Sample records for stream samples collected

  1. Geochemical results from stream-water and stream-sediment samples collected in Colorado and New Mexico

    USGS Publications Warehouse

    Hageman, Philip L.; Todd, Andrew S.; Smith, Kathleen S.; DeWitt, Ed; Zeigler, Mathew P.

    2013-01-01

    Scientists from the U.S. Geological Survey are studying the relationship between watershed lithology and stream-water chemistry. As part of this effort, 60 stream-water samples and 43 corresponding stream-sediment samples were collected in 2010 and 2011 from locations in Colorado and New Mexico. Sample sites were selected from small to midsize watersheds composed of a high percentage of one rock type or geologic unit. Stream-water and stream-sediment samples were collected, processed, preserved, and analyzed in a consistent manner. This report releases geochemical data for this phase of the study.

  2. Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas

    USGS Publications Warehouse

    Lee, C.J.; Rasmussen, T.J.

    2006-01-01

    Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.

  3. Field guide for collecting samples for analysis of volatile organic compounds in stream water for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1997-01-01

    For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.

  4. Efficiency of Different Sampling Tools for Aquatic Macroinvertebrate Collections in Malaysian Streams

    PubMed Central

    Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo

    2016-01-01

    This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685

  5. Summary geochemical maps for samples of rock, stream sediment, and nonmagnetic heavy-mineral concentrate, Sweetwater Roadless Area, Mono County, California and Lyon and Douglas Counties, Nevada

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1986-01-01

    Map A shows the locations of all sites where rock samples were collected for this report and the distributions of anomalous concentrations for 12 elements in the 127 rock samples collected. In a similar manner, map B shows the collection sites for 59 samples of minus-60-mesh stream sediment, and 59 samples of nonmagnetic heavy-mineral concentrate derived from stream sediment and also shows the distributions of anomalous concentrations for 13 elements in the stream-sediment samples and 17 elements in the concentrate samples. Map C shows outlines of those drainage basins containing samples of stream sediment and concentrate with anomalous element concentrations and also shows weighted values for each outlined basin based on the number of elements with anomalous concentrations in each stream-sediment and concentrate sample and on the degree to which these concentrations are anomalous in each sample.

  6. Geologic and tributary influences on the chemistry of a headwater stream

    Treesearch

    Alexander C. Wooten; James Preer; Pamela J. Edwards

    1999-01-01

    Water samples were collected weekly from June 12 to August 14, 1995, from Big Spring Run (BSR) in West Virginia. BSR originates in Big Spring Cave, where three stream samples were collected. In addition, 18 BSR sites were sampled downstream from the cave, three from its tributaries, and one above and below the stream?s confluence with Elklick Run. Along its length (653...

  7. Mineralogical maps showing distribution of selected ore-related minerals in the nonmagnetic, heavy-mineral-concentrate fraction of stream sediment from the Mount Hayes 1 degree by 3 degrees Quadrangle, eastern Alaska Range, Alaska

    USGS Publications Warehouse

    Tripp, Richard B.; Curtin, Gary C.; Nokleberg, Warren J.; Huston, David L.; Hampton, James R.

    1993-01-01

    Exploratory geochemical sampling was done in 1979, 1980, and 1981. The collection of composite samples of stream sediment or glacial debris was emphasized the first 2 years; the last year was spent collecting mineralized stream pebbles, float, and outcrop samples. The stream-sediment and heavy- mineral-concentrate samples were collected at 795 sites on tributary streams having drainage basins ranging from 1 to 5 mi 2 in area. The glacial debris samples were collected at 116 sites on tributary glaciers also having drainage basins ranging from 1 to 5 mi2 in area. All of these samples were analyzed for 31 elements by six-step semiquantitative emission spectrography (Grimes and Marranzino, 1968). In addition, all samples were analyzed for zinc by an atomic absorption method (Ward and others, 1969). The spectrographic and chemical results are available in O'Leary and others (1982).

  8. Geology-based method of assessing sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, Owen P.

    1991-01-01

    The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streams in these counties are sensitive to acidification by acidic deposition.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, K.; Bricker, O.

    The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streamsmore » in these counties are sensitive to acidification by acidic deposition.« less

  10. Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin

    USGS Publications Warehouse

    Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.

    2000-01-01

    In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.

  11. Floating sample-collection platform with stage-activated automatic water sampler for streams with large variation in stage

    USGS Publications Warehouse

    Tarte, Stephen R.; Schmidt, A.R.; Sullivan, Daniel J.

    1992-01-01

    A floating sample-collection platform is described for stream sites where the vertical or horizontal distance between the stream-sampling point and a safe location for the sampler exceed the suction head of the sampler. The platform allows continuous water sampling over the entire storm-runoff hydrogrpah. The platform was developed for a site in southern Illinois.

  12. Urban contributions of glyphosate and its degradate AMPA to streams in the United States

    USGS Publications Warehouse

    Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.

    2006-01-01

    Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).

  13. Concentrations and distribution of manmade organic compounds in the Lake Tahoe Basin, Nevada and California, 1997-99

    USGS Publications Warehouse

    Lico, Michael S.; Pennington, Nyle

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency and the Lahontan Regional Water-Quality Control Board, sampled Lake Tahoe, major tributary streams to Lake Tahoe, and several other lakes in the Lake Tahoe Basin for manmade organic compounds during 1997-99. Gasoline components were found in all samples collected from Lake Tahoe during the summer boating season. Methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX) were the commonly detected compounds in these samples. Most samples from tributary streams and lakes with no motorized boating had no detectable concentrations of gasoline components. Motorized boating activity appears to be directly linked in space and time to the occurrence of these gasoline components. Other sources of gasoline components to Lake Tahoe, such as the atmosphere, surface runoff, and subsurface flow, are minor compared to the input by motorized boating. Water sampled from Lake Tahoe during mid-winter, when motorized boating activity is low, had no MTBE and only one sample had any detectable BTEX compounds. Soluble pesticides rarely were detected in water samples from the Lake Tahoe Basin. The only detectable concentrations of these compounds were in samples from Blackwood and Taylor Creeks collected during spring runoff. Concentrations found in these samples were low, in the 1 to 4 nanograms per liter range. Organochlorine compounds were detected in samples collected from semipermeable membrane devices (SPMD's) collected from Lake Tahoe, tributary streams, and Upper Angora Lake. In Lake Tahoe, SPMD samples collected offshore from urbanized areas contained the largest number and highest concentrations of organochlorine compounds. The most commonly detected organochlorine compounds were cis- and trans-chlordane, p, p'-DDE, and hexachlorobenzene. In tributary streams, SPMD samples collected during spring runoff generally had higher combined concentrations of organochlorine compounds than those collected during baseflow conditions. Upper Angora Lake had the fewest number of organochlorine compounds detected of all lake samples. Dioxins and furans were not detected in SPMD samples from two sites in Lake Tahoe or from two tributary streams. The number of polycyclic aromatic hydrocarbon (PAH) compounds and their combined concentrations generally were higher in samples from Lake Tahoe than those from tributary streams. Areas of high-motorized boating activity at Lake Tahoe had the largest number and highest concentrations of PAH's. PAH compounds were detected in samples from SPMD's in four of six tributary streams during spring runoff, all tributary streams during baseflow conditions, and at all lake sites. The most commonly detected PAH's in tributary streams during spring runoff were phenanthrene, fluoranthene, pyrene, and chrysene, and during baseflow conditions were phenanthrene, 1-methylphenanthrene, diethylnaphthalene, and pyrene. Upper Truckee River, which has an urban area in its drainage basin, had the largest number and highest combined concentration of PAH's of all stream samples. Bottom-sediment from Lake Tahoe had detectable concentrations of p-cresol, a phenol, in all but one sample. A sample collected near Chambers Lodge contained phenol at an estimated concentration of 4 micrograms per kilogram (?g/kg). Bottom-sediment samples from tributary streams had no detectable concentrations of organochlorine or PAH compounds. Several compounds were detected in bottom sediment from Upper Angora Lake at high concentrations. These compounds and their concentrations were p, p'-DDD (10 ?g/kg), p, p'-DDE (7.4 ?g/kg), 2,6-dimethylnaphthalene (estimated at 190 ?g/kg), pentachlorophenol (3,000 ?g/kg), and p-cresol (4,400 ?g/kg).

  14. Water-quality and biological data for selected streams, lakes, and wells in the High Point Lake watershed, Guilford County, North Carolina, 1988-89

    USGS Publications Warehouse

    Davenport, M.S.

    1993-01-01

    Water and bottom-sediment samples were collected at 26 sites in the 65-square-mile High Point Lake watershed area of Guilford County, North Carolina, from December 1988 through December 1989. Sampling locations included 10 stream sites, 8 lake sites, and 8 ground-water sites. Generally, six steady-flow samples were collected at each stream site and three storm samples were collected at five sites. Four lake samples and eight ground-water samples also were collected. Chemical analyses of stream and lake sediments and particle-size analyses of lake sediments were performed once during the study. Most stream and lake samples were analyzed for field characteristics, nutrients, major ions, trace elements, total organic carbon, and chemical-oxygen demand. Analyses were performed to detect concentrations of 149 selected organic compounds, including acid and base/neutral extractable and volatile constituents and carbamate, chlorophenoxy acid, triazine, organochlorine, and organophosphorus pesticides and herbicides. Selected lake samples were analyzed for all constituents listed in the Safe Drinking Water Act of 1986, including Giardia, Legionella, radiochemicals, asbestos, and viruses. Various chromatograms from organic analyses were submitted to computerized library searches. The results of these and all other analyses presented in this report are in tabular form.

  15. Albany 1/sup 0/ x 2/sup 0/ NTMS area Connecticut, Massachusetts, New Hampshire, New York, and Vermont: data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koller, G.R.

    1979-08-01

    Stream sediment and stream water samples were collected from small streams at 1328 sites. Ground water samples were collected at 664 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water and surface water.

  16. Reconnaissance evaluation of surface-water quality in Eagle, Grand, Jackson, Pitkin, Routt, and Summit counties, Colorado

    USGS Publications Warehouse

    Britton, Linda J.

    1979-01-01

    Water-quality data were collected from streams in a six-county area in northwest Colorado to determine if the streams were polluted and, if so, to determine the sources of the pollution. Eighty-three stream sites were selected for sampling in Eagle, Grand, Jackson, Pitkin, Routt, and Summit Counties. A summary of data collected prior to this study, results of current chemical and biological sampling, and needs for future water-quality monitoring are reported for each county. Data collected at selected sites included temperature, pH, specific conductance, dissolved oxygen, and stream discharge. Chemical data collected included nutrients, inorganics, organics, and trace elements. Biological data collected included counts and species composition of total and fecal-coliform bacteria, fecal-streptococcus bacteria, benthic invertebrates, and phytoplankton. Most of the sites were sampled three times: in April-June 1976, August 1976, and January 1977. (Woodard-USGS)

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Albuquerque NTMS Quadrangle, New Mexico, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maassen, L.W.; Bolivar, S.L.

    1979-06-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less

  18. Perchlorate Data for Streams and Groundwater in Selected Areas of the United States, 2004

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Stetson, Sarah J.; Lund, Kris D.; Wanty, Richard B.; Linder, Gregory L.

    2010-01-01

    This report presents data collected as part of a reconnaissance study to evaluate the occurrence of perchlorate in rivers and streams and in shallow aquifers in selected areas of the United States. Perchlorate, a component in rocket fuels, fireworks, and some explosives is soluble in water and persists in soils and water for long periods. It is biologically active at relatively low-levels in the environment, and has been identified as an endocrine-disrupting chemical. The purpose of this reconnaissance was to determine the occurrence of perchlorate in agricultural areas of the Midwestern and North-Central United States and in arid Central and Western parts of the United States. Samples were collected from 171 sites on rivers and streams and 146 sites from wells during the summer and early fall of 2004. Samples were collected from surface-water sites in 19 states and from wells in 5 states. Perchlorate was detected in samples collected in 15 states and was detected in 34 of 182 samples from rivers and streams and in 64 of 148 groundwater samples at concentrations equal to or greater than 0.4 micrograms per liter. Perchlorate concentrations were 1.0 micrograms per liter or greater in surface-water samples from seven states and in groundwater samples in four states. Only one surface-water and one groundwater sample had concentrations greater than 5.0 micrograms per liter. Perchlorate concentrations in followup samples collected from 1 to 3 months after the initial sample were unchanged at four of five stream sites.

  19. Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA

    USGS Publications Warehouse

    Gray, J.E.; Theodorakos, P.M.; Bailey, E.A.; Turner, R.R.

    2000-01-01

    Concentrations of total Hg, Hg (II), and methylmercury were measured in stream-sediment, stream-water, and fish collected downstream from abandoned mercury mines in south-western Alaska to evaluate environmental effects to surrounding ecosystems. These mines are found in a broad belt covering several tens of thousands of square kilometers, primarily in the Kuskokwim River basin. Mercury ore is dominantly cinnabar (HgS), but elemental mercury (Hg(o)) is present in ore at one mine and near retorts and in streams at several mine sites. Approximately 1400 t of mercury have been produced from the region, which is approximately 99% of all mercury produced from Alaska. These mines are not presently operating because of low prices and low demand for mercury. Stream-sediment samples collected downstream from the mines contain as much as 5500 ??g/g Hg. Such high Hg concentrations are related to the abundance of cinnabar, which is highly resistant to physical and chemical weathering, and is visible in streams below mine sites. Although total Hg concentrations in the stream-sediment samples collected near mines are high, Hg speciation data indicate that concentrations of Hg (II) are generally less than 5%, and methylmercury concentrations are less than 1% of the total Hg. Stream waters below the mines are neutral to slightly alkaline (pH 6.8-8.4), which is a result of the insolubility of cinnabar and the lack of acid- generating minerals such as pyrite in the deposits. Unfiltered stream-water samples collected below the mines generally contain 500-2500 ng/l Hg; whereas, corresponding stream-water samples filtered through a 0.45-??m membrane contain less than 50 ng/l Hg. These stream-water results indicate that most of the Hg transported downstream from the mines is as finely- suspended material rather than dissolved Hg. Mercury speciation data show that concentrations of Hg (II) and methylmercury in stream-water samples are typically less than 22 ng/l, and generally less than 5% of the total Hg. Muscle samples of fish collected downstream from mines contain as much as 620 ng/g Hg (wet wt.), of which 90-100% is methylmercury. Although these Hg concentrations are several times higher than that in fish collected from regional baseline sites, the concentration of Hg in fish is below the 1000 ng/g action level for edible fish established by the US Food and Drug Administration (FDA). Salmon contain less than 100 ng/g Hg, which are among the lowest Hg contents observed for fish in the study, and well below the FDA action level. (C) 2000 Elsevier Science B.V.

  20. Recovery of Phytophthora species from drainage points and tributaries within two forest stream networks: a preliminary report

    Treesearch

    J. Hwang; S.W. Oak; S.N. Jeffers

    2011-01-01

    To evaluate the number of stream sample sites needed to effectively survey a given stream network for species of Phytophthora, two stream networks, Davidson River and Cathey's Creek, in western North Carolina (USA) were studied. One-litre water samples were collected from the terminal drainage points and most of the tributaries in each stream...

  1. An evaluation of the effects of acid rain on low conductivity headwater streams in Pennsylvania

    USGS Publications Warehouse

    Ritter, John R.; Brown, Ann E.

    1981-01-01

    Analyses of water collected at 32 sites on headwater streams in Pennsylvania during low-flow conditions in 1970-80 were compared to pre-1971 data to evaluate whether acid rain had changed the chemistry of the streams in the previous decade. Most pH, alkalinity, and sulfate values of the samples collected in 1970-80 fell within the ranges of values for samples collected before 1971. The limited data indicate, however, that pH may have increased and alkalinity and sulfate may have decreased with time.

  2. Rainfall, Discharge, and Water-Quality Data During Stormwater Monitoring, July 1, 2007, to June 30, 2008; Halawa Stream Drainage Basin and the H-1 Storm Drain, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Young, Stacie T.M.

    2008-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at four stations, and water-quality data at six stations, which include the four continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2007, and June 30, 2008. A total of 16 environmental samples were collected over two storms during July 1, 2007, to June 30, 2008, within the Halawa Stream drainage area. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some samples were analyzed for only a partial list of these analytes because an insufficient volume of sample was collected by the automatic samplers. Three additional quality-assurance/quality-control samples were collected concurrently with the storm samples. A total of 16 environmental samples were collected over four storms during July 1, 2007, to June 30, 2008 at the H-1 Storm Drain. All samples at this site were collected using an automatic sampler. Samples generally were analyzed for total suspended solids, nutrients, chemical oxygen demand, oil and grease, total petroleum hydrocarbons, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc), although some samples were analyzed for only a partial list of these analytes. During the storm of January 29, 2008, 10 discrete samples were collected. Varying constituent concentrations were detected for the samples collected at different times during this storm event. Two quality-assurance/quality-control samples were collected concurrently with the storm samples. Three additional quality-assurance/quality-control samples were collected during routine sampler maintenance to check the effectiveness of equipment-cleaning procedures.

  3. Assessment of wadeable stream resources in the driftless area ecoregion in Western Wisconsin using a probabilistic sampling design.

    PubMed

    Miller, Michael A; Colby, Alison C C; Kanehl, Paul D; Blocksom, Karen

    2009-03-01

    The Wisconsin Department of Natural Resources (WDNR), with support from the U.S. EPA, conducted an assessment of wadeable streams in the Driftless Area ecoregion in western Wisconsin using a probabilistic sampling design. This ecoregion encompasses 20% of Wisconsin's land area and contains 8,800 miles of perennial streams. Randomly-selected stream sites (n = 60) equally distributed among stream orders 1-4 were sampled. Watershed land use, riparian and in-stream habitat, water chemistry, macroinvertebrate, and fish assemblage data were collected at each true random site and an associated "modified-random" site on each stream that was accessed via a road crossing nearest to the true random site. Targeted least-disturbed reference sites (n = 22) were also sampled to develop reference conditions for various physical, chemical, and biological measures. Cumulative distribution function plots of various measures collected at the true random sites evaluated with reference condition thresholds, indicate that high proportions of the random sites (and by inference the entire Driftless Area wadeable stream population) show some level of degradation. Study results show no statistically significant differences between the true random and modified-random sample sites for any of the nine physical habitat, 11 water chemistry, seven macroinvertebrate, or eight fish metrics analyzed. In Wisconsin's Driftless Area, 79% of wadeable stream lengths were accessible via road crossings. While further evaluation of the statistical rigor of using a modified-random sampling design is warranted, sampling randomly-selected stream sites accessed via the nearest road crossing may provide a more economical way to apply probabilistic sampling in stream monitoring programs.

  4. DEVELOPMENT OF BENTHIC MACROINVERTEBRATE INDEX FOR MEASURING THE CONDITION OF STREAMS AT A REGIONAL SCALE

    EPA Science Inventory

    A multimetric macroinvertebrate index of stream condition was developed for the Mid-Atlantic Highlands Region of the United States. Benthic macroinvertebrate samples were collected from 562 first through third order streams between 1993 and 1995. Macroinvertebrates were collect...

  5. Quality of surface-water runoff in selected streams in the San Antonio segment of the Edwards aquifer recharge zone, Bexar County, Texas, 1997-2012

    USGS Publications Warehouse

    Opsahl, Stephen P.

    2012-01-01

    During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.

  6. Comparison of urine specimen collection times and testing fractions for the detection of high-risk human papillomavirus and high-grade cervical precancer.

    PubMed

    Senkomago, V; Des Marais, A C; Rahangdale, L; Vibat, C R T; Erlander, M G; Smith, J S

    2016-01-01

    Urine testing for high-risk human papillomavirus (HR-HPV) detection could provide a non-invasive, simple method for cervical cancer screening. We examined whether HR-HPV detection is affected by urine collection time, portion of urine stream, or urine fraction tested, and assessed the performance of HR-HPV testing in urine for detection of cervical intraepithelial neoplasia grade II or worse (CIN2+). A total of 37 female colposcopy clinic attendees, ≥ 30 years, provided three urine samples: "first void" urine collected at home, and "initial stream" and "mid-stream" urine samples collected at the clinic later in the day. Self- and physician-collected brush specimens were obtained at the same clinic visit. Colposcopy was performed and directed biopsies obtained if clinically indicated. For each urine sample, HR-HPV DNA testing was conducted for unfractionated, pellet, and supernatant fractions using the Trovagene test. HR-HPV mRNA testing was performed on brush specimens using the Aptima HPV assay. HR-HPV prevalence was similar in unfractionated and pellet fractions of all urine samples. For supernatant urine fractions, HR-HPV prevalence appeared lower in mid-stream urine (56.8%[40.8-72.7%]) than in initial stream urine (75.7%[61.9-89.5%]). Sensitivity of CIN2+ detection was identical for initial stream urine and physician-collected cervical specimen (89.9%[95%CI=62.7-99.6%]), and similar to self-collected vaginal specimen (79.1%[48.1-96.6%]). This is among the first studies to compare methodologies for collection and processing of urine for HR-HPV detection. HR-HPV prevalence was similar in first void and initial stream urine, and was highly sensitive for CIN2+ detection. Additional research in a larger and general screening population is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Hydrological, water-quality, and ecological data for streams in Independence, Missouri, June 2005 through September 2013

    USGS Publications Warehouse

    Niesen, Shelley L.; Christensen, Eric D.

    2015-01-01

    Water-quality, hydrological, and ecological data collected from June 2005 through September 2013 from the Little Blue River and smaller streams within the City of Independence, Missouri, are presented in this report. These data were collected as a part of an ongoing cooperative study between the U.S. Geological Survey and the City of Independence Water Pollution Control Department to characterize the water quality and ecological condition of Independence streams. The quantities, sources of selected constituents, and processes affecting water quality and aquatic life were evaluated to determine the resulting ecological condition of streams within Independence. Data collected for this study fulfill the municipal separate sewer system permit requirements for the City of Independence and can be used to provide a baseline with which city managers can determine the effectiveness of current (2014) and future best management practices within Independence. Continuous streamflow and water-quality data, collected during base flow and stormflow, included physical and chemical properties, inorganic constituents, common organic micro-constituents, pesticides in streambed sediment and surface water, fecal indicator bacteria and microbial source tracking data, and suspended sediment. Dissolved oxygen, pH, specific conductance, water temperature, and turbidity data were measured continuously at seven sites within Independence. Base-flow and stormflow samples were collected at eight gaged and two ungaged sites. Fecal sources samples were collected for reference for microbial source tracking, and sewage influent samples were collected as additional source samples. Dry-weather screening was done on 11 basins within Independence to identify potential contaminant sources to the streams. Benthic macroinvertebrate community surveys and habitat assessments were done on 10 stream sites and 2 comparison sites outside the city. Sampling and laboratory procedures and quality-assurance and quality-control methods used in data collection for this study are described in this report.

  8. Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1994-01-01

    The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.

  9. Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry

    Treesearch

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer

    2009-01-01

    We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...

  10. Water-quality data from five Oregon stream basins

    USGS Publications Warehouse

    Miller, Timothy L.

    1979-01-01

    The U.S. Geological Survey collected water-quality data in five Oregon stream basins during summer low-flow conditions in 1977 and 1978. During the two sampling periods, a total of 18 different sites were sampled. Several sites were sampled twice in 1977, and some sites were sampled in both 1977 and 1978. Included in the sampling were diel trace of dissolved oxygen, temperature, specific conductance, pH, and solar radiation. In addition, periphyton and benthic invertebrate samples were collected and identified.

  11. Guidelines for collecting and processing samples of stream bed sediment for analysis of trace elements and organic contaminants for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.; Capel, Paul D.

    1994-01-01

    A major component of the U.S. Geological Survey's National Water-Quality Assessment program is to assess the occurrence and distribution of trace elements and organic contaminants in streams. The first phase of the strategy for the assessment is to analyze samples of bed sediments from depositional zones. Fine-grained particles deposited in these zones are natural accumulators of trace elements and hydrophobic organic compounds. For the information to be comparable among studies in many different parts of the Nation, strategies for selecting stream sites and depositional zones are critical. Fine-grained surficial sediments are obtained from several depositional zones within a stream reach and composited to yield a sample representing average conditions. Sample collection and processing must be done consistently and by procedures specifically designed to separate the fine material into fractions that yield uncontaminated samples for trace-level analytes in the laboratory. Special coring samplers and other instruments made of Teflon are used for collection. Samples are processed through a 2.0-millimeter stainless-steel mesh sieve for organic contaminate analysis and a 63-micrometer nylon-cloth sieve for trace-element analysis. Quality assurance is maintained by strict collection and processing procedures, duplicate samplings, and a rigid cleaning procedure.

  12. Nutrient concentrations in Upper and Lower Echo, Fallen Leaf, Spooner, and Marlette Lakes and associated outlet streams, California and Nevada, 2002-03

    USGS Publications Warehouse

    Lico, Michael S.

    2004-01-01

    Five lakes and their outlet streams in the Lake Tahoe Basin were sampled for nutrients during 2002-03. The lakes and streams sampled included Upper Echo, Lower Echo, Fallen Leaf, Spooner, and Marlette Lakes and Echo, Taylor, and Marlette Creeks. Water samples were collected to determine seasonal and spatial concentrations of dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen, dissolved orthophosphate, total phosphorus, and total bioreactive iron. These data will be used by Tahoe Regional Planning Agency in revising threshold values for waters within the Lake Tahoe Basin. Standard U.S. Geological Survey methods of sample collection and analysis were used and are detailed herein. Data collected during this study and summary statistics are presented in graphical and tabular form.

  13. Dissolved pesticides, dissolved organic carbon, and water-quality characteristics in selected Idaho streams, April--December 2010

    USGS Publications Warehouse

    Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.

    2012-01-01

    Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.

  14. Dating base flow in streams using dissolved gases and diurnal temperature changes

    USGS Publications Warehouse

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  15. Aquatic macroinvertebrates collected at Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio, 1998

    USGS Publications Warehouse

    Tertuliani, John S.

    1999-01-01

    The results of a survey of macroinvertebrate communities in the Ravenna Army Ammunition Plant, were used as an indicator of disturbance in streams flowing through or near the training areas at the Plant. The data were interpreted using the Invertebrate Community Index (ICI), a multiple-metric index developed by the Ohio Environmental Protection Agency and based on the structural and functional characteristics of the macroinvertebrate community. Quantitative samples of the macroinvertebrate were collected for ICI determination from three streams South Fork Eagle Creek, Sand Creek, and Hinkley Creek flowing through the study area. These samples were collected using Hester-Dendy type artificial substrate samplers, which were placed in the streams during a 6-week sampling period, June 2 through July 15, 1998. A qualitative- dipnet sample from the natural substrates also was collected at each station on July 15, 1998, the last day of the sampling period. The macroinvertebrate communities at all three stations met the criterion designated for warmwater habitat aquatic life use, and communities at two of the three stations exceeded the criterion. The ICI scores were 42 at South Fork Eagle Creek, 50 at Sand Creek, and 48 at Hinkley Creek. The density of macroinvertebrates at South Fork Eagle Creek was 1,245 per square foot and represented 38 distinct taxa. The density at Sand Creek was 246 per square foot and represented 29 distinct taxa. The density at Hinkley Creek was 864 per square foot and represented 36 distinct taxa. Qualitative samples were also collected at 21 other sites using a D-framed dipnet. The qualitative sites encompassed three main environments: stream, pond, and swamp-wetland. All available habitat types in each environment were sampled until no new taxa were evident during coarse examination. The highest number of taxa were collected from the streams. The total number of taxa collected in streams ranged from 25 to 76; the mean was 60 and median 64. The total taxa collected from ponds ranged from 32 to 60; the mean was 42 and median 41. The total taxa collected from swamp-wetland areas ranged from 6 to 30; the mean was 20 and median 23. The results are listed in phylogenetic order in this report and establish baseline data for future studies.

  16. Validation of eDNA markers for New Zealand mudsnail surveillance and initial eDNA monitoring at Mississippi River Basin sites

    USGS Publications Warehouse

    Merkes, Christopher; Turnquist, Keith N.; Rees, Christopher B.; Amberg, Jon J.

    2015-01-01

    The duplex assay was chosen as the most efficient assay and was used at the Upper Midwest Environmental Sciences Center to analyze triplicate samples from 29 streams in Wisconsin, 8 streams in Illinois, and 8 streams in Iowa. In order to verify results, additional triplicate samples were collected from two of the streams in Iowa and two of the streams in Wisconsin for analysis at the Molecular Conservation Genetics Laboratory. All samples at all sites were negative for NZMS DNA.

  17. PREDICTION OF FUNDAMENTAL ASSEMBLAGES OF MID-ATLANTIC HIGHLAND STREAM FISHES

    EPA Science Inventory

    A statistical software tool, the Stream Fish Assemblage Predictor (SFAP), based on stream sampling data collected by the EPA in the mid-Atlantic Highlands, was developed to predict potential stream fish communities using characteristics of the stream and its watershed.
    Step o...

  18. Silver concentrations and selected hydrologic data in the Upper Colorado River basin, 1991-92

    USGS Publications Warehouse

    Johncox, D.A.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District and the Northern Colorado Water Conservancy District, collected water and sediment samples in May and September 1991 and 1992 from nine stream-sampling sites and three lake-sampling sites within the Upper Colorado River Basin upstream from Kremmling, Colorado. Data were collected to determine the present (1992) conditions of the Upper Colorado River Basin regarding silver concentrations in the water and sediment. Lake-water and stream-water samples were analyzed for concentrations of total recoverable silver, dissolved silver, and suspended solids. Lake- and stream-bottom material was analyzed for concentrations of total recoverable silver. Additional data collected were streamflow, specific conductance, pH, and water temperature. Transparency (Secchi-disk measurements) also was measured in the lakes.

  19. Evaluation of passive samplers for the collection of dissolved organic matter in streams.

    PubMed

    Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V

    2015-01-01

    Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.

  20. Recommendations for constructing forest stream crossings to control soil losses

    Treesearch

    Pamela J. Edwards; Jingxin Wang; Joshua T. Stedman

    2009-01-01

    Stream water samples were collected once daily and throughout storms from a small forested watershed in north central West Virginia for approximately 8 years. The turbidities of the samples were measured to determine how water quality changed in response to the construction of three associated stream crossings. The influence of the...

  1. Concentrations of selected pharmaceuticals and antibiotics in south-central Pennsylvania waters, March through September 2006

    USGS Publications Warehouse

    Loper, Connie A.; Crawford, J. Kent; Otto, Kim L.; Manning, Rhonda L.; Meyer, Michael T.; Furlong, Edward T.

    2007-01-01

    This report presents environmental and quality-control data from analyses of 15 pharmaceutical and 31 antibiotic compounds in water samples from streams and wells in south-central Pennsylvania. The analyses are part of a study by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP) to define concentrations of selected emerging contaminants in streams and well water in Pennsylvania. Sampling was conducted at 11 stream sites and at 6 wells in 9 counties of south-central Pennsylvania. Five of the streams received municipal wastewater and 6 of the streams received runoff from agricultural areas dominated by animal-feeding operations. For all 11 streams, samples were collected at locations upstream and downstream of the municipal effluents or animal-feeding operations. All six wells were in agricultural settings. A total of 120 environmental samples and 21 quality-control samples were analyzed for the study. Samples were collected at each site in March/April, May, July, and September 2006 to obtain information on changes in concentration that could be related to seasonal use of compounds.For streams, 13 pharmaceuticals and 11 antibiotics were detected at least 1 time. Detections included analytical results that were estimated or above the minimum reporting limits. Seventy-eight percent of all detections were analyzed in samples collected downstream from municipal-wastewater effluents. For streams receiving wastewater effluents, the pharmaceuticals caffeine and para-xanthine (a degradation product of caffeine) had the greatest concentrations, 4.75 μg/L (micrograms per liter) and 0.853 μg/L, respectively. Other pharmaceuticals and their respective maximum concentrations were carbamazepine (0.516 μg/L) and ibuprofen (0.277 μg/L). For streams receiving wastewater effluents, the antibiotic azithromycin had the greatest concentration (1.65 μg/L), followed by sulfamethoxazole (1.34 μg/L), ofloxacin (0.329 μg/L), and trimethoprim (0.256 μg/L).For streams receiving runoff from animal-feeding operations, the only pharmaceuticals detected were acetaminophen, caffeine, cotinine, diphenhydramine, and carbamazepine. The maximum concentration for pharmaceuticals was 0.053 μg/L. Three streams receiving runoff from animal-feeding operations had detections of one or more antibiotic compound--oxytetracycline, sulfadimethoxine, sulfamethoxazole, and tylosin. The maximum concentration for antibiotics was 0.157 μg/L. The average number of compounds (pharmaceuticals and antibiotics) detected in sites downstream from animal-feeding operations was three. The average number of compounds detected downstream from municipal-wastewater effluents was 13.For wells used to supply livestock, four compounds were detected--two pharmaceuticals (cotinine and diphenhydramine) and two antibiotics (tylosin and sulfamethoxazole). There were five detections in all the well samples. The maximum concentration detected in well water was for cotinine, estimated to be 0.024 μg/L.Seasonal occurrence of pharmaceutical and antibiotic compounds in stream water varied by compound and site type. At four stream sites, the same compounds were detected in all four seasonal samples. At other sites, pharmaceutical or antibiotic compounds were detected only one time in seasonal samples. Winter samples collected in streams receiving municipalwastewater effluent had the greatest number of compounds detected (21). Research analytical methods were used to determine concentrations for pharmaceuticals and antibiotics. To assist in evaluating the quality of the analyses, detailed information is presented on laboratory methodology and results from qualitycontrol samples. Quality-control data include results for nine blanks, nine duplicate environmental sample pairs, and three laboratory-spiked environmental samples as well as the recoveries of compounds in laboratory surrogates and laboratory reagent spikes.

  2. Effects of the H-3 Highway Stormwater Runoff on the Water Quality of Halawa Stream, Oahu, Hawaii, November 1998 to August 2004

    USGS Publications Warehouse

    Wolff, Reuben H.; Wong, Michael F.

    2008-01-01

    Since November 1998, water-quality data have been collected from the H-3 Highway Storm Drain C, which collects runoff from a 4-mi-long viaduct, and from Halawa Stream on Oahu, Hawaii. From January 2001 to August 2004, data were collected from the storm drain and four stream sites in the Halawa Stream drainage basin as part of the State of Hawaii Department of Transportation Storm Water Monitoring Program. Data from the stormwater monitoring program have been published in annual reports. This report uses these water-quality data to explore how the highway storm-drain runoff affects Halawa Stream and the factors that might be controlling the water quality in the drainage basin. In general, concentrations of nutrients, total dissolved solids, and total suspended solids were lower in highway runoff from Storm Drain C than at stream sites upstream and downstream of Storm Drain C. The opposite trend was observed for most trace metals, which generally occurred in higher concentrations in the highway runoff from Storm Drain C than in the samples collected from Halawa Stream. The absolute contribution from Storm Drain C highway runoff, in terms of total storm loads, was much smaller than at stations upstream and downstream, whereas the constituent yields (the relative contribution per unit drainage basin area) at Storm Drain C were comparable to or higher than storm yields at stations upstream and downstream. Most constituent concentrations and loads in stormwater runoff increased in a downstream direction. The timing of the storm sampling is an important factor controlling constituent concentrations observed in stormwater runoff samples. Automated point samplers were used to collect grab samples during the period of increasing discharge of the storm throughout the stormflow peak and during the period of decreasing discharge of the storm, whereas manually collected grab samples were generally collected during the later stages near the end of the storm. Grab samples were analyzed to determine concentrations and loads at a particular point in time. Flow-weighted time composite samples from the automated point samplers were analyzed to determine mean constituent concentrations or loads during a storm. Chemical analysis of individual grab samples from the automated point sampler at Storm Drain C demonstrated the ?first flush? phenomenon?higher constituent concentrations at the beginning of runoff events?for the trace metals cadmium, lead, zinc, and copper, whose concentrations were initially high during the period of increasing discharge and gradually decreased over the duration of the storm. Water-quality data from Storm Drain C and four stream sites were compared to the State of Hawaii Department of Health (HDOH) water-quality standards to determine the effects of highway storm runoff on the water quality of Halawa Stream. The geometric-mean standards and the 10- and 2-percent-of-the-time concentration standards for total nitrogen, nitrite plus nitrate, total phosphorus, total suspended solids, and turbidity were exceeded in many of the comparisons. However, these standards were not designed for stormwater sampling, in which constituent concentrations would be expected to increase for short periods of time. With the aim of enhancing the usefulness of the water-quality data, several modifications to the stormwater monitoring program are suggested. These suggestions include (1) the periodic analyzing of discrete samples from the automated point samplers over the course of a storm to get a clearer profile of the storm, from first flush to the end of the receding discharge; (2) adding an analysis of the dissolved fractions of metals to the sampling plan; (3) installation of an automatic sampler at Bridge 8 to enable sampling earlier in the storms; (4) a one-time sampling and analysis of soils upstream of Bridge 8 for base-line contaminant concentrations; (5) collection of samples from Halawa Stream during low-flow conditions

  3. Results of Macroinvertebrate Sampling Conducted at 33 SRS Stream Locations, July--August 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1994-12-01

    In order to assess the health of the macroinvertebrate communities of SRS streams, the macroinvertebrate communities at 30 stream locations on SRS were sampled during the summer of 1993, using Hester-Dendy multiplate samplers. In addition, three off-site locations in the Upper Three Runs drainage were sampled in order to assess the potential for impact from off-site activities. In interpreting the data, it is important to recognize that these data were from a single set of collections. Macroinvertebrate communities often undergo considerable temporal variation, and are also greatly influenced by such factors as water depth, water velocity, and available habitat. Thesemore » stations were selected with the intent of developing an on-going sampling program at a smaller number of stations, with the selection of the stations to be based largely upon the results of this preliminary sampling program. When stations within a given stream showed similar results, fewer stations would be sampled in the future. Similarly, if a stream appeared to be perturbed, additional stations or chemical analyses might be added so that the source of the perturbation could be identified. In general, unperturbed streams will contain more taxa than perturbed streams, and the distribution of taxa among orders or families will differ. Some groups of macroinvertebrates, such as Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), which are collectively called EPT taxa, are considered to be relatively sensitive to most kinds of stream perturbation; therefore a reduced number of EPT taxa generally indicates that the stream has been subject to chemical or physical stressors. In coastal plain streams, EPT taxa are generally less dominant than in streams with rocky substrates, while Chironomidae (midges) are more abundant. (Abstract Truncated)« less

  4. Analyses and descriptions of geochemical samples from the Rich Mountain Roadless Area, Fannin and Gilmer counties, Georgia

    USGS Publications Warehouse

    Sears, C.M.; Foose, M.P.; Day, G.W.; Ericksen, M.S.

    1983-01-01

    Semi-quantitative spectrographic analyses for 31 elements on rock, soil, fine-grained stream sediment, bulk stream sediment, and panned stream sediment samples collected in the Rich Mountain Roadless Area, Fannin and Gilmer Counties, Georgia, are reported here. Atomic absorption analyses for gold and fluorometric analyses for uranium are also reported. Brief descriptions of all rock samples analyzed are included.

  5. Evaluation of an alternate method for sampling benthic macroinvertebrates in low-gradient streams sampled as part of the National Rivers and Streams Assessment.

    PubMed

    Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A

    2014-02-01

    Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.

  6. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples

    USGS Publications Warehouse

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting aquatic species are advancing rapidly, but with little evaluation of field protocols or precision of resulting estimates. We compared sampling results from traditional field methods with eDNA methods for two amphibians in 13 streams in central Idaho, USA. We also evaluated three water collection protocols and the influence of sampling location, time of day, and distance from animals on eDNA concentration in the water. We found no difference in detection or amount of eDNA among water collection protocols. eDNA methods had slightly higher detection rates than traditional field methods, particularly when species occurred at low densities. eDNA concentration was positively related to field-measured density, biomass, and proportion of transects occupied. Precision of eDNA-based abundance estimates increased with the amount of eDNA in the water and the number of replicate subsamples collected. eDNA concentration did not vary significantly with sample location in the stream, time of day, or distance downstream from animals. Our results further advance the implementation of eDNA methods for monitoring aquatic vertebrates in stream habitats.

  7. Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used

    PubMed Central

    Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.

    2016-01-01

    The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819

  8. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    USGS Publications Warehouse

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  9. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  10. Summary of and factors affecting pesticide concentrations in streams and shallow wells of the lower Susquehanna River basin, Pennsylvania and Maryland, 1993-95

    USGS Publications Warehouse

    Hainly, Robert A.; Zimmerman, Tammy M.; Loper, Connie A.; Lindsey, Bruce D.

    2001-01-01

    This report presents the detection frequency of 83 analyzed pesticides, describes the concentrations of those pesticides measured in water from streams and shallow wells, and presents conceptual models of the major factors affecting seasonal and areal patterns of pesticide concentrations in water from streams and shallow wells in the Lower Susquehanna River Basin. Seasonal and areal patterns of pesticide concentrations were observed in 577 samples and nearly 40,000 pesticide analyses collected from 155 stream sites and 169 shallow wells from 1993 to 1995. For this study, shallow wells were defined as those generally less than 200 feet deep.The most commonly detected pesticides were agricultural herbicides?atrazine, metolachlor, simazine, prometon, alachlor, and cyanazine. Atrazine and metolachlor are the two most-used agricultural pesticides in the Lower Susquehanna River Basin. Atrazine was detected in 92 percent of all the samples and in 98 percent of the stream samples. Metolachlor was detected in 83 percent of all the samples and in 95 percent of the stream samples. Nearly half of all the analyzed pesticides were not detected in any sample. Of the 45 pesticides that were detected at least once, the median concentrations of 39 of the pesticides were less than the detection limit for the individual compounds, indicating that for at least 50 percent of the samples collected, those pesticides were not detected. Only 10 (less than 0.025 percent) of the measured concentrations exceeded any established drinking-water standards; 25 concentrations exceeded 2 mg/L (micrograms per liter) and 55 concentrations exceeded 1 mg/L. None of the elevated concentrations were measured in samples collected from streams that are used for public drinking-water supplies, and 8 of the 10 were measured in storm-affected samples.The timing and rate of agricultural pesticide applications affect the seasonal and areal concentration patterns of atrazine, simazine, chlorpyrifos, and diazinon observed in water from wells and streams in the Lower Susquehanna River Basin. Average annual pesticide use for agricultural purposes and nonagricultural pesticide use indicators were used to explain seasonal and areal patterns. Elevated concentrations of some pesticides in streams during base-flow and storm-affected conditions were related to the seasonality of agricultural-use applications and local climate conditions. Agricultural-use patterns affected areal concentration patterns for the high-use pesticides, but indicators of nonagricultural use were needed to explain concentration patterns of pesticides with smaller amounts used for agricultural purposes.Bedrock type influences the movement and discharge of ground water, which in turn affects concentration patterns of pesticides. The ratio of atrazine concentrations in stream base flow to concentrations in shallow wells varied among the different general rock types found in the Lower Susquehanna River Basin. Median concentrations of atrazine in well water and stream base flow tended to be similar in individual areas underlain by carbonate bedrock, indicating the connectivity of water in streams and shallow wells in these areas. In areas underlain by noncarbonate bedrock, median concentrations of atrazine tended to be significantly higher in stream base flow than in well water. This suggests a deep ground-water system that delivers water to shallow wells and a near-surficial system that supplies base-flow water to streams. In addition to the presence or absence of carbonate bedrock, pesticide leaching potential and persistence, soil infiltration capacity, and agricultural land use affected areal patterns in detection frequency and concentration differences between samples collected from streams during base-flow conditions and shallow wells.

  11. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.

  12. Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas

    USGS Publications Warehouse

    Haggard, B.E.; Soerens, T.S.; Green, W.R.; Richards, R.P.

    2003-01-01

    The development of total maximum daily loads (TMDLs) requires evaluating existing constituent loads in streams. Accurate estimates of constituent loads are needed to calibrate watershed and reservoir models for TMDL development. The best approach to estimate constituent loads is high frequency sampling, particularly during storm events, and mass integration of constituents passing a point in a stream. Most often, resources are limited and discrete water quality samples are collected on fixed intervals and sometimes supplemented with directed sampling during storm events. When resources are limited, mass integration is not an accurate means to determine constituent loads and other load estimation techniques such as regression models are used. The objective of this work was to determine a minimum number of water-quality samples needed to provide constituent concentration data adequate to estimate constituent loads at a large stream. Twenty sets of water quality samples with and without supplemental storm samples were randomly selected at various fixed intervals from a database at the Illinois River, northwest Arkansas. The random sets were used to estimate total phosphorus (TP) loads using regression models. The regression-based annual TP loads were compared to the integrated annual TP load estimated using all the data. At a minimum, monthly sampling plus supplemental storm samples (six samples per year) was needed to produce a root mean square error of less than 15%. Water quality samples should be collected at least semi-monthly (every 15 days) in studies less than two years if seasonal time factors are to be used in the regression models. Annual TP loads estimated from independently collected discrete water quality samples further demonstrated the utility of using regression models to estimate annual TP loads in this stream system.

  13. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2000 to June 30, 2001

    USGS Publications Warehouse

    Presley, Todd K.

    2001-01-01

    The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall and streamflow data were collected from July 1, 2000 to June 30, 2001. Few storms during the year met criteria for antecedent dry conditions or provided enough runoff to sample. The storm of June 5, 2001 was sufficiently large to cause runoff. On June 5, 2001, grab samples were collected at five sites along North Halawa and Halawa Streams. The five samples were later analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological and chemical oxygen demands, total suspended solids, and total dissolved solids.

  14. Sampling for mercury at subnanogram per litre concentrations for load estimation in rivers

    USGS Publications Warehouse

    Colman, J.A.; Breault, R.F.

    2000-01-01

    Estimation of constituent loads in streams requires collection of stream samples that are representative of constituent concentrations, that is, composites of isokinetic multiple verticals collected along a stream transect. An all-Teflon isokinetic sampler (DH-81) cleaned in 75??C, 4 N HCl was tested using blank, split, and replicate samples to assess systematic and random sample contamination by mercury species. Mean mercury concentrations in field-equipment blanks were low: 0.135 ng??L-1 for total mercury (??Hg) and 0.0086 ng??L-1 for monomethyl mercury (MeHg). Mean square errors (MSE) for ??Hg and MeHg duplicate samples collected at eight sampling stations were not statistically different from MSE of samples split in the laboratory, which represent the analytical and splitting error. Low fieldblank concentrations and statistically equal duplicate- and split-sample MSE values indicate that no measurable contamination was occurring during sampling. Standard deviations associated with example mercury load estimations were four to five times larger, on a relative basis, than standard deviations calculated from duplicate samples, indicating that error of the load determination was primarily a function of the loading model used, not of sampling or analytical methods.

  15. Surface- and Ground-Water Monitoring and Mapping of Selected Features at the Blue Ridge Parkway Mt. Pisgah Campground, Haywood County, North Carolina, 2002

    USGS Publications Warehouse

    Smith, Douglas G.

    2004-01-01

    During 2002, a baseline study of hydrologic conditions was conducted, and selected features were mapped within the Mt. Pisgah campground on the Blue Ridge Parkway in Haywood County, North Carolina. Field surveys were performed by using global positioning system equipment one time (January 2002) during the study to locate hydrologic and other types of features in the study area. Water-level and streamflow data and seasonal water-quality samples were collected from a stream that receives all surface-water drainage from the campground area. During 2002, water levels (stage) in the stream ranged from 1.09 to 1.89 feet above gage datum (4,838.06 to 4,838.86 feet above mean sea level). Flow in the stream ranged from 0.05 to 9.7 cubic feet per second. Annual daily mean flow for calendar year 2002 was approximately 0.35 cubic foot per second (about 226,000 gallons per day). Samples collected from the stream had low concentrations of all constituents measured. Four compounds associated with human activity (camphor, N,N-diethyl-meta-toluamide (the insect repellent DEET), tributylphosphate, and methylsalicylate) were detected in the stream samples; however, concentrations were less than detection levels. Stream samples collected in April and September and analyzed for fecal coliform bacteria had densities of 76 and 110 colonies per 100 milliliters of water, respectively. No violations of water-quality standards were noted for any constituent measured in the stream samples. Seven shallow ground-water wells were installed near a natural area in the center of the campground. Ground-water levels measured periodically in these wells and in two existing shallow piezometers generally were highest in the spring and lowest in the fall. Water temperature, pH, and specific conductance were measured in samples collected from the shallow wells in April and September 2002. Measured pH values were consistently lowest in samples from two wells on the west side of the natural area and highest in samples from the well located near the center of the natural area. Specific-conductance values measured in samples from wells on the east side of the natural area were lower than those measured in samples from the other wells. Specific-conductance values measured in samples from two wells on the west side and from one well near the center of the natural area generally were two to three times higher than the specific-conductance values measured in samples from wells on the east side of the natural area. Samples for fecal coliform bacteria were collected from six wells on September 11, 2002. The fecal coliform densities in samples from most of the wells were less than or equal to 8 colonies per 100 milliliters. Samples from two of the three wells on the west side of the natural area had coliform densities of 16 and 480 colonies per 100 milliliters. Other ground-water samples collected on September 11 and September 24 were analyzed with a spectrophotometer in the U.S. Geological Survey (USGS) North Carolina District Office for nitrate concentrations only. From the samples collected on September 11, estimated nitrate concentrations of 1 milligram per liter or less were detected in three wells, two on the west side and one on the east side of the natural area. Nitrate was not detected with a spectrophotometer in any of the ground-water samples collected on September 24. Indicator test strips also were used in the field to screen for nitrate and nitrite in ground-water samples collected on September 24. Nitrate was detected by test strips in one well on the west side of the natural area, with estimated concentrations of 1 milligram per liter or less indicated. Nitrite was not detected by the test strips in samples collected from any of the wells.

  16. Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07

    USGS Publications Warehouse

    Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed criterion in all but four stream samples (266 of 270). Similarly, only 2 of 84 Missouri River samples had total phosphorus concentrations less than the proposed criterion. The proposed total nitrogen criterion for the Corn Belt and Northern Great Plains ecoregion was surpassed in 80 percent of the water samples collected from the stream sites. Samples with total nitrogen concentrations greater than the proposed criterion were most common at Papillion Creek and Big Papillion Creek sites, where the proposed criterion was surpassed in 90 and 96 percent of the samples collected, respectively. Elevated concentrations of total nitrogen were less common at the Missouri River sites, with 33 percent of the samples analyzed having concentrations that surpassed the proposed nutrient criterion for total nitrogen. The three constituents with measured concentrations greater than their respective health-based screening levels were nickel, zinc, and dichlorvos. Differences in water quality during the beginning, middle, and end of the combined sewer overflow discharge and the stream hydrograph rise, peak, and recession were investigated. Concentrations from the ending part of the combined sewer overflow hydrograph were significantly different than those from the beginning and middle parts for 3 and 11 constituents, respectively. No constituents were significantly different between the beginning and middle parts of the combined sewer overflow discharge hydrograph. For the stream site upstream from combined sewer overflow outfalls on Cole Creek, the constituents with geometric mean values for the hydrograph rise that were at least twice those for the values of the peak and recession were specific conductance, magnesium, nitrite, N,N-diethyl-meta-toluamide (DEET), methyl salicylate, p-cresol, and Escherichia coli. Similarly, the constituents where the hydrograph peak was at least twice that for the rise and recession at the upstream Cole Creek site were total suspended solids, silver, an

  17. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions

    USGS Publications Warehouse

    Kolpin, D.W.; Skopec, M.; Meyer, M.T.; Furlong, E.T.; Zaugg, S.D.

    2004-01-01

    During 2001, 76 water samples were collected upstream and downstream of select towns and cities in Iowa during high-, normal- and low-flow conditions to determine the contribution of urban centers to concentrations of pharmaceuticals and other organic wastewater contaminants (OWCs) in streams under varying flow conditions. The towns ranged in population from approximately 2000 to 200 000. Overall, one or more OWCs were detected in 98.7% of the samples collected, with 62 of the 105 compounds being found. The most frequently detected compounds were metolachlor (pesticide), cholesterol (plant and animal sterol), caffeine (stimulant), β-sitosterol (plant sterol) and 1,7-dimethylxanthine (caffeine degradate). The number of OWCs detected decreased as streamflow increased from low- (51 compounds detected) to normal- (28) to high-flow (24) conditions. Antibiotics and other prescription drugs were only frequently detected during low-flow conditions. During low-flow conditions, 15 compounds (out of the 23) and ten compound groups (out of 11) detected in more than 10% of the streams sampled had significantly greater concentrations in samples collected downstream than in those collected upstream of the urban centers. Conversely, no significant differences in the concentrations were found during high-flow conditions. Thus, the urban contribution of OWCs to streams became progressively muted as streamflow increased.

  18. Occurrence of pharmaceuticals and other organic wastewater constituents in selected streams in northern Arkansas, 2004

    USGS Publications Warehouse

    Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed

    2005-01-01

    The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.

  19. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2017-04-01

    The following paper shows natural organic matter (NOM) properties of stream water samples collected from 8 agricultural streams and 12 agricultural observational fields in Sweden. The catchments and observational fields cover a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients. The insights from the grab sampling are supported by high-frequency turbidity, fulvic-like and tryptophan-like fluorescence measurements with in situ optical sensor.

  20. Rainfall, Discharge, and Water-Quality Data During Stormwater Monitoring, July 1, 2008, to June 30, 2009 - Halawa Stream Drainage Basin and the H-1 Storm Drain, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.

    2009-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream, and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at five stations, and water-quality data at six stations, which include the five continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2008, and June 30, 2009. Within the Halawa Stream drainage area, three storms (October 25 and December 11, 2008, and February 3, 2009) were sampled during July 1, 2008, to June 30, 2009. A total of 43 environmental samples were collected during these three storms. During the storm of October 25, 2009, 31 samples were collected and analyzed individually for metals only. The other 12 samples from the other two storms were analyzed for some or all of the following analytes: total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for some or all of the following analytes: oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some grab and composite samples were analyzed for only a partial list of these analytes, either because samples could not be delivered to the laboratory in a timely manner, or an insufficient volume of sample was collected by the automatic samplers. Two quality-assurance/quality-control samples were collected after cleaning automatic sampler lines to verify that the sampling lines were not contaminated. Four environmental samples were collected at the H-1 Storm Drain during July 1, 2008, to June 30, 2009. An oil and grease sample and a composite sample were collected during the storm on November 15, 2008, and two composite samples were collected during the January 11, 2009, storm. All samples at this site were collected using an automatic sampler. Samples were analyzed for some or all of the following analytes: total suspended solids, nutrients, oil and grease, total petroleum hydrocarbons, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). One qualityassurance/quality-control sample was collected after cleaning automatic sampler lines to verify that the sampling lines were not contaminated. During the storm of January 11, 2009, the two composite samples collected at H-1 Storm Drain were collected about three hours apart. Higher constituent concentrations were detected in the first 2 composite sample relative to the second composite sample, although the average discharge was higher during the period when the second sample was collected.

  1. Seasonal species composition of invertebrates in several Oregon streams.

    Treesearch

    Pamela E. Porter; William R. Meehan

    1987-01-01

    The invertebrate communities ofeight Oregon streams were sampled seasonally from 1974 to 1976. Benthic, drift, and two types of aerial-trap samples were collected. Occurrence and percentage composition are summarized by sample type, season, and geographic area (coastal, Cascade, central, and eastern Oregon). Within 276 families, 426 taxa were identified; the 20...

  2. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.

    2003-12-16

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of particle collection, classification, concentration (enrichment), an characterization processes onto a single substrate or layered stack of such substrates. By mounting a UV laser diode laser light source on the substrate, or substrates tack, so that it is located down-stream of the sample inlet port and at right angle the sample particle stream, the UV light source can illuminate individual particles in the stream to induce a fluorescence response in those particles having a fluorescent signature such as biological particles, some of said particles. An illuminated particle having a fluorescent signal above a threshold signal would trigger a sorter module that would separate that particle from the particle stream.

  3. [Adolescents find it easy to collect their own samples to study sexually transmitted infections].

    PubMed

    Huneeus, Andrea; Fernández, Mario I; Schilling, Andrea; Parra, Paulina; Zakharova, Aleksandra

    2017-04-01

    As alternative for patients that fear genital examination, we assessed adolescent's comfort and ease with self-collected samples for nucleic acid amplification testing for sexually transmitted infections. Sexually active Chilean adolescents and youth under 25 years (174 males and 117 females) were enrolled. Females used self-collected vaginal swabs and males collected first-stream urine. A satisfaction survey evaluating self-sampling system was applied. Self-collection was considered easy in 99.3% of the interviewees (CI 95% 0.88-0.98). In women, 79.3% preferred vaginal self-collected samples than pelvic exam (CI 95% 0.73-0.85). In men, 80.3% preferred self-collected first-stream urine to urethral swabs (CI 95% 0.73-0.87). Assuming that self-collected sampling were available, 89.6% of women (CI 95% 0.85-0.94) and 93.2% of men (CI 95% 0.89-0.98) would be prone to be tested more often. Ease of self-collected sampling is not associated with age, gender, educational level or poverty. Chile currently does not have sexually transmitted infections surveillance or screening programs for youth and adolescents. Given self-collected sampling's good acceptability, it could be successfully used when these programs are implemented.

  4. Map showing abundance and distribution of copper in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle. 

  5. Map showing abundance and distribution of arsenic in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Leinz, Reinhard W.; Grimes, David J.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle. 

  6. WaterlooClarke: TREC 2015 Microblog Track

    DTIC Science & Technology

    2015-11-20

    interests [1]. In this track, the representative social media is Twitter , and relevant posts are tweets with respect to a user’s interest. A user’s...every day. II. TASKS EVALUATION The developed systems listen to the Twitter sample stream2 for a period of 10 days and report the relevant tweets. All...manner as qi, but using a corpus of previously collected tweets. Our corpus was collected over approximately seven days from the Twitter sample stream

  7. Fish, benthic macroinvertebrate, and stream habitat data from the Houston-Galveston Area Council service area, Texas, 1997-98

    USGS Publications Warehouse

    Moring, J. Bruce; Rosendale, John C.; Ansley, Stephen P.; Brown, Dexter W.

    1998-01-01

    The U.S. Geological Survey collected fish, benthic macroinvertebrate, and stream habitat data at sampling sites in the Houston-Galveston Area Council service area, a 15-county area with a population of about 4.3 million people. The data were collected for a 1997?98 study in cooperation with the Houston-Galveston Area Council to provide data for the Texas Clean Rivers Program for watersheds near Houston, Texas. Fish community and stream habitat data were collected at all 56 sites selected, and benthic macroinvertebrate data were collected at 39 of the sites.

  8. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  9. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  10. The fishes of Pea Ridge National Military Park, Arkansas, 2003

    USGS Publications Warehouse

    Justus, B.G.; Petersen, James C.

    2005-01-01

    A fish inventory was conducted at Pea Ridge National Military Park, Arkansas, during base-flow conditions in September 2003. Six sites including four streams and two ponds were sampled using conventional electrofishing equipment (a seine also was used at one site). There were 653 individuals collected comprising 18 species (plus 1 hybrid) and 15 genera. The number of species collected at the four stream sites ranged from 1 16. Most fish species collected generally are associated with small streams in the Ozark Plateaus. The two most common species were the banded sculpin and the southern redbelly dace. Three species and a sunfish hybrid were collected from the quarry pond. No fish were collected from the unnamed pond. A preliminary expected species list incorrectly listed 42 species because of incorrect species range or habitat requirements. One species not on the original list was added to the revised list. Upon revising this list, the inventory yielded 18 the 40 species (45 percent) and 1 hybrid. No previous fish inventories have been completed for park but some observations can be made relative to species distributions. There were only five fish species collected in three headwater streams, and it is unlikely that many other species would occur in these three streams because of constraints imposed on the fish community by stream size. Little Sugar Creek, a medium-sized stream, had the most species collected, and it is likely that additional species would be collected from this stream if additional sampling were to occur. Distribution records indicate that all 18 species occur in the general area. Although no species collected in this study are federallylisted threatened or endangered species, three species collected at Pea Ridge National Military Park may be of some special interest to National Park Service managers and others. Two the species collected (cardinal shiner and stippled darter) are endemic to the Ozark Plateaus; both are rather common in certain parts of the Ozark Plateaus. The white sucker has a restricted range in Arkansas because northern Arkansas is at southern edge of the white sucker's distributional range.

  11. Effectiveness of the New Hampshire stream-gaging network in providing regional streamflow information

    USGS Publications Warehouse

    Olson, Scott A.

    2003-01-01

    The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.

  12. Assessment of water chemistry, habitat, and benthic macroinvertebrates at selected stream-quality monitoring sites in Chester County, Pennsylvania, 1998-2000

    USGS Publications Warehouse

    Reif, Andrew G.

    2004-01-01

    Biological, chemical, and habitat data have been collected from a network of sites in Chester County, Pa., from 1970 to 2003 to assess stream quality. Forty sites in 6 major stream basins were sampled between 1998 and 2000. Biological data were used to determine levels of impairment in the benthic-macroinvertebrate community in Chester County streams and relate the impairment, in conjunction with chemical and habitat data, to overall stream quality. Biological data consisted of benthic-macroinvertebrate samples that were collected annually in the fall. Water-chemistry samples were collected and instream habitat was assessed in support of the biological sampling.Most sites in the network were designated as nonimpacted or slightly impacted by human activities or extreme climatic conditions on the basis of biological-metric analysis of benthic-macroinvertebrate data. Impacted sites were affected by factors, such as nutrient enrichment, erosion and sedimentation, point discharges, and droughts and floods. Streams in the Schuylkill River, Delaware River, and East Branch Brandywine Creek Basins in Chester County generally had low nutrient concentrations, except in areas affected by wastewater-treatment discharges, and stream habitat that was affected by erosion. Streams in the West Branch Brandywine, Christina, Big Elk, and Octoraro Creek Basins in Chester County generally had elevated nutrient concentrations and streambottom habitat that was affected by sediment deposition.Macroinvertebrate communities identified in samples from French Creek, Pigeon Creek (Schuylkill River Basin), and East Branch Brandywine Creek at Glenmoore consistently indicate good stream conditions and were the best conditions measured in the network. Macroinvertebrate communities identified in samples from Trout Creek (site 61), West Branch Red Clay Creek (site 55) (Christina River Basin), and Valley Creek near Atglen (site 34) (Octoraro Creek Basin) indicated fair to poor stream conditions and were the worst conditions measured in the network. Trout Creek is heavily impacted due to erosion, and Valley Creek near Atglen and West Branch Red Clay Creek are influenced by wastewater discharges. Hydrologic conditions in 1999, including a prolonged drought and a flood, influenced chemical concentrations and macroinvertebrate community structure throughout the county. Concentrations of nutrients and ions were lower in 1999 when compared to 1998 and 2000 concentrations. Macroinvertebrate communities identified in samples from 1999 contained lower numbers of individuals when compared to 1998 and 2000 but had similar community structure. Results from chemical and biological sampling in 2000 indicated that the benthic-macroinvertebrate community structure and the concentrations of nutrients and ions recovered to pre-1999 levels.

  13. RELATIONSIPS BETWEEN AQUATIC INVERTEBRATE ASSEMBLAGES AND REACH AND LANDSCAPE ATTRIBUTES ON WADEABLE, WILLAMETTE VALLEY STREAMS IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    In summer 1997, we sampled reaches in 24 wadeable, Willamette Valley ecoregion streams draining agriculturally-infiuenced watersheds. Within these reaches, physical habitat, water chemistry, aquatic invertebrate and fish data and samples were collected. Low-level air photos were ...

  14. Variation in density and diversity of species of Phytophthora in two forest stream networks

    Treesearch

    Jaesoon Hwang; Steven N. Jeffers; Steven W. Oak

    2010-01-01

    Monitoring occurrence and distribution of Phytophthora species, including Phytophthora ramorum, in forest ecosystems can be achieved in several ways including sampling symptomatic plants, infested soils, and infested streams. Collecting plant and soil samples can be laborious and time consuming due to the distance surveyors...

  15. Sampling procedure for lake or stream surface water chemistry

    Treesearch

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  16. Measuring suspended sediment in small mountain streams

    Treesearch

    Robert B. Thomas

    1985-01-01

    Measuring suspended sediment concentration in streams provides a way of monitoring the effects of forest management activities on water quality. Collecting data on suspended sediment is an act of sampling. The nature of the delivery process and the circumstances under which data are collected combine to produce highly variable results that are difficult to analyze and...

  17. Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream

    DOEpatents

    Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-09

    A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.

  18. Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2004-09-14

    A microfluidic device for forming and/or dispensing minute volume segments of a material is described. In accordance with one aspect of the present invention, a microfluidic device and method is provided for spatially confining the material in a focusing element. The device is also capable of segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.

  19. Benthic macroinvertebrate field sampling effort required to produce a sample adequate for the assessment of rivers and streams of Neuquén Province, Argentina

    EPA Science Inventory

    This multi-year pilot study evaluated a proposed field method for its effectiveness in the collection of a benthic macroinvertebrate sample adequate for use in the condition assessment of streams and rivers in the Neuquén Province, Argentina. A total of 13 sites, distribut...

  20. Biomonitoring of lead, zinc, and cadmium in streams draining lead-mining and non-mining areas, Southeast Missouri, USA

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; May, Thomas W.; Schmitt, Christopher J.

