information Communication using Knowledge Engine on Flood Issues
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The system is designed for use by general public, often people with no domain knowledge and poor general science background. To improve effective communication with such audience, we have introduced a new way in IFIS to get information on flood related issues - instead of by navigating within hundreds of features and interfaces of the information system and web-based sources-- by providing dynamic computations based on a collection of built-in data, analysis, and methods. The IFIS Knowledge Engine connects to distributed sources of real-time stream gauges, and in-house data sources, analysis and visualization tools to answer questions grouped into several categories. Users will be able to provide input based on the query within the categories of rainfall, flood conditions, forecast, inundation maps, flood risk and data sensors. Our goal is the systematization of knowledge on flood related issues, and to provide a single source for definitive answers to factual queries. Long-term goal of this knowledge engine is to make all flood related knowledge easily accessible to everyone, and provide educational geoinformatics tool. The future implementation of the system will be able to accept free-form input and voice recognition capabilities within browser and mobile applications. We intend to deliver increasing capabilities for the system over the coming releases of IFIS. This presentation provides an overview of our Knowledge Engine, its unique information interface and functionality as an educational tool, and discusses the future plans for providing knowledge on flood related issues and resources.
Real-time MRI guidance of cardiac interventions.
Campbell-Washburn, Adrienne E; Tavallaei, Mohammad A; Pop, Mihaela; Grant, Elena K; Chubb, Henry; Rhode, Kawal; Wright, Graham A
2017-10-01
Cardiac magnetic resonance imaging (MRI) is appealing to guide complex cardiac procedures because it is ionizing radiation-free and offers flexible soft-tissue contrast. Interventional cardiac MR promises to improve existing procedures and enable new ones for complex arrhythmias, as well as congenital and structural heart disease. Guiding invasive procedures demands faster image acquisition, reconstruction and analysis, as well as intuitive intraprocedural display of imaging data. Standard cardiac MR techniques such as 3D anatomical imaging, cardiac function and flow, parameter mapping, and late-gadolinium enhancement can be used to gather valuable clinical data at various procedural stages. Rapid intraprocedural image analysis can extract and highlight critical information about interventional targets and outcomes. In some cases, real-time interactive imaging is used to provide a continuous stream of images displayed to interventionalists for dynamic device navigation. Alternatively, devices are navigated relative to a roadmap of major cardiac structures generated through fast segmentation and registration. Interventional devices can be visualized and tracked throughout a procedure with specialized imaging methods. In a clinical setting, advanced imaging must be integrated with other clinical tools and patient data. In order to perform these complex procedures, interventional cardiac MR relies on customized equipment, such as interactive imaging environments, in-room image display, audio communication, hemodynamic monitoring and recording systems, and electroanatomical mapping and ablation systems. Operating in this sophisticated environment requires coordination and planning. This review provides an overview of the imaging technology used in MRI-guided cardiac interventions. Specifically, this review outlines clinical targets, standard image acquisition and analysis tools, and the integration of these tools into clinical workflow. 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:935-950. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Seok, Song Young; Ho, Song Yang; Ho, Lee Jung; Moo Jong, Park
2015-04-01
Due to the increase of impervious layers caused by increased rainfall and urbanization which were brought about by the climate change after the late 1990s, the flood damage in urban watersheds is rising. The recent flood damage is occurring in medium and small stream rather than in large stream. Particularly, in medium stream which pass the cities, sudden flood occurs due to the short concentration of rainfall and urban areas suffer large damage, even though the flood damage is small, since residential areas and social infrastructures are concentrated. In spite of the importance of medium and small stream to pass the cities, there is no certain standard for classification of natural or urban stream and existing studies are mostly focused on the impervious area among the land use characteristics of watersheds. Most of existing river studies are based on the watershed scale, but in most urban watersheds where stream pass, urban areas are concentrated in the confluence, so urban areas only occupy less than 10% of the whole watershed and there is a high uncertainty in the classification of urban areas, based the watershed of stream. This study aims to suggest a classification standard of medium and small stream between local stream and small stream where suffer flood damage. According to the classified medium and small stream, this study analyzed the stream area to the stream width and distance using Arcgis Buffer tool, based on the stream line, not the existing watershed scale. This study then chose urban watersheds by analyzing the river area at certain intervals from the center of the chosen medium and small stream, in different ways. Among the land use characteristics in urban areas, the impervious area was applied to the selection standard of urban watersheds and the characteristics of urban watersheds were presented by calculating the ratio of the stream area to the impervious area using the Buffer tool. Acknowledgement "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keywords: land use, urban watershed, medium and smaill stream, impervious area
A geographic information system applied to a malaria field study in western Kenya.
Hightower, A W; Ombok, M; Otieno, R; Odhiambo, R; Oloo, A J; Lal, A A; Nahlen, B L; Hawley, W A
1998-03-01
This paper describes use of the global positioning system (GPS) in differential mode (DGPS) to obtain highly accurate longitudes, latitudes, and altitudes of 1,169 houses, 15 schools, 40 churches, four health care centers, 48 major mosquito breeding sites, 10 borehole wells, seven shopping areas, major roads, streams, the shore of Lake Victoria, and other geographic features of interest associated with a longitudinal study of malaria in 15 villages in western Kenya. The area mapped encompassed approximately 70 km2 and included 42.0 km of roads, 54.3 km of streams, and 15.0 km of lake shore. Location data were entered into a geographic information system for map production and linkage with various databases for spatial analyses. Spatial analyses using parasitologic and entomologic data are presented as examples. Background information on DGPS is presented along with estimates of effort and expense to produce the map information.
Accurate estimation of short read mapping quality for next-generation genome sequencing
Ruffalo, Matthew; Koyutürk, Mehmet; Ray, Soumya; LaFramboise, Thomas
2012-01-01
Motivation: Several software tools specialize in the alignment of short next-generation sequencing reads to a reference sequence. Some of these tools report a mapping quality score for each alignment—in principle, this quality score tells researchers the likelihood that the alignment is correct. However, the reported mapping quality often correlates weakly with actual accuracy and the qualities of many mappings are underestimated, encouraging the researchers to discard correct mappings. Further, these low-quality mappings tend to correlate with variations in the genome (both single nucleotide and structural), and such mappings are important in accurately identifying genomic variants. Approach: We develop a machine learning tool, LoQuM (LOgistic regression tool for calibrating the Quality of short read mappings, to assign reliable mapping quality scores to mappings of Illumina reads returned by any alignment tool. LoQuM uses statistics on the read (base quality scores reported by the sequencer) and the alignment (number of matches, mismatches and deletions, mapping quality score returned by the alignment tool, if available, and number of mappings) as features for classification and uses simulated reads to learn a logistic regression model that relates these features to actual mapping quality. Results: We test the predictions of LoQuM on an independent dataset generated by the ART short read simulation software and observe that LoQuM can ‘resurrect’ many mappings that are assigned zero quality scores by the alignment tools and are therefore likely to be discarded by researchers. We also observe that the recalibration of mapping quality scores greatly enhances the precision of called single nucleotide polymorphisms. Availability: LoQuM is available as open source at http://compbio.case.edu/loqum/. Contact: matthew.ruffalo@case.edu. PMID:22962451
NASA Astrophysics Data System (ADS)
Bagli, Stefano; Pistocchi, Alberto; Mazzoli, Paolo; Borga, Marco; Bertoldi, Giacomo; Brenner, Johannes; Luzzi, Valerio
2016-04-01
Climate change, increasing pressure on farmland to satisfy the growing demand, and need to ensure environmental quality for agriculture in order to be competitive require an increasing capacity of water management. In this context, web-based for forecasting and monitoring the hydrological conditions of topsoil can be an effective means to save water, maximize crop protection and reduce soil loss and the leaching of pollutants. Such tools need to be targeted to the users and be accessible in a simple way in order to allow adequate take up in the practice. IASMHYN "Improved management of Agricultural Systems by Monitoring and Hydrological evaluation" is a web mapping service designed to provide and update on a daily basis the main water budget variables for farmland management. A beta version of the tool is available at www.gecosistema.com/iasmhyn . IASMHYN is an instrument for "second level monitoring" that takes into account accurate hydro-meteorological information's from ground stations and remote sensing sources, and turns them into practically usable decision variables for precision farming, making use of geostatistical analysis and hydrological models The main routines embedded in IASMYHN exclusively use open source libraries (R packages and Python), to perform following operations: (1) Automatic acquisition of observed data, both from ground stations and remote sensing, concerning precipitation (RADAR) and temperature (MODIS-LST) available from various sources; (2) Interpolation of acquisitions through regression kriging in order to spatially map the meteorological data; (3) Run of hydrological models to obtain spatial information of hydrological soil variables of immediate interest in agriculture. The real time results that are produced are available trough a web interface and provide the user with spatial maps and time series of the following variables, supporting decision on irrigation, soil protection from erosion, pollution risk of groundwater and streams: - Daily precipitation and its characteristics (rain, snow or hail, rain erosiveness); - Maximum, minimum and average daily temperature; - Soil Water Content (SWC); - Infiltration into the deep layers of the soil and surface runoff; - Potential loss of soil due to erosion - Residence time of a possible chemical (pesticides, fertilizers) applied to the soil. Thematic real time maps are produced give the user support decision on irrigation, soil management and pesticide/fertilizer application. The ongoing project will also lead to validation and improvement of estimates of hydrological variables from satellite imagery and radar data. The tool has been cross-validated with estimates of evapotranspiration and soil water content in agricultural sites in South Tyrol (Italy) in the framework of MONALISA project (http://www.monalisa-project.eu). A comparison with physical based models, satellite imagery and radar data will allow further generalization of the product. The ultimate goal of the tool is to make available on the market a service that is generally applicable in Europe , using commonly available data, to provide single farmers and organizations effective and up to date information for planning and programming their activities.
ERIC Educational Resources Information Center
Cromwell, Mare; And Others
This guide contains 12 activities designed to encourage secondary school student inquiry, investigation, and action regarding local streams and rivers. The activities are sequential and organized into three topic areas. The first section consists of three activities that help orient students to their local watercourse. Students map a local…
USDA-ARS?s Scientific Manuscript database
A combination of field surveys and Structure-from-Motion (SfM) techniques were used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground-based SfM was used to map channel dimensions with 10 cm vertical accur...
Jim A. McKean; Dan J. Isaak; Charles W. Wright
2008-01-01
Riverine aquatic biodiversity is rapidly being lost worldwide, but preservation efforts are hampered, in part because studies of these dynamic environments are limited by cost and logistics to small local surveys. Full understanding of stream ecosystems requires precise, high-resolution mapping of entire stream networks and adjacent landforms. We use a narrow-beam,...
Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.
2005-01-01
Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In contrast, FEMA Flood Insurance Rate Maps (FIRMs) based on the FAN model predict uniformly high flood risk across the study areas without regard for small-scale topography and surficial geology. ?? 2005 Geological Society of America.
Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process
2015-10-01
ARL-TR-7501 ● OCT 2015 US Army Research Laboratory Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact...Research Laboratory Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process by Stephen Berkebile Vehicle...YYYY) October 2015 2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 January–30 June 2015 4. TITLE AND SUBTITLE Friction Mapping as a Tool for
Food production and service in UK hospitals.
Ahmed, Mohamed; Jones, Eleri; Redmond, Elizabeth; Hewedi, Mahmoud; Wingert, Andreas; Gad El Rab, Mohamed
2015-01-01
The purpose of this paper is to apply value stream mapping holistically to hospital food production/service systems focused on high-quality food. Multiple embedded case study of three (two private-sector and one public-sector) hospitals in the UK. The results indicated various issues affecting hospital food production including: the menu and nutritional considerations; food procurement; food production; foodservice; patient perceptions/expectations. Value stream mapping is a new approach for food production systems in UK hospitals whether private or public hospitals. The paper identifies opportunities for enhancing hospital food production systems. The paper provides a theoretical basis for process enhancement of hospital food production and the provision of high-quality hospital food.
Comparison data for Seasat altimetry in the western North Atlantic
NASA Technical Reports Server (NTRS)
Cheney, R. E.
1981-01-01
The radar altimeter flown on Seasat in 1978 collected approximately 1,000 orbits of high quality data (5-8 precision). In the western North Atlantic these data were combined with a detailed gravimetric geoid in an attempt to produce profiles of dynamic topography. In order to provide a basis for evaluation of these profiles, available oceanographic observations in the Gulf Stream/Sargasso Sea region have been compiled into a series of biweekly maps. The data include XBT's, satellite infrared imagery, and selected trajectories of surface drifters and sub-surface SOFAR floats. The maps document the known locations of the Gulf Stream, cyclonic and anticyclonic rings, and mid-ocean eddies during the period July to October 1978.
GEOS-3 ocean current investigation using radar altimeter profiling. [Gulf Stream surface topography
NASA Technical Reports Server (NTRS)
Leitao, C. D.; Huang, N. E.; Parra, C. G.
1978-01-01
Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 radar altimeter. The quasi-stationary departures are observed either as elevation changes in single pass profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.
Stream channel cross sections for a reach of the Boise River in Ada County, Idaho
Hortness, Jon E.; Werner, Douglas C.
1999-01-01
The Federal Emergency Management Agency produces maps of areas that are likely to be inundated during major floods, usually the 100-year, or 1-percent probability, flood. The maps, called Flood Insurance Rate Maps, are used to determine flood insurance rates for homes, businesses, or other structures located in flood-prone areas. State and local governments also use these maps for help with, among other things, development planning and disaster mitigation. During the period October 1997 through December 1998, the initial phase of a hydraulic analysis project of the Boise River from Barber Dam to the Ada/Canyon County boundary, the U.S. Geological Survey collected stream channel cross-section data at 238 locations along the river and documented 108 elevation reference marks established for horizontal and vertical control. In the final phase of the project, the Survey will use these data to determine water-surface elevations for the 10-, 50-, 100-, and 500-year floods and to define floodway limits. The Federal Emergency Management Agency will use the results of this hydraulic analysis to update the 100- and 500-year flood boundaries and the floodway limits on their Flood Insurance Rate Maps.
Regional geochemistry Bandung Quadrangle West Java: for environmental and resources studies
NASA Astrophysics Data System (ADS)
Sendjaja, Purnama; Baharuddin
2017-06-01
Geochemical mapping based on the stream sediment method has been carried out in the whole of Java Region by the Centre for Geological Survey. The Regional Geochemistry Bandung Quadrangle as part of West Java Region has been mapped in 1:100.000 scale map, base on the Geological Map of Bandung Quadrangle. About 82 stream sediment samples collected and sieved in the 80 mesh sieve fraction during the field work session at 2011. This fraction was prepared and analysed for 30 elements by X-ray fluorescence spectrometry at the Centre for Geological Survey Laboratory. There are some elements indicating significant anomaly in this region, and it is important to determine the present abundance and spatial distribution of the elements for presuming result from natural product or derived from human activities. The volcanic products (Tangkuban Perahu Volcano, Volcanic Rock Complex and Quarternary Volcanic-Alluvial Deposit) are clearly identified on the distribution of As, Ba, Cl, Cu, Zr and La elements. However Mn, Zn, V and Sr are related to precipitation in the Tertiary Sediments, while the influence of human activities are showing from a geochemical map of Cl, Cr, Cu, Pb and Zn that show scattered anomalies localized close to the cities, farming and industries.
Interoperability in planetary research for geospatial data analysis
NASA Astrophysics Data System (ADS)
Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara
2018-01-01
For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.
Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary
2015-07-14
Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in turn, how these changes affect Moapa dace abundance. Such tools are critical for devising management strategies to achieve recovery goals.
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2014-12-01
Recent advances in internet and cyberinfrastucture technologies have provided the capability to understand the hydrological and meteorological systems at space and time scales that are critical for making accurate understanding and prediction of flooding, and emergency preparedness. A novel example of a cyberinfrastructure platform for flood preparedness and response is the Iowa Flood Center's Iowa Flood Information System (IFIS). IFIS is a one-stop web-platform to access community-based flood conditions, forecasts, visualizations, inundation maps and flood-related data, information, and applications. An enormous volume of real-time observational data from a variety of sensors and remote sensing resources (radars, rain gauges, stream sensors, etc.) and complex flood inundation models are staged on a user-friendly maps environment that is accessible to the general public. IFIS has developed into a very successful tool used by agencies, decision-makers, and the general public throughout Iowa to better understand their local watershed and their personal and community flood risk, and to monitor local stream and river levels. IFIS helps communities make better-informed decisions on the occurrence of floods, and alerts communities in advance to help minimize flood damages. IFIS is widely used by general public in Iowa and the Midwest region with over 120,000 unique users, and became main source of information for many newspapers and TV stations in Iowa. IFIS has features for general public to improve emergency preparedness, and for decision makers to support emergency response and recovery efforts. IFIS is also a great platform for educators and local authorities to educate students and public on flooding with games, easy to use interactive environment, and data rich system.
Inpatient preanalytic process improvements.
Wagar, Elizabeth A; Phipps, Ron; Del Guidice, Robert; Middleton, Lavinia P; Bingham, John; Prejean, Cheryl; Johnson-Hamilton, Martha; Philip, Pheba; Le, Ngoc Han; Muses, Waheed
2013-12-01
Phlebotomy services are a common target for preanalytic improvements. Many new, quality engineering tools have recently been applied in clinical laboratories. However, data on relatively few projects have been published. This example describes a complete application of current, quality engineering tools to improve preanalytic phlebotomy services. To decrease the response time in the preanalytic inpatient laboratory by 25%, to reduce the number of incident reports related to preanalytic phlebotomy, and to make systematic process changes that satisfied the stakeholders. The Department of Laboratory Medicine, General Services Section, at the University of Texas MD Anderson Cancer Center (Houston) is responsible for inpatient phlebotomy in a 24-hour operation, which serves 689 inpatient beds. The study director was project director of the Division of Pathology and Laboratory Medicine's Quality Improvement Section and was assisted by 2 quality technologists and an industrial engineer from MD Anderson Office of Performance Improvement. After implementing each solution, using well-recognized, quality tools and metrics, the response time for blood collection decreased by 23%, which was close to meeting the original responsiveness goal of 25%. The response time between collection and arrival in the laboratory decreased by 8%. Applicable laboratory-related incident reports were reduced by 43%. Comprehensive application of quality tools, such as statistical control charts, Pareto diagrams, value-stream maps, process failure modes and effects analyses, fishbone diagrams, solution prioritization matrices, and customer satisfaction surveys can significantly improve preset goals for inpatient phlebotomy.
Magrit: a new thematic cartography tool
NASA Astrophysics Data System (ADS)
Viry, Matthieu; Giraud, Timothée; Lambert, Nicolas
2018-05-01
The article provides an overview of the features of the Magrit web application: a free online thematic mapping tool, presenting a strong pedagogical dimension and making possible to mobilize all the elements necessary for the realization of a thematic map. In this tool, several simple modes of representation are proposed such as proportional maps or choropleth maps. Other, more complex modes are also available such as smoothed maps and cartograms. Each map can be finalized thanks to layout and customization features (projection, scale, orientation, toponyms, etc.) and exported in vector format. Magrit is therefore a complete, light and versatile tool particularly adapted to cartography teaching at the university.
Analysis of the low-flow characteristics of streams in Louisiana
Lee, Fred N.
1985-01-01
The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Public Works, used geologic maps, soils maps, precipitation data, and low-flow data to define four hydrographic regions in Louisiana having distinct low-flow characteristics. Equations were derived, using regression analyses, to estimate the 7Q2, 7Q10, and 7Q20 flow rates for basically unaltered stream basins smaller than 525 square miles. Independent variables in the equations include drainage area (square miles), mean annual precipitation index (inches), and main channel slope (feet per mile). Average standard errors of regression ranged from +44 to +61 percent. Graphs are given for estimating the 7Q2, 7Q10, and 7Q20 for stream basins for which the drainage area of the most downstream data-collection site is larger than 525 square miles. Detailed examples are given in this report for the use of the equations and graphs.
Development and Application of Flow Duration Curves for Stream Restoration
2016-02-01
hydrograph (TNC 2009). Colorado State University’s GeoTools offers an FDC computation focusing on the geomorphic implications of hydrology (Bledsoe...processes • Assessment of changes in stream metabolism using temperature duration curves • Evaluation of pollutant or contaminant transport using...major concern associated with stream restoration projects, due to the many chemical, ecological, and geomorphic advantages a robust riparian buffer
Bioassessment of silvicultural impacts in streams and wetlands of the eastern United States
John J. Hutchens; Darold P. Batzer; Elizabeth Reese
2003-01-01
Bioassessment is a useful tool to determine the impact of logging practices on the biological integrity of streams and wetlands. Measuring biota directly has an intuitive appeal for impact assessment, and biota can be superior indicators to physical or chemical characteristics because they can reflect cumulative impacts over time. Logging can affect stream and wetland...
VOTable JAVA Streaming Writer and Applications.
NASA Astrophysics Data System (ADS)
Kulkarni, P.; Kembhavi, A.; Kale, S.
2004-07-01
Virtual Observatory related tools use a new standard for data transfer called the VOTable format. This is a variant of the xml format that enables easy transfer of data over the web. We describe a streaming interface that can bridge the VOTable format, through a user friendly graphical interface, with the FITS and ASCII formats, which are commonly used by astronomers. A streaming interface is important for efficient use of memory because of the large size of catalogues. The tools are developed in JAVA to provide a platform independent interface. We have also developed a stand-alone version that can be used to convert data stored in ASCII or FITS format on a local machine. The Streaming writer is successfully being used in VOPlot (See Kale et al 2004 for a description of VOPlot).We present the test results of converting huge FITS and ASCII data into the VOTable format on machines that have only limited memory.
Streamflow gain and loss of selected streams in northern Arkansas
Freiwald, David A.
1987-01-01
This map shows streamflow gain and loss measurements (seepage runs) on the Crooked, Osage, and Spavinaw Creeks, and Illinois, Kings, Mulberry, Spring, and Strawberry Rivers during the low-flow conditions from September 1982 to October 1984. Data indicated that streamflow gains and losses resulted from differences in lithology of the predominately carbonate rocks and from the presence of faults. The Kings and Strawberry Rivers and Osage Creek were gaining streams throughout their length, however wastewater discharges precluded an accurate determination on Osage Creek. Crooked and Spavinaw Creeks and the Illinois, Spring, and Mulberry Rivers generally were gaining streams throughout most of their lengths although short losing reaches were identified. The largest gains in streamflow generally occurred were Mississippian formation predominated near the streams. Faults that intersected the stream channels primarily were responsible for streamflow losses. The specific conductance of water increased in the stream reaches that had the most significant streamflow gains. The specific conductance of water in tributaries was generally higher than that in larger streams. (Author 's abstract)
NASA Technical Reports Server (NTRS)
Roberts, Dar A.; Chadwick, Oliver A.; Batista, Getulio T.
2003-01-01
LBA research from the first phase of LBA focused on three broad categories: 1) mapping land cover and quantifying rates of change, persistence of pasture, and area of recovering forest; 2) evaluating the role of environmental factors and land-use history on soil biogeochemistry; and 3) quantifying the natural and human controls on stream nutrient concentrations. The focus of the research was regional, concentrating primarily in the state of RondBnia, but also included land-cover mapping in the vicinity of Maraba, Para, and Manaus, Amazonas. Remote sensing analysis utilized Landsat Thematic Mapper (TM) and Multispectral Scanner (MS S) data to map historical patterns of land-cover change. Specific questions addressed by the remote sensing component of the research included: 1) what is the areal extent of dominant land-cover classes? 2) what are the rates of change of dominant land cover through processes of deforestation, disturbance and regeneration? and 3) what are the dynamic properties of each class that characterize temporal variability, duration, and frequency of repeat disturbance? Biogeochemical analysis focused on natural variability and impacts of land-use/land-cover changes on soil and stream biogeochemical properties at the regional scale. An emphasis was given to specific soil properties considered to be primary limiting factors regionally, including phosphorus, nitrogen, base cations and cation-exchange properties. Stream sampling emphasized the relative effects of the rates and timing of land-cover change on stream nutrients, demonstrating that vegetation conversion alone does not impact nutrients as much as subsequent land use and urbanization.
MAP-Motivated Carrier Synchronization of GMSK Based on the Laurent AMP Representation
NASA Technical Reports Server (NTRS)
Simon, M. K.
1998-01-01
Using the MAP estimation approach to carrier synchronization of digital modulations containing ISI together with a two pulse stream AMP representation of GMSK, it is possible to obtain an optimum closed loop configuration in the same manner as has been previously proposed for other conventional modulations with ISI.
Flood characteristics of streams in Owyhee County, Idaho
Riggs, H.C.; Harenberg, W.A.
1976-01-01
Channel-width measurements were used to estimate annual peaks with a recurrence interval of 10 years at 79 sites in Owyhee County, Idaho, and adjacent areas. These discharges and those from 33 gaging stations are plotted on a map of the area. The map will allow the user to interpolate between sites. (Woodard-USGS)
Backwards compatible high dynamic range video compression
NASA Astrophysics Data System (ADS)
Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.
2014-02-01
This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.
Estimated Perennial Streams of Idaho and Related Geospatial Datasets
Rea, Alan; Skinner, Kenneth D.
2009-01-01
The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of record, generally would be considered to represent flow conditions better at a given site than flow estimates based on regionalized regression models. The geospatial datasets of modeled perennial streams are considered a first-cut estimate, and should not be construed to override site-specific flow data.
THRSTER: A THRee-STream Ejector Ramjet Analysis and Design Tool
NASA Technical Reports Server (NTRS)
Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.
2000-01-01
An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.
THRSTER: A Three-Stream Ejector Ramjet Analysis and Design Tool
NASA Technical Reports Server (NTRS)
Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.; Komar, D. R. (Technical Monitor)
2000-01-01
An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.
Taking Science On-air with Google+
NASA Astrophysics Data System (ADS)
Gay, P.
2014-01-01
Cost has long been a deterrent when trying to stream live events to large audiences. While streaming providers like UStream have free options, they include advertising and typically limit broadcasts to originating from a single location. In the autumn of 2011, Google premiered a new, free, video streaming tool -- Hangouts on Air -- as part of their Google+ social network. This platform allows up to ten different computers to stream live content to an unlimited audience, and automatically archives that content to YouTube. In this article we discuss best practices for using this technology to stream events over the internet.
Color encryption scheme based on adapted quantum logistic map
NASA Astrophysics Data System (ADS)
Zaghloul, Alaa; Zhang, Tiejun; Amin, Mohamed; Abd El-Latif, Ahmed A.
2014-04-01
This paper presents a new color image encryption scheme based on quantum chaotic system. In this scheme, a new encryption scheme is accomplished by generating an intermediate chaotic key stream with the help of quantum chaotic logistic map. Then, each pixel is encrypted by the cipher value of the previous pixel and the adapted quantum logistic map. The results show that the proposed scheme has adequate security for the confidentiality of color images.
Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.
Groundwater Discharge along a Channelized Coastal Plain Stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit
In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffusemore » discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.« less
NASA Astrophysics Data System (ADS)
O'Connor, B. L.; Hamada, Y.; Bowen, E. E.; Wuthrich, K. K.; Grippo, M. A.
2013-12-01
Land development and associated disturbances in arid environments can adversely affect the ecological functionality of ephemeral stream channels. Land use managers have limited methodologies available for assessing low-impact development plans, or for monitoring changes in stream functionality as land use changes are implemented. The development of utility-scale solar energy facilities is underway in the southwestern United States. Federal and state agencies have developed plans to concentrate facilities in specific regions to minimize transmission limitations (e.g., the Bureau of Land Management's Solar Energy Zones cover 1,100 km2). However, multiple facility footprints in a single desert valley have the potential to drastically alter the natural pattern of ephemeral stream networks. This study focuses on quantifying the sensitivity of ephemeral streams with respect to land disturbance impacts on flow and sediment conveyance, groundwater recharge, and the loss of soil and vegetative habitats. An initial assessment used publicly-available geospatial data (typically 10- to 30-m resolution) on topography, surficial geology, and soil characteristics, as well as data on historical peak discharges and aerial photographs. These datasets were used to inform a professional judgment, score-based ranking of potential land disturbance impacts on the functionality of ephemeral streams. The results were limited to mapped stream channels in the National Hydrography Dataset, but suggested that hydrological and geomorphic impacts were a greater concern in valley piedmont regions, and that habitat concerns were greater in the valley regions where vegetation is sparsely distributed. Current efforts are focused on using a remote sensing approach to obtain high-resolution information on topography, soil, and vegetation in order to map detailed ephemeral stream networks, measure channel bathymetry characteristics, and use spectral indices of soil and vegetation to develop surrogate measures of stream ecological functionality. The initial results for a small watershed (110 km2) using stereoscopic, sub-meter resolution aerial images, detected an increase of more than 100% in identified ephemeral stream channels and habitat patterns were more spatially correlated with ephemeral stream networks than was observed for the initial assessment approach. The eventual goal of these efforts is to refine the methodology for quantifying the disturbance sensitivity of ephemeral streams, from professional judgment rankings to spectral indices of stream functionality, and to close the spatial gap between the need for large-scale assessments for land management planning and the small-scale analyses and data requirements for quantifying ephemeral stream functionality.
Matheson, Heath E; Buxbaum, Laurel J; Thompson-Schill, Sharon L
2017-11-01
Our use of tools is situated in different contexts. Prior evidence suggests that diverse regions within the ventral and dorsal streams represent information supporting common tool use. However, given the flexibility of object concepts, these regions may be tuned to different types of information when generating novel or uncommon uses of tools. To investigate this, we collected fMRI data from participants who reported common or uncommon tool uses in response to visually presented familiar objects. We performed a pattern dissimilarity analysis in which we correlated cortical patterns with behavioral measures of visual, action, and category information. The results showed that evoked cortical patterns within the dorsal tool use network reflected action and visual information to a greater extent in the uncommon use group, whereas evoked neural patterns within the ventral tool use network reflected categorical information more strongly in the common use group. These results reveal the flexibility of cortical representations of tool use and the situated nature of cortical representations more generally.
Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.
2010-01-01
In addition, watersheds were assessed for their reference quality within nine broad regions for use in studies intended to characterize stream flows under conditions minimally influenced by human activities. Three primary criteria were used to assess reference quality: (1) a quantitative index of anthropogenic modification within the watershed based on GIS-derived variables, (2) visual inspection of every stream gage and drainage basin from recent high-resolution imagery and topographic maps, and (3) information about man-made influences from USGS Annual Water Data Reports. From the set of 6785 sites, we identified 1512 as reference-quality stream gages. All data derived for these watersheds as well as the reference condition evaluation are provided as an online data set termed GAGES (geospatial attributes of gages for evaluating stream flow).
Landslide and flood hazard assessment in urban areas of LevoÄa region (Eastern Slovakia)
NASA Astrophysics Data System (ADS)
Magulova, Barbora; Caporali, Enrica; Bednarik, Martin
2010-05-01
The case study presents the use of statistical methods and analysis tools, for hazard assessment of "urbanization units", implemented in a Geographic Information Systems (GIS) environment. As a case study, the Levoča region (Slovakia) is selected. The region, with a total area of about 351 km2, is widely affected by landslides and floods. The problem, for small urbanization areas, is nowadays particularly significant from the socio-economic point of view. It is considered, presently, also an increasing problem, mainly because of climate change and more frequent extreme rainfall events. The geo-hazards are evaluated using a multivariate analysis. The landslide hazard assessment is based on the comparison and subsequent statistical elaboration of territorial dependence among different input factors influencing the instability of the slopes. Particularly, five factors influencing slope stability are evaluated, i.e. lithology, slope aspect, slope angle, hypsographic level and present land use. As a result a new landslide susceptibility map is compiled and different zones of stable, dormant and non-stable areas are defined. For flood hazard map a detailed digital elevation model is created. A compose index of flood hazard is derived from topography, land cover and pedology related data. To estimate flood discharge, time series of stream flow and precipitation measurements are used. The assessment results are prognostic maps of landslide hazard and flood hazard, which presents the optimal base for urbanization planning.
Scalability Analysis of Gleipnir: A Memory Tracing and Profiling Tool, on Titan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janjusic, Tommy; Kartsaklis, Christos; Wang, Dali
2013-01-01
Application performance is hindered by a variety of factors but most notably driven by the well know CPU-memory speed gap (also known as the memory wall). Understanding application s memory behavior is key if we are trying to optimize performance. Understanding application performance properties is facilitated with various performance profiling tools. The scope of profiling tools varies in complexity, ease of deployment, profiling performance, and the detail of profiled information. Specifically, using profiling tools for performance analysis is a common task when optimizing and understanding scientific applications on complex and large scale systems such as Cray s XK7. This papermore » describes the performance characteristics of using Gleipnir, a memory tracing tool, on the Titan Cray XK7 system when instrumenting large applications such as the Community Earth System Model. Gleipnir is a memory tracing tool built as a plug-in tool for the Valgrind instrumentation framework. The goal of Gleipnir is to provide fine-grained trace information. The generated traces are a stream of executed memory transactions mapped to internal structures per process, thread, function, and finally the data structure or variable. Our focus was to expose tool performance characteristics when using Gleipnir with a combination of an external tools such as a cache simulator, Gl CSim, to characterize the tool s overall performance. In this paper we describe our experience with deploying Gleipnir on the Titan Cray XK7 system, report on the tool s ease-of-use, and analyze run-time performance characteristics under various workloads. While all performance aspects are important we mainly focus on I/O characteristics analysis due to the emphasis on the tools output which are trace-files. Moreover, the tool is dependent on the run-time system to provide the necessary infrastructure to expose low level system detail; therefore, we also discuss any theoretical benefits that can be achieved if such modules were present.« less
Depletion mapping and constrained optimization to support managing groundwater extraction
Fienen, Michael N.; Bradbury, Kenneth R.; Kniffin, Maribeth; Barlow, Paul M.
2018-01-01
Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping—showing the model-calculated potential impacts that wells have on stream baseflow—can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States—home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices.
NASA Astrophysics Data System (ADS)
Sarp, Gulcan; Duzgun, Sebnem
2015-11-01
A morphometric analysis of river network, basins and relief using geomorphic indices and geostatistical analyses of Digital Elevation Model (DEM) are useful tools for discussing the morphometric evolution of the basin area. In this study, three different indices including valley floor width to height ratio (Vf), stream gradient (SL), and stream sinuosity were applied to Afşin-Elbistan lignite basin to test the imprints of tectonic activity. Perturbations of these indices are usually indicative of differences in the resistance of outcropping lithological units to erosion and active faulting. To map the clusters of high and low indices values, the Kernel density estimation (K) and the Getis-Ord Gi∗ statistics were applied to the DEM-derived indices. The K method and Gi∗ statistic highlighting hot spots and cold spots of the SL index, the stream sinuosity and the Vf index values helped to identify the relative tectonic activity of the basin area. The results indicated that the estimation by the K and Gi∗ including three conceptualization of spatial relationships (CSR) for hot spots (percent volume contours 50 and 95 categorized as high and low respectively) yielded almost similar results in regions of high tectonic activity and low tectonic activity. According to the K and Getis-Ord Gi∗ statistics, the northern, northwestern and southern parts of the basin indicates a high tectonic activity. On the other hand, low elevation plain in the central part of the basin area shows a relatively low tectonic activity.
The use of coliform plate count data to assess stream sanitary and ecological condition is limited by the need to store samples at 4oC and analyze them within a 24-hour period. We are testing LH-PCR as an alternative tool to assess the bacterial load of streams, offering a cost ...
Web-Based Real-Time Emergency Monitoring
NASA Technical Reports Server (NTRS)
Harvey, Craig A.; Lawhead, Joel
2007-01-01
The Web-based Real-Time Asset Monitoring (RAM) module for emergency operations and facility management enables emergency personnel in federal agencies and local and state governments to monitor and analyze data in the event of a natural disaster or other crisis that threatens a large number of people and property. The software can manage many disparate sources of data within a facility, city, or county. It was developed on industry-standard Geo- Spatial software and is compliant with open GIS standards. RAM View can function as a standalone system, or as an integrated plugin module to Emergency Operations Center (EOC) software suites such as REACT (Real-time Emergency Action Coordination Tool), thus ensuring the widest possible distribution among potential users. RAM has the ability to monitor various data sources, including streaming data. Many disparate systems are included in the initial suite of supported hardware systems, such as mobile GPS units, ambient measurements of temperature, moisture and chemical agents, flow meters, air quality, asset location, and meteorological conditions. RAM View displays real-time data streams such as gauge heights from the U.S. Geological Survey gauging stations, flood crests from the National Weather Service, and meteorological data from numerous sources. Data points are clearly visible on the map interface, and attributes as specified in the user requirements can be viewed and queried.
Fifty-year flood-inundation maps for Sonaguera, Honduras
Kresch, David L.; Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Sonaguera that would be inundated by a 50-year flood of Rio Sonaguera and its tributary, Rio Juan Lazaro. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Sonaguera as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Sonaguera and Rio Juan Lazaro at Sonaguera were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and a ground survey at the bridge. There are no nearby long-term stream-gaging stations on Rio Sonaguera or Rio Juan Lazaro; therefore, the 50-year-flood discharge for Rio Sonaguera above the confluence with Rio Juan Lazaro, 194 cubic meters per second; for Rio Juan Lazaro at its mouth, 168 cubic meters per second, and for Rio Sonaguera at the downstream end of the study area, 282 cubic meters per second; were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation.
Development of a Nebraska culvert aquatic organism passage screening tool.
DOT National Transportation Integrated Search
2012-12-01
Culverts channelize water relative to natural stream reaches, which can increase the velocity of water passing through them. Increased water velocities can alter stream morphology and create a possible barrier or obstacle to fish passage, which may a...
Empirical flow parameters - a tool for hydraulic model validity assessment.
DOT National Transportation Integrated Search
2013-08-01
Data in Texas from the U.S. Geological Survey (USGS) physical stream flow and channel property measurements for gaging stations in the state of Texas were used to construct relations between observed stream flow, topographic slope, mean section veloc...
Stream restoration in dynamic fluvial systems: Scientific approaches, analyses, and tools
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-04-01
In the United States the average annual investment in river restoration programs is approximately $1 billion. Despite this burgeoning industry, the National Water Quality Inventory, which tracks the health of the nation's rivers, has shown no serious improvement in cumulative river health since the early 1990s. In the AGU monographStream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools, editors Andrew Simon, Sean J. Bennett, and Janine M. Castro pull together the latest evidence-based understanding of stream restoration practices, with an aim of guiding the further development of the field and helping to right its apparently unsuccessful course. In this interview, Eos talks to Sean J. Bennett, University of Buffalo, about the culture, practice, and promise of restoring rivers.
Stream-profile analysis and stream-gradient index
Hack, John T.
1973-01-01
The generally regular three-dimensional geometry of drainage networks is the basis for a simple method of terrain analysis providing clues to bedrock conditions and other factors that determine topographic forms. On a reach of any stream, a gradient-index value can be obtained which allows meaningful comparisons of channel slope on streams of different sizes. The index is believed to reflect stream power or competence and is simply the product of the channel slope at a point and channel length measured along the longest stream above the pointwhere the calculation is made. In an adjusted topography, changes in gradient-index values along a stream generally correspond to differences in bedrock or introduced load. In any landscape the gradient index of a stream is related to total relief and stream regimen. Thus, climate, tectonic events, and geomorphic history must be considered in using the gradient index. Gradient-index values can be obtained quickly by simple measurements on topographic maps, or they can be obtained by more sophisticated photogrammetric measurements that involve simple computer calculations from x, y, z coordinates.
Applications of remote sensing to stream discharge predictions
NASA Technical Reports Server (NTRS)
Krause, F. R.; Winn, C. B.
1972-01-01
A feasibility study has been initiated on the use of remote earth observations for augmenting stream discharge prediction for the design and/or operation of major reservoir systems, pumping systems and irrigation systems. The near-term objectives are the interpolation of sparsely instrumented precipitation surveillance networks and the direct measurement of water loss by evaporation. The first steps of the study covered a survey of existing reservoir systems, stream discharge prediction methods, gage networks and the development of a self-adaptive variation of the Kentucky Watershed model, SNOPSET, that includes snowmelt. As a result of these studies, a special three channel scanner is being built for a small aircraft, which should provide snow, temperature and water vapor maps for the spatial and temporal interpolation of stream gages.