    2007-01-01

    We evaluated exposure of aquatic biota to lead (Pb), zinc (Zn), and cadmium (Cd) in streams draining a Pb-mining district in southeast Missouri. Samples of plant biomass (detritus, periphyton, and filamentous algae), invertebrates (snails, crayfish, and riffle benthos), and two taxa of fish were collected from seven sites closest to mining areas (mining sites), four sites further downstream from mining (downstream sites), and eight reference sites in fall 2001. Samples of plant biomass from mining sites had highest metal concentrations, with means 10- to 60-times greater than those for reference sites. Mean metal concentrations in over 90% of samples of plant biomass from mining sites were significantly greater than those from reference sites. Mean concentrations of Pb, Zn, and Cd in most invertebrate samples from mining sites, and mean Pb concentrations in most fish samples from mining sites, were also significantly greater than those from reference sites. Concentrations of all three metals were lower in samples from downstream sites, but several samples of plant biomass from downstream sites had metal concentrations significantly greater than those from reference sites. Analysis of supplemental samples collected in the fall of 2002, a year of above-average stream discharge, had lower Pb concentrations and higher Cd concentrations than samples collected in 2001, near the end of a multi-year drought. Concentrations of Pb measured in fish and invertebrates collected from mining sites during 2001 and 2002 were similar to those measured at nearby sites in the 1970s, during the early years of mining in the Viburnum Trend. Results of this study demonstrate that long-term Pb mining activity in southeast Missouri has resulted in significantly elevated concentrations of Pb, Cd, and Zn in biota of receiving streams, compared to biota of similar streams without direct influence of mining. Our results also demonstrate that metal exposure in the study area differed significantly among sample types, habitats, and years, and that these factors should be carefully considered in the design of biomonitoring studies.

  1. Biomonitoring of lead, zinc, and cadmium in streams draining lead-mining and non-mining areas, Southeast Missouri, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Schmitt, C.J.

    2007-01-01

    We evaluated exposure of aquatic biota to lead (Pb), zinc (Zn), and cadmium (Cd) in streams draining a Pb-mining district in southeast Missouri. Samples of plant biomass (detritus, periphyton, and filamentous algae), invertebrates (snails, crayfish, and riffle benthos), and two taxa of fish were collected from seven sites closest to mining areas (mining sites), four sites further downstream from mining (downstream sites), and eight reference sites in fall 2001. Samples of plant biomass from mining sites had highest metal concentrations, with means 10- to 60-times greater than those for reference sites. Mean metal concentrations in over 90% of samples of plant biomass from mining sites were significantly greater than those from reference sites. Mean concentrations of Pb, Zn, and Cd in most invertebrate samples from mining sites, and mean Pb concentrations in most fish samples from mining sites, were also significantly greater than those from reference sites. Concentrations of all three metals were lower in samples from downstream sites, but several samples of plant biomass from downstream sites had metal concentrations significantly greater than those from reference sites. Analysis of supplemental samples collected in the fall of 2002, a year of above-average stream discharge, had lower Pb concentrations and higher Cd concentrations than samples collected in 2001, near the end of a multi-year drought. Concentrations of Pb measured in fish and invertebrates collected from mining sites during 2001 and 2002 were similar to those measured at nearby sites in the 1970s, during the early years of mining in the Viburnum Trend. Results of this study demonstrate that long-term Pb mining activity in southeast Missouri has resulted in significantly elevated concentrations of Pb, Cd, and Zn in biota of receiving streams, compared to biota of similar streams without direct influence of mining. Our results also demonstrate that metal exposure in the study area differed significantly among sample types, habitats, and years, and that these factors should be carefully considered in the design of biomonitoring studies. ?? Springer Science+Business Media B.V. 2006.

  2. A new device for collecting time-integrated water samples from springs and surface water bodies

    USGS Publications Warehouse

    Panno, S.V.; Krapac, I.G.; Keefer, D.A.

    1998-01-01

    A new device termed the 'seepage sampler' was developed to collect representative water samples from springs, streams, and other surface-water bodies. The sampler collects composite, time-integrated water samples over short (hours) or extended (weeks) periods without causing significant changes to the chemical composition of the samples. The water sample within the sampler remains at the ambient temperature of the water body and does not need to be cooled. Seepage samplers are inexpensive to construct and easy to use. A sampling program of numerous springs and/or streams can be designed at a relatively low cost through the use of these samplers. Transient solutes migrating through such flow systems, potentially unnoticed by periodic sampling, may be detected. In addition, the mass loading of solutes (e.g., agrichemicals) may be determined when seepage samplers are used in conjunction with discharge measurements.

  3. Protocol for collecting eDNA samples from streams [Version 2.3

    Treesearch

    K. J. Carim; T. Wilcox; M. K. Young; K. S. McKelvey; M. K. Schwartz

    2015-01-01

    Throughout the 2014 field season, we had over two dozen biologist throughout the western US collect over 300 samples for eDNA analysis with paired controls. Control samples were collected by filtering 0.5 L of distilled water. No samples had any evidence of field contamination. This method of sampling verifies the cleanliness of the field equipment, as well as the...

  4. Effectiveness of seining after electrofishing to characterize stream fish communities

    USGS Publications Warehouse

    Meador, Michael R.

    2012-01-01

    The richness and composition of species collected uniquely to electrofishing and subsequent seining efforts were examined at 271 stream sites across the USA by using wadeable electrofishing methods (backpack or barge electrofishing) or boat electrofishing followed by seining. Seining after wadeable electrofishing resulted in the collection of new species at 42% of sites, whereas seining after boat electrofishing resulted in the collection of new species at 87% of sites. Mean percentage of total observed fish species richness that was collected uniquely by seining was 6% (representing one new species, on average) after wadeable electrofishing compared with 18% (four new species, on average) after boat electrofishing. Shannon–Wiener diversity index values were not significantly different between data from combined sampling (electrofishing and seining) and data from wadeable electrofishing (P = 0.490) but were significantly different between boat electrofishing and combined sampling (P = 0.004). Seining efforts after boat electrofishing can provide critical information that allows for a more complete characterization of the fish community. For sampling in wadeable streams, decisions regarding the use of seines should consider the effectiveness of electrofishing at a given site and the use of seines as an alternative primary sampling gear rather than as a supplement to electrofishing.

  5. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2003 to June 30, 2004

    USGS Publications Warehouse

    Young, Stacie T.M.; Ball, Marcael T.J.

    2004-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two sites, continuous streamflow data at three sites, and water-quality data at five sites, which include the three streamflow sites. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2003 and June 30, 2004. A total of 30 samples was collected over four storms during July 1, 2003 to June 30, 2004. In general, an attempt was made to collect grab samples nearly simultaneously at all five sites, and flow-weighted time-composite samples were collected at the three sites equipped with automatic samplers. However, all four storms were partially sampled because either not all stations were sampled or only grab samples were collected. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, copper, lead, and zinc). Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples, collected during storms and during routine maintenance, were also collected to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  6. The Midwest Stream Quality Assessment

    USGS Publications Warehouse

    ,

    2012-01-01

    In 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) and USGS Columbia Environmental Research Center (CERC) will be collaborating with the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA) to assess stream quality across the Midwestern United States. The sites selected for this study are a subset of the larger NRSA, implemented by the EPA, States and Tribes to sample flowing waters across the United States (http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm). The goals are to characterize water-quality stressors—contaminants, nutrients, and sediment—and ecological conditions in streams throughout the Midwest and to determine the relative effects of these stressors on aquatic organisms in the streams. Findings will contribute useful information for communities and policymakers by identifying which human and environmental factors are the most critical in controlling stream quality. This collaborative study enhances information provided to the public and policymakers and minimizes costs by leveraging and sharing data gathered under existing programs. In the spring and early summer, NAWQA will sample streams weekly for contaminants, nutrients, and sediment. During the same time period, CERC will test sediment and water samples for toxicity, deploy time-integrating samplers, and measure reproductive effects and biomarkers of contaminant exposure in fish or amphibians. NRSA will sample sites once during the summer to assess ecological and habitat conditions in the streams by collecting data on algal, macroinvertebrate, and fish communities and collecting detailed physical-habitat measurements. Study-team members from all three programs will work in collaboration with USGS Water Science Centers and State agencies on study design, execution of sampling and analysis, and reporting.

  7. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2002 to June 30, 2003

    USGS Publications Warehouse

    Young, Stacie T.M.; Ball, Marcael T.J.

    2003-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data was collected at two sites, continuous streamflow data at three sites, and water-quality data at five sites, which include the three streamflow sites. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2002 to June 30, 2003. A total of 28 samples were collected over five storms during July 1, 2002 to June 30, 2003. For two of the five storms, five grab samples and three flow-weighted timecomposite samples were collected. Grab samples were collected nearly simultaneously at all five sites, and flow-weighted timecomposite samples were collected at the three sites equipped with automatic samplers. The other three storms were partially sampled, where only flow-weighted time-composite samples were collected and/or not all stations were sampled. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, copper, lead, and zinc). Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/qualitycontrol samples, collected during storms and during routine maintenance, were also collected to verify analytical procedures and insure proper cleaning of equipment.

  8. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA

    USGS Publications Warehouse

    Hladik, Michelle; Kolpin, Dana W.

    2015-01-01

     To better understand the fate and transport of neonicotinoid insecticides, water samples were collected from streams across the United States. In a nationwide study, at least one neonicotinoid was detected in 53 % of the samples collected, with imidacloprid detected most frequently (37 %), followed by clothianidin (24 %), thiamethoxam (21 %), dinotefuran (13 %), acetamiprid (3 %) and thiacloprid (0 %). Clothianidin and thiamethoxam concentrations were positively related to the percentage of the land use in cultivated crop production and imidacloprid concentrations were positively related to the percentage of urban area within the basin. Additional sampling was also conducted in targeted research areas to complement these national-scale results, including determining: (1) neonicotinoid concentrations during elevated flow conditions in an intensely agricultural region; (2) temporal patterns of neonicotinoids in heavily urbanised basins; (3) neonicotinoid concentrations in agricultural basins in a nationally important ecosystem; and (4) in-stream transport of neonicotinoids near a wastewater treatment plant. Across all study areas, at least one neonicotinoid was detected in 63 % of the 48 streams sampled.

  9. Leaching, transport, and methylation of mercury in and around abandoned mercury mines in the Humboldt River basin and surrounding areas, Nevada. Chapter C.

    USGS Publications Warehouse

    Gray, John E.; Stillings, Lisa L.

    2003-01-01

    Mercury and methylmercury concentrations were measured in mine wastes, stream sediments, and stream waters collected both proximal and distal from abandoned mercury mines to evaluate mercury contamination and mercury methylation in the Humboldt River system. The climate in the study area is arid, and due to the lack of mine-water runoff, water-leaching laboratory experiments were used to evaluate the potential of mine wastes to release mercury. Mine-waste calcine contains mercury concentrations as high as 14,000 ?g/g. Stream-sediment samples collected within 1 km of the mercury mines studied contain mercury concentrations as high as 170 ?g/g, but sediments collected from the Humboldt River and regional baseline sites have much lower mercury contents, less than 0.44 ?g/g. Similarly, methylmercury concentrations in mine-waste calcine are locally as high as 96 ng/g, but methylmercury contents in stream sediments collected down-stream from the mines and from the Humboldt River are lower (<0.05-0.95 ng/g). Stream-water samples collected below two mines studied contain mercury concentrations ranging from 6 to 2,000 ng/L, whereas mercury contents in Humboldt River and Rye Patch Reservoir water were generally lower, ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in Humboldt River system water were the lowest in this study (<0.02- 0.27 ng/L). Although mercury and methylmercury concentrations were elevated in some mine-waste calcine and mercury concentrations were locally high in mine-waste leachate samples, data show significant dilution of mercury and lower mercury methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is more than 8 km from any mercury mines. Data show only minor, local transference of mercury and methylmercury from mine-waste calcine to stream sediment, and then onto the water column, and indicate little transference of mercury from the mine sites to the Humboldt River system.

  10. Hydrologic pathways and chemical composition of runoff during snowmelt in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA

    USGS Publications Warehouse

    Denning, A. Scott; Baron, Jill S.; Mast, M. Alisa; Arthur, Mary

    1991-01-01

    Intensive sampling of a stream draining an alpine-subalpine basin revealed that depressions in pH and acid neutralizing capacity (ANC) of surface water at the beginning of the spring snowmelt in 1987 and 1988 were not accompanied by increases in strong acid anions, and that surface waters did not become acidic (ANC<0). Samples of meltwater collected at the base of the snowpack in 1987 were acidic and exhibited distinct ‘pulses’ of nitrate and sulfate. Solutions collected with lysimeters in forest soils adjacent to the stream revealed high levels of dissolved organic carbon (DOC) and total Al. Peaks in concentration of DOC, Al, and nutrient species in the stream samples indicate a flush of soil solution into the surface water at the beginning of the melt. Infiltration of meltwater into soils and spatial heterogeneity in the timing of melting across the basin prevented stream and lake waters from becoming acidic.

  11. Alkylphenols, Other Endocrine-Active Chemicals, and Fish Responses in Three Streams in Minnesota - Study Design and Data, February-September 2007

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Jahns, Nathan D.; Brown, Greg K.; Barber, Larry B.

    2008-01-01

    This report presents the study design and environmental data for an integrated chemical and biological study of three streams (South Fork Crow River, Redwood River, and Grindstone River) that receive wastewater in Minnesota. The objective of the study was to identify distribution patterns of endocrine-active chemicals and other organic chemicals indicative of wastewater, and to identify fish responses in the same streams. Endocrine-active chemicals are a class of chemicals that interfere with the natural regulation of endocrine systems, and an understanding of their distribution in aquatic systems is important so that aquatic organism exposure can be evaluated. This study was a cooperative effort of the U.S. Geological Survey (USGS), the Minnesota Pollution Control Agency, and St. Cloud State University (St. Cloud, Minn.). The USGS collected and analyzed water and quality-assurance samples and measured streamflow during six sampling events in each of three streams. Water samples were collected upstream from and at two successive points downstream from wastewater-treatment plant (WWTP) effluent discharge and from treated effluent from February through September 2007. Bed-sediment samples were collected during one sampling period at each of the stream locations. Water and bed-sediment samples were analyzed for endocrine-active chemicals including alkylphenols, alkylphenol polyethoxylates, and nonylphenol ethoxycarboxlylates (NPECs). Water samples also were analyzed for major ions, nutrients, and organic carbon. In addition, as part of an intensive time-series investigation, the USGS staff collected daily water samples for 8 weeks from the Redwood River near Marshall, Minn., for analyses of total alkylphenols and atrazine. St. Cloud State University staff collected and analyzed fish to determine male fish responses at all water sampling sites and at an additional site near the discharge of wastewater-treatment plant effluent to these streams. Male fish responses included the presence and concentration of vitellogenin in plasma, gonadosomatic indices, and histological characterizations of liver and testes tissue. Hydrologic, chemical and biological characteristics were different among sites. The percentage of streamflow contributed by WWTP effluent (ranging from less than 1 to 79 percent) was greatest at the South Fork Crow River and least at the Grindstone River. WWTP effluent generally contributed the greatest percentage of streamflow during winter and late summer when streamflows were low. A wide variety of chemicals were detected. More chemicals were detected in WWTP effluent samples than in stream samples during most time periods. The most commonly detected chemicals in samples collected monthly and analyzed at the USGS National Research Program Laboratory were 2,6-di-tert-butyl-1,4-benzoquinone, 2,6-di-tert-butyl-4-methylphenol, 3-beta-coprostanol, 4-methylphenol, 4-nonylphenol (NP), 4-tert-octylphenol, bisphenol A, cholesterol, ethylenediaminetetraacetic acid, and triclosan. The chemicals 4-nonylphenolmonoethoxycarboxylate (NP1EC), 4-nonylphenoldiethoxycarboxylate (NP2EC), and 4-nonylphenoltriethoxycarboxylate (NP3EC) also were detected. Excluding nondetections, the sum of NP1EC through NP3EC concentrations ranged from 5.1 to 260 ug/L among all samples. NP was detected in upstream, effluent, and downstream samples in each stream during at least one time period. NP was detected in 49 percent of environmental samples. Excluding nondetections, concentrations of NP ranged from 100 to 880 nanograms per liter among all samples. NP was also detected in more than one-half of the bed-sediment samples. The most commonly detected wastewater indicator chemicals in samples analyzed by schedule 4433 at the USGS National Water Quality Laboratory were 3,4-dichlorophenyl isocyanate, acetyl-hexamethyl-tetrahydronaphthalene, benzophenone, cholesterol, hexahydrohexamethyl-cyclopenta-benzopyran, N,N-diethyl-meta-toluamide, and

  12. The value of long-term stream invertebrate data collected by citizen scientists

    Treesearch

    Patrick M. Edwards; Stefano Goffredo

    2016-01-01

    The purpose of this investigation was to systematically examine the variability associated with temporally-oriented invertebrate data collected by citizen scientists and consider the value of such data for use in stream management. Variability in invertebrate data was estimated for three sources of variation: sampling, within-reach spatial and long-term temporal. Long-...

  13. Evaluation of USEPA method 1622 for detection of Cryptosporidium oocysts in stream waters

    USGS Publications Warehouse

    Simmons, O. D.; Sobsey, M.D.; Schaefer, F. W.; Francy, D.S.; Nally, R.A.; Heaney, C.D.

    2001-01-01

    To improve surveillance for Cryptosporidium oocysts in water, the US Environmental Protection Agency developed method 1622, which consists of filtration, concentration, immunomagnetic separation, fluorescent antibody and 4, 6-diamidino-2-phenylindole (DAPI) counter-staining, and microscopic evaluation. Two filters were compared for analysis of 11 stream water samples collected throughout the United States. Replicate 10-L stream water samples (unspiked and spiked with 100-250 oocysts) were tested to evaluate matrix effects. Oocyst recoveries from the stream water samples averaged 22% (standard deviation [SD] = ??17%) with a membrane disk and 12% (SD = ??6%) with a capsule filter. Oocyst recoveries from reagent water precision and recovery samples averaged 39% (SD = ??13%) with a membrane disk and 47% (SD = ??19%) with a capsule filter. These results demonstrate that Cryptosporidium oocysts can be recovered from stream waters using method 1622, but recoveries are lower than those from reagent-grade water. This research also evaluated concentrations of indicator bacteria in the stream water samples. Because few samples were oocyst-positive, relationships between detections of oocysts and concentrations of indicator organisms could not be determined.

  14. Contribution of hydroxylated atrazine degradation products to the total atrazine load in midwestern streams

    USGS Publications Warehouse

    Lerch, R.N.; Blanchard, P.E.; Thurman, E.M.

    1998-01-01

    The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites)in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites) in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.

  15. Water-Quality, Bed-Sediment, and Biological Data (October 2004 through September 2005) and Statistical Summaries of Data for Streams in the Upper Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2006-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a long-term monitoring program, conducted in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the upper Clark Fork basin of western Montana. Sampling sites were located on the Clark Fork, six major tributaries, and three smaller tributaries. Water-quality samples were collected periodically at 18 sites during October 2004 through September 2005 (water year 2005). Bed-sediment and biological samples were collected once in August 2005. The primary constituents analyzed were trace elements associated with tailings from historical mining and smelting activities. This report summarizes the results of water-quality, bed-sediment, and biota samples col-lected in water year 2005 and provides statistical summaries of data collected since 1985. Water-quality data for samples collected periodically from streams include concentrations of selected major ions, trace ele-ments, and suspended sediment. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for three sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of water-quality, bed-sediment, and biological data are provided for the period of record since 1985 for each site.

  16. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    NASA Astrophysics Data System (ADS)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  17. SOIL ALUMINUM DISTRIBUTION IN THE NEAR-STREAM ZONE AT THE BEAR BROOK WATERSHED IN MAINE

    EPA Science Inventory

    Near-stream and upslope soil chemical properties were analyzed to infer linkages between soil and surface water chemistry at the Bear Brook Watershed in Maine [BBWM]. Organic and mineral soil samples were collected along six 20 m transects perpendicular to the stream and one 200 ...

  18. Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments

    Treesearch

    Matt R. Whiles; J. Bruce Wallace

    1997-01-01

    Benthic invertebrates, litter decomposition, and litterbag invertebrates were examined in streams draining pine monoculture and undisturbed hardwood catchments at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains, USA. Bimonthly benthic samples were collected from a stream draining a pine catchment at Coweeta during 1992, and compared to...

  19. SEDIMENT MICROBIAL RESPIRATION IN A SYNOPTIC SURVEY OF MID-ATLANTIC REGION STREAMS

    EPA Science Inventory

    l. The rate of microbial respiration on fine-grained stream sediments was measured at 196 first-to third-order sites in the mid-Atlantic region of the United States.2. Sample collection took place between April and July in 1993, 1994 and 1995.3. Study streams were randomly sele...

  20. Combining Watershed Variables with PCR-based Methods for Better Characterization and Management of Fecal Pollution in Small Streams

    EPA Science Inventory

    Culture- and PCR-based measurements of fecal pollution were determined and compared to hydrologic and land use indicators. Stream water samples (n = 235) were collected monthly over a two year period from ten streams draining headwatersheds with different land use intensities ra...

  1. Environmental and Biological Data of the Nutrient Enrichment Effects on Stream Ecosystems Project of the National Water Quality Assessment Program, 2003-04

    USGS Publications Warehouse

    Brightbill, Robin A.; Munn, Mark D.

    2008-01-01

    In 2000, the U.S. Environmental Protection Agency began the process of developing regional nutrient criteria for streams and rivers. In response to concerns about nutrients by the U.S. Environmental Protection Agency and others, the U.S. Geological Survey National Water Quality Assessment Program began studying the effects of nutrient enrichment on agricultural stream ecosystems to aid in the understanding of how nutrients affect the biota in agricultural streams. Streams within five study areas were sampled either in 2003 or 2004. These five study areas were located within six NAWQA study units: the combined Apalachicola-Chattahoochee-Flint River Basin (ACFB) and Georgia-Florida Coastal Plain Drainages (GAFL), Central Columbia Plateau?Yakima River Basin (CCYK), Central Nebraska Basins (CNBR), Potomac River?Delmarva Peninsula (PODL), and the White-Miami River Basin (WHMI). Data collected included nutrients (nitrogen and phosphorous) and other chemical parameters, biological samples (chlorophyll, algal assemblages, invertebrate assemblages, and some fish assemblages), stream habitat, and riparian and basin information. This report describes and presents the data collected from these study areas.

  2. Riparian Land Use/Land Cover Data for Three Study Units in Group II of the Nutrient Enrichment Effects Topical Study of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.

    2009-01-01

    This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).

  3. Effects of Highway Road Salting on the Water Quality of Selected Streams in Chittenden County, Vermont, November 2005-2007

    USGS Publications Warehouse

    Denner, Jon C.; Clark, Stewart F.; Smith, Thor E.; Medalie, Laura

    2010-01-01

    A study of road-deicing chloride (Cl) concentrations and loads was conducted at three streams in Chittenden County, VT, from November 2005 to 2007. This study was done by the U.S. Geological Survey, in cooperation with the Vermont Agency of Transportation. The streams, Alder Brook, Allen Brook, and Mill Brook, were selected to represent different land uses in the upstream watershed, different road types and densities, and different geometric patterns of the roadway draining to the receiving stream to assess the relative contribution of and differences in state road-salt applications to stream Cl concentrations and loads. Water-quality samples were collected and specific conductance was measured continuously at paired stations upstream and downstream from State highways and related to Cl concentrations to assist in determining the effects of road-salting operations during winter maintenance on the levels of Cl in the streams. Mean concentrations of Cl ranged from 8.2 to 72 mg/L (milligrams per liter) in the water-quality samples collected at sampling stations upstream from State highway bridges and from 7.9 to 80 mg/L in those collected at sampling stations downstream of highway bridges. Mean Cl loads ranged from 1,100 to 4,090 lb/d (pounds per day) at upstream stations and from 1,110 to 4,200 lb/d at downstream stations. Estimated mean annual Cl loads ranged from 402,000 to 1,490,000 lb/yr (pounds per year) at upstream stations and from 405,000 to 1,530,000 lb/yr at downstream stations. Mean Cl concentrations in samples collected at the three paired stations were lowest at Mill Brook at VT 117 near Essex Junction, VT (7.9 mg/L) and highest at Allen Brook at VT 2A near Essex Junction, VT (80.7 mg/L). None of the monitored Cl concentrations in the water-quality samples collected at the three paired sampling stations exceeded either of the U.S. Environmental Protection Agency's (USEPA) recommended chronic and acute Cl toxicity criteria of 230 and 860 mg/L, respectively. A fourth stream site, a small tributary draining to Alder Brook between the upstream and downstream stations, was monitored from December 2006 to November 2007. This tributary collected runoff from a state highway and an interchange before flowing through a wetlands retention basin. The mean Cl concentration in water-quality samples collected at the tributary was 449 mg/L. The USEPA recommended chronic toxicity criterion of 230 mg/L was exceeded about 65 percent of the monitoring period. The USEPA recommended acute toxicity criterion of 860 mg/L was not exceeded. Estimated Cl loads below the State highway bridges exceeded loads above the bridges at all three paired stations during both years of the study. The differences in the annual loads between the upstream and downstream stations were 0.7, 3.0 and 14 percent at Mill, Allen, and Alder Brooks, respectively. Almost all of the difference (92 percent) at Alder Brook was due to the tributary. Cl applied by the State of Vermont for deicing purposes represented less than 20 percent of the annual estimated Cl load in all 3 streams below the state highways. The highest monthly Cl loads during the first year of the study were observed in January 2006 at all three stream stations because of an early snowmelt event. The highest monthly Cl loads during the second year of the study were observed in April 2007 at all three streams during spring snowmelt and were followed by decrease in Cl loading through the summer. Generally, the relation of Cl loads to runoff was similar at all three streams. In July and October 2007, loads increased slightly with an increase in runoff, indicating that Cl in the soils and groundwater may be contributing to the Cl levels during the summer and fall, well after the road-salting season. Cl loads in all three streams appear to be due primarily to sources in the watersheds upstream of the state highway bridge where road salt was applied and (or) Cl retained in soils and streambed

  4. Sedimentation in mountain streams: A review of methods of measurement

    USGS Publications Warehouse

    Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin

    2013-01-01

    The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.

  5. Long Term Dynamic Stream Nitrate and Phosphate Changes Following Watershed Wildfires

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Brass, James A.; Riggan, Philip J.; Ewing, Roy; Sebesta, Paul D.; Peterson, David L. (Technical Monitor)

    1994-01-01

    During and following the 1988 Yellowstone National Park wildfires, airborne remotely sensed data were collected in order to characterize various vegetative components, fire front movements and bum intensities. ER-2 derived Thematic Mapper Simulator (TMS) data were used in conjunction with water sampling and chemistry analysis to determine fire intensities in various watersheds and aquatic system condition changes. The airborne Daedalus multispectral TMS data allowed the characterization of various bum intensities in watersheds. Stream sampling was then conducted in those various burned watersheds to determine nitrate and phosphate concentration changes. Six stream watersheds were monitored for five years (1989-1993) during non-snow periods (May/June through September): Cache Creek (intensely burned), Blacktail Deer Creek (intensely burned), Snake River (moderately burned), Lamar River (mixed burning), Soda Butte Creek (lightly burned), and Amphitheatre Creek (unburned). One litre samples were collected from those streams with ISCO water samplers every 12 hours. The samples were removed every 14 days .(28 Samples), and water chemistry analysis was performed. Chemistry analysis indicated that nitrate and phosphate concentrations were elevated in moderately burned watersheds and significantly elevated in severely burned watersheds. The results during the five year study indicate that bum intensities regulate stream water nitrate and phosphate concentrations, and that remotely sensed data can be used effectively to predict watershed chemical changes which will affect aquatic conditions.

  6. Automated apparatus for solvent separation of a coal liquefaction product stream

    DOEpatents

    Schweighardt, Frank K.

    1985-01-01

    An automated apparatus for the solvent separation of a coal liquefaction product stream that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In use of the apparatus, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control means. The mixture in the filter is agitated by means of ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  7. Suspended sediment yield of New Jersey coastal plain streams draining into the Delaware estuary

    USGS Publications Warehouse

    Mansue, Lawrence J.

    1972-01-01

    The purpose of this report is to summarize sediment data collected at selected stream-sampling sites in southern New Jersey. Computations of excepted average annual yields at each sampling site were made and utilized to estimate the annual yield at ungaged sites. Similar data currently are being compiled for streams draining Pennsylvania and Delaware. It is planned to report on the combined information at a later date in the Geological Survey's Water-Supply Paper series.

  8. Episodic acidification and changes in fish diversity in Pennsylvania headwater streams

    USGS Publications Warehouse

    Heard, R.M.; Sharpe, W.E.; Carline, R.F.; Kimmel, William G.

    1997-01-01

    Current water chemistry and fish communities in 70 Pennsylvania streams were compared with historical records to determine whether fish species richness had declined and, if so, the possible role of acidification. First-, second-, and third-order streams were selected, and stream sites sampled during the 1961-1971 survey were resampled during May and June 1994 in the Appalachian Plateaus province and during June 1995 in the Valley and Ridge province. Stream-flow was measured and a habitat assessment was completed at each site. Dominant bedrock types influencing the stream sampling site were determined for the Appalachian Plateaus streams. Episodic water chemistry was collected for 39 of the 50 Appalachian Plateaus streams and 14 of the 20 Valley and Ridge streams during the winter and spring of 1996. Thirty-eight (76%) streams of the Appalachian Plateaus province and 13 (65%) streams in the Valley and Ridge province had a loss of fish species since the 1961-1971 sampling period. Habitat scores were not related to losses of fish species. Of the 53 streams sampled during runoff episodes 22 (42%) increased in total dissolved aluminum by more than 50 ??g/L, and 31 (58%) streams decreased in pH by 0.5 units or more. Minnows (Cyprinidae) and darters (Percidae) are sensitive to acidity and were the species most often lost. Streams draining watersheds of the Appalachian Plateaus province dominated by Pottsville bedrock had more acidic water quality during base flow and storm flow sampling periods than streams dominated by Pocono bedrock. The results of this study indicate that many Pennsylvania streams have undergone an alarming reduction in fish diversity during the past 25-34 years. In many of these streams the loss in fish diversity may be attributed to episodic acidification.

  9. Scranton 1/sup 0/ x 2/sup 0/ NTMS area: New Jersey, New York, and Pennsylvania. Preliminary basic data report. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, R.B.; Tones, P.L.

    1978-11-01

    Stream sediment and stream water samples were collected from small streams at 980 sites for a nominal density of one site per 18 square kilometers in rural areas. Ground water samples were collected at 1251 sites for a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water and surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and amore » brief description of results are given. A generalized geologic map and a summary of the geology of the area are included.« less

  10. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado Desert BLM Resource Area and vicinity. Included in the 1,245 stream-sediment samples collected by the USGS are 284 samples collected as part of the current study, 817 samples collected as part of investigations of the12 BLM WSAs and re-analyzed for the present study, 45 samples from the Needles 1? X 2? quadrangle, and 99 samples from the El Centro 1? X 2? quadrangle. The NURE stream-sediment and soil samples were re-analyzed as part of the USGS study in the Needles quadrangle. Analytical data for samples from the Chocolate Mountain Aerial Gunnery Range, which is located within the area of the NECD, were previously reported (King and Chaffee, 1999a). For completeness, these results are also included in this report. Analytical data for samples from the area of Joshua Tree National Park that is within the NECD have also been reported (King and Chaffee, 1999b). These results are not included in this report. The analytical data presented here can be used for baseline geochemical, mineral resource, and environmental geochemical studies.

  11. Water-quality characteristics indicative of wastewater in selected streams in the upper Neuse River Basin, Durham and Orange Counties, North Carolina, from 2004 to 2013

    USGS Publications Warehouse

    Ferrell, Gloria M.; Yearout, Matthew S.; Grimes, Barbara H.; Graves, Alexandria K.; Fitzgerald, Sharon A.; Meyer, Michael T.

    2014-01-01

    During the third phase of data collection, May 2012 to January 2013, data were collected to address the suitability of optical brighteners as tracers of wastewater in small streams during streamflow recession. Samples were collected at five small streams following periods of rainfall and analyzed for optical brighteners, specific conductance nutrients, and selected hormones. Optical brighteners were absent in the undeveloped catchment but were present in the recession period after rainfall events in catchments with centralized though possibly leaky sewage treatment and areas with onsite treatment. Sand filter systems in areas with onsite treatment appear to change the effluent flow and retention characteristics such that optical brighteners were present both before and after rainfall events. Nitrate plus nitrite, as nitrogen concentrations in samples from this last study phase generally were larger than those collected during baseflow conditions in the previous phases of this study.

  12. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    NASA Astrophysics Data System (ADS)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  13. Macroinvertebrate community sample collection methods and data collected from Sand Creek and Medano Creek, Great Sand Dunes National Park and Preserve, Colorado, 2005–07

    USGS Publications Warehouse

    Ford, Morgan A.; Zuellig, Robert E.; Walters, David M.; Bruce, James F.

    2016-08-11

    This report provides a table of site descriptions, sample information, and semiquantitative aquatic macroinvertebrate data from 105 samples collected between 2005 and 2007 from 7 stream sites within the Sand Creek and Medano Creek watersheds in Great Sand Dunes National Park and Preserve, Saguache County, Colorado. Additionally, a short description of sample collection methods and laboratory sample processing procedures is presented. These data were collected in anticipation of assessing the potential effects of fish toxicants on macroinvertebrates.

  14. Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment

    NASA Astrophysics Data System (ADS)

    Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip

    2014-05-01

    Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.

  15. Assessing the use of existing data to compare plains fish assemblages collected from random and fixed sites in Colorado

    USGS Publications Warehouse

    Zuellig, Robert E.; Crockett, Harry J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Colorado Parks and Wildlife, assessed the potential use of combining recently (2007 to 2010) and formerly (1992 to 1996) collected data to compare plains fish assemblages sampled from random and fixed sites located in the South Platte and Arkansas River Basins in Colorado. The first step was to determine if fish assemblages collected between 1992 and 1996 were comparable to samples collected at the same sites between 2007 and 2010. If samples from the two time periods were comparable, then it was considered reasonable that the combined time-period data could be used to make comparisons between random and fixed sites. In contrast, if differences were found between the two time periods, then it was considered unreasonable to use these data to make comparisons between random and fixed sites. One-hundred samples collected during the 1990s and 2000s from 50 sites dispersed among 19 streams in both basins were compiled from a database maintained by Colorado Parks and Wildlife. Nonparametric multivariate two-way analysis of similarities was used to test for fish-assemblage differences between time periods while accounting for stream-to-stream differences. Results indicated relatively weak but significant time-period differences in fish assemblages. Weak time-period differences in this case possibly were related to changes in fish assemblages associated with environmental factors; however, it is difficult to separate other possible explanations such as limited replication of paired time-period samples in many of the streams or perhaps differences in sampling efficiency and effort between the time periods. Regardless, using the 1990s data to fill data gaps to compare random and fixed-site fish-assemblage data is ill advised based on the significant separation in fish assemblages between time periods and the inability to determine conclusive explanations for these results. These findings indicated that additional sampling will be necessary before unbiased comparisons can be made between fish assemblages collected from random and fixed sites in the South Platte and Arkansas River Basins.

  16. History and evaluation of national-scale geochemical data sets for the United States

    USGS Publications Warehouse

    Smith, David B.; Smith, Steven M.; Horton, John D.

    2013-01-01

    Six national-scale, or near national-scale, geochemical data sets for soils or stream sediments exist for the United States. The earliest of these, here termed the ‘Shacklette’ data set, was generated by a U.S. Geological Survey (USGS) project conducted from 1961 to 1975. This project used soil collected from a depth of about 20 cm as the sampling medium at 1323 sites throughout the conterminous U.S. The National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance (NURE-HSSR) Program of the U.S. Department of Energy was conducted from 1975 to 1984 and collected either stream sediments, lake sediments, or soils at more than 378,000 sites in both the conterminous U.S. and Alaska. The sampled area represented about 65% of the nation. The Natural Resources Conservation Service (NRCS), from 1978 to 1982, collected samples from multiple soil horizons at sites within the major crop-growing regions of the conterminous U.S. This data set contains analyses of more than 3000 samples. The National Geochemical Survey, a USGS project conducted from 1997 to 2009, used a subset of the NURE-HSSR archival samples as its starting point and then collected primarily stream sediments, with occasional soils, in the parts of the U.S. not covered by the NURE-HSSR Program. This data set contains chemical analyses for more than 70,000 samples. The USGS, in collaboration with the Mexican Geological Survey and the Geological Survey of Canada, initiated soil sampling for the North American Soil Geochemical Landscapes Project in 2007. Sampling of three horizons or depths at more than 4800 sites in the U.S. was completed in 2010, and chemical analyses are currently ongoing. The NRCS initiated a project in the 1990s to analyze the various soil horizons from selected pedons throughout the U.S. This data set currently contains data from more than 1400 sites. This paper (1) discusses each data set in terms of its purpose, sample collection protocols, and analytical methods; and (2) evaluates each data set in terms of its appropriateness as a national-scale geochemical database and its usefulness for national-scale geochemical mapping.

  17. Characterization of nutrients and fecal indicator bacteria at a concentrated swine feeding operation in Wake County, North Carolina, 2009-2011

    USGS Publications Warehouse

    Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.

    2012-01-01

    Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.

  18. Mercury Methylation at Mercury Mines In The Humboldt River Basin, Nevada, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, John E.; Crock, James G.; Lasorsa, Brenda K.

    2002-12-01

    Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River basin. Mine-waste calcines contain total Hg concentrations as high as 14 000?g/g. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170?g/g, whereas stream sediments collected>5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations<0.5?g/g. Similarly, methylmercury concentrations in mine-waste calcines are locally asmore » high as 96 ng/g, but methylmercury contents in stream-sediments collected downstream from the mines and from the Humboldt River are lower, ranging from<0.05 to 0.95 ng/g. Stream-water samples collected below two mines studied contain total Hg concentrations ranging from 6 to 2000 ng/L, whereas total Hg in Humboldt River water was generally lower ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in the Humboldt River water were the lowest in this study (<0.02-0.27 ng/L). Although total Hg and methylmercury concentrations are locally high in mine-waste calcines, there is significant dilution of Hg and lower Hg methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is> 8 km from any mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.« less

  19. Environmental risk assessment of lead-zinc mining: a case study of Adudu metallogenic province, middle Benue Trough, Nigeria.

    PubMed

    Igwe, Ogbonnaya; Una, Chuku Okoro; Abu, Ezekiel; Adepehin, Ekundayo Joseph

    2017-09-07

    Assessment of the impacts of lead-zinc mining in Adudu-Imon metallogenic province was carried out. Reconnaissance and detailed field studies were done. Lithologies, stream sediments, farmland soils, mine tailings, artificial pond water, stream water, well water, and borehole water were collected and subjected to atomic absorption spectrometry (AAS) and X-ray fluorescence (XRF) analyses. Geochemical maps were generated using ArcGIS 10.1. Significant contamination with cadmium (Cd), iron (Fe), and lead (Pb) was recorded in the collected water samples. Virtually all collected soil samples were observed to be highly contaminated when compared with the European Union environmental policy standard. The discharge of mining effluents through farmlands to the Bakebu stream, which drains the area, further exposes the dwellers of this environment to the accumulation of potentially harmful metals (PHMs) in their bodies through the consumption of food crops, aquatic animals, and domestic uses of the water collected from the stream channels. The study revealed non-conformity of past mining operations in the Adudu-Imon province to existing mining laws in Nigeria. Inhabitants of this region should stop farming in the vicinity of the mines, fishing from the Bakebu stream channels should be discouraged, and domestic use of the water should be condemned, even as concerned government agencies put necessary mercenaries in place to ensure conformity of miners to standard mining regulations in Nigeria.

  20. Influence of various water quality sampling strategies on load estimates for small streams

    USGS Publications Warehouse

    Robertson, Dale M.; Roerish, Eric D.

    1999-01-01

    Extensive streamflow and water quality data from eight small streams were systematically subsampled to represent various water‐quality sampling strategies. The subsampled data were then used to determine the accuracy and precision of annual load estimates generated by means of a regression approach (typically used for big rivers) and to determine the most effective sampling strategy for small streams. Estimation of annual loads by regression was imprecise regardless of the sampling strategy used; for the most effective strategy, median absolute errors were ∼30% based on the load estimated with an integration method and all available data, if a regression approach is used with daily average streamflow. The most effective sampling strategy depends on the length of the study. For 1‐year studies, fixed‐period monthly sampling supplemented by storm chasing was the most effective strategy. For studies of 2 or more years, fixed‐period semimonthly sampling resulted in not only the least biased but also the most precise loads. Additional high‐flow samples, typically collected to help define the relation between high streamflow and high loads, result in imprecise, overestimated annual loads if these samples are consistently collected early in high‐flow events.

  1. Effects of streambank fencing of pasture land on benthic macroinvertebrates and the quality of surface water and shallow ground water in the Big Spring Run basin of Mill Creek watershed, Lancaster County, Pennsylvania, 1993-2001

    USGS Publications Warehouse

    Galeone, Daniel G.; Brightbill, Robin A.; Low, Dennis J.; O'Brien, David L.

    2006-01-01

    Streambank fencing along stream channels in pastured areas and the exclusion of pasture animals from the channel are best-management practices designed to reduce nutrient and suspended-sediment yields from drainage basins. Establishment of vegetation in the fenced area helps to stabilize streambanks and provides better habitat for wildlife in and near the stream. This study documented the effectiveness of a 5- to 12-foot-wide buffer strip on the quality of surface water and near-stream ground water in a 1.42-mi2 treatment basin in Lancaster County, Pa. Two miles of stream were fenced in the basin in 1997 following a 3- to 4-year pre-treatment period of monitoring surface- and ground-water variables in the treatment and control basins. Changes in surface- and ground-water quality were monitored for about 4 years after fence installation. To alleviate problems in result interpretation associated with climatic and hydrologic variation over the study period, a nested experimental design including paired-basin and upstream/downstream components was used to study the effects of fencing on surface-water quality and benthic-macroinvertebrate communities. Five surface-water sites, one at the outlet of a 1.77-mi2 control basin (C-1), two sites in the treatment basin (T-3 and T-4) that were above any fence installation, and two sites (one at an upstream tributary site (T-2) and one at the outlet (T-1)) that were treated, were sampled intensively. Low-flow samples were collected at each site (approximately 25-30 per year at each site), and stormflow was sampled with automatic samplers at all sites except T-3. For each site where stormflow was sampled, from 35 to 60 percent of the storm events were sampled over the entire study period. Surface-water sites were sampled for analyses of nutrients, suspended sediment, and fecal streptococcus (only low-flow samples), with field parameters (only low-flow samples) measured during sample collection. Benthic-macroinvertebrate samples were collected in May and September of each year; samples were collected at the outlet of the control and treatment basins and at three upstream sites, two in the treatment basin and one in the control basin. For each benthic-macroinvertebrate sample: Stream riffles and pools were sampled using the kick-net method; habitat was characterized using Rapid Bioassessment Protocols (RBP); water-quality samples were collected for nutrients and suspended sediment; stream field parameters were measured; and multiple biological metrics were calculated. The experimental design to study the effects of fencing on the quality of near-stream shallow ground water involved a nested well approach. Two well nests were in the treatment basin, one each at surface-water sites T-1 and T-2. Within each well nest, the data from one deep well and three shallow wells (no greater than 12 ft deep) were used for regional characterization of ground-water quality. At each site, two of the shallow wells were inside the eventual fence (treated wells); the other shallow well was outside the eventual fence (control well). The wells were sampled monthly, primarily during periods with little to no recharge, for laboratory analysis of nutrients and fecal streptococcus; field parameters of water quality also were measured.

  2. Evaluation of a depth proportional intake device for automatic pumping samplers

    Treesearch

    Rand E. Eads; Robert B. Thomas

    1983-01-01

    Abstract - A depth proportional intake boom for portable pumping samplers was used to collect suspended sediment samples in two coastal streams for three winters. The boom pivots on the stream bed while a float on the downstream end allows debris to depress the boom and pass without becoming trapped. This equipment modifies point sampling by maintaining the intake...

  3. Carbon Isotope Composition as an Indicator of DOC Sources to a Stream During Events in a Temperate Forested Catchment

    NASA Astrophysics Data System (ADS)

    Doctor, D. H.; Sebestyen, S. D.; Aiken, G. R.; Shanley, J. B.; Kendall, C.; Boyer, E. W.

    2006-12-01

    Increased DOC flux in streams and rivers is commonly observed during high runoff regimes, however DOC concentrations alone do not provide information about multiple sources or pathways of DOC to streams. In an effort to gain this information, we measured DOC concentrations and stable carbon isotope composition (δ13C-DOC) on samples collected at high-frequency during events at Sleepers River Research Watershed in Vermont, USA. During snowmelt and storm events, peaks in stream DOC concentration (up to 10.5 mg/L) were coincident with peaks in flow. Stream water δ13C-DOC measurements ranged between -23.7‰ and - 28.9‰ and indicated changing sources of DOC during events; the highest δ13C-DOC values occurred consistently at the lowest flows, and the lowest δ13C-DOC values occurred with peaks in discharge. Water samples collected from shallow wells and stacked soil lysimeters showed the highest DOC concentrations in the most shallow (<0.5 m) lysimeter waters, and the lowest concentrations in the deeper (>1.5 m) well waters. Wells and lysimeters exhibited a range of δ13C-DOC values similar to those observed in the stream; however, samples collected from shallow horizons at nested wells and lysimeters consistently showed lower δ13C-DOC values than those from greater depths. Maple leaf litter collected from across the watershed provided an end-member of fresh organic material, with average δ13C composition of -31.3±0.7‰ (n=57), which is lower than the lowest measured DOC values in any of the stream, well, or lysimeter waters. A subset of stream waters were fractionated onto XAD4 and XAD8 resins; the hydrophobic acid fraction (XAD8) had consistently lower δ13C values than the transphilic acid fraction (XAD4), and both of these were lower than those of the bulk DOC. Samples with lower δ13C-DOC values also exhibited higher SUVA-254 values, i.e. greater aromaticity. Thus, lower δ13C-DOC values are interpreted as an indicator of relatively "fresh", more aromatic and more biologically labile material while higher δ13C-DOC values indicate relatively more degraded material. Since lower δ13C-DOC values were observed in the shallowest well and lysimeter waters and in stream water during periods of highest DOC flux, we surmise that fresh DOC is mobilized to the stream along relatively shallow flowpaths during high flows, and that a second source of more degraded DOC supplies background concentrations to the stream at lower flows.

  4. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2006 to June 30, 2007

    USGS Publications Warehouse

    Young, Stacie T.M.; Jamison, Marcael T.J.

    2007-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at three stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2006 and June 30, 2007. A total of 13 samples was collected over two storms during July 1, 2006 to June 30, 2007. The goal was to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  5. Selected Water- and Sediment-Quality, Aquatic Biology, and Mine-Waste Data from the Ely Copper Mine Superfund Site, Vershire, VT, 1998-2007

    USGS Publications Warehouse

    Argue, Denise M.; Kiah, Richard G.; Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Hathaway, Edward; Coles, James F.

    2008-01-01

    The data contained in this report are a compilation of selected water- and sediment-quality, aquatic biology, and mine-waste data collected at the Ely Copper Mine Superfund site in Vershire, VT, from August 1998 through May 2007. The Ely Copper Mine Superfund site is in eastern, central Vermont (fig. 1) within the Vermont Copper Belt (Hammarstrom and others, 2001). The Ely Copper Mine site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2001. Previous investigations conducted at the site documented that the mine is contributing metals and highly acidic waters to local streams (Hammarstrom and others, 2001; Holmes and others, 2002; Piatak and others, 2003, 2004, and 2006). The U.S. Geological Survey (USGS), in cooperation with the USEPA, compiled selected data from previous investigations into uniform datasets that will be used to help characterize the extent of contamination at the mine. The data may be used to determine the magnitude of biological impacts from the contamination and in the development of remediation activities. This report contains analytical data for samples collected from 98 stream locations, 6 pond locations, 21 surface-water seeps, and 29 mine-waste locations. The 98 stream locations are within 3 streams and their tributaries. Ely Brook flows directly through the Ely Copper Mine then into Schoolhouse Brook (fig. 2), which joins the Ompompanoosuc River (fig. 1). The six pond locations are along Ely Brook Tributary 2 (fig. 2). The surface-water seeps and mine-waste locations are near the headwaters of Ely Brook (fig. 2 and fig. 3). The datasets 'Site_Directory' and 'Coordinates' contain specific information about each of the sample locations including stream name, number of meters from the mouth of stream, geographic coordinates, types of samples collected (matrix of sample), and the figure on which the sample location is depicted. Data have been collected at the Ely Copper Mine Superfund site by the USEPA, the Vermont Department of Environmental Conservation (VTDEC), and the USGS. Data also have been collected on behalf of USEPA by the following agencies: Arthur D. Little Incorporated (ADL), U.S. Army Cold Region Research and Engineering Laboratory (CRREL), URS Corporation (URS), USEPA, and USGS. These data provide information about the aquatic communities and their habitats, including chemical analyses of surface water, pore water, sediments, and fish tissue; assessments of macroinvertebrate and fish assemblages; physical characteristics of sediments; and chemical analyses of soil and soil leachate collected in and around the piles of mine waste.

  6. Presence of Fungicides Used to Control Asian Soybean Rust in Streams in Agricultural Areas in the United States

    NASA Astrophysics Data System (ADS)

    Sandstrom, M. W.; Battaglin, W. A.

    2007-05-01

    Concentrations of 11 fungicides were measured in stream samples during 2 years in agricultural areas in the United States that grow predominantly corn and soybean. The fungicides are registered for control of Asian Soybean Rust (ASR), which entered the United States in 2004. Many of these fungicides were registered under an emergency exemption because evaluation of environmental risks related to their widespread use on soybeans had not been completed. Some of these fungicides are considered moderately to highly toxic to fish and aquatic invertebrates. We developed a solid-phase extraction and gas chromatography/mass spectrometry method for determining the fungicides at low concentrations (ng/L). Stream samples were collected 2 to 4 times at study areas during the late spring through fall season when fungicides are applied. Six fungicides registered for control of ASR (Phakospora pachyrhizi) in 2005 were measured in streams in Alabama, Georgia, North Carolina, South Carolina, and Mississippi during August-November, 2005. One or more fungicides were detected in 8 of the 12 streams sampled. Azoxystrobin, pyraclostrobin, propiconazole, tebuconazole, and myclobutanil were found in at least one of the 40 samples collected, while chlorothalonil was not found. Azoxystrobin was detected most frequently, in 35 percent of the samples. In 2006, five additional fungicides registered for use in control of ASR were included in the analytical method. One or more of the fungicides (azoxystrobin, pyraclostrobin, trifloxystrobin, metconazole, propiconazole, tebuconazole, tetraconazole, myclobutanil) were detected in 12 of the 16 streams sampled from areas in the South and Midwest during May-September, 2006. Azoxystrobin was detected most frequently (40 percent of the samples) and the highest concentration was 1.1 μg/L in a small predominantly cotton and soybean watershed. The highest concentrations of azoxystrobin were measured prior to the spread of ASR in 2006, and the detections in streams might be related to use on other crops. Concentrations of the fungicides measured were about 100 times lower than aquatic toxicity levels. These results show that ASR fungicides were found in streams before extensive spread of ASR in the United States.

  7. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    USGS Publications Warehouse

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen, caffeine, carbamazepine, and the four antibiotics tylosin, sulfadimethoxine, sulfamethoxazole, and oxytetracycline were detected in streamwater samples collected in 2006 from six paired stream sampling sites located upstream and downstream from animal-feeding operations. The highest reported concentration of these seven compounds was for the antibiotic sulfamethoxazole (157 ng/L), in a sample from the downstream site on Snitz Creek in Lancaster County, Pa. Twenty-one pharmaceutical compounds were detected in streamwater samples collected in 2006 from five paired stream sampling sites located upstream or downstream from a municipal wastewater-effluent-discharge site. The most commonly detected compounds and maximum concentrations were the anticonvulsant carbamazepine, 276 ng/L; the antihistamine diphenhydramine, 135 ng/L; and the antibiotics ofloxacin, 329 ng/L; sulfamethoxazole, 1,340 ng/L; and trimethoprim, 256 ng/L. A total of 51 different contaminants of emerging concern were detected in streamwater samples collected from 2007 through 2009 at 13 stream sampling sites located downstream from a wastewater-effluent-discharge site. The concentrations and numbers of compounds detected were higher in stream sites downstream from a wastewater-effluent-discharge site than in stream sites upstream from a wastewater-effluent-discharge site. This finding indicates that wastewater-effluent discharges are a source of contaminants of emerging concern; these contaminants were present more frequently in the streambed-sediment samples than in streamwater samples. Antibiotic compounds were often present in both the streamwater and streambed-sediment samples, but many OWCs were present exclusively in the streambed-sediment samples. Compounds with endocrine disrupting potential including detergent metabolites, pesticides, and flame retardants, were present in the streamwater and streambed-sediment samples. Killinger Creek, a stream where wastewater-effluent discharges contribute a large percentage of the total flow, stands out as a stream with particularly high numbers of compounds detected and detected at the highest concentrations measured in the reconnaissance sampling. Nineteen contaminants of emerging concern were detected in streamwater samples collected quarterly from 2007 through 2009 at 27 stream sites within 5 miles of a drinking-water intake. The number of contaminants and the concentrations detected at the stream sites within 5 miles of drinking-water intakes were generally very low (concentrations less than 50 ng/L), much lower than those at sites downstream from a wastewater-effluent discharge. The most commonly detected compounds and maximum concentrations were caffeine, 517 ng/L; carbamazepine, 95 ng/L; sulfamethoxazole, 146 ng/L; and estrone, 3.15 ng/L. The concentrations and frequencies of detection of some of the contaminants of emerging concern appear to vary by season, which could be explained by compound use, flow regime, or differences in degradation rates. Concentrations of some contaminants were associated with lower flows as a result of decreased in-stream dilution of wastewater effluents or other contamination sources. Twenty-two contaminants of emerging concern were detected once each in streamwater samples collected in 2007 and 2008 from 16 fish-health stream sites located statewide. The highest concentrations were for the OWCs, including flame retardants tri(2-butoxyethyl)phosphate (604 ng/L) and tri(2-chloroethyl)phosphate (272 ng/L) and the fragrance isoquinoline (330 ng/L). Far fewer numbers of contaminants of emerging concern were detected at the fish-health sites than at the wastewater-effluent-discharge sites. Most of the fish-health sites were not located directly downstream from a wastewater-effluent discharge, but there were multiple wastewater-effluent discharges in the drainage basins upstream from the sampling sites. No distinct pattern of contaminant occurrence could be discerned for the fish-health stream sites

  8. Physical, Chemical, and Biological Methods and Data from the Urban Land-Use-Gradient Study, Des Plaines and Fox River Basins, Illinois, 1999-2001

    USGS Publications Warehouse

    Adolphson, Debbie L.; Arnold, Terri L.; Fitzpatrick, Faith A.; Harris, Mitchell A.; Richards, Kevin D.; Scudder, Barbara C.; Stewart, Jana S.

    2001-01-01

    Physical, chemical, and biological data were collected at 46 sites in the Fox and Des Plaines River Basins as part of the upper Illinois River Basin study of the U.S. Geological Survey?s National Water-Quality Assessment Program. The data, collected from 1999 to 2001, will be used to determine the effects of urbanization on streams in the Chicago, Illinois, metropolitan area. To examine the possible effects of urbanization on stream-water quality, the sampling sites were selected to represent a gradient of land use changing from agriculture into urban. Urban land use for the selected sites ranged from less than 1 percent urban to 92 percent urban. Data-collection methods are presented in the text portion of this report. Physical characteristics of the stream that were collected include descriptive and qualitative habitat and geomorphic measures. Water samples were analyzed for nutrients (nitrogen and phosphorus), 11 major ions, 46 wastewater indicators, pH, and specific conductance. Aquatic communities were sampled to identify and quantify populations of selected algae, benthic macroinvertebrates, and fish. There were 72 unique fish species collected at all of the sites. The number of benthic macroinvertebrate taxa collected at all the sites ranged from 15 to 48. The data and the associated data documentation are presented on a CD-ROM included with this report.

  9. Effects of Land Use on Stable Carbon Isotopic Composition and Concentration of Dissolved Organic Carbon (DOC) and Dissolved Inorganic Carbon (DIC) in Southeastern US Piedmont Headwater Streams

    EPA Science Inventory

    Stable carbon isotopic composition (delta 13C) and concentrations of DOC and DIC were measured in stream water samples collected monthly in 15 headwater streams from an area with extensive poultry and cattle production and a rapidly growing human population. Linear regression te...

  10. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Treesearch

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  11. Escherichia coli Concentrations in Recreational Streams and Backcountry Drinking-Water Supplies in Shenandoah National Park, Virginia, 2005-2006

    USGS Publications Warehouse

    Hyer, Kenneth

    2007-01-01

    Although fecal contamination of streams is a problem of national scope, few investigations have been directed at relatively pristine streams in forested basins in national parks. With approximately 1.8 million visitors annually, Shenandoah National Park in Virginia is subject to extensive recreational use. The effects of these visitors and their recreational activities on fecal indicator bacteria levels in the streams are poorly understood and of concern for Shenandoah National Park managers. During 2005 and 2006, streams and springs in Shenandoah National Park were sampled for Escherichia coli (E. coli) concentrations. The first study objective was to evaluate the effects of recreational activities on E. coli concentrations in selected streams. Of the 20 streams that were selected, 14 were in basins with extensive recreational activity, and 6 were in control basins where minimal recreational activities occurred. Water-quality sampling was conducted during low-flow conditions during the relatively warm months, as this is when outdoor recreation and bacterial survivorship are greatest. Although most sampling was conducted during low-flow conditions, approximately three stormflow samples were collected from each stream. The second study objective was to evaluate E. coli levels in backcountry drinking-water supplies throughout Shenandoah National Park. Nineteen drinking-water supplies (springs and streams) were sampled two to six times each by Shenandoah National Park staff and analyzed by the U.S. Geological Survey for this purpose. The water-quality sampling results indicated relatively low E. coli concentrations during low-flow conditions, and no statistically significant increase in E. coli concentrations was observed in the recreational streams relative to the control streams. These results indicate that during low-flow conditions, recreational activities had no significant effect on E. coli concentrations. During stormflow conditions, E. coli concentrations increased by nearly a factor of 10 in both basin types, and the Virginia instantaneous water-quality standard for E. coli (235 colonies per 100 milliliters) frequently was exceeded. The sampling results from drinking-water supplies throughout Shenandoah National Park indicated relatively low E. coli concentrations in all springs that were sampled. Several of the streams that were sampled had slightly higher E. coli concentrations relative to the springs, but no E. coli concentrations exceeded the instantaneous water-quality standard. Although E. coli concentrations in all the drinking-water supplies were relatively low, Shenandoah National Park management continues to stress that all hikers must treat drinking water from all streams and springs prior to consumption. After determining that recreational activities in Shenandoah National Park did not have a statistically significant effect on low-flow E. coli concentrations, an additional concern was addressed regarding the quality of the water releases from the wastewater-treatment plants in the park. Sampling of three wastewater-treatment plant outfalls was conducted in 2006 to evaluate their effects on water quality. Samples were analyzed for E. coli and a collection of wastewater organic compounds that may be endocrine disruptors. Relatively elevated E. coli concentrations were observed in 2 of the 3 samples, and between 9 and 13 wastewater organic compounds were detected in the samples, including 3 known and 5 suspected endocrine-disrupting compounds.

  12. Sources and preparation of data for assessing trends in concentrations of pesticides in streams of the United States, 1992-2006

    USGS Publications Warehouse

    Martin, Jeffrey D.

    2009-01-01

    This report provides a water-quality data set of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through August 2006 at stream-water sites of the U.S. Geological Survey National Water-Quality Assessment Program and the National Stream Quality Accounting Network Program were compiled, reviewed, selected, and prepared for trend analysis as described in this report. Samples analyzed at the U.S. Geological Survey National Water Quality Laboratory by a gas chromatography/mass spectrometry analytical method were the most extensive in time and space and were selected for national trend analysis. The selection criteria described in the report produced a trend data set of 16,869 pesticide samples at 201 stream and river sites.

  13. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2004 to June 30, 2005

    USGS Publications Warehouse

    Young, Stacie T.M.; Ball, Marcael T.J.

    2005-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at two stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2004 and June 30, 2005. A total of 15 samples was collected over three storms during July 1, 2004 to June 30, 2005. In general, an attempt was made to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. However, all three storms were partially sampled because either not all stations were sampled or not all composite samples were collected. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Chromium and nickel were added to the analysis starting October 1, 2004. Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  14. Significance of headwater streams and perennial springs in ecological monitoring in Shenandoah National Park

    USGS Publications Warehouse

    Snyder, Craig D.; Webb, James R.; Young, John A.; Johnson, Zane B.

    2013-01-01

    Shenandoah National Park has been monitoring water chemistry and benthic macroinvertebrates in stream ecosystems since 1979. These monitoring efforts were designed to assess the status and trends in stream condition associated with atmospheric deposition (acid rain) and changes in forest health due to gypsy moth infestations. The primary objective of the present research was to determine whether the current long-term macroinvertebrate and water-quality monitoring program in Shenandoah National Park was failing to capture important information on the status and trends in stream condition by not sufficiently representing smaller, headwater streams. The current benthic-macroinvertebrate and water-chemistry sampling designs do not include routine collection of data from streams with contributing watershed areas smaller than 100 hectares, even though these small streams represent the overwhelming proportion of total stream length in the park. In this study, we sampled headwater sites, including headwater stream reaches (contributing watershed area approximately 100 hectares (ha) and perennial springs, in the park for aquatic macroinvertebrates and water chemistry and compared the results with current and historical data collected at long-term ecological monitoring (LTEM) sites on larger streams routinely sampled as part of ongoing monitoring efforts. The larger purpose of the study was to inform ongoing efforts by park managers to evaluate the effectiveness and efficiency of the current aquatic monitoring program in light of other potential stressors (for example, climate change) and limited resources. Our results revealed several important findings that could influence management decisions regarding long-term monitoring of park streams. First, we found that biological indicators of stream condition at headwater sites and perennial springs generally were more indicative of lower habitat quality and were more spatially variable than those observed at sites on routinely monitored larger streams. We hypothesized that poorer stream condition observed in smaller streams was due to stream drying that occurs more frequently in headwater areas. We also found that biological and water-chemistry measures responded differently to landscape drivers. Variation in most biological endpoints was driven primarily by stream size and was only secondarily associated with bedrock geology. In contrast, water chemistry showed essentially the opposite pattern, with underlying geology explaining much of the variation and stream size being of secondary importance. Therefore, expanding the LTEM program to include headwater areas would yield substantially different biological information, whereas broad inferences regarding spatial patterns in water chemistry would probably not change. Although significant differences in community composition were observed among streams of different sizes, no taxa were unique to headwater sites. All taxa collected at the 45 headwater sites also had been collected at one or more LTEM sites during one or more years. This observation indicates that headwater sites in the park may be structured by biotic nestedness; consequently, focusing management efforts on preserving the species pool at the larger LTEM sites would likely result in the protection of most taxa parkwide. Finally, linkages (correlations) between water chemistry and biological measures of stream condition were signficantly stronger when assessed at the LTEM sites than when assessed at the springs or headwater sites, indicating that conditions at downstream sites may be better indicators of water-quality trends.

  15. Use of spatial statistics and isotopic tracers to measure the influence of arsenical pesticide use on stream sediment chemistry in New England, USA

    USGS Publications Warehouse

    Robinson, G.R.; Ayuso, R.A.

    2004-01-01

    Arsenical pesticides and herbicides, principally Pb arsenate, Ca arsenate, and Na arsenate with lesser use of other metal-As pesticides, were widely applied on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Agricultural census data for this time period is used to define an agricultural index that identifies areas that are inferred to have used arsenical pesticides extensively. Factor analysis on metal concentrations in 1597 stream sediment samples collected throughout New England, grouped by agricultural-index categories, indicate a positive association of areas with stream sediment sample populations that contain higher As and Pb concentrations than samples from the region as a whole with sample site settings having high agricultural-index values. Population statistics for As and Pb concentrations and factor scores for an As-Pb factor all increase systematically and significantly with increasing agricultural-index intensity in the region, as tested by Kruskal-Wallis analysis. Lead isotope compositions for 16 stream sediments from a range of agricultural-index settings generally overlap the observed variation in rock sulfides and their weathering products; however, sediments collected from high agricultural-index settings have slightly more radiogenic Pb compositions, consistent with an industrial Pb contribution to these samples. Although weathering products from rocks are likely to be the dominant source of As and metals to most of the stream sediment samples collected in the region, the widespread use of arsenical pesticides and herbicides in New England during the early 1900-1960s appears to be a significant anthropogenic source of As and metals to many sediments in agricultural areas in the region and has raised background levels of As in some regions. Elevated concentrations of As in stream sediments are of concern for two reasons. Stream sediments with elevated As concentrations delineate areas with elevated background concentrations of As from both natural rock and anthropogenic sources that may contribute As to groundwater systems used for drinking water supplies. Conversion of agricultural land contaminated with arsenical pesticide residues to residential development may increase the likelihood that humans will be exposed to As. In addition, many stream sediment sites have As concentrations that exceed sediment quality guidelines established for freshwater ecosystems. Thirteen percent of the New England sediment sample sites exceed 9.79 mg/kg As, the threshold effects concentration (TEC), below which harmful effects are unlikely to be observed. Arsenic concentrations exceed 33 mg/kg, the probable effects concentration (PEC), above which harmful effects on sediment-dwelling organisms are expected to occur frequently, at 1.25% of the sediment sample sites. The sample sites that exceed the PEC value occur predominately in agricultural areas that used arsenical pesticides.

  16. Geochemical map of the Wet Beaver Roadless Area, Coconino and Yavapai counties, Arizona

    USGS Publications Warehouse

    Gerstel, W.J.

    1985-01-01

    The geochemical survey of the Wet Beaver Roadless Area was conducted in May 1982 by the U.S. Geological Survey to aid in a mineral resource appraisal of the area. A total of 64 stream-sediment samples, 30 heavy-mineral concentrates from stream sediment, 7 rock samples, and 7 water samples was collected by S.C. Rose, D.E. Hendzel, and W.J. Gerstel, with helicopter support from Jack Ruby, pilot for Helicopters Unlimited.