Multivariate model of female black bear habitat use for a Geographic Information System
Clark, Joseph D.; Dunn, James E.; Smith, Kimberly G.
1993-01-01
Simple univariate statistical techniques may not adequately assess the multidimensional nature of habitats used by wildlife. Thus, we developed a multivariate method to model habitat-use potential using a set of female black bear (Ursus americanus) radio locations and habitat data consisting of forest cover type, elevation, slope, aspect, distance to roads, distance to streams, and forest cover type diversity score in the Ozark Mountains of Arkansas. The model is based on the Mahalanobis distance statistic coupled with Geographic Information System (GIS) technology. That statistic is a measure of dissimilarity and represents a standardized squared distance between a set of sample variates and an ideal based on the mean of variates associated with animal observations. Calculations were made with the GIS to produce a map containing Mahalanobis distance values within each cell on a 60- × 60-m grid. The model identified areas of high habitat use potential that could not otherwise be identified by independent perusal of any single map layer. This technique avoids many pitfalls that commonly affect typical multivariate analyses of habitat use and is a useful tool for habitat manipulation or mitigation to favor terrestrial vertebrates that use habitats on a landscape scale.
Geologic map of the La Mesita Negra SE Quadrangle, Bernalillo County, New Mexico
Shroba, Ralph R.; Thompson, Ren A.; Schmidt, Dwight L.; Personius, Stephen F.; Maldonado, Florian; Brandt, Theodore R.
2003-01-01
Geologic mapping, in support of the USGS Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of artificial-fill, alluvial, colluvial, and eolian deposits, lava flows and related sediments of the Albuquerque volcanoes, and upper Santa Fe Group sediments. These deposits are on, beneath, and along the West Mesa (Llano de Albuquerque) just west of Albuquerque, New Mexico. Artificial fill deposits are mapped chiefly beneath and near segments of Interstate 40, in an inactive landfill (or dump) north of Interstate 40 near the eastern boundary of the map area, and in the active Cerro Colorado landfill near the southwestern corner of the map area. Alluvial deposits are mapped in stream channels, beneath treads of terraces, and on hill slopes. They include alluvium in stream channels and beneath treads of low terraces, terrace alluvium, sheetwash deposits, gravelly alluvium, and old alluvium and calcic soils of the Llano de Albuquerque. Alluvial and colluvial deposits are mapped on hill slopes. They include young alluvial-slope deposits, alluvium and colluvium, undivided, and old alluvial-slope deposits. Colluvial deposits are also mapped on hill slopes. They include colluvial deposits, undivided, as well as alluvial deposits, eolian sand, and calcic soils associated with fault scarps. Eolian deposits as well as eolian and alluvial deposits mantle gently slopping surfaces on the Llano de Albuquerque. They include active eolian sand, active and inactive eolian sand and sheetwash deposits, undivided, and inactive eolian sand and sheetwash deposits, undivided. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include five young lava flows, two young cinder deposits, and old lava flows. Upper Santa Fe Group sediments are well exposed and mapped in the western part of the map area. They include a gravel unit, a pebbly sand unit, and a mud and sand unit. Undivided upper Santa Fe Group sediments were mapped in the eastern part of the map area. Sediments and lava flows in the map area record alluvial, eolian, colluvial, and volcanic processes of the past several million years. The surficial deposits (post-Santa Fe Group sediments) on the map are known or estimated to be at least 1 m thick; most deposits are poorly exposed. Thin (< 50 cm), discontinuous deposits of eolian sand and sheetwash (Qea, Qes, and Qsw) locally are present on gently sloping map units older than the alluvium in stream channels and low terraces (Qa). These thin eolian and sheetwash deposits are not mapped, but they are widespread on the gravel unit of the upper Santa Fe Group sediments (Tg) on the eastern flank of the Llano de Albuquerque, near the eastern boundary of the map area (quadrangle). Small deposits of artificial fill (af) less than about 25 m wide are not mapped. Fractional map symbols (for example, Qsw/Qby1) are used where sheetwash deposits mantle lava flows. These fractional units are not described here; instead refer to descriptions of individual units.
Fields, Chris
2011-03-01
Structure-mapping inferences are generally regarded as dependent upon relational concepts that are understood and expressible in language by subjects capable of analogical reasoning. However, tool-improvisation inferences are executed by members of a variety of non-human primate and other species. Tool improvisation requires correctly inferring the motion and force-transfer affordances of an object; hence tool improvisation requires structure mapping driven by relational properties. Observational and experimental evidence can be interpreted to indicate that structure-mapping analogies in tool improvisation are implemented by multi-step manipulation of event files by binding and action-planning mechanisms that act in a language-independent manner. A functional model of language-independent event-file manipulations that implement structure mapping in the tool-improvisation domain is developed. This model provides a mechanism by which motion and force representations commonly employed in tool-improvisation structure mappings may be sufficiently reinforced to be available to inwardly directed attention and hence conceptualization. Predictions and potential experimental tests of this model are outlined.
Flood-inundation maps for White River at Petersburg, Indiana
Fowler, Kathleen K.
2015-08-20
The availability of these maps along with Internet information regarding current stage from the USGS streamgage at White River at Petersburg, Ind., and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.
Miller, W.R.; Motooka, J.M.; McHugh, J.B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of gold in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the Selected References of this report. The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Schneider, Christine; Mohsenpour, Amir; Joos, Stefanie; Bozorgmehr, Kayvan
2014-11-29
There are more than 100,000 asylum seekers registered in Germany, who are granted limited access to health services. This study aims to provide a systematic overview of the empirical literature on the health status of and health-care provision to asylum seekers in Germany in order to consolidate knowledge, avoid scientific redundance, and identify research gaps. A systematic review and evidence mapping of empirical literature on the health status of and health-care provision to asylum seekers in Germany will be performed. We will apply a three-tiered search strategy: 1. search in databases (PubMed/MEDLINE, Web of Science, IBSS, Sociological Abstracts, Worldwide Political Science Abstracts, CINAHL, Sowiport, Social Sciences Citation Index, ASSIA, MedPilot, DNB), dissertation and theses databases, and the internet (Google); 2. screening references of included studies; 3. contacting authors and civil society organizations for grey literature. Included will be studies which report quantitative and/or qualitative data or review articles on asylum seekers in Germany, published in German or English language. Outcome measures will include physical, mental, or social well-being, and all aspects of health-care provision (access, availability, affordability, and quality). Search results will be screened for eligibility by screening titles, abstracts and full texts. Data extraction comprises information on study characteristics, research aims, and domains of health or health-care services analyzed. The quality of studies will be appraised and documented by appropriate assessment tools. A descriptive evidence map will be drawn by categorizing all included articles by research design and the health conditions and/or domains of health-care provision analyzed. The body of evidence will be evaluated, and a narrative evidence synthesis will be performed by means of a multi-level approach, whereby quantitative and qualitative evidence are analyzed as separate streams and the product of each stream is configured in a final summary. This systematic review will provide an evidence map and synthesis of available research findings on the health status of and health-care provision to asylum seekers in Germany. In anticipation of identifying areas which are amenable to health-care interventions, deserve immediate action, or further exploration, this review will be of major importance for policy-makers, health-care providers, as well as researchers. PROSPERO 2014: CRD42014013043.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of thorium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of zinc in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of lead in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of molybdenum in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle shows the regional distribution of bismuth and cadimum in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of tin in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of uranium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Lindsey, David A.; Van Gosen, Bradley S.
2010-01-01
In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their load in response to abrupt flattening of gradients and expansion of channel banks, and they extend down the piedmont along Josephine Canyon Wash. Gravel in depositional terraces also has sorting coefficients typical of streamflood deposits. Sedimentary features in both types of terraces are consistent with deposition by flash floods in ephemeral streams, suggesting the climate was arid. Bedding and clast armor are weakly developed, clast clusters and imbrication are common, and crossbedding is generally absent. Debris-flow deposits, even near the mountain front, are surprisingly rare. On the tectonically stable piedmont of southeastern Arizona, stream piracy and climate change are the most likely agents of terrace formation. Both piracy and climate change can cause rapid changes in discharge and sediment supply, which initiate cycles of incision, lateral cutting, and aggradation. Increased stream discharge initiates downcutting, but increased sediment supply interrupts downcutting and causes streams to cut laterally and aggrade. At times, on Madera Canyon Wash and Montosa Canyon Wash, stream piracy affected stream discharge and sediment supply, but on Cottonwood Canyon Wash and Josephine Canyon Wash, only climate change could have initiated terrace cutting. Terraces probably formed during extended arid intervals when sparse vegetation and flashy stream discharge combined to increase sediment supply. In most cases, sediment supply was sufficient to promote lateral cutting but not long-term aggradation. Thus, most streams formed erosional terraces. The middle Pleistocene Josephine Canyon Wash formed a depositional terrace because it had a source of abundant unconsolidated sediment.
Robinson, G.R.; Ayotte, J.D.
2006-01-01
Population statistics for As concentrations in rocks, sediments and ground water differ by geology and land use features in the New England region, USA. Significant sources of As in the surficial environment include both natural weathering of rocks and anthropogenic sources such as arsenical pesticides that were commonly applied to apple, blueberry and potato crops during the first half of the 20th century in the region. The variation of As in bedrock ground water wells has a strong positive correlation with geologic features at the geologic province, lithology group, and bedrock map unit levels. The variation of As in bedrock ground water wells also has a positive correlation with elevated stream sediment and rock As chemistry. Elevated As concentrations in bedrock wells do not correlate with past agricultural areas that used arsenical pesticides on crops. Stream sediments, which integrate both natural and anthropogenic sources, have a strong positive correlation of As concentrations with rock chemistry, geologic provinces and ground water chemistry, and a weaker positive correlation with past agricultural land use. Although correlation is not sufficient to demonstrate cause-and-effect, the statistics favor rock-based As as the dominant regional source of the element in stream sediments and ground water in New England. The distribution of bedrock geology features at the geologic province, lithology group and map unit level closely correlate with areas of elevated As in ground water, stream sediments, and rocks. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.
2010-01-01
Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The strong relationship between percent of basin covered and streamflow indicates that MODIS data is useful for predicting streamflow, leading to improved reservoir management
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; Riggs, George A.; DiGirolano, Nocolo E.
2010-01-01
Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station a are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS- derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant trend toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The strong relationship between percent of basin covered and streamflow indicates that MODIS data is useful for predicting streamflow, leading to improved reservoir management.
NASA Astrophysics Data System (ADS)
Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.
2010-12-01
Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a program of terrestrial laser scanning (TLS) was conducted at the 1000 Palms oasis stream offset sites. Data products and map interpretations will be presented along with initial applications of the study to characterizing San Andreas fault rupture hazard. Continuing work will seek to more fully populate the dataset of larger offsets, evaluate means to objectively date the larger offsets, and, as completely as possible, to characterize magnitudes of past surface ruptures of the San Andreas fault in the Coachella Valley.
NASA Astrophysics Data System (ADS)
Whittaker, Kara A.; McShane, Dan
2012-04-01
The objective of this study was to assess and compare the ability of two slope instability screening tools developed by the Washington State Department of Natural Resources (WDNR) to assess landslide risks associated with forestry activities. HAZONE is based on a semi-quantitative method that incorporates the landslide frequency rate and landslide area rate for delivery of mapped landforms. SLPSTAB is a GIS-based model of inherent landform characteristics that utilizes slope geometry derived from DEMs and climatic data. Utilization of slope instability screening tools by geologists, land managers, and regulatory agencies can reduce the frequency and magnitude of landslides. Aquatic habitats are negatively impacted by elevated rates and magnitudes of landslides associated with forest management practices due to high sediment loads and alteration of stream channels and morphology. In 2007 a large storm with heavy rainfall impacted southwestern Washington State trigging over 2500 landslides. This storm event and accompanying landslides provides an opportunity to assess the slope stability screening tools developed by WDNR. Landslide density (up to 6.5 landslides per km2) from the storm was highest in the areas designated by the screening tools as high hazard areas, and both of the screening tools were equal in their ability to predict landslide locations. Landslides that initiated in low hazard areas may have resulted from a variety of site-specific factors that deviated from assumed model values, from the inadequate identification of potentially unstable landforms due to low resolution DEMs, or from the inadequate implementation of the state Forest Practices Rules. We suggest that slope instability screening tools can be better utilized by forest management planners and regulators to meet policy goals regarding minimizing landslide rates and impacts to sensitive aquatic species.
Experimental Stream Facility: Design and Research
The Experimental Stream Facility (ESF) is a valuable research tool for the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development’s (ORD) laboratories in Cincinnati, Ohio. This brochure describes the ESF, which is one of only a handful of research facilit...
Regional surficial geochemistry of the northern Great Basin
Ludington, S.; Folger, H.; Kotlyar, B.; Mossotti, V.G.; Coombs, M.J.; Hildenbrand, T.G.