  17. Water quality and ecological condition of urban streams in Independence, Missouri, June 2005 through December 2008

    USGS Publications Warehouse

    Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.

    2010-01-01

    To identify the sources of selected constituents in urban streams and better understand processes affecting water quality and their effects on the ecological condition of urban streams and the Little Blue River in Independence, Missouri the U.S. Geological Survey in cooperation with the City of Independence Water Pollution Control Department initiated a study in June 2005 to characterize water quality and evaluate the ecological condition of streams within Independence. Base-flow and stormflow samples collected from five sites within Independence, from June 2005 to December 2008, were used to characterize the physical, chemical, and biologic effects of storm runoff on the water quality in Independence streams and the Little Blue River. The streams draining Independence-Rock Creek, Sugar Creek, Mill Creek, Fire Prairie Creek, and the Little Blue River-drain to the north and the Missouri River. Two small predominantly urban streams, Crackerneck Creek [12.9-square kilometer (km2) basin] and Spring Branch Creek (25.4-km2 basin), were monitored that enter into the Little Blue River between upstream and downstream monitoring sites. The Little Blue River above the upstream site is regulated by several reservoirs, but streamflow is largely uncontrolled. The Little Blue River Basin encompasses 585 km2 with about 168 km2 or 29 percent of the basin lying within the city limits of Independence. Water-quality samples also were collected for Rock Creek (24.1-km2 basin) that drains the western part of Independence. Data collection included streamflow, physical properties, dissolved oxygen, chloride, metals, nutrients, common organic micro-constituents, and fecal indicator bacteria. Benthic macroinvertebrate community surveys and habitat assessments were conducted to establish a baseline for evaluating the ecological condition and health of streams within Independence. Additional dry-weather screenings during base flow of all streams draining Independence were conducted to identify point-source discharges and other sources of potential contamination. Regression models were used to estimate continuous and annual flow-weighted concentrations, loadings, and yields for chloride, total nitrogen, total phosphorus, suspended sediment, and Escherichia coli bacteria densities. Base-flow and stormflow water-quality samples were collected at five sites within Independence. Base-flow samples for Rock Creek and two tributary streams to the Little Blue River exceeded recommended U.S. Environmental Protection Agency standards for the protection of aquatic life for total nitrogen and total phosphorus in about 90 percent of samples, whereas samples collected at two Little Blue River sites exceeded both the total nitrogen and total phosphorus standards less often, about 30 percent of the time. Dry-weather screening identified a relatively small number (14.0 percent of all analyses) of potential point-source discharges for total chlorine, phenols, and anionic surfactants. Stormflow had larger median measured concentrations of total common organic micro-constituents than base flow. The four categories of common organic micro-constituents with the most total detections in stormflow were pesticides (100 percent), polyaromatic hydrocarbons and combustion by-products (99 percent), plastics (93 percent), and stimulants (91 percent). Most detections of common organic micro-constituents were less than 2 micrograms per liter. Median instantaneous Escherichia coli densities for stormflow samples showed a 21 percent increase measured at the downstream site on the Little Blue River from the sampled upstream site. Using microbial source-tracking methods, less than 30 percent of Escherichia coli bacteria in samples were identified as having human sources. Base-flow and stormflow data were used to develop regression equations with streamflow and continuous water-quality data to estimate daily concentrations, loads, and yields of various water-quality contaminants.

  18. Geochemistry and exploration criteria for epithermal cinnabar and stibnite vein deposits in the Kuskokwim River region, southwestern Alaska

    USGS Publications Warehouse

    Gray, J.E.; Goldfarb, R.J.; Detra, D.E.; Slaughter, K.E.

    1991-01-01

    Cinnabar- and stibnite-bearing epithermal vein deposits are found throughout the Kuskokwim River region of southwestern Alaska. A geochemical orientation survey was carried out around several of these epithermal lodes to obtain information for planning regional geochemical surveys and to develop procedures which maximize the anomaly: threshold contrast of the deposits. Stream sediment, heavy-mineral concentrate, stream water, and vegetation samples were collected in drainages surrounding the Red Devil, Cinnabar Creek, White Mountain, Rhyolite, and Mountain Top deposits. Three sediment size fractions; nonmagnetic, paramagnetic and magnetic splits of the concentrate samples; stream waters; and the vegetation samples were analyzed for multi-element suites by a number of different chemical procedures. Nonmagnetic, heavy-mineral concentrates were also examined microscopically to identify their mineralogy. Results confirm Hg, Sb and As concentrations in minus-80-mesh stream sediments as effective pathfinder elements in exploration for epithermal cinnabar and stibnite deposits. Coarser-grained sediments are much less effective in the exploration for these deposits. Concentrations greater than 3 ppm Hg, 1 ppm Sb, and 15 ppm As in the minus-80-mesh stream sediment, regardless of the host lithology, are indicative of upstream cinnabar-stibnite deposits. Gold, Ag and base metals in the stream sediments are ineffective pathfinders for this epithermal deposit type. Collection of heavy-mineral concentrates provides little advantage in the exploration for these mineral deposits. Antimony and As dispersion patterns downstream from mineralized areas are generally more restricted in the concentrates than those in the stream sediments. Anomalous placer cinnabar observed in the concentrates has a similar spatial distribution pattern as anomalous Hg and Sb in corresponding sediments. Stream waters are less effective than the stream sediments or heavy-mineral concentrates, and vegetation is an ineffective geochemical sample medium in exploration for this deposit type. ?? 1991.

  19. Geostatistical modeling of riparian forest microclimate and its implications for sampling

    USGS Publications Warehouse

    Eskelson, B.N.I.; Anderson, P.D.; Hagar, J.C.; Temesgen, H.

    2011-01-01

    Predictive models of microclimate under various site conditions in forested headwater stream - riparian areas are poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used riparian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging (OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature (Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for increasing efficiency of microclimate monitoring in riparian areas.

  20. Water-quality, streamflow, and ancillary data for nutrients in streams and rivers across the nation, 1992-2001

    USGS Publications Warehouse

    Mueller, David K.; Spahr, Norman E.

    2005-01-01

    Introduction: This report is the companion data report for: Nutrients in Streams and Rivers Across the Nation - 1992-2001 (D.K. Mueller and N.E. Spahr, U.S. Geological Survey written commun., 2005). The data contained in this report were collected as part of the National Water-Quality Assessment (NAWQA) Program. Investigations were conducted in 51 large river basins and aquifer systems, which are referred to as 'study units.' Implementation of study-unit investigations were phased so that high-intensity sampling occurred in about one-third of the study units at a time. Investigations in the first 20 study units began in 1991, and stream sampling began in 1992; however, most samples were collected during water years 1993-95. (Water year is defined as the period from October through September and is identified by the year in which it ends.) A second group of 16 study-unit investigations began in 1994, with most of the sampling completed during water years 1996-98. A third group, consisting of 15 study units, began in 1997 with most of the data collected during water years 1999-2001. At some sites, additional sampling continued after the high-intensity time period. Gilliom and others (1995) provide additional information about study-unit sampling design. Additional information about the NAWQA program is available at http://water.usgs.gov/nawqa/index.html.

  1. Assessment of Energetic Compounds, Semi-volatile Organic Compounds, and Trace Elements in Streambed Sediment and Stream Water from Streams Draining Munitions Firing Points and Impact Areas, Fort Riley, Kansas, 2007-08

    USGS Publications Warehouse

    Coiner, R.L.; Pope, L.M.; Mehl, H.E.

    2010-01-01

    An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in stream water at Fort Riley is difficult. The only SVOCs detected in stream-water samples were bis(2-ethylhexyl) phthalate and di-n-butyl phthalate but at concentrations substantially less than the most stringent aquatic-life criteria established by the Kansas Department of Health and Environment. All trace element concentrations in stream-water samples were less than the most stringent aquatic-life criteria. The implication of these stream-water results is that contamination arising from firing-range activities, if it exists, is so small as to be nondetectable with current analytical methods or is not distinguishable from background concentrations for constituents that also are naturally occurring. Overall, the munitions-related constituents analyzed in streambed sediment and stream water, when detected, were at concentrations that were less than regulatory criteria

  2. A proposal: incorporating odonates into stream bioassessments using DNA barcodes

    EPA Science Inventory

    Bioassessment/biomonitoring uses the species found in an ecosystem as a way to measure the health of that ecosystem. Current methods rely mainly on mayflies, stoneflies and caddisflies as indicators for streams and rivers. Odonate larvae are also collected during sampling for bi...

  3. Atmospheric deposition effects on the chemistry of a stream in Northeastern Georgia

    USGS Publications Warehouse

    Buell, G.R.; Peters, N.E.

    1988-01-01

    The quantity and quality of precipitation and streamwater were measured from August 1985 through September 1986 in the Brier Creek watershed, a 440-ha drainage in the Southern Blue Ridge Province of northeastern Georgia, to determine stream sensitivity to acidic deposition. Precipitation samples collected at 2 sites had a volume-weighted average pH of 4.40 whereas stream samples collected near the mouth of Brier Creek had a discharge-weighted average pH of 6.70. Computed solute fluxes through the watershed and observed changes in streamwater chemistry during stormflow suggest that cation exchange, mineral weathering, SO42- adsorption by the soil, and groundwater discharge to the stream are probable factors affecting neutralization of precipitation acidity. Net solute fluxes for the watershed indicate that, of the precipitation input, > 99% of the H+, 93% of the NH4+ and NO3-, and 77% of the SO42- were retained. Sources within the watershed yielded base cations, Cl-, and HCO3- and accounted for 84, 47, and 100% of the net transport, respectively. Although streamwater SO42- and NO3- concentrations increased during stormflow, peak concentrations of these anions were much less than average concentrations in the precipitation. This suggests retention of these solutes occurs even when water residence time is short.The quantity and quality of precipitation and streamwater were measured from August 1985 through September 1986 in the Brier Creek watershed, a 440-ha drainage in the Southern Blue Ridge Province of northeastern Georgia, to determine stream sensitivity to acidic deposition. Precipitation samples collected at 2 sites had a volume-weighted average pH of 4.40 whereas stream samples collected near the mouth of Brier Creek had a discharge-weighted average pYH of 6.70. Computed solute fluxes through the watershed and observed changes in streamwater chemistry drying stormflow suggest that cation exchange, mineral weathering, SO42- adsorption by the soil, and groundwater discharge to the stream are probable factors affecting neutralization of precipitation acidity. Although streamwater SO42- and NO3- concentrations increased during stormflow, peak concentrations of these anions were much less than average concentrations in the precipitation. This suggests retention of these solutes occurs even when water residence time is short.

  4. Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest

    Treesearch

    Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley; Carol Kendall; Daniel H. Doctor; George R. Aiken; Nobuhito Ohte

    2008-01-01

    We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high...

  5. Aquatic insect emergence from headwater streams flowing through regeneration and mature forests in western Oregon

    Treesearch

    Robert Progar; Andrew R. Moldenke

    2009-01-01

    We examined the effect of canopy cover on adult aquatic insect emergence by collecting bi-weekly samples from twelve headwater stream reaches flowing either under a mature conifer canopy or streams flowing through ten-year-old regeneration in western Oregon from February to November 1997. Density and biomass generally followed a bimodal curve with peaks during early...

  6. Operational Procedures for Collecting Water-Quality Samples at Monitoring Sites on Maple Creek Near Nickerson and the Platte River at Louisville, Eastern Nebraska

    USGS Publications Warehouse

    Johnson, Steven M.; Swanson, Robert B.

    1994-01-01

    Prototype stream-monitoring sites were operated during part of 1992 in the Central Nebraska Basins (CNBR) and three other study areas of the National Water-Quality Assessment (NAWQ) Program of the U.S. Geological Survey. Results from the prototype project provide information needed to operate a net- work of intensive fixed station stream-monitoring sites. This report evaluates operating procedures for two NAWQA prototype sites at Maple Creek near Nickerson and the Platte River at Louisville, eastern Nebraska. Each site was sampled intensively in the spring and late summer 1992, with less intensive sampling in midsummer. In addition, multiple samples were collected during two high- flow periods at the Maple Creek site--one early and the other late in the growing season. Water-samples analyses included determination of pesticides, nutrients, major ions, suspended sediment, and measurements of physical properties. Equipment and protocols for the water-quality sampling procedures were evaluated. Operation of the prototype stream- monitoring sites included development and comparison of onsite and laboratory sample-processing proce- dures. Onsite processing was labor intensive but allowed for immediate preservation of all sampled constituents. Laboratory processing required less field labor and decreased the risk of contamination, but allowed for no immediate preservation of the samples.

  7. Estimation of methane concentrations and loads in groundwater discharge to Sugar Run, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.

    2014-01-01

    A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load and the uncertainty in calculated loads both decreased with lower streamflow conditions and finer-resolution sampling in June and November, the higher loads during May could indicate seasonal variability in base flow. This is consistent with flowmeter measurements indicating that there was less inflow occurring at lower streamflow conditions during June and November.

  8. Hydrogeochemical and stream sediment special reconnaissance report for the Deep Creek Mountains, Nevada and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualheim, B.

    1979-04-01

    This report represents the results of the reconnaissance sampling of the Deep Creek Mountains of western Utah. The Deep Creek range is located in the northwest corner of the Delta NTMS 1:250,000 and the southwestern corner of the Tooele NTMS 1:250,000 sheets and covers an area of 1750 km/sup 2/. Samples collected in this study include dry and wet stream sediments and water from available streams, wells, and springs. The samples were analyzed for uranium, as well as 15 to 20 trace elements, using neutron activation techniques. In addition, field and laboratory measurements were made on the water samples. Analyticalmore » data and field measurements are presented in tabular hard copy and fiche format. Water-sample site locations, water-sample uranium concentrations, sediment-sample site locations, and sediment-sample uranium concentrations are shown on separate overlays.« less

  9. Biological Inventory Cape La Croix Creek Watershed, Cape Girardeau County, Missouri.

    DTIC Science & Technology

    1977-01-01

    important stream flow characteristic of Cape La Croix Creek in this region is that it is a losing stream, or one which loses water to the groundwater system...flowing water habitat types (Capt. L7 Croix Creek and tributaries and Mississippi River) on the habitat map. Backwaters and oxbows are aquatic habitats...samples of 30 to 60 liters were collected at aquatic sampling stations 1 through 6 using a #25 plankton net. Sample volumes were dependent upon water

  10. Reconnaissance-level application of physical habitat simulation in the evaluation of physical habitat limits in the Animas Basin, Colorado

    USGS Publications Warehouse

    Milhous, Robert T.

    2003-01-01

    Bed material samples were collected at each site. These included samples of the armour, the substrate, and sand and fines deposited on the surface. At selected sites the stream morphology was measured. These measurements included one to three cross sections, stream discharge, and water surface elevations. The data are located in the files of the Fort Collins Science Center.

  11. Geochemical Data for Upper Mineral Creek, Colorado, Under Existing Ambient Conditions and During an Experimental pH Modification, August 2005

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; Steiger, Judy I.; Walton-Day, Katherine

    2009-01-01

    Mineral Creek, an acid mine drainage stream in south-western Colorado, was the subject of a water-quality study that employed a paired synoptic approach. Under the paired synoptic approach, two synoptic sampling campaigns were conducted on the same study reach. The initial synoptic campaign, conducted August 22, 2005, documented stream-water quality under existing ambient conditions. A second synoptic campaign, conducted August 24, 2005, documented stream-water quality during a pH-modification experiment that elevated the pH of Mineral Creek. The experimental pH modification was designed to determine the potential reductions in dissolved constituent concentrations that would result from the implementation of an active treatment system for acid mine drainage. During both synoptic sampling campaigns, a solution containing lithium bromide was injected continuously to allow for the calculation of streamflow using the tracer-dilution method. Synoptic water-quality samples were collected from 30 stream sites and 11 inflow locations along the 2-kilometer study reach. Data from the study provide spatial profiles of pH, concentration, and streamflow under both existing and experimentally-altered conditions. This report presents the data obtained August 21-24, 2005, as well as the methods used for sample collection and data analysis.

  12. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected as much as collected in flask. Stream water and groundwater samples were collected for 40 L each. All the water samples were filtered through 0.45 μm pore-size membrane. Water samples with less than few L were concentrated by evaporative concentration. Water samples with more than 40 L were concentrated using the ammonium molybdophosphate (AMP)/Cs compound method. The Cs-137 concentration was determined using gamma-ray spectrometry with a germanium semiconductor detector. Spatial distribution of dissolved Cs-137 concentration in the slope was obtained and the source of Cs-137 concentration in stream water was examined. The Cs-137 concentration in groundwater showed low value of 0.0004-0.001 Bq/L. The Cs-137 concentration of soil water showed 0.01-0.1 Bq/L. And Cs-137 concentrations of stream water were 0.007-0.03 Bq/L at steady state condition. Also Cs-137 concentrations in stream water showed temporary increase during rainfall event. The source of dissolved Cs-137 was suggested to be shallow soil water under saturated condition or leaching from the litter might be affecting.

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Newcastle NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.

    1980-06-01

    During the summer and fall of 1977, 533 water and 1226 sediment samples were collected from 1740 locations within the 18,000 km/sup 2/ area of the Newcastle quadrangle, Wyoming. Water samples were collected from wells and springs; sediment samples were collected from stream channels and from springs. Each water sample was analyzed for uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containingmore » high uranium concentrations (>20 ppB) generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District.« less

  14. Evaluation of the antioxidant system and neurotoxic effects observed in Rhamdia branneri (Teleostei: Heptapteridae) sampled from streams of the lower Iguazu River basin.

    PubMed

    Sobjak, Thaís Maylin; Romão, Silvia; Cazarolli, Luisa Helena; Sampaio, Silvio César; Remor, Marcelo Bevilacqua; Guimarães, Ana Tereza Bittencourt

    2018-07-15

    The use of multiple biomarkers has been shown to be an efficient method for evaluating environmental contamination. In this work, we evaluate neurotoxic effects and the antioxidant system responses of the R. branneri collected in two streams of lower Iguazu River basin, relating them with different percentage of vegetation coverture, presence of pesticides and fall and winter seasons. The biological samples were collected in March and August of 2015, from two streams that belong to the lower Iguazu River basin (Brazil): the Manoel Gomes River and the Arquimedes Stream. Soil analyses were performed, and the results showed the presence of the following organophosphates in the Manoel Gomes River and the Arquimedes Stream: disulfoton, methyl parathion, and ronnel. The present study detected inhibition of cholinesterase activity in the brain and muscle of fish samples during the fall from the Manoel Gomes River and the Arquimedes Stream. In the Manoel Gomes River, elevated lipoperoxidation was also observed during the fall. It was observed that the increase or decrease of biomarkers was related to temporal variation and, possibly, to the exposure of animals to agrochemicals. Although the Manoel Gomes River and the Arquimedes Stream are located in regions with large areas of vegetation, the soil analyses show that agrochemical residues are able to reach these locations, which suggests that the fauna are in contact with oxidant and anti-cholinesterase agents during the fall, in addition to respond differently during each season. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Occurrence, distribution, and concentrations of selected contaminants in streambed- and suspended-sediment samples collected in Bexar County, Texas, 2007-09

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2011-01-01

    High concentrations of sediment-associated contaminants are typically associated with urban areas such as San Antonio, Texas, in Bexar County, the seventh most populous city in the United States. U.S. Geological Survey personnel periodically collected surficial streambed-sediment samples during 2007-09 and collected suspended-sediment samples from selected streams after storms during 2008 and 2009. All sediment samples were analyzed for major and trace elements, pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Cortez NTMS Quadrangle, Colorado/Utah, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, R.G.

    1979-05-01

    During the summers of 1976, 1977, and 1978, 598 water and 1657 sediment samples were collected from 1775 locations within the 19,600-km/sup 2/ area of the Cortez Quadrangle, Colorado and Utah. Water samples were collected from streams, springs, and wells; sediment samples were collected from stream channels (wet and dry) and from springs. Each water sample was analyzed for 13 elements, and each sediment sample was analyzed for 43 elements. Uranium concentrations in water samples range from below the detection limit of 0.02 to 241.47 ppB and have a median of 0.87 ppB and a mean of 3.80 ppB. Backgroundmore » uranium concentrations are 2 to 5 ppB in several nonmountainous regions but are much lower in mountainous areas, particularly in the northeastern portion of the quadrangle. Water samples containing high uranium concentrations (>20 ppB) generally are associated with high conductivities, high concentrations of other metallic elements, and geologic units, such as the Mancos shale, that are unfavorable for uranium mineralization. However, four ground-water samples exhibit high uranium concentrations without concomitant high conductivities or high concentrations of other metallic elements. Two of these samples were collected from sites in the Slick Rock U--V district, and two were collected in the Morrison formation in the southern portion of the quadrangle where large uranium deposits are not known. Water samples collected from the northwestern corner of the quadrangle uniformly exhibit background uranium values but generally contain high nickel concentrations. In this area, U--Cu (White Canyon-type) deposits are hosted primarily by the Shinarump member of the Chinle formation. Uranium concentrations in sediment samples range from 0.51 to 76.41 ppM and have a median of 2.76 ppM and a mean of 3.08 ppM. Background uranium and metallic element concentrations decrease to the southwest from the highest values in the northeastern portion of the quadrangle.« less

  17. Time-of-travel data for Nebraska streams, 1968 to 1977

    USGS Publications Warehouse

    Petri, L.R.

    1984-01-01

    This report documents the results of 10 time-of-travel studies, using ' dye-tracer ' methods, conducted on five streams in Nebraska during the period 1968 to 1977. Streams involved in the studies were the North Platte, North Loup, Elkhorn, and Big Blue Rivers and Salt Creek. Rhodamine WT dye in a 20 percent solution was used as the tracer for all 10 time-of-travel studies. Water samples were collected at several points below each injection site. Concentrations of dye in the samples were measured by determining fluorescence of the sample and comparing that value to fluorescence-concentration curves. Stream discharges were measured before and during each study. Results of each time-by-travel study are shown on two tables and on graph. The first table shows water discharge at injection and sampling sites, distance between sites, and time and rate of travel of the dye between sites. The second table provides descriptions of study sites, amounts of dye injected in the streams, actual sampling times, and actual concentrations of dye detected. The graphs for each time-of-travel study provide indications of changing travel rates between sampling sites, information on length of dye clouds, and times for dye passage past given points. (USGS)

  18. Ultraviolet absorbance as a proxy for total dissolved mercury in streams

    USGS Publications Warehouse

    Dittman, J.A.; Shanley, J.B.; Driscoll, C.T.; Aiken, G.R.; Chalmers, A.T.; Towse, J.E.

    2009-01-01

    Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THgd), DOC concentration and DOC composition, and UV254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THgd to DOC (r2 = 0.87), but progressively stronger correlations of THgd with the hydrophobic acid fraction (HPOA) of DOC (r2 = 0.91) and with UV254 absorbance (r2 = 0.92). The strength of the UV254 absorbance-THgd relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THgd concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THgd flux in drainage waters. ?? 2009 Elsevier Ltd.

  19. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagoner, J.L.

    Wet and dry sediments were collected throughout the 18,500-km/sup 2/arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40more » ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data.« less

  20. Water-quality and amphibian population data for Maryland, Washington, D.C., and Virginia, 2001-2004

    USGS Publications Warehouse

    Rice, K.C.; Jung, R.E.

    2004-01-01

    Data on the chemical composition of water and on amphibian populations were collected at least annually from vernal pool and stream sites in Maryland, Washington, D.C., and Virginia, from 2001 through 2004. The data were collected as part of long-term monitoring projects of the Northeast Region of the Amphibian Research and Monitoring Initiative (ARMI) of the U.S. Geological Survey. Water samples were analyzed for temperature, specific conductance, pH, dissolved-oxygen concentration, acid-neutralizing capacity, and concentrations of total Kjeldahl nitrogen and total phosphorus; in 2004, samples also were analyzed for nitrite plus nitrate concentrations and total nitrogen concentrations. Field and laboratory analytical results of water samples and quality-assurance information are presented. Amphibian population data include the presence of amphibian species and the maximum number of egg masses of wood frogs and spotted salamanders at vernal pools, and counts of amphibians made during stream transect and stream quadrat surveys.

  1. A comparison of two gears for quantifying abundance of lotic-dwelling crayfish

    USGS Publications Warehouse

    Williams, Kristi; Brewer, Shannon K.; Ellersieck, Mark R.

    2014-01-01

    Crayfish (saddlebacked crayfish, Orconectes medius) catch was compared using a kick seine applied two different ways with a 1-m2 quadrat sampler (with known efficiency and bias in riffles) from three small streams in the Missouri Ozarks. Triplicate samples (one of each technique) were taken from two creeks and one headwater stream (n=69 sites) over a two-year period. General linear mixed models showed the number of crayfish collected using the quadrat sampler was greater than the number collected using either of the two seine techniques. However, there was no significant interaction with gear suggesting year, stream size, and channel unit type did not relate to different catches of crayfish by gear type. Variation in catch among gears was similar, as was the proportion of young-of-year individuals across samples taken with different gears or techniques. Negative binomial linear regression provided the appropriate relation between the gears which allows correction factors to be applied, if necessary, to relate catches by the kick seine to those of the quadrat sampler. The kick seine appears to be a reasonable substitute to the quadrat sampler in these shallow streams, with the advantage of ease of use and shorter time required per sample.

  2. Benthic macroinvertebrate field sampling effort required to ...

    EPA Pesticide Factsheets

    This multi-year pilot study evaluated a proposed field method for its effectiveness in the collection of a benthic macroinvertebrate sample adequate for use in the condition assessment of streams and rivers in the Neuquén Province, Argentina. A total of 13 sites, distributed across three rivers, were sampled. At each site, benthic macroinvertebrates were collected at 11 transects. Each sample was processed independently in the field and laboratory. Based on a literature review and resource considerations, the collection of 300 organisms (minimum) at each site was determined to be necessary to support a robust condition assessment, and therefore, selected as the criterion for judging the adequacy of the method. This targeted number of organisms was collected at all sites, at a minimum, when collections from all 11 transects were combined. Subsequent bootstrapping analysis of data was used to estimate whether collecting at fewer transects would reach the minimum target number of organisms for all sites. In a subset of sites, the total number of organisms frequently fell below the target when fewer than 11 transects collections were combined.Site conditions where <300 organisms might be collected are discussed. These preliminary results suggest that the proposed field method results in a sample that is adequate for robust condition assessment of the rivers and streams of interest. When data become available from a broader range of sites, the adequacy of the field

  3. Geochemical map of the Rattlesnake Roadless Area, Coconino and Yavapai counties, Arizona

    USGS Publications Warehouse

    Gerstel, W.J.

    1985-01-01

    The geochemical survey of the Rattlesnake Roadless Area was conducted in May 1982 by the U.S. Geological Survey to aid in a mineral resource appraisal of the area. A total of 114 stream-sediment samples, 68 heavy-mineral concentrates from stream sediment, 20 rock samples, and 4 water samples was collected by S.C. Rose, D.E. Hendzel, and W.J. Gerstel, with helicopter support from Jack Ruby, pilot for Helicopters Unlimited. All sample localities are plotted on the map; sample localities showing anomalous barium and lead are also indicated on the map.

  4. Proceedings Abstracts: American Water Resources Association's Symposium on the National Water-Quality Assessment (NAWQA) Program--November 7-9, 1994, Chicago, Illinois

    USGS Publications Warehouse

    Sorenson, Stephen K.

    1994-01-01

    Approximately 418,000 pounds of triazine herbicides are applied annually to control weeds in crops grown in the Albemarle-Pamilico Sound drainage basin, located in North Carolina and Virginia. An enzyme-linked immunosorbent assay was used to detect concentrations of total triazine herbicides in streams draining into Albemarle-Pamlico Sound. Water samples were collected in May and June during the application of triazine herbicides and in early September during low streamflows at approximately 40 sites on streams in the Coastal Plain and Piedmont Physiographic Provinces. Triazine concentrations exceeded 0.2 ?g/L (micrograms per liter) in 67 percent of the water samples collected In June, and 13 percent of the water samples exceeded 0.2 ?g/L in September during low streamflows. The enzyme-linked immunosorbent assay for total triazine herbicides provides a low-cost and rapid analytical method for screening water samples prior to sending them to a laboratory and for semiquantitatively assessing seasonal concentrations of triazine herbicides in streams throughout a large region.

  5. Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Brown, Greg K.; Furlong, Edward T.; Gray, James L.; Kolpin, Dana W.; Meyer, Michael T.; Sandstrom, Mark W.; Zaugg, Steven D.

    2013-01-01

    Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L–1) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L–1), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.

  6. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture.

    PubMed

    Haack, Sheridan K; Duris, Joseph W; Kolpin, Dana W; Focazio, Michael J; Meyer, Michael T; Johnson, Heather E; Oster, Ryan J; Foreman, William T

    2016-09-01

    Animal waste, stream water, and streambed sediment from 19 small (<32km(2)) watersheds in 12U.S. states having either no major animal agriculture (control, n=4), or predominantly beef (n=4), dairy (n=3), swine (n=5), or poultry (n=3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions. Pathogen gene profiles may offer the potential to address both source of, and risks associated with, fecal pollution. Published by Elsevier B.V.

  7. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2005 to June 30, 2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Young-Smith, Stacie T. M.

    2006-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous discharge data at one station, continuous streamflow data at two stations, and water-quality data at five stations, which include the continuous discharge and streamflow stations. This report summarizes rainfall, discharge, streamflow, and water-quality data collected between July 1, 2005 and June 30, 2006. A total of 23 samples was collected over five storms during July 1, 2005 to June 30, 2006. The goal was to collect grab samples nearly simultaneously at all five stations, and flow-weighted time-composite samples at the three stations equipped with automatic samplers; however, all five storms were partially sampled owing to lack of flow at the time of sampling at some sites, or because some samples collected by the automatic sampler did not represent water from the storm. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  8. A Multiple-Tracer Approach for Identifying Sewage Sources to an Urban Stream System

    USGS Publications Warehouse

    Hyer, Kenneth Edward

    2007-01-01

    The presence of human-derived fecal coliform bacteria (sewage) in streams and rivers is recognized as a human health hazard. The source of these human-derived bacteria, however, is often difficult to identify and eliminate, because sewage can be delivered to streams through a variety of mechanisms, such as leaking sanitary sewers or private lateral lines, cross-connected pipes, straight pipes, sewer-line overflows, illicit dumping of septic waste, and vagrancy. A multiple-tracer study was conducted to identify site-specific sources of sewage in Accotink Creek, an urban stream in Fairfax County, Virginia, that is listed on the Commonwealth's priority list of impaired streams for violations of the fecal coliform bacteria standard. Beyond developing this multiple-tracer approach for locating sources of sewage inputs to Accotink Creek, the second objective of the study was to demonstrate how the multiple-tracer approach can be applied to other streams affected by sewage sources. The tracers used in this study were separated into indicator tracers, which are relatively simple and inexpensive to apply, and confirmatory tracers, which are relatively difficult and expensive to analyze. Indicator tracers include fecal coliform bacteria, surfactants, boron, chloride, chloride/bromide ratio, specific conductance, dissolved oxygen, turbidity, and water temperature. Confirmatory tracers include 13 organic compounds that are associated with human waste, including caffeine, cotinine, triclosan, a number of detergent metabolites, several fragrances, and several plasticizers. To identify sources of sewage to Accotink Creek, a detailed investigation of the Accotink Creek main channel, tributaries, and flowing storm drains was undertaken from 2001 to 2004. Sampling was conducted in a series of eight synoptic sampling events, each of which began at the most downstream site and extended upstream through the watershed and into the headwaters of each tributary. Using the synoptic sampling approach, 149 sites were sampled at least one time for indicator tracers; 52 of these sites also were sampled for confirmatory tracers at least one time. Through the analysis of multiple-tracer levels in the synoptic samples, three major sewage sources to the Accotink Creek stream network were identified, and several other minor sewage sources to the Accotink Creek system likely deserve additional investigation. Near the end of the synoptic sampling activities, three additional sampling methods were used to gain better understanding of the potential for sewage sources to the watershed. These additional sampling methods included optical brightener monitoring, intensive stream sampling using automated samplers, and additional sampling of several storm-drain networks. The samples obtained by these methods provided further understanding of possible sewage sources to the streams and a better understanding of the variability in the tracer concentrations at a given sampling site. Collectively, these additional sampling methods were a valuable complement to the synoptic sampling approach that was used for the bulk of this study. The study results provide an approach for local authorities to use in applying a relatively simple and inexpensive collection of tracers to locate sewage sources to streams. Although this multiple-tracer approach is effective in detecting sewage sources to streams, additional research is needed to better detect extremely low-volume sewage sources and better enable local authorities to identify the specific sources of the sewage once it is detected in a stream reach.

  9. Mercury methylation at mercury mines in the Humboldt River Basin, Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Lasorsa, B.K.

    2002-01-01

    Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River Basin. Mine-waste calcines contain total Hg concentrations as high as 14 000 ??g g-1. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170 ??g g-1, whereas stream sediments collected at a distance >5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations 8 km from the nearest mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.

  10. Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States

    USGS Publications Warehouse

    Bank, M.S.; Loftin, C.S.; Jung, R.E.

    2005-01-01

    Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)(2)SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73-97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total Hg levels in larvae from the (NH4)(2)SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including. re history, whole-catchment (NH4)(2)SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.

  11. Variability in stream chemistry in relation to urban development and biological condition in seven metropolitan areas of the United States, 1999-2004

    USGS Publications Warehouse

    Beaulieu, Karen M.; Bell, Amanda H.; Coles, James F.

    2012-01-01

    Beginning in 1999, the U.S. Geological Survey National Water Quality Assessment Program investigated the effects of urban development on stream ecosystems in nine metropolitan study areas across the United States. In seven of these study areas, stream-chemistry samples were collected every other month for 1 year at 6 to 10 sites. Within a study area, the sites collectively represented a gradient of urban development from minimally to highly developed watersheds, based on the percentage of urban land cover; depending on study area, the land cover before urban development was either forested or agricultural. The stream-chemistry factors measured in the samples were total nitrogen, total phosphorus, chloride, and pesticide toxicity. These data were used to characterize the stream-chemistry factors in four ways (hereafter referred to as characterizations)—seasonal high-flow value, seasonal low-flow value, the median value (representing a single integrated value of the factor over the year), and the standard deviation of values (representing the variation of the factor over the year). Aquatic macroinvertebrate communities were sampled at each site to infer the biological condition of the stream based on the relative sensitivity of the community to environmental stressors. A Spearman correlation analysis was used to evaluate relations between (1) urban development and each characterization of the stream-chemistry factors and (2) the biological condition of a stream and the different characterizations of chloride and pesticide toxicity. Overall, the study areas where the land cover before urban development was primarily forested had a greater number of moderate and strong relations compared with the study areas where the land cover before urban development was primarily agriculture; this was true when urban development was correlated with the stream-chemistry factors (except chloride) and when chloride and pesticide toxicity was correlated with the biological condition. Except for primarily phosphorus in two study areas, stream-chemistry factors generally increased with urban development, and among the different characterizations, the median value typically indicated the strongest relations. The variation in stream-chemistry factors throughout the year generally increased with urban development, indicating that water quality became less consistent as watersheds were developed. In study areas with high annual snow fall, the variation in chloride concentrations throughout the year was particularly strongly related to urban development, likely a result of road salt applications during the winter. The relations of the biological condition to chloride and pesticide toxicity were calculated irrespective of urban development, but the overall results indicated that the relations were still stronger in the study areas that had been forested before urban development. The weaker relations in the study areas that had been agricultural before urban development were likely the results of biological communities having been degraded from agricultural practices in the watersheds. Collectively, these results indicated that, compared with sampling a stream at a single point in time, sampling at regular intervals during a year may provide a more representative measure of water quality, especially in the areas of high urban development where water quality fluctuated more widely between samples. Furthermore, the use of "integrated" values of stream chemistry factors may be more appropriate when assessing relations to the biological condition of a stream because the taxa composition of a biological community typically reflects the water-quality conditions over time.

  12. Water-quality assessment of the Trinity River Basin, Texas - Nutrients in streams draining an agricultural and an urban area, 1993-95

    USGS Publications Warehouse

    Land, Larry F.; Shipp, Allison A.

    1996-01-01

    Water samples collected from streams draining an agricultural area in the west-central part of the Trinity River Basin upstream from the Richland-Chambers Reservoir and from streams draining an urban area in the Dallas-Fort Worth metropolitan area during March 1993 - September 1995 were analyzed for nutrients (nitrogen and phosphorus compounds). A comparison of the data for agricultural and urban streams shows the maximum concentration of total nitrogen is from an urban stream and the maximum concentration of total phosphorus is from an agricultural stream. One-half of the samples have total nitrogen concentrations equal to or less than 1.1 and 1.0 milligrams per liter in the agricultural and urban streams, respectively; and one-half of the samples have total phosphorous concentrations equal to or less than 0.04 and 0.05 milligram per liter in the agricultural and urban streams, respectively. The highest concentrations of total nitrogen in both types of streams are in the spring. The minimum concentrations of total nitrogen are during the summer in the agricultural streams and during the winter in the urban streams. Concentrations of total phosphorus in agricultural streams show negligible seasonal variability. The highest concentrations of total phosphorus are in spring and possibly late summer in the urban streams. In the midrange of streamflow in the urban streams and throughout the range of streamflow in the agricultural streams, concentrations of total nitrogen increase. Concentrations of total phosphorus increase with streamflow in the middle and upper ranges of streamflow in both agricultural and urban streams.

  13. DEVELOPMENT OF AN INDEX OF BIOTIC INTEGRITY FOR THE MID-ATLANTIC HIGHLANDS REGION

    EPA Science Inventory

    From 1993 to 1996, fish assemblage data were collected from 309 wadeable streams in the U.S. Mid-Atlantic Highlands region as part of the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program. Stream sites were selected with a probabilistic sampl...

  14. Combining watershed attributes with culture- and PCR-based methods for improved characterization and management of fecal pollution

    EPA Science Inventory

    Culture- and PCR-based methods for characterization of fecal pollution were evaluated in relation to physiographic, biotic, and chemical indicators of stream condition. Stream water samples (n = 235) were collected monthly over a two year period from ten channels draining subwat...

  15. Microbial incorporation of nitrogen in stream detritus

    Treesearch

    Diane M. Sanzone; Jennifer L. Tank; Judy L. Meyer; Patrick J. Mulholland; Stuart E.G. Findlay

    2001-01-01

    We adapted the chloroform fumigation method to determine microbial nitrogen (N) and microbial incorporation of 15N on three common substrates [leaves, wood and fine benthic organic matter (FBOM)] in three forest streams. We compared microbial N and 15 content of samples collected during a 6-week15N-NH...

  16. Macroinvertebrates as Indicators of Stream Health.

    ERIC Educational Resources Information Center

    McDonald, Brook S.; And Others

    1991-01-01

    Describes Ohio's Scenic Rivers Monitoring Program that uses benthic macroinvertebrates, such as the stonefly, mayfly, and water penny beetle larva, as key indicators of water quality and stream health. Presents a three-category scheme for invertebrates based upon their tolerance to pollution. Students can collect samples of these organisms,…

  17. DIATOM INDICES OF STREAM ECOSYSTEM CONDITIONS: COMPARISON OF GENUS VS. SPECIES LEVEL IDENTIFICATIONS

    EPA Science Inventory

    Diatom assemblage data collected between 1993 and 1995 from 233 Mid-Appalachian streams were used to compare indices of biotic integrity based on genus vs. species level taxonomy. Thirty-seven genera and 197 species of diatoms were identified from these samples. Metrics included...

  18. Acetochlor in the hydrologic system in the midwestern United States, 1994

    USGS Publications Warehouse

    Kolpin, D.W.; Nations, B.K.; Goolsby, D.A.; Thurman, E.M.

    1996-01-01

    The herbicide acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)acetamide] was given conditional registration in the United States by the U.S. Environmental Protection Agency in March 1994. This registration provided a rare opportunity to investigate the occurrence of a pesticide during its first season of extensive use in the midwestern United States. Water samples collected and analyzed by the U.S. Geological Survey during 1994 documented the distribution of acetochlor in the hydrologic system; it was detected in 29% of the rain samples from four sites in Iowa, 17% of the stream samples from 51 sites across nine states, and 0% of the groundwater samples from 38 wells across eight states. Acetochlor exhibited concentration increases in rain and streams following its application to corn in the midwestern United States, with 75% of the rainwater and 35% of the stream samples having acetochlor detected during this time period. Acetochlor concentrations in rain decreased as the growing season progressed. Based on the limited data collected for this study, it is anticipated that acetochlor concentrations will have a seasonal pattern in rain and streams similar to those of other acetanilide herbicides examined. Possible explanations for the absence of acetochlor in groundwater for this study include the rapid degradation of acetochlor in the soil zone, insufficient time for this first extensive use of acetochlor to have reached the aquifers sampled, and the possible lack of acetochlor use in the recharge areas for the wells examined.

  19. Comparing two periphyton collection methods commonly used for stream bioassessment and the development of numeric nutrient standards.

    PubMed

    Rodman, Ashley R; Scott, J Thad

    2017-07-01

    Periphyton is an important component of stream bioassessment, yet methods for quantifying periphyton biomass can differ substantially. A case study within the Arkansas Ozarks is presented to demonstrate the potential for linking chlorophyll-a (chl-a) and ash-free dry mass (AFDM) data sets amassed using two frequently used periphyton sampling protocols. Method A involved collecting periphyton from a known area on the top surface of variably sized rocks gathered from relatively swift-velocity riffles without discerning canopy cover. Method B involved collecting periphyton from the entire top surface of cobbles systematically gathered from riffle-run habitat where canopy cover was intentionally avoided. Chl-a and AFDM measurements were not different between methods (p = 0.123 and p = 0.550, respectively), and there was no interaction between method and time in the repeated measures structure of the study. However, significantly different seasonal distinctions were observed for chl-a and AFDM from all streams when data from the methods were combined (p < 0.001 and p = 0.012, respectively), with greater mean biomass in the cooler sampling months. Seasonal trends were likely the indirect results of varying temperatures. Although the size and range of this study were small, results suggest data sets collected using different methods may effectively be used together with some minor considerations due to potential confounding factors. This study provides motivation for the continued investigation of combining data sets derived from multiple methods of data collection, which could be useful in stream bioassessment and particularly important for the development of regional stream nutrient criteria for the southern Ozarks.

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Newcastle NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.

    1980-06-01

    Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearlymore » half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales.« less

  1. ROSGREN STREAM TYPES AS A TOOL FOR PREDICTING BEDLOAD AND SUSPENDED SEDIMENT EXPORT IN LOW-ORDER LAKE SUPERIOR WATERSHEDS

    EPA Science Inventory

    Bedload samples were collected from 48 second and third order Lake Superior tributaries during snowmelt in 1998 and 1999. Suspended sediment samples were collected over a three-year period during baseflow, rain events, and snowmelt. This work was part of a comparative watershed...

  2. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    USGS Publications Warehouse

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the remaining samples were archived. Biological characteristics were determined by using an in-vitro bioassay to determine total estrogenicity in water samples and a caged fish study to determine characteristics of fish from experiments that exposed fish to wastewater effluent in 2009. St. Cloud State University deployed and processed caged fathead minnows at 13 stream sites during September 2009 for the caged fish study. Measured fish data included length, weight, body condition factor, and vitellogenin concentrations.

  3. Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.

    2008-12-01

    Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.

  4. Tracking tracer breakthrough in the hyporheic zone using time‐lapse DC resistivity, Crabby Creek, Pennsylvania

    USGS Publications Warehouse

    Nyquist, Jonathan E.; Toran, Laura; Fang, Allison C.; Ryan, Robert J.; Rosenberry, Donald O.

    2010-01-01

    Characterization of the hyporheic zone is of critical importance for understanding stream ecology, contaminant transport, and groundwater‐surface water interaction. A salt water tracer test was used to probe the hyporheic zone of a recently re‐engineered portion of Crabby Creek, a stream located near Philadelphia, PA. The tracer solution was tracked through a 13.5 meter segment of the stream using both a network of 25 wells sampled every 5–15 minutes and time‐lapse electrical resistivity tomographs collected every 11 minutes for six hours, with additional tomographs collected every 100 minutes for an additional 16 hours. The comparison of tracer monitoring methods is of keen interest because tracer tests are one of the few techniques available for characterizing this dynamic zone, and logistically it is far easier to collect resistivity tomographs than to install and monitor a dense network of wells. Our results show that resistivity monitoring captured the essential shape of the breakthrough curve and may indicate portions of the stream where the tracer lingered in the hyporheic zone. Time‐lapse resistivity measurements, however, represent time averages over the period required to collect a tomographic data set, and spatial averages over a volume larger than captured by a well sample. Smoothing by the resistivity data inversion algorithm further blurs the resulting tomograph; consequently resistivity monitoring underestimates the degree of fine‐scale heterogeneity in the hyporheic zone.

  5. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 1. Concentrations of pesticides and their degradates in stream baseflow, 2000-2001

    USGS Publications Warehouse

    Phillips, Patrick J.; Heisig, Paul M.

    2004-01-01

    Baseflow samples were collected from 20 small streams in the Pepacton Reservoir watershed in Delaware County, N.Y., from December 2000 through November 2001 as part of an investigation to define the occurrence of pesticides in shallow ground water in watersheds containing either a recent (2001) corn crop, a previous (1993-94) corn crop, or no history of row-crop cultivation. Baseflow water quality was assumed to represent the chemical quality of shallow ground water within the drainage area above each sampling site.Baseflow samples were analyzed for 57 pesticides and pesticide degradates. Three herbicides (atrazine, metolachlor and simazine) and three herbicide degradates (alachlor ESA [ethanesulfonic acid], deethylatrazine, and metolachlor ESA) were detected, but no concentrations exceeded any Federal or State water-quality criteria, and the maximum concentrations of all compounds except metolachlor ESA were less than 0.10 microgram per liter. The most frequently detected compounds (atrazine, metolachlor, deethylatrazine and metolachlor ESA) are either those typically used on corn crops, or those whose parent compounds are commonly used on corn crops and have been detected in streams that drain row-crop settings elsewhere in New York State. The pesticide and pesticide-degradate concentrations in baseflow samples collected in December 2000 and July 2001 samples generally corresponded to the amount of cornfield acreage in each watershed in 2001.The types of pesticides detected, and their median concentrations, were similar to those noted in two previous ground-water studies in row-crop areas elsewhere in upstate New York. Also the SAM ratios (ratio of metolachlor ESA concentration to metolachlor concentration) for the Pepacton samples were similar to those for ground-water samples from other agricultural settings in upstate New York, but were significantly higher than that for stormflow and baseflow samples collected in 1997-98 from Canajoharie Creek, an upstate stream that drains row-crop farmland. These comparisons confirm that the baseflow samples were derived from, and were representative of, ground water in their respective watersheds. Late-summer decreases in atrazine and deethylatrazine concentrations at a site where corn was grown in 2001 may have resulted from the seasonally dry conditions and the accompanying decrease in ground-water discharge from the upper-most part of the surficial aquifer system to streams. The lack of a similar decrease in metolachlor ESA concentrations during this period may reflect the transport of metolachlor ESA to deeper parts of the surficial aquifer that continued to discharge to streams during the dry period.

  6. Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling

    PubMed Central

    Braun, Alexander; Auerswald, Karl; Geist, Juergen

    2012-01-01

    The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053

  7. Associations of benthic macroinvertebrate assemblages with environmental variables in the upper Clear Creek watershed, California

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.; Wulff, Marissa

    2012-01-01

    Benthic macroinvertebrates are integral components of stream ecosystems and are often used to assess the ecological integrity of streams. We sampled streams in the upper Clear Creek drainage in the Klamath—Siskiyou Ecoregion of northwestern California in fall 2004 (17 sites) and 2005 (original 17 plus 4 new sites) with the objectives of documenting the benthic macroinvertebrate assemblages supported by the streams in the area, determining how those assemblages respond to environmental variables, assessing the biological condition of the streams using a benthic index of biotic integrity (IBI), and understanding the assemblages in the context of biodiversity of the ecoregion. We collected both reach-wide (RW) and targeted-riffle (TR) macroinvertebrate samples at each site. The macroinvertebrate assemblages were diverse, with over 150 genera collected for each sampling protocol. The macroinvertebrate assemblages appeared to be most responsive to a general habitat gradient based on stream size, gradient, flow, and dominance of riffles. A second important habitat gradient was based on elevation and dominance of riffles. A gradient in water quality based on concentrations of dissolved ions and metals was also important. Models based on these 3 gradients had Spearman's rank correlations with macroinvertebrate taxonomic composition of 0.60 and 0.50 for the TR and RW samples, respectively. The majority (>50%) of the sites were in good or very good biological condition based on IBI scores. The diversity of macroinvertebrate assemblages is associated with the diversity of habitats available in the Klamath—Siskiyou Ecoregion. Maintaining the aquatic habitats in good condition is important in itself but is also vital to maintaining biodiversity in this diverse and unique ecoregion.

  8. Occurrence and distribution of pesticide compounds in surface water of the Santa Ana basin, California, 1998-2001

    USGS Publications Warehouse

    Kent, Robert; Belitz, Kenneth; Altmann, Andrea J.; Wright, Michael T.; Mendez, Gregory O.

    2005-01-01

    A study of the occurrence and distribution of pesticide compounds in surface water of the highly urbanized Santa Ana Basin, California, was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program (NAWQA). One-hundred and forty-eight samples were collected from 23 sites, and analyzed for pesticide compounds during the study period from November 1998 to September 2001. Sixty-six different pesticide compounds were detected at varying frequencies and concentrations, and one or more pesticides were detected in 92 percent of the samples. All pesticide concentrations were below maximum levels permitted in drinking water. However, two compounds-diazinon and diuron-exceeded nonenforceable drinking water health-advisory levels in at least one stream sample, and five compounds exceeded guidelines to protect aquatic life-carbaryl, chlorpyrifos, diazinon, lindane, and malathion. Twenty-two pesticide compounds were detected in at least 25 percent of the samples collected from any one fixed site. These are identified as 'major' pesticide compounds and are emphasized in this report. The degree to which pesticides were used in the basin, as well as their physical-chemical properties, are important explanatory factors in stream pesticide occurrence, and most pesticides probably enter streams with urban runoff. Stormflow substantially increases urban runoff, and storm effects on stream pesticide concentrations sometimes persist for several days or weeks after the storm. Water sources other than urban runoff also deliver pesticide compounds to surface water in the basin. For example, atrazine may enter streams in gaining reaches where ground water carries high loads as a result of historical use in the basin. Also, the data suggest that lindane, and perhaps bromacil, are present in treated wastewater, the predominant source of water to streams in the Santa Ana Basin.

  9. Aethalometer™ Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, Arthur J.

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and amore » “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.« less

  10. Mercury in fish and macroinvertebrates from New York's streams and rivers: A compendium of data sources

    USGS Publications Warehouse

    Riva-Murray, Karen; Burns, Douglas A.

    2016-01-01

    The U.S. Geological Survey has compiled a list of existing data sets, from selected sources, containing mercury (Hg) concentration data in fish and macroinvertebrate samples that were collected from flowing waters of New York State from 1970 through 2014. Data sets selected for inclusion in this report were limited to those that contain fish and (or) macroinvertebrate data that were collected across broad areas, cover relatively long time periods, and (or) were collected as part of a broader-scale (e.g. national) study or program. In addition, all data sets listed were collected, processed, and analyzed with documented methods, and contain critical sample information (e.g. fish species, fish size, Hg species) that is needed to analyze and interpret the reported Hg concentration data. Fourteen data sets, all from state or federal agencies, are listed in this report, along with selected descriptive information regarding each data source and data set contents. Together, these 14 data sets contain Hg and related data for more than 7,000 biological samples collected from more than 700 unique stream and river locations between 1970 and 2014.

  11. Comparing efficiency of American Fisheries Society standard snorkeling techniques to environmental DNA sampling techniques

    USGS Publications Warehouse

    Ulibarri, Roy M.; Bonar, Scott A.; Rees, Christopher B.; Amberg, Jon J.; Ladell, Bridget; Jackson, Craig

    2017-01-01

    Analysis of environmental DNA (eDNA) is an emerging technique used to detect aquatic species through water sampling and the extraction of biological material for amplification. Our study compared the efficacy of eDNA methodology to American Fisheries Society (AFS) standard snorkeling surveys with regard to detecting the presence of rare fish species. Knowing which method is more efficient at detecting target species will help managers to determine the best way to sample when both traditional sampling methods and eDNA sampling are available. Our study site included three Navajo Nation streams that contained Navajo Nation Genetic Subunit Bluehead Suckers Catostomus discobolus and Zuni Bluehead Suckers C. discobolus yarrowi. We first divided the entire wetted area of streams into consecutive 100-m reaches and then systematically selected 10 reaches/stream for snorkel and eDNA surveys. Surface water samples were taken in 10-m sections within each 100-m reach, while fish presence was noted via snorkeling in each 10-m section. Quantitative PCR was run on each individual water sample in quadruplicate to test for the presence or absence of the target species. With eDNA sampling techniques, we were able to positively detect both species in two out of the three streams. Snorkeling resulted in positive detection of both species in all three streams. In streams where the target species were detected with eDNA sampling, snorkeling detected fish at 11–29 sites/stream, whereas eDNA detected fish at 3–12 sites/stream. Our results suggest that AFS standard snorkeling is more effective than eDNA for detecting target fish species. To improve our eDNA procedures, the amount of water collected and tested should be increased. Additionally, filtering water on-site may improve eDNA techniques for detecting fish. Future research should focus on standardization of eDNA sampling to provide a widely operational sampling tool.

  12. May 1984-April 1985 water budget of Reelfoot Lake with estimates of sediment inflow and concentrations of pesticides in bottom material in tributary streams; basic data report

    USGS Publications Warehouse

    Robbins, C.H.; Garrett, J.W.; Mulderink, D.M.

    1985-01-01

    This report contains hydrologic data collected at Reelfoot Lake, Tennessee from May 1, 1984, through April 30, 1985. Continuous streamflow data were collected at four sites on the three major tributaries to Reelfoot Lake and at one site on the lake outflow channel. Daily rainfall and lake-stage were each collected at two sites on the lake shore. Additionally, suspended-sediment samples were collected by automatic samplers and also manually during equipment maintenance visits at three of the four tributary inflow sites. At these three inflow sites, samples of stream-bottom material were collected at low flow once during the study period and were analyzed to determine the concentration of various pesticides. Periodic observations of ground-water levels were made at 30 wells in the Reelfoot Lake basin. Monitoring sites and types of data collected at each site are listed. (USGS)

  13. Data on Mercury in Water, Bed Sediment, and Fish from Streams Across the United States, 1998-2005

    USGS Publications Warehouse

    Bauch, Nancy J.; Chasar, Lia C.; Scudder, Barbara C.; Moran, Patrick W.; Hitt, Kerie J.; Brigham, Mark E.; Lutz, Michelle A.; Wentz, Dennis A.

    2009-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Toxic Substances Hydrology Programs conducted the National Mercury Pilot Study in 1998 to examine relations of mercury (Hg) in water, bed sediment and fish in streams across the United States, including Alaska and Hawaii. Water and bed-sediment samples were analyzed for total Hg (THg), methylmercury (MeHg), and other constituents; fish were analyzed for THg. Similar sampling was conducted at additional streams across the country in 2002 and 2004-05. This report summarizes sample collection and processing protocols, analytical methods, environmental data, and quality-assurance data for stream water, bed sediment, and fish for these national studies. To extend the geographic coverage of the data, this report also includes four regional USGS Hg studies conducted during 1998-2001 and 2004. The environmental data for these national and regional Hg studies are provided in an electronic format.

  14. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOEpatents

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  15. Sequential elution process

    DOEpatents

    Kingsley, I.S.

    1987-01-06

    A process and apparatus are disclosed for the separation of complex mixtures of carbonaceous material by sequential elution with successively stronger solvents. In the process, a column containing glass beads is maintained in a fluidized state by a rapidly flowing stream of a weak solvent, and the sample is injected into this flowing stream such that a portion of the sample is dissolved therein and the remainder of the sample is precipitated therein and collected as a uniform deposit on the glass beads. Successively stronger solvents are then passed through the column to sequentially elute less soluble materials. 1 fig.

  16. Benthic-invertebrate, fish-community, and streambed-sediment-chemistry data for streams in the Indianapolis metropolitan area, Indiana, 2009–2012

    USGS Publications Warehouse

    Voelker, David C.

    2014-01-01

    Aquatic-biology and sediment-chemistry data were collected at seven sites on the White River and at six tributary sites in the Indianapolis metropolitan area of Indiana during the period 2009 through 2012. Data collected included benthic-invertebrate and fish-community information and concentrations of metals, insecticides, herbicides, and semivolatile organic compounds adsorbed to streambed sediments. A total of 120 benthic-invertebrate samples were collected, of which 16 were replicate samples. A total of 26 fish-community samples were collected in 2010 and 2012. Thirty streambed-sediment chemistry samples were collected in 2009 and 2011, of which four were concurrent duplicate samples

  17. Natural fluoride levels in some springs and streams from the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of south eastern Nigeria.

    PubMed

    Ibe, K K; Adlegbembo, A O; Mafeni, J O; Danfillo, I S

    1999-09-01

    The aim of this study was to provide baseline data on the fluoride levels in waters associated with the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of South Eastern Nigeria. Water samples from 14 artesian, perched springs and eight streams from the formation were collected with plastic containers. Fluoride analysis was carried out with inductively coupled plasma Atomic Emission Spectrometry (ICP-AES) equipment at the laboratories of the Department of Earth Science, University of Leeds, United Kingdom. The results showed that fluoride occurred in only one of the 14 spring water samples. Fluoride level in the sample was 0.03 ppm. The spring water, which contained some fluoride, was possibly associated with another rock formation: namely, the limestone bearing Nsukka formation, which overlies the Ajali formation. No fluoride was observed in all the stream water samples. This study reported the absence of fluoride in spring and stream waters associated with the late Maastrichtian formations in Nigeria.

  18. Logistic model of nitrate in streams of the upper-midwestern United States

    USGS Publications Warehouse

    Mueller, D.K.; Ruddy, B.C.; Battaglin, W.A.

    1997-01-01

    Nitrate in surface water can have adverse effects on aquatic life and, in drinking-water supplies, can be a risk to human health. As part of a regional study, nitrates as N (NO3-N) was analyzed in water samples collected from streams throughout 10 Midwestern states during synoptic surveys in 1989, 1990, and 1994. Data from the period immediately following crop planting at 124 sites were analyzed during logistic regression to relate discrete categories of NO3-N concentrations to characteristics of the basins upstream from the sites. The NO3-N data were divided into three categories representing probable background concentrations (10 mg L-1). Nitrate-N concentrations were positively correlated to streamflow, upstream area planted in corn (Zea mays L.), and upstream N- fertilizers application rates. Elevated NO3-N concentrations were associated with poorly drained soils and were weakly correlated with population density. Nitrate-N and streamflow data collected during 1989 and 1990 were used to calibrate the model, and data collected during 1994 were used for verification. The model correctly estimated NO3-N concentration categories for 79% of the samples in the calibration data set and 60% of the samples in the verification data set. The model was used to indicate where NO3-N concentrations might be elevated or exceed the NO3-N MCL in streams throughout the study area. The potential for elevated NO3-N concentrations was predicted to be greatest for streams in Illinois, Indiana, Iowa, and western Ohio.

  19. A COMPARISON OF SINGLE AND MULTIPLE HABITAT RAPID BIOASSESSMENT SAMPLING METHODS FOR MACROINVERTEBRATES IN PIEDMONT AND NORTHERN PIEDMONT STREAMS

    EPA Science Inventory

    Stream macroinvertebrate collection methods described in the Rapid Bioassessment Protocols (RBPs) have been used widely throughout the U.S. The first edition of the RBP manual in 1989 described a single habitat approach that focused on riffles and runs, where macroinvertebrate d...

  20. Identification of Phytophthora species baited and isolated from forest soil and streams in northwestern Yunnan province, China

    USDA-ARS?s Scientific Manuscript database

    Phytophthora species were surveyed by collecting soil samples and placing bait leaves in selected streams during June - October in the years 2005, 2006 and 2010 at three sites in oak forests in Diqing Tibetan Autonomous Prefecture of NW Yunnan province, China. Seventy-three isolates of Phytophthora ...

  1. ASSESSMENT OF NUTRIENTS AND SELECTED ORGANIC CONTAMINANTS IN SMALL STREAMS IN THE MIDWESTERN UNITED STATES, 2004

    EPA Science Inventory

    The U. S. Geological Survey (USGS), in cooperation with the U. S. Environmental Protection Agency (US EPA), collected water samples from 120 small streams (watersheds less than 200 square kilometers) across the Midwestern United States during the summer and fall of 2004. This stu...

  2. EVALUATION OF MACROINVERTEBRATE TRENDS IN STREAMS VULNERABLE TO ACID DEPOSITION IN THE MID-ATLANTIC HIGHLANDS REGION OF THE U.S.A.

    EPA Science Inventory

    Benthic macroinvertebrate and water chemistry samples were collected from wadeable stream sites in the Mid-Atlantic Highlands region of the U.S. during 1993-1995 and 2001 in support of USEPA's TIME (Temporally Integrated Monitoring of Ecosystems) Progam. This study was designed ...

  3. Geochemical survey of the Chattahoochee Roadless Area, Towns, Union, and White counties, Georgia

    USGS Publications Warehouse

    Koeppen, Robert P.; Nelson, Arthur E.

    1989-01-01

    Th U.S. Geological Survey made a reconnaissance geochemical survey of the Chattahoochee Roadless Area (fig. 1) to search for unexposed mineral deposits which might be recognized by a geochemical signature in the abundance or distribution patterns of trace elements. As part of a regional geochemical reconnaissance, M/ Hurst (University of Georgia) collected 51 fine-grained stream-sediment samples and 45 planned-concentrate samples  of alluvial gravels in the Chattahoochee study area (see figure 1). A.E. Nelson, in conjunction with detailed geologic mapping (Nelso, 1983), collected 10 rock-chip samples for geochemical analysis in addition to a large number of hand specimens for thin-section study. In order to evaluate isolated anomalies indicated by the earlier sampling, R.P. Koeppen, D.M. Sutphin, and P.D. Schruben collected several additional panned-concentrate, stream-sediment, and rock samples from the area in 1986. Both the geologic study by Nelson (1983) and this geochemical survey provide the basis for our mineral-resource assessment of the Chattahoochee Roadless Area (Nelson and others, 1983). 

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.

    A total of 338 water and 1877 sediment samples were collected over a 20,700-km/sup 2/ area from 2125 locations at a nominal density of one sample per 10 km/sup 2/. Water samples were collected from wells, streams, springs, and artificial ponds. Sediment samples were collected from streams, springs, natural ponds, and artificial ponds. Arbitrary anomaly thresholds of two standard deviations above the mean were chosen for both water and sediment sample populations. The U concentrations in waters collected in the Tularosa quadrangle range from below the detection limit of 0.2 parts per billion (ppB) to 57.8 ppB. Most clusters ofmore » water samples containing anomalously high uranium concentrations were collected from locations in uplifts underlain either by volcanic rocks of the mid-Tertiary Datil group or by sedimentary rocks of late Paleozoic and Mesozoic age. Other groups of anomalous waters are from wells that tap Cenozoic aquifers in the intermontane basins. In those areas where the water-sample location coverage is adequate, the known U occurrences are generally associated with high or anomalous U concentrations in water samples. With the exception of one sample with a U concentration of 67.7 ppM, sediments collected in this study have U concentrations that range between 0.2 and 15.2 ppM. Most sediments with U concentrations above the arbitrary anomaly threshold value are from locations which occur in or parallel outcrops of Precambrian crystalline rock exposed in the San Andres and Oscura Mountains. Other anomalous sediments occur as more discreet groups in areas underlain by mid-Tertiary volcanic rocks of the Datil group. Several anomalous samples from the Mogollon-Datil volcanic field were collected along ring fracture systems that surround large volcanic cauldrons.« less

  5. Complex mixtures of Pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers

    USGS Publications Warehouse

    Van Metre, Peter C.; Alvarez, David; Mahler, Barbara J.; Nowell, Lisa H.; Sandstrom, Mark W.; Moran, Patrick W.

    2017-01-01

    The Midwest United States is an intensely agricultural region where pesticides in streams pose risks to aquatic biota, but temporal variability in pesticide concentrations makes characterization of their exposure to organisms challenging. To compensate for the effects of temporal variability, we deployed polar organic chemical integrative samplers (POCIS) in 100 small streams across the Midwest for about 5 weeks during summer 2013 and analyzed the extracts for 227 pesticide compounds. Analysis of water samples collected weekly for pesticides during POCIS deployment allowed for comparison of POCIS results with periodic water-sampling results. The median number of pesticides detected in POCIS extracts was 62, and 141 compounds were detected at least once, indicating a high level of pesticide contamination of streams in the region. Sixty-five of the 141 compounds detected were pesticide degradates. Mean water concentrations estimated using published POCIS sampling rates strongly correlated with means of weekly water samples collected concurrently, however, the POCIS-estimated concentrations generally were lower than the measured water concentrations. Summed herbicide concentrations (units of ng/POCIS) were greater at agricultural sites than at urban sites but summed concentrations of insecticides and fungicides were greater at urban sites. Consistent with these differences, summed concentrations of herbicides correlate to percent cultivated crops in the watersheds and summed concentrations of insecticides and fungicides correlate to percent urban land use. With the exception of malathion concentrations at nine sites, POCIS-estimated water concentrations of pesticides were lower than aquatic-life benchmarks. The POCIS provide an alternative approach to traditional water sampling for characterizing chronic exposure to pesticides in streams across the Midwest region.