2006-01-01
The regional distribution of arsenic and 20 other elements in stream-sediment samples in northern Nevada and southeastern Oregon was studied in order to gain new insights about the geologic framework and patterns of hydrothermal mineralization in the area. Data were used from 10,261 samples that were originally collected during the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program in the 1970s. The data are available as U.S. Geological Survey Open-File Report 02-0227. The data were analyzed using traditional dot maps and interpolation between data points to construct high-resolution raster images, which were correlated with geographic and geologic information using a geographic information system (GIS). Wavelength filters were also used to deconvolute the geochemical images into various textural components, in order to study features with dimensions of a few kilometers to dimensions of hundreds of kilometers. The distribution of arsenic, antimony, gold, and silver is different from distributions of the other elements in that they show a distinctive high background in the southeast part of the area, generally in areas underlain by the pre-Mesozoic craton. Arsenic is an extremely mobile element and can be used to delineate structures that served as conduits for the circulation of metal-bearing fluids. It was used to delineate large crustal structures and is particularly good for delineation of the Battle Mountain-Eureka mineral trend and the Steens lineament, which corresponds to a post-Miocene fault zone. Arsenic distribution patterns also delineated the Black Rock structural boundary, northwest of which the basement apparently consists entirely of Miocene and younger crust. Arsenic is also useful to locate district-sized hydrothermal systems an d clusters of systems. Most important types of hydrothermal mineral deposit in the northern Great Basin appear to be strongly associated with arsenic; this is less so for low-sulfidation epithermal deposits. In addition to individual elements, the distribution of factor scores that resulted from principal component studies of the data was used. The strongest factor is characterized by Fe, Ti, V, Cu, Ni, and Zn and is used to map the distribution of distinctive basalts that are high in Cu, Ni, and Zn and that appear to be related to the Steens Basalt. The other important factor is related to hydrothermal precious metal mineralization and is characterized by Sb, Ag, As, Pb, Au, and Zn. The map of the distribution of this factor is similar in appearance to the one for arsenic, and we used wavelength filters to remove regional variations in the background for this factor score. The resulting residual map shows a very strong association with the most significant precious metal deposits and districts in the region. This residual map also shows a number of areas that are not associated with known mineral deposits, illustrating the utility of the method as a regional exploration tool. A number of these prospective areas are distant from known significant mineral deposits. The deconvolution of the spatial wavelength structure of geochemical maps, combined with the use of large regional geochemical data sets and GIS, permits new possibilities for the use of stream-sediment geochemistry in the study of large-scale crustal features as well as the isolation of mineral-district scale anomalies. ?? 2006 Society of Economic Geologists, Inc.
NASA Astrophysics Data System (ADS)
Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.
2014-07-01
Especially in mountainuous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats, and understanding geomorphic evolution. We present the new modelling tool sedFlow for simulating fractional bedload transport dynamics in mountain streams. The model can deal with the effects of adverse slopes and uses state of the art approaches for quantifying macro-roughness effects in steep channels. Local grain size distributions are dynamically adjusted according to the transport dynamics of each grain size fraction. The tool sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2014).
Controls on streamflow intermittence in the Colorado Front Range
NASA Astrophysics Data System (ADS)
Kampf, S. K.; Puntenney, K.; Martin, C.; Weber, R.; Gerlich, J.; Hammond, J. C.; Lefsky, M. A.
2017-12-01
Intermittent streams comprise more than 60% of the channel length in semiarid northern Colorado, yet little is known about their flow magnitude and timing. We used field surveys, stream sensors, and remote sensing to quantify spatial and temporal patterns of streamflow intermittence in the Cache la Poudre basin in 2016-2017. To evaluate potential controls on streamflow intermittence, we delineated the drainage area to each monitored point and quantified the catchment's mean precipitation, temperature, snow persistence, slope, aspect, vegetation type, soil type, and bedrock geology. During the period of study, most streams below 2500 m elevation and <550 mm mean annual precipitation were intermittent, with flow only during the early spring and summer. In these drier low elevation areas, flow duration generally increased with precipitation and snow persistence. Locally, the type of bedrock geology and location of streams relative to faults affected flow duration. Above 2500 m, nearly all streams with drainage areas >1 km2 had perennial flow, whereas nearly all streams with drainage areas <1 km2 had intermittent flow. For the high elevation intermittent streams, stream locations often differed substantially from the locations mapped in standard GIS data products. Initial analyses have identified no clearly quantifiable controls on flow duration of high elevation streams, but field observations indicate subsurface flow paths are important contributors to surface streams.
Ice Flow in the North East Greenland Ice Stream
NASA Technical Reports Server (NTRS)
Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug
1999-01-01
Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.
Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.
2016-11-22
Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.
NASA Astrophysics Data System (ADS)
Cristea, N. C.; Burges, S. J.
2004-12-01
The stream water spatial and temporal temperature patterns of the Wenatchee River, WA are assessed based on temperature data recorded by instream data loggers in the dry season of 2002 and thermal infrared imagery from August 16th 2002. To gain insights into the possible thermal behavior of the river, the stream temperature model Qual2K (Chapra and Pelletier, 2003) is extended beyond its calibration (10-16 August 2002) and confirmation (9-11 September 2002) periods for use with different meteorological, shade and flow conditions. The temperature longitudinal profile of the Wenatchee River is influenced by the temperature regime in Lake Wenatchee, the source of the Wenatchee River. Model simulations performed at 7-day average with 2-year return period flow conditions show that the potential (maximum average across all reaches) temperature (the temperature that would occur under natural conditions) is about 19.8 deg. C. For the 7-day average with 10-year return period flow conditions the potential temperature increases to about 21.2 deg. C. The simulation results show that under normal flow and meteorological conditions the water temperature exceeds the current water quality standards. Model simulations performed under the 7-day average with 10-year return period flow conditions and a climate change scenario show that the average potential temperature across all reaches can increase by as much as 1.3 deg. C compared to the case where climate change impact is not taken into account. Thermal infrared (TIR) derived stream temperature data were useful for describing spatial distribution patterns of the Wenatchee River water temperature. The TIR and visible band images are effective tools to map cold water refugia for fish and to detect regions that can be improved for fish survival. The images collected during the TIR survey and the TIR derived stream temperature longitudinal profile helps pinpoint additional instream monitoring locations that avoid regions of backwater, cool or warm pockets or regions affected by tributary influence, that are inappropriate for stream temperature monitoring. Groundwater input is difficult to detect from the TIR images in the case of a relatively large river such the Wenatchee River.
On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras
NASA Astrophysics Data System (ADS)
Andres, M.
2016-09-01
Mapped satellite altimetry reveals interannual variability in the position of initiation of Gulf Stream meanders downstream of Cape Hatteras. The longitude where the Gulf Stream begins meandering varies by 1500 km. There has been a general trend for the destabilization point to shift west, and 5 of the last 6 years had a Gulf Stream destabilization point upstream of the New England Seamounts. Independent in situ data suggest that this shift has increased both upper-ocean/deep-ocean interaction events at Line W and open-ocean/shelf interactions across the Middle Atlantic Bight (MAB) shelf break. Mooring data and along-track altimetry indicate a recent increase in the number of deep cyclones that stir Deep Western Boundary Current waters from the MAB slope into the deep interior. Temperature profiles from the Oleander Program suggest that recent enhanced warming of the MAB shelf may be related to shifts in the Gulf Stream's destabilization point.
Knowledge maps: a tool for online assessment with automated feedback.
Ho, Veronica W; Harris, Peter G; Kumar, Rakesh K; Velan, Gary M
2018-12-01
In higher education, most assessments or examinations comprise either multiple-choice items or open-ended questions such as modified essay questions (MEQs). Online concept and knowledge maps are potential tools for assessment, which might emphasize meaningful, integrated understanding of phenomena. We developed an online knowledge-mapping assessment tool, which provides automated feedback on student-submitted maps. We conducted a pilot study to investigate the potential utility of online knowledge mapping as a tool for automated assessment by comparing the scores generated by the software with manual grading of a MEQ on the same topic for a cohort of first-year medical students. In addition, an online questionnaire was used to gather students' perceptions of the tool. Map items were highly discriminating between students of differing knowledge of the topic overall. Regression analysis showed a significant correlation between map scores and MEQ scores, and responses to the questionnaire regarding use of knowledge maps for assessment were overwhelmingly positive. These results suggest that knowledge maps provide a similar indication of students' understanding of a topic as a MEQ, with the advantage of instant, consistent computer grading and time savings for educators. Online concept and knowledge maps could be a useful addition to the assessment repertoire in higher education.
Rea, Alan; Cederstrand, Joel R.
1994-01-01
The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the global-change research community. The data sets were chosen with input from the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical weather-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.
Yang, Xiuping; Min, Lequan; Wang, Xue
2015-05-01
This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2(1345). As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.
NASA Astrophysics Data System (ADS)
Booth, N. L.; Everman, E.; Kuo, I.; Sprague, L.; Murphy, L.
2011-12-01
A new web-based decision support system has been developed as part of the U.S. Geological Survey (USGS) National Water Quality Assessment Program's (NAWQA) effort to provide ready access to Spatially Referenced Regressions On Watershed attributes (SPARROW) results of stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via an intuitive graphical user interface with a map-based display. The SPARROW Decision Support System (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions, distribution of nutrient sources, nutrient delivery to downstream waterbodies, and simulations of altered nutrient inputs including atmospheric and agricultural sources. The DSS offers other features for analysis including various background map layers, model output exports, and the ability to save and share prediction scenarios. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. The underlying modeling framework and server infrastructure illustrate innovations in the information technology and geosciences fields for delivering SPARROW model predictions over the web by performing intensive model computations and map visualizations of the predicted conditions within the stream network.
NASA Astrophysics Data System (ADS)
Yang, Xiuping; Min, Lequan; Wang, Xue
2015-05-01
This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 21345. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator); Cooley, M. E.
1973-01-01
The author has identified the following significant results. ERTS-1 multispectral images have been used, without additional data, to prepare three maps at 1:1 million scale of the 18,000 sq. mi. project area: (1) modern (post-1890 A. D.) arroyos and channels; (2) types of stream channels; and (3) potential erodibility of soils; surficial deposits, and bedrock. Also completed was the collection and compilation of ground truth geologic, soil, and hydrologic data. Field studies to obtain ground control for the photointerpretive mapping include: (1) measurements, at many sites, of the depth, width, and channel characteristics of arroyos and gullies, and cross profiles of stream channels, flood plains, and Holocene terraces; and (2) stratigraphic measurements of the Holocene alluvial deposits. Significant conclusions from these extensive stratigraphic studies are: Slow deposition of sediment was the dominant process on stream lowlands throughout the project area for at least 2000 years prior to 1890 A.D. The deposition was broken by only two relatively brief and minor erosional episodes of regional importance, when channels no more than a third of the depth of modern channels were cut. The modern erosion has produced within about 80 years substantially more and larger arroyos than any erosion episode during the last 2000 years, and the end is not in sight.
Modeling Periodic Impulsive Effects on Online TV Series Diffusion.
Fu, Peihua; Zhu, Anding; Fang, Qiwen; Wang, Xi
Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public social communities also represents a highly correlated analysis tool to evaluate the advertising value of TV series.
Modeling Periodic Impulsive Effects on Online TV Series Diffusion
Fang, Qiwen; Wang, Xi
2016-01-01
Background Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. Methods We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. Results We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. Conclusion To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public social communities also represents a highly correlated analysis tool to evaluate the advertising value of TV series. PMID:27669520
Auralization of CFD Vorticity Using an Auditory Illusion
NASA Astrophysics Data System (ADS)
Volpe, C. R.
2005-12-01
One way in which scientists and engineers interpret large quantities of data is through a process called visualization, i.e. generating graphical images that capture essential characteristics and highlight interesting relationships. Another approach, which has received far less attention, is to present complex information with sound. This approach, called ``auralization" or ``sonification", is the auditory analog of visualization. Early work in data auralization frequently involved directly mapping some variable in the data to a sound parameter, such as pitch or volume. Multi-variate data could be auralized by mapping several variables to several sound parameters simultaneously. A clear drawback of this approach is the limited practical range of sound parameters that can be presented to human listeners without exceeding their range of perception or comfort. A software auralization system built upon an existing visualization system is briefly described. This system incorporates an aural presentation synchronously and interactively with an animated scientific visualization, so that alternate auralization techniques can be investigated. One such alternate technique involves auditory illusions: sounds which trick the listener into perceiving something other than what is actually being presented. This software system will be used to present an auditory illusion, known for decades among cognitive psychologists, which produces a sound that seems to ascend or descend endlessly in pitch. The applicability of this illusion for presenting Computational Fluid Dynamics data will be demonstrated. CFD data is frequently visualized with thin stream-lines, but thicker stream-ribbons and stream-tubes can also be used, which rotate to convey fluid vorticity. But a purely graphical presentation can yield drawbacks of its own. Thicker stream-tubes can be self-obscuring, and can obscure other scene elements as well, thus motivating a different approach, such as using sound. Naturally, the simple approach of mapping clockwise and counterclockwise rotations to actual pitch increases and decreases, eventually results in sounds that the listener cannot hear. In this alternate presentation using an auditory illusion, repeated rotations of a stream-tube are replaced with continual increases or decreases in apparent pitch. These apparent pitch changes can continue without bound, yet never exceed the range of frequencies that the listener can hear. The effectiveness of this presentation technique has been studied, and empirical results, obtained through formal user testing and statistical analysis, are presented. These results demonstrate that an aural data presentation using an auditory illusion can improve performance in locating key data characteristics, a task that demonstrates a certain level of understanding of the data. The experiments show that this holds true even when the user expresses a subjective preference and greater confidence in a visual presentation. The CFD data used in the research comes from a number of different industrial domains, but the advantages of this technique could be equally applicable to the study of earth sciences involving fluid mechanics, such as atmospheric or ocean sciences. Furthermore, the approach is applicable not only to CFD data, but to any type of data in which a quantity that is cyclic in nature, such as orientation, needs to be presented. Although the techniques and tools were originally developed with scientists and engineers in mind, they can also be used to aid students, particularly those who are visually impaired or who have difficulty interpreting certain spatial relationships visually.