  6. Complex mixtures of Pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers.

    PubMed

    Van Metre, Peter C; Alvarez, David A; Mahler, Barbara J; Nowell, Lisa; Sandstrom, Mark; Moran, Patrick

    2017-01-01

    The Midwest United States is an intensely agricultural region where pesticides in streams pose risks to aquatic biota, but temporal variability in pesticide concentrations makes characterization of their exposure to organisms challenging. To compensate for the effects of temporal variability, we deployed polar organic chemical integrative samplers (POCIS) in 100 small streams across the Midwest for about 5 weeks during summer 2013 and analyzed the extracts for 227 pesticide compounds. Analysis of water samples collected weekly for pesticides during POCIS deployment allowed for comparison of POCIS results with periodic water-sampling results. The median number of pesticides detected in POCIS extracts was 62, and 141 compounds were detected at least once, indicating a high level of pesticide contamination of streams in the region. Sixty-five of the 141 compounds detected were pesticide degradates. Mean water concentrations estimated using published POCIS sampling rates strongly correlated with means of weekly water samples collected concurrently, however, the POCIS-estimated concentrations generally were lower than the measured water concentrations. Summed herbicide concentrations (units of ng/POCIS) were greater at agricultural sites than at urban sites but summed concentrations of insecticides and fungicides were greater at urban sites. Consistent with these differences, summed concentrations of herbicides correlate to percent cultivated crops in the watersheds and summed concentrations of insecticides and fungicides correlate to percent urban land use. With the exception of malathion concentrations at nine sites, POCIS-estimated water concentrations of pesticides were lower than aquatic-life benchmarks. The POCIS provide an alternative approach to traditional water sampling for characterizing chronic exposure to pesticides in streams across the Midwest region. Published by Elsevier Ltd.

  7. Water quality assessment in streams and wastewater treatment plants of Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Sajidu, S. M. I.; Masamba, W. R. L.; Henry, E. M. T.; Kuyeli, S. M.

    The population of the city of Blantyre has grown rapidly over the past few years without keeping pace with the national economy. The most visibly affected areas of this increase in population are access to adequate clean water, solid waste collection and disposal, sanitary and sewerage facilities. The objective of this study was to evaluate water quality in streams and wastewater treatment plants (WWTP) in the City of Blantyre, Malawi. Study locations included Limbe WWTP, Soche WWTP, Limbe, Mudi and Nasolo streams. Water samples were collected by grab sampling technique in February 2005. Phosphates, nitrates and sulphates were determined by vanadomolybdophosphoric acid colorimetric, salicylate colorimetric and turbidimetric methods, respectively. Metals were analysed using atomic absorption spectroscopy. Concentrations of lead, cadmium, iron, manganese, zinc, chromium and nickel were much higher than the World Health safe limits for drinking water in all the sampled streams after they had passed through industrial areas. Nitrates and sulphates concentrations at all sampling points were found to be lower than the safe limits for drinking water of 50 mg/l and 250 mg/l, respectively. However, phosphate concentrations were above the safe limit of 0.5 mg/l. It was also observed that biochemical oxygen demand (BOD 5) levels were above the World Health Organisation limit of 20 mg/l at all sites except Mudi and Limbe streams before passing through industrial areas. This was an indication of pollution in the streams. Values of pH and total dissolved solids (TDS) were within the recommended standards. The results suggest that streams in Blantyre City get polluted by heavy metals and nutrients which could be due to uncontrolled industrial waste disposal, vehicular emissions and agricultural activities. Regular monitoring of the water quality and enforcement of environmental protection laws are needed in order to control pollution in the city.

  8. Influence of riffle and snag habitat specific sampling on stream macroinvertebrate assemblage measures in bioassessment

    USGS Publications Warehouse

    Wang, L.; Weigel, B.W.; Kanehl, P.; Lohman, K.

    2006-01-01

    Stream macroinvertebrate communities vary naturally among types of habitats where they are sampled, which affects the results of environmental assessment. We analyzed macroinvertebrates collected from riffle and snag habitats to evaluate influences of habitat-specific sampling on taxon occurrence, assemblage measures, and biotic indices. We found considerably more macroinvertebrate taxa unique to snags (143 taxa) than to riffles (75 taxa), and the numbers of taxa found in both riffles and snags (149 taxa) were similar to that found in snags. About 64% of the 47 macroinvertebrate measures we tested differed significantly between riffles and snags. Eighty percent intercepts of regressions between biotic indices and urban or agricultural land uses differed significantly between riffles and snags. The Hilsenhoff biotic index calculated from snag samples explained 69% of the variance of riffle samples and classified 66% of the sites into the same stream health group as the riffle samples. However, four multimetric indices for snag samples explained less than 50% of the variance of riffle samples and classified less than 50% of the sites into the same health group as the riffle samples. We concluded that macroinvertebrate indices developed for riffle/run habitat should not be used for snag samples to assess stream impairment. We recommend developing an index of biotic integrity specifically for snags and using snags as an alternate sampling substrate for streams that naturally lack riffles. ?? Springer Science+Business Media, Inc. 2006.

  9. Hydrologic and geochemical factors affecting the chemistry of small headwater streams in response to acidic deposition on Catoctin Mountain, north-central Maryland

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, Owen P.

    1996-01-01

    Hydrologic and water-quality data were collected at a precipitation-collection station and from two small watersheds on Catoctin Mountain, north- central Maryland, as part of an investigation of episodic acidification and its effects on streamwater quality. Data were collected from June 1990 through December 1993. Descriptions of the water shed instrumentation, data-collection techniques, and laboratory methods used to conduct the studies are included. Data that were collected on precipitation, throughfall, soil water, ground water, and streamwater during base flow and stormflow indicate that the streams undergo episodic acidification during storms. Both streams showed decreases in pH to less than 5.0 standard units during stormflow. The acid-neutralizing capacity (ANC) of both streams decreased during stormflow, and the ANC of one of the streams, Bear Branch, became negative. The chemistries of the different types of waters that were sampled indicate that shallow subsurface water with minimal residence time in the watersheds is routed to the streams to become stormflow and is the cause of the episodic acidification observed. Three-component hydrograph separations were performed on the data collected during several storms in each watershed. The hydrograph separations of all of the storms indicate that throughfall contributed 0 to 50 percent of the stormflow, soil water contributed 0 to 80 percent, and ground water contributed 20 to 90 percent. The results of the hydrograph separations indicate that, in general, the watershed with higher hydraulic gradients tends to have shallower and shorter flow paths than the watershed with lower hydraulic gradients.

  10. Trace-Element Concentrations in Tissues of Aquatic Organisms from Rivers and Streams of the United States, 1992-1999

    USGS Publications Warehouse

    DeWeese, Lawrence R.; Stephens, Verlin C.; Short, Terry M.; Dubrovsky, Neil M.

    2007-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program collected tissue samples from a variety of aquatic organisms during 1992-1999 within 47 study units across the United States. These tissue samples were collected to determine the occurrence and distribution of 20 major and minor trace elements in aquatic organisms. This report presents the tissue trace-element concentration data, sample summaries, and concentration statistics for 1,457 tissue samples representing 76 species or groups of fish, aquatic invertebrates, and plants were collected at 824 sampling sites.

  11. Streamflow and Water-Quality Characteristics for Wind Cave National Park, South Dakota, 2002-03

    USGS Publications Warehouse

    Heakin, Allen J.

    2004-01-01

    A 2-year study of streamflow and water-quality characteristics in Wind Cave National Park was performed by the U.S. Geological Survey in cooperation with the National Park Service. During this study, streamflow and water-quality data were collected for three of the park's perennial streams (Cold Spring, Beaver, and Highland Creeks) from January 2002 through November 2003. The potential influence of parking lot runoff on cave drip within Wind Cave also was investigated by collecting and analyzing several time-dependent samples from a drainage culvert downstream from the parking lot and from Upper Minnehaha Falls inside the cave following a series of simulated runoff events. The primary focus of the report is on data collected during the 2-year study from January 2002 to November 2003; however, data collected previously also are summarized. Losing reaches occur on both Beaver and Highland Creeks as these streams flow across outcrops of bedrock aquifers within the park. No streamflow losses occur along Cold Spring Creek because its confluence with Beaver Creek is located upstream from the outcrop of the Madison aquifer, where most streamflow losses occur. Physical properties, major ions, trace elements, nutrients, bacteria, benthic macroinvertebrates, organic (wastewater) compounds, bottom sediment, and suspended sediment are summarized for samples collected from 2 sites on Cold Spring Creek, 2 sites on Beaver Creek, and 1 site on Highland Creek. None of the constituent concentrations for any of the samples collected during 2002-03 exceeded any of the U.S. Environmental Protection Agency drinking-water standards, with the exception of the Secondary Maximum Contaminant Level for pH, which was exceeded in numerous samples from Beaver Creek and Highland Creek. Additionally, the pH values in several of these same samples also exceeded beneficial-use criteria for coldwater permanent fisheries and coldwater marginal fisheries. Water temperature exceeded the coldwater permanent fisheries criterion in numerous samples from all three streams. Two samples from Highland Creek also exceeded the coldwater marginal fisheries criterion for water temperature. Mean concentrations of ammonia, orthophosphate, and phosphorous were higher for the upstream site on Beaver Creek than for other water-quality sampling sites. Concentrations of E. coli, fecal coliform, and total coliform bacteria also were higher at the upstream site on Beaver Creek than for any other site. Samples for the analysis of benthic macroinvertebrates were collected from one site on each of the three streams during July 2002 and May 2003. The benthic macroinvertebrate data showed that Beaver Creek had lower species diversity and a higher percentage of tolerant species than the other two streams during 2002, but just the opposite was found during 2003. However, examination of the complete data set indicates that the quality of water at the upstream site was generally poorer than the quality of water at the downstream site. Furthermore, the quality of water at the upstream site on Beaver Creek is somewhat degraded when compared to the quality of water from Highland and Cold Spring Creeks, indicating that anthropogenic activities outside the park probably are affecting the quality of water in Beaver Creek. Samples for the analysis of wastewater compounds were collected at least twice from four of the five water-quality sampling sites. Bromoform, phenol, caffeine, and cholesterol were detected in samples from Cold Spring Creek, but only phenol was detected at concentrations greater than the minimum reporting level. Concentrations of several wastewater compounds were estimated in samples collected from sites on Beaver Creek, including phenol, para-cresol, and para-nonylphenol-total. Phenol was detected at both sites on Beaver Creek at concentrations greater than the minimum reporting level. Bromoform; para-cresol; ethanol,2-butoxy-phosphate; and cholesterol were detected

  12. Occurrence and distribution of microbiological indicators in groundwater and stream water

    USGS Publications Warehouse

    Francy, D.S.; Helsel, D.R.; Nally, R.A.

    2000-01-01

    A total of 136 stream water and 143 groundwater samples collected in five important hydrologic systems of the United States were analyzed for microbiological indicators to test monitoring concepts in a nationally consistent program. Total coliforms were found in 99%, Escherichia coli in 97%, and Clostridium perfringens in 73% of stream water samples analyzed for each bacterium. Total coliforms were found in 20%, E. coli in less than 1%, and C. perfringens in none of the groundwater samples analyzed for each bacterium. Although coliphage analyses were performed on many of the samples, contamination in the laboratory and problems discerning discrete plaques precluded quantification. Land use was found to have the most significant effect on concentrations of bacterial indicators in stream water. Presence of septic systems on the property near the sampling site and well depth were found to be related to detection of coliforms in groundwater, although these relationships were not statistically significant. A greater diversity of sites, more detailed information about some factors, and a larger dataset may provide further insight to factors that affect microbiological indicators.

  13. Water quality assessment of the Eastern Iowa Basins: Basic water chemistry of rivers and streams, 1996-98

    USGS Publications Warehouse

    Barnes, Kimberlee K.

    2001-01-01

    Basic water-quality differences related to physiographic differences and seasonality were evident in streams and rivers in the Eastern Iowa Basins. Of the three major landforms, water samples from sites within the Des Moines Lobe, the youngest landform in the study area, had significantly higher median concentrations of calcium (85 mg/L), magnesium (28 mg/L), sulfate (28 mg/L), fluoride (0.31 mg/L), and silica (16 mg/L). The Des Moines Lobe region is calcium magnesium bicarbonate-rich due to the Paleozoic source rocks (limestones and shales) in the bedrock. Water samples from sites within the Southern Iowa Drift Plain had higher median concentrations of sodium (12 mg/L), potassium (3.2 mg/L), and chloride (21 mg/L). Concentrations also varied according to the time of year. Grouping the data into four seasonal periods, water samples collected during the months of October, November, and December, had higher median concentrations of calcium, magnesium, and chloride, then samples collected during other quarters of the year. Water quality in the streams during this low-flow period (October through December) is representative of that in the contributing aquifers.

  14. Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming

    USGS Publications Warehouse

    Wangsness, David J.; Peterson, David A.

    1980-01-01

    Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)

  15. Effects of the First Floods on Water Quality and Sediment Transport in the Sierra Nevada Foothill Streams, California

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Baca, J.; He, Z.; Blunmenshine, S.

    2010-12-01

    The typical Mediterranean climate of California (wet winter and spring season followed by dry summer and fall season) makes it necessary to closely monitor the first few floods in early November or December when the accumulated surface matters in the past rainless months would be flushed into the streams causing water quality impairment and sediment mobilization. In order to evaluate the effects of the first floods, two storm water samplers were installed, one on the main stem of the Fresno River and the other on the Coarsegold tributary. The storm water sampler collects two different samples during a storm event. The “first flush” sample is collected at the beginning of a storm event and the “time weighted” composite sample is collected at selected intervals during the storm. Nutrient contents in all the water samples were measured to evaluate water quality status, and the fine particle size distributions of the suspended sediments in the flood water were measured using laser diffraction. Results show that: (1)The effects of the first floods are significant: it cleans the tributary (nutrient losing) streams while aggravating nutrient loadings in the main stem of the river; (2) The sediment flux in the upper areas of the watershed is generally low, however it increases ten folds during the flood in the lower part of the watershed, loading large amounts of sediments in the Hensley Lake; and (3) After the first floods, the river channel is typically deposited with increased amount of very fine (< 2 micros) and very coarse particles (>200 microns), causing significant substrate siltation thus affecting habitat quality for the stream biota. The hydrology of the first floods needs to be further studied for water quality assessment in the Mediterranean climate regions.

  16. Do freshwater mussel shells record road-salt pollution?

    NASA Astrophysics Data System (ADS)

    O'Neil, Dane D.; Gillikin, David P.

    2014-11-01

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells.

  17. Do freshwater mussel shells record road-salt pollution?

    PubMed Central

    O'Neil, Dane D.; Gillikin, David P.

    2014-01-01

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells. PMID:25418687

  18. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    USGS Publications Warehouse

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  19. Refining of Military Jet Fuels from Shale Oil. Part III. Pilot Plant Sample Preparation.

    DTIC Science & Technology

    1982-07-01

    product gas composition, regen- erator flue gas composition, and carbon contents of the spent and regenerated catalysts were also monitored for...product. Gas samples were collected at eight-hour intervals from the reactor product gas and regenerator flue gas streams and analyzed for material balance...Isobutane C4= Butylene C5 Pentane C5s Pentane and Pentenes I+ C5+, >C5 Compounds Heavier than Pentane in Gas .* Streams C6 Hexane C/H Carbon-to

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a meanmore » of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.« less

  1. Constituent loads in small streams: the process and problems of estimating sediment flux

    Treesearch

    R. B. Thomas

    1989-01-01

    Constituent loads in small streams are often estimated poorly. This is especially true for discharge-related constituents like sediment, since their flux is highly variable and mainly occurs during infrequent high-flow events. One reason for low-quality estimates is that most prevailing data collection methods ignore sampling probabilities and only partly account for...

  2. Cytotoxic, genotoxic and mutagenic evaluation of surface waters from a coal exploration region.

    PubMed

    Porta, Cynthia Silva; Dos Santos, Débora Lemes; Bernardes, Hélio Vieira; Bellagamba, Bruno Corrêa; Duarte, Anaí; Dias, Johnny Ferraz; da Silva, Fernanda Rabaioli; Lehmann, Mauricio; da Silva, Juliana; Dihl, Rafael Rodrigues

    2017-04-01

    Coal mining generates a considerable amount of waste, which is disposed of in piles or dams near mining sites. As a result, leachates may reach rivers and streams, promoting the wide dispersion of contaminants in solution and as particulate matter. The present study evaluated the cytotoxic, genotoxic, and mutagenic action of surface waters collected around a thermoelectric power plant and the largest mining area in Brazil (Candiota). Four sites in Candiota stream were selected, and samples were collected in winter and summer. Water samples were analyzed using the comet and CBMN assays in V79 and HepG2 cells. Furthermore, genotoxicity of water samples was evaluated in vivo using the SMART in Drosophila melanogaster. In addition, polycyclic aromatic hydrocarbons and inorganic elements were quantified. The results indicate that water samples exhibited no genotoxic and mutagenic activities, whether in vitro or in vivo. On the other hand, surface water samples collected in sites near the power plant in both summer and winter inhibited cell proliferation and induced increased frequencies of V79 cell death, apoptosis, and necrosis. The cytotoxicity observed may be associated with the presence of higher concentration of inorganic elements, especially aluminum, silicon, sulfur, titanium and zinc at sites 1 and 2 in the stream, as well as with the complex mixture present in the coal, in both seasons. Therefore, the results obtained point to the toxicity potential of water samples with the influence of coal mining and combustion processes and the possible adverse effects on the health of exposed organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Focazio, Michael J.; Meyer, Michael T.; Johnson, Heather E.; Oster, Ryan J.; Foreman, William T.

    2016-01-01

    Animal waste, stream water, and streambed sediment from 19 small (< 32 km2) watersheds in 12 U.S. states having either no major animal agriculture (control, n = 4), or predominantly beef (n = 4), dairy (n = 3), swine (n = 5), or poultry (n = 3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions. Pathogen gene profiles may offer the potential to address both source of, and risks associated with, fecal pollution.

  4. Quality of Streams in Johnson County, Kansas, and Relations to Environmental Variables, 2003-07

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Poulton, Barry C.; Graham, Jennifer L.

    2009-01-01

    The quality of streams and relations to environmental variables in Johnson County, northeastern Kansas, were evaluated using water, streambed sediment, land use, streamflow, habitat, algal periphyton (benthic algae), and benthic macroinvertebrate data. Water, streambed sediment, and macroinvertebrate samples were collected in March 2007 during base flow at 20 stream sites that represent 11 different watersheds in the county. In addition, algal periphyton samples were collected twice (spring and summer 2007) at one-half of the sites. Environmental data including water and streambed-sediment chemistry data (primarily nutrients, fecal-indicator bacteria, and organic wastewater compounds), land use, streamflow, and habitat data were used in statistical analyses to evaluate relations between biological conditions and variables that may affect them. This report includes an evaluation of water and streambed-sediment chemistry, assessment of habitat conditions, comparison of biological community attributes (such as composition, diversity, and abundance) among sampling sites, placement of sampling sites into impairment categories, evaluation of biological data relative to environmental variables, and evaluation of changes in biological communities and effects of urbanization. This evaluation is useful for understanding factors that affect stream quality, for improving water-quality management programs, and for documenting changing conditions over time. The information will become increasingly important for protecting streams in the future as urbanization continues. Results of this study indicate that the biological quality at nearly all biological sampling sites in Johnson County has some level of impairment. Periphyton taxa generally were indicative of somewhat degraded conditions with small to moderate amounts of organic enrichment. Camp Branch in the Blue River watershed was the only site that met State criteria for full support of aquatic life in 2007. Since 2003, biological quality improved at one rural sampling site, possibly because of changes in wastewater affecting the site, and declined at three urban sites possibly because of the combined effects of ongoing development. Rural streams in the western and southern parts of the county, with land-use conditions similar to those found at the State reference site (Captain Creek), continue to support some organisms normally associated with healthy streams. Several environmental factors contribute to biological indicators of stream quality. The primary factor explaining biological quality at sites in Johnson County was the amount of urbanization upstream in the watershed. Specific conductance of stream water, which is a measure of dissolved solids in water and is determined primarily by the amount of groundwater contributing to streamflow, the amount of urbanization, and discharges from wastewater and industrial sites, was strongly negatively correlated with biological stream quality as indicated by macroinvertebrate metrics. Concentration of polycyclic aromatic hydrocarbons (PAHs) in streambed sediment also was negatively correlated with biological stream quality. Individual habitat variables that most commonly were positively correlated with biological indicators included stream sinuosity, buffer length, and substrate cover diversity. Riffle substrate embeddedness and sediment deposition commonly were negatively correlated with favorable metric scores. Statistical analysis indicated that specific conductance, impervious surface area (a measure of urbanization), and stream sinuosity explained 85 percent of the variance in macroinvertebrate communities. Management practices affecting environmental variables that appear to be most important for Johnson County streams include protection of stream corridors, measures that reduce the effects of impervious surfaces associated with urbanization, reduction of dissolved solids in stream water, reduction of PAHs entering streams and

  5. Elemental analysis using a handheld X-Ray fluorescence spectrometer

    USGS Publications Warehouse

    Groover, Krishangi D.; Izbicki, John

    2016-06-24

    The U.S. Geological Survey is collecting geologic samples from local stream channels, aquifer materials, and rock outcrops for studies of trace elements in the Mojave Desert, southern California. These samples are collected because geologic materials can release a variety of elements to the environment when exposed to water. The samples are to be analyzed with a handheld X-ray fluorescence (XRF) spectrometer to determine the concentrations of up to 27 elements, including chromium.

  6. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicers.

    PubMed

    Corsi, S R; Hall, D W; Geis, S W

    2001-07-01

    Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.

  7. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicer

    USGS Publications Warehouse

    Corsi, Steven; Hall, David W.; Geis, Steven W.

    2001-01-01

    Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox® were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.

  8. Sample collection system for gel electrophoresis

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  9. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  10. Water-quality data for the Talkeetna River and four streams in National Parks, Cook Inlet basin, Alaska, 1998

    USGS Publications Warehouse

    Frenzel, Steven A.; Dorava, Joseph M.

    1999-01-01

    Five streams in the Cook Inlet Basin, Alaska, were sampled in 1998 to provide the National Park Service with baseline information on water quality. Four of these streams drain National Park Service land: Costello and Colorado Creeks in Denali National Park and Preserve, Johnson River in Lake Clark National Park and Preserve, and Kamishak River in Katmai National Park and Preserve. The fifth site was on the Talkeetna River, outside of national park boundaries. Samples of stream water, streambed sediments, and fish tissues were collected for chemical analyses. Biological and geomorphic information was also collected at each site. Nutrient concentrations in stream water were low and commonly were less than analytical detection limits. Analyses of fish tissues for 28 organochlorine compounds at Talkeetna River and Costello Creek produced just one detection. Hexachlorobenzene was detected at a concentration of 5.70 micrograms per kilogram in slimy sculpin from the Talkeetna River. Streambed sediment samples from the Talkeetna River had three organochlorine compounds at detectable levels; hexachlorobenzene was measured at 13 micrograms per kilogram and two other compounds were below the minimum reporting levels. At Colorado Creek, Johnson River, and Kamishak River, where fish samples were not collected, no organochlorine compounds were detected in streambed sediment samples. Several semivolatile organic compounds were detected at Colorado Creek and Costello Creek. Only one compound, dibenzothiophene, detected at Costello Creek at a concentration of 85 micrograms per kilogram was above the minimum reporting limit. No semivolatile organic compounds were detected at the Talkeetna, Kamishak, or Johnson Rivers. Trace elements were detected in both fish tissues and streambed sediments. Macroinvertebrate and fish samples contained few taxa at all sites. Total numbers of macroinvertebrate taxa ranged from 19 at the Johnson River to 38 at the Talkeetna River. Diptera were the most abundant and diverse order of macroinvertebrates at all sites. Total numbers of diptera taxa ranged from 8 at the Kamishak River to 19 at the Talkeetna River. Fish communities were represented by a maximum of nine taxa at the Talkeetna River and were absent at Colorado Creek. The Johnson River sampling site produced small numbers of juvenile Dolly Varden, and Costello Creek produced small numbers of both juvenile Dolly Varden and slimy sculpin.

  11. Analysis of postfire hydrology, water quality, and sediment transport for selected streams in areas of the 2002 Hayman and Hinman fires, Colorado

    USGS Publications Warehouse

    Stevens, Michael R.

    2013-01-01

    The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.

  12. Hydrology of the Chicod Creek basin, North Carolina, prior to channel improvements

    USGS Publications Warehouse

    Simmons, Clyde E.; Aldridge, Mary C.

    1980-01-01

    Extensive modification and excavation of stream channels in the 6-square mile Chicod Creek basin began in mid-1979 to reduce flooding and improve stream runoff conditions. The effects of channel improvements on this Coastal Pain basin 's hydrology will be determined from data collected prior to, during, and for several years following channel alternations. This report summarizes the findings of data collected prior to these improvements. During the 3-year study period, flow data collected from four stream gaging stations in the basin show that streams are dry approximately 10 percent of the time. Chemical analyses of water samples from the streams and from eight shallow groundwater observation wells indicate that water discharge from the surficial aquifer is the primary source of streamflow during rainless periods. Concentrations of Kjeldahl nitrogen, total nitrogen, and total phosphorus were often 5 to 10 times greater at Chicod Creek sites than those at nearby baseline sites. It is probable that runoff from farming and livestock operations contributes significantly to these elevated concentrations in Chicod Creek. The only pesticides detected in stream water were low levels of DDT and dieldrin, which occurred during storm runoff. A much wider range of pesticides, however, are found associated with streambed materials. The ratio of fecal coliform counts to those of fecal streptococcus indicate that the streams receive fecal wastes from livestock and poultry operations.

  13. A simple-harmonic model for depicting the annual cycle of seasonal temperatures of streams

    USGS Publications Warehouse

    Steele, Timothy Doak

    1978-01-01

    Due to economic or operational constraints, stream-temperature records cannot always be collected at all sites where information is desired or at frequencies dictated by continuous or near-continuous surveillance requirements. For streams where only periodic measurements are made during the year, and that are not appreciably affected by regulation or by thermal loading , a simple harmonic function may adequately depict the annual seasonal cycle of stream temperature at any given site. Resultant harmonic coefficients obtained from available stream-temperature records may be used in the following ways: (1) To interpolate between discrete measurements by solving the harmonic function at specified times, thereby filling in estimates of stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature conditions; and (3) to detect and to assess any significant at a site brought about by streamflow regulation or basin development. Moreover, less-than-daily or sampling frequencies at a given site may give estimates of annual variation of stream temperatures that are statistically comparable to estimates obtained from a daily or continuous sampling scheme. The latter procedure may result in potential savings of resources in network operations, with negligible loss in information on annual stream-temperature variations. (Woodard -USGS)

  14. Maps showing water geochemistry of the Buffalo Peaks Wilderness Study Area, Lake, Park, and Chaffee Counties, Colorado

    USGS Publications Warehouse

    Nowlan, G.A.; Ficklin, Walter H.; Dover, Robert A.

    1985-01-01

    This report presents results of geochemical studies carried out in June and July of 1982 in the Buffalo Peaks Wilderness Study Area, Colo. (see index map). Samples of water were collected from 84 streams and 18 springs draining the study area. Tabulations of the analyses and a sample locality map are in Ficklin and others (1984). The geochemistry of stream sediments and panned concentrates of the study area is in Nowlan and Gerstel (1985). The geology of the study area and vicinity is in Hedlund (1985). The mineral resource potential of the study area is described in Hedlund and others (1983). This report (1) assists in the assessment of the mineral resource potential of the Buffalo Peaks Wilderness Study Area; and (2) compares analyses of water samples with analyses of stream-sediment and panned-concentrate samples (Nowlan and Gerstel, 1985).

  15. Work plan for determining the occurrence of glyphosate, its transformation product AMPA, other herbicide compounds, and antibiotics in midwestern United States streams, 2002

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kolpin, D.W.; Scribner, E.A.; Sandstrom, M.W.; Kuivila, K.M.

    2003-01-01

    The objective of this study is to determine the distribution of glyphosate and its primary transformation product aminomethylphosphonic acid (AMPA) in midwestern streams during post-application and harvest-season runoff events. Water samples will be collected in 2002 during two post-herbicide-application runoff events and one harvest-season runoff event from 53 sites on streams in the Midwestern United States. All samples will be analyzed at the U.S. Geological Survey Organic Geochemistry Research Laboratory in Lawrence, Kansas, for glyphosate and 20 other herbicides. Samples will also be analyzed for a glyphosate transformation product (AMPA) and 26 other herbicide transformation products, using GC/MS or HPLC/MS. Selected samples will be analyzed for 36 antibiotics or antibiotic transformational products. Results from this study will represent the first broad-scale investigation of glyphosate and AMPA in U.S. water resources.

  16. Water-quality, bed-sediment, and biological data (October 2015 through September 2016) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2018-03-30

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2015 through September 2016. Bed-sediment and biota samples were collected once at 13 sites during August 2016.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2015 through September 2016. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Samples for analysis of turbidity were collected at 13 sites, whereas samples for analysis of dissolved organic carbon were collected at 10 sites. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained (less than 0.063 millimeter) fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  17. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    USGS Publications Warehouse

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from groundwater. However, during periods of high streamflow, the hydraulic gradient between groundwater and the stream temporarily reversed, causing the stream to lose flow to groundwater.Concentrations of dissolved solids, selenium, and uranium in groundwater generally had greater spatial variability than surface water or hyporheic-zone samples, and constituent concentrations in groundwater generally were greater than in surface water. Constituent concentrations in the hyporheic zone typically were similar to or intermediate between concentrations in groundwater and surface water. Concentrations of dissolved solids, selenium, uranium, and other constituents in groundwater samples collected from wells located on the east side of the north monitoring well transect were substantially greater than for other groundwater, surface-water, and hyporheic-zone samples. With one exception, groundwater samples collected from wells on the east side of the north transect exhibited oxic to mixed (oxic-anoxic) conditions, whereas most other groundwater samples exhibited anoxic to suboxic conditions. Concentrations of dissolved solids, selenium, and uranium in surface water generally increased in a downstream direction along Fountain Creek from the north transect to the south transect and exhibited an inverse relation to streamflow with highest concentration occurring during periods of low streamflow and lowest concentrations occurring during periods of high streamflow.Groundwater loads of dissolved solids, selenium, and uranium to Fountain Creek were small because of the small amount of groundwater flowing to the stream under typical low-streamflow conditions. In-stream loads of dissolved solids, selenium, and uranium in Fountain Creek varied by date, primarily in relation to streamflow at each transect and were much larger than computed constituent loads from groundwater. In-stream loads generally decreased with decreases in streamflow and increased as streamflow increased. In-stream loads of dissolved solids and selenium increased between the north and middle transects but generally decreased between the middle and south transects. By contrast, uranium loads generally decreased between the north and middle transects but increased between the middle and south transects. In-stream load differences between transects appear primarily to be related to differences in streamflow. However, because groundwater typically flows to Fountain Creek under low-flow conditions, and groundwater has greater concentrations of dissolved solids, selenium, and uranium than surface water in Fountain Creek, increases in loads between transects likely are affected by inflow of groundwater to the stream, which can account for a substantial proportion of the in-stream load difference between transects. When loads decreased between transects, the primary cause likely was decreased streamflow as a result of losses to groundwater and flow through the hyporheic zone. However, localized groundwater inflow likely attenuated the magnitude by which the in-stream loads decreased.The combination of localized soluble geologic sources and oxic conditions likely is the primary reason for the occurrence of high concentrations of dissolved solids, selenium, and uranium in groundwater on the east side of the north monitoring well transect. To evaluate conditions potentially responsible for differences in water quality and redox conditions, physical characteristics such as depth to water, saturated thickness, screen depth below the water table, screen height above bedrock, and aquifer hydraulic conductivity were compared by using Wilcoxon rank-sum tests. Results indicated no significant difference between depth to water, screen height above bedrock, and hydraulic conductivity for groundwater samples collected from wells on the east side of the north transect and groundwater samples from all other wells. However, saturated thickness and screen depth below the water table both were significantly smaller for groundwater samples collected from wells on the east side of the north transect than for groundwater samples from other wells, indicating that these characteristics might be related to the elevated constituent concentrations found at that location. Similarly, saturated thickness and screen depth below the water table were significantly smaller for groundwater samples under oxic or mixed (oxic-anoxic) conditions than for those under anoxic to suboxic conditions.The greater constituent concentrations at wells on the east side of the north transect also could, in part, be related to groundwater discharge from an unnamed alluvial drainage located directly upgradient from that location. Although the quantity and quality of water discharging from the drainage is not known, the drainage appears to collect water from a residential area located upgradient to the east of the wells, and groundwater could become concentrated in nitrate and other dissolved constituents before flowing through the drainage. High levels of nitrate, whether from anthropogenic or natural geologic sources, could promote more soluble forms of selenium and other constituents by affecting the redox condition of groundwater. Whether oxic conditions at wells on the east side of the north transect are the result of physical characteristics or of groundwater inflow from the alluvial drainage, the oxic conditions appear to cause increased dissolution of minerals from the shallow shale bedrock at that location. Because ratios of hydrogen and oxygen isotopes indicate evaporation likely has not had a substantial effect on groundwater, constituent concentrations at that location likely are not the result of evapoconcentration. 

  18. Heavy metal accumulations in water, sediment, and some cyprinid species in Porsuk Stream (Turkey).

    PubMed

    Köse, Esengül; Çiçek, Arzu; Uysal, Kazim; Tokatlı, Cem; Emiroğlu, Özgür; Arslan, Naime

    2015-03-01

    Porsuk Stream is one of Turkey's most important river systems and also one of the most important branches of the Sakarya River. It provides drinking and utility water for two Turkish cities (Kütahya and Eskişehir) with a total population of one million. In this study, water, sediment, and some tissues (liver, gill, and muscle) of five cyprinid fish species were collected seasonally (2010-2011) from eight stations on the Porsuk Stream, and the zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), and arsenic (As) levels of collected samples were determined. The data observed were evaluated with national and international quality criteria. Based on the data observed, it was determined that the Porsuk Stream is affected by significant inorganic pollution from the Kütahya and Eskişehir Provinces. It was also determined that the Porsuk Dam Lake has an important cleaning capacity and that the water and sediment quality of the Porsuk Stream improves after the output of the dam lake.

  19. Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA

    USGS Publications Warehouse

    Peters, N.E.

    2009-01-01

    A long-term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ???12 times annually at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) stations having continuous measures of stream stage/ discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment-related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum-manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces.

  20. Reach-scale land use drives the stress responses of a resident stream fish.

    PubMed

    Blevins, Zachary W; Wahl, David H; Suski, Cory D

    2014-01-01

    Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.

  1. Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.

    Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collectedmore » from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.« less

  2. Identifying relationships between baseflow geochemistry and land use with synoptic sampling and R-Mode factor analysis

    USGS Publications Warehouse

    Wayland, Karen G.; Long, David T.; Hyndman, David W.; Pijanowski, Bryan C.; Woodhams, Sarah M.; Haak, Sheridan K.

    2003-01-01

    The relationship between land use and stream chemistry is often explored through synoptic sampling rivers at baseflow condition. However, base flow chemistry is likely to vary temporally and spatially with land use. The purpose of our study is to examine the usefulness of the synoptic sampling approach for identifying the relationship between complex land use configurations and stream water quality. This study compares biogeochemical data from three synoptic sampling events representing the temporal variability of baseflow chemistry and land use using R-mode factor analysis. Separate R-mode factor analyses of the data from individual sampling events yielded only two consistent factors. Agricultural activity was associated with elevated levels of Ca2+, Mg2+, alkalinity, and frequently K+, SO42-, and NO3-. Urban areas were associated with higher concentrations of Na+, K+, and Cl-. Other retained factors were not  consistent among sampling events, and some factors were difficult to interpret in the context of biogeochemical sources and processes. When all data were combined, further associations were revealed such as an inverse relationship between the proportion of wetlands and stream nitrate concentrations. We also found that barren lands were associated with elevated sulfate levels. This research suggests that an individual sampling event is unlikely to characterize adequately the complex processes controlling interactions between land uses and stream chemistry. Combining data collected over two years during three synoptic sampling events appears to enhance our ability to understand processes linking stream chemistry and land use.  

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Roswell quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Field and laboratory data are presented for 842 water samples and 1270 sediment samples from the Roswell Quadrangle, New Mexico. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  4. Temporal variation in phenotypic and genotypic traits in two sockeye salmon populations, Tustumena Lake, Alaska

    USGS Publications Warehouse

    Woody, Carol Ann; Olsen, Jeffrey B.; Reynolds, Joel H.; Bentzen, Paul

    2000-01-01

    Sockeye salmon Oncorhynchus nerka in two tributary streams (about 20 km apart) of the same lake were compared for temporal variation in phenotypic (length, depth adjusted for length) and genotypic (six microsatellite loci) traits. Peak run time (July 16 versus 11 August) and run duration (43 versus 26 d) differed between streams. Populations were sampled twice, including an overlapping point in time. Divergence at microsatellite loci followed a temporal cline: Population sample groups collected at the same time were not different (F ST = 0), whereas those most separated in time were different (F ST = 0.011, P = 0.001). Although contemporaneous sample groups did not differ significantly in microsatellite genotypes (F ST = 0), phenotypic traits did differ significantly (MANOVA, P < 0.001). Fish from the larger stream were larger; fish from the smaller stream were smaller, suggesting differential fitness related to size. Results indicate run time differences among and within sockeye salmon populations may strongly influence levels of gene flow.

  5. Selected Field Parameters from Streams and Analytical Data from Water and Macroinvertebrate Samples, Central Colorado Assessment Project, Environmental Assessment Task, 2004 and 2005

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.; Schmidt, Travis S.; Wanty, Richard B.; Verplanck, Philip L.; Lamothe, Paul J.; Adams, Monique; Anthony, Michael W.

    2007-01-01

    The U.S. Geological Survey (USGS) Central Colorado Assessment Project (CCAP) began in October 2003 and is planned to last through September 2008. One major goal of this project is to compare the relationships between surface-water chemistry and aquatic fauna in mined and unmined areas. To accomplish this goal, we are conducting a State-scale reconnaissance sampling program, in which we are collecting water and macroinvertebrate samples. Selected results from the first two years of project analyses are reported here. We plan to develop statistical models and use geographic information system (GIS) technology to quantify the relationships between ecological indicators of metal contamination in Rocky Mountain streams and water quality, landscape and land-use characteristics (for example, mine density, geology, geomorphology, vegetation, topography). Our research will test the hypothesis that physicochemical variables and ecological responses to metal concentrations in stream water in Rocky Mountain streams are ultimately determined largely by historical land uses.

  6. Hydrologic monitoring of selected streams in coal fields of central and southern Utah; summary of data collected, August 1978-September 1984

    USGS Publications Warehouse

    Price, Don; Plantz, G.G.

    1987-01-01

    The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)

  7. Does diazinon pose a threat to a neighborhood stream in Tallahassee, Florida?

    USGS Publications Warehouse

    Berndt, Marian P.; Hatzell, Hilda H.

    2001-01-01

    The water quality of Lafayette Creek was studied from March 1993 to December 1995 as part of the National Water-Quality Assessment Program of the U.S.Geological Survey. Diazinon was specifically studied in the Lafayette Creek watershed, a residential area in northeastern Tallahassee, Fla. Diazinon and other pesticides applied directly to the soil or grass can be washed off into nearby storm drains, ditches, streams, and lakes. Heavy rainstorms can wash substantial amounts of chemicals into streams and lakes, including diazinon that was applied several weeks earlier. Sampling streams during rainstorms for water quality can sometimes provide clues about how pesticides and other contaminants are transported to surface water. Diazinon was detected in 92% of all samples collected from Lafayette Creek and it was detected throughout the year during the sampling period. However, concentrations were low (0.002 to 0.28 micrograms per liter) and do not pose a risk to human health. About 20% of the samples exceeded the aquatic-life criterion--a guideline that establishes the maximum acceptable level of concentrations of pesticides for protecting aquatic life.

  8. Trend analyses of sediment data for the DEC project

    USGS Publications Warehouse

    Rebich, Richard Allen

    1995-01-01

    Daily stream discharge, suspended-sediment concentration, and suspended-sediment discharge data were collected at eight sites in six watersheds of the Demonstration Erosion Control project in the Yazoo River Basin in north-central Mississippi during the period July 1985 through September 1991. The project is part of an ongoing interagency program of planning, design, construction, monitoring, and evaluation to alleviate flooding, erosion, sedimentation, and water-quality problems for watersheds located in the bluff hills upstream of the Mississippi River alluvial plain. This paper presents preliminary results of trend analyses for stream discharge and sediment data for the eight project sites. More than 550 stream discharge measurements and 20,000 suspended-sediment samples have been collected at the eight sites since 1985.

  9. The National Riparian Core Protocol: A riparian vegetation monitoring protocol for wadeable streams of the conterminous United States

    Treesearch

    David M. Merritt; Mary E. Manning; Nate Hough-Snee

    2017-01-01

    Riparian areas are hotspots of biological diversity that may serve as high quality habitat for fish and wildlife. The National Riparian Core Protocol (NRCP) provides tools and methods to assist natural resource professionals in sampling riparian vegetation and physical characteristics along wadeable streams. Guidance is provided for collecting basic information on...

  10. Microhabitat estimation of an imperiled headwater fish, the Yazoo darter (Etheostoma raneyi), in Coastal Plain streams

    Treesearch

    Ken A. Sterling; Melvin L. Warren

    2017-01-01

    Headwater fishes in the southeastern United States make up much of the fish biodiversity of the region yet many are imperiled. Despite this, the specific habitat requirements of imperiled headwater fishes in lowland Coastal Plain streams have rarely been quantified. Using data collected over three years of seasonal sampling we provide estimates of the microhabitat...

  11. A temporal stable isotopic (d18O, dD, d-excess) comparison in glacier meltwater streams, Taylor Valley, Antarctica

    USDA-ARS?s Scientific Manuscript database

    In this paper, we describe the importance of hyporheic dynamics within Andersen Creek and Von Guerard Stream, Taylor Valley, Antarctica, from the 2010-11 melt season using natural tracers. Water collection started at flow onset and continued, with weekly hyporheic zone sampling. The water d18O and d...

  12. Biological effect of low-head sea lamprey barriers: Designs for extensive surveys and the value of incorporating intensive process-oriented research

    USGS Publications Warehouse

    Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Dodd, H.R.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.

    2003-01-01

    Four sampling designs for quantifying the effect of low-head sea lamprey (Petromyzon marinus) barriers on fish communities were evaluated, and the contribution of process-oriented research to the overall confidence of results obtained was discussed. The designs include: (1) sample barrier streams post-construction; (2) sample barrier and reference streams post-construction; (3) sample barrier streams pre- and post-construction; and (4) sample barrier and reference streams pre- and post-construction. In the statistical literature, the principal basis for comparison of sampling designs is generally the precision achieved by each design. In addition to precision, designs should be compared based on the interpretability of results and on the scale to which the results apply. Using data collected in a broad survey of streams with and without sea lamprey barriers, some of the tradeoffs that occur among precision, scale, and interpretability are illustrated. Although circumstances such as funding and availability of pre-construction data may limit which design can be implemented, a pre/post-construction design including barrier and reference streams provides the most meaningful information for use in barrier management decisions. Where it is not feasible to obtain pre-construction data, a design including reference streams is important to maintain the interpretability of results. Regardless of the design used, process-oriented research provides a framework for interpreting results obtained in broad surveys. As such, information from both extensive surveys and intensive process-oriented research provides the best basis for fishery management actions, and gives researchers and managers the most confidence in the conclusions reached regarding the effects of sea lamprey barriers.

  13. Trends in suspended-sediment concentration at selected stream sites in Kansas, 1970-2002

    USGS Publications Warehouse

    Putnam, James E.; Pope, Larry M.

    2003-01-01

    Knowledge of erosion, transport, and deposition of sediment relative to streams and impoundments is important to those involved directly or indirectly in the development and management of water resources. Monitoring the quantity of sediment in streams and impoundments is important because: (1) sediment may degrade the water quality of streams for such uses as municipal water supply, (2) sediment is detrimental to the health of some species of aquatic animals and plants, and (3) accumulation of sediment in water-supply impoundments decreases the amount of storage and, therefore, water available for users. One of the objectives of the Kansas Water Plan is to reduce the amount of sediment in Kansas streams by 2010. During the last 30 years, millions of dollars have been spent in Kansas watersheds to reduce sediment transport to streams. Because the last evaluation of trends in suspended-sediment concentrations in Kansas was completed in 1985, 14 sediment sampling sites that represent 10 of the 12 major river basins in Kansas were reestablished in 2000. The purpose of this report is to present the results of time-trend analyses at the reestablished sediment data-collection sites for the period of about 1970?2002 and to evaluate changes in the watersheds that may explain the trends. Time-trend tests for 13 of 14 sediment sampling sites in Kansas for the period from about 1970 to 2002 indicated that 3 of the 13 sites tested had statistically significant decreasing suspended-sediment concentrations; however, only 2 sites, Walnut River at Winfield and Elk River at Elk Falls, had trends that were statistically significant at the 0.05 probability level. Increasing suspended-sediment concentrations were indicated at three sites although none were statistically significant at the 0.05 probability level. Samples from five of the six sampling sites located upstream from reservoirs indicated decreasing suspended-sediment concentrations. Watershed impoundments located in the respective river basins may contribute to the decreasing suspended-sediment trends exhibited at most of the sampling sites because the impoundments are designed to trap sediment. Both sites that exhibited statistically significant decreasing suspended-sediment concentrations have a large number of watershed impoundments located in their respective drainage basins. The relation between percentage of the watershed affected by impoundments and trend in suspended-sediment concentration for 11 sites indicated that, as the number of impoundments in the watershed increases, suspended-sediment concentration decreases. Other conser-vation practices, such as terracing of farm fields and contour farming, also may contribute to the reduced suspended-sediment concentrations if their use has increased during the period of analysis. Regression models were developed for 13 of 14 sediment sampling sites in Kansas and can be used to estimate suspended-sediment concentration if the range in stream discharge for which they were developed is not exceeded and if time trends in suspended-sediment concentrations are not significant. For those sites that had a statistically significant trend in suspended-sediment concentration, a second regression model was developed using samples collected during 2000?02. Past and current studies by the U.S. Geological Survey have shown that regression models can be developed between in-stream measurements of turbidity and laboratory-analyzed sediment samples. Regression models were developed for the relations between discharge and suspended-sediment concentration and turbidity and suspended-sediment concentration for 10 sediment sampling sites using samples collected during 2000?02.

  14. Distribution of Diatoms in Relation to Land Use and pH in Blackwater Coastal Plain Streams

    NASA Astrophysics Data System (ADS)

    Zampella, Robert A.; Laidig, Kim J.; Lowe, Rex L.

    2007-03-01

    We compared the composition of diatom assemblages collected from New Jersey Pinelands blackwater streams draining four different land uses, including forest land, abandoned-cranberry bogs, active-cranberry bogs, and developed and upland-agricultural land. Over a 2-year period (2002-2003), we collected 132 diatom taxa at 14 stream sites. Between-year variability in the composition of stream samples was high. Most diatom species were rarely encountered and were found in low abundance. Specific conductance and pH were higher at developed/agricultural sites compared with all other site types. Neither species richness nor genus richness was significantly different between stream types. However, clear community patterns were evident, and a significant difference in species composition existed between the developed/agricultural sites and both cranberry and forest sites. The primary community gradient, represented by the first axis of a DCA ordination, was associated with variations in pH and specific conductance. Although community patterns revealed by ordinating the data collected in 2002 differed from those obtained using the 2003 data, both ordinations contrasted the developed/agricultural sites and the other sites. Acidobiontic and acidophilous diatoms characterized the dominant species at forest, abandoned-bog, and cranberry sites, whereas indifferent species dominated the developed/agricultural samples. Although our study demonstrated a relationship between the composition of diatom assemblages and watershed conditions, several factors, including taxonomic problems, the large number of diatom species, incomplete pH classifications, and year-to-year variability may limit the utility of diatom species as indicators of watershed conditions in the New Jersey Pinelands.

  15. Aqueous geochemical data from the analysis of stream-water samples collected in June and July 2006-Taylor Mountains 1:250,00-scale quadrangle, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg

    2011-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle, Alaska. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project entitled ?Geologic and Mineral Deposit Data for Alaskan Economic Development.? Data presented here are from samples collected in June and July 2006. The data are being released at this time with minimal interpretation. This is the third release of aqueous geochemical data from this project; aqueous geochemical data from samples collected in 2004 and 2005 were published previously. The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountains quadrangle is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. Generally, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. All field blank major-ion and trace-element concentrations were below detection.

  16. Ground- and Surface-Water Chemistry of Handcart Gulch, Park County, Colorado, 2003-2006

    USGS Publications Warehouse

    Verplanck, Philip L.; Manning, Andrew H.; Kimball, Briant A.; McCleskey, R. Blaine; Runkel, Robert L.; Caine, Jonathan S.; Adams, Monique; Gemery-Hill, Pamela A.; Fey, David L.

    2008-01-01

    As part of a multidisciplinary project to determine the processes that control ground-water chemistry and flow in mineralized alpine environments, ground- and surface-water samples from Handcart Gulch, Colorado were collected for analysis of inorganic solutes and water and dissolved sulfate stable isotopes in selected samples. The primary aim of this study was to document variations in ground-water chemistry in Handcart Gulch and to identify changes in water chemistry along the receiving stream of Handcart Gulch. Water analyses are reported for ground-water samples collected from 12 wells in Handcart Gulch, Colorado. Samples were collected between August 2003 and October 2005. Water analyses for surface-water samples are reported for 50 samples collected from Handcart Gulch and its inflows during a low-flow tracer injection on August 6, 2003. In addition, water analyses are reported for three other Handcart Gulch stream samples collected in September 2005 and March 2006. Reported analyses include field parameters (pH, specific conductance, temperature, dissolved oxygen, and Eh), major and trace constituents, oxygen and hydrogen isotopic composition of water and oxygen and sulfur isotopic composition of dissolved sulfate. Ground-water samples from this study are Ca-SO4 type and range in pH from 2.5 to 6.8. Most of the samples (75 percent) have pH values between 3.3 and 4.3. Surface water samples are also Ca-SO4 type and have a narrower range in pH (2.7?4.0). Ground- and surface-water samples vary from relatively dilute (specific conductance of 68 ?S/cm) to concentrated (specific conductance of 2,000 ?S/cm).

  17. Sources and preparation of data for assessing trends in concentrations of pesticides in streams of the United States, 1992–2010

    USGS Publications Warehouse

    Martin, Jeffrey D.; Eberle, Michael; Nakagaki, Naomi

    2011-01-01

    This report updates a previously published water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program and the National Stream Quality Accounting Network (NASQAN) were compiled, reviewed, selected, and prepared for trend analysis. The principal steps in data review for trend analysis were to (1) identify analytical schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of NAWQA pesticide data and selection of analytical methods for trend analysis. The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maximum value of the long-term method detection level (maxLT-MDL), (5) adjust concentrations to compensate for temporal changes in bias of recovery of the gas chromatography/mass spectrometry (GCMS) analytical method, and (6) identify samples considered inappropriate for trend analysis. Samples analyzed at the USGS National Water Quality Laboratory (NWQL) by the GCMS analytical method were the most extensive in time and space and, consequently, were selected for trend analysis. Stream-water sites with 3 or more water years of data with six or more samples per year were selected for pesticide trend analysis. The selection criteria described in the report produced a dataset of 21,988 pesticide samples at 212 stream-water sites. Only 21,144 pesticide samples, however, are considered appropriate for trend analysis.

  18. Temporal changes in photoreactivity of dissolved organic carbon and implications for aquatic carbon fluxes from peatlands

    NASA Astrophysics Data System (ADS)

    Pickard, Amy E.; Heal, Kate V.; McLeod, Andrew R.; Dinsmore, Kerry J.

    2017-04-01

    Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input-output along the source to sea aquatic pathway is required to determine the fate of peatland carbon.

  19. Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain

    USGS Publications Warehouse

    Phillips, P.; Chalmers, A.

    2009-01-01

    Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.

  20. BioData: a national aquatic bioassessment database

    USGS Publications Warehouse

    MacCoy, Dorene

    2011-01-01

    BioData is a U.S. Geological Survey (USGS) web-enabled database that for the first time provides for the capture, curation, integration, and delivery of bioassessment data collected by local, regional, and national USGS projects. BioData offers field biologists advanced capabilities for entering, editing, and reviewing the macroinvertebrate, algae, fish, and supporting habitat data from rivers and streams. It offers data archival and curation capabilities that protect and maintain data for the long term. BioData provides the Federal, State, and local governments, as well as the scientific community, resource managers, the private sector, and the public with easy access to tens of thousands of samples collected nationwide from thousands of stream and river sites. BioData also provides the USGS with centralized data storage for delivering data to other systems and applications through automated web services. BioData allows users to combine data sets of known quality from different projects in various locations over time. It provides a nationally aggregated database for users to leverage data from many independent projects that, until now, was not feasible at this scale. For example, from 1991 to 2011, the USGS Idaho Water Science Center collected more than 816 bioassessment samples from 63 sites for the National Water Quality Assessment (NAWQA) Program and more than 477 samples from 39 sites for a cooperative USGS and State of Idaho Statewide Water Quality Network (fig. 1). Using BioData, 20 years of samples collected for both of these projects can be combined for analysis. BioData delivers all of the data using current taxonomic nomenclature, thus relieving users of the difficult and time-consuming task of harmonizing taxonomy among samples collected during different time periods. Fish data are reported using the Integrated Taxonomic Information Service (ITIS) Taxonomic Serial Numbers (TSN's). A simple web-data input interface and self-guided, public data-retrieval web site provides access to bioassessment data. BioData currently accepts data collected using two national protocols: (1) NAWQA and (2) U.S. Environmental Protection Agency (USEPA) National Rivers and Streams Assessment (NRSA). Additional collection protocols are planned for future versions.

  1. Reconnaissance of Organic Wastewater Compounds at a Concentrated Swine Feeding Operation in the North Carolina Coastal Plain, 2008

    USGS Publications Warehouse

    Harden, Stephen L.

    2009-01-01

    Water-quality and hydrologic data were collected during 2008 to examine the occurrence of organic wastewater compounds at a concentrated swine feeding operation located in the North Carolina Coastal Plain. Continuous groundwater level and stream-stage data were collected at one monitoring well and one stream site, respectively, throughout 2008. One round of environmental and quality-control samples was collected in September 2008 following a period of below-normal precipitation and when swine waste was not being applied to the spray fields. Samples were collected at one lagoon site, seven shallow groundwater sites, and one surface-water site for analysis of 111 organic wastewater compounds, including household, industrial, and agricultural-use compounds, sterols, pharmaceutical compounds, hormones, and antibiotics. Analytical data for environmental samples collected during the study provide preliminary information on the occurrence of organic wastewater compounds in the lagoon-waste source material, groundwater beneath fields that receive spray applications of the lagoon wastes, and surface water in the tributary adjacent to the site. Overall, 28 organic wastewater compounds were detected in the collected samples, including 11 household, industrial, and agricultural-use compounds; 3 sterols; 2 pharmaceutical compounds; 5 hormones; and 7 antibiotics. The lagoon sample had the greatest number (20) and highest concentrations of compounds compared to groundwater and surface-water samples. The antibiotic lincomycin had the maximum detected concentration (393 micrograms per liter) in the lagoon sample. Of the 11 compounds identified in the groundwater and surface-water samples, all with reported concentrations less than 1 microgram per liter, only lincomycin identified in groundwater at 1 well and 3-methyl-1H-indole and indole identified in surface water at 1 site also were identified in the lagoon waste material.

  2. Environmental research program for slagging fixed-bed coal gasification. Status report, November 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilzbach, K. E.; Stetter, J. R.; Reilly, Jr., C. A.

    1982-02-01

    A collaborative environmental research program to provide information needed to assess the health and environmental effects associated with large-scale coal gasification technology is being conducted by Argonne National Laboratory (ANL) and the Grand Forks Energy Technology Center (GFETC). The objectives are to: investigate the toxicology and chemical composition of coal gasification by-products as a function of process variables and coal feed; compare the characteristics of isokinetic side-stream samples with those of process stream samples; identify the types of compounds responsible for toxicity; evaluate the chemical and toxicological effectiveness of various wastewater treatment operations; refine methodology for the collection and measurementmore » of organic vapors and particulates in workplace air; and obtain preliminary data on workplace air quality. So far the toxicities of a set of process stream samples (tar, oil, and gas liquor) and side-stream condensates from the GFETC gasifier have been measured in a battery of cellular screening tests for mutagenicity and cytotoxicity. Preliminary data on the effects of acute and chronic exposures of laboratory animals to process tar have been obtained. The process tar has been chemically fractionated and the distribution of mutagenicity and compound types among the fractions has been determined. Organic vapors and particulates collected at various times and locations in the gasifier building have been characterized.« less

  3. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA

    USGS Publications Warehouse

    Haroldson, M.A.; Gunther, K.A.; Reinhart, Daniel P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.

    2005-01-01

    Spawning Yellowstone cutthroat trout (Oncorhynchus clarki) provide a source of highly digestible energy for grizzly bears (Ursus arctos) that visit tributary streams to Yellowstone Lake during the spring and early summer. During 1985–87, research documented grizzly bears fishing on 61% of the 124 tributary streams to the lake. Using track measurements, it was estimated that a minimum of 44 grizzly bears fished those streams annually. During 1994, non-native lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake. Lake trout are efficient predators and have the potential to reduce the native cutthroat population and negatively impact terrestrial predators that use cutthroat trout as a food resource. In 1997, we began sampling a subset of streams (n = 25) from areas of Yellowstone Lake surveyed during the previous study to determine if changes in spawner numbers or bear use had occurred. Comparisons of peak numbers and duration suggested a considerable decline between study periods in streams in the West Thumb area of the lake. The apparent decline may be due to predation by lake trout. Indices of bear use also declined on West Thumb area streams. We used DNA from hair collected near spawning streams to estimate the minimum number of bears visiting the vicinity of spawning streams. Seventy-four individual bears were identified from 429 hair samples. The annual number of individuals detected ranged from 15 in 1997 to 33 in 2000. Seventy percent of genotypes identified were represented by more than 1 sample, but only 31% of bears were documented more than 1 year of the study. Sixty-two (84%) bears were only documented in 1 segment of the lake, whereas 12 (16%) were found in 2–3 lake segments. Twenty-seven bears were identified from hair collected at multiple streams. One bear was identified on 6 streams in 2 segments of the lake and during 3 years of the study. We used encounter histories derived from DNA and the Jolly-Seber procedure in Program MARK to produce annual estimates of grizzly bears visiting streams. Approximately 68 grizzly bears visited the vicinity of cutthroat trout spawning streams annually. Thus, approximately 14–21% of grizzly bears in the Greater Yellowstone Ecosystem (GYE) may have used this threatened food resource annually. Yellowstone National Park (YNP) is attempting to control the lake trout population in Yellowstone Lake; our results underscore the importance of that effort to grizzly bears.

  4. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and healthmore » of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing the health and condition of individual fish based on dissection and internal examination. It helped to determine whether contaminant concentrations were high enough to adversely affect the health of individual fish. The benthic macroinvertebrate multimetric index (HDMI), used in 1997 to 2000, is a method for assessing stream health based on macroinvertebrate data collected with Hester-Dendy artificial substrates. In 2003 it was replaced with the Multiple Habitat Sampling protocol, a SCDHEC method for collecting and analyzing benthic macroinvertebrate data from natural substrate. These two macroinvertebrate based methods were used in conjunction with the fish based IBI to provide a more comprehensive assessment of ecological conditions. Lastly, habitat data were collected from each stream to assist in determining whether ecological integrity was compromised by physical factors (e.g., erosion) or chemical factors (e.g., discharge of toxic materials). Fish from many SRS streams exhibited evidence of contamination as a result of current or former SRS operations. The most prevalent radiological contaminants were cesium-137 (highest in fish from Lower Three Runs followed by Steel Creek and Fourmile Branch), tritium (highest in fish from Fourmile Branch followed by Pen Branch, and the Savannah River swamp), and strontium (highest in fish from Fourmile Branch followed by Pen Branch). Radiological contaminants were also found in fish collected from the Savannah River near the mouths of contaminated SRS streams; however, contaminant levels were substantially lower than in fish from the streams themselves. Mercury levels were moderately elevated in fish from some streams, particularly Lower Three Runs, and in fish from the Savannah River. Despite the occurrence of contaminants, most SRS streams exhibited comparatively high biotic integrity (based on IBI, HDMI, and MHSP scores) and minimal levels of pathology among individual fish (e.g., presence of tumors or extreme thinness), indicating that contaminant levels were generally insufficient to cause significant ecological degradation.« less

  5. Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed-Sediment and Pore-Water Data for Selected Streams in Oregon, Wisconsin, and Florida, 2003-04

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark C.; Lutz, Michelle A.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.; DeWild, John F.; Brigham, Mark E.

    2008-01-01

    Mercury contamination of aquatic ecosystems is an issue of national concern, affecting both wildlife and human health. Detailed information on mercury cycling and food-web bioaccumulation in stream settings and the factors that control these processes is currently limited. In response, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) conducted detailed studies from 2002 to 2006 on various media to enhance process-level understanding of mercury contamination, biogeochemical cycling, and trophic transfer. Eight streams were sampled for this study: two streams in Oregon, and three streams each in Wisconsin and Florida. Streambed-sediment and pore-water samples were collected between February 2003 and September 2004. This report summarizes the suite of geochemical and microbial constituents measured, the analytical methods used, and provides the raw data in electronic form for both bed-sediment and pore-water media associated with this study.

  6. Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams

    USGS Publications Warehouse

    Kolpin, Dana W.; Schenzel, Judith; Meyer, Michael T.; Phillips, Patrick J.; Hubbard, Laura E.; Scott, Tia-Marie; Bucheli, Thomas D.

    2014-01-01

    To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown

  7. Hydrologic Data from the Study of Acidic Contamination in the Miami Wash-Pinal Creek Area, Arizona, Water Years 1997-2004

    USGS Publications Warehouse

    Konieczki, A.D.; Brown, J.G.; Parker, J.T.C.

    2008-01-01

    Since 1984, hydrologic data have been collected as part of a U.S. Geological Survey study of the occurrence and movement of acidic contamination in the aquifer and streams of the Pinal Creek drainage basin near Globe, Arizona. Ground-water data from that study are presented for water years 1997 through 2004 and include location, construction information, site plans, water levels, chemical and physical field measurements, and selected chemical analyses of water samples for 31 project wells. Hydrographs of depth to ground water are also included. Surface-water data for four sites are also presented and include selected chemical analyses of water samples. Monthly precipitation data and long-term precipitation statistics are presented for two sites. Chemical analyses of samples collected from the stream and shallow ground water in the perennial reach of Pinal Creek are also included.

  8. Surface water quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin : geochemical data for fine-fraction streambed sediment from high- and low-order streams, 1987

    USGS Publications Warehouse

    Colman, John A.; Sanzolone, R.F.

    1991-01-01

    Geochemical data are presented from a synoptic survey of 46 elements in fine-fraction streambed sediments of the Upper Illinois River Basin during the fall of 1987. The survey was a component study of the Illinois pilot project of the U.S. Geological Survey's National Water-Quality Assessment program. Most of the sampling sites were randomly chosen--135 on main stems of rivers and 238 on first- and second-order streams. In addition, 196 samples were collected for quality-assurance and special-study purposes. The report includes element concentration data and summary-statistics tables of percentiles, nested analysis of variance, and correlation coefficients. All concentration data are included in tabular form and can be selected by map reference number, latitude and longitude, or remark code indicating purpose for collecting sample.

  9. Water resources of the Red Lake Indian Reservation, northwestern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1991-01-01

    The quality of ground water is suitable for drinking and other household uses, and the quality of the surface water generally meets U.S. Environmental Protection Agency criteria necessary for the maintenance of aquatic life. The major ions in both ground and surface water are calcium, magnesium, and bicarbonate. Lower and Upper Red Lakes are eutrophic to mesotrophic on the basis of their summer Secchi disk-transparency readings, which ranged from 2.6 to 8.2 feet. The concentration of total organic carbon in samples from Lower and Upper Red Lakes and four streams were below or, in the case of one stream, about equal to 30 milligrams per liter, which is indicative of water little affected by human activities. The sample with the highest organic carbon content was collected from a stream that drained peatlands, which were probably sources of organic matter in the runoff. The concentration of nitrite plus nitrate in samples collected from Lower and Upper Red Lakes in late summer was below 0.01 milligrams per liter, which is characteristic of water uncontaminated by animal wastes. Total phosphorus in these samples ranged from 0.01 to 0.02 milligrams per liter. Most of this phosphorus was in the particulate organic fraction because of the abundance of phytoplankton.

  10. Water-quality variations in Antelope Creek and Deadmans Run, Lincoln, Nebraska

    USGS Publications Warehouse

    Pettijohn, R.A.; Engberg, R.A.

    1985-01-01

    Eleven sets of samples from five sites on Antelope Creek and Dead Man 's Run in Lincoln, Nebraska, were collected from December 1982 through June 1983 to study water-quality variations. Specific-conductance values generally were similar for Antelope Creek at 52nd Street and 27th Street, but during a low-flow survey of December 1 they increased from 974 to 8,700 microsiemens per centimeter at 25 C from 27th Street to Court Street. Seepage of saline water from underlying bedrock to the stream occurs in this reach. Specific-conductance values were less variable for Dead Man 's Run, increasing an average of only 47 percent from 66th Street to U.S. Highway 6. Specific-conductance values were less at high flows in Antelope Creek, except in samples collected on January 6, 1983, which contained runoff from salted streets. Sodium and chloride concentrations in these samples were from 5 to 10 times greater than those measured in any other samples. Stray-current corrosion occurs when current flows between dissimilar metals. Zinc-coated wire of channel-stabilization structures (gabions) may be an anode and material within the stream banks may be a cathode. Dissolution of the zinc coating by this type of corrosion may be a cause for gabion deterioration in both streams. (USGS)

  11. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the same stream that contained negligible AVS. ?? 2007 SETAC.