Utilizing Lidar Data for Detection of Channel Migration: Taylor Valley, Antarctica
NASA Astrophysics Data System (ADS)
Barlow, M. C.; Telling, J. W.; Glennie, C.; Fountain, A.
2017-12-01
The McMurdo Dry Valleys is the largest ice-free expanse in Antarctica and one of the most studied regions on the continent. The valleys are a hyper-arid, cold-polar desert that receives little precipitation (<50 mm weq yr-1). The valley bottoms are covered in a sandy-gravel, dotted with ice-covered lakes and ponds, and alpine glaciers that descend from the surrounding mountains. Glacial melt feeds the lakes via ephemeral streams that flow 6 - 10 weeks each summer. Field observations indicate that the valley floors, particularly in Taylor Valley, contain numerous abandoned stream channels but, given the modest stream flows, channel migration is rarely observed. Only a few channels have been surveyed in the field due to the slow pace of manual methods. Here we present a method to assess channel migration over a broad region in order to study the pattern of channel migration as a function of climatic and/or geologic gradients in Taylor Valley. Raster images of high-resolution topography were created from two lidar (Light Detection and Ranging) datasets and were used to analyze channel migration in Taylor Valley. The first lidar dataset was collected in 2001 by NASA's Airborne Topographic Mapper (ATM) and the second was collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 with an Optech Titan Sensor. The channels were extracted for each dataset using GeoNet, which is an open source tool used for the automatic extraction of channel networks. Channel migration was found to range from 0 to 50 cm per year depending upon the location. Channel complexity was determined based on the change in the number of channel branches and their length. We present the results for various regions in Taylor Valley with differing degrees of stream complexity. Further research is being done to determine factors that drive channel migration rates in this unique environment.
Web services in the U.S. geological survey streamstats web application
Guthrie, J.D.; Dartiguenave, C.; Ries, Kernell G.
2009-01-01
StreamStats is a U.S. Geological Survey Web-based GIS application developed as a tool for waterresources planning and management, engineering design, and other applications. StreamStats' primary functionality allows users to obtain drainage-basin boundaries, basin characteristics, and streamflow statistics for gaged and ungaged sites. Recently, Web services have been developed that provide the capability to remote users and applications to access comprehensive GIS tools that are available in StreamStats, including delineating drainage-basin boundaries, computing basin characteristics, estimating streamflow statistics for user-selected locations, and determining point features that coincide with a National Hydrography Dataset (NHD) reach address. For the state of Kentucky, a web service also has been developed that provides users the ability to estimate daily time series of drainage-basin average values of daily precipitation and temperature. The use of web services allows the user to take full advantage of the datasets and processes behind the Stream Stats application without having to develop and maintain them. ?? 2009 IEEE.
NASA Astrophysics Data System (ADS)
Langhammer, Jakub; Vacková, Tereza
2017-04-01
In the contribution, we are presenting a novel method, enabling objective detection and classification of the alluvial features resulting from flooding, based on the imagery, acquired by the unmanned aerial vehicles (UAVs, drones). We have proposed and tested a workflow, using two key data products of the UAV photogrammetry - the 2D orthoimage and 3D digital elevation model, together with derived information on surface texture for the consequent classification of erosional and depositional features resulting from the flood. The workflow combines the photogrammetric analysis of the UAV imagery, texture analysis of the DEM, and the supervised image classification. Application of the texture analysis and use of DEM data is aimed to enhance 2D information, resulting from the high-resolution orthoimage by adding the newly derived bands, which enhance potential for detection and classification of key types of fluvial features in the stream and the floodplain. The method was tested on the example of a snowmelt-driven flood in a montane stream in Sumava Mts., Czech Republic, Central Europe, that occurred in December 2015. Using the UAV platform DJI Inspire 1 equipped with the RGB camera there was acquired imagery covering a 1 km long stretch of a meandering creek with elevated fluvial dynamics. Agisoft Photoscan Pro was used to derive a point cloud and further the high-resolution seamless orthoimage and DEM, Orfeo toolkit and SAGA GIS tools were used for DEM analysis. From the UAV-based data inputs, a multi-band dataset was derived as a source for the consequent classification of fluvial landforms. The RGB channels of the derived orthoimage were completed by the selected texture feature layers and the information on 3D properties of the riverscape - the normalized DEM and terrain ruggedness. Haralick features, derived from the RGB channels, are used for extracting information on the surface texture, the terrain ruggedness index is used as a measure of local topographical variability. Based on this dataset, the supervised classification was performed to identify the fluvial features, including the fresh and old accumulations of different size, fresh bank erosion, in-stream features and the riparian zone vegetation, verified later by the field survey. The classification based on the fusion of high-resolution 2D and 3D data, derived from UAV imagery, enabled to identify and quantify the extent of recent and old accumulations, to distinguish the coarse and fine sediments or to separate the shallow and deep zones in the submerged zone of the channel. With the high operability of the data acquisition process, the proposed method appears to be a promising tool for rapid mapping and classification of flood effects in streams and floodplains.
Goldberg, Caren S.; Pilliod, David S.; Arkle, Robert S.; Waits, Lisette P.
2011-01-01
Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research. PMID:21818382
Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P
2011-01-01
Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.
Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P.
2011-01-01
Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.
draco: Analysis and simulation of drift scan radio data
NASA Astrophysics Data System (ADS)
Shaw, J. Richard
2017-12-01
draco analyzes transit radio data with the m-mode formalism. It is telescope agnostic, and is used as part of the analysis and simulation pipeline for the CHIME (Canadian Hydrogen Intensity Mapping Experiment) telescope. It can simulate time stream data from maps of the sky (using the m-mode formalism) and add gain fluctuations and correctly correlated instrumental noise (i.e. Wishart distributed). Further, it can perform various cuts on the data and make maps of the sky from data using the m-mode formalism.
[Application of water jet ERBEJET 2 in salivary glands surgery].
Gasiński, Mateusz; Modrzejewski, Maciej; Cenda, Paweł; Nazim-Zygadło, Elzbieta; Kozok, Andrzej; Dobosz, Paweł
2009-09-01
Anatomical location of salivary glands requires from surgeon high precision during the operation in this site. Waterjet is one of the modern tools which allows to perform "minimal invasive" operating procedure. This tool helps to separate pathological structures from healthy tissue with a stream of high pressure saline pumped to the operating area via special designed applicators. Stream of fluid is generated by double piston pummp under 1 to 80 bar pressure that can be regulated. This allows to precise remove tumors, spare nerves and vessels in glandular tissue and minimize use of electrocoagulation. Waterjet is a modern tool that can help to improve the safety of patients and comfort of surgeon's work.
Interpolation of Water Quality Along Stream Networks from Synoptic Data
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Seibert, J.; Lembo, A. J.; Walter, M. T.; Gburek, W. J.; Thongs, D.; Schneiderman, E.; Steenhuis, T. S.
2005-12-01
Effective catchment management requires water quality monitoring that identifies major pollutant sources and transport and transformation processes. While traditional monitoring schemes involve regular sampling at fixed locations in the stream, there is an interest synoptic or `snapshot' sampling to quantify water quality throughout a catchment. This type of sampling enables insights to biogeochemical behavior throughout a stream network at low flow conditions. Since baseflow concentrations are temporally persistence, they are indicative of the health of the ecosystems. A major problem with snapshot sampling is the lack of analytical techniques to represent the spatially distributed data in a manner that is 1) easily understood, 2) representative of the stream network, and 3) capable of being used to develop land management scenarios. This study presents a kriging application using the landscape composition of the contributing area along a stream network to define a new distance metric. This allows for locations that are more `similar' to stay spatially close together while less similar locations `move' further apart. We analyze a snapshot sampling campaign consisting of 125 manually collected grab samples during a summer recession flow period in the Townbrook Research Watershed. The watershed is located in the Catskill region of New York State and represents the mixed forest-agriculture land uses of the region. Our initial analysis indicated that stream nutrients (nitrogen and phosphorus) and chemical (major cations and anions) concentrations are controlled by the composition of landscape characteristics (landuse classes and soil types) surrounding the stream. Based on these relationships, an intuitively defined distance metric is developed by combining the traditional distance between observations and the relative difference in composition of contributing area. This metric is used to interpolate between the sampling locations with traditional geostatistic techniques (semivariograms and ordinary kriging). The resulting interpolations provide continuous stream nutrient and chemical concentrations with reduced kriging RMSE (i.e., the interpolation fits the actual data better) performed without path restriction to the stream channel (i.e., the current default for most geostatistical packages) or performed with an in-channel, Euclidean distance metric (i.e., `as the fish swims' distance). In addition to being quantifiably better, the new metric also produces maps of stream concentrations that match expected continuous stream concentrations based on expert knowledge of the watershed. This analysis and its resulting stream concentration maps provide a representation of spatially distributed synoptic data that can be used to quantify water quality for more effective catchment management that focuses on pollutant sources and transport and transformation processes.
Soil Microbial Community Contribution to Small Headwater Stream Metabolism.
NASA Astrophysics Data System (ADS)
Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.
2005-05-01
The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.
Streaming data analytics via message passing with application to graph algorithms
Plimpton, Steven J.; Shead, Tim
2014-05-06
The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less
Nash, J.T.; Siems, D.F.
1988-01-01
The geochemical maps in this report are based on analytical results reported by Fairfield and others (1985), Hill and others (1986), and Siems and others (1986). These reports also describe the sample preparation and analytical methods and provide information on the location of the sample sites.
Flood-inundation maps for the White River near Edwardsport, Indiana
Fowler, Kathleen K.
2014-01-01
The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03360730 White River near Edwardsport, Ind., and forecasted stream stages from the National Weather Service, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
A Self-Synthesis Approach to Perceptual Learning for Multisensory Fusion in Robotics
Axenie, Cristian; Richter, Christoph; Conradt, Jörg
2016-01-01
Biological and technical systems operate in a rich multimodal environment. Due to the diversity of incoming sensory streams a system perceives and the variety of motor capabilities a system exhibits there is no single representation and no singular unambiguous interpretation of such a complex scene. In this work we propose a novel sensory processing architecture, inspired by the distributed macro-architecture of the mammalian cortex. The underlying computation is performed by a network of computational maps, each representing a different sensory quantity. All the different sensory streams enter the system through multiple parallel channels. The system autonomously associates and combines them into a coherent representation, given incoming observations. These processes are adaptive and involve learning. The proposed framework introduces mechanisms for self-creation and learning of the functional relations between the computational maps, encoding sensorimotor streams, directly from the data. Its intrinsic scalability, parallelisation, and automatic adaptation to unforeseen sensory perturbations make our approach a promising candidate for robust multisensory fusion in robotic systems. We demonstrate this by applying our model to a 3D motion estimation on a quadrotor. PMID:27775621
Deep SOMs for automated feature extraction and classification from big data streaming
NASA Astrophysics Data System (ADS)
Sakkari, Mohamed; Ejbali, Ridha; Zaied, Mourad
2017-03-01
In this paper, we proposed a deep self-organizing map model (Deep-SOMs) for automated features extracting and learning from big data streaming which we benefit from the framework Spark for real time streams and highly parallel data processing. The SOMs deep architecture is based on the notion of abstraction (patterns automatically extract from the raw data, from the less to more abstract). The proposed model consists of three hidden self-organizing layers, an input and an output layer. Each layer is made up of a multitude of SOMs, each map only focusing at local headmistress sub-region from the input image. Then, each layer trains the local information to generate more overall information in the higher layer. The proposed Deep-SOMs model is unique in terms of the layers architecture, the SOMs sampling method and learning. During the learning stage we use a set of unsupervised SOMs for feature extraction. We validate the effectiveness of our approach on large data sets such as Leukemia dataset and SRBCT. Results of comparison have shown that the Deep-SOMs model performs better than many existing algorithms for images classification.
Martinson, H.A.; Hammond, H.E.; Mast, W.W.; Mango, P.D.
1986-01-01
The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars, and tephra deposits that altered stream channels in the Lewis River drainage basin. In order to assess potential flood hazards, monitor channel adjustments, and construct a sediment budget for disturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek , and Clearwater Creek during 1981. This network of channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. Longitudinal stream profiles of the low-water thalweg and (or) water surfaces were surveyed periodically for selected short reaches of channel. Corresponding map views for these reaches were constructed using the survey data and aerial photographs. This report presents plots of channel cross-section profiles, longitudinal stream profiles, and channel maps constructed from survey data collected during water years 1983-84. (USGS)
NASA Astrophysics Data System (ADS)
Midor, Katarzyna; Jąderko, Karolina
2017-11-01
The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
Jeff Boice
1999-01-01
Five second order tributaries to Tenderfoot Creek were investigated: Upper Tenderfoot Creek, Sun Creek, Spring Park Creek, Bubbling Creek, and Stringer Creek. Second order reaches were initially located on 7.5 minute topographic maps using techniques first applied by Strahler (1952). Reach breaks were determined in the field through visual inspection. Vegetation type (...