  12. Application of the BMWP-Costa Rica biotic index in aquatic biomonitoring: sensitivity to collection method and sampling intensity.

    PubMed

    Gutiérrez-Fonseca, Pablo E; Lorion, Christopher M

    2014-04-01

    The use of aquatic macroinvertebrates as bio-indicators in water quality studies has increased considerably over the last decade in Costa Rica, and standard biomonitoring methods have now been formulated at the national level. Nevertheless, questions remain about the effectiveness of different methods of sampling freshwater benthic assemblages, and how sampling intensity may influence biomonitoring results. In this study, we compared the results of qualitative sampling using commonly applied methods with a more intensive quantitative approach at 12 sites in small, lowland streams on the southern Caribbean slope of Costa Rica. Qualitative samples were collected following the official protocol using a strainer during a set time period and macroinvertebrates were field-picked. Quantitative sampling involved collecting ten replicate Surber samples and picking out macroinvertebrates in the laboratory with a stereomicroscope. The strainer sampling method consistently yielded fewer individuals and families than quantitative samples. As a result, site scores calculated using the Biological Monitoring Working Party-Costa Rica (BMWP-CR) biotic index often differed greatly depending on the sampling method. Site water quality classifications using the BMWP-CR index differed between the two sampling methods for 11 of the 12 sites in 2005, and for 9 of the 12 sites in 2006. Sampling intensity clearly had a strong influence on BMWP-CR index scores, as well as perceived differences between reference and impacted sites. Achieving reliable and consistent biomonitoring results for lowland Costa Rican streams may demand intensive sampling and requires careful consideration of sampling methods.

  13. Chemical characterization of sediment "Legacy P" in watershed streams - implications for P loading under land management

    NASA Astrophysics Data System (ADS)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples were ~equal or less than the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1 except at a site located in the stream in the Holland Marsh, which was ~7 times greater. Forms and distribution of P varied with sediment section and sampling site. The range of total sediment-P was from ~0.8 to 2.5 g P kg-1 sediment, and at some sites the mobile P forms accounted for > 75% of the total sediment-P. The study will continue to examine the temporal spatial and vertical distribution of P forms to predict the rates of P release under varying water chemistries. This basic research provides a fundamental approach for characterization of the legacy P in stream sediments, ultimately providing a better understanding of the linkage between changes in agricultural management practices affecting P losses from terrestrial sources and observed changes in surface water quality.

  14. Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff.

    PubMed

    Corsi, Steven R; Zitomer, Daniel H; Field, Jennifer A; Cancilla, Devon A

    2003-09-15

    Samples of nine different formulations of aircraft deicer and antiicer fluids (ADAF) were screened for the presence of selected surfactants. Nonylphenol ethoxylates (NPnEO) were identified in three ADAF formulations, octylphenol ethoxylates were identified in two formulations, and six formulations contained alcohol ethoxylates. A preliminary field study was conducted at General Mitchell International Airport, Milwaukee, WI, to quantify NPnEO (n = 1-15) and one of its byproducts, nonylphenol (NP), in airport runoff. Samples were collected from two airport outfalls, from the receiving stream, and from an upstream reference site during intensive ADAF application events. NPnEO was measured at concentrations up to 1190microg/L in airport outfall samples, up to 77 ug/L in samples from the receiving stream and less than 5.0 microg/L from the upstream reference. Concentrations of glycol and other ADAF-related constituents, including NPnEO, were reduced by approximately 1 order of magnitude between the outfall sites and the receiving stream site; however, concentrations of NP in the receiving stream remained similar to those from the outfalls (< 0.04 microg/L at the upstream reference, 0.98 and 7.67 microg/L at outfalls, and 3.89 microg/L in the receiving stream). The field data suggest that NP is generated through degradation of NPnEO from airport runoff.

  15. Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff

    USGS Publications Warehouse

    Corsi, Steven R.; Zitomer, Daniel H.; Field, Jennifer A.; Cancilla, Devon A.

    2003-01-01

    Samples of nine different formulations of aircraft deicer and antiicer fluids (ADAF) were screened for the presence of selected surfactants. Nonylphenol ethoxylates (NPnEO) were identified in three ADAF formulations, octylphenol ethoxylates were identified in two formulations, and six formulations contained alcohol ethoxylates. A preliminary field study was conducted at General Mitchell International Airport, Milwaukee, WI, to quantify NPnEO (n = 1-15) and one of its byproducts, nonylphenol (NP), in airport runoff. Samples were collected from two airport outfalls, from the receiving stream, and from an upstream reference site during intensive ADAF application events. NPnEO was measured at concentrations up to 1190microg/L in airport outfall samples, up to 77 ug/L in samples from the receiving stream and less than 5.0 microg/L from the upstream reference. Concentrations of glycol and other ADAF-related constituents, including NPnEO, were reduced by approximately 1 order of magnitude between the outfall sites and the receiving stream site; however, concentrations of NP in the receiving stream remained similar to those from the outfalls (< 0.04 microg/L at the upstream reference, 0.98 and 7.67 microg/L at outfalls, and 3.89 microg/L in the receiving stream). The field data suggest that NP is generated through degradation of NPnEO from airport runoff.

  16. Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures (IDEALEM) v 0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sim, Alex; Lee, Dongeun; Wu, K. John

    2016-03-04

    Handling large streaming data is essential for various applications such as network traffic analysis, social networks, energy cost trends, and environment modeling. However, it is in general intractable to store, compute, search, and retrieve large streaming data. This software addresses a fundamental issue, which is to reduce the size of large streaming data and still obtain accurate statistical analysis. As an example, when a high-speed network such as 100 Gbps network is monitored, the collected measurement data rapidly grows so that polynomial time algorithms (e.g., Gaussian processes) become intractable. One possible solution to reduce the storage of vast amounts ofmore » measured data is to store a random sample, such as one out of 1000 network packets. However, such static sampling methods (linear sampling) have drawbacks: (1) it is not scalable for high-rate streaming data, and (2) there is no guarantee of reflecting the underlying distribution. In this software, we implemented a dynamic sampling algorithm, based on the recent technology from the relational dynamic bayesian online locally exchangeable measures, that reduces the storage of data records in a large scale, and still provides accurate analysis of large streaming data. The software can be used for both online and offline data records.« less

  17. The genesis and exodus of vascular plant DOM from an oak woodland landscape

    NASA Astrophysics Data System (ADS)

    Hernes, Peter J.; Spencer, Robert G. M.; Dyda, Rachael Y.; O'Geen, Anthony T.; Dahlgren, Randy A.

    2017-02-01

    Evaluating the collective impact of small source inputs to larger rivers is a constant challenge in riverine biogeochemistry. In this study, we investigated the generation of dissolved organic matter (DOM) in a small oak woodland catchment in the foothills of northern California, the subsequent transformation in lignin biomarkers and chromophoric DOM (CDOM) parameters during transport through the landscape to an exporting stream, and finally the overall compositional impact on the larger receiving stream and river. Our study included a natural leaching experiment in which precipitation passing through oak, pine, and grass litter and duff samples was collected after each of a series of storms. Also included were soil trench samples to capture subsurface flow, stream samples along with point-source reservoir inputs, and samples of canopy throughfall, stemflow, and gopher hole (bypass) flow. The litter/duff leaching study demonstrated changing DOM fractionation patterns throughout the season, as evidenced by changing lignin compositions in the leachates with each successive storm. This adds a necessary seasonal component to interpreting lignin compositions in streams, as the source signatures are constantly changing. Released DOM from leaching was modified extensively during transit through the subsurface to the stream, with preferential increases in aromaticity as evidenced by increases in carbon-normalized absorbance at 254 nm, yet preferential decreases in lignin phenols, as evidence by carbon-normalized lignin yields in the headwater stream that was less than half that of the litter/duff leachates. Our extensive number of lignin measurements for source materials reveals a much more complex perspective on using lignin as a source indicator, as many riverine values for syringyl:vanillyl and cinnamyl:vanillyl ratios that have previously been interpreted as degraded lignin signatures are also possible as unmodified source signatures. Finally, this study demonstrated that the impact of numerous small headwater streams can significantly overprint the DOM signatures of much larger rivers over relatively short distances spanning several to tens of kilometers. This finding in particular challenges the assumption that river studies can be adequately conducted by focusing only on the main tributaries.

  18. Quantifying ratios of suspended sediment sources in forested headwater streams following timber-harvesting operations

    NASA Astrophysics Data System (ADS)

    Rachels, A. A.; Bladon, K. D.; Bywater-Reyes, S.

    2017-12-01

    Historically, timber-harvesting has increased fine sediment inputs to streams due to increased hillslope and streambank erosion and mass wasting along roads. However, under modern best management practices, the relative importance and variability of these sources is poorly understood. We present preliminary results from an ongoing study investigating the primary sources of suspended sediment in Oregon Coast Range streams influenced by timber harvesting. We instrumented two catchments, Enos Creek (harvested 2016) and Scheele Creek (reference) in fall 2016. Phillips samplers (5-6 per catchment) have been deployed longitudinally down the streams to enable robust characterization of suspended sediments—the collected samples integrate the chemical signatures of upstream sediment exports. We will collect samples monthly over 2 wet seasons and return to the laboratory to analyze the sediment using source fingerprinting approaches. The fingerprinting technique compares the chemical properties of stream sediment samples with the chemical properties of potential source areas, including 1) roads, 2) stream banks, and 3) hillslopes. To design a robust model for sediment-source identification, different types of chemical data are required—we will analyze sediment samples using a combination of: a) stable isotopes and C/N ratios (i.e., δ15N, δ13C, and C/N), b) geochemistry (Fe, K, and Ca), and c) radiogenic isotopes (137Cs and 210Pb). At the harvested site, the C/N ratios of the streambanks (17.9 ± 3.8) and the hillslopes (26.4 ± 4.8) are significantly different from one another (p = .016). C/N ratios of the suspended sediment (20.5 ± 2.0) are intermediate values between potential endmembers and behave conservatively with transport. The C/N ratios of the suspended sediment appear unaffected by roads (18.9 ± 8.7) along specific sections of the stream, suggesting that roads are not a primary sediment contributor. Under this assumption, the suspended sediment is, on average, comprised of 69.5% streambank sediments and 30.5% hillslope sediments. Additional analyses are required (and in progress) to support these implications and to further interpret the importance and variability of suspended sediment sources through both space (from head to outlet) and time.

  19. Effects of Hardened Low-Water Crossings on Periphyton and Water Quality in Selected Streams at the Fort Polk Military Reservation, Louisiana, 1998-99 and 2003-04

    USGS Publications Warehouse

    Bryan, Barbara W.; Bryan, C. Frederick; Lovelace, John K.; Tollett, Roland W.

    2007-01-01

    In 2003, the U.S. Geological Survey (USGS), at the request of the U.S. Army Joint Readiness Training Center and Fort Polk, began a follow-up study to determine whether installation and modification of hardened low-water crossings had short-term (less than 1 year) or long-term (greater than 1 year) effects on periphyton or water quality in five streams at the Fort Polk Military Reservation, Louisiana. Periphyton data were statistically analyzed for possible differences between samples collected at upstream and downstream sites and before and after low-water crossings were modified on three streams, Big Brushy Creek, Tributary to East Fork of Sixmile Creek, and Tributary to Birds Creek, during 2003?04. Periphyton data also were analyzed for possible differences between samples collected at upstream and downstream sites on two streams, Tributary to Big Brushy Creek and Little Brushy Creek, during 1998?99 and 2003. Variations in periphyton communities could not be conclusively attributed to the modifications. Most of the significant changes in percent frequency of occurrence and average cell density of the 10 most frequently occurring periphyton taxa were increases at downstream sites after the hardened low-water crossing installations or modifications. However, these changes in the periphyton community are not necessarily deleterious to the community structure. Water-quality data collected from upstream and downstream sites on the five streams during 2003?04 were analyzed for possible differences caused by the hardened crossings. Generally, average water-quality values and concentrations were similar at upstream and downstream sites. When average water-quality values or concentrations changed significantly, they almost always changed significantly at both the upstream and downstream sites. It is probable that observed variations in water quality at both upstream and downstream sites are related to differences in rainfall and streamflow during the sample collection periods rather than an effect of the hardened low-water crossing installations or modifications, but additional study is needed.

  20. Surface-water quantity and quality, aquatic biology, stream geomorphology, and groundwater-flow simulation for National Guard Training Center at Fort Indiantown Gap, Pennsylvania, 2002-05

    USGS Publications Warehouse

    Langland, Michael J.; Cinotto, Peter J.; Chichester, Douglas C.; Bilger, Michael D.; Brightbill, Robin A.

    2010-01-01

    Base-line and long-term monitoring of water resources of the National Guard Training Center at Fort Indiantown Gap in south-central Pennsylvania began in 2002. Results of continuous monitoring of streamflow and turbidity and monthly and stormflow water-quality samples from two continuous-record long-term stream sites, periodic collection of water-quality samples from five miscellaneous stream sites, and annual collection of biological data from 2002 to 2005 at 27 sites are discussed. In addition, results from a stream-geomorphic analysis and classification and a regional groundwater-flow model are included. Streamflow at the facility was above normal for the 2003 through 2005 water years and extremely high-flow events occurred in 2003 and in 2004. Water-quality samples were analyzed for nutrients, sediments, metals, major ions, pesticides, volatile and semi-volatile organic compounds, and explosives. Results indicated no exceedances for any constituent (except iron) above the primary and secondary drinking-water standards or health-advisory levels set by the U.S. Environmental Protection Agency. Iron concentrations were naturally elevated in the groundwater within the watershed because of bedrock lithology. The majority of the constituents were at or below the method detection limit. Sediment loads were dominated by precipitation due to the remnants of Hurricane Ivan in September 2004. More than 60 percent of the sediment load measured during the entire study was transported past the streamgage in just 2 days during that event. Habitat and aquatic-invertebrate data were collected in the summers of 2002-05, and fish data were collected in 2004. Although 2002 was a drought year, 2003-05 were above-normal flow years. Results indicated a wide diversity in invertebrates, good numbers of taxa (distinct organisms), and on the basis of a combination of metrics, the majority of the 27 sites indicated no or slight impairment. Fish-metric data from 25 sites indicated results similar to the invertebrate data. Stream classification based on evolution of the stream channels indicates about 94 percent of the channels were considered to be in equilibrium (type B or C channels), neither aggrading nor eroding. A regional, uncalibrated groundwater-flow model indicated the surface-water and groundwater-flow divides coincided. Because of folding of rock layers, groundwater was under confined conditions and nearly all the water leaves the facility via the streams.

  1. Tritium monitor

    DOEpatents

    Chastagner, Philippe

    1994-01-01

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  2. Tritium monitor

    DOEpatents

    Chastagner, P.

    1994-06-14

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  3. Physical, chemical, and biological data for selected streams in Chester County, Pennsylvania, 1969-80

    USGS Publications Warehouse

    Moore, C.R.

    1989-01-01

    This report presents physical, chemical, and biological data collected at 50 sampling sites on selected streams in Chester County, Pennsylvania from 1969 to 1980. The physical data consist of air and water temperature, stream discharge, suspended sediment, pH, specific conductance, and dissolved oxygen. The chemical data consist of laboratory determinations of total nutrients, major ions, and trace metals. The biological data consist of total coliform, fecal coliform, and fecal streptococcus bacteriological analyses, and benthicmacroinvertebrate population analyses. Brillouin's diversity index, maximum diversity, minimum diversity, and evenness for each sample, and median and mean Brilloiuin's diversity index, standard deviation, and standard error of the mean were calculated for the benthic-macroinvertebrate data for each site.

  4. Pesticides and oil and grease in selected streams and lakes in northeastern Louisiana, 2001

    USGS Publications Warehouse

    McGee, Benton D.

    2003-01-01

    A 6-month study was begun in April 2001 to determine the concentrations of pesticides or oil and grease in selected stream reaches and lakes within the Ouachita, Tensas, and Black River Basins in northeastern Louisiana. During April through September 2001, six monthly water samples for analysis of pesticides were collected from 22 sites: 17 sites were on 11 streams, and 5 sites were on 5 lakes. During Apirl through July 2001, four monthly samples for analysis of oil and grease were collected from 5 sites: 4 sites were on three streams, and 1 site was on a lake. A total of 131 water samples were analyzed for 17 pesticides (15 insecticides and 2 herbicides). The following classes of pesticides, as classified from the Pesticide Analysis (U.S. Environmental Protection Agency Region 6 Laboratory), are reported: organochlorine, nitrogen-phosphorus, and carbamate. The 8 pesticides detected in samples, in decreasing frequency, were as follow: atrazine, molinate, methyl parathion, 4,4'-DDT, carbofuran, diazinon, toxaphene, and 4,4'DDE. Organochlorine pesticides (insecticides) represented the majority (12 out of 17) of the pesticides analyzed. Of those 12 organochlorine pesticides, only 3 (4,4'-DDT, 4,4'-DDE, and toxaphene) were detected in the 131 samples. Of the organochlorine pesticides, 4,4'-DDT was detected most frequently (in 11 percent of the samples), and concentrations ranged from 1.22 to 4.70 ng/L (nanograms per liter). Nitrogen-phosphorus pesticides were the most frequently detected and abundant pesticides. Of all the pesticides analyzed, atrazine and molinate (nitrogen-phosphorus herbicides) were the pesticides most frequently detected (in 93 and 21 percent of the samples), had the highest and most wide-ranging concentrations (10.8 to 15,100 ng/L and 10.0 to 11,600 ng/L), and were most widely distributed throughout the study area. Carbofuran, a carbamate insecticide, was detected at 8 of the 22 pesticide data-collection sites and in 9.2 percent of the 131 samples analyzed for pesticides. Concentrations of carbofuran ranged from 30.7 to 946 ng/L. Of the 22 pesticide data-collection sites, the frequency of pesticide detection was highest at 6 sites: Boeuf River near Arkansas-Louisiana State Line, Boeuf River near Fort Necessity, Big Creek at Louisiana Highway 135 near Winnsboro, Crew Lake at Crew Lake, Joe's Bayou near Waverly; and Bayou Macon at Louisiana Highway 562 near Wisner. All water samples analyzed for oil and grease had concentrations less than the reporting limit of 5 milligrams per liter.

  5. Multielement geochemical dataset of surficial materials for the northern Great Basin

    USGS Publications Warehouse

    Coombs, Mary Jane; Kotlyar, Boris B.; Ludington, Steve; Folger, Helen W.; Mossotti, Victor G.

    2002-01-01

    This report presents geochemical data generated during mineral and environmental assessments for the Bureau of Land Management in northern Nevada, northeastern California, southeastern Oregon, and southwestern Idaho, along with metadata and map representations of selected elements. The dataset presented here is a compilation of chemical analyses of over 10,200 stream-sediment and soil samples originally collected during the National Uranium Resource Evaluation's (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the Department of Energy and its predecessors and reanalyzed to support a series of mineral-resource assessments by the U.S. Geological Survey (USGS). The dataset also includes the analyses of additional samples collected by the USGS in 1992. The sample sites are in southeastern Oregon, southwestern Idaho, northeastern California, and, primarily, in northern Nevada. These samples were collected from 1977 to 1983, before the development of most of the present-day large-scale mining infrastructure in northern Nevada. As such, these data may serve as an important baseline for current and future geoenvironmental studies. Largely because of the very diverse analytical methods used by the NURE HSSR program, the original NURE analyses in this area yielded little useful geochemical information. The Humboldt, Malheur-Jordan-Andrews, and Winnemucca-Surprise studies were designed to provide useful geochemical data via improved analytical methods (lower detection levels and higher precision) and, in the Malheur-Jordan-Andrews and Winnemucca Surprise areas, to collect additional stream-sediment samples to increase sampling coverage. The data are provided in *.xls (Microsoft Excel) and *.csv (comma-separated-value) format. We also present graphically 35 elements, interpolated ("gridded") in a geographic information system (GIS) and overlain by major geologic trends, so that users may view the variation in elemental concentrations over the landscape and reach their own conclusions regarding correlation among geochemistry, geologic features, and known mineral deposits. Quality-control issues are discussed for the grids and data.

  6. Stream ichthyofauna of the Tapajós National Forest, Pará, Brazil

    PubMed Central

    Silva-Oliveira, Cárlison; Canto, André Luiz Colares; Ribeiro, Frank Raynner Vasconcelos

    2016-01-01

    Abstract The fish fauna of freshwater streams in the Tapajos National Forest was surveyed and a list of species is presented. The sampling was conducted from 2012 to 2013 during the dry season. Fish were collected with dip nets and seine nets in 22 streams of 1st to 3rd order. Sampling resulted in 3035 specimens belonging to 117 species, 27 families and six orders. The most abundant species were Bryconops aff. melanurus, Hemigrammus belottii, and Hemigrammus analis. Four undescribed species were recognized, one of which is known only from the area of this study. A significant dissimilarity was observed in fish species composition among drainage systems. This is the first survey of the stream ichthyofauna in the Tapajós National Forest, and it presents relevant information for future studies and decision-making in the management and conservation of fish fauna in this conservation unit. PMID:27110209

  7. ABNORMAL FRAGILARIA SPP. (BACILLARIOPHYCEAE) IN STREAMS IMPACTED BY MINE DRAINAGE

    EPA Science Inventory

    Periphytic diatom samples from a metal-contaminated Rocky Mountain river in Colorado, U.S.A. were analyzed on two occasions for the presence of morphological abnormalites. Samples were collected from natural (rocks) and artificial (tiles) substrates at 12 sites displaying a range...

  8. Storm water runoff-a source of emerging contaminants in urban streams

    NASA Astrophysics Data System (ADS)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This study demonstrated that urband storm water runoff could be a significant source, in addition to WWTP effluent, contributing to the widespread occurrence of ECs in aquatic environment.

  9. Water-quality, bed-sediment, and biological data (October 2010 through September 2011) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2013-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin of western Montana; additional water samples were collected from near Galen to near Missoula at select sites as part of a supplemental sampling program. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2010 through September 2011. Bed-sediment and biota samples were collected once at 14 sites during August 2011. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2010 through September 2011. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  10. Water-quality assessment of south-central Texas : comparison of water quality in surface-water samples collected manually and by automated samplers

    USGS Publications Warehouse

    Ging, Patricia B.

    1999-01-01

    Surface-water sampling protocols of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program specify samples for most properties and constituents to be collected manually in equal-width increments across a stream channel and composited for analysis. Single-point sampling with an automated sampler (autosampler) during storms was proposed in the upper part of the South-Central Texas NAWQA study unit, raising the question of whether property and constituent concentrations from automatically collected samples differ significantly from those in samples collected manually. Statistical (Wilcoxon signed-rank test) analyses of 3 to 16 paired concentrations for each of 26 properties and constituents from water samples collected using both methods at eight sites in the upper part of the study unit indicated that there were no significant differences in concentrations for dissolved constituents, other than calcium and organic carbon.

  11. Urine sampling techniques in symptomatic primary-care patients: a diagnostic accuracy review.

    PubMed

    Holm, Anne; Aabenhus, Rune

    2016-06-08

    Choice of urine sampling technique in urinary tract infection may impact diagnostic accuracy and thus lead to possible over- or undertreatment. Currently no evidencebased consensus exists regarding correct sampling technique of urine from women with symptoms of urinary tract infection in primary care. The aim of this study was to determine the accuracy of urine culture from different sampling-techniques in symptomatic non-pregnant women in primary care. A systematic review was conducted by searching Medline and Embase for clinical studies conducted in primary care using a randomized or paired design to compare the result of urine culture obtained with two or more collection techniques in adult, female, non-pregnant patients with symptoms of urinary tract infection. We evaluated quality of the studies and compared accuracy based on dichotomized outcomes. We included seven studies investigating urine sampling technique in 1062 symptomatic patients in primary care. Mid-stream-clean-catch had a positive predictive value of 0.79 to 0.95 and a negative predictive value close to 1 compared to sterile techniques. Two randomized controlled trials found no difference in infection rate between mid-stream-clean-catch, mid-stream-urine and random samples. At present, no evidence suggests that sampling technique affects the accuracy of the microbiological diagnosis in non-pregnant women with symptoms of urinary tract infection in primary care. However, the evidence presented is in-direct and the difference between mid-stream-clean-catch, mid-stream-urine and random samples remains to be investigated in a paired design to verify the present findings.

  12. Occurrence of Chlorothalonil, Its Transformation Products, and Selected Other Pesticides in Texas and Oklahoma Streams, 2003-2004

    USGS Publications Warehouse

    Battaglin, William A.; Kuivila, Kathryn; Winton, Kim; Meyer, Michael

    2008-01-01

    The primary purpose of the study described in this report was to determine if the fungicide chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile), three of its transformation products, or selected other pesticides are transported to surface water after use on peanuts or other crops in Texas and Oklahoma. The results summarized here are part of a larger study that includes data from sites in Alabama, Florida, and Georgia. Chlorothalonil is classified as a probable carcinogen, and the 4-hydroxy of chlorothalonil transformation product is more soluble, more stable, and, for some species, more toxic than its parent compound. In 2003, water samples were collected from three surface-water sites in Texas and two surface-water sites in Oklahoma; in 2004, samples were collected from the two Oklahoma sites. Chlorothalonil was not detected in any of the 20 samples analyzed. The 4-hydroxy of chlorothalonil transformation product was detected in three samples collected in 2004, with a maximum concentration of 0.018 microgram per liter (?g/L); the other two transformation products (diamide chlorothalonil and 1-amide-4-hydroxy chlorothalonil) were not detected in any sample. In addition, 19 samples were analyzed for as many as 109 other pesticides and transformation products. Atrazine was detected in 13 samples and had a maximum concentration of 0.122 ?g/L. Deethylatrazine was detected in 10 samples and had a maximum concentration of 0.04 ?g/L. Metolachlor was detected in eight samples and had a maximum concentration of 0.019 ?g/L. Fifteen other pesticides or pesticide transformation products also were detected. In general, concentrations of pesticides were less than concentrations that are commonly observed in Midwestern streams. The results indicate that the use of chlorothalonil on peanut crops has not resulted in substantial contamination of the studied streams in Texas and Oklahoma.

  13. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance genes (class I integrons) were detected in several samples, indicating that the resistance carried by these organisms may be transferable to other bacteria, including disease-causing bacteria.

  14. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from Rosethorn Spring. The residence time of water discharging into the caves and from selected springs sampled as part of this study ranged from 10 to 25 years.Within the upper Snake Creek drainage, the results of this study show geochemical similarities between Snake Creek and Outhouse Spring, Spring Creek Spring, and Squirrel Spring Cave. The strontium isotope ratio (87Sr/86Sr) for intrusive rock samples representative of the Snake Creek drainage were similar to carbonate rock samples. The water sample collected from Snake Creek at the pipeline discharge point had lower strontium concentrations than the sample downstream and a similar 87Sr/86Sr value as the carbonate and intrusive rocks. The chemistry of the water sample was considered representative of upstream conditions in Snake Creek and indicates minimal influence of rock dissolution. The results of this study suggest that water discharging from Outlet Spring is not hydrologically connected to Snake Creek but rather is recharged at high altitude(s) within the Snake Creek drainage. These findings for Outlet Spring largely stem from the relatively high specific conductance and chloride concentration, the lightest deuterium (δD) and oxygen-18 (δ18O) values, and the longest calculated residence time (60 to 90 years) relative to any other sample collected as part of this study. With the exception of water sampled from Outlet Spring, the residence time of water discharging into Squirrel Spring Cave and selected springs in the upper Snake Creek drainage was less than 30 years.

  15. Human and bovine viruses in urban and rural streams: Hydrologic and season patterns of wastewater influence

    USDA-ARS?s Scientific Manuscript database

    Viruses are the cause of many waterborne diseases contracted from fecal-contaminated waters. Collection of samples that properly represent virus concentrations throughout relevant hydrologic periods has historically been difficult due to the large water volume collection and filtration required for ...

  16. Geologic reconnaissance and geochemical sampling survey of molybdenum mineralization near Schiestler Peak, Temple Peak Quadrangle, Sublette County, Wyoming

    USGS Publications Warehouse

    Lee, G.K.; Antweiler, J.C.; Love, J.D.; Benedict, J.F.

    1982-01-01

    A brief geologic reconnaissance and geochemical survey of molybdenum mineralization near Schiestler Peak, Sublette County, Wyo., indicates that molybdenite occurs in this area as disseminations and blebs in granitic or quartz monzonitic rocks intruded by felsic dikes of similar composition. Samples of stream sediments, panned concentrates from stream sediments, soils, rocks, and water were collected in the geochemical survey. Analytical results show that in reconnaissance, panned concentrates are the best of the sample types used in this study to detect molybdenum mineralization. More detailed analysis of the distribution of the molybdenum is best achieved through the collection of rock samples. Hydrothermal alteration is generally not conspicuous in the study area; however, rock samples that contain molybdenite are usually slightly enriched in silver, copper, lead, and in several instances, gold. Conversely, there appear to be negative associations between molybdenum and zinc and between molybdenum and several of the rare-earth elements. Mo concentrations in the rock samples with no visible molybdenite range from undetectable at a sensitivity of 5 parts per million (ppm) to 700 ppm. Mo content in rock samples containing visible molybdenite ranges from 10 ppm to greater than 2,000 ppm. Stream-sediment values range from undetected to 15 ppm; panned concentrates from undetected to 15 ppm; soils from undetected to 20 ppm. Analyses of the water samples indicate Mo concentrations from 0.8 parts per billion (ppb) to 4.8 ppb. As currently understood, this deposit is not extensive or continuous, but drilling to provide information on the vertical extent of mineralization may alter this opinion.

  17. Benthic macroinvertebrates and the use of stable isotopes (δ13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    NASA Astrophysics Data System (ADS)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the role that functional feeding groups may have on results. Initial results on invertebrate community structure in response to land use indicate the importance of geographical site location over land use effects. We suggest that SIA results should be interpreted together with benthic macroinvertebrate community analyses to get more insight into ecological impacts of different peatland uses with respect to changed food quality. Further, we will assess whether CH4 and CO2 could be used as an indicator of basal resource change. In future studies, we will address the role of the quality and quantity of the basal resources in more detail, which is likely to provide more insight into the effects of different forms of peatland use on aquatic ecosystems.

  18. Water-quality, bed-sediment, and biological data (October 2014 through September 2015) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2017-01-19

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2014 through September 2015. Bed-sediment and biota samples were collected once at 13 sites during August 2015.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2014 through September 2015. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, samples for analysis of dissolved organic carbon and turbidity were collected. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  19. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  20. Water quality of streams draining abandoned and reclaimed mined lands in the Kantishna Hills area, Denali National Park and Preserve, Alaska, 2008–11

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2013-01-01

    The Kantishna Hills are an area of low elevation mountains in the northwest part of Denali National Park and Preserve, Alaska. Streams draining the Kantishna Hills are clearwater streams that support several species of fish and are derived from rain, snowmelt, and subsurface aquifers. However, the water quality of many of these streams has been degraded by mining. Past mining practices generated acid mine drainage and excessive sediment loads that affected water quality and aquatic habitat. Because recovery through natural processes is limited owing to a short growing season, several reclamation projects have been implemented on several streams in the Kantishna Hills region. To assess the current water quality of streams in the Kantishna Hills area and to determine if reclamation efforts have improved water quality, a cooperative study between the U.S. Geological Survey and the National Park Service was undertaken during 2008-11. High levels of turbidity, an indicator of high concentrations of suspended sediment, were documented in water-quality data collected in the mid-1980s when mining was active. Mining ceased in 1985 and water-quality data collected during this study indicate that levels of turbidity have declined significantly. Turbidity levels generally were less than 2 Formazin Nephelometric Units and suspended sediment concentrations generally were less than 1 milligram per liter during the current study. Daily turbidity data at Rock Creek, an unmined stream, and at Caribou Creek, a mined stream, documented nearly identical patterns of turbidity in 2009, indicating that reclamation as well as natural revegetation in mined streams has improved water quality. Specific conductance and concentrations of dissolved solids and major ions were highest from streams that had been mined. Most of these streams flow into Moose Creek, which functions as an integrator stream, and dilutes the specific conductance and ion concentrations. Calcium and magnesium are the dominant cations, and bicarbonate and sulfate are the dominant anions. Water samples indicate that the water from Rock Creek, Moose Creek, Slate Creek, and Eldorado Creek is a calcium bicarbonate-type water. The remaining sites are a calcium sulfate type water. U.S. Environmental Protection Agency guidelines for arsenic and antimony in drinking water were exceeded in water at Slate Creek and Eureka Creek. Concentrations of arsenic, cadmium, chromium, copper, lead, nickel, and zinc in streambed sediments at many sites exceed sediment quality guideline thresholds that could be toxic to aquatic life. However, assessment of these concentrations, along with the level of organic carbon detected in the sediment, indicate that only concentrations of arsenic and chromium may be toxic to aquatic life at many sites. In 2008 and 2009, 104 macroinvertebrate taxa and 164 algae taxa were identified from samples collected from seven sites. Of the macroinvertebrates, 86 percent were insects and most of the algae consisted of diatoms. Based on the National Community Index, Rock Creek, a reference site, and Caribou Creek, and a mined stream that had undergone some reclamation, exhibited the best overall stream conditions; whereas Slate Creek and Friday Creek, two small streams that were mined extensively, exhibited the worst stream conditions. A non-metric multi-dimensional scaling analysis of the macroinvertebrate and algae data showed a distinct grouping between the 2008 and 2009 samples, likely because of differences between a wet, cool summer in 2008 and a dry, warm summer in 2009.

  1. Interpolation of Water Quality Along Stream Networks from Synoptic Data

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Seibert, J.; Lembo, A. J.; Walter, M. T.; Gburek, W. J.; Thongs, D.; Schneiderman, E.; Steenhuis, T. S.

    2005-12-01

    Effective catchment management requires water quality monitoring that identifies major pollutant sources and transport and transformation processes. While traditional monitoring schemes involve regular sampling at fixed locations in the stream, there is an interest synoptic or `snapshot' sampling to quantify water quality throughout a catchment. This type of sampling enables insights to biogeochemical behavior throughout a stream network at low flow conditions. Since baseflow concentrations are temporally persistence, they are indicative of the health of the ecosystems. A major problem with snapshot sampling is the lack of analytical techniques to represent the spatially distributed data in a manner that is 1) easily understood, 2) representative of the stream network, and 3) capable of being used to develop land management scenarios. This study presents a kriging application using the landscape composition of the contributing area along a stream network to define a new distance metric. This allows for locations that are more `similar' to stay spatially close together while less similar locations `move' further apart. We analyze a snapshot sampling campaign consisting of 125 manually collected grab samples during a summer recession flow period in the Townbrook Research Watershed. The watershed is located in the Catskill region of New York State and represents the mixed forest-agriculture land uses of the region. Our initial analysis indicated that stream nutrients (nitrogen and phosphorus) and chemical (major cations and anions) concentrations are controlled by the composition of landscape characteristics (landuse classes and soil types) surrounding the stream. Based on these relationships, an intuitively defined distance metric is developed by combining the traditional distance between observations and the relative difference in composition of contributing area. This metric is used to interpolate between the sampling locations with traditional geostatistic techniques (semivariograms and ordinary kriging). The resulting interpolations provide continuous stream nutrient and chemical concentrations with reduced kriging RMSE (i.e., the interpolation fits the actual data better) performed without path restriction to the stream channel (i.e., the current default for most geostatistical packages) or performed with an in-channel, Euclidean distance metric (i.e., `as the fish swims' distance). In addition to being quantifiably better, the new metric also produces maps of stream concentrations that match expected continuous stream concentrations based on expert knowledge of the watershed. This analysis and its resulting stream concentration maps provide a representation of spatially distributed synoptic data that can be used to quantify water quality for more effective catchment management that focuses on pollutant sources and transport and transformation processes.

  2. Isolating and identifying atmospheric ice-nucleating aerosols: a new technique

    NASA Astrophysics Data System (ADS)

    Kreidenweis, S. M.; Chen, Y.; Rogers, D. C.; DeMott, P. J.

    Laboratory studies examined two key aspects of the performance of a continuous-flow diffusion chamber (CFD) instrument that detects ice nuclei (IN) concentrations in air samples: separating IN from non-IN, and collecting IN aerosols to determine chemical composition. In the first study, submicron AgI IN particles were mixed in a sample stream with submicron non-IN salt particles, and the sample stream was processed in the CFD at -19°C and 23% supersaturation with respect to ice. Examination of the residual particles from crystals nucleated in the CFD confirmed that only AgI particles served as IN in the mixed stream. The second study applied this technique to separate and analyze IN and non-IN particles in a natural air sample. Energy-dispersive X-ray analyses (EDS) of the elemental composition of selected particles from the IN and non-IN fractions in ambient air showed chemical differences: Si and Ca were present in both, but S, Fe and K were also detected in the non-IN fraction.

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Las Cruces quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-31

    Field and laboratory data are presented for 501 water samples and 1817 sediment samples from the Las Cruces Quadrangle, New Mexico. The samples were collected and uranium analysis performed by Los Alamos National Laboratory; multielement analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  4. 40 CFR Table 9 to Subpart Hhhhhhh... - Procedures for Conducting Sampling of Stripped Resin and Process Wastewater

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Stripped Resin and Process Wastewater 9 Table 9 to Subpart HHHHHHH of Part 63 Protection of Environment... Wastewater For demonstrating . . . For the following emission points and types of processes . . . Collect.... Each process wastewater stream 3. Initial compliance N/A 1 grab sample 1 grab sample. 4. Continuous...

  5. 40 CFR Table 9 to Subpart Hhhhhhh... - Procedures for Conducting Sampling of Stripped Resin and Process Wastewater

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Stripped Resin and Process Wastewater 9 Table 9 to Subpart HHHHHHH of Part 63 Protection of Environment... Wastewater For demonstrating . . . For the following emission points and types of processes . . . Collect.... Each process wastewater stream 3. Initial compliance N/A 1 grab sample 1 grab sample. 4. Continuous...

  6. Trace Elements in Bed Sediments and Biota from Streams in the Santee River Basin and Coastal Drainages, North and South Carolina, 1995-97

    Treesearch

    Thomas A. Abrahamsen

    1999-01-01

    Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...

  7. The relationship between land management, fecal indicator bacteria, and the occurrence of Campylobacter and Listeria spp. in water and sediments during synoptic sampling in the S. Fork Broad River Watershed, N.E. Georgia, U.S.A

    NASA Astrophysics Data System (ADS)

    Bradshaw, J. K.; Molina, M.; Sidle, R. C.; Sullivan, K.; Oakley, B.; Berrang, M.; Meinersmann, R.

    2013-12-01

    Fecal indicator bacteria (FIB) and pathogens stored in the bed sediments of streams and rivers may be mobilized into the water column affecting overall water quality. Furthermore, land management may play an important role in the concentrations of FIB and the occurrence of pathogens in stream water and sediments. The purpose of this study was to determine the relationship between FIB and pathogens in stream water and sediment based on three land management-affected categories: agricultural, forest, and waters receiving treated municipal wastewater. Two synoptic sampling events were conducted under baseflow conditions (<0.64 cm of rain within 24h) between October-November, 2012 and May-June, 2013. Counts of the E. coli and E. faecalis and occurrences of the enteric pathogens Campylobacter and Listeria spp. were measured in stream water and sediment samples collected at 15 locations (six agricultural (AG); six forested (FORS); and three receiving discharge from water pollution control plants (WPCP)) in the S. Fork Broad River watershed located in northeast Georgia, USA. Mean E. coli and E. faecalis concentrations were highest in the AG stream water samples (3.08 log MPN 100 mL -1 for E. coli and 3.07 log CFU 100 mL -1 for E. faecalis ) and lowest in the FORS water samples for E. coli (2.37 log MPN 100 mL -1 ) and WPCP water samples for E. faecalis (2.53 log CFU 100 mL -1 ). E. coli concentrations (2.74 log MPN 100 mL -1 ) in the WPCP streams were intermediate. Similar to water samples, E. coli concentrations were highest in the AG sediments (4.31 log MPN g -1 ), intermediate in the WPCP sediments (4.06 log MPN g -1 ), and lowest in the FORS sediments (3.46 log MPN g -1 ). In contrast to E. coli, E. faecalis concentrations were lower (1.10 to 1.31 log CFU g -1 ) and relatively more constant than E. coli in sediments over the three land management categories. Campylobacter was detected in 27% of the water samples and 8% of the sediment samples. The highest occurrence of Campylobacter detection was in the AG streams (15% of the water samples; 5% of the sediment samples). Listeria was detected in 76% of the water samples and 65% of the sediment samples. The FORS and AG streams had the highest occurrence of Listeria in water and sediment (32% and 29% of the water samples, respectively; 24% and 29% of sediment samples, respectively) suggesting Listeria is fairly ubiquitous in these streams. Based on the high concentrations of E. faecalis in water and E. coli in water and sediment, and higher frequency of Campylobacter detection in the AG streams, this study indicates that E. coli and Campylobacter may occur in high concentrations in stream sediments in land management areas where fecal material is deposited directly by livestock into the stream or adjacent land in large doses.

  8. Approach for environmental baseline water sampling

    USGS Publications Warehouse

    Smith, K.S.

    2011-01-01

    Samples collected during the exploration phase of mining represent baseline conditions at the site. As such, they can be very important in forecasting potential environmental impacts should mining proceed, and can become measurements against which future changes are compared. Constituents in stream water draining mined and mineralized areas tend to be geochemically, spatially, and temporally variable, which presents challenges in collecting both exploration and baseline water-quality samples. Because short-term (daily) variations can complicate long-term trends, it is important to consider recent findings concerning geochemical variability of stream-water constituents at short-term timescales in designing sampling plans. Also, adequate water-quality information is key to forecasting potential ecological impacts from mining. Therefore, it is useful to collect baseline water samples adequate tor geochemical and toxicological modeling. This requires complete chemical analyses of dissolved constituents that include major and minor chemical elements as well as physicochemical properties (including pH, specific conductance, dissolved oxygen) and dissolved organic carbon. Applying chemical-equilibrium and appropriate toxicological models to water-quality information leads to an understanding of the speciation, transport, sequestration, bioavailability, and aquatic toxicity of potential contaminants. Insights gained from geochemical and toxicological modeling of water-quality data can be used to design appropriate mitigation and for economic planning for future mining activities.

  9. A comparison of methods for deriving solute flux rates using long-term data from streams in the mirror lake watershed

    USGS Publications Warehouse

    Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.

    1998-01-01

    Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.

  10. Hyporheic invertebrate assemblages at reach scale in a Neotropical stream in Brazil.

    PubMed

    Mugnai, R; Messana, G; Di Lorenzo, T

    2015-11-01

    In the Neotropical Region, information concerning hyporheic communities is virtually non-existent. We carried out a sampling survey in the hyporheic zone of the Tijuca River, in the Tijuca National Park, located in the urban area of the city of Rio de Janeiro. Biological samples from the hyporheic zone were collected in three different stream reaches, in June 2012. The main objectives were: 1) to describe the structure of invertebrate assemblages in the hyporheic zone of a neotropical stream; 2) to apply a reach-scale approach in order to investigate spatial patterns of the hyporheic assemblages in relation to hydrology, depth and microhabitat typology. A total of 1460 individuals were collected and identified in 31 taxa belonging to Nematoda, Annelida, Crustacea, Hydrachnidia and Insecta. The class Insecta dominated the upper layer of the hyporheic zone. Copepods were the most abundant taxon among crustaceans and occurred mostly in the upwelling areas of the reaches. The results of this study represent one of the few contributions so far about hyporheic invertebrate assemblages of the Neotropical Region.

  11. Using Sediment Provenance to Study Ice Streams in the Weddell Sea Embayment of Antarctica

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Williams, T.; Boswell, S.; Licht, K.; Agrios, L.; Brachfeld, S. A.; van de Flierdt, T.; Kuhn, G.; Hillenbrand, C. D.; Zhai, X.

    2016-12-01

    The geochemical and geochronological fingerprint of rock debris eroded and carried by ice streams may be used to identify the provenance of iceberg-rafted debris (IRD) in the marine sediment record. During deglacial times it has been shown that there is an increase in IRD accumulation in marine sediments underlying the western limb of the Weddell Gyre. We seek to find the provenance of this IRD, identify the ice streams contributing to the IRD load, and interpret the geographic sequence of ice sheet retreat in the Weddell Sea embayment for the last three deglaciations. In December 2014 we conducted fieldwork to collect samples of rock and sediment debris carried by three of the major ice streams draining the Weddell Sea embayment: the Foundation Ice Stream, the Academy Glacier, and the Recovery Glacier. We sampled both modern moraines at the edges of the ice streams and older till on hillsides next to the ice streams. In addition to rocks representing the geology of local outcrops, we found that each of the three ice streams carries a characteristic set of erratic lithologies from further upstream, giving clues to the geology hidden under the ice sheet. Downstream, subglacial till and proximal glaciomarine sediment from existing core sites located at the edge of the Filchner and Ronne Ice Shelves, collected on past expeditions of the RV Polarstern, characterize the geochemical and geochronological fingerprint along ice flow lines extending from the ice streams. Finally, two deep-water RV Polarstern sites contain a continuous record of IRD sourced from the set of Weddell embayment ice streams over the last few glacial cycles. Here we present new 40Ar/39Ar hornblende and biotite thermochronological data from individual mineral grains, K-Ar from the silt fraction, and U-Pb zircon geochronology from the onshore tills and offshore sediments. Using this data we will discuss provenance matching between the IRD and the ice streams, and the possibilities for using provenance to understand ice sheet dynamics over the course of glacial cycles.

  12. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    USGS Publications Warehouse

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Pyrethroids are hydrophobic compounds that have been observed to accumulate in sediments (Laskowski 2002). Toxicity of pyrethroids in field-collected sediment from small urban streams (Weston et al. 2005; Holmes et al. 2008; Ding et al. 2010; Domagalski et al. 2010) or with pyrethroids spiked into sediment (Amweg et al. 2006; Hintzen et al. 2009) have been evaluated primarily in 10 day lethality tests conducted with the amphipod Hyalella azteca. However, the sublethal effects in long-term exposures to pyrethroids in sediment have not been evaluated, and the distribution of pyrethroids sediments has not typically been evaluated in wadeable streams (Gilliom et al. 2006). This article is the second in a series that describe the results of a study of the distribution and toxicity of pyrethroids and other co-occurring trace elements and organic contaminants (PCBs, PAHs, OC pesticides) in stream sediments from 7 metropolitan areas across the United States (Moran et al. 2012). The study evaluated 98 sediment samples collected from streams ranging from undeveloped to highly urban and differs from previous studies by sampling larger wadeable streams and avoiding point sources (such as storm drains) and other inflows (Gilliom et al. 2006). Part 1 of the series characterizes sediment contaminants in relation to urbanization and other factors in the 7 metropolitan study areas (Nowell et al. 2012). Part 2 (this article) evaluates relationships between sediment chemistry and sediment toxicity in 28 day whole-sediment exposures conducted with the amphipod H. azteca and in 10 day whole-sediment exposure conducted with the midge Chironomus dilutus (USEPA United States Environmental Protection Agency 2000; ASTM American Society for Testing and Materials International 2012). Toxicity end points evaluated in the amphipod and midge exposures included the effects of these field-collected sediments on survival, weight, or biomass of the test organisms.

  13. Relations Among the Use, Occurrence, and Flux of Azoxystrobin, Propiconazole, and Other Fungicides in US Streams, 2005-06

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.; Sandstrom, M. W.

    2007-05-01

    Fungicides account for 10 percent of global pesticide use (0.25 million metric tons per year), and 6 percent of US use (33 thousand metric tons per year). Some fungicides such as chlorothalonil have been in use for decades (first US registration in 1966), while others such as azoxystrobin were introduced in the last decade (first US sales in 1996). Fungicide fate and transport is not well understood, but recent investigations have detected fungicides in precipitation, groundwater, streams, and streambed sediment. The occurrence of Asian soybean rust in the Southern US is of concern because of the increase in fungicide use that would result if it spreads to the Central US during the growing season. In the Central US many growers have never used fungicides to protect soybeans. The purpose of this study is to collect baseline data on fungicide occurrence in streams prior to the spread of Asian rust to soybeans in the Central US and the anticipated increase in fungicide use to control the rust. These data are then used to investigate relations among the occurrence and flux of fungicides in US streams, and the use of those products within the associated drainage basins. Water samples from streams in the Southern and Central US were collected in 2005 (26 sites, 40 samples) and 2006 (16 sites, 41 samples), and analyzed for up to 11 fungicides. This is the first study to monitor for several of these fungicides in environmental samples from locations in this region of the US. Chlorothalonil was used in all study basins but only detected in one sample from 2006. Azoxystrobin was detected in one or more samples from 12 of 26 sites in 2005 and 10 of 16 sites in 2006. Estimated daily fluxes of azoxystrobin ranged from zero to 440 grams/day but were not significantly correlated (p value = 0.3) with estimated azoxystrobin use in the upstream watershed. Estimated daily fluxes of propiconizole ranged from zero to 360 grams/day and were correlated (p value = <0.0001) with estimated propiconizole use. Results indicate that fungicides can readily enter aquatic systems where they may have toxic effects, and that their occurrence and flux in streams may be correlated with regional patterns of fungicide use.

  14. Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005-2006

    USGS Publications Warehouse

    Battaglin, William A.; Sandstrom, Mark W.; Kuivila, Kathryn; Kolpin, Dana W.; Meyer, Michael T.

    2011-01-01

    Fungicides are used to prevent foliar diseases on a wide range of vegetable, field, fruit, and ornamental crops. They are generally more effective as protective rather than curative treatments, and hence tend to be applied before infections take place. Less than 1% of US soybeans were treated with a fungicide in 2002 but by 2006, 4% were treated. Like other pesticides, fungicides can move-off of fields after application and subsequently contaminate surface water, groundwater, and associated sediments. Due to the constant pressure from fungal diseases such as the recent Asian soybean rust outbreak, and the always-present desire to increase crop yields, there is the potential for a significant increase in the amount of fungicides used on US farms. Increased fungicide use could lead to increased environmental concentrations of these compounds. This study documents the occurrence of fungicides in select US streams soon after the first documentation of soybean rust in the US and prior to the corresponding increase in fungicide use to treat this problem. Water samples were collected from 29 streams in 13 states in 2005 and/or 2006, and analyzed for 12 target fungicides. Nine of the 12 fungicides were detected in at least one stream sample and at least one fungicide was detected in 20 of 29 streams. At least one fungicide was detected in 56% of the 103 samples, as many as five fungicides were detected in an individual sample, and mixtures of fungicides were common. Azoxystrobin was detected most frequently (45% of 103 samples) followed by metalaxyl (27%), propiconazole (17%), myclobutanil (9%), and tebuconazole (6%). Fungicide detections ranged from 0.002 to 1.15 μ/L. There was indication of a seasonal pattern to fungicide occurrence, with detections more common and concentrations higher in late summer and early fall than in spring. At a few sites, fungicides were detected in all samples collected suggesting the potential for season-long occurrence in some streams. Fungicide occurrence appears to be related to fungicide use in the associated drainage basins; however, current use information is generally lacking and more detailed occurrence data are needed to accurately quantify such a relation. Maximum concentrations of fungicides were typically one or more orders of magnitude less than current toxicity estimates for freshwater aquatic organisms or humans; however, gaps in current toxicological understandings of the effects of fungicides in the environment limit these interpretations.

  15. Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.

    2008-01-01

    Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.

  16. Hydrogeochemical and stream sediment reconnaissance basic data for Philip Smith Mountains Quadrangle, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-29

    Field and laboratory data are presented for 1128 water samples from the Philip Smith Mountains Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  17. What can one sample tell us? Stable isotopes can assess complex processes in national assessments of lakes, rivers and streams.

    EPA Science Inventory

    Stable isotopes can be very useful in large-scale monitoring programs because samples for isotopic analysis are easy to collect, and isotopes integrate information about complex processes such as evaporation from water isotopes and denitrification from nitrogen isotopes. Traditi...

  18. Generation of kth-order random toposequences

    NASA Astrophysics Data System (ADS)

    Odgers, Nathan P.; McBratney, Alex. B.; Minasny, Budiman

    2008-05-01

    The model presented in this paper derives toposequences from a digital elevation model (DEM). It is written in ArcInfo Macro Language (AML). The toposequences are called kth-order random toposequences, because they take a random path uphill to the top of a hill and downhill to a stream or valley bottom from a randomly selected seed point, and they are located in a streamshed of order k according to a particular stream-ordering system. We define a kth-order streamshed as the area of land that drains directly to a stream segment of stream order k. The model attempts to optimise the spatial configuration of a set of derived toposequences iteratively by using simulated annealing to maximise the total sum of distances between each toposequence hilltop in the set. The user is able to select the order, k, of the derived toposequences. Toposequences are useful for determining soil sampling locations for use in collecting soil data for digital soil mapping applications. Sampling locations can be allocated according to equal elevation or equal-distance intervals along the length of the toposequence, for example. We demonstrate the use of this model for a study area in the Hunter Valley of New South Wales, Australia. Of the 64 toposequences derived, 32 were first-order random toposequences according to Strahler's stream-ordering system, and 32 were second-order random toposequences. The model that we present in this paper is an efficient method for sampling soil along soil toposequences. The soils along a toposequence are related to each other by the topography they are found in, so soil data collected by this method is useful for establishing soil-landscape rules for the preparation of digital soil maps.

  19. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  20. Summary Report For The Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample For Canister S04023

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.

    2013-11-18

    In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.

  1. Design and methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015

    USGS Publications Warehouse

    Sheibley, Rich W.; Morace, Jennifer L.; Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Nakagaki, Naomi; Button, Daniel T.; Qi, Sharon L.

    2017-08-25

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project conducted the Pacific Northwest Stream Quality Assessment (PNSQA) to investigate stream quality across the western part of the Pacific Northwest. The goal of the PNSQA was to assess the health of streams in the region by characterizing multiple water-quality factors that are stressors to in-stream aquatic life and by evaluating the relation between these stressors and the condition of biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowland and Willamette Valley Level III Ecoregions were the focus of this regional study. Findings will help inform the public and policymakers about human and environmental factors that are the most critical in affecting stream quality and, thus, provide insights into possible strategies to protect or improve the health of streams in the region.Land-use data were used in the study to identify and select sites within the region that ranged in levels of urban and agricultural development. A total of 88 sites were selected across the region—69 were on streams that explicitly spanned a range of urban land use in their watersheds, 8 were on streams in agricultural watersheds, and 11 were reference sites with little or no development in their watersheds. Depending on the type of land use, sites were sampled for contaminants, nutrients, and sediment for either a 4- or 10-week period during April, May, and June 2015. This water-quality “index period” was immediately followed with an ecological survey of all sites that included stream habitat, benthic algae, benthic macroinvertebrates, and fish. Additionally, streambed sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing.This report provides a detailed description of the specific study components and methods of the PNSQA, including (1) surveys of stream habitat and aquatic biota, (2) discrete water sampling, (3) deployment of passive polar organic chemical integrative samplers for pesticides and pharmaceuticals, and (4) sampling of streambed sediment. At selected study sites, toxicity testing of streambed sediment, continuous water-quality monitoring, and daily pesticide sampling also were conducted and are described.

  2. Study on the species composition and ecology of anophelines in Addis Zemen, South Gondar, Ethiopia.

    PubMed

    Kindu, Mizan; Aklilu, Esayas; Balkew, Meshesha; Gebre-Michael, Teshome

    2018-03-27

    Malaria is a public health problem in Ethiopia and its transmission is generally unstable and seasonal. For the selection of the most appropriate vector control measures, knowledge on the ecology of the vector is necessary at a local level. Therefore, the objectives of this study were to document the species composition, breeding habitat characteristics and occurrence of anopheline larva in Sheni stream and the vectorial role of the prevailing Anopheles in relation to malaria transmission in Addis Zemen, Ethiopia. Immature anophelines were sampled from breeding habitats and characteristics, such as water temperature, turbidity, water current, water pH and other variables, of the habitats were measured from October 2011 to February 2012. Adult anophelines were sampled inside human dwellings using space spray and Center for Disease Control light traps. Artificial pit shelters and clay pots were also used for outdoor adult collections. Anophelines collected were identified using morphological key. The enzyme-linked immunosorbent assay was applied to detect circumsporozoite proteins of Plasmodium and source of blood meals. A total of 6258 Anopheles larvae were collected and identified morphologically. Five anopheline species were found: An. gambiae (s.l.), An. cinereus, An. demeilloni, An. christi and An. pretoriensis. Anopheles gambiae (s.l.) existed in most of the habitats investigated. Only the former three species were captured in the adult collections. Sun-lit Sheni stream, rain pools, hoof prints, drainage and irrigation canals were found to be habitats of larvae. Anopheles gambiae (s.l.) larvae were most abundantly sampled from sand mining and natural sand pools of Sheni stream. Multiple regression analysis showed that clear, permanent and temporary habitats devoid of mats of algae were the best predictors of An. gambiae (s.l.) larval abundance. It is also the responsible malaria vector in the study area and exhibits anthropophilic and endophagic behaviour. The malaria vector An. gambiae (s.l.) was found in Addis Zemen throughout the study period from both adult and larval collections. Sheni stream is the main larval habitat responsible for the occurrence of anopheline larvae during the dry season of the study area when other breeding sites perish.

  3. Bedload Rating and Flow Competence Curves Vary With Watershed and Bed Material Parameters

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.

    2003-12-01

    Bedload transport rating curves and flow competence curves (largest bedload size for specified flow) are usually not known for streams unless a large number of bedload samples has been collected and analyzed. However, this information is necessary for assessing instream flow needs and stream responses to watershed effects. This study therefore analyzed whether bedload transport rating and flow competence curves were related to stream parameters. Bedload transport rating curves and flow competence curves were obtained from extensive bedload sampling in six gravel- and cobble-bed mountain streams. Samples were collected using bedload traps and a large net sampler, both of which provide steep and relatively well-defined bedload rating and flow competence curves due to a long sampling duration, a large sampler opening and a large sampler capacity. The sampled streams have snowmelt regimes, steep (1-9%) gradients, and watersheds that are mainly forested and relatively undisturbed with basin area sizes of 8 to 105 km2. The channels are slightly incised and can contain flows of more than 1.5 times bankfull with little overbank flow. Exponents of bedload rating and flow competence curves obtained from these measurements were found to systematically increase with basin area size and decrease with the degree of channel armoring. By contrast, coefficients of bedload rating and flow competence curves decreased with basin size and increased with armoring. All of these relationships were well-defined (0.86 < r2 < 0.99). Data sets from other studies in coarse-bedded streams fit the indicated trend if the sampling device used allows measuring bedload transport rates over a wide range and if bedload supply is somewhat low. The existence of a general positive trend between bedload rating curve exponents and basin area, and a negative trend between coefficients and basin area, is confirmed by a large data set of bedload rating curves obtained from Helley-Smith samples. However, in this case, the trends only become visible as basin area sizes span a wide range (1 - 10,000 km2). The well-defined relationships obtained from the bedload trap and the large net sampler suggest that exponents and coefficients of bedload transport rating curves (and flow competence curves) are predictable from an easily obtainable parameter such as basin size. However, the relationships of bedload rating curve exponents and coefficients with basin size and armoring appear to be influenced by the sampling device used and the watershed sediment production.

  4. Water-quality trend analysis and sampling design for streams in North Dakota, 1971-2000

    USGS Publications Warehouse

    Vecchia, Aldo V.

    2003-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historical water-quality trends in selected dissolved major ions, nutrients, and dissolved trace metals for 10 streams in southwestern and eastern North Dakota and to develop an efficient sampling design to monitor future water-quality trends. A time-series model for daily streamflow and constituent concentration was used to identify significant concentration trends, separate natural hydroclimatic variability in concentration from variability that could have resulted from anthropogenic causes, and evaluate various sampling designs to monitor future water-quality trends. The interannual variability in concentration as a result of variability in streamflow, referred to as the annual concentration anomaly, generally was high for all constituents and streams used in the trend analysis and was particularly sensitive to the severe drought that occurred in the late 1980's and the very wet period that began in 1993 and has persisted to the present (2002). Although climatic conditions were similar across North Dakota during the trend-analysis period (1971-2000), significant differences occurred in the annual concentration anomalies from constituent to constituent and location to location, especially during the drought and the wet period. Numerous trends were detected in the historical constituent concentrations after the annual concentration anomalies were removed. The trends within each of the constituent groups (major ions, nutrients, and trace metals) showed general agreement among the streams. For most locations, the largest dissolved major-ion concentrations occurred during the late 1970's and concentrations in the mid- to late 1990's were smaller than concentrations during the late 1970's. However, the largest concentrations for three of the Missouri River tributaries and one of the Red River of the North tributaries occurred during the mid- to late 1990's. Concentration trends for total ammonia plus organic nitrogen showed close agreement among the streams for which that constituent was evaluated. The largest concentrations occurred during the early 1980's, and the smallest concentrations occurred during the early 1990's. Nutrient data were not available for the early 1970's or late 1990's. Although a detailed analysis of the causes of the trends was beyond the scope of this report, a preliminary analysis of cropland, livestock-inventory, and oil-production data for 1971-2000 indicated the concentration trends may be related to the livestock-inventory and oil-production activities in the basins. Dissolved iron and manganese concentrations for the southwestern North Dakota streams generally remained stable during 1971-2000. However, many of the recorded concentrations for those streams were less than the detection limit, and trends that were masked by censoring may have occurred. Several significant trends were detected in dissolved iron and manganese concentrations for the eastern North Dakota streams. Concentrations for those streams either remained stable or increased during most of the 1970's and then decreased rapidly for about 2 years beginning in the late 1970's. The concentrations were relatively stable from the early 1980's to 2000 except at two locations where dissolved iron concentrations increased during the early 1990's. The most efficient overall sampling designs for the detection of annual trends (that is, trends that occur uniformly during the entire year) consisted of balanced designs in which the sampling dates and the number of samples collected remained fixed from year to year and in which the samples were collected throughout the year rather than in a short timespan. The best overall design for the detection of annual trends consisted of three samples per year, with samples collected near the beginning of December, April, and August. That design had acceptable sensitivity for the detection of trends in most constituents at all locations. Little improvement in sensitivity was achieved by collecting more than three samples per year.The sampling designs that were first evaluated for annual trends also were evaluated with regard to their sensitivity to detect seasonal trends that occurred during three seasons--April through August, August through December, and December through April. Design results indicated that an average of one extra sample per station per year resulted in an efficient design for detecting seasonal trends. However, allocation of the extra samples varied depending on the station, month, and constituent group (major ions, nutrients, and trace metals).

  5. Temporal stability and rates of post-depositional change in geochemical signatures of brown trout Salmo trutta scales.

    PubMed

    Ryan, D; Shephard, S; Kelly, F L

    2016-09-01

    This study investigates temporal stability in the scale microchemistry of brown trout Salmo trutta in feeder streams of a large heterogeneous lake catchment and rates of change after migration into the lake. Laser-ablation inductively coupled plasma mass spectrometry was used to quantify the elemental concentrations of Na, Mg, Mn, Cu, Zn, Ba and Sr in archived (1997-2002) scales of juvenile S. trutta collected from six major feeder streams of Lough Mask, County Mayo, Ireland. Water-element Ca ratios within these streams were determined for the fish sampling period and for a later period (2013-2015). Salmo trutta scale Sr and Ba concentrations were significantly (P < 0·05) correlated with stream water sample Sr:Ca and Ba:Ca ratios respectively from both periods, indicating multi-annual stability in scale and water-elemental signatures. Discriminant analysis of scale chemistries correctly classified 91% of sampled juvenile S. trutta to their stream of origin using a cross-validated classification model. This model was used to test whether assumed post-depositional change in scale element concentrations reduced correct natal stream classification of S. trutta in successive years after migration into Lough Mask. Fish residing in the lake for 1-3 years could be reliably classified to their most likely natal stream, but the probability of correct classification diminished strongly with longer lake residence. Use of scale chemistry to identify natal streams of lake S. trutta should focus on recent migrants, but may not require contemporary water chemistry data. © 2016 The Fisheries Society of the British Isles.

  6. Organic waste compounds in streams: Occurrence and aquatic toxicity in different stream compartments, flow regimes, and land uses in southeast Wisconsin, 2006–9

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher

    2013-01-01

    An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste-water-indicator compounds, among others. Urban runoff and storm-related leaks of sanitary sewers and (or) septic systems may be important sources of these and other compounds to the streams. The Kinnickinnic River, a highly urbanized site, had the highest detection rates and concentrations of compounds of all the sampled sites. The Milwaukee River near Cedarburg—one of the least urban sites—and the Outer Milwaukee Harbor site had the lowest detection rates and concentrations. Aquatic-toxicity benchmarks were exceeded for 12 of the 25 compounds with known benchmarks. The compounds with the greatest benchmark exceedances were the PAHs, both in terms of exceedance frequency (up to 93 percent for some compounds in sediment samples) and magnitude (concentrations up to 1,024 times greater than the benchmark value). Other compounds with toxicity-benchmark exceedances include Bis(2-ethylhexyl) phthalate (a plasticizer), 2-Methylnapthalene (a component of fuel and oil), phenol (an antimicrobial disinfectant with diverse uses), and 4-Nonylphenol (sum of all isomers; a detergent metabolite, among other uses). Analyzed as a mixture, the suite of PAH compounds were found to be potentially toxic for most non-base-flow samples. Bioassay tests were conducted on samples from 14 streams: Ceriodaphnia dubia in base-flow samples, Ceriodaphnia dubia and Hyallela azteca in pore-water samples, and Hyallela azteca and Chironomus tentans in sediment samples. The greatest adverse effect was observed in tests with Chironomus tentans from sediment samples. The weight of Chironomus tentans after exposure to sediments decreased with increased OWC concentrations. This was most evident in the relation between PAH results and Chironomus tentans bioassay results for the majority of samples; however, solvents and flame retardants appeared to be important for one site each. These results for PAHs were consistent with assessment of PAH potency factors for sediment, indicating that PAHs were likely to have adverse effects on aquatic organisms in many of the streams studied.