Streaming fragment assignment for real-time analysis of sequencing experiments
Roberts, Adam; Pachter, Lior
2013-01-01
We present eXpress, a software package for highly efficient probabilistic assignment of ambiguously mapping sequenced fragments. eXpress uses a streaming algorithm with linear run time and constant memory use. It can determine abundances of sequenced molecules in real time, and can be applied to ChIP-seq, metagenomics and other large-scale sequencing data. We demonstrate its use on RNA-seq data, showing greater efficiency than other quantification methods. PMID:23160280
Lean Six Sigma: Optimizing Operating Room Utilization at Bayne-Jones Army Community Hospital
2006-07-01
Same Day Surgery Survey Form 43 Appendix D. Interactive Customer Evaluation (ICE) Summary Report 45 Appendix E . BJACH Surgical Process Value stream map...the cost and revenues in a hospital" ( Lovejoy & Li, 2002, p. 1). Therefore, two of these proposals involved increasing the daily number of surgeries...recapturing purchased care workload, as indicated in Appendices E and F. Another aspect of value stream identification consists of identifying
Development of District-Based Mineral-Hazards Maps for Highways in California
NASA Astrophysics Data System (ADS)
Higgins, C. T.; Churchill, R. K.; Fonseca, M. C.
2011-12-01
The California Geological Survey (CGS) currently is developing a series of unpublished maps for the California Department of Transportation (Caltrans) that shows potential for mineral hazards within each of the twelve highway districts administered by that agency. Where present along or near highway corridors, such hazards may pose problems for human health and safety or the environment. Prepared at a scale of 1:250,000, the maps are designed as initial screening tools for Caltrans staff to use to improve planning of activities that involve new construction projects, routine maintenance of highways, and emergency removal of debris deposited on roads by natural processes. Although the basic presentation of each type of thematic map in the series is the same, some customization and focus are allowed for each district because each has unique issues concerning potential for mineral hazards. The maps display many natural and man-made features that may be potential sources of mineral hazards within each district. Features compiled and evaluated under our definition of "mineral hazards" are: 1) naturally-occurring asbestos (NOA); 2) natural occurrences of various regulated metals (Ag, Ba, Be, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Tl, V, Zn) and metalloids (As, Sb, Se) as well as other pertinent metals, such as Mn and U; 3) faults, which can be sites of increased potential for certain types of mineralization, such as NOA; 4) mines and prospects, which can be sources of anomalous concentrations of metals as well as ore-processing chemicals; 5) natural petroleum features, such as oil and natural-gas seeps; 6) natural geothermal features, such as thermal springs and fumaroles; and 7) oil, natural-gas, and geothermal wells. Because of their greater potential as sources of mineral hazards, localities designated on the maps as "areas of potential mineralogical concern" are of particular interest to Caltrans. Examples include significant mining districts, such as New Almaden (Hg) near San Jose, and bedrock units such as serpentinite (NOA, Cr, Ni) and the Monterey Formation (Cd) and similar organic-carbon-rich and phosphate-rich Cenozoic marine sedimentary rocks (Cd, Se), all of which are common in the southern Coast Ranges. Some areas, present mainly in the Mojave Desert and east of the Sierra Nevada, comprise dry lake beds that can be sources of wind-blown dust, which may contain mineral hazards (e.g., As). Watershed boundaries and streams, superimposed on shaded topographic relief, are also shown on the maps to help Caltrans staff determine if drainages that intersect highway corridors may contain deleterious materials eroded and transported from upstream geologic features or mining areas. Besides the 1:250,000-scale maps, which are prepared as both paper copies and .pdf files, individual digital thematic layers of the features described above are prepared for use in GIS software and in-house image-viewers (CT Earth) employed by Caltrans. These layers provide additional information not displayed on the maps (e.g., directions of stream flow; characteristics of individual mines), which allows more-sophisticated analysis for possible mineral hazards.
Concept-Mapping Tools and the Development of Students' Critical-Thinking Skills
ERIC Educational Resources Information Center
Tseng, Sheng-Shiang
2015-01-01
Developing students' critical-thinking skills has recently received attention at all levels of education. This article proposes the use of concept-mapping tools to improve students' critical-thinking skills. The article introduces a Web-based concept-mapping tool--Popplet--and demonstrates its application for teaching critical-thinking skills in…
Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.
2010-01-01
Federal, State and local water-resource managers require a variety of data and modeling tools to better understand water resources. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a statewide, interactive decision-support tool to meet this need. The decision-support tool, referred to as the Massachusetts Sustainable-Yield Estimator (MA SYE) provides screening-level estimates of the sustainable yield of a basin, defined as the difference between the unregulated streamflow and some user-specified quantity of water that must remain in the stream to support such functions as recreational activities or aquatic habitat. The MA SYE tool was designed, in part, because the quantity of surface water available in a basin is a time-varying quantity subject to competing demands for water. To compute sustainable yield, the MA SYE tool estimates a daily time series of unregulated, daily mean streamflow for a 44-year period of record spanning October 1, 1960, through September 30, 2004. Selected streamflow quantiles from an unregulated, daily flow-duration curve are estimated by solving six regression equations that are a function of physical and climate basin characteristics at an ungaged site on a stream of interest. Streamflow is then interpolated between the estimated quantiles to obtain a continuous daily flow-duration curve. A time series of unregulated daily streamflow subsequently is created by transferring the timing of the daily streamflow at a reference streamgage to the ungaged site by equating exceedence probabilities of contemporaneous flow at the two locations. One of 66 reference streamgages is selected by kriging, a geostatistical method, which is used to map the spatial relation among correlations between the time series of the logarithm of daily streamflows at each reference streamgage and the ungaged site. Estimated unregulated, daily mean streamflows show good agreement with observed unregulated, daily mean streamflow at 18 streamgages located across southern New England. Nash-Sutcliffe efficiency goodness-of-fit values are between 0.69 and 0.98, and percent root-mean-square-error values are between 19 and 283 percent. The MA SYE tool provides an estimate of streamflow adjusted for current (2000-04) water withdrawals and discharges using a spatially referenced database of permitted groundwater and surface-water withdrawal and discharge volumes. For a user-selected basin, the database is queried to obtain the locations of water withdrawal or discharge volumes within the basin. Groundwater and surface-water withdrawals and discharges are subtracted and added, respectively, from the unregulated, daily streamflow at an ungaged site to obtain a streamflow time series that includes the effects of these withdrawals and discharges. Users also have the option of applying an analytical solution to the time-varying, groundwater withdrawal and discharge volumes that take into account the effects of the aquifer properties on the timing and magnitude of streamflow alteration. For the MA SYE tool, it is assumed that groundwater and surface-water divides are coincident. For areas of southeastern Massachusetts and Cape Cod where this assumption is known to be violated, groundwater-flow models are used to estimate average monthly streamflows at fixed locations. There are several limitations to the quality and quantity of the spatially referenced database of groundwater and surface-water withdrawals and discharges. The adjusted streamflow values do not account for the effects on streamflow of climate change, septic-system discharge, impervious area, non-public water-supply withdrawals less than 100,000 gallons per day, and impounded surface-water bodies.
NASA Astrophysics Data System (ADS)
Moore, Leah; Nicholson, Allan; Cook, Wayne; Sweeney, Margaret
2014-05-01
In the Greater Launceston Area (GLA) in northern Tasmania, Australia, there is a widespread urban salinity problem with severe impacts on urban/peri-urban infrastructure in localised areas. Salinity patterns in the landscape (elevated flux to waterways; salt efflorescence at the land surface) could be related to: the underlying rock type, the thickness of regolith materials and hence the volume of the salt store, the landforms present and the amount of water passing over and through the landscape. In northern Tasmania secondary mineralogy on dolerite typically includes formation of Fe/Ca smectite phases (e.g. nontronite, saponite) and Fe-Ti oxides/sesquioxides (e.g. hematite, goethite) with some primary phases (e.g. Ca-plagioclase feldspar, augite) weathering through to a suite dominated by kaolinite clay and Fe-Ti oxides/sesquioxides. Deeply weathered profiles in the GLA have weathered to the kaolintite-clay dominant mineralogy and in places there are gibbsite/beidellite/hematite/goethite bauxites developed. Most existing salinity mapping emphasises salt manifestation over paleo-estuarine sediments of the Paleogene Tamar-Esk River system, so incorporation of deeply weathered Jurassic dolerite materials into the salt budget considerably augments the estimated potential hazard. Rapid stream surveys provide a snapshot of stream electrical conductivity (EC) over the study area at regular intervals allowing a broad evaluation of salt flux patterns in surfaces waters. Higher EC readings were obtained from selected streams draining: deeply weathered dolerite profiles (0.37 1.86 dS/m) and deeply weathered Paleogene paleo-estuarine sediments (0.49 to 1.16 dS/m). Lower values were measured on up-faulted dolerite blocks (<0.10 dS/m); moderately weathered, high relief dolerite (<0.03 dS/m), and in incised streams flowing over a rocky dolerite substrate (<0.03 dS/m). The patterns of stream EC reflect the nature of the regolith materials the streams drain, and match mapped patterns for distribution of deeply weathered Jurassic dolerite and moderately to deeply weathered bedded paleo-estuarine sediments of the Paleogene Tamar-Esk river system, some Quaternary terrace deposits along the Tamar and Esk Rivers; and some Holocene estuarine sediments. Recent geomorphic mapping has enabled development of a more comprehensive and consistent landscape evolution model that builds on existing knowledge. This model describes the influence of a progressively incising Tamar-Esk river system in response to episodic lowering of the local base level, with multiple episodes of valley widening as the river system stabilised after incision. Successive lowering events dissected earlier landforms, but locally remnant surfaces are preserved that represent former fluvial plain and terrace features. These processes were partially controlled by the structural configuration and contrasting resistance of the underlying lithologies, influencing the planform geometries of the rivers, and consequently the potential to preserve paleo-fluvial features. Because the Tamar River is an estuarine system, some of the lowermost preserved surfaces are likely to reflect marine processes (e.g. 5-7m; 10-12m ASL). The geomorphic mapping was conducted independently of the hydrogeological landscape (HGL) characterisation in the GLA, but there is strong correlation between the areas identified as having elevated salinity hazard (HGL) and newly mapped remnant surfaces in this landscape. This work complements HGL research and supports development of an increasingly rigorous evidence-based framework for GLA salinity hazard management.
NASA Technical Reports Server (NTRS)
Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.
1982-01-01
Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.
Where Does the River Run? Lessons from a Semi-Arid River
NASA Astrophysics Data System (ADS)
Meixner, T.; Soto, C. D.; Richter, H.; Uhlman, K.
2009-12-01
Spatial data sets to assess the nature of stream groundwater interactions and the resulting power law/fractal structure of travel time distributions are rare. Spatial data sets can be collected using high technology or by use of a large number of field assistants. The labor intensive way is expensive unless the public can be enlisted as citizen scientists to gather large, robust, spatial data sets robustly and cheaply. Such an effort requires public interest and the ability of a few to organize such an effort at a basin if not regional scale. The San Pedro basin offers such an opportunity for citizen science due to the water resource restrictions of the basins semi-arid climate. Since 1999 The Nature Conservancy, in cooperation with the Upper San Pedro Partnership, the public at large and various university and federal science agency participants, has been mapping where the San Pedro River has water present versus where it is dry. This mapping has used an army of volunteers armed with GPS units, clipboards and their eyes to make the determination if a given 10m reach of the river is wet or dry. These wet/dry mapping data now exist for 11 different annual surveys. These data are unique and enable an investigation of the hydrologic connectedness of flowing waters within this system. Analysis of these data reveals several important findings. The total river area that is wet is strongly correlated with stream flow as observed at three USGS gauges. The correlation is strongest however for 90 day and 1 year average flows rather than more local in time observations such as the daily, 7 day or monthly mean flow at the gauges. This result indicates that where the river is flowing depends on long term hydrologic conditions. The length of river reach that is mapped as wet or dry is indicative of the travel distance and thus time that water travels in the surface (wet) and subsurface (dry) of the river system. The reach length that is mapped as wet follows a power law function (slope of ~ -0.64 approximately) indicating that the fractal travel time distributions observed by others for catchment (Kirchner et al 2001), local to regional scale flow patterns (Cardenas 2008) and for stream solute transport (Haggerty et al. 2005) may have their origin in the fundamental nature of stream groundwater interactions in flowing water systems.
SPOT satellite mapping of Ice Stream B
NASA Technical Reports Server (NTRS)
Merry, Carolyn J.
1993-01-01
Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of ice stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear margins, flow traces that are parallel to ice flow, unusual crevasse patterns, and flow traces originating within shear margins. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear margins, mottles, and lumps and warps are described.
Pseudo-random bit generator based on lag time series
NASA Astrophysics Data System (ADS)
García-Martínez, M.; Campos-Cantón, E.
2014-12-01
In this paper, we present a pseudo-random bit generator (PRBG) based on two lag time series of the logistic map using positive and negative values in the bifurcation parameter. In order to hidden the map used to build the pseudo-random series we have used a delay in the generation of time series. These new series when they are mapped xn against xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random sequences have been tested with the suite of NIST giving satisfactory results for use in stream ciphers.
McDermott, A M; Kidd, P; Gately, M; Casey, R; Burke, H; O'Donnell, P; Kirrane, F; Dinneen, S F; O'Brien, T
2013-08-01
Diabetes is a chronic disease amenable to management in the community and outpatient setting. The increasing incidence of diabetes places outpatient endocrinology services under pressure to provide a quality service in a timely manner. Our aim was to apply lean thinking to the diabetes clinic in a tertiary referral centre in the West of Ireland to improve flow, as reflected in reduced patient journey times. The project lasted 6 months, from January to June 2011. An introductory seminar on lean thinking was arranged to inform and motivate the Diabetes Day Centre staff. Two 'rapid improvement events' took place. Value stream mapping (VSM) was the predominant lean tool employed. Patient journeys were mapped and quantified (minutes) using timesheets allocated to each step in the process at baseline, and following intervention. Data were analysed using Minitab V.16.0. VSM allowed the value-adding and problem-causing steps in the patient journey through the diabetes clinic process to be identified and addressed. Total patient journey time through the clinic was significantly reduced from 118 (± 38.02) min to 58 (± 18.30) min (p<0.001). This project reflects the successful application of VSM as a lean tool in a pilot study at our institution as evidenced by improved patient flow and a significant reduction in patient journey time through the clinic. Through the incorporation of Lean into the ethos of the hospital, we have the potential to deliver excellent care in a safe environment and in an efficient manner, while benefiting the patient, employees and tax-payer.