  7. Atrazine concentrations in stream water and streambed sediment pore water in the St. Joseph and Galien River basins, Michigan and Indiana, May 2001-September 2003

    USGS Publications Warehouse

    Duris, Joseph W.; Reeves, Howard W.; Kiesler, James L.

    2005-01-01

    The U.S. Geological Survey (USGS) sampled multiple stream sites across the St. Joseph and Galien River Basins to detect and quantify the herbicide atrazine using a field enzyme-linked immunosorbent assay (ELISA) triazine test. In May 2001, July 2001, April 2002, August 2002, August 2003 and September 2003, composite samples were collected across streams at USGS streamflow-gaging stations. Concentrations and instantaneous loading for atrazine sampled in stream water throughout the St. Joseph River and Galien River Basins in Michigan and Indiana ranged from nondetection (< 0.05 part per billion (ppb)) with an associated load less than 0.001 kilogram per day (kg/d) to 6 ppb and a maximum load of 10 kg/d. Atrazine concentrations were highest in May 2001 just after the planting season. The lowest concentration was found in April 2002 just before planting. Atrazine concentrations in streambed-sediment pore water were not spatially connected with atrazine concentrations in stream-water samples. This study showed that atrazine concentrations were elevated from May to July in the St. Joseph and Galien River Basins. At many sites, concentrations exceeded the level that has been shown to feminize frog populations (0.2 ppb). There were 8 sites where concentrations exceeded 0.2 ppb atrazine in May 2001 and July 2001.

  8. Variable percentage sampler

    DOEpatents

    Miller, Jr., William H.

    1976-01-01

    A remotely operable sampler is provided for obtaining variable percentage samples of nuclear fuel particles and the like for analyses. The sampler has a rotating cup for a sample collection chamber designed so that the effective size of the sample inlet opening to the cup varies with rotational speed. Samples of a desired size are withdrawn from a flowing stream of particles without a deterrent to the flow of remaining particles.

  9. Evaluation of coal-mining impacts using numerical classification of benthic invertebrate data from streams draining a heavily mined basin in eastern Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.

    1986-01-01

    Coal-mining impacts on Smoky Creek, eastern Tennessee were evaluated using water quality and benthic invertebrate data. Data from mined sites were also compared with water quality and invertebrate fauna found at Crabapple Branch, an undisturbed stream in a nearby basin. Although differences in water quality constituent concentrations and physical habitat conditions at sampling sites were apparent, commonly used measures of benthic invertebrate sample data such as number of taxa, sample diversity, number of organisms, and biomass were inadequate for determining differences in stream environments. Clustering algorithms were more useful in determining differences in benthic invertebrate community structure and composition. Normal (collections) and inverse (species) analyses based on presence-absence data of species of Ephemeroptera, Plecoptera, and Tricoptera were compared using constancy, fidelity, and relative abundance of species found at stations with similar fauna. These analyses identified differences in benthic community composition due to seasonal variations in invertebrate life histories. When data from a single season were examined, sites on tributary streams generally clustered separately from sites on Smoky Creek. These analyses compared with differences in water quality, stream size, and substrate characteristics between tributary sites and the more degraded main stem sites, indicated that numerical classification of invertebrate data can provide discharge-independent information useful in rapid evaluations of in-stream environmental conditions. (Author 's abstract)

  10. Occurrence of fecal coliform bacteria in selected streams in Wyoming, 1990-99

    USGS Publications Warehouse

    Clark, Melanie L.; Norris, Jodi R.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Environmental Quality (WDEQ), is collecting water samples for analysis of fecal coliform bacteria at 18 stream sites as part of a statewide network. Contamination by bacteria of fecal origin in streams where contact recreation is a designated water use is a concern because of potential public-health risk from the presence of enteric pathogens. Fecal coliform concentrations are temporally and spatially variable in Wyoming streams-concentrations ranged from less than 1 to 45,000 colonies per 100 milliliters of water during 1990-99. Fecal coliform concentrations were less than the water-quality criterion of 400 colonies per 100 milliliters in 83 percent of the samples, indicating fecal coliform contamination is not a widespread problem in these Wyoming streams. However, 14 of the 18 monitoring sites had at least one sample in which the fecal coliform concentration exceeded 400 colonies per 100 milliliters at some time during the 10-year period. Fecal coliform concentrations generally are higher during April through September than during October through March. The higher concentrations coincide with the time period when the public-health risk is higher because summer months are when contact recreation use is more likely occurring. Fecal coliform concentrations were positively correlated with discharge and stream temperature and generally were negatively correlated with pH, specific conductance, and dissolved oxygen.

  11. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    USGS Publications Warehouse

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  12. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    USGS Publications Warehouse

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  13. Estimated fecal coliform bacteria concentrations using near real-time continuous water-quality and streamflow data from five stream sites in Chester County, Pennsylvania, 2007–16

    USGS Publications Warehouse

    Senior, Lisa A.

    2017-09-15

    Several streams used for recreational activities, such as fishing, swimming, and boating, in Chester County, Pennsylvania, are known to have periodic elevated concentrations of fecal coliform bacteria, a type of bacteria used to indicate the potential presence of fecally related pathogens that may pose health risks to humans exposed through water contact. The availability of near real-time continuous stream discharge, turbidity, and other water-quality data for some streams in the county presents an opportunity to use surrogates to estimate near real-time concentrations of fecal coliform (FC) bacteria and thus provide some information about associated potential health risks during recreational use of streams.The U.S. Geological Survey (USGS), in cooperation with the Chester County Health Department (CCHD) and the Chester County Water Resources Authority (CCWRA), has collected discrete stream samples for analysis of FC concentrations during March–October annually at or near five gaging stations where near real-time continuous data on stream discharge, turbidity, and water temperature have been collected since 2007 (or since 2012 at 2 of the 5 stations). In 2014, the USGS, in cooperation with the CCWRA and CCHD, began to develop regression equations to estimate FC concentrations using available near real-time continuous data. Regression equations included possible explanatory variables of stream discharge, turbidity, water temperature, and seasonal factors calculated using Julian Day with base-10 logarithmic (log) transformations of selected variables.The regression equations were developed using the data from 2007 to 2015 (101–106 discrete bacteria samples per site) for three gaging stations on Brandywine Creek (West Branch Brandywine Creek at Modena, East Branch Brandywine Creek below Downingtown, and Brandywine Creek at Chadds Ford) and from 2012 to 2015 (37–38 discrete bacteria samples per site) for one station each on French Creek near Phoenixville and White Clay Creek near Strickersville. Fecal coliform bacteria data collected by USGS in 2016 (about nine samples per site) were used to validate the equations. The best-fit regression equations included log turbidity and seasonality factors computed using Julian Day as explanatory variables to estimate log FC concentrations at all five stream sites. The adjusted coefficient of determination for the equations ranged from 0.61 to 0.76, with the strength of the regression equations likely affected in part by the limited amount and variability of FC bacteria data. During summer months, the estimated and measured FC concentrations commonly were greater than the Pennsylvania Department of Environmental Protection established standards of 200 and 400 colonies per 100 milliliters for water contact from May through September at the 5 stream sites, with concentrations typically higher at 2 sites (White Clay Creek and West Branch Brandywine Creek at Modena) than at the other 3 sites. The estimated concentrations of FC bacteria during the summer months commonly were higher than measured concentrations and therefore could be considered cautious estimates of potential human-health risk. Additional water-quality data are needed to maintain and (or) improve the ability of regression equations to estimate FC concentrations by use of surrogate data.

  14. Water quality data at selected sites in the Mississippi Valley-type Zn-Pb ore district of upper Silesia, Poland, 1995-97

    USGS Publications Warehouse

    Wirt, Laurie; Motyka, Jacek; Leach, David; Sass-Gustkiewicz, Maria; Szuwarzynski, Marek; Adamczyk, Zbigniew; Briggs, Paul; Meiers, Al

    2003-01-01

    The water chemistry of aquifers and streams in the Upper Silesia Ore District, Poland are affected by their proximity to zinc, lead, and silver ores and by ongoing mining activities that date back to the 11th century. This report presents hydrologic and water-quality data collected as part of a collaborative research effort of the U.S. Geological Survey and the University of Mining and Metallurgy in Cracow, Poland to study Mississippi-Valley-Type lead-zinc deposits. MVT deposits in the Upper Silesia Ore District (Fig. 1) were selected for detailed study because the Polish mining industry allowed access to collect samples from underground mines and mine-land property. Water-quality samples were collected from streams, springs, wells, underground mine seeps and drains; and mine-tailings ponds. Data include field measurements of specific conductance, pH, water temperature, and dissolved oxygen and laboratory analyses of major and minor inorganic constituents and selected trace-element constituents.

  15. Nutrients and organic compounds in Deer Creek and south branch Plum Creek in southwestern Pennsylvania, April 1996 through September 1998

    USGS Publications Warehouse

    Williams, D.R.; Clark, M.E.

    2001-01-01

    This report presents results of an analysis of nutrient and pesticide data from two surface-water sites and volatile organic compound (VOC) data from one of the sites that are within the Allegheny and Monongahela River Basins study unit of the National Water-Quality Assessment Program of the U.S. Geological Survey. The Deer Creek site was located in a 27.0 square-mile basin within the Allegheny River Basin in Allegheny County. The primary land uses consist of small urban areas, large areas of residential housing, and some agricultural land in the upper part of the basin. The South Branch Plum Creek site was located in a 33.3 square-mile basin within the Allegheny River Basin in Indiana County. The primary land uses throughout this basin are mostly agriculture and forestland.Water samples for analysis of nutrients were collected monthly and during high-flow events from April 1996 through September 1998. Concentrations of dissolved nitrite, dissolved ammonia plus organic nitrogen, and dissolved phosphorus were less than the method detection limits in more than one-half of the samples collected. The median concentration of dissolved nitrite plus nitrate in South Branch Plum Creek was 0.937 mg/L and 0.597 mg/L in Deer Creek. The median concentration of dissolved orthophosphate was 0.01 mg/L in both streams. High loads of nitrate were measured in both streams from March to June. Concentrations of dissolved ammonia nitrogen, dissolved nitrate, and total phosphorus were lower during the summer months. Measured concentrations of nitrate nitrogen in both streams were well below the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 10 mg/L.Water samples for analysis of pesticides were collected throughout 1997 in both streams and during a storm event on August 25-26, 1998, in Deer Creek. Samples were collected monthly at both sites and more frequently during the spring and early summer months to coincide with application of pesticides. Seventy-eight pesticides and 7 pesticide metabolites were analyzed in 31 samples collected in Deer Creek and in 18 samples collected in South Branch Plum Creek. Of the 85 pesticides and pesticide metabolites analyzed, 25 of the pesticides were detected at least once in Deer Creek, and 20 of the pesticides were detected at least once in South Branch Plum Creek. Atrazine was the most commonly detected pesticide in both streams. There was a distinct seasonal pattern of atrazine, simazine, and metolachlor concentrations measured at both sites.Prometon was detected in 3 of the 18 samples collected in South Branch Plum Creek in 1997 and in 28 of the 31 samples collected in Deer Creek in both 1997 and 1998. Prometon generally is applied in conjunction with asphalt paving projects and is commonly used in residential areas. The highest measured concentrations of prometon detected in Deer Creek were in the five storm samples collected on August 25-26, 1998.At the Deer Creek site, 9 of the 25 pesticides detected throughout the study were detected only in the sample collected on June 13, 1997. Those nine pesticides included acifluorfen, bentazon, bromoxynil, dicamba, dichlorprop, fenuron, linuron, MCPA, and neburon. Nine other pesticides also were detected in that sample.All concentrations of pesticides were well below established drinking-water guidelines. The maximum measured concentration of diazinon in Deer Creek (0.097 µg/L) and South Branch Plum Creek (0.974 µg/L) exceeded the aquatic life guideline of 0.009 µg/L established by the National Academy of Sciences/National Academy of Engineers. The maximum measured concentration of azinphos-methyl in South Branch Plum Creek (an estimated value of 0.033 µg/L) exceeded the chronic aquatic-life guideline of 0.01 µg/L established by the USEPA.Twenty-five samples were collected from Deer Creek and analyzed for volatile organic compounds (VOCs). Of 87 VOCs analyzed for, 22 were detected at least once, and 12 were gasoline-related compounds. Acetone, benzene, carbon disulfide, meta/paraxylene, methyl chloride, MTBE, p-isopropyl toluene, toluene, and 1,2,4-trimethylbenzene were each detected in five or more samples. VOCs generally were detected during the colder winter months and not frequently during the summer months.The maximum measured concentrations of benzene, ethylbenzene, o-dichlorobenzene, styrene, and toluene were two or more orders of magnitude lower than the MCLs established by the USEPA.

  16. Macroinvertebrate diversity loss in urban streams from tropical forests.

    PubMed

    Docile, Tatiana N; Figueiró, Ronaldo; Portela, Clayton; Nessimian, Jorge L

    2016-04-01

    The increase of human activities in recent years has significantly interfered and affected aquatic ecosystems. In this present study, we investigate the effects of urbanization in the community structure of aquatic macroinvertebrates from Atlantic Forest streams. The sampling was conducted in the mountainous region of the State of Rio de Janeiro, Brazil in 10 urban and 10 preserved streams during the dry season (August-September) of 2012. The streams were characterized for its environmental integrity conditions and physico-chemical properties of water. The macroinvertebrates were sampled on rocky substrates with a kicknet. A total of 5370 individuals were collected from all streams and were distributed among Ephemeroptera, Odonata, Plecoptera, Hemiptera, Megaloptera, Coleoptera, Trichoptera, Lepidoptera, and Diptera. In urban sites, all those orders were found, except Megaloptera, while only Mollusca was not found in preserved streams. We performed a non-metric multidimensional scaling (NMDS) analysis that separated two groups distributed among sites in urban communities and another group outside this area. The dominance was significantly higher at urban sites, while the α diversity and equitability were greater in preserved sites. A canonical correspondence analysis (CCA) was also performed, indicating that most taxa associated with high values of the Habitat Integrity Index (HII) and a few genus of the order Diptera with the high values of ammonia, total nitrogen, associated to streams in urban sites. Urban and preserved streams differ by physical-chemical variables and aquatic macroinvertebrates. In urban streams, there is most dominance, while α diversity and equitability are higher in preserved streams.

  17. Characterization of Water Quality in Unmonitored Streams in the Mississippi Alluvial Plain, Northwestern Mississippi, May-June 2006

    USGS Publications Warehouse

    Bryson, Jeannie R.; Coupe, Richard H.; Manning, Michael A.

    2007-01-01

    The Mississippi Department of Environmental Quality is required to develop restoration and remediation plans for water bodies not meeting their designated uses, as stated in the U.S. Environmental Protection Agency's Clean Water Act section 303(d). The majority of streams in northwestern Mississippi are on the 303(d) list of water-quality limited waters. Agricultural effects on streams in northwestern Mississippi have reduced the number of unimpaired streams (reference streams) for water-quality comparisons. As part of an effort to develop an index to assess impairment, the U.S. Geological Survey collected water samples from 52 stream sites on the 303(d) list during May-June 2006, and analyzed the samples for nutrients and chlorophyll. The data were analyzed by trophic group as determined by total nitrogen concentrations. Seven constituents (nitrite plus nitrate, total Kjeldhal nitrogen, total phosphorus, orthophosphorus, total organic carbon, chlorophyll a, and pheophytina) and four physical property measurements (specific conductance, pH, turbidity, and dissolved oxygen) were determined to be significantly different (p < 0.05) between trophic groups. Total Kjeldhal nitrogen, turbidity, and dissolved oxygen were used as indicators of stream productivity with which to infer stream health. Streams having high total Kjeldhal nitrogen values and high turbidity values along with low dissolved oxygen concentrations were typically eutrophic abundant in nutrients), whereas streams having low total Kjeldhal nitrogen values and low turbidity values along with high dissolved oxygen concentrations were typically oligotrophic (deficient in nutrients).

  18. Stellar Streams in the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.; PAndAS Collaboration

    2011-05-01

    The PAndAS survey detects RGB and AGB stars in our neighbor galaxy M31, out to 150 kpc from the galaxy center with an extension to M33. Maps of this survey display a spectacular collection of stellar streams extending tens to hundreds of kpc in length. Many of these streams overlap with each other or with M31's central regions, making it difficult to disentangle the different streams. I discuss what is currently known about the nature, origin, significance, and eventual fate of these stellar streams. Photometric observations from the PAndAS survey and follow-up work constrain the metallicity, age, luminosity, and stellar mass of the stellar population. I discuss scenarios for how some of these streams formed, while for others their origin remains a mystery. I present observationally constrained numerical simulations for the formation of some of the streams. The streams also are probes of the mass profile and lumpiness of M31's dark matter halo. Spectroscopic samples are used to constrain M31's halo mass at large radius.

  19. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 1999-2000

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were determined by Zeeman-corrected graphitefurnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Concentrations of Cl, NO3, Br, and SO4 were determined by IC. Concentrations of Fe(II) and Fe(total) were determined by the ferrozine colorimetric method. Concentrations of NO2 were determined by colorimetry using matrix-matched standards. Concentrations of NH4 were determined by IC, with reanalysis by colorimetry where separation of Na and NH4 peaks was poor. Dissolved organic carbon (DOC) concentrations were determined by the wet persulfate oxidation method.

  20. Assessment of elemental concentrations in streams of the New Lead Belt in southeastern Missouri, 2002-05

    USGS Publications Warehouse

    Brumbaugh, William G.; May, Thomas W.; Besser, John M.; Allert, Ann L.; Schmitt, Christopher J.

    2007-01-01

    Concerns about possible effects of lead-mining activities on the water quality of federally protected streams located in southeastern Missouri prompted a suite of multidisciplinary studies to be conducted by the U.S. Geological Survey. As part of this investigation, a series of biological studies were initiated in 2001 for streams in the current mining region and the prospecting area. In this report, results are examined for trace elements and other selected chemical measurements in sediment, surface water, and sediment interstitial (pore) water sampled between 2002 and 2005 in association with these biological studies. Compared to reference sites, fine sediments collected downstream from mining areas were enriched in metals by factors as large as 75 for cadmium, 62 for cobalt, 171 for nickel, 95 for lead, and 150 for zinc. Greatest metal concentrations in sediments collected in 2002 were from sites downstream from mines on Strother Creek, Courtois Creek, and the West Fork Black River. Sediments from sites on Bee Fork, Logan Creek, and Sweetwater Creek also were noticeably enriched in lead. Sediments in Clearwater Lake, at least 75 kilometers downstream from mining activity, had metal concentrations that were 1.5 to 2.1 times greater than sediments in an area of the lake with no upstream mining activity. Longitudinal sampling along three streams in 2004 indicated that sediment metal concentrations decreased considerably a few kilometers downstream from mining activities; however, in Strother Creek some metals were still enriched by a factor of five or more as far as 13 kilometers downstream from the Buick tailings impoundment. Compared with 2002 samples, metals concentrations were dramatically lower in sediments collected in 2004 at an upper West Fork Black River site, presumably because beneficiation operations at the West Fork mill ceased in 2000. Concentrations of metals and sulfate in sediment interstitial (pore) waters generally tracked closely with metal concentrations in sediments. Metals, including cobalt, nickel, lead, and zinc, were elevated substantially in laboratory-produced pore waters of fine sediments collected near mining operations in 2002 and 2004. Passive diffusion samplers (peepers) buried 4 to 6 centimeters deep in riffle-run stream sediments during 2003 and 2005 had much lower pore-water metal concentrations than the laboratory-produced pore waters of fine sediments collected in 2002 and 2004, but each sampling method produced similar patterns among sites. The combined mean concentration of lead in peeper samples from selected sites located downstream from mining activities for six streams was about 10-fold greater than the mean of the reference sites. In most instances, metals concentrations in surface water and peeper water were not greatly different, indicating considerable exchange between the surface water and pore water at the depths and locations where peepers were situated. Passive sampling probes used to assess metal lability in pore waters of selected samples during 2004 sediment toxicity tests indicated that most of the filterable lead in the laboratory-prepared pore water was relatively non-labile, presumably because lead was complexed by organic matter, or was present as colloidal species. In contrast, large percentages of cobalt and nickel in pore water appeared to be labile. Passive integrative samplers deployed in surface water for up to 3 weeks at three sites in July 2005 confirmed the presence of elevated concentrations of labile metals downstream from mining operations on Strother Creek and, to a lesser extent, Bee Fork. These samplers also indicated a considerable increase in metal loadings occurred for a few days at the Strother Creek site, which coincided with moderate increases in stream discharges in the area.

  1. Stream-water and groundwater quality in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area, Pottawatomie County, Oklahoma, 2012-13

    USGS Publications Warehouse

    Becker, Carol J.

    2014-01-01

    Concentrations of the radionuclide uranium ranged from 0.03 to 79.5 µg/L, with a median concentration of 1.9 µg/L in the 30 groundwater samples collected. Two of the groundwater samples collected for this study had uranium concentrations exceeding the MCL of 30 µg/L, with concentrations of 79.5 and 31.1 µg/L. Generally, uranium concentrations were highest in water samples collected from wells completed in the Wellington Formation and the Chase, Council Grove, and Admire Groups in the southern and eastern parts of the study area.

  2. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on eroding floodplain surfaces and channel banks within heavily grazed reaches of the stream.

  3. Water-quality, bed-sediment, and biological data (October 2009 through September 2010) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2012-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2009 through September 2010. Bed-sediment and biota samples were collected once at 13 sites during August 2010. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2009 through September 2010. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  4. Water-quality, bed-sediment, and biological data (October 2011 through September 2012) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2014-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2011 through September 2012. Bed-sediment and biota samples were collected once at 13 sites during August 2012. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2011 through September 2012. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record since 1985.

  5. Molecular Detection and Characterization of Gastroenteritis Viruses Occurring Naturally in the Stream Waters of Manaus, Central Amazônia, Brazil▿

    PubMed Central

    Miagostovich, Marize P.; Ferreira, Fabiana F. M.; Guimarães, Flávia R.; Fumian, Túlio M.; Diniz-Mendes, Leonardo; Luz, Sérgio Luiz B.; Silva, Luciete A.; Leite, José Paulo G.

    2008-01-01

    To assess the presence of the four main viruses responsible for human acute gastroenteritis in a hydrographic network impacted by a disordered urbanization process, a 1-year study was performed involving water sample collection from streams in the hydrographic basin surrounding the city of Manaus, Amazonas, Brazil. Thirteen surface water sample collection sites, including different areas of human settlement characterized as urban, rural, and primary forest, located in the Tarumã-Açu, São Raimundo, Educandos, and Puraquequara microbasins, were defined with a global positioning system. At least one virus was detected in 59.6% (31/52) of the water samples analyzed, and rotavirus was the most frequent (44.2%), followed by human adenovirus (30.8%), human astrovirus (15.4%), and norovirus (5.8%). The viral contamination observed mainly in the urban streams reflected the presence of a local high-density population and indicated the gastroenteritis burden from pathogenic viruses in the water, principally due to recreational activities such as bathing. The presence of viral genomes in areas where fecal contamination was not demonstrated by bacterial indicators suggests prolonged virus persistence in aquatic environments and emphasizes the enteric virus group as the most reliable for environmental monitoring. PMID:18065620

  6. Water-quality, stream-habitat, and biological data for West Fork Double Bayou, Cotton Bayou, and Hackberry Gully, Chambers County, Texas, 2006-07

    USGS Publications Warehouse

    Brown, Dexter W.; Turco, Michael J.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, collected water-quality, stream-habitat, and biological data from two sites at West Fork Double Bayou, two sites at Cotton Bayou, and one site at Hackberry Gully in Chambers County, Texas, during July 2006-August 2007. Water-quality data-collection surveys consisted of synoptic 24-hour continuous measurements of water temperature, pH, specific conductance, and dissolved oxygen at the five sites and periodically collected samples at four sites analyzed for several properties and constituents of interest. Stream-habitat data were collected at each of four sites three times during the study. At each site, a representative stream reach was selected and within this reach, five evenly spaced stream transects were determined. At each transect, stream attributes (wetted channel width, water depth, bottom material, instream cover) and riparian attributes (bank slope and erosion potential, width of natural vegetation, type of vegetation, percentage tree canopy) were measured. Benthic macroinvertebrate and fish data were collected from the same reaches identified for habitat evaluation. A total of 2,572 macroinvertebrate individuals were identified from the four reaches; insect taxa were more abundant than non-insect taxa at all reaches. A total of 1,082 fish, representing 30 species and 13 families, were collected across all reaches. Stream-habitat and aquatic biota (benthic macroinvertebrates and fish) were assessed at the four sites to evaluate aquatic life use. Habitat quality index scores generally indicated 'intermediate' aquatic life use at most reaches. Benthic macroinvertebrate metrics scores indicated generally 'intermediate' aquatic life use for the West Fork Double Bayou reaches and generally 'high' aquatic life use for the Cotton Bayou and Hackberry Gully reaches. Index of biotic integrity scores for fish indicated generally 'high' aquatic life use at one West Fork Double Bayou reach; 'intermediate' aquatic life use at the other West Fork Double Bayou reach; and generally 'intermediate' aquatic life use at the Cotton Bayou and Hackberry Gully reaches.

  7. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuckfield, C; J V Mcarthur

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.« less

  8. Regional Geochemical Results from Analyses of Stream-Water, Stream-Sediment, Soil, Soil-Water, Bedrock, and Vegetation Samples, Tangle Lakes District, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Gough, L.P.; Wanty, R.B.; Lee, G.K.; Vohden, James; O'Neill, J. M.; Kerin, L.J.

    2008-01-01

    We report chemical analyses of stream-water, stream-sediment, soil, soil-water, bedrock, and vegetation samples collected from the headwaters of the Delta River (Tangle Lakes District, Mount Hayes 1:250,000-scale quadrangle) in east-central Alaska for the period June 20-25, 2006. Additionally, we present mineralogic analyses of stream sediment, concentrated by panning. The study area includes the southwestward extent of the Bureau of Land Management (BLM) Delta River Mining District (Bittenbender and others, 2007), including parts of the Delta River Archeological District, and encompasses an area of about 500 km2(approximately bordered by the Denali Highway to the south, near Round Tangle Lake, northward to the foothills of the Alaska Range (fig. 1). The primary focus of this study was the chemical characterization of native materials, especially surface-water and sediment samples, of first-order streams from the headwaters of the Delta River. The impetus for this work was the need, expressed by the Alaska Department of Natural Resources (ADNR), for an inventory of geochemical and hydrogeochemical baseline information about the Delta River Mining District. This information is needed because of a major upturn in exploration, drilling, and general mineral-resources assessments in the region since the late 1990s. Currently, the study area, called the 'MAN Project' area is being explored by Pure Nickel, Inc. (http://www.purenickel.com/s/MAN_Alaska.asp), and includes both Cu-Au-Ag and Ni-Cu-PGE (Pt-Pd-Au-Ag) mining claims. Geochemical data on surface-water, stream-sediment, soil, soil-water, grayleaf willow (Salix glauca L.), and limited bedrock samples are provided along with the analytical methodologies used and panned-concentrate mineralogy. We are releasing the data at this time with only minimal interpretation.

  9. Water-Quality, Bed-Sediment, and Biological Data (October 2005 through September 2006) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2007-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2005 through September 2006. Bed-sediment and biological samples were collected once at 12 sites during August 2006. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2005 through September 2006. Water-quality data include concentrations of selected major ions, trace ele-ments, and suspended sediment. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  10. Hydroecology of Intermittent and Ephemeral Streams: Will Landscape Connectivity Sustain Aquatic Organisms in a Changing Climate?

    DTIC Science & Technology

    2015-07-24

    Huachuca. ........... 16 Table 2.1 Number of samples collected per year , season, and hydrological category from each of the 7 streams...reaches are reaches with streamflow during all times of the year . Ephemeral reaches are characterized by short duration streamflow events occurring...continuously for only certain times of the year and are supported by sources such as bedrock springs, melting snow or repeated monsoon events

  11. Effects of Urbanization on Stream Water Quality in the City of Atlanta, Georgia, USA

    NASA Astrophysics Data System (ADS)

    Peters, N. E.

    2009-05-01

    A long-term stream water-quality monitoring network was established in the City of Atlanta (COA) during 2003 to assess baseline water-quality conditions and the effects of urbanization on stream water quality. Routine hydrologically-based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted approximately 12 times per year at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) water-quality stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature, and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water-quality and sediment-related constituents. This paper summarizes an evaluation of field parameters and concentrations of major ions, minor and trace metals, nutrient species (nitrogen and phosphorus), and coliform bacteria among stations and with respect to watershed characteristics and plausible sources from 2003 through September 2007. The concentrations of most constituents in the COA streams are statistically higher than those of two nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. The combination of routine manual sampling, automatic sampling during stormflows, and real-time water-quality monitoring provided sufficient information about the variability of urban stream water quality to develop hypotheses for causes of water-quality differences among COA streams. Fecal coliform bacteria concentrations of most individual samples at each station exceeded Georgia's water-quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s), and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. Water quality of one stream was highly affected by the dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum manufacturing plant in the watershed; streamwater has low pH (<5), low alkalinity and high concentrations of minor and trace metals. Several trace metals (Cu, Pb and Zn) exceed acute and chronic water-quality standards and the high concentrations are attributed to washoff from impervious surfaces.

  12. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-31

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  13. FireHose Streaming Benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karl Anderson, Steve Plimpton

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the stream of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created inmore » the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less

  14. Vermont EPSCoR Streams Project: Engaging High School and Undergraduate Students in Watershed Research

    NASA Astrophysics Data System (ADS)

    Ray, E.; McCabe, D.; Sheldon, S.; Jankowski, K.; Haselton, L.; Luck, M.; van Houten, J.

    2009-12-01

    The Vermont EPSCoR Streams Project engages a diverse group of undergraduates, high school students, and their teachers in hands-on water quality research and exposes them to the process of science. The project aims to (1) recruit students to science careers and (2) create a water quality database comprised of high-quality data collected by undergraduates and high school groups. The project is the training and outreach mechanism of the Complex Systems Modeling for Environmental Problem Solving research program, an NSF-funded program at the University of Vermont (UVM) that provides computational strategies and fresh approaches for understanding how natural and built environments interact. The Streams Project trains participants to collect and analyze data from streams throughout Vermont and at limited sites in Connecticut, New York, and Puerto Rico. Participants contribute their data to an online database and use it to complete individual research projects that focus on the effect of land use and precipitation patterns on selected measures of stream water quality. All undergraduates and some high school groups are paired with a mentor, who is either a graduate student or a faculty member at UVM or other college. Each year, undergraduate students and high school groups are trained to (1) collect water and macroinvertebrate samples from streams, (2) analyze water samples for total phosphorus, bacteria, and total suspended solids in an analytical laboratory, and/or (3) use geographic information systems (GIS) to assess landscape-level data for their watersheds. After training, high school groups collect samples from stream sites on a twice-monthly basis while undergraduates conduct semi-autonomous field and laboratory research. High school groups monitor sites in two watersheds with contrasting land uses. Undergraduate projects are shaped by the interests of students and their mentors. Contribution to a common database provides students with the option to expand the scope of their analyses and produce more powerful results than any one team could have produced alone. The year of research culminates in a final project that is presented at a symposium. The project is in its second year and has received positive feedback from outside reviewers. Participants leave the project with a greater understanding of watershed research. Immediate outcomes include nearly 60 participant projects, an online publicly-accessible shared dataset, and Web-based macroinvertebrate identification keys. We found that the best training strategies make the material and concepts explicit. To this end, the project is enhancing its Web interface, which will soon include tutorials on water quality and an interactive map through which participants will have access to watershed-level spatial information such as land use, bedrock, soils, and transportation infrastructure. Ultimately, the data from the project can inform public debate and aid resource managers in implementing watershed restoration and protection projects.

  15. Tracing organic and inorganic pollution sources of soils and water resources in Güzelhisar Basin of Aegean Region, Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Kurucu, Yusuf; Anac, Dilek; Düring, Rolf-Alexander

    2017-04-01

    This study was carried out to determine the residue level of major concern organic and inorganic pollutants in Güzelhisar Basin of Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel mills, but also areas of agriculture. Soil samples were collected from GPS determined points at 0-30 and 30-60 cm depth of a grid system of 2.5 km to the east and 2.5 km to the west of the Güzelhisar stream. The area was grouped into three main areas as West, Middle, and East region. Water and sediment samples were collected from the Güzelhisar stream and from Güzelhisar dam every 30 kilometers which is already contaminated due to industrial facilities in Aliaga, is used to irrigate the agricultural land. Soil pH of the research area was determined within the range from 5.87 to 6.61. Topsoil contamination was examined for all investigated elements with the exception of Cd. An increase in pseudo total metal contents of Cr, Cu, Mn, Ni, and Zn was observed with increasing distance from the coast with a simultaneous decrease in pH. Due to the analysis of the organic pollutants, a continuous load with the herbicide trifluralin was determined with a few clearly raised points to a possible load of the stream water. Although HCH-Isomers were not found, DDT (DDT and transformation products) residues were ascertained in the soil samples. With regard to the analysis of the water samples of the Güzelhisar stream and dam, a background load with trifluralin was found which is to be explained with transport processes with regard to utilization of trifluralin in the agricultural areas.

  16. Water and Streambed Sediment Quality, and Ecotoxicology of a Stream along the Blue Ridge Parkway, Adjacent to a Closed Landfill, near Roanoke, Virginia: 1999

    USGS Publications Warehouse

    Ebner, Donna Belval; Cherry, Donald S.; Currie, Rebecca J.

    2004-01-01

    A study was done of the effects of a closed landfill on the quality of water and streambed sediment and the benthic macroinvertebrate community of an unnamed stream and its tributary that flow through Blue Ridge Parkway lands in west-central Virginia. The primary water source for the tributary is a 4-inch polyvinyl chloride (PVC) pipe that protrudes from the slope at the base of the embankment bordering the landfill. An unusual expanse of precipitate was observed in the stream near the PVC pipe. Stream discharge was measured and water and streambed sediment samples were collected at a nearby reference site and at three sites downstream of the landfill in April and September 1999. Water samples were analyzed for major ions, nitrate, total and dissolved metals, total dissolved solids, total organic carbon, and volatile and semivolatile organic compounds, including organochlorine pesticides and polychlorinated biphenyls (PCBs). Streambed sediment samples were analyzed for total metals, total organic carbon, percent moisture, and volatile and semivolatile organic compounds, including organochlorine pesticides and PCBs. The benthic macroinvertebrate community within the stream channel also was sampled at the four chemical sampling sites and at one additional site in April and September. Each of the five sites was assessed for physical habitat quality. Water collected periodically at the PVC pipe discharge between November 1998 and November 1999 was used to conduct 48-hour acute and 7-day chronic toxicity tests using selected laboratory test organisms. Two 10-day chronic toxicity tests of streambed sediments collected near the discharge pipe also were conducted. Analyses showed that organic and inorganic constituents in water from beneath the landfill were discharged into the sampled tributary. In April, 79 percent of inorganic constituents detected in water had their highest concentrations at the site closest to the landfill; at the same site, 59 percent of inorganic constituents detected in streambed sediments were at their lowest concentration. The low dissolved-oxygen concentration and relatively low pH in ground water from beneath the landfill probably had a direct effect on the solubility of metals and other constituents, resulting in the high concentration of inorganic constituents in water, low concentration in sediment, and the development of the precipitate. Most constituents in water in April were progressively lower in concentration from the landfill site downstream. The highest concentrations for 59 percent of constituents detected in sediment were at the farthest downstream site, suggesting that the inorganic constituents came out of solution as the stream water was exposed to the atmosphere. In September, 52 percent of inorganic constituents detected in water were at their highest concentrations at the site nearest the landfill. Of inorganic constituents detected in streambed sediments in September, 60 percent were at their highest concentrations near the landfill. A storm that occurred a few days prior to the September sampling probably affected the preceding steady-state conditions and the distribution of constituents in sediment along the stream. Concentrations of many inorganic constituents in water remained elevated at the farthest downstream site in comparison to the reference site in April and September, indicating that concentrations did not return to background concentrations. In April and September, most of the 17 organic compounds detected in water, including volatile organic and semivolatile organic compounds, were collected in samples near the landfill, and most concentrations were below their respective reporting limits. Probably because of their volatility, few organic compounds were detected at sites downstream of that site. A total of 17 discrete organic compounds were detected in sediment samples in either April or September, including trichloroethene and tetrachloroethene along with their degrad

  17. Large-Scale Effects of Timber Harvesting on Stream Systems in the Ouachita Mountains, Arkansas, USA

    NASA Astrophysics Data System (ADS)

    Williams, Lance R.; Taylor, Christopher M.; Warren, Melvin L., Jr.; Clingenpeel, J. Alan

    2002-01-01

    Using Basin Area Stream Survey (BASS) data from the United States Forest Service, we evaluated how timber harvesting influenced patterns of variation in physical stream features and regional fish and macroinvertebrate assemblages. Data were collected for three years (1990-1992) from six hydrologically variable streams in the Ouachita Mountains, Arkansas, USA that were paired by management regime within three drainage basins. Specifically, we used multivariate techniques to partition variability in assemblage structure (taxonomic and trophic) that could be explained by timber harvesting, drainage basin differences, year-to-year variability, and their shared variance components. Most of the variation in fish assemblages was explained by drainage basin differences, and both basin and year-of-sampling influenced macroinvertebrate assemblages. All three factors modeled, including interactions between drainage basins and timber harvesting, influenced variability in physical stream features. Interactions between timber harvesting and drainage basins indicated that differences in physical stream features were important in determining the effects of logging within a basin. The lack of a logging effect on the biota contradicts predictions for these small, hydrologically variable streams. We believe this pattern is related to the large scale of this study and the high levels of natural variability in the streams. Alternatively, there may be time-specific effects we were unable to detect with our sampling design and analyses.

  18. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, D.H.

    2001-01-01

    Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (δ15N and δ18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the δ15N and δ18O of NO3 provide information about NO3 sources and transformation processes in a large river system (drainage area 2 900 000 km2) that would otherwise be unavailable using concentration and discharge data alone. Results from 42 samples indicate that the δ15N and δ18O ratios between sites on the Mississippi River and its tributaries are somewhat distinctive, and vary with season and discharge rate. Of particular interest are two nearly Lagrangian sample sets, in which samples from the Mississippi River at St Francisville, LA, are compared with samples collected from the Ohio River at Grand Chain, II, and the Mississippi River at Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months.

  19. Water-Chemistry and On-Site Sulfur-Speciation Data for Selected Springs in Yellowstone National Park, Wyoming, 1996-1998

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Schoonen, Martin A.A.; Xu, Yong

    2001-01-01

    Fifty-eight water analyses are reported for samples collected from 19 hot springs and their overflow drainages and one ambient-temperature acid stream in Yellowstone National Park (YNP) during 1996-98. These water samples were collected and analyzed as part of research investigations on microbially mediated sulfur oxidation in stream waters and sulfur redox speciation in hot springs in YNP and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. The research on sulfur redox speciation in hot springs is a collaboration with the State University of New York at Stony Brook, Northern Arizona University, and the U.S. Geological Survey (USGS). One ambient-temperature acidic stream system, Alluvium Creek and its tributaries in Brimstone Basin, was studied in detail. Analyses were performed adjacent to the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability and preservability of the constituent. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity and F were determined within a few days of sample collection by titration and by ion-selective electrode, respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by ion chromatography (IC). Concentrations of Cl, SO4, and Br were determined by IC within a few days of sample collection. Concentrations of Fe(II) and Fe(total) were determined by ultraviolet/visible spectrophotometry within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li, Na, and K were determined by flame atomic absorption (Li) and emission (Na, K) spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), Mg, Mn, Ni, Pb, Si, Sr, V, and Zn were determined by inductively-coupled plasma optical emission spectrometry. Trace concentrations of Cd, Se, As(total), Ni, and Pb were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation using a flow-injection analysis system.

  20. The fishes of George Washington Carver National Monument, Missouri, 2003

    USGS Publications Warehouse

    Justus, B.G.; Petersen, James C.

    2005-01-01

    Fish were collected at six sites at George Washington Carver National Monument by seining and electrofishing during a base-flow period on July 17-18, 2003. Approximately 700 fish were collected and identified at the six sampling sites. Those individuals represented 17 species (and 1 hybrid) and 13 genera. The number of species collected at the five stream sites ranged from 9 to 12; a hybrid sunfish and 4 species were collected from a pond. Fish collected at stream sites were typical of small headwater streams and no species collected in this study are federally-listed threatened or endangered species. The three most common species were the southern redbelly dace, central stoneroller, and green sunfish. Some differences existed between the assemblages (groups of species) collected in 2003 and in the previous inventories. Four of the 17 fish species collected in this inventory previously had not been collected at the monument. However, 11 species collected in one or more of the previous inventories were not collected in this effort. There is no indication that a change in environmental conditions is responsible for the absence of these species; more likely reasons are seasonal variability, extirpation, low population density, and misidentification. Four species collected at George Washington Carver National Monument may be of special interest to National Park Service managers and others. The cardinal shiner and stippled darter are endemic to the Ozark Plateaus. The Arkansas darter is considered a species of conservation concern by the State of Missouri. The grass carp is an introduced species.

  1. Biogeochemical cycle of Mercury in an urban stream in Hartford CT

    NASA Astrophysics Data System (ADS)

    Aragon-jose, A. T.; Bushey, J. T.; Perkins, C.; Mendes, M.; Ulatowski, G.

    2012-12-01

    Mercury (Hg) toxicity and the potential for bioaccumulation in the food chain result in exposure risk even at low Hg levels. The presence of urban activities can substantially alter Hg fate and transport mechanisms and Hg biogeochemical cycles. Urban watersheds are characterized by high imperviousness and some may even be impacted by combined sewer overflows, both being fundamental factors contributing to Hg loading, mobilization, and shifts in bioavailability in urban watersheds. Research is still needed to characterize the fate and dynamics of Hg in urban streams. To address this gap in knowledge, we collected and characterized stream water and suspended sediment samples in the Park River watershed in Hartford, CT (USA) during baseflow and precipitation events. Sampling sites were selected across an urbanization gradient. Water samples are analyzed for total, dissolved, and particulate Hg and methyl Hg (MeHg), major ions (Cl-, NO3-, SO42-)-, total suspended solids (TSS), and dissolved organic carbon (DOC). Our results show that both total and dissolved Hg concentrations increase in the streams during precipitation events, however, the greatest portion of Hg is associated, and consequently transported, with suspended sediments, as suggested by the high correlation coefficient (R2 ~ 0.80) between TSS and total Hg. No significant correlation was observed between dissolved or total Hg and DOC, contrary to the observations in forested systems, which indicates that the sources and mechanisms governing mobilization and transport of dissolved Hg in an urban watershed differ from those at forested systems. However, during select events, a significant portion of Hg flux occurs in the dissolved phase. Unfiltered MeHg samples exhibited a similar pattern relative to the hydrograph to that of total Hg. Concentrations increase during the rising limb with TSS followed by a decrease as the storm progresses. Dissolved MeHg is mostly below our detection limit. Area normalized THg flux is generally higher at the more developed sites for all but the May storm, whereas the opposite trend is observed for MeHg except for the August storm, indicative of different sources of Hg contributing to the stream. To assist in elucidating the potential sources, dissolved organic matter in the water samples was analyzed for specific ultra violet absorbance at 254 nm (SUVA254) and for excitation-emission matrix (EEMs) to assess differences in organic matter loading to the stream. Additionally, Hg association with sediment was analyzed by collecting four sets of suspended sediment samples over 3-month periods at five sites across the watershed to assess potential sediment sources into the stream. Solid samples were analyzed for total carbon, nitrogen, and hydrogen, organic and inorganic carbon, mercury, acid volatile sulfide, chromium reducible sulfide, PAHs, QACs, and select metals.

  2. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    NASA Astrophysics Data System (ADS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-03-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.

  3. Design and methods of the Midwest Stream Quality Assessment (MSQA), 2013

    USGS Publications Warehouse

    Garrett, Jessica D.; Frey, Jeffrey W.; Van Metre, Peter C.; Journey, Celeste A.; Nakagaki, Naomi; Button, Daniel T.; Nowell, Lisa H.

    2017-10-18

    During 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Project (NAWQA), in collaboration with the USGS Columbia Environmental Research Center, the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA), and the EPA Office of Pesticide Programs assessed stream quality across the Midwestern United States. This Midwest Stream Quality Assessment (MSQA) simultaneously characterized watershed and stream-reach water-quality stressors along with instream biological conditions, to better understand regional stressor-effects relations. The MSQA design focused on effects from the widespread agriculture in the region and urban development because of their importance as ecological stressors of particular concern to Midwest region resource managers.A combined random stratified selection and a targeted selection based on land-use data were used to identify and select sites representing gradients in agricultural intensity across the region. During a 14-week period from May through August 2013, 100 sites were selected and sampled 12 times for contaminants, nutrients, and sediment. This 14-week water-quality “index” period culminated with an ecological survey of habitat, periphyton, benthic macroinvertebrates, and fish at all sites. Sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing. Of the 100 sites, 50 were selected for the MSQA random stratified group from 154 NRSA sites planned for the region, and the other 50 MSQA sites were selected as targeted sites to more evenly cover agricultural and urban stressor gradients in the study area. Of the 50 targeted sites, 12 were in urbanized watersheds and 21 represented “good” biological conditions or “least disturbed” conditions. The remaining 17 targeted sites were selected to improve coverage of the agricultural intensity gradient or because of historical data collection to provide temporal context for the study.This report provides a detailed description of the MSQA study components, including surveys of ecological conditions, routine water sampling, deployment of passive polar organic compound integrative samplers, and stream sediment sampling at all sites. Component studies that were completed to provide finer scale temporal data or more extensive analysis at selected sites, included continuous water-quality monitoring, daily pesticide sampling, laboratory and in-stream water toxicity testing efforts, and deployment of passive suspended-sediment samplers.

  4. A benthic-macroinvertebrate index of biotic integrity and assessment of conditions in selected streams in Chester County, Pennsylvania, 1998-2009

    USGS Publications Warehouse

    Reif, Andrew G.

    2012-01-01

    The Stream Conditions of Chester County Biological Monitoring Network (Network) was established by the U.S. Geological Survey and the Chester County Water Resources Authority in 1969. Chester County encompasses 760 square miles in southeastern Pennsylvania and has a rapidly expanding population. Land-use change has occurred in response to this continual growth, as open space, agricultural lands, and wooded lands have been converted to residential and commercial lands. In 1998, the Network was modified to include 18 fixed-location sites and 9 flexible-location sites. Sites were sampled annually in the fall (October-November) during base-flow conditions for water chemistry, instream habitat, and benthic macroinvertebrates. A new set of 9 flexible-location sites was selected each year. From 1998 to 2009, 213 samples were collected from the 18 fixed-location sites and 107 samples were collected from the 84 flexible-location sites. Eighteen flexible-location sites were sampled more than once over the 12-year period; 66 sites were sampled only once. Benthic-macroinvertebrate data from samples collected during 1998-2009 were used to establish the Chester County Index of Biotic Integrity (CC-IBI). The CC-IBI was based on the methods and metrics outlined in the Pennsylvania Department of Environmental Protection's "A Benthic Index of Biotic Integrity for Wadeable Freestone Streams in Pennsylvania." The resulting CC-IBI consists of scores for benthic-macroinvertebrate samples collected from sites in the Network that related to reference conditions in Chester County. Mean CC-IBI scores for 18 fixed-location sites ranged from 37.21 to 88.92. Thirty-nine percent of the 213 samples collected at the 18 fixed-location sites had a CC-IBI score less than 50; 33 percent, 50 to 70; 28 percent, greater than 70. CC-IBI scores from the 107 flexible-location samples ranged from 23.48 to 99.96. Twenty-five percent of the 107 samples collected at the flexible-location sites had a CC-IBI score less than 50; 33 percent, 50 to 70; and 42 percent, greater than 70. Factors that were found to affect CC-IBI scores are nutrient concentrations, habitat conditions, and percent of wooded and urban land use. A positive relation was determined between mean CC-IBI scores and mean total habitat scores for the 18 fixed-location sites. CC-IBI scores were most strongly affected by stream bank vegetative protection, embeddedness, riparian zone width, and sediment deposition. The highest CC-IBI scores were associated with sites that had greater than 28 percent wooded-wetland-water land use, less than 5 percent urban land use, and no municipal wastewater discharges within 10 miles upstream from the sampling site. The lowest CC-IBI scores were associated with sites where urban land use was greater than 15 percent or a municipal wastewater discharge was within 10 miles upstream from the sampling reach. The Mann Kendall test for trends was used to determine trends in CC-IBI scores and concentrations of nitrate, orthophosphate, and chloride for the 18 fixed-location sites. A positive trend in CC-IBI was determined for six sites, and a negative trend was determined for one site. Positive trends in nitrate concentrations were determined for 4 of the 18 fixed-location sites, and a negative trend in orthophosphate concentrations was determined for 1 of the 18 fixed-location sites. Positive trends in chloride concentrations were determined for 16 of the 18 fixed-location sites.

  5. Turbidity threshold sampling: Methods and instrumentation

    Treesearch

    Rand Eads; Jack Lewis

    2001-01-01

    Traditional methods for determining the frequency of suspended sediment sample collection often rely on measurements, such as water discharge, that are not well correlated to sediment concentration. Stream power is generally not a good predictor of sediment concentration for rivers that transport the bulk of their load as fines, due to the highly variable routing of...

  6. P-Type Factor Analyses of Individuals' Thought Sampling Data.

    ERIC Educational Resources Information Center

    Hurlburt, Russell T.; Melancon, Susan M.

    Recently, interest in research measuring stream of consciousness or thought has increased. A study was conducted, based on a previous study by Hurlburt, Lech, and Saltman, in which subjects were randomly interrupted to rate their thoughts and moods on a Likert-type scale. Thought samples were collected from 27 subjects who carried random-tone…

  7. Stable Water Isotope Climate Archives in Springs from the Olympic Mountains, Washington

    EPA Science Inventory

    The 18O and 2H (HDO) compositions are summarized for sampled springs (n = 81) within the Elwha watershed (≈ 692 km2) on the northern Olympic Peninsula. Samples, collected during 2001–2009, of springs (n = 158), precipitation (n = 520), streams (n...

  8. Ecological Condition of Streams in Eastern and Southern NevadaEPA R-EMAP Muddy-Virgin River Project

    EPA Science Inventory

    The report presents data collected during a one year study period beginning in May of 2000. Sampling sites were selected using a probability-based design (as opposed to subjectively selected sites) using the USEPA River Reach File version 3 (RF3). About 37 sites were sampled. ...

  9. Water-Quality, Bed-Sediment, and Biological Data (October 2006 through September 2007) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2008-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2006 through September 2007. Bed-sediment and biological samples were collected once at 12 sites during August 2007. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2006 through September 2007. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for samples collected at sites where seasonal daily values of turbidity were being determined. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  10. Hydrologic and water-quality data for U.S. Coast Guard Support Center Kodiak, Alaska, 1987-89

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    Hydrologic and water-quality data were collected at the U.S. Coast Guard Support Center Kodiak on Kodiak Island, Alaska, to determine regional ground-water conditions and if contamination of soils, ground water, or surface water has occurred. Eighteen areas of possible contamination were identified. Ground-water levels, surface- water stages, surface-water discharges, and results of field and laboratory analyses of soil and water samples are presented in tabular form. Many quality-assurance samples had detectable concentrations of methylene chloride and 1,2-dichloroethane, which may be due to sampling or laboratory contamination. Concentrations were as great as 5.9 micrograms per liter for methylene chloride and 2.6 micrograms per liter for 1,2-dichloroethane. Excluding 1,2-dichloroethane, most soil, ground-water, and surface-water samples contained no detectable concentrations of the organic constituents that were analyzed. Chemical analyses were performed on two lake-bed-material samples and more than 100 soil samples. The median lead concentration was 9.8 milligrams per kilogram. Concentrations of tetrachloroethene were as great as 1.1 milligram per kilogram in soils near a laundry. Water samples were collected from 101 wells. The maximum benzene concentration detected in ground water was 78 micrograms per liter from a well at the air station near a site where aviation fuel was spilled. Wells near a laundry yielded water having concentrations of tetrachloroethene as great as 3,000 micrograms per liter, and vinyl chloride as great as 440 micrograms per liter. A well in a former aviation gasoline storage area yielded water with a concentration of trichloroethene as great as 66 micrograms per liter. Water samples were collected from 59 sites on streams, lakes, or ponds. Surface-water samples had much lower concen- trations of organic compounds; the highest concentration of benzene was 2.2 micrograms per liter in a stream near a former aviation-fuel storage area and the maximum vinyl chloride concentration was 15 micrograms per liter in a stream near a former landfill. Tetrachloroethene and trichloroethene were not detected in any surface-water samples.

  11. Reach-scale stream restoration in agricultural streams of southern Minnesota alters structural and functional responses of macroinvertebrates

    USGS Publications Warehouse

    Dolph, Christine L.; Eggert, Susan L.; Magner, Joe; Ferrington, Leonard C.; Vondracek, Bruce C.

    2015-01-01

    Recent studies suggest that stream restoration at the reach scale may not increase stream biodiversity, raising concerns about the utility of this conservation practice. We examined whether reach-scale restoration in disturbed agricultural streams was associated with changes in macroinvertebrate community structure (total macroinvertebrate taxon richness, total macroinvertebrate density, Ephemeroptera, Plecoptera, Trichoptera [EPT] taxon richness, % abundance of EPT taxa) or secondary production (macroinvertebrate biomass over time). We collected macroinvertebrate samples over the course of 1 y from restored and unrestored reaches of 3 streams in southern Minnesota and used generalized least-square (GLS) models to assess whether measures of community structure were related to reach type, stream site, or sampling month. After accounting for effects of stream site and time, we found no significant difference in total taxon richness or % abundance of EPT taxa between restored and unrestored reaches. However, the number of EPT taxa and macroinvertebrate density were significantly higher in restored than in unrestored reaches. We compared secondary production estimates among study reaches based on 95th-percentile confidence intervals generated via bootstrapping. In each study stream, secondary production was significantly (2–3×) higher in the restored than in the unrestored reach. Higher productivity in the restored reaches was largely a result of the disproportionate success of a few dominant, tolerant taxa. Our findings suggest that reach-scale restoration may have ecological effects that are not detected by measures of total taxon richness alone.

  12. Post-earthquake outbreak of rotavirus gastroenteritis in Kashmir (India): an epidemiological analysis.

    PubMed

    Karmakar, Somenath; Rathore, Abhilakh Singh; Kadri, Syed Manzoor; Dutt, Som; Khare, Shashi; Lal, Shiv

    2008-10-01

    An earthquake struck Kashmir on 8 October 2005. A central team of public health specialists was sent to Kashmir to assess the public health measures required following the earthquake, and to assist in institution of public health measures. Epidemiological and environmental investigation in Tangdar block (Kupwara district) and Uri Tehsil (Baramula district). Visits to villages affected by the earthquake, rehabilitation camps and health care, examination of cases with acute diarrhoeal disease (ADD), environmental observations, collection of clinical samples from ADD cases and environmental samples from drinking water sources, and laboratory methods. In total, 1783 cases of ADD were reported between 14 October and 17 December 2005 in Tangdar (population 65000). The overall attack rate was 20% in children under 4 years of age. Twelve cases of ADD with loose motions without blood were studied, and 11 rectal swabs and one stool sample were processed. No bacterial enteropathogens could be isolated, but three of the 12 samples yielded rotavirus antigen on enzyme-linked immunosorbent assay. Twelve of 13 (92.3%) water samples, collected from various stream or tap water (source: spring/stream) sources, were unsatisfactory (P=0.001) using the H(2)S strip method compared with other sources (well/mineral water). All eight water sources in Tangdar block were unsatisfactory, indicated by blackening of H(2)S filter paper strips. Following the earthquake, drinking stream water or tap water without boiling or chlorination may have led to a common source water-borne outbreak of rotavirus gastroenteritis. Other contributing factors were: overcrowding; poor sanitation; open-air defaecation; poor hygiene; and living in makeshift camps near streams. Person-to-person transmission may also have contributed to perpetuation of the outbreak. Following the establishment of medical camps and information, education and communication regarding the need to drink boiled water and follow safer hygienic practices, the outbreak was brought under control. The earthquake in Kashmir in 2005 led to widespread contamination of drinking water sources such as stream and tap water (source: stream or spring). This appears to have led to a common source outbreak of rotavirus between October and December 2005, leading to ADD, amongst infants and small children, transmitted by the faecal-oral route and perpetuated by person-to-person transmission.

  13. Results of chemical and stable isotopic analyses of water samples collected in the Patagonia Mountains, southern Arizona

    USGS Publications Warehouse

    Wanty, Richard B.; Shanks, Wayne C.; Lamothe, Paul; Meier, A.L.; Lichte, Fred; Briggs, Paul H.; Berger, Byron R.

    2001-01-01

    Water samples were collected in the Patagonia Mountains in February, 1997. Most of the samples were collected from portals of abandoned mines, or from stream drainages immediately downstream from abandoned mines. Most of the samples have low pH ( 1000 mg/L). Anion composition of the water samples is dominated by sulfate, while cation compositions range from calcium-dominated to mixed calcium-magnesium or calcium-sodium-dominated waters. Metals such as iron, manganese, copper, zinc, and aluminum contribute a significant portion (>10%) of the cation content to the water samples. Because of the low pH?s, protons contribute up to several percent of the cation character of the waters in some of the samples. The data are presented in tabular and graphical formats, with descriptions of data quality and brief descriptions of results.

  14. Analytical Results for Municipal Biosolids Samples from a Monitoring Program Near Deer Trail, Colorado (U.S.A.), 2008

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.

    2009-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo. (U.S.A.). In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water effects. This report will present only analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed during 2008. Crock and others have presented earlier a compilation of analytical results for the biosolids samples collected and analyzed for 1999 thru 2006, and in a separate report, data for the 2007 biosolids are reported. More information about the other monitoring components is presented elsewhere in the literature. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity. Nitrogen and chromium also were priority parameters for groundwater and sediment components.

  15. Effects of an Extreme Flood on Trace Elements in River Water-From Urban Stream to Major River Basin.

    PubMed

    Barber, Larry B; Paschke, Suzanne S; Battaglin, William A; Douville, Chris; Fitzgerald, Kevin C; Keefe, Steffanie H; Roth, David A; Vajda, Alan M

    2017-09-19

    Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.

  16. Effects of an extreme flood on trace elements in river water—From urban stream to major river basin

    USGS Publications Warehouse

    Barber, Larry B.; Paschke, Suzanne; Battaglin, William A.; Douville, Chris; Fitzgerald, Kevin C.; Keefe, Steffanie H.; Roth, David A.; Vajda, Alan M.

    2017-01-01

    Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.

  17. Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.

    2011-01-01

    Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio

  18. Data-collection methods and quality-assurance/quality-control procedures used in the study of episodic stream acidification and its effect on fish and aquatic invertebrates in four Catskill Mountain streams, New York, 1988-90

    USGS Publications Warehouse

    Ranalli, Anthony J.; Baldigo, Barry P.; Horan-Ross, Debra; Allen, Ronald V.

    1997-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a 20-month study during 1988-90 to evaluate the effects of episodic acidification on fish and aquatic invertebrates in pristine headwater streams in the Catskill Mountains of New York. The study was part of the Episodic Response Project, a regional survey of episodic acidification by the U.S. Environmental Protection Agency, and was carried out simultaneously with other studies in the Adirondack Mountains of New York by the Adirondack Lake Survey Corporation and in central Pennsylvania by Pennsylvania State University. This report summarizes the methods used, describes the sampling sites, and presents the data collected from October 1, 1988 through May 30, 1990 at four headwater watersheds (Biscuit Brook, East Branch Neversink River, Black Brook, and High Falls Brook). The study entailed (1) monitoring the quantity and chemical quality of atmospheric deposition and the quality of discharge of streams, and (2) experiments to determine the effect of stream-water-quality changes on fish and invertebrate populations.

  19. RADIOACTIVITY IN TEXAS STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drynan, W.R.; Gloyna, E.F.; Smallhorst, D.F.

    1961-07-01

    Early results from a 3-year program to collect base-line data on radioactivity in Texas waters are reported. When preliminary teste indicate the presence of significant quantities of either alpha or beta emitters, a gamma spectrum and a radiochemical separation of Sr and Ra is made. The instruments most frequently used in counting river samples are of the proportional gas flow type. Most of the samples collected throughout the state had less than 50 mu mu c/l of beta activity and 10 mu mu c/l of alpha activity. Tables are given of the gross radioactivity analyses of samples from the Canadianmore » and Neches Rivers in Texas along with the dates the samples were collected. (P.C.H.)« less

  20. A mineral reconnaissance sampling manual for Costa Rica: Central American energy and resoure project. Manual para muestreo en el reconocimiento mineral de Costa Rica: Proyecto Centroamericano de energia y recursos naturales (in English and Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolivar, S.

    This manual describes field procedures for the collection of stream-sediment and rock samples as part of the Mineral Resource Assessment of Costa Rica. It provides guidelines to be followed by personnel collecting, treating, or otherwise handling samples taken as part of this program. The objectives of the manual are to ensure that all samples are collected uniformly and consistent techniques are employed throughout the program. If this is done, the data from this study can be used to identify areas with potential for mineralization. This manual can also be used as a guideline for future geochemical sampling programs in Costamore » Rica.« less

  1. The effect of in-stream activities on the Njoro River, Kenya. Part II: Microbial water quality

    NASA Astrophysics Data System (ADS)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    The influence of periodic in-stream activities of people and livestock on the microbial water quality of the Njoro River in Kenya was monitored at two disturbed pools (Turkana Flats and Njoro Bridge) at the middle reaches. A total of 96 sets of samples were obtained from the two pools in six weeks during dry weather (January-April) in 2006. On each sampling day, two trips were made before and during in-stream activities and on each trip, two sets of samples were collected upstream and downstream of activities. This schedule was repeated four times each for Wednesday, Saturday and Sunday. Samples were processed for heterotrophic plate count bacteria (HPC), total coliform (TC), presumptive Escherichia coli and presumptive Enterococci. Additional samples were analysed for total suspended solids (TSS), turbidity, BOD 5 and ammonium-N. The microbial water quality deteriorated significant ( p < 0.05) downstream during activities at both pools. A similar trend was observed with the chemical indicators (TSS, turbidity, BOD 5 and ammonium-N). The two groups of indicators demonstrated high capacity for site segregation based on pollution levels. Pollution levels for specific days were not significantly different ( p > 0.05). This was incompatible with the variability of in-stream activities with specific days. The pooled data was explained largely by three significant principal components - recent pollution (PC1), metabolic activity (PC2) and residual pollution (PC3). It was concluded that the empirical site parity/disparity in the levels of microbial and non-microbial indicators reflected the diurnal periodicity of in-stream activities and the concomitant pollution they caused. However, microbial source tracking studies are required to distinguish faecal sources. In the meantime, measures should be undertaken to regulate in-stream activities along the stream and minimize the movement of livestock in the catchment.

  2. Detection of human enteric viruses in stream water with RT-PCR and cell culture.

    USGS Publications Warehouse

    Denis-Mize, K.; Fout, G.S.; Dahling, D.R.; Francy, D.S.

    2004-01-01

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison with traditional cell culture and Escherichia coli membrane filtration assays. The study incorporated multiple quality controls and included a control for virus recovery during the sampling procedure as well as controls to detect potentially false-negative and false-positive data. Poliovirus recovery ranged from 16 to 65% and was variable, even in samples collected within the same stream. All five sites were positive for viruses by both molecular and cell culture-based virus assays. Enteroviruses, reoviruses, rotaviruses, and hepatitis A viruses were detected, but the use of the quality controls proved critical for interpretation of the molecular data. All sites showed evidence of faecal contamination, and culturable viruses were detected in four samples that would have met the US Environmental Protection Agency's recommended E. coli guideline for safe recreational water.

  3. Water-quality assessment of the Kentucky River basin, Kentucky; nutrients, sediments, and pesticides in streams, 1987-90

    USGS Publications Warehouse

    Haag, K.H.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of nutrients, suspended sediment, and pesticides in streams. Concentrations of phosphorus were signifi- cantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, all of the stream nitrogen load was attributable to wastewater- treatment-plant effluent. Tributary streams affected by agricultural sources of nutrients contained higher densities of phytoplankton than streams that drained forested areas. Data indicate that a consid- erable percentage of total nitrogen was transported as algal biomass during periods of low discharge. Average suspended-sediment concentrations for the study period were positively correlated with dis- charge. There was a downward trend in suspended- sediment concentrations downstream in the Kentucky River main stem during the study. Although a large amount of suspended sediment originates in the Eastern Coal Field Region, contributions of suspended sediment from the Red River and other tributary streams of the Knobs Region also are important. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organo- phosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, heptachlor epoxide, and lindane were found in streambed- sediment samples.

  4. Recent (2008-10) concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone, south-central Texas, and their potential relation to urban development in the contributing zone

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Herrington, Chris; Sample, Thomas L.

    2011-01-01

    During 2008–10, the U.S. Geological Survey, in cooperation with the City of Austin, the City of Dripping Springs, the Barton Springs/Edwards Aquifer Conservation District, the Lower Colorado River Authority, Hays County, and Travis County, collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge well [YD–58–50–704] and Buda well [LR–58–58–403]), and the main orifice of Barton Springs in Austin, Texas, with the objective of characterizing concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone. The Barton Springs zone is in south-central Texas, an area undergoing rapid growth in population and in land area affected by development, with associated increases in wastewater generation. Over a period of 17 months, during which the hydrologic conditions transitioned from dry to wet, samples were collected routinely from the streams, wells, and spring and, in response to storms, from the streams and spring; some or all samples were analyzed for nitrate, nitrogen and oxygen isotopes of nitrate, and waste­water compounds. The median nitrate concentrations in routine samples from all sites were higher in samples collected during the wet period than in samples collected during the dry period, with the greatest difference for stream samples (0.05 milligram per liter during the dry period to 0.96 milligram per liter for the wet period). Nitrate concentrations in recent (2008–10) samples were elevated relative to concentrations in historical (1990–2008) samples from streams and from Barton Springs under medium- and high-flow conditions. Recent nitrate concentrations were higher than historical concentrations at the Marbridge well but the reverse was true at the Buda well. The elevated concentrations likely are related to the cessation of dry conditions coupled with increased nitrogen loading in the contributing watersheds. An isotopic composition of nitrate (delta nitrogen–15) greater than 8 per mil in many of the samples indicated there was a contribution of nitrate with a biogenic (human and or animal waste, or both) origin. Wastewater compounds measured in routine samples were detected infrequently (3 percent of cases), and concentrations were very low (less than the method reporting level in most cases). There was no correlation between nitrate concentrations and the frequency of detection of wastewater compounds, indicating that wastewater compounds might be undergoing removal during such processes as infiltration through soil. Three potential sources of biogenic nitrate to the contributing zone were considered: septic systems, land application of treated wastewater, and domesticated dogs and cats. During 2001–10, the estimated densities of septic systems and domesticated dogs and cats (number per acre) increased in the watersheds of all five creeks, and the rate of land application of treated wastewater (gallons per day per acre) increased in the watersheds of Barton, Bear, and Onion Creeks. Considering the timing and location of the increases in the three sources, septic systems were considered a likely source of increased nitrate to Bear Creek; land application of treated wastewater a likely source to Barton, Bear, and Onion Creeks; and domestic dogs and cats a potential source principally to Williamson Creek. The results of this investigation indicate that baseline water quality, in terms of nitrate, has shifted upward between 2001 and 2010, even without any direct discharges of treated wastewater to the creeks.

  5. Water-Quality Data for Selected Stream Sites in Bridgeport Valley, Mono County, California, April 2000 to June 2003

    USGS Publications Warehouse

    Rockwell, Gerald L.; Honeywell, Paul D.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the California Regional Water Quality Control Board, Lahonton Region, carried out a water-quality data collection program of selected streams in and near Bridgeport Valley, California, during April 2000 to June 2003. These data were collected to provide information used by the California Regional Water Quality Control Board to develop total maximum daily load standards. Field measurements of streamflow, barometric pressure, dissolved oxygen, pH, specific conductance, and water temperature were made at 15 sites located on 6 streams. Water samples were analyzed for nutrients, major ions, turbidity, fecal coliform, fecal streptococci, and suspended sediment. Field data, turbidity, nutrient, major ion, and sediment concentrations and fecal coliform and fecal streptococci densities are given in tables for each site. Field blank data are also presented in a table.

  6. Water quality and habitat conditions in upper Midwest streams relative to riparian vegetation and soil characteristics, August 1997 : study design, methods, and data

    USGS Publications Warehouse

    Sorenson, S.K.; Porter, S.D.; Akers, K.B.; Harris, M.A.; Kalkhoff, S.J.; Lee, K.E.; Roberts, L.; Terrio, P.J.

    1999-01-01

    Water-chemistry, biological, and habitat data were collected from 70 sites on Midwestern streams during August 1997 as part of an integrated, regional water-quality assessment by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. The study area includes the Corn Belt region of southern Minnesota, eastern Iowa, and west-central Illinois, one of the most intensive and productive agricultural regions of the world. The focus of the study was to evaluate the condition of woodedriparian zones and the influence of basin soildrainage characteristics on water quality and biological-community responses. This report includes a description of the study design and site-characterization process, sample-collection and processing methods, laboratory methods, quality-assurance procedures, and summaries of data on nutrients, herbicides and metabolites, stream productivity and respiration, biological communities, habitat conditions, and agriculturalchemical and land-use information.

  7. Water-Quality, Bed-Sediment, and Biological Data (October 2007 through September 2008) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2009-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 23 sites from October 2007 through September 2008. Bed-sediment and biota samples were collected once at 13 sites during August 2008. This report presents the analytical results and quality assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2007 through September 2008. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at sites where seasonal daily values of turbidity were being determined and at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  8. Water-quality, bed-sediment, and biological data (October 2008 through September 2009) and statistical summaries of long-term data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2010-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 24 sites from October 2008 through September 2009. Bed-sediment and biota samples were collected once at 13 sites during August 2009. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2008 through September 2009. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined as well as at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  9. Hydrogeochemical and stream sediment reconnaissance basic data for Aztec Quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-31

    Field and laboratory data are presented for 331 water samples and 1693 sediment samples from the Aztec Quadrangle, New Mexico. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-129(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  10. A protocol for collecting environmental DNA samples from streams

    Treesearch

    Kellie J. Carim; Kevin S. McKelvey; Michael K. Young; Taylor M. Wilcox; Michael K. Schwartz

    2016-01-01

    Environmental DNA (eDNA) is DNA that has been released by an organism into its environment, such that the DNA can be found in air, water, or soil. In aquatic systems, eDNA has been shown to provide a sampling approach that is more sensitive for detecting target organisms faster, and less expensively than previous approaches. However, eDNA needs to be sampled in a...

  11. Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream

    USGS Publications Warehouse

    Alvarez, D.A.; Stackelberg, P.E.; Petty, J.D.; Huckins, J.N.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.

    2005-01-01

    Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.

  12. Analysis of trace contaminants in hot gas streams using time-weighted average solid-phase microextraction: proof of concept.

    PubMed

    Woolcock, Patrick J; Koziel, Jacek A; Cai, Lingshuang; Johnston, Patrick A; Brown, Robert C

    2013-03-15

    Time-weighted average (TWA) passive sampling using solid-phase microextraction (SPME) and gas chromatography was investigated as a new method of collecting, identifying and quantifying contaminants in process gas streams. Unlike previous TWA-SPME techniques using the retracted fiber configuration (fiber within needle) to monitor ambient conditions or relatively stagnant gases, this method was developed for fast-moving process gas streams at temperatures approaching 300 °C. The goal was to develop a consistent and reliable method of analyzing low concentrations of contaminants in hot gas streams without performing time-consuming exhaustive extraction with a slipstream. This work in particular aims to quantify trace tar compounds found in a syngas stream generated from biomass gasification. This paper evaluates the concept of retracted SPME at high temperatures by testing the three essential requirements for TWA passive sampling: (1) zero-sink assumption, (2) consistent and reliable response by the sampling device to changing concentrations, and (3) equal concentrations in the bulk gas stream relative to the face of the fiber syringe opening. Results indicated the method can accurately predict gas stream concentrations at elevated temperatures. Evidence was also discovered to validate the existence of a second boundary layer within the fiber during the adsorption/absorption process. This limits the technique to operating within reasonable mass loadings and loading rates, established by appropriate sampling depths and times for concentrations of interest. A limit of quantification for the benzene model tar system was estimated at 0.02 g m(-3) (8 ppm) with a limit of detection of 0.5 mg m(-3) (200 ppb). Using the appropriate conditions, the technique was applied to a pilot-scale fluidized-bed gasifier to verify its feasibility. Results from this test were in good agreement with literature and prior pilot plant operation, indicating the new method can measure low concentrations of tar in gasification streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Recent (2003-05) water quality of Barton Springs, Austin, Texas, with emphasis on factors affecting variability

    USGS Publications Warehouse

    Mahler, Barbara J.; Garner, Bradley D.; Musgrove, MaryLynn; Guilfoyle, Amber L.; Rao, Mohan V.

    2006-01-01

    From 2003 to 2005, the U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, collected and analyzed water samples from the four springs (orifices) of Barton Springs in Austin, Texas (Upper, Main, Eliza, and Old Mill Springs), with the objective of characterizing water quality. Barton Springs is the major discharge point for the Barton Springs segment of the Edwards aquifer. A three-pronged sampling approach was used: physicochemical properties (including specific conductance and turbidity) were measured continuously; samples were collected from the four springs routinely every 2 weeks (during August-September 2003) to 3 weeks (during June 2004-June 2005) and analyzed for some or all major ions, nutrients, trace elements, soluble pesticides, and volatile organic compounds; and samples were collected from the four springs at more closely spaced intervals during the 2 weeks following two storms and analyzed for the same suite of constituents. Following the two storms, samples also were collected from five of the six major streams that provide recharge to Barton Springs. Spring discharge during both sample collection periods was above average (60 cubic feet per second or greater). Barton Springs was found to be affected by persistent low concentrations of atrazine (an herbicide), chloroform (a drinking-water disinfection by-product), and tetrachloroethene (a solvent). Increased recharge from the major recharging streams resulted in increased calcium, sulfate, atrazine, simazine, and tetrachloroethene concentrations and decreased concentrations of most other major ions, nitrate, and chloroform at one or more of the springs. These changes in concentration demonstrate the influence of water quality in recharging streams on water quality at the springs even during non-stormflow conditions. The geochemical compositions of the four springs indicate that Upper Spring is more contaminated and is influenced by a contributing flow path that is separate from those leading to other springs under all but stormflow conditions. Main, Eliza, and Old Mill Springs share at least one common flow path that contributes contaminants to the three springs. Old Mill Spring, however, is less affected by anthropogenic contaminants than the other springs and receives a greater component of water from a flow path whose geochemistry is influenced by water from the saline zone of the aquifer. At Main Spring, atrazine, simazine, chloroform, and tetrachloroethene concentrations increased following storms, describing breakthrough curves that peaked 2 days following rainfall; at Upper Spring, atrazine and simazine concentrations described breakthrough curves that peaked 1 day following rainfall. At both Main and Upper Springs, additional anthropogenic compounds were detected following storms. The geochemical response of the springs to recharge indicates that much of the transport occurs through conduits. When there is no flow in the recharging streams, ground water advects from the aquifer matrix into the conduits and is transported to the springs. When there is flow in the streams, recharge through the streambeds directly enters the conduit system and is transported to the springs. Following storms, surface runoff recharges through both interstream recharge features and streambeds, delivering runoff-related contaminants to Barton Springs.

  14. Uncertainty in monitoring E. coli concentrations in streams and stormwater runoff

    NASA Astrophysics Data System (ADS)

    Harmel, R. D.; Hathaway, J. M.; Wagner, K. L.; Wolfe, J. E.; Karthikeyan, R.; Francesconi, W.; McCarthy, D. T.

    2016-03-01

    Microbial contamination of surface waters, a substantial public health concern throughout the world, is typically identified by fecal indicator bacteria such as Escherichia coli. Thus, monitoring E. coli concentrations is critical to evaluate current conditions, determine restoration effectiveness, and inform model development and calibration. An often overlooked component of these monitoring and modeling activities is understanding the inherent random and systematic uncertainty present in measured data. In this research, a review and subsequent analysis was performed to identify, document, and analyze measurement uncertainty of E. coli data collected in stream flow and stormwater runoff as individual discrete samples or throughout a single runoff event. Data on the uncertainty contributed by sample collection, sample preservation/storage, and laboratory analysis in measured E. coli concentrations were compiled and analyzed, and differences in sampling method and data quality scenarios were compared. The analysis showed that: (1) manual integrated sampling produced the lowest random and systematic uncertainty in individual samples, but automated sampling typically produced the lowest uncertainty when sampling throughout runoff events; (2) sample collection procedures often contributed the highest amount of uncertainty, although laboratory analysis introduced substantial random uncertainty and preservation/storage introduced substantial systematic uncertainty under some scenarios; and (3) the uncertainty in measured E. coli concentrations was greater than that of sediment and nutrients, but the difference was not as great as may be assumed. This comprehensive analysis of uncertainty in E. coli concentrations measured in streamflow and runoff should provide valuable insight for designing E. coli monitoring projects, reducing uncertainty in quality assurance efforts, regulatory and policy decision making, and fate and transport modeling.

  15. Questa baseline and pre-mining ground-water quality investigation. 2. Low-flow (2001) and snowmelt (2002) synoptic/tracer water chemistry for the Red River, New Mexico

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Steiger, Judy I.; Kimball, Briant A.; Verplanck, Philip L.

    2003-01-01

    Water analyses are reported for 259 samples collected from the Red River, New Mexico, and its tributaries during low-flow(2001) and spring snowmelt (2002) tracer studies. Water samples were collected along a 20-kilometer reach of the Red River beginning just east of the town of Red River and ending at the U.S. Geological Survey streamflow-gaging station located east of Questa, New Mexico. The study area was divided into three sections where separate injections and synoptic sampling events were performed during the low-flow tracer study. During the spring snowmelt tracer study, three tracer injections and synoptic sampling events were performed bracketing the areas with the greatest metal loading into the Red River as determined from the low-flow tracer study. The lowflow tracer synoptic sampling events were August 17, 20, and 24, 2001. The synoptic sampling events for the spring snowmelt tracer were March 30, 31, and April 1, 2002. Stream and large inflow water samples were sampled using equal-width and depth-integrated sampling methods and composited into half-gallon bottles. Grab water samples were collected from smaller inflows. Stream temperatures were measured at the time of sample collection. Samples were transported to a nearby central processing location where pH and specific conductance were measured and the samples processed for chemical analyses. Cations, trace metals, iron redox species, and fluoride were analyzed at the U.S. Geological Survey laboratory in Boulder, Colorado. Cations and trace metal concentrations were determined using inductively coupled plasma-optical emission spectrometry and graphite furnace atomic absorption spectrometry. Arsenic concentrations were determined using hydride generation atomic absorption spectrometry, iron redox species were measured using ultraviolet-visible spectrometry, and fluoride concentrations were determined using an ion-selective electrode. Alkalinity was measured by automated titration, and sulfate, chloride, and bromide were analyzed by ion chromatography at the U.S. Geological Survey laboratory in Salt Lake City, Utah.

  16. A comparison of macroinvertebrate and habitat methods of data collection in the Little Colorado River Watershed, Arizona 2007

    USGS Publications Warehouse

    Spindler, Patrice; Paretti, Nick V.

    2007-01-01

    The Arizona Department of Environmental Quality (ADEQ) and the U.S. Environmental Protection Agency (USEPA) Ecological Monitoring and Assessment Program (EMAP), use different field methods for collecting macroinvertebrate samples and habitat data for bioassessment purposes. Arizona’s Biocriteria index was developed using a riffle habitat sampling methodology, whereas the EMAP method employs a multi-habitat sampling protocol. There was a need to demonstrate comparability of these different bioassessment methodologies to allow use of the EMAP multi-habitat protocol for both statewide probabilistic assessments for integration of the EMAP data into the national (305b) assessment and for targeted in-state bioassessments for 303d determinations of standards violations and impaired aquatic life conditions. The purpose of this study was to evaluate whether the two methods yield similar bioassessment results, such that the data could be used interchangeably in water quality assessments. In this Regional EMAP grant funded project, a probabilistic survey of 30 sites in the Little Colorado River basin was conducted in the spring of 2007. Macroinvertebrate and habitat data were collected using both ADEQ and EMAP sampling methods, from adjacent reaches within these stream channels.


    All analyses indicated that the two macroinvertebrate sampling methods were significantly correlated. ADEQ and EMAP samples were classified into the same scoring categories (meeting, inconclusive, violating the biocriteria standard) 82% of the time. When the ADEQ-IBI was applied to both the ADEQ and EMAP taxa lists, the resulting IBI scores were significantly correlated (r=0.91), even though only 4 of the 7 metrics in the IBI were significantly correlated. The IBI scores from both methods were significantly correlated to the percent of riffle habitat, even though the average percent riffle habitat was only 30% of the stream reach. Multivariate analyses found that the percent riffle was an important attribute for both datasets in classifying IBI scores into assessment categories.


    Habitat measurements generated from EMAP and ADEQ methods were also significantly correlated; 13 of 16 habitat measures were significantly correlated (p<0.01). The visual-based percentage estimates of percent riffle and pool habitats, vegetative cover and percent canopy cover, and substrate measurements of percent fine substrate and embeddedness were all remarkably similar, given the different field methods used. A multivariate analysis identified substrate and flow conditions, as well as canopy cover as important combinations of habitat attributes affecting both IBI scores. These results indicate that similar habitat measures can be obtained using two different field sampling protocols. In addition, similar combinations of these habitat parameters were important to macroinvertebrate community condition in multivariate analyses of both ADEQ and EMAP datasets.


    These results indicate the two sampling methods for macroinvertebrates and habitat data were very similar in terms of bioassessment results and stressors. While the bioassessment category was not identical for all sites, overall the assessments were significantly correlated, providing similar bioassessment results for the cold water streams used in this study. The findings of this study indicate that ADEQ can utilize either a riffle-based sampling methodology or a multi-habitat sampling approach in cold water streams as both yield similar results relative to the macroinvertebrate assemblage. These results will allow for use of either macroinvertebrate dataset to determine water quality standards compliance with the ADEQ Indexes of Biological Integrity, for which threshold values were just recently placed into the Arizona Surface Water Quality Standards. While this survey did not include warm water desert streams of Arizona, we would predict that EMAP and ADEQ sampling methodologies would provide similar bioassessment results and would not be significantly different, as we have found that the percent riffle habitat in cold and warm water perennial, wadeable streams is not significantly different. However, a comparison study of sampling methodologies in warm water streams should be conducted to confirm the predicted similarity of bioassessment results. ADEQ will continue to implement a monitoring strategy that includes probabilistic monitoring for a statewide ecological assessment of stream conditions. Conclusions from this study will guide decisions regarding the most appropriate sampling methods for future probabilistic monitoring sample plans.

  17. Tracing the spatial and temporal variability of different water sources in a glacierized Alpine catchment (Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Comiti, Francesco; Vignoli, Gianluca; Simoni, Silvia; Dinale, Roberto

    2016-04-01

    Glacierized catchments are important sources of fresh water. Although recent tracer-based studies have been carried out in these environments, more investigations are needed to understand more in detail the complex dynamics of snowmelt, glacier melt and groundwater contributions to stream water, the spatial and temporal variability of these sources of runoff and suspended sediment. In this study we used stable isotopes of water and electrical conductivity (EC) as tracers to identify the origin of different waters in the glacierized Sulden/Solda catchment (130 km², Eastern Italian Alps). The site ranges in elevation between 1112 and 3905 m a.s.l. and includes two major sub-catchments. Rainfall samples were taken from bulk collectors placed along an elevation gradient (905-2585 m a.s.l.). Winter-integrated snowmelt samples were collected from passive capillary samplers installed at different elevations (1600-2825 m a.s.l.), whereas snowmelt was sampled from dripping snow patches. Glacier melt samples were taken in summer from small rivulets on the glacier surface. Samples from the two main streams were collected monthly in 2014 and 2015 at different stream sections, major tributaries and springs. At the outlet, stream water was sampled daily by an automatic sampler, and EC, turbidity and water stage were measured every 5 minutes. Meteorological data were measured by two weather stations at 1600 and 2825 m a.s.l.. Manual samples were taken from February 2014 to November 2015 while the automatic sampling at the outlet was carried out from May to October 2014 and 2015. Results indicate that precipitation originated from air masses coming from the Atlantic Ocean, with limited influence of Mediterrean air masses. Snowmelt showed a pronounced isotopic enrichment during summer, which was also found for glacier melt, but less strong. Spring water from both sub-catchments seemed to be affected by infiltrating snowmelt during summer and represented the major stream component during winter baseflow. The tracer-based comparison of stream locations in both sub-catchments showed similar isotopic and EC dynamics during summer, highlighting that meltwater dynamics may hide the hydrochemical impact of different geology in both sub-catchments. However, EC dynamics in the left sub-catchment during winter indicated a spatial gradient of increasing solute concentrations along the stream. In contrast, an inverse spatial gradient of solute concentrations was found in the right sub-catchment, revealing a different geological setting and highlighting the impact of intensive subglacial weathering. At the outlet, EC and isotopic composition could identify clear seasonal melt water dynamics with periods of pronounced snowmelt contributions in early summer followed by dominant glacier melt contributions. Rainfall events seemed to play a major role on stream water composition in autumn. Also the impact of early snowfall and its melting in autumn 2015 could be traced and well distinguished from early summer snowmelt water. Turbidity showed strong oscillations at the daily scale during summer melt periods and markedly responded to rainfall events, which could be attributed to rapid mobilization of fine sediments and suspended sediment transport in the study catchment.

  18. Reconnaissance data for selected herbicides, two atrazine metabolities, and nitrate in surface water of the Midwestern United States, 1989-90

    USGS Publications Warehouse

    Scribner, E.A.; Thurman, E.M.; Goolsby, D.A.; Meyer, M.T.; Mills, M.S.; Pomes, M.L.

    1993-01-01

    Water-quality data were collected from 147 rivers and streams during 1989-90 to assess selected preemergent herbicides, two atrazine metabolites, and nitrate in 10 Midwestern States. This report includes a description of the sampling design, data collection techniques, laboratory and analytical methods, and a compilation of constituent concentrations and quality-assurance data. All water samples were collected by depth-integrating techniques at three to five locations across the wetted perimeter of each stream. Sites were sampled three times in l989--before application of herbi- cides, during the first major runoff after appli- cation of herbicides, and in the fall during a low-flow period when ground water contributed to most of the streamflow. About 50 sites were selected by a stratified random procedure and resampled for both pre- and post-application herbicide concen- trations in 1990 to verify the 1989 results. Laboratory analyses consisted of both enzyme-linked immunosorbent assay (ELISA) with confirmation by gas chromatography-mass spectrometry (GC/MS). The data are useful in studying herbicide transport, in comparison of the spatial distribution of the post-application concentrations of 11 herbicides and 2 atrazine metabolites (deethylatrazine and deisopropylatrazine) in streams and rivers at a regional scale. It is also useful in examination of annual persistence of herbicides and two metabolites in surface water, and in the assessment of atrazine metabolites as indicators of surface- and ground- water interaction. The reconnaissance data are contained in this report and are also available on computer diskette from the U.S. Geological Survey in Lawrence, Kansas.

  19. Water Quality in Courtland Creek, East Oakland, California

    NASA Astrophysics Data System (ADS)

    Bracho, H.; Ahumada, A.; Hernandez, G.; Quintero, D.; Ramirez, J.; Ramirez, L.; Pham, T.; Holt, J.; Johnson, A.; Rubio, E.; Ponce, X.; Medina, S.; Limon, S.

    2013-12-01

    Courtland Creek is a tributary of the larger East Creek system that runs southeast from the Oakland Hills down to the San Leandro Bay in Oakland, California. In an effort to assess the overall health of Courtland Creek our team conducted a water quality research study. Stream water samples were collected from 4 sites between MacArthur Avenue (describe geographically as not all readers are familiar with Oakland geography) and Thompson Avenue (describe geographically as not all readers are familiar with Oakland geography) at accessible sections of this largely culverted stream. Dissolved oxygen, ammonia, nitrite, nitrate, phosphate, and chlorine concentrations in were measured using wet chemistry procedures. Analysis of collected samples indicates that dissolved oxygen levels in the stream are sufficient for invertebrates, ranging from 5 and 9 parts per million (ppm). Nitrate levels were significantly high, with concentrations ranging from 15 and 40 ppm. Other chemical species associated with waste products--ammonia, nitrite, and phosphate--also were present, but at low concentrations. Small amounts of chlorine also were found in waters of the creek system. The presence of high concentrations of nitrate, together with chlorine, suggests that untreated sewage may be leaking into Courtland Creek at an unidentified location.

  20. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  1. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil).

    PubMed

    Rodrigues, Valdemir; Estrany, Joan; Ranzini, Mauricio; de Cicco, Valdir; Martín-Benito, José Mª Tarjuelo; Hedo, Javier; Lucas-Borja, Manuel E

    2018-05-01

    Stream water quality is controlled by the interaction of natural and anthropogenic factors over a range of temporal and spatial scales. Among these anthropogenic factors, land cover changes at catchment scale can affect stream water quality. This work aims to evaluate the influence of land use and seasonality on stream water quality in a representative tropical headwater catchment named as Córrego Água Limpa (Sao Paulo, Brasil), which is highly influenced by intensive agricultural activities and urban areas. Two systematic sampling approach campaigns were implemented with six sampling points along the stream of the headwater catchment to evaluate water quality during the rainy and dry seasons. Three replicates were collected at each sampling point in 2011. Electrical conductivity, nitrates, nitrites, sodium superoxide, Chemical Oxygen Demand (DQO), colour, turbidity, suspended solids, soluble solids and total solids were measured. Water quality parameters differed among sampling points, being lower at the headwater sampling point (0m above sea level), and then progressively higher until the last downstream sampling point (2500m above sea level). For the dry season, the mean discharge was 39.5ls -1 (from April to September) whereas 113.0ls -1 were averaged during the rainy season (from October to March). In addition, significant temporal and spatial differences were observed (P<0.05) for the fourteen parameters during the rainy and dry period. The study enhance significant relationships among land use and water quality and its temporal effect, showing seasonal differences between the land use and water quality connection, highlighting the importance of multiple spatial and temporal scales for understanding the impacts of human activities on catchment ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. First post-fire flush in a Mediterranean temporary stream: source ascription in bed sediments

    NASA Astrophysics Data System (ADS)

    Estrany Bertos, Joan; García-Comendador, Julián; Fortesa, Josep; Calsamiglia, Aleix; Garcias, Francesca

    2017-04-01

    First flushes can be of great importance for suspended-sediment transport in fluvial systems of drylands, being temporary streams a characteristic feature of Mediterranean basins. After a wildfire, storm flows may enhance runoff delivery to channels and then increasing the first-flush effect. 137Cs and 210Pbex were used as tracers for recognizing the first post-fire flush effect in the source ascription of bed sediments temporarily stored in a Mediterranean temporary stream severely affected by a wildfire. Thirty potential sediment source samples were collected along the main stem of a catchment located in Mallorca (Spain) during a field campaign developed some weeks after the wildfire. The sample collection was designed considering the wildfire affection, and also distinguishing between soil surface and channel bank. To quantify the relative source contribution to the bed sediment temporarily stored, five sediment samples -deposited during the first storm occurred three months after the wildfire- were collected into the bed stream of the main channel. The 137Cs and 210Pbex concentrations were measured by gamma spectrometry. Then, a linear mixing model was used to establish the relative contribution of each source type to the bed sediments discerning between the most upstream and the downstream parts of the catchment. Post-fire first-flush effect was generated by a torrential event with a suspended-sediment concentration peak ca. 33,618 mg L-1, although transmission losses under a very low runoff coefficient (1%) promoted sediment deposition. Significant differences were observed in fallout radionuclide concentrations between burned surface soil and channel bank samples (p < 0.05), as well as between burned and unburned sources at the downstream part of the catchment (p < 0.01). The radioactivity concentrations in bed sediments samples were statistically similar (p > 0.05). Source ascription in bed sediments in the middle stream shows that 67% was generated in burned hillslopes, reaching 75% in the downstream part because downstream propagation of the sediment derived from the burned area. Bed sediments were mostly generated in burned hillslopes because of the fire effects on soils and sediment availability, high intensity rainfall and limited contribution of channel banks that are fixed by dry-stone walls. This hydro-sedimentary response indicates an association between driven sediment transport factors and sediment availability, generating an effective slope-to-channel sediment connectivity. Long-term sediment sources monitoring will elucidate if the most effective period of the window of disturbance at catchment scale is further extended (i.e., ≈5 years).

  3. Effects of nonpoint and selected point contaminant sources on stream-water quality and relation to land use in Johnson County, northeastern Kansas, October 2002 through June 2004

    USGS Publications Warehouse

    Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.

    2005-01-01

    Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge from WWTFs with trickling-filter secondary treatment processes had the largest concentrations of many potential contaminants during base-flow conditions. Samples from two of three trickling-filter WWTFs exceeded Kansas Department of Health and Environment pH- and temperature-dependent chronic aquatic-life criteria for ammonia when early-life stages of fish are present. Discharge from trickling-filter facilities generally had the most detections and largest concentrations of many organic wastewater-indicator compounds in Johnson County stream-water samples. Caffeine (stimulant), nonylphenol-diethoxylate (detergent surfactant), and tris(2-butoxyethyl) phosphate (floor polish, flame retardant, and plasticizer) were found at concentrations larger than maximum concentrations in comparable studies. Land use and seasonality affected the occurrence and magnitude of many potential water-quality contaminants originating from nonpoint sources. Base-flow samples from urban sites located upstream from WWTF discharges had larger indicator bacteria densities and wastewater-indicator compound concentrations than did base-flow samples from sites in nonurban areas. Dissolved-solids concentrations were the largest in winter stormflow samples from urban sites and likely were due to runoff from road-salt application. One sample from an urban watershed had a chloride concentration of 1,000 milligrams per liter, which exceeded the Kansas Department of Health and Environment's acute aquatic-life use criterion (860 milligrams per liter) likely due to effects from road-salt application. Pesticide concentrations were the largest in spring stormflow samples collected in nonurban watersheds. Although most wastewater-indicator compounds were found at the largest concentrations in samples from WWTF discharges, the compounds 9-10, anthraquinone (bird repellent), caffeine (stimulant), carbazole (component of coal tar, petroleum products), nonylphenol-diethoxylate (detergent surfactant),

  4. Patterns of streamwater acidity in Lye Brook Wilderness, Vermont, USA

    Treesearch

    John L. Campbell; Christopher Eagar; William H. McDowell

    2002-01-01

    Under the United States Clean Air Act Amendments of 1977, a class I designation safeguards wilderness areas from the negative effects of new sources of air pollution. We monitored streamwater chemistry in the class I Lye Brook Wilderness in southwestern Vermont from May 1994 through August 1995. Stream samples were collected biweekly at nine sampling locations...

  5. User's manual for the Graphical Constituent Loading Analysis System (GCLAS)

    USGS Publications Warehouse

    Koltun, G.F.; Eberle, Michael; Gray, J.R.; Glysson, G.D.

    2006-01-01

    This manual describes the Graphical Constituent Loading Analysis System (GCLAS), an interactive cross-platform program for computing the mass (load) and average concentration of a constituent that is transported in stream water over a period of time. GCLAS computes loads as a function of an equal-interval streamflow time series and an equal- or unequal-interval time series of constituent concentrations. The constituent-concentration time series may be composed of measured concentrations or a combination of measured and estimated concentrations. GCLAS is not intended for use in situations where concentration data (or an appropriate surrogate) are collected infrequently or where an appreciable amount of the concentration values are censored. It is assumed that the constituent-concentration time series used by GCLAS adequately represents the true time-varying concentration. Commonly, measured constituent concentrations are collected at a frequency that is less than ideal (from a load-computation standpoint), so estimated concentrations must be inserted in the time series to better approximate the expected chemograph. GCLAS provides tools to facilitate estimation and entry of instantaneous concentrations for that purpose. Water-quality samples collected for load computation frequently are collected in a single vertical or at single point in a stream cross section. Several factors, some of which may vary as a function of time and (or) streamflow, can affect whether the sample concentrations are representative of the mean concentration in the cross section. GCLAS provides tools to aid the analyst in assessing whether concentrations in samples collected in a single vertical or at single point in a stream cross section exhibit systematic bias with respect to the mean concentrations. In cases where bias is evident, the analyst can construct coefficient relations in GCLAS to reduce or eliminate the observed bias. GCLAS can export load and concentration data in formats suitable for entry into the U.S. Geological Survey's National Water Information System. GCLAS can also import and export data in formats that are compatible with various commonly used spreadsheet and statistics programs.

  6. Geospatial database for regional environmental assessment of central Colorado.

    USGS Publications Warehouse

    Church, Stan E.; San Juan, Carma A.; Fey, David L.; Schmidt, Travis S.; Klein, Terry L.; DeWitt, Ed H.; Wanty, Richard B.; Verplanck, Philip L.; Mitchell, Katharine A.; Adams, Monique G.; Choate, LaDonna M.; Todorov, Todor I.; Rockwell, Barnaby W.; McEachron, Luke; Anthony, Michael W.

    2012-01-01

    In conjunction with the future planning needs of the U.S. Department of Agriculture, Forest Service, the U.S. Geological Survey conducted a detailed environmental assessment of the effects of historical mining on Forest Service lands in central Colorado. Stream sediment, macroinvertebrate, and various filtered and unfiltered water quality samples were collected during low-flow over a four-year period from 2004–2007. This report summarizes the sampling strategy, data collection, and analyses performed on these samples. The data are presented in Geographic Information System, Microsoft Excel, and comma-delimited formats. Reports on data interpretation are being prepared separately.

  7. Assessment of water quality, road runoff, and bulk atmospheric deposition, Guanella Pass area, Clear Creek and Park Counties, Colorado, water years 1995-97

    USGS Publications Warehouse

    Stevens, Michael R.

    2001-01-01

    The Guanella Pass road, located about 40 miles west of Denver, Colorado, between the towns of Georgetown and Grant, has been designated a scenic byway and is being considered for reconstruction. The purpose of this report is to present an assessment of hydrologic and water-quality conditions in the Guanella Pass area and provide baseline data for evaluation of the effects of the proposed road reconstruction. The data were collected during water years 1995-97 (October 1, 1995, to September 30, 1997).Based on Colorado water-quality standards, current surface-water quality near Guanella Pass road was generally acceptable for specified use classifications of recreation, water supply, agriculture, and aquatic life. Streams had small concentrations of dissolved solids, nutrients, trace elements, and suspended sediment. An exception was upper Geneva Creek, which was acidic and had relatively large concentrations of iron, zinc, and other trace elements related to acid-sulfate weathering. Concentrations of many water-quality constituents, especially particle-related phases and suspended sediment, increased during peak snowmelt and rainstorm events and decreased to prerunoff concentrations at the end of runoff periods. Some dissolved (filtered) trace-element loads in Geneva Creek decreased during rainstorms when total recoverable loads remained generally static or increased, indicating a phase change that might be explained by adsorption of trace elements to suspended sediment during storm runoff.Total recoverable iron and dissolved zinc exceeded Colorado stream-water-quality standards most frequently. Exceedances for iron generally occurred during periods of high suspended-sediment transport in several streams. Zinc standards were exceeded in about one-half the samples collected in Geneva Creek 1.5 miles upstream from Grant.Lake-water quality was generally similar to that of area streams. Nitrogen and phosphorus ratios calculated for Clear and Duck Lakes indicated that phytoplankton in the lakes were probably phosphorus-limited. Measures of trophic status (secchi depth, total phosphorus, and chlorophyll-a) indicated that Duck and Clear Lakes were oligotrophic in 1997.Ground water had relatively low specific conductance (range 24 to 584 microsiemens per centimeter) and did not exceed U.S. Environmental Protection Agency drinking-water standards, except for samples collected from a single well, which exceeded the Proposed Maximum Contaminant Level for uranium.Runoff from the Guanella Pass road enters streams through surface channels connected to culverts and roadside ditches. Fifty-six percent of the total number of culvert and roadside-ditch drainage features on the Guanella Pass road showed evidence of recent surface runoff connection to an adjacent stream. Road runoff is generated during snowmelt and during summer rainstorms.At a road cross-drain culvert monitored continuously for discharge (water years 1996-97), most runoff (77 to 96 percent) was a result of snowmelt, and runoff from the road preceded the basinwide peak streamflow, resulting in sediment and water-quality constituent inputs to the stream when the stream?s capacity for dilution of the road runoff was low. Specific conductance of road-runoff samples ranged from 14 to 468 microsiemens per centimeter. Major-ion composition of some samples indicated effects from deicing salt (sodium chloride) and dust inhibitor (magnesium chloride) applied to sections of the road, but changes in the stream concentrations that might be attributed to the runoff were brief and relatively small.Nutrients were commonly measured in road-runoff samples at larger concentrations than in streamflow. Concentrations of nitrate and ammonia, especially during rainfall-generated road runoff, were more similar to the concentrations in precipitation than to the concentrations in stream water. Concentrations of ammonia plus organic nitrogen (total as N) (range less than 0.2 to 24 milligrams per liter) and t

  8. Background hydrologic information in potential lignite mining areas in north-central Mississippi, August 1984

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1985-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Natural Resources, Bureau of Geology, is conducting a hydrologic data collection program in potential lignite-producing areas in Mississippi. During the last two weeks of August 1984, hydrologic data were collected at 15 stream sites that drain potential lignite mining areas in Lafayette, Calhoun, and Yalobusha Counties. Main channel widths ranged from approximately 60 feet at three streams (Coon Creek near Toccopula, Muckaloon Creek near Tula, and Hurricane Creek near Velma) to approximately 120 feet at two streams (Potlockney Creek near Tula, and Savannah Creek near Bruce). Maximum water depths ranged from less than 1.0 foot at most streams to over 5.0 feet at sites on Potlockney Creek near Tula and McGill Creek near Sarepta. Stream discharge ranged from 0.32 cubic feet per second in Persimmon Creek near Bruce to 18.5 cubic feet per second in Puskus Creek near Etta. The specific conductance of stream water ranged from 25 to 160 microsiemens and dissolved solids concentrations ranged from 22 to 91 mg/L (milligrams per liter). Most major ion concentrations were less than 10 mg/L with the exception of calcium (11 mg/L), sodium (12 mg/L) and sulfate (18 mg/L) in the water of Persimmon Creek near Bruce. Dissolved oxygen concentrations were greater than 5.0 mg/L at all but one site. Turbidity values were generally less than 50 units. Nitrate plus nitrite concentrations were equal to or less than 0.10 mg/L in all streams except in Potlockney Creek near Tula where the concentration was 0.11 mg/L. Copper and selenium concentrations in the water at all sampling sites ranged from below the detection limits (1 microgram/g) to 4 micrograms/g (micrograms per gram) and mercury concentrations in bottom material samples ranged from less than 0.01 microgram/g to 0.15 microgram/g. (USGS)

  9. Screening for the Pesticides Atrazine, Chlorpyrifos, Diazinon, Metolachlor, and Simazine in Selected Michigan Streams, March-November 2005

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.

    2007-01-01

    From March through November 2005, the U.S. Geological Survey, in cooperation with the Michigan Department of Environmental Quality (MDEQ), did a statewide screening to aid in understanding the occurrence and distribution of selected pesticides in Michigan streams. Stream-water samples were collected from 23 sites throughout Michigan. In all, 320 water samples were analyzed by use of rapid immunoassay methods for the herbicides atrazine, metolachlor, and simazine and the insecticides chlorpyrifos and diazinon. On one occasion (June, 2005), atrazine concentrations exceeded the Michigan water-quality value (7.3 micrograms per liter) at the Black River in St. Clair County. Neither chlorpyrifos nor diazinon was detected during April through September. MDEQ detected chlorpyrifos in streams throughout the state in November. Herbicide concentrations were highest in samples influenced by intensive agriculture; however, median herbicide concentrations were similar among agricultural and urban sites. Concentrations of herbicides were very low to undetected in undeveloped areas. Seasonal patterns were also evident during the sampling period. Increased concentrations generally occurred in late spring to early summer. At 11 sites, daily sampling was done every day for 5 days following a rainfall after herbicide application in the area. Substantial changes in concentrations of herbicides - greater than tenfold from the previous day - were observed during the daily sampling. No consistent relation was found between concentration and streamflow. Results of this study may be used to aid in the development of a more comprehensive pesticide monitoring study for the State of Michigan.

  10. Stream-sediment geochemistry in mining-impacted streams: Prichard, Eagle, and Beaver creeks, northern Coeur d'Alene Mining District, northern Idaho

    USGS Publications Warehouse

    Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    This report presents the results of one aspect of an integrated watershed-characterization study that was undertaken to assess the impacts of historical mining and milling of silver-lead-zinc ores on water and sediment composition and on aquatic biota in streams draining the northern part of the Coeur d?Alene Mining District in northern Idaho. We present the results of chemical analyses of 62 samples of streambed sediment, 19 samples of suspended sediment, 23 samples of streambank soil, and 29 samples of mine- and mill-related artificial- fill material collected from the drainages of Prichard, Eagle, and Beaver Creeks, all tributaries to the North Fork of the Coeur d?Alene River. All samples were sieved into three grain-size fractions (<0.063, 0.063?0.25, and 0.25?1.0 mm) and analyzed for 40 elements after four-acid digestion by inductively coupled plasma atomic-emission spectrometry and for mercury by continuous- flow cold-vapor atomic-absorption spectrometry in the U.S. Geological Survey laboratory in Denver, Colo. Historical mining of silver-lead-zinc ores in the headwater reaches of the Prichard Creek, Eagle Creek, and Beaver Creek drainages has resulted in enrichments of lead, zinc, mercury, arsenic, cadmium, silver, copper, cobalt, and, to a lesser extent, iron and manganese in streambed sediment. Using samples collected from the relatively unimpacted West Fork of Eagle Creek as representative of background compositions, streambed sediment in the vicinity of the mines and millsites has Pb and Zn contents of 20 to 100 times background values, decreasing to 2 to 5 times background values at the mouth of the each stream, 15 to 20 km downstream. Lesser enrichments (<10 times background values) of mercury and arsenic also are generally associated with, and decrease downstream from, historical silver-lead-zinc mining in the drainages. However, enrichments of arsenic and, to a lesser extent, mercury also are areally associated with the lode gold deposits along Prichard Creek near Murray, which were not studied here. Metal contents in samples of unfractionated suspended sediment collected during a high-flow event in April 2000 are generally similar to, but slightly higher than, those in the fine (<0.063- mm grain size) fraction of streambed sediment from the same sampling site. Although metal enrichment in streambed sediment typically begins adjacent to the mine portals and their associated mine-waste rock dumps, volumetrically larger inputs of metal-enriched materials were contributed by the ore-concentration millsites and their associated, more finely ground, more metal rich mill-tailings impoundments.

  11. Milky Way mass and potential recovery using tidal streams in a realistic halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonaca, Ana; Geha, Marla; Küpper, Andreas H. W.

    2014-11-01

    We present a new method for determining the Galactic gravitational potential based on forward modeling of tidal stellar streams. We use this method to test the performance of smooth and static analytic potentials in representing realistic dark matter halos, which have substructure and are continually evolving by accretion. Our FAST-FORWARD method uses a Markov Chain Monte Carlo algorithm to compare, in six-dimensional phase space, an 'observed' stream to models created in trial analytic potentials. We analyze a large sample of streams that evolved in the Via Lactea II (VL2) simulation, which represents a realistic Galactic halo potential. The recovered potentialmore » parameters are in agreement with the best fit to the global, present-day VL2 potential. However, merely assuming an analytic potential limits the dark matter halo mass measurement to an accuracy of 5%-20%, depending on the choice of analytic parameterization. Collectively, the mass estimates using streams from our sample reach this fundamental limit, but individually they can be highly biased. Individual streams can both under- and overestimate the mass, and the bias is progressively worse for those with smaller perigalacticons, motivating the search for tidal streams at galactocentric distances larger than 70 kpc. We estimate that the assumption of a static and smooth dark matter potential in modeling of the GD-1- and Pal5-like streams introduces an error of up to 50% in the Milky Way mass estimates.« less

  12. Tracing Nitrogen Sources in Forested Catchments Under Varying Flow Conditions: Seasonal and Event Scale Patterns

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2004-12-01

    Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.

  13. Environmental setting of benchmark streams in agricultural areas of eastern Wisconsin

    USGS Publications Warehouse

    Rheaume, S.J.; Stewart, J.S.; Lenz, B.N.

    1996-01-01

    Differences in land use/land cover, and riparian vegetation and instream habitat characteristics are presented. Summaries of field measurements of water temperature, pH, specific conductance and concentrations of dissolved oxygen, total organic plus ammonia nitrogen, dissolved ammonium, nitrate plus nitrte as nitrogen, total phosphorus, dissolved orthophosphate, and atrazine are listed. Concentrations of dissolved oxygen for the sampled streams ranged from 6 A to 14.3 and met the standards set by the Wisconsin Department of Natural Resources (WDNR) for supporting fish and aquatic life. Specific conductance ranged from 98 to 753 u,Scm with values highest in RHU's 1 and 3, where streams are underlain by carbonate bedrock. Median pH did not vary greatly among the four RHU's and ranged from 6.7 to 8.8 also meeting the WDNR standards. Concentrations of total organic plus ammonia nitrogen, dissolved ammonium, total phosphorus, and dissolved orthophosphate show little variation between streams and are generally low, compared to concentrations measured in agriculturally-affected streams in the same RHU's during the same sampling period. Concentrations of the most commonly used pesticide in the study unit, atrazine, were low in all streams, and most concentrations were below trn 0.1 u,g/L detection limit. Riparian vegetation for the benchmark streams were characterized by lowland species of the native plant communities described by John T. Curtis in the "Vegetation of Wisconsin." Based on the environmental setting and water-quality information collected to date, these streams appear to show minimal adverse effects from human activity.

  14. A preliminary evaluation of stream sediment sampling for the detection of cobalt mineralization in the Bou Azzer District, Morocco

    USGS Publications Warehouse

    Foose, M.P.

    1983-01-01

    Analyses of 28 stream sediment samples collected in the Bou Azzer district, Morocco, show that this sampling technique may be useful in locating the cobalt arsenide mineralization that exists in this area. The absence of exceptionally high values of cobalt and arsenic, the nearly lognormal distribution of cobalt values, and the lack of correlation between the highest values of cobalt and arsenic were unanticipated results that do not support the use of this sampling technique. However, highest values of several metals, including cobalt, were associated with an identified area of cobalt mineralization, and high cobalt was present near a second area in which cobalt mineralization is suspected. Although probably mostly reflecting the geochemistry of unexposed ultramafic rocks, the association of these metals with mineralization shows that this type of sampling can independently locate areas of known or potential cobalt mineralization.

  15. Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring

    NASA Technical Reports Server (NTRS)

    Smith, Raymond C.; Brown, Otis B.; Hoge, Frank E.; Baker, Karen S.; Evans, Robert H.

    1987-01-01

    The purpose of this paper is to demonstrate the ability to meet the need to measure distributions of physical and biological properties of the ocean over large areas synoptically and over long time periods by means of remote sensing utilizing contemporaneous buoy, ship, aircraft, and satellite (i.e., multiplatform) sampling strategies. A mapping of sea surface temperature and chlorophyll fields in a Gulf Stream warm core ring using the multiplatform approach is described. Sampling capabilities of each sensing system are discussed as background for the data collected by means of these three dissimilar methods. Commensurate space/time sample sets from each sensing system are compared, and their relative accuracies in space and time are determined. The three-dimensional composite maps derived from the data set provide a synoptic perspective unobtainable from single platforms alone.

  16. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream from the mine that varied from <0.02 to 0.22ng/L. Aquatic snails collected downstream from the mine were elevated in Hg indicating significant bioavailability and uptake of Hg by these snails. Results for sediment and water indicated significant methyl-Hg formation in the ecosystem downstream from the Bonanza mine, which is enhanced by the temperate climate, high precipitation in the area, and high organic matter.

  17. Algal Data from Selected Sites in the Upper Colorado River Basin, Colorado, Water Years 1996-97

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2001-01-01

    Algal community samples were collected at 15 sites in the Upper Colorado River Basin in Colorado as part of the National Water-Quality Assessment Program during water years 1996-97. Sites sampled were located in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateaus, and represented agricultural, mining, urban, and mixed land uses and background conditions. Algal samples were collected once per year during low-flow conditions. Quantitative algal samples were collected within two targeted instream habitat types including a taxonomically richest-targeted habitat and a depositional-targeted habitat. This report presents the algal community data collected at the fixed sites in the Upper Colorado River Basin study unit. Algal data include densities (abundance of cells per square centimeter of substrate) and biovolumes (cubic micrometers of cells per square centimeter of substrate) for the two habitat types. Quality-assurance and quality-control results for algal samples indicate that the largest sampling variability tends to occur in samples from small streams.

  18. Distribution of Cu, Co, As, and Fe in mine waste, sediment, soil, and water in and around mineral deposits and mines of the Idaho Cobalt Belt, USA

    USGS Publications Warehouse

    Gray, John E.; Eppinger, Robert G.

    2012-01-01

    The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.

  19. Relationships of elevation, channel slope, and stream width to occurrences of native fishes at the Great Plains-Rocky Mountains interface

    USGS Publications Warehouse

    Brunger, Lipsey T.S.; Hubert, W.A.; Rahel, F.J.

    2005-01-01

    Environmental gradients occur with upstream progression from plains to mountains and affect the occurrence of native warmwater fish species, but the relative importance of various environmental gradients are not defined. We assessed the relative influences of elevation, channel slope, and stream width on the occurrences of 15 native warmwater fish species among 152 reaches scattered across the North Platte River drainage of Wyoming at the interface of the Great Plains and Rocky Mountains. Most species were collected in reaches that were lower in elevation, had lower channel slopes, and were wider than the medians of the 152 sampled reaches. Several species occurred over a relatively narrow range of elevation, channel slope, or stream width among the sampled reaches, but the distributions of some species appeared to extend beyond the ranges of the sampled reaches. We identified competing logistic-regression models that accounted for the occurrence of individual species using the information-theoretic approach. Linear logistic-regression models accounted for patterns in the data better than curvilinear models for all species. The highest ranked models included channel slope for seven species, elevation for six species, stream width for one species, and both channel slope and stream width for one species. Our results suggest that different environmental gradients may affect upstream boundaries of different fish species at the interface of the Great Plains and Rocky Mountains in Wyoming.

  20. Guidelines for using bedload traps in coarse-bedded mountain streams: Construction, installation, operation, and sample processing

    Treesearch

    Kristin Bunte; Kurt W. Swingle; Steven R. Abt

    2007-01-01

    A bedload trap is a portable sampler designed specifically for collecting gravel and cobble bedload (4 to 180 mm in diameter) in wadeable streams. Bedload traps consist of an aluminum frame with a 12 by 8 inch (0.3 by 0.2 m) opening to which a 3- to 5.5-ft (0.9 to 1.65 m) long trailing net is attached. Bedload traps are installed on ground plates that are anchored to...

  1. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  2. A mini drivepoint sampler for measuring pore water solute concentrations in the hyporheic zone of sand-bottom streams

    USGS Publications Warehouse

    Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.

    1998-01-01

    A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.

  3. Water-quality data for selected streams in the Mississippi Alluvial Plain ecoregion, northwestern Mississippi, September – October 2007

    USGS Publications Warehouse

    Hicks, Matthew B.; Stocks, Shane J.

    2010-01-01

    From September through October 2007, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, collected and analyzed water-quality samples from streams in the Yazoo River basin within the Mississippi Alluvial Plain ecoregion in northwestern Mississippi. Water-quality samples were collected at 56 sites in the study area and analyzed for various physical and chemical characteristics including, but not limited to, suspended sediment, nutrients, and chlorophyll a. Additionally, water temperature, pH, specific conductance, and dissolved oxygen data were measured at 28 of the sites using multiparameter water-quality meters at 30-minute intervals for a minimum of 48 hours. Data collected for this project will be used in the development of water-quality criteria for nutrients. The nutrient data will enhance existing datasets and support evaluation of cause and effect relations for nutrient criteria development. In addition, these indicators will assist in the development and evaluation of restoration and remediation plans for water bodies not meeting their designated uses, as stated in the U.S. Environmental Protection Agency's Clean Water Act Section 303(d).

  4. Sampling large geographic areas for rare species using environmental DNA: A study of bull trout Salvelinus confluentus occupancy in western Montana

    Treesearch

    Kevin McKelvey; Michael Young; W. L. Knotek; K. J. Carim; T. M. Wilcox; T. M. Padgett-Stewart; Michael Schwartz

    2016-01-01

    This study tested the efficacy of environmental DNA (eDNA) sampling to delineate the distribution of bull trout Salvelinus confluentus in headwater streams in western Montana, U.S.A. Surveys proved fast, reliable and sensitive: 124 samples were collected across five basins by a single crew in c. 8days. Results were largely consistent with past electrofishing,...

  5. Streamflow and suspended-sediment transport in Garvin Brook, Winona County, southeastern Minnesota: Hydrologic data for 1982

    USGS Publications Warehouse

    Payne, G.A.

    1983-01-01

    Streamflow and suspended-sediment-transport data were collected in Garvin Brook watershed in Winona County, southeastern Minnesota, during 1982. The data collection was part of a study to determine the effectiveness of agricultural best-management practices designed to improve rural water quality. The study is part of a Rural Clean Water Program demonstration project undertaken by the U.S. Department of Agriculture. Continuous streamflow data were collected at three gaging stations during March through September 1982. Suspended-sediment samples were collected at two of the gaging stations. Samples were collected manually at weekly intervals. During periods of rapidly changing stage, samples were collected at 30-minute to 12-hour intervals by stage-activated automatic samplers. The samples were analyzed for suspendedsediment concentration and particle-size distribution. Particlesize distributions were also determined for one set of bedmaterial samples collected at each sediment-sampling site. The streamflow and suspended-sediment-concentration data were used to compute records of mean-daily flow, mean-daily suspended-sediment concentration, and daily suspended-sediment discharge. The daily records are documented and results of analyses for particle-size distribution and of vertical sampling in the stream cross sections are given.

  6. Water resources on and near the Nottawaseppi Huron band of Potawatomi indian tribal lands, Calhoun County, Michigan, 2000-03

    USGS Publications Warehouse

    Weaver, T.L.; Healy, D.; Sabin, T.G.

    2005-01-01

    The Nottawaseppi Huron Band of Potawatomi Indians in Calhoun County, Michigan is concerned about the water quality and quantity of streams in and around tribal lands and of shallow ground water. The tribe wanted to establish a database that included streamflow, stage, and water quality of local streams and quality of ground water from wells belonging to the tribe and its members. Concerned about the effects of long-term agricultural activity and increasing numbers of singlefamily dwellings being constructed within the watershed both on and off the reservation, the tribe wants to develop a water-resources management plan.U.S. Geological Survey (USGS) measured streamflow and installed staff gages tied into local datum on three tributaries of the St. Joseph River that cross tribal lands. Water-quality samples were collected from the sites under a variety of flow regimes from spring to fall during 2000-03. Stage-streamflow rating curves were constructed for Pine Creek and Athens & Indian Creek Drain after a number of discharge measurements were made and a thorough basin analysis was completed. Daily streamflow for Pine Creek near Athens was estimated for the period from May 2000 through September 2003.USGS collected 12 water samples at Pine Creek near Athens, Athens & Indian Creek Drain, and an unnamed tributary to Pine Creek during October 2000 through September 2003. Physical properties were measured, and the streams were sampled for major ions, nutrients, trace elements, caffeine, and herbicides/pesticides and their breakdown products (degradates). The tribe also measured physical properties weekly at the three sites during each growing season for the study period. Surface water at the three sites can be classified as hard, with calcium carbonate concentrations exceeding 180 milligrams per liter (mg/L). Concentrations of calcium, magnesium, chloride, and dissolved solids are typical of the area. There were 68 detections of 17 pesticides, degradates, and caffeine. Atrazine and metolachlor were detected in all samples, and the atrazine degradate deethylatrazine was detected in all samples from Pine Creek and Athens & Indian Creek Drain. Another atrazine degradate (2-hydroxy-atrazine, or OIET) was detected five of the six times that it was included in the analyses. A single sample collected from Athens & Indian Creek Drain in May 2001 had relatively higher concentrations of acetochlor, atrazine, CIAT (deethylatrazine), and diuron than the other sampling sites did during the study. Analysis for various species of mercury was completed on samples collected at Pine Creek and Athens & Indian Creek Drain in July 2003, and results were similar to those typical of unimpaired streams in the Midwest. None of the surface-water sites had major ion, nutrient, or trace-element concentrations that exceeded Michigan Department of Environmental Quality standards for nonpotable surface water.USGS also collected 11 ground-water samples from 7 wells on or adjacent to the traditional reservation in 2003. Two wells were sampled twice, and a single well was sampled three times, in order to document any chemical changes that might have occurred as a result of aquifer recharge, which most typically occurs in late winter to spring in the southern Lower Peninsula of Michigan. Samples were analyzed for 184 pesticides and degradates and caffeine. There were five detections of four pesticides or degradates, but none of the detected chemicals are included in current U.S. Environmental Protection Agency drinking-water standards. The remaining 181 analytes were below laboratory reporting limits.

  7. A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.

  8. Data from selected U.S. Geological Survey national stream water-quality monitoring networks (WQN) on CD-ROM

    USGS Publications Warehouse

    Alexander, R.B.; Ludtke, A.S.; Fitzgerald, K.K.; Schertz, T.L.

    1996-01-01

    Data from two U.S. Geological Survey (USGS) national stream water-quality monitoring networks, the National Stream Quality Accounting Network (NASQAN) and the Hydrologic Benchmark Network (HBN), are now available in a two CD-ROM set. These data on CD-ROM are collectively referred to as WQN, water-quality networks. Data from these networks have been used at the national, regional, and local levels to estimate the rates of chemical flux from watersheds, quantify changes in stream water quality for periods during the past 30 years, and investigate relations between water quality and streamflow as well as the relations of water quality to pollution sources and various physical characteristics of watersheds. The networks include 679 monitoring stations in watersheds that represent diverse climatic, physiographic, and cultural characteristics. The HBN includes 63 stations in relatively small, minimally disturbed basins ranging in size from 2 to 2,000 square miles with a median drainage basin size of 57 square miles. NASQAN includes 618 stations in larger, more culturally-influenced drainage basins ranging in size from one square mile to 1.2 million square miles with a median drainage basin size of about 4,000 square miles. The CD-ROMs contain data for 63 physical, chemical, and biological properties of water (122 total constituents including analyses of dissolved and water suspended-sediment samples) collected during more than 60,000 site visits. These data approximately span the periods 1962-95 for HBN and 1973-95 for NASQAN. The data reflect sampling over a wide range of streamflow conditions and the use of relatively consistent sampling and analytical methods. The CD-ROMs provide ancillary information and data-retrieval tools to allow the national network data to be properly and efficiently used. Ancillary information includes the following: descriptions of the network objectives and history, characteristics of the network stations and water-quality data, historical records of important changes in network sample collection and laboratory analytical methods, water reference sample data for estimating laboratory measurement bias and variability for 34 dissolved constituents for the period 1985-95, discussions of statistical methods for using water reference sample data to evaluate the accuracy of network stream water-quality data, and a bibliography of scientific investigations using national network data and other publications relevant to the networks. The data structure of the CD-ROMs is designed to allow users to efficiently enter the water-quality data to user-supplied software packages including statistical analysis, modeling, or geographic information systems. On one disc, all data are stored in ASCII form accessible from any computer system with a CD-ROM driver. The data also can be accessed using DOS-based retrieval software supplied on a second disc. This software supports logical queries of the water-quality data based on constituent concentrations, sample- collection date, river name, station name, county, state, hydrologic unit number, and 1990 population and 1987 land-cover characteristics for station watersheds. User-selected data may be output in a variety of formats including dBASE, flat ASCII, delimited ASCII, or fixed-field for subsequent use in other software packages.

  9. Mobilisation of traffic-derived trace metals from road corridors into coastal stream and estuarine sediments, Cairns, northern Australia

    NASA Astrophysics Data System (ADS)

    Pratt, C.; Lottermoser, B. G.

    2007-04-01

    This investigation revealed the presence of traffic-derived metals within road, stream and estuarine sediments collected from a coastal catchment, northern Australia. Studied road sediments displayed variable total metal concentrations (median Cd, Cu, Pb, Pd, Pt, Ni and Zn values: 0.19, 42.6, 67.5, 0.064, 0.104, 36.7 and 698 mg/kg, respectively). The distinctly elevated Zn values are due to abundant tyre rubber shreds (as verified by SEM-EDS and correlation analysis). By comparison to the road sediments, background stream sediments taken upstream from roads have relatively low median Pb, Pd, Pt and Zn concentrations (7.3 mg/kg Pb, 0.01 mg/kg Pd, 0.012 mg/kg Pt, 62 mg/kg Zn). Stream and estuarine sediment samples collected below roads have median values of 21.8 mg/kg Pb, 0.014 mg/kg Pd, 0.021 mg/kg Pt and 71 mg/kg Zn, and exhibit 207Pb/206Pb and 208Pb/206Pb ratios that appear on a mixing line between the isotopically distinct background stream sediments and the road sediments. Thus, mobilisation of dusts and sediments from road surfaces has resulted in relatively elevated Pb, Pd, Pt and Zn concentrations and non-radiogenic Pb isotope ratios in local coastal stream and estuarine sediments. The investigation demonstrates that traffic-derived metals enter coastal stream and estuary sediments at the fringe of the Great Barrier Reef lagoon.

  10. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  11. Method and apparatus for decreased undesired particle emissions in gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Bustard, C.J.

    1999-04-13

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 5 figs.

  12. Method and apparatus for decreased undesired particle emissions in gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Bustard, Cynthia Jean

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  13. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1998-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  14. Spatial and Temporal Patterns In Ecohydrological Separation

    NASA Astrophysics Data System (ADS)

    Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.

    2017-12-01

    The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.

  15. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  16. Surface-water quality in the Lycoming Creek watershed, north-central Pennsylvania, August 1–3, 2011

    USGS Publications Warehouse

    Risser, Dennis W.; Conlon, Matthew D.

    2018-05-17

    This report presents the methodology and results for a study of surface-water quality of the Lycoming Creek watershed in north-central Pennsylvania during August 1–3, 2011. The study was done in cooperation with the Williamsport Municipal Water Authority and the Pennsylvania Department of Environmental Protection. Samples of stream water were collected from 31 sites in an area of exploration and production of natural gas from the Marcellus Shale – 5 sites on the main stem of Lycoming Creek and 26 sites on tributary streams. The samples provide a snapshot of the base-flow water-quality conditions, which helps document the spatial variability in water-quality and could be useful for assessing future changes.The 272-square mile Lycoming Creek watershed is located within Lycoming, Tioga, and Sullivan Counties in north-central Pennsylvania. Lycoming Creek flows 37.5 miles to its confluence with the West Branch Susquehanna River in the city of Williamsport. A well field that supplies water for Williamsport captures some water that has infiltrated the streambed of Lycoming Creek. Because the stream provides a source of water to the well field, this study focused on the stream-water quality as it relates to drinking-water standards as opposed to aquatic life.Surface-water samples collected at 20 sites by the U.S. Geological Survey and 11 sites by the Pennsylvania Department of Environmental Protection were analyzed by each agency for a suite of constituents that included major ions, trace metals, nutrients, and radiochemicals. None of the analytical results failed to meet standards set by the U.S. Environmental Protection Agency as maximum contaminant levels for drinking water.Results of the sampling show the substantial spatial variability in base-flow water quality within the Lycoming Creek watershed caused by the interrelated effects of physiography, geology and land use. Dissolved-solids concentrations ranged from less than the laboratory reporting level of 12 milligrams per liter (mg/L) in Wolf Run, a pristine forested watershed, to 202 mg/L in Bottle Run, a watershed with more development near Williamsport. Concentrations of the major ions ranged over at least one order of magnitude; chloride had the largest range from 0.3 to 45.4 mg/L, with nine samples exceeding the natural background level of about 5 mg/L, most likely because of the application of deicing salt to roads. Trace constituents were even more variable, with concentrations for aluminum, cobalt, and manganese ranging over almost four orders of magnitude. Samples from Red Run and Dutchman Run, watersheds that experienced past coal mining activity, had concentrations of 11 metals that were significantly greater than in samples collected from other streams. Samples from Bottle Run, the tributary of Lycoming Creek nearest to Williamsport, contained elevated levels of chloride and boron, constituents associated with urban development.

  17. Monitoring radionuclide and suspended-sediment transport in the Little Colorado River basin, Arizona and New Mexico, USA

    USGS Publications Warehouse

    Gray, John R.; Fisk, Gregory G.

    1992-01-01

    From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.

  18. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    NASA Astrophysics Data System (ADS)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused elevated concentrations of chlorinated ethenes, benzene and site specific pharmaceuticals in both the hyporheic zone and the stream water. Observed stream water vinyl chloride concentrations (up to 6 μg/L) are far above the Danish EQS (0.05 μg/L) for several km downstream of the discharge area. For heavy metals, comparison with EQS in stream water, the hyporheic zone and streambed showed concentrations around or above the threshold values for barium, copper, lead, nickel and zinc. The calculated TU was generally similar along the stream, but for arsenic and nickel higher values were observed where the groundwater plume discharges into the stream. Also, log TU sum values for organic contaminants were elevated in both the hyporheic zone and stream. Thus, the overall chemical stress in the main discharge area is much higher than upstream, while it gradually decreases downstream. In conclusion, this work clearly shows that groundwater contaminant plumes can impact stream water quality significantly in discharge areas, and extend far downstream. A surprisingly high impact of heavy metals with diffuse and/or biogenic origin on stream quality was identified. This work highlights the importance of a holistic assessment of stream water quality to identify and quantify the main contaminant sources and resulting chemical stream stressors leading to potential ecological impacts.

  19. Evaluation of selected surface-water-quality stations in Wyoming

    USGS Publications Warehouse

    Rucker, S.J.; DeLong, L.L.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, has conducted a surface-water-quality program in Wyoming since 1965. The purpose has been to determine the chemical quality of the water in terms of the major dissolved constituents (salinity). Changing agricultural techniques and energy development have stimulated a need for an expanded program involving additional types of data. This report determines the adequacy of the data collected thus far to describe the chemical quality. The sampling program was evaluated by determining how well the data describe the dissolved-solids load of the streams. Monthly mean loads were estimated at 16 stations throughout the network where daily streamflow and daily specific conductance were available. Monthly loads were then compared with loads estimated from daily streamflow and data derived from analyses of samples collected on a monthly basis at these same stations. Agreement was good. Solute-load hydrographs were constructed for 37 stations and from some reaches where streamflow records were available. Because stations where no discharge records are available are not amenable to this type of analysis, data collected at these stations are of limited usefulness. This report covers analyses of data for all qualifying sites in Wyoming except those in the Green River Basin, which were analyzed in U.S. Geological Survey Water Resources Investigations 77-103. The salinity in most of the streams evaluated is adequately described by the data collected. Reduced sampling is feasible, and time and money can be diverted to collecting other data. (USGS)

  20. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy

    USGS Publications Warehouse

    Gray, John E.; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2014-01-01

    Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0–6.2 μg/L) and Sb (<0.20–0.37 μg/L) below international drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.

  1. Aqueous Geochemical Data From the Analysis of Stream-Water Samples Collected in June and July 2005--Taylor Mountains 1:250,000 Scale Quadrangle, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg

    2006-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project 'Geologic and Mineral Deposit Data for Alaskan Economic Development.' Data presented here are from samples collected in June and July of 2005. The data are being released at this time with minimal interpretation. This is the second release of aqueous geochemical data from this project; 2004 aqueous geochemical data were published previously (Wang and others, 2006). The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountians quadrangle is dominated by bicarbonate (HCO3-), though in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. In general, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. With the exception of a total mercury concentration of 0.33 ng/L detected in a field blank, field blank major-ion and trace-elements concentrations were below detection.

  2. Atmospheric Carbon Dioxide Record from Mauna Loa (1958-2008)

    DOE Data Explorer

    Keeling, R. F. [Scripps Institution of Oceanography, University of California, La Jolla, California; Piper, S. C. [Scripps Institution of Oceanography, University of California, La Jolla, California; Bollenbacher, A. F. [Scripps Institution of Oceanography, University of California, La Jolla, California; Walker, J. S. [Scripps Institution of Oceanography, University of California, La Jolla, California

    2009-02-01

    Air samples at Mauna Loa are collected continuously from air intakes at the top of four 7-m towers and one 27-m tower. Four air samples are collected each hour for the purpose of determining the CO2 concentration. Determinations of CO2 are made by using a Siemens Ultramat 3 nondispersive infrared gas analyzer with a water vapor freeze trap. This analyzer registers the concentration of CO2 in a stream of air flowing at ~0.5 L/min. Every 30 minutes, the flow is replaced by a stream of calibrating gas or "working reference gas". In December 1983, CO2-in-N2 calibration gases were replaced with the currently used CO2-in-air calibration gases. These calibration gases and other reference gases are compared periodically to determine the instrument sensitivity and to check for possible contamination in the air-handling system. These reference gases are themselves calibrated against specific standard gases whose CO2 concentrations are determined manometrically. Greater details about the sampling methods at Mauna Loa are given in Keeling et al. (1982) and Keeling et al. (2002).

  3. Versatile combustion-amalgamation technique for the photometric determination of mercury in fish and environmental samples

    USGS Publications Warehouse

    Willford, Wayne A.; Hesselberg, Robert J.; Bergman, Harold L.

    1973-01-01

    Total mercury in a variety of substances is determined rapidly and precisely by direct sample combustion, collection of released mercury by amalgamation, and photometric measurement of mercury volatilized from the heated amalgam. Up to 0.2 g fish tissue is heated in a stream of O2 (1.2 L/min) for 3.5 min in 1 tube of a 2-tube induction furnace. The released mercury vapor and combustion products are carried by the stream of O2 through a series of traps (6% NaOH scrubber, water condenser, and Mg(CIO4)2 drying tube) and the mercury is collected in a 10 mm diameter column of 24 gauge gold wire (8 g) cut into 3 mm lengths. The resulting amalgam is heated in the second tube of the induction furnace and the volatilized mercury is measured with a mercury vapor meter equipped with a recorder-integrator. Total analysis time is approximately 8 min/sample. The detection limit is less than 0.002 μg and the system is easily converted for use with other biological materials, water, and sediments.

  4. Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.

    2005-05-01

    To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the catchment scale.

  5. Reconnaissance of water-quality characteristics of streams in the City of Charlotte and Mecklenburg County, North Carolina

    USGS Publications Warehouse

    Eddins, W.H.; Crawford, J.K.

    1984-01-01

    In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.

  6. Spatial and temporal variability of runoff and streamflow generation within and among headwater catchments: a combined hydrometric and stable isotope approach

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Emanuel, R. E.; McGlynn, B. L.

    2012-12-01

    The combined influence of topography and vegetation on runoff generation and streamflow in headwater catchments remains unclear. We aim to understand how spatial, hydrological and climate variables affect runoff generation and streamflow at hillslope and watershed scales at the Coweeta Hydrologic Laboratory (CHL) in the southern Appalachian Mountains by analyzing stable isotopes of hydrogen (2H) and oxygen (18O) coupled with measurements of hydrological variables (stream discharge, soil moisture, shallow groundwater) and landscape variables (upslope accumulated area, vegetation density slope, and aspect). We investigated four small catchments, two of which contained broadleaf deciduous vegetation and two of which contained evergreen coniferous vegetation. Beginning in June 2011, we collected monthly water samples at 25 m intervals along each stream, monthly samples from 24 shallow groundwater wells, and weekly to monthly samples from 10 rain gauges distributed across CHL. Water samples were analyzed for 2H and 18O using cavity ring-down spectroscopy. During the same time period we recorded shallow groundwater stage at 30 min intervals from each well, and beginning in fall 2011 we collected volumetric soil moisture data at 30 min intervals from multiple depths at 16 landscape positions. Results show high spatial and temporal variability in δ2H and δ18O within and among streams, but in general we found isotopic enrichment with increasing contributing area along each stream. We used a combination of hydrometric observations and geospatial analyses to understand why stream isotope patterns varied during the year and among watersheds, and we used complementary measurements of δ2H and δ18O from other pools within the watersheds to understand the movement and mixing of precipitation that precedes runoff formation. This combination of high resolution stable isotope data and hydrometric observations facilitates a clearer understanding of spatial controls on streamflow generation. In addition, understanding the relative influences of topography and vegetation on runoff generation could help scientists and managers better assess potential impacts of disturbance on water supplies downstream of forested headwater catchments.

  7. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain research watershed (Georgia, USA)

    USGS Publications Warehouse

    Burns, Douglas A.; McDonnell, Jeffery J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K.

    2001-01-01

    The geographic sources and hydrologic flow paths of stormflow in small catchments are not well understood because of limitations in sampling methods and insufficient resolution of potential end members. To address these limitations, an extensive hydrologic dataset was collected at a 10 ha catchment at Panola Mountain research watershed near Atlanta, GA, to quantify the contribution of three geographic sources of stormflow. Samples of stream water, runoff from an outcrop, and hillslope subsurface stormflow were collected during two rainstorms in the winter of 1996, and an end-member mixing analysis model that included five solutes was developed. Runoff from the outcrop, which occupies about one-third of the catchment area, contributed 50-55% of the peak streamflow during the 2 February rainstorm, and 80-85% of the peak streamflow during the 6-7 March rainstorm; it also contributed about 50% to total streamflow during the dry winter conditions that preceded the 6-7 March storm. Riparian groundwater runoff was the largest component of stream runoff (80-100%) early during rising streamflow and throughout stream recession, and contributed about 50% to total stream runoff during the 2 February storm, which was preceded by wet winter conditions. Hillslope runoff contributed 25-30% to peak stream runoff and 15-18% to total stream runoff during both storms. The temporal response of the three runoff components showed general agreement with hydrologic measurements from the catchment during each storm. Estimates of recharge from the outcrop to the riparian aquifer that were independent of model calculations indicated that storage in the riparian aquifer could account for the volume of rain that fell on the outcrop but did not contribute to stream runoff. The results of this study generally indicate that improvements in the ability of mixing models to describe the hydrologic response accurately in forested catchments may depend on better identification, and detailed spatial and temporal characterization of the mobile waters from the principal hydrologic source areas that contribute to stream runoff. Copyright ?? 2001 John Wiley & Sons, Ltd.

  8. Water-quality, sediment-quality, stream-habitat, and biological data for Mustang Bayou near Houston, Texas, 2004-05

    USGS Publications Warehouse

    Sneck-Fahrer, Debra A.; East, Jeffery W.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, collected water-quality, stream-habitat, and biological data from six sites (downstream order M6-M1) primarily in Brazoria County southeast of Houston, Texas, during September 2004-August 2005 and collected bed sediment data from one site in September 2005. Water-quality data collection consisted of continuously monitored (for periods of 24 hours to several days, six times) water temperature, pH, specific conductance, and dissolved oxygen and periodically collected samples of several properties and constituents. Monitored dissolved oxygen measurements were below minimum and 24-hour criteria at all sites except M2. Nitrogen compounds, phosphorus, biochemical oxygen demand, chlorophyll-a, E. coli, chloride, sulfate, solids, suspended sediment concentration, and pesticides were assessed at all sites. Concentrations of nitrogen compounds and phosphorus did not exceed Texas State screening levels. Biochemical oxygen demand was less than 4.0 milligrams per liter at all sites except M6, where the maximum concentration was 8.1 milligrams per liter. Concentrations of chlorophyll-a were less than the State screening level at all sites except M6, where four of eight samples equaled or exceeded the screening level. Twenty of 48 samples from Mustang Bayou had E. coli densities that exceeded the State single-sample water-quality standard. Median chloride concentrations from each site were between 42.2 and 123 milligrams per liter. Fifteen pesticide compounds (six herbicides and nine insecticides) were detected in 24 water samples. The most frequently detected pesticide was atrazine, which was found in every sample. Other frequently detected pesticides were 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT), prometon, tebuthiuron, fipronil, and the pesticide degradates, fipronil sulfide and fipronil sulfone. Sediment samples were collected from the stream bottom at M1 and analyzed for concentrations of trace elements (metals), polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. No organochlorine pesticides or polychlorinated biphenyls were detected. No concentrations of metals exceeded State screening levels. Measurable concentrations of 11 polycyclic aromatic hydrocarbon (PAH) compounds were detected, and three other PAH compounds were detected but not quantified by the laboratory. Stream habitat and aquatic biota (benthic macroinvertebrates and fish) were surveyed at each site three times during the study to evaluate aquatic life use. Characteristics of habitat measured during each survey were scored using a habitat quality index. Average aquatic-life-use scores were 'limited' for M3-M6 and 'intermediate' for M1 and M2. A total of 2,557 macroinvertebrate individuals were identified from Mustang Bayou. Benthic macroinvertebrate assemblages were scored using indexes specified by the Texas Commission on Environmental Quality. Average aquatic-life-use scores were 'limited' at M1, 'intermediate' at M3-M6, and 'high' at M2. Forty-six species of fish representing 20 families were collected from Mustang Bayou. A total of 4,115 fish were collected. Sunfish (Centrarchidae) was the most abundant family, accounting for about 28 percent. Aquatic-life-use scores at sites in Mustang Bayou were determined using the regional index of biotic integrity for ecoregion 34 and were 'high' for all sites.

  9. Sediment source apportionment in Laurel Hill Creek, PA, using Bayesian chemical mass balance and isotope fingerprinting

    USGS Publications Warehouse

    Stewart, Heather; Massoudieh, Arash; Gellis, Allen C.

    2015-01-01

    A Bayesian chemical mass balance (CMB) approach was used to assess the contribution of potential sources for fluvial samples from Laurel Hill Creek in southwest Pennsylvania. The Bayesian approach provides joint probability density functions of the sources' contributions considering the uncertainties due to source and fluvial sample heterogeneity and measurement error. Both elemental profiles of sources and fluvial samples and 13C and 15N isotopes were used for source apportionment. The sources considered include stream bank erosion, forest, roads and agriculture (pasture and cropland). Agriculture was found to have the largest contribution, followed by stream bank erosion. Also, road erosion was found to have a significant contribution in three of the samples collected during lower-intensity rain events. The source apportionment was performed with and without isotopes. The results were largely consistent; however, the use of isotopes was found to slightly increase the uncertainty in most of the cases. The correlation analysis between the contributions of sources shows strong correlations between stream bank and agriculture, whereas roads and forest seem to be less correlated to other sources. Thus, the method was better able to estimate road and forest contributions independently. The hypothesis that the contributions of sources are not seasonally changing was tested by assuming that all ten fluvial samples had the same source contributions. This hypothesis was rejected, demonstrating a significant seasonal variation in the sources of sediments in the stream.

  10. Biomonitoring for deposited sediment using benthic invertebrates: A test on 4 Missouri streams

    USGS Publications Warehouse

    Zweig, L.D.; Rabeni, Charles F.

    2001-01-01

    The response of stream benthic invertebrates to surficially deposited fine sediment was investigated in 4 Missouri streams. Twenty to 24 sampling sites in each stream were selected based on similarities of substrate particle-size distributions, depths, and current velocities but for differences in amounts of deposited sediment, which ranged from 0 to 100% surface cover. Deposited sediment was quantified 2 ways: a visual estimate of % surface cover, and a measurement of substrate embeddedness, which were highly correlated with each other and with the amount of sand. Invertebrates were collected using a kicknet for a specified time in a 1-m2 area. Five commonly used biomonitoring metrics (taxa richness, density, Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness, EPT density, and EPT/Chironomidae richness) were consistently significantly correlated across streams to deposited sediment. Shannon diversity index, Chironomidae richness, Chironomidae density, a biotic index, and % dominant taxon did not relate to increasing levels of deposited sediment. Tolerance values representing taxa responses to deposited sediment were developed for 30 taxa. Deposited-sediment tolerance values were not correlated with biotic index tolerance values, indicating a different response by taxa to deposited sediment than to organic enrichment. Deposited-sediment tolerance values were used to develop the Deposited Sediment Biotic Index (DSBI). The DSBI was calculated for all samples (n = 85) to characterize sediment impairment of the sampled streams. DSBI values for each site were highly correlated with measures of deposited sediment. Model validation by a resampling procedure confirmed that the DSBI is a potentially useful tool for assessing ecological effects of deposited sediment.

  11. A COMPARISON OF TWO RAPID BIOLOGICAL ASSESSMENT SAMPLING METHODS FOR MACROINVERTEBRATES

    EPA Science Inventory

    In 2003, the Office of Research and Developments (ORD's) National Exposure Research Laboratory initiated a collaborative research effort with U.S. EPA Region 3 to conduct a study comparing two rapid biological assessment methods for collecting stream macroinvertebrates. One metho...

  12. Occurrence, distribution, and volume of metals-contaminated sediment of selected streams draining the Tri-State Mining District, Missouri, Oklahoma, and Kansas, 2011–12

    USGS Publications Warehouse

    Smith, D. Charlie

    2016-12-14

    Lead and zinc were mined in the Tri-State Mining District (TSMD) of southwest Missouri, northeast Oklahoma, and southeast Kansas for more than 100 years. The effects of mining on the landscape are still evident, nearly 50 years after the last mine ceased operation. The legacies of mining are the mine waste and discharge of groundwater from underground mines. The mine-waste piles and underground mines are continuous sources of trace metals (primarily lead, zinc, and cadmium) to the streams that drain the TSMD. Many previous studies characterized the horizontal extent of mine-waste contamination in streams but little information exists on the depth of mine-waste contamination in these streams. Characterizing the vertical extent of contamination is difficult because of the large amount of coarse-grained material, ranging from coarse gravel to boulders, within channel sediment. The U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife service, collected channel-sediment samples at depth for subsequent analyses that would allow attainment of the following goals: (1) determination of the relation between concentration and depth for lead, zinc and cadmium in channel sediments and flood-plain sediments, and (2) determination of the volume of gravel-bar sediment from the surface to the maximum depth with concentrations of these metals that exceeded sediment-quality guidelines. For the purpose of this report, volume of gravel-bar sediment is considered to be distributed in two forms, gravel bars and the wetted channel, and this study focused on gravel bars. Concentrations of lead, zinc, and cadmium in samples were compared to the consensus probable effects concentration (CPEC) and Tri-State Mining District specific probable effects concentration (TPEC) sediment-quality guidelines.During the study, more than 700 sediment samples were collected from borings at multiple sites, including gravel bars and flood plains, along Center Creek, Turkey Creek, Shoal Creek, Tar Creek, and Spring River in order to characterize the vertical extent of mine waste in select streams in the TSMD. The largest concentrations of lead, zinc, and cadmium in gravel bar-sediment samples generally were detected in Turkey Creek and Tar Creek and the smallest concentrations were detected in Shoal Creek followed by the Spring River. Gravel bar-sediment samples from Turkey Creek exceeded the CPEC for cadmium (minimum of 70 percent of samples), lead (94 percent), and zinc (99 percent) at a slightly higher frequency than similar samples from Tar Creek (69 percent, 88 percent, and 96 percent, respectively). Gravel bar-sediment samples from Turkey Creek also contained the largest concentrations of cadmium (174 milligrams per kilogram [mg/kg]) and lead (7,520 mg/kg) detected; however, the largest zinc concentration (46,600 mg/kg) was detected in a gravel bar-sediment sample from Tar Creek. In contrast, none of the 65 gravel bar-sediment samples from Shoal Creek contained cadmium above the x-ray fluorescence reporting level of 12 mg/kg, and lead and zinc exceeded the CPEC in only 12 percent and 74 percent of samples, respectively. In most cases, concentrations of lead and zinc above the CPEC or TPEC were present at the maximum depth of boring, which indicated that nearly the entire thickness of sediment in the stream has been contaminated by mine wastes. Approximately 284,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the CPEC and approximately 236,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the TPEC were estimated along 37.6 of the 55.1 miles of Center Creek, Turkey Creek, Shoal Creek, and Tar Creek examined in this study. Mine-waste contamination reported along additional reaches of these streams is beyond the scope of this study. Flood-plain cores collected in the TSMD generally only had exceedances of the CPEC and TPEC for lead and zinc in the top 1 or 2 feet of soil with a few exceptions, such as cores in low areas near the stream or cores in areas disturbed by past mining.

  13. Water-quality and biologic data for the Blue River basin, Kansas City metropolitan area, Missouri and Kansas, October 2000 to October 2004

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Brown, Rebecca E.; Poulton, Barry C.; Cahill, Jeffrey D.; Zaugg, Steven D.

    2005-01-01

    This report presents water-quality and biologic data collected in the Blue River Basin, metropolitan Kansas City, Missouri and Kansas, from October 2000 to October 2004. Data were collected in cooperation with the city of Kansas City, Missouri, Water Services Department as part of an ongoing study designed to characterize long-term water-quality trends in the basin and to provide data to support a strategy for combined sewer overflow control. These data include values of physical properties, fecal indicator bacteria densities, suspended sediment, and concentrations of major ions, nutrients, trace elements, organic wastewater compounds, and pharmaceutical compounds in base-flow and stormflow stream samples and bottom sediments. Six surface-water sites in the basin were sampled 13 times during base-flow conditions and during a minimum of 7 storms. Benthic macroinvertebrate communities are described at 10 sites in the basin and 1 site outside the basin. Water-column and bottom-sediment data from impounded reaches of Brush Creek are provided. Continuous specific conductance, pH, water-quality temperature, turbidity, and dissolved oxygen data are provided for two streams-the Blue River and Brush Creek. Sampling, analytical, and quality assurance methods used in data collection during the study also are described in the report.

  14. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and densities of Escherichia coli became more similar to those of samples from the streams relative to concentrations and densities during the dry period. Geochemical modeling indicated that the proportion of Barton Springs discharge composed of stream recharge increased from about 0-8 percent during the dry period to about 80 percent during the wet period. The transition from exceptional drought to wetter-than-normal conditions resulted in a number of marked changes that highlight factors affecting the fate and transport of nutrients and bacteria and the strong influence of stream recharge on water quality in the Barton Springs segment of the Edwards aquifer and had a pronounced effect on the fate of nitrogen species. Organic nitrogen loaded to and stored in soils during the dry period was nitrified to nitrate when the soils were rewetted, resulting in elevated concentrations of nitrate plus nitrite in streams as these constituents were progressively leached during continued wet weather. Estimated mean monthly loads of organic nitrogen and nitrate plus nitrite in stream recharge and Barton Springs discharge, which were relatively low and constant during the dry period, increased during the wet period. Loads of organic nitrogen, on average, were about six times greater in stream recharge than in Barton Springs discharge, indicating that organic nitrogen likely was being converted to nitrate within the aquifer. Loads of total nitrogen (organic nitrogen plus ammonia and nitrate plus nitrite) in stream recharge (162 kilograms per day) and in Barton Springs discharge (157 kilograms per day) for the period of the investigation were not significantly different. Dilution was not an important factor affecting concentrations of nitrate plus nitrite in the streams or in Barton Springs during the period of this investigation: Concentrations of nitrate plus nitrite did not decrease in streams with increasing stream discharge, and nitrate plus nitrite concentrations measured at Barton

  15. Impact of Legacy Surface Mining on Water Quality in the Lake Harris Watershed, Tuscaloosa County, Alabama.

    NASA Astrophysics Data System (ADS)

    Donahoe, R. J.; Hawkins, P. D.

    2017-12-01

    The Lake Harris watershed was the site of legacy surface mining of coal conducted from approximately 1969 to 1976. The mine site was abandoned and finally reclaimed in 1986. Water quality in the stream draining the mined area is still severely impacted by acid mine drainage (AMD), despite the reclamation effort. Lake Harris is used as a source of industrial water, but shows no negative water quality effects from the legacy mining activities despite receiving drainage from the AMD-impacted stream. Water samples were collected monthly between October 2016 and September 2017 from a first-order stream impacted by acid mine drainage (AMD), a nearby first-order control stream, and Lake Harris. Stream water chemistry was observed to vary both spatially and seasonally, as monitored at five sample stations in each stream over the study period. Comparison of the two streams shows the expected elevated concentrations of AMD-indicator solutes (sulfate and iron), as well as significant increases in conductivity and acidity for the stream draining the reclaimed mine site. In addition, dramatic (1-2 orders of magnitude) increases in major element (Al, Ca, Mg, K), minor element (Mn, Sr) and trace element (Co, Ni) concentrations are also observed for the AMD-impacted stream compared to the control stream. The AMD-impacted stream also shows elevated (2-4 times) levels of other stream water solutes (Cl, Na, Si, Zn), compared to the control stream. As the result of continuing AMD input, the stream draining the reclaimed mine site is essentially sterile, in contrast to the lake and control stream, which support robust aquatic ecosystems. A quantitative model, constrained by isotopic data (δD and δ18O), will be presented that seeks to explain the observed temporal differences in water quality for the AMD-impacted stream as a function of variable meteoric water, groundwater, and AMD inputs. Similar models may be developed for other AMD-impacted streams to better understand and predict temporal variations in water quality parameters and their effect on aquatic ecosystems.

  16. Effect of ultramafic intrusions and associated mineralized rocks on the aqueous geochemistry of the Tangle Lakes Area, Alaska: Chapter C in Studies by the U.S. Geological Survey in Alaska, 2011

    USGS Publications Warehouse

    Wang, Bronwen; Gough, Larry P.; Wanty, Richard B.; Lee, Gregory K.; Vohden, James; O’Neill, J. Michael; Kerin, L. Jack

    2013-01-01

    Stream water was collected at 30 sites within the Tangle Lakes area of the Delta mineral belt in Alaska. Sampling focused on streams near the ultramafic rocks of the Fish Lake intrusive complex south of Eureka Creek and the Tangle Complex area east of Fourteen Mile Lake, as well as on those within the deformed metasedimentary, metavolcanic, and intrusive rocks of the Specimen Creek drainage and drainages east of Eureka Glacier. Major, minor, and trace elements were analyzed in aqueous samples for this reconnaissance aqueous geochemistry effort. The lithologic differences within the study area are reflected in the major-ion chemistry of the water. The dominant major cation in streams draining mafic and ultramafic rocks is Mg2+; abundant Mg and low Ca in these streams reflect the abundance of Mg-rich minerals in these intrusions. Nickel and Cu are detected in 84 percent and 87 percent of the filtered samples, respectively. Nickel and Cu concentrations ranged from Ni <0.4 to 10.1 micrograms per liter (mg/L), with a median of 4.2 mg/L, and Cu <0.5 to 27 mg/L, with a median of 1.2 mg/L. Trace-element concentrations in water are generally low relative to U.S. Environmental Protection Agency freshwater aquatic-life criteria; however, Cu concentrations exceed the hardness-based criteria for both chronic and acute exposure at some sites. The entire rare earth element (REE) suite is found in samples from the Specimen Creek sites MH5, MH4, and MH6 and, with the exception of Tb and Tm, at site MH14. These samples were all collected within drainages containing or downstream from Tertiary gabbro, diabase, and metagabbro (Trgb) exposures. Chondrite and source rock fractionation profiles for the aqueous samples were light rare earth element depleted, with negative Ce and Eu anomalies, indicating fractionation of the REE during weathering. Fractionation patterns indicate that the REE are primarily in the dissolved, as opposed to colloidal, phase.

  17. Surface-water-quality assessment of the Kentucky River Basin, Kentucky; fixed-station network and selected water-quality data, April 1987 through August 1991

    USGS Publications Warehouse

    Griffin, M.S.; Martin, G.R.; White, K.D.

    1994-01-01

    This report describes selected data-collection activities and the associated data collected during the Kentucky River Basin pilot study of the U.S. Geological Survey's National Water-Quality Assessment Program. The data are intended to provide a nationally consistent description and improved understanding of current water quality in the basin. The data were collected at seven fixed stations that represent stream cross sections where constituent transport and water-quality trends can be evaluated. The report includes descriptions of (1) the basin; (2) the design of the fixed-station network; (3) the fixed-station sites; (4) the physical and chemical measurements; (5) the methods of sample collection, processing, and analysis; and (6) the quality-assurance and quality-control procedures. Water-quality data collected at the fixed stations during routine periodic sampling and supplemental high-flow sampling from April 1987 to August 1991 are presented.

  18. Bioassay of estrogenicity and chemical analyses of estrogens in streams across the United States associated with livestock operations

    USGS Publications Warehouse

    Alvarez, David A.; Shappell, Nancy W.; Billey, L.O.; Bermudez, Dietrich S.; Wilson, Vickie S.; Kolpin, Dana W.; Perkins, Stephanie D.; Evans, Nicola; Foreman, William T.; Gray, James L.; Shipitalo, J.M.; Meyer, Michael T.

    2013-01-01

    Animal manures, used as a nitrogen source for crop production, are often associated with negative impacts on nutrient levels in surface water. The concentrations of estrogens in streams from these manures also are of concern due to potential endocrine disruption in aquatic species. Streams associated with livestock operations were sampled by discrete samples (n = 38) or by time-integrated polar organic chemical integrative samplers (POCIS,n = 19). Samples were analyzed for estrogens by gas chromatography-tandem mass spectrometry (GC-MSM2) and estrogenic activity was assessed by three bioassays: Yeast Estrogen Screen (YES), T47D-KBluc Assay, MCF-7 Estrogenicity Screen (E-Screen). Samples were collected from 19 streams within small (∼1-30 km2) watersheds in 12 U.S. states representing a range of hydrogeologic conditions, dominated by: dairy (3), grazing beef (3), feedlot cattle (1); swine (5); poultry (3); and 4 areas where no livestock were raised or manure was applied. Water samples were consistently below the United Kingdom proposed Lowest Observable Effect Concentration for 17b-estradiol in fish (10 ng/L) in all watersheds, regardless of land use. Estrogenic activity was often higher in samples during runoff conditions following a period of manure application. Estrone was the most commonly detected estrogen (13 of 38 water samples, mean 1.9, maximum 8.3 ng/L). Because of the T47D-KBluc assay’s sensitivity towards estrone (1.4 times 17β-estradiol) it was the most sensitive method for detecting estrogens, followed by the E-Screen, GC-MS2, and YES. POCIS resulted in more frequent detections of estrogens than discrete water samples across all sites, even when applying the less-sensitive YES bioassay to the POCIS extracts.

  19. Hydrogeology and water quality of the stratified-drift aquifer in the Pony Hollow Creek Valley, Tompkins County, New York

    USGS Publications Warehouse

    Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.

    2014-01-01

    The lithology, areal extent, and the water-table configuration in stratified-drift aquifers in the northern part of the Pony Hollow Creek valley in the Town of Newfield, New York, were mapped as part of an ongoing aquifer mapping program in Tompkins County. Surficial geologic and soil maps, well and test-boring records, light detection and ranging (lidar) data, water-level measurements, and passive-seismic surveys were used to map the aquifer geometry, construct geologic sections, and determine the depth to bedrock at selected locations throughout the valley. Additionally, water-quality samples were collected from selected streams and wells to characterize the quality of surface and groundwater in the study area. Sedimentary bedrock underlies the study area and is overlain by unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent post glacial alluvium. The major type of unconsolidated, water-yielding material in the study area is stratified drift, which consists of glaciofluvial sand and gravel, and is present in sufficient amounts in most places to form an extensive unconfined aquifer throughout the study area, which is the source of water for most residents, farms, and businesses in the valleys. A map of the water table in the unconfined aquifer was constructed by using (1) measurements made between the mid-1960s through 2010, (2) control on the altitudes of perennial streams at 10-foot contour intervals from lidar data collected by Tompkins County, and (3) water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. Water-table contours indicate that the direction of groundwater flow within the stratified-drift aquifer is predominantly from the valley walls toward the streams and ponds in the central part of the valley where groundwater then flows southwestward (down valley) toward the confluence with the Cayuta Creek valley. Locally, the direction of groundwater flow is radially away from groundwater mounds that have formed beneath upland tributaries that lose water where they flow on alluvial fans on the margins of the valley. In some places, groundwater that would normally flow toward streams is intercepted by pumping wells. Surface-water samples were collected in 2001 at four sites including Carter, Pony Hollow (two sites), and Chafee Creeks, and from six wells throughout the aquifer. Calcium dominates the cation composition and bicarbonate dominates the anion composition in groundwater and surface-water samples and none of the common inorganic constituents collected exceeded any Federal or State water-quality standards. Groundwater samples were collected from six wells all completed in the unconfined sand and gravel aquifer. Concentrations of calcium and magnesium dominated the ionic composition of the groundwater in all wells sampled. Nitrate, orthophosphate, and trace metals were detected in all groundwater samples, but none were more than U.S. Environmental Protection Agency or New York State Department of Health regulatory limits.

  20. Vector ecology of human schistosomiasis in south India and description of a new species of the genus Ferrissia (Mollusca: Gastropoda: Planorbidae).

    PubMed

    Sankarappan, Anbalagan; Chellapandian, Balachandran; Vimalanathan, Arun Prasanna; Mani, Kannan; Sundaram, Dinakaran; Muthukalingan, Krishnan

    2015-09-01

    Vector ecology and taxonomy of snails is a prerequisite for controlling schistosomiasis in the tropics. The ecology of the freshwater limpet genus Ferrissia was investigated for detection of cercariae larvae in them, and taxonomic description of a new species of the genus Ferrissia. This study was conducted in 15 perennial streams from five different hills of south India. To study the seasonal patterns, a stream from each hill was selected and sampled in three seasons. In each study site, triplicate sampling was done and specimens were collected from stream substrates as well as waste material submerged in stream. Microscopic examination was carried out for detecting cercariae larvae in limpets. Three freshwater limpets (F. tenuis, F. verruca and F. fivefallsiensis) were observed. Seasonality influenced the abundance of limpets. The highest abundance was observed during post-monsoon (December and January). The distribution of Ferrissia was observed at riffle in pebbles, leaf litter and wastes (polyethylene bags and snacks cover) submerged in water. No cercariae larvae were found from the body of limpets. In this study, we described a new species of Ferrissia fivefallsiensis. Our results showed the distribution, habitat preference and seasonality of limpets, and recommend the detection of Schistosoma from limpets as well as human samples by use of molecular tools.

  1. Herbicides and transformation products in surface waters of the Midwestern United States

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kalkhoff, S.J.; Porter, S.D.

    2003-01-01

    Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two-component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.

  2. Comparative assessment of the physico-chemical and bacteriological qualities of selected streams in Louisiana.

    PubMed

    Hill, Dagne D; Owens, William E; Tchounwou, Paul B

    2005-04-01

    The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control) and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002). An analysis of biological oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total dissolved solids (TDS), conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control) and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS) levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.

  3. Selected water-quality and biological characteristics of streams in some forested basins of North Carolina, 1985-88

    USGS Publications Warehouse

    Caldwell, W.S.

    1992-01-01

    Selected physical, chemical and biological components of streams draining undeveloped, forested basins in North Carolina were characterized on the basis of samples collected at nine sites on streams in basins that ranged in size from 0.67 to 11.2 sq mi. Water analysis included specific conductance, dissolved oxygen, water temperature, suspended sediment, pH, major dissolved constituents, nutrients, minor constituents, organochlorine insecticides, and biochemical oxygen demand. Biological characteristics included fish tissue analysis for minor constituents and synthetic organic compounds, fish community structure, and benthic macroinvertebrates. Precipitation is the source of 10 to 40% of the chloride concentration and 20 to 30% of the sulfate concentration in stormflow. Mean total nitrogen concentrations ranged from 0.16 mg/L during low-flow conditions to 1.2 mg/L during stormflow. Organic nitrogen was 60 to 85% of the total nitrogen concentration. Stream water was free of organochlorine insecticides. DDD, DDE, DDT, Lindane, and Mirex were detected in 18 of 60 samples of streambed material. About 35% of fish tissue analyses showed detectable concentrations of copper, lead, mercury and nickel. Synthetic organic chemicals were not detected in fish tissue. Fish community structure data were rated using Karr's Index of Biotic Integrity. Streams rated poor to good because of natural stresses on fish communities. Five streams in the Piedmont and mountains received excellent bioclassification ratings based on benthic macroinvertebrtate data. Two streams in the Coastal Plain rated good to fair because of natural stresses.

  4. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies

    USGS Publications Warehouse

    Carter, James L.; Resh, Vincent H.

    2001-01-01

    A survey of methods used by US state agencies for collecting and processing benthic macroinvertebrate samples from streams was conducted by questionnaire; 90 responses were received and used to describe trends in methods. The responses represented an estimated 13,000-15,000 samples collected and processed per year. Kicknet devices were used in 64.5% of the methods; other sampling devices included fixed-area samplers (Surber and Hess), artificial substrates (Hester-Dendy and rock baskets), grabs, and dipnets. Regional differences existed, e.g., the 1-m kicknet was used more often in the eastern US than in the western US. Mesh sizes varied among programs but 80.2% of the methods used a mesh size between 500 and 600 (mu or u)m. Mesh size variations within US Environmental Protection Agency regions were large, with size differences ranging from 100 to 700 (mu or u)m. Most samples collected were composites; the mean area sampled was 1.7 m2. Samples rarely were collected using a random method (4.7%); most samples (70.6%) were collected using "expert opinion", which may make data obtained operator-specific. Only 26.3% of the methods sorted all the organisms from a sample; the remainder subsampled in the laboratory. The most common method of subsampling was to remove 100 organisms (range = 100-550). The magnification used for sorting ranged from 1 (sorting by eye) to 30x, which results in inconsistent separation of macroinvertebrates from detritus. In addition to subsampling, 53% of the methods sorted large/rare organisms from a sample. The taxonomic level used for identifying organisms varied among taxa; Ephemeroptera, Plecoptera, and Trichoptera were generally identified to a finer taxonomic resolution (genus and species) than other taxa. Because there currently exists a large range of field and laboratory methods used by state programs, calibration among all programs to increase data comparability would be exceptionally challenging. However, because many techniques are shared among methods, limited testing could be designed to evaluate whether procedural differences affect the ability to determine levels of environmental impairment using benthic macroinvertebrate communities.

  5. Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development

    USGS Publications Warehouse

    Manning, Andrew H.; Caine, Jonathan S.

    2007-01-01

    Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3–342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ΔNe > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow‐weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it.

  6. Liquid additives for particulate emissions control

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  7. Macroinvertebrate Response to Drought in Undisturbed Headwater Streams of Southwest Georgia.

    NASA Astrophysics Data System (ADS)

    Winn, R. T.; Griswold, M. W.; Golladay, S. W.; Crisman, T. L.

    2005-05-01

    Macroinvertebrates were sampled in four headwater streams for two years (2001-2003) to establish baseline conditions for a study evaluating forestry best management practices. The Palmer Drought Severity Index indicated that the study site experienced a prolonged moderate to severe drought prior to study initiation, with year one of the study characterized as a moderate drought, while year two encompassed drought and initial rainfall recovery. Benthic macroinvertebrates were collected in streams during year one (December 2001/February 2002) and year two (December 2002/February 2003) using a multi-habitat sampling procedure. Individuals were identified to the lowest practical taxonomic level (mostly genus), and metrics including abundance, total number of taxa, and Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa were calculated. Repeated measures ANOVA identified differences in macroinvertebrate assemblages due to sampling period, with lower values for December 2001 relative to February 2003. Abundance and EPT taxa showed an increasing relationship with average daily flow in successive samples of the study. Initiation of drought conditions prior to the study adversely affected species composition (low numbers of EPT taxa and long lived taxa) and trophic structure (co-dominance of shredders, collectors, and predators).

  8. Influence of Habitat and Land Use on the Assemblages of Ephemeroptera, Plecoptera, and Trichoptera in Neotropical Streams

    PubMed Central

    do Amaral, Pedro Henrique Monteiro; da Silveira, Lidimara Souza; Rosa, Beatriz Figueiraujo Jabour Vescovi; de Oliveira, Vívian Campos; Alves, Roberto da Gama

    2015-01-01

    Insects of the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) are often used to assess the conditions of aquatic environments, but few studies have examined the differences in these communities between riffles and pools. Our objective was to test whether riffles shelter greater richness and abundance of EPT, as well as to assess the sensitivity of these insects for detecting impacts from different land uses in streams in southeastern Brazil. Samples were collected in the dry season of 2012 with a Surber sampler in riffles and pools of nine streams (forest, pasture, and urban areas). Principal component analysis distinguished the streams according to different land uses as a function of percentage of plant cover and water oxygenation level and showed partial distinction between riffles and pools as a function of current speed and percentage of ultrafine sand. Detrended correspondence analysis indicated the distinction in EPT composition between riffles and pools, except in urban streams. The results of this study confirm the expected differences in the EPT fauna structure between riffles and pools, especially in forest and pasture environments. The individual metrics of riffle and pool assemblages showed significantly different responses to land use. Therefore, we suggest individual sampling of riffles and pools, since the metrics of these assemblages’ insects can differ between these habitats and influence the results of assessments in low-order streams. PMID:25989807

  9. Water Quality, Physical Habitat, and Biology of the Kijik River Basin, Lake Clark National Park and Preserve, Alaska, 2004-2005

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Kijik River Basin in Lake Clark National Park and Preserve from June 2004 to March 2005. The Kijik River Basin was studied because it has a productive sockeye salmon run that is important to the larger Kvichak River watershed. Water-quality, physical habitat, and biological characteristics were assessed. Water type throughout the Kijik River Basin is calcium bicarbonate although Little Kijik River above Kijik Lake does have slightly higher concentrations of sulfate and chloride. Alkalinity concentrations are generally less than 28 milligrams per liter, indicating a low buffering capacity of these waters. Lachbuna Lake traps much of the suspended sediment from the glacier streams in the headwaters of the basin as evidenced by low secchi-disc transparency of 1 to 2 meters and low suspended sediment concentrations in the Kijik River downstream from the lake. Kijik Lake is a fed by clearwater streams and has secchi-disc readings ranging from 11 to 15 meters. Streambed sediments collected from four surface sites analyzed for trace elements indicated that arsenic concentrations at all sites were above proposed guidelines. However, arsenic concentrations are due to the local geology, not anthropogenic factors. Benthic macroinvertebrate qualitative multi-habitat samples collected from two sites on the Little Kijik River and two sites on the main stem of the Kijik River indicated a total of 69 taxa present among the four sites. The class Insecta, made up the largest percentage of macroinvertebrates, totaling 70 percent of the families found. The insects were comprised of four orders; Diptera (flies and midges), Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). One-hundred twenty-two species of periphytic algae were identified in qualitative multi-habitat samples collected at the four stream sites. Eight species of non-motile, diatoms were collected from all four stream sites suggesting that the areas from which they were collected are relatively stable and unaffected by sedimentation.

  10. Trace elements in stormflow, ash, and burned soil following the 2009 station fire in southern California

    USGS Publications Warehouse

    Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.

  11. Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California

    PubMed Central

    Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270

  12. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, Browns Hole, Utah

    USGS Publications Warehouse

    Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry

    2012-01-01

    During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.

  13. Herbicide concentrations in and loads transported by the Conestoga River and Pequea Creek, Lancaster County, Pennsylvania, 1992-95

    USGS Publications Warehouse

    Reed, Lloyd A.; Koerkle, Edward H.; Takita, Charles S.

    1997-01-01

    Water samples were collected from four streams in Lancaster County from 1992 through 1995 and analyzed for selected herbicides. Samples were collected from the Little Conestoga Creek near Churchtown, Mill Creek (a tributary to the Conestoga River) at Elshelman Mill Road near Lyndon, the Conestoga River at Conestoga, and Pequea Creek at Martic Forge. Most samples were collected from stormflow that occurred during the growing season. Samples were analyzed for alachlor, aldrin, atrazine, chlordane, cyanazine, dieldrin, malathion, metolachlor, propazine, simazine, and toxaphene. Most samples had detectable concentrations of alachlor, atrazine, metolachlor, and simazine, and the loads of these constituents that were transported during each of the 4 years were computed.Of the samples collected from each of the streams—Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—10, 12, 15, and 18 percent, respectively, had atrazine concentrations greater than 3.0 micrograms per liter, the U.S. Environmental Protection Agency maximum contaminant level. Loads of atrazine, metolochlor, and simazine were greater than loads of any other herbicides. The largest loads were transported during 1994. Loads of atrazine transported by the four streams during periods of storm- flow from May to September 1994 totaled 3.46, 28.3, 263, and 46.8 pounds, respectively. The total loads of atrazine transported by the four streams?Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—during calendar year 1994 were 6.48, 54.1, 498, and 102 pounds, respectively. A little less than half the atrazine load transported by each stream—45, 39, 42, and 42 percent, respectively—was transported during storms that occurred from May through September.Average annual yields of atrazine for the period 1992-95 were 0.59, 0.64, 0.68, and 0.51 pounds per square mile from the Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek, respectively. Average annual yields of simazine were 0.36, 1.2, 0.54, and 0.48 pounds per square mile, respectively, and average annual yields of metolachlor were 0.46, 0.49, 0.54, and 0.31 pounds per square mile, respectively. Less than 1 percent of both the atrazine and metolachlor that was applied to all basins was transported by streamflow.

  14. Georgia's Stream-Water-Quality Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The USGS stream-water-quality monitoring network for Georgia is an aggregation of smaller networks and individual monitoring stations that have been established in cooperation with Federal, State, and local agencies. These networks collectively provide data from 130 sites, 62 of which are monitored continuously in real time using specialized equipment that transmits these data via satellite to a centralized location for processing and storage. These data are made available on the Web in near real time at http://waterdata.usgs.gov/ga/nwis/ Ninety-eight stations are sampled periodically for a more extensive suite of chemical and biological constituents that require laboratory analysis. Both the continuous and the periodic water-quality data are archived and maintained in the USGS National Water Information System and are available to cooperators, water-resource managers, and the public. The map at right shows the USGS stream-water-quality monitoring network for Georgia and major watersheds. The network represents an aggregation of smaller networks and individual monitoring stations that collectively provide data from 130 sites.

  15. A Control Chart Approach for Representing and Mining Data Streams with Shape Based Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omitaomu, Olufemi A

    The mining of data streams for online condition monitoring is a challenging task in several domains including (electric) power grid system, intelligent manufacturing, and consumer science. Considering a power grid application in which thousands of sensors, called the phasor measurement units, are deployed on the power grid network to continuously collect streams of digital data for real-time situational awareness and system management. Depending on design, each sensor could stream between ten and sixty data samples per second. The myriad of sensory data captured could convey deeper insights about sequence of events in real-time and before major damages are done. However,more » the timely processing and analysis of these high-velocity and high-volume data streams is a challenge. Hence, a new data processing and transformation approach, based on the concept of control charts, for representing sequence of data streams from sensors is proposed. In addition, an application of the proposed approach for enhancing data mining tasks such as clustering using real-world power grid data streams is presented. The results indicate that the proposed approach is very efficient for data streams storage and manipulation.« less

  16. Using high resolution measurements of gas tracers to determine metabolic rates in streams

    NASA Astrophysics Data System (ADS)

    Knapp, J. L.; Osenbrück, K.; Brennwald, M. S.; Cirpka, O. A.

    2017-12-01

    Hyporheic exchange and other hyporheic processes are strongly linked to stream respiration, as the majority of a streams' microorganisms are located within the streambed. Directly estimating these respiration rates on the reach scale is usually not possible, but they can indirectly be inferred from measurements of dissolved oxygen. This, however, requires determining stream reaeration rates with high precision. Conducting gas-tracer tests has been found to be the most reliable method to estimate stream reaeration, but the majority of field-based sampling techniques for tracer gases are either costly in time and materials, or imprecise. By contrast, on-site gas analysis using gas-equilibrium membrane-inlet mass spectrometers (miniRUEDI, Gasometrix GmbH [1]) avoid the errors caused by sampling, storage, and analysis in the standard sampling techniques. Furthermore, the high analytical frequency of the on-site mass-spectrometer provides concentration data exhibiting a low uncertainty. We present results from gas-tracer tests with a continuous injection of propane and noble gases as tracers in a number of small streams. The concentrations of the tracer gases are recorded continuously over time at the first measurement station to account for fluctuations of the input signal, whereas shorter sample sets are collected at all further measurement stations. Reaeration rate constants are calculated from gas measurements for individual stream sections. These rates are then used to estimate metabolic rates of respiration and primary production based on time series of oxygen measurements. To demonstrate the advancement of the method provided by the on-site analysis, results from measurements performed by on-site mass spectroscopy are compared to those from traditional headspace sampling with gas chromatography analysis. Additionally, differences in magnitude and uncertainty of the obtained reaeration rates of oxygen and calculated metabolic rates from both methods highlight the usefulness of the high-frequency on-site analysis. [1] Brennwald, M. S., Schmidt, M., Oser, J., and Kipfer, R. (2016). A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol., 50(24):13455-13463. Doi: 10.1021/acs.est.6b03669

  17. Digital carrier demodulator employing components working beyond normal limits

    NASA Technical Reports Server (NTRS)

    Hurd, William J. (Inventor); Sadr, Ramin (Inventor)

    1990-01-01

    In a digital device, having an input comprised of a digital sample stream at a frequency F, a method is disclosed for employing a component designed to work at a frequency less than F. The method, in general, is comprised of the following steps: dividing the digital sample stream into odd and even digital samples streams each at a frequency of F/2; passing one of the digital sample streams through the component designed to work at a frequency less than F where the component responds only to the odd or even digital samples in one of the digital sample streams; delaying the other digital sample streams for the time it takes the digital sample stream to pass through the component; and adding the one digital sample stream after passing through the component with the other delayed digital sample streams. In the specific example, the component is a finite impulse response filter of the order ((N + 1)/2) and the delaying step comprised passing the other digital sample streams through a shift register for a time (in sampling periods) of ((N + 1)/2) + r, where r is a pipline delay through the finite impulse response filter.

  18. Guidelines for collection and field analysis of water-quality samples from streams in Texas

    USGS Publications Warehouse

    Wells, F.C.; Gibbons, W.J.; Dorsey, M.E.

    1990-01-01

    Analyses for unstable constituents or properties are by necessity performed in the field. This manual addresses analytical techniques and quality assurance for: (1) Water temperature; (2) specific conductance; (3) pH; (4) alkalinity; (5) dissolved oxygen; and (6) bacteria.

  19. A bank-operated traveling-block cableway for stream discharge and sediment measurements

    Treesearch

    James J. Paradiso

    2000-01-01

    Streams often present a challenge for collecting flow and sediment measurements on a year-round basis. Streams that can normally be waded become hazardous during seasonal flows, either endangering hydrographers or precluding data collection completely. A hand-operated cableway permits the accurate and safe collection of discharge and sediment data from the stream bank...

  20. Riparian Land Use/Land Cover Data for Five Study Units in the Nutrient Enrichment Effects Topical Study of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.

    2007-01-01

    This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation LULC at the reach scale (arc); stream reaches (arc); longitudinal LULC at the reach scale (arc); frequency of gaps in woody vegetation LULC at the segment scale (arc); stream segments (arc); and longitudinal LULC at the segment scale (arc).

  1. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, L.B.; Brown, G.K.; Nettesheim, T.G.; Murphy, E.W.; Bartell, S.E.; Schoenfuss, H.L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 ??g/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4- tert-octylphenol, and 4- tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 ??g/L). The biogenic steroidal hormones 17??-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 ??g/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed. ?? 2011.

  2. Stream structure at low flow: biogeochemical patterns in intermittent streams over space and time

    NASA Astrophysics Data System (ADS)

    MacNeille, R. B.; Lohse, K. A.; Godsey, S.; McCorkle, E. P.; Parsons, S.; Baxter, C.

    2017-12-01

    Climate change in the western United States is projected to lead to earlier snowmelt, increasing fire risk and potentially transitioning perennial streams to intermittent ones. Differences between perennial and intermittent streams, especially the temporal and spatial patterns of carbon and nutrient dynamics during periods of drying, are understudied. We examined spatial and temporal patterns in surface water biogeochemistry during a dry (2016) and a wet (2017) water year in southwest Idaho. We hypothesized that as streams dry, carbon concentrations would increase due to evapoconcentration and/or increased in-stream production, and that the heterogeneity of constituents within each stream would increase. We expected these patterns to differ in a high water year compared to a low water year due to algae scour. Finally, we expected that the spatial heterogeneity of biogeochemistry would decrease with time following fire. To test these hypotheses, in 2016 we collected surface water samples at 50 meter intervals from two intermittent headwater streams over 2,500 meter reaches in April, May, and June. One stream is burned and one remains unburned. In 2017, we collected surface water at the 50, 25 and 10 meter intervals from each stream once during low flow. 2016 results showed average concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) increased 3-fold from April to June in the burned site compared to the unburned site. Interestingly, average concentrations of total nitrogen (TN) dropped substantially for the burned site over these three months, but only decreased slightly for the unburned site over the same time period. Between wet and dry water years, we observed a decrease in the spatial heterogeneity as measured by the standard deviation (SD) in conductivity at 50 meter intervals; the burned stream had a SD of 23.08 in 2016 and 11.40 in 2017 whereas the unburned stream had similar SDs. We conclude that the burned stream experienced more inter and intra-annual surface water change in chemistry patterns than did the unburned stream.

  3. Operation of a sampling train for the analysis of environmental species in coal gasification gas-phase process streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pochan, M.J.; Massey, M.J.

    1979-02-01

    This report discusses the results of actual raw product gas sampling efforts and includes: Rationale for raw product gas sampling efforts; design and operation of the CMU gas sampling train; development and analysis of a sampling train data base; and conclusions and future application of results. The results of sampling activities at the CO/sub 2/-Acceptor and Hygas pilot plants proved that: The CMU gas sampling train is a valid instrument for characterization of environmental parameters in coal gasification gas-phase process streams; depending on the particular process configuration, the CMU gas sampling train can reduce gasifier effluent characterization activity to amore » single location in the raw product gas line; and in contrast to the slower operation of the EPA SASS Train, CMU's gas sampling train can collect representative effluent data at a rapid rate (approx. 2 points per hour) consistent with the rate of change of process variables, and thus function as a tool for process engineering-oriented analysis of environmental characteristics.« less

  4. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system mustmore » also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer aerodynamic diameter were injected into the environmental chamber and drawn through the conditioning system, which included a filter to capture droplets that passed through the conditioner. The droplets were tagged with a fluorescent dye which allowed quantification of droplet deposition on each component of the system. The tests demonstrated the required reductions in temperature and moisture, with no condensation forming when heat tracing was added on the upstream end of the sample conditioner. Additionally, tests indicated that the system, operating at several flow rates and in both vertical and horizontal orientations, delivers nearly all of the sampled particles for analysis. Typical aerosol penetration values were between 98 and 99%. PNNL, Bechtel National Inc., and the instrument vendor are working to implement the sample conditioner into the air monitoring systems used for the melter off-gas exhaust streams. Similar technology may be useful for processes in other facilities with air exhaust streams with elevated temperature and/or humidity.« less

  5. Comparison and continuous estimates of fecal coliform and Escherichia coli bacteria in selected Kansas streams, May 1999 through April 2002

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Ziegler, Andrew C.

    2003-01-01

    The sanitary quality of water and its use as a public-water supply and for recreational activities, such as swimming, wading, boating, and fishing, can be evaluated on the basis of fecal coliform and Escherichia coli (E. coli) bacteria densities. This report describes the overall sanitary quality of surface water in selected Kansas streams, the relation between fecal coliform and E. coli, the relation between turbidity and bacteria densities, and how continuous bacteria estimates can be used to evaluate the water-quality conditions in selected Kansas streams. Samples for fecal coliform and E. coli were collected at 28 surface-water sites in Kansas. Of the 318 samples collected, 18 percent exceeded the current Kansas Department of Health and Environment (KDHE) secondary contact recreational, single-sample criterion for fecal coliform (2,000 colonies per 100 milliliters of water). Of the 219 samples collected during the recreation months (April 1 through October 31), 21 percent exceeded the current (2003) KDHE single-sample fecal coliform criterion for secondary contact rec-reation (2,000 colonies per 100 milliliters of water) and 36 percent exceeded the U.S. Environmental Protection Agency (USEPA) recommended single-sample primary contact recreational criterion for E. coli (576 colonies per 100 milliliters of water). Comparisons of fecal coliform and E. coli criteria indicated that more than one-half of the streams sampled could exceed USEPA recommended E. coli criteria more frequently than the current KDHE fecal coliform criteria. In addition, the ratios of E. coli to fecal coliform (EC/FC) were smallest for sites with slightly saline water (specific conductance greater than 1,000 microsiemens per centimeter at 25 degrees Celsius), indicating that E. coli may not be a good indicator of sanitary quality for those streams. Enterococci bacteria may provide a more accurate assessment of the potential for swimming-related illnesses in these streams. Ratios of EC/FC and linear regression models were developed for estimating E. coli densities on the basis of measured fecal coliform densities for six individual and six groups of surface-water sites. Regression models developed for the six individual surface-water sites and six groups of sites explain at least 89 percent of the variability in E. coli densities. The EC/FC ratios and regression models are site specific and make it possible to convert historic fecal coliform bacteria data to estimated E. coli densities for the selected sites. The EC/FC ratios can be used to estimate E. coli for any range of historical fecal coliform densities, and in some cases with less error than the regression models. The basin- and statewide regression models explained at least 93 percent of the variance and best represent the sites where a majority of the data used to develop the models were collected (Kansas and Little Arkansas Basins). Comparison of the current (2003) KDHE geometric-mean primary contact criterion for fecal coliform bacteria of 200 col/100 mL to the 2002 USEPA recommended geometric-mean criterion of 126 col/100 mL for E. coli results in an EC/FC ratio of 0.63. The geometric-mean EC/FC ratio for all sites except Rattlesnake Creek (site 21) is 0.77, indicating that considerably more than 63 percent of the fecal coliform is E. coli. This potentially could lead to more exceedances of the recommended E. coli criterion, where the water now meets the current (2003) 200-col/100 mL fecal coliform criterion. In this report, turbidity was found to be a reliable estimator of bacteria densities. Regression models are provided for estimating fecal coliform and E. coli bacteria densities using continuous turbidity measurements. Prediction intervals also are provided to show the uncertainty associated with using the regression models. Eighty percent of all measured sample densities and individual turbidity-based estimates from the regression models were in agreement as exceedi

  6. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  7. Water quality and aquatic toxicity data of 2002 spring thaw conditions in the upper Animas River watershed, Silverton, Colorado

    USGS Publications Warehouse

    Fey, D.L.; Wirt, L.; Besser, J.M.; Wright, W.G.

    2002-01-01

    This report presents hydrologic, water-quality, and biologic toxicity data collected during the annual spring thaw of 2002 in the upper Animas River watershed near Silverton, Colorado. The spring-thaw runoff is a concern because elevated concentrations of iron oxyhydroxides can contain sorbed trace metals that are potentially toxic to aquatic life. Water chemistry of streams draining the San Juan Mountains is affected by natural acid drainage and weathering of hydrothermal altered volcanic rocks and by more than a century of mining activities. The timing of the spring-thaw sampling effort was determined by reviewing historical climate and stream-flow hydrographs and current weather conditions. Twenty-one water-quality samples were collected between 11:00 AM March 27, 2002 and 6:00 PM March 30, 2002 to characterize water chemistry at the A-72 gage on the upper Animas River below Silverton. Analyses of unfiltered water at the A-72 gage showed a relation between turbidity and total-recoverable iron concentrations, and showed diurnal patterns. Copper and lead concentrations were related to iron concentrations, indicating that these elements are probably sorbed to colloidal iron material. Calcium, strontium, and sulfate concentrations showed overall decreasing trends due to dilution, but the loads of those constituents increased over the sampling period. Nine water-quality samples were collected near the confluence of Mineral Creek with the Animas River, the confluence of Cement Creek with the Animas River, and on the upper Animas River above the confluence with Cement Creek (three samples at each site). A total of six bulk water-toxicity samples were collected before, during, and after the spring thaw from the Animas River at the A-72 gage site. Toxicity tests conducted with the bulk water samples on amphipods did not show strong differences in toxicity among the three sampling periods; however, toxicity of river water to fathead minnows showed a decreasing trend during the course of the study.

  8. Real-time, continuous water-quality monitoring in Indiana and Kentucky

    USGS Publications Warehouse

    Shoda, Megan E.; Lathrop, Timothy R.; Risch, Martin R.

    2015-01-01

    Water-quality “super” gages (also known as “sentry” gages) provide real-time, continuous measurements of the physical and chemical characteristics of stream water at or near selected U.S. Geological Survey (USGS) streamgages in Indiana and Kentucky. A super gage includes streamflow and water-quality instrumentation and representative stream sample collection for laboratory analysis. USGS scientists can use statistical surrogate models to relate instrument values to analyzed chemical concentrations at a super gage. Real-time, continuous and laboratory-analyzed concentration and load data are publicly accessible on USGS Web pages.

  9. Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns.

    PubMed

    Li, Huizhen; Sun, Baoquan; Lydy, Michael J; You, Jing

    2013-04-01

    Pesticide use patterns in China have changed in recent years; however, the study of the environmental fate of current-use pesticides (CUPs) and their ecotoxicological significance in aquatic ecosystems is limited. In the present study, sediments were collected from an urban stream in the Chinese city of Guangzhou. Sediment-associated legacy organochlorine pesticides and CUPs-including organophosphates, pyrethroids, fipronil, and abamectin-were analyzed. Additionally, the relative toxicity of the sediments was evaluated with 10-d bioassays using Chironomus dilutus. Fifteen of 16 sediments collected from the stream were acutely toxic to C. dilutus, with 81% of the samples causing 100% mortality. Abamectin, fipronil, and pyrethroids (mainly cypermethrin) were identified as the principal contributors to the noted toxicity in the midges, with median predicted toxic units of 1.63, 1.63, and 1.03, respectively. Sediments taken from downstream sites, where residential and industrial regions were located, had elevated CUP concentrations and sediment toxicity compared with upstream sites. The present study is the first of its kind to link sediment CUPs, fipronil, and abamectin concentrations with toxicity in urban streams in China with a focus on shifting pesticide usage patterns. Copyright © 2013 SETAC.

  10. Footprints of Urban Micro-Pollution in Protected Areas: Investigating the Longitudinal Distribution of Perfluoroalkyl Acids in Wildlife Preserves

    PubMed Central

    Rodriguez-Jorquera, Ignacio A.; Silva-Sanchez, Cecilia; Strynar, Mark; Denslow, Nancy D.; Toor, Gurpal S.

    2016-01-01

    Current approaches to protect biodiversity by establishing protected areas usually gloss over water pollution as a threat. Our objective was to determine the longitudinal and seasonal distribution of perfluoroalkyl acids (PFAAs) in water column and sediments from a wastewater dominated stream that enters preservation areas. Water samples were collected along the longitudinal section (six sites, 1000 m away from each other) of the stream during the dry and wet seasons. Sediments were collected from three sites along the stream from three depths. Water and sediments were analyzed for PFAAs using high performance liquid chromatography-tandem mass spectrometry. Eleven PFAAs with 5 to 14 carbon atoms were detected in the water column at all sampling points, with a minor reduction at the last point suggesting a dilution effect. The most detected PFAAs was PFOS, followed by perfluorooctanoic acid (PFOA), and perfluorohexanoic acid (PFHxA). Seasonal differences in PFAAs concentrations suggested contribution of stormwater runoff during the wet season. All analyzed PFAAs in sediments were under the limit of quantification, likely due to the high proportion of sand and low organic matter. However, high concentrations of PFAAs were detected in the water column inside the protected areas, which includes PFOS in concentrations considered not safe for avian wildlife. Water samples appear to be more relevant than sediments to determine PFAAs micro-pollution in water bodies with sandy sediments. Inclusion of a management plans on micro-pollution research, monitoring, and mitigation is recommended for protected areas. PMID:26909512

  11. Hydrochemical Signatures of Glacier Melt and Groundwater Storage on Volcán Chimborazo, Ecuador

    NASA Astrophysics Data System (ADS)

    McLaughlin, R.; Ng, G. H. C.; La Frenierre, J.; Wickert, A. D.; Baraer, M.

    2016-12-01

    With ever-growing water demands for hydroelectricity, agriculture, and domestic use, the accelerated retreat of tropical glaciers is raising concerns about future water supply sustainability. In the tropical Andes, where precipitation is seasonal and spatially heterogeneous, glaciers are particularly important as their storage and slow release of water helps to modulate stream discharge on daily to yearly time scales. Predicting the effect their shrinkage will have on water resources is not straightforward as little is known about the connections in these glaciated volcanic catchments between meltwater, groundwater, precipitation and surficial discharge. Here, stable isotope and major ion analyses inform a hydrochemical mixing model in order to identify water sources and their relative contributions to stream and spring discharge on Volcán Chimborazo, a stratovolcano located in the Ecuadorian Andes. Moisture in this region generally arrives from the Amazon basin to the east, resulting in a steep northeast-southwest precipitation gradient that produces wet and dry sides of the mountain. Dry season water samples were collected on both sides from major streams and springs at varying elevations and distances from the glacier tongues, along with samples of precipitation (when possible) and glacier ice. Data on specific conductivity, pH, and temperature were collected in situ for each sample. The paired catchment study allows us to isolate a primarily glacial melt signature on the dry side and compare it to data on the wet side, where glacial melt and precipitation both contribute to groundwater and surface-water discharge.

  12. Biological conditions in streams of Johnson County, Kansas, and nearby Missouri, 2003 and 2004

    USGS Publications Warehouse

    Poulton, Barry C.; Rasmussen, Teresa J.; Lee, Casey J.

    2007-01-01

    Johnson County is one of the fastest growing and most populated counties in Kansas. Urban development affects streams by altering stream hydrology, geomorphology, water chemistry, and habitat, which then can lead to adverse effects on fish and macroinvertebrate communities. In addition, increasing sources of contaminants in urbanizing streams results in public-health concerns associated with exposure to and consumption of contaminated water. Biological assessments, or surveys of organisms living in aquatic environments, are crucial components of water-quality programs because they provide an indication of how well water bodies support aquatic life. This fact sheet describes current biological conditions of Johnson County streams and characterizes stream biology relative to urban development. Biological conditions were evaluated by collecting macroinvertebrate samples from 15 stream sites in Johnson County, Kansas, in 2003 and 2004 (fig. 1). Data from seven additional sites, collected as part of a separate study with similar objectives in Kansas and Missouri (Wilkison and others, 2005), were evaluated to provide a more comprehensive assessment of watersheds that cross State boundaries. Land-use and water- and streambed-sediment-quality data also were used to evaluate factors that may affect macroinvertebrate communities. Metrics are indices used to measure, or evaluate, macroinvertebrate response to various factors such as human disturbance. Multimetric scores, which integrated 10 different metrics that measure various aspects of macroinvertebrate communities, including organism diversity, composition, tolerance, and feeding characteristics, were used to evaluate and compare biological health of Johnson County streams. This information is useful to city and county officials for defining current biological conditions, evaluating conditions relative to State biological criteria, evaluating effects of urbanization, developing effective water-quality management plans, and documenting changes in biological conditions and water quality.

  13. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  14. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998

    USGS Publications Warehouse

    Battaglin, W.A.; Furlong, E.T.; Burkhardt, M.R.; Peter, C.J.

    2000-01-01

    Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are relatively new classes of chemical compounds that function by inhibiting the action of a plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs with over a 10000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the USA. To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 212 water samples were collected from 75 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA and IMI herbicides by USGS Methods Research and Development Program staff using high-performance liquid chromatography/mass spectrometry. Samples were also analyzed for 47 pesticides or pesticide degradation products. At least one of the 16 SUs, SAs or IMIs was detected above the method reporting limit (MRL) of 0.01 ??g/l in 83% of 130 stream samples. Imazethapyr was detected most frequently (71% of samples) followed by flumetsulam (63% of samples) and nicosulfuron (52% of samples). The sum of SU, SA and IMI concentrations exceeded 0.5 ??g/l in less than 10% of stream samples. Acetochlor, alachlor, atrazine, cyanazine and metolachlor were all detected in 90% or more of 129 stream samples. The sum of the concentration of these five herbicides exceeded 50 ??g/l in approximately 10% of stream samples. At least one SU, SA, or IMI herbicide was detected above the MRL in 24% of 25 ground-water samples and 86% of seven reservoir samples. Copyright (C) 2000 Elsevier Science B.V.

  15. Liquid additives for particulate emissions control

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1999-01-05

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  16. Marshall Space Flight Center solid waste characterization and recycling improvement study: General office and laboratory waste, scrap metal, office and flight surplus

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The primary objectives of the study were to characterize the solid waste stream for MSFC facilities in Huntsville, Alabama, and to evaluate their present recycling program. The purpose of the study was to determine if improvements could be made in terms of increasing quantities of the present commodities collected, adding more recyclables to the program, and streamlining or improving operational efficiency. In conducting the study, various elements were implemented. These included sampling and sorting representative samples of the waste stream; visually inspecting each refuse bin, recycle bin, and roll-off; interviewing employees and recycling coordinators of other companies; touring local material recycling facilities; contacting experts