Comparison of animated jet stream visualizations
NASA Astrophysics Data System (ADS)
Nocke, Thomas; Hoffmann, Peter
2016-04-01
The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping
This paper presents a modeling study conducted to evaluate tidal-stream energy extraction and its associated potential environmental impacts using a three-dimensional unstructured-grid coastal ocean model, which was coupled with a water-quality model and a tidal-turbine module.
Map based multimedia tool on Pacific theatre in World War II
NASA Astrophysics Data System (ADS)
Pakala Venkata, Devi Prasada Reddy
Maps have been used for depicting data of all kinds in the educational community for many years. A standout amongst the rapidly changing methods of teaching is through the development of interactive and dynamic maps. The emphasis of the thesis is to develop an intuitive map based multimedia tool, which provides a timeline of battles and events in the Pacific theatre of World War II. The tool contains summaries of major battles and commanders and has multimedia content embedded in it. The primary advantage of this Map tool is that one can quickly know about all the battles and campaigns of the Pacific Theatre by accessing Timeline of Battles in each region or Individual Battles in each region or Summary of each Battle in an interactive way. This tool can be accessed via any standard web browser and motivate the user to know more about the battles involved in the Pacific Theatre. It was made responsive using Google maps API, JavaScript, HTML5 and CSS.
Geologic map of Great Sand Dunes National Park, Colorado
Madole, Richard F.; VanSistine, D. Paco; Romig, Joseph H.
2016-10-20
Geologic mapping was begun after a range fire swept the area of what is now the Great Sand Dunes National Park in April 2000. The park spans an area of 437 square kilometers (or about 169 square miles), of which 98 percent is blanketed by sediment of Quaternary age, the Holocene and Pleistocene Epochs; hence, this geologic map of the Great Sand Dunes National Park is essentially a surficial geologic map. These surficial deposits are diverse and include sediment of eolian (windblown), alluvial (stream and sheetwash), palustrine (wetlands and marshes), lacustrine (lake), and mass-wasting (landslides) origin. Sediment of middle and late Holocene age, from about 8,000 years ago to the present, covers about 80 percent of the park.Fluctuations in groundwater level during Holocene time caused wetlands on the nearby lowland that bounds the park on the west to alternately expand and contract. These fluctuations controlled the stability or instability of eolian sand deposits on the downwind (eastern) side of the lowland. When groundwater level rose, playas became lakes, and wet or marshy areas formed in many places. When the water table rose, spring-fed streams filled their channels and valley floors with sediment. Conversely, when groundwater level fell, spring-fed streams incised their valley floors, and lakes, ponds, and marshes dried up and became sources of windblown sand.Discharge in streams draining the west flank of the Sangre de Cristo Range is controlled primarily by snowmelt and flow is perennial until it reaches the mountain front, beyond which streams begin losing water at a high rate as the water soaks into the creek beds. Even streams originating in the larger drainage basins, such as Sand and Medano Creeks, generally do not extend much more than 4 km (about 2.5 miles) beyond where they exit the mountains.The Great Sand Dunes contain the tallest dunes (maximum height about 750 feet, or 230 m) in North America. These dunes cover an area of 72 square kilometers (28 square miles) and contain an estimated 10–13 billion cubic meters (2.4 to 3.1 cubic miles) of sand. The dunes accumulated in an embayment that formed where the trend of the Sangre de Cristo Range changes from southeasterly to southwesterly. They owe their exceptional height to a combination of factors including range-front geometry, topography, an abundant sand supply from the nearby basin, a complex wind regime, and the Sangre de Cristo Range, which prevents continued eastward migration of dune sand deposited by the prevailing southwesterly and westerly winds. Although the sand on the surface of the Great Sand Dunes is of late Holocene age, most of this massive sand body is a complex of deposits that accumulated episodically for more than 130,000 years.
NASA Astrophysics Data System (ADS)
Dodds, W. K.; Tromboni, F.; Neres-Lima, V.; Zandoná, E.; Moulton, T. P.
2016-12-01
While whole-stream measures of metabolism and uptake have become common methods to characterize biogeochemical transport and processing, less is known about how nitrogen (N) uptake, gross primary production (GPP) and ecosystem respiration (ER) covary among different stream substrata as smaller scales. We measured 15N ammonium and nitrate uptake seperately, and GPP and ER of ecosystem compartments (leaves, epilithon, sand-associated biota and macrophytes) in closed circulating chambers in three streams/ rivers of varied size. The streams drain pristine Brazilian Atlantic Rainforest watersheds and are all within a few km of eachother. The smallest stream had dense forest canopy cover; the largest river was almost completely open. GPP could not be detected in the closed canopy stream. Epilithon (biofilms on rocks) was a dominant compartment for GPP and N uptake in the two open streams, and macrophytes rivaled epilithon GPP and N uptake rates in the most open stream. Even though leaves covered only 1-3% of the stream bottom, they could account for around half of all the ER in the streams but almost no N uptake. Sand had minimal rates of N uptake, GPP and R associated with it in all streams due to relatively low organic material content. The data suggest that N uptake, GPP and ER of different substrata are not closely linked over relatively small spatial (dm) scales, and that different biogeochemical processes may map to different hot and cool spots for ecosystem rates.
Floods of 1971 and 1972 on Glover Creek and Little River in southeastern Oklahoma
Thomas, Wilbert O.; Corley, Robert K.
1973-01-01
Heavy rains of December 9-10, 1971, and Oct. 30-31, 1972, caused outstanding floods on Glover Creek and Little River in McCurtain County in southeastern Oklahoma. This report presents hydrologic data that document the extent of flooding, flood profiles, and frequency of flooding on reaches of both streams. The data presented provide a technical basis for formulating effective flood-plain zoning that will minimize existing and future flood problems. The report also can be useful for locating waste-disposal and water-treatment facilities, and for the development of recreational areas. The area studied includes the reach of Little River on the Garvin and Idabel 7 1/2-minute quadrangles (sheet 1) and the reach of Glover Creek on the southwest quarter of the Golden 15-minute quadrangle (sheet 2). The flood boundaries delineated on the maps are the limits of flooding during the December 1971 and October 1972 floods. Any attempt to delineate the flood boundaries on streams in the study area other than Glover Creek and Little River was considered to be beyond the scope of this report. The general procedure used in defining the flood boundaries was to construct the flood profiles from high-water marks obtained by field surveys and by records at three stream-gaging stations (two on Little River and one on Glover Creek.). The extent of flooding was delineated on the topographic maps by using the flood profiles to define the flood elevations at various points along the channel and locating the elevations on the map by interpolating between contours (lines of equal ground elevation). In addition, flood boundaries were defined in places by field survey, aerial photographs, and information from local residents. The accuracy of the flood boundaries is consistent with the scale and contour interval of the maps (1 inch = 2,000 feet; contour interval 10 and 20 feet), which means the flood boundaries are drawn as accurately as possible on maps having 10- and 20-foot contour intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koposov, Sergey E.; Rix, Hans-Walter; Hogg, David W., E-mail: koposov@ast.cam.ac.u
2010-03-20
The narrow GD-1 stream of stars, spanning 60{sup 0} on the sky at a distance of {approx}10 kpc from the Sun and {approx}15 kpc from the Galactic center, is presumed to be debris from a tidally disrupted star cluster that traces out a test-particle orbit in the Milky Way halo. We combine Sloan Digital Sky Survey (SDSS) photometry, USNO-B astrometry, and SDSS and Calar Alto spectroscopy to construct a complete, empirical six-dimensional (6D) phase-space map of the stream. We find that an eccentric orbit in a flattened isothermal potential describes this phase-space map well. Even after marginalizing over the streammore » orbital parameters and the distance from the Sun to the Galactic center, the orbital fit to GD-1 places strong constraints on the circular velocity at the Sun's radius V{sub c} = 224 +- 13 km s{sup -1} and total potential flattening q{sub P}HI = 0.87{sup +0.07}{sub -0.04}. When we drop any informative priors on V{sub c} , the GD-1 constraint becomes V{sub c} = 221 +- 18 km s{sup -1}. Our 6D map of GD-1, therefore, yields the best current constraint on V{sub c} and the only strong constraint on q{sub P}HI at Galactocentric radii near R {approx} 15 kpc. Much, if not all, of the total potential flattening may be attributed to the mass in the stellar disk, so the GD-1 constraints on the flattening of the halo itself are weak: q{sub P}HI{sub ,halo} > 0.89 at 90% confidence. The greatest uncertainty in the 6D map and the orbital analysis stems from the photometric distances, which will be obviated by GAIA.« less
Magnitude and extent of flooding at selected river reaches in western Washington, January 2009
Mastin, M.C.; Gendaszek, A.S.; Barnas, C.R.
2010-01-01
A narrow plume of warm, moist tropical air produced prolonged precipitation and melted snow in low-to-mid elevations throughout western Washington in January 2009. As a result, peak-of-record discharges occurred at many long-term streamflow-gaging stations in the region. A disaster was declared by the President for eight counties in Washington State and by May 2009, aid payments by the Federal Emergency Management Agency (FEMA) had exceeded $17 million. In an effort to document the flood and to obtain flood information that could be compared with simulated flood extents that are commonly prepared in conjunction with flood insurance studies by FEMA, eight stream reaches totaling 32.6 miles were selected by FEMA for inundation mapping. The U.S. Geological Survey?s Washington Water Science Center used a survey-grade global positioning system (GPS) the following summer to survey high-water marks (HWMs) left by the January 2009 flood at these reaches. A Google Maps (copyright) application was developed to display all HWM data on an interactive mapping tool on the project?s web site soon after the data were collected. Water-surface profiles and maps that display the area and depth of inundation were produced through a geographic information system (GIS) analysis that combined surveyed HWM elevations with Light Detection and Ranging (LiDAR)-derived digital elevation models of the study reaches and surrounding terrain. In several of the reaches, floods were well confined in their flood plains and were relatively straightforward to map. More common, however, were reaches with more complicated hydraulic geometries where widespread flooding resulted in flows that separated from the main channel. These proved to be more difficult to map, required subjective hydrologic judgment, and relied on supplementary information, such as aerial photographs and descriptions of the flooding from local landowners and government officials to obtain the best estimates of the extent of flooding.
Spatial tools for managing hemlock woolly adelgid in the southern Appalachians
NASA Astrophysics Data System (ADS)
Koch, Frank Henry, Jr.
The hemlock woolly adelgid (Adelges tsugae) has recently spread into the southern Appalachians. This insect attacks both native hemlock species (Tsuga canadensis and T. caroliniana ), has no natural enemies, and can kill hemlocks within four years. Biological control displays promise for combating the pest, but counter-measures are impeded because adelgid and hemlock distribution patterns have been detailed poorly. We developed a spatial management system to better target control efforts, with two components: (1) a protocol for mapping hemlock stands, and (2) a technique to map areas at risk of imminent infestation. To construct a hemlock classifier, we used topographically normalized satellite images from Great Smoky Mountains National Park. Employing a decision tree approach that supplemented image spectral data with several environmental variables, we generated rules distinguishing hemlock areas from other forest types. We then implemented these rules in a geographic information system and generated hemlock distribution maps. Assessment yielded an overall thematic accuracy of 90% for one study area, and 75% accuracy in capturing hemlocks in a second study area. To map areas at risk, we combined first-year infestation locations from Great Smoky Mountains National Park and the Blue Ridge Parkway with points from uninfested hemlock stands, recording a suite of environmental variables for each point. We applied four different multivariate classification techniques to generate models from this sample predicting locations with high infestation risk, and used the resulting models to generate risk maps for the study region. All techniques performed well, accurately capturing 70--90% of training and validation samples, with the logistic regression model best balancing accuracy and regional applicability. Areas close to trails, roads, and streams appear to have the highest initial risk, perhaps due to bird- or human-mediated dispersal. Both components of our management system are general enough for use throughout the southern Appalachians. Overlay of derived maps will allow forest managers to reduce the area where they must focus their control efforts and thus allocate resources more efficiently.
Development of an Integrated Waste Plan for Chalk River Laboratories - 13376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, L.
2013-07-01
To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually formore » up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling facilities that may be necessary for multiple related waste streams. The next step is to engage external stakeholders in the optioneering work required to provide enhanced confidence that the path forward identified within future iterations of the IWP will be acceptable to all. (authors)« less
A REVIEW OF BIOLOGICAL ASSESSMENT TOOLS AND BIOCRITERIA FOR STREAMS AND RIVERS IN NEW ENGLAND STATES
The primary purpose of this document is to serve as a detailed description of the biological assessment programs for wadeable streams and rivers within U.S. Environmental Protection Agency Region 1 states (i.e., Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and V...
The Canaan Valley Institute (CVI) is dedicated to addressing the environmental problems in the Mid-Atlantic Highlands (MAH). Their goal is to develop and implement solutions to restore damaged areas and protect aquatic systems. In most wadeable streams of the Mid-Atlantic Highlan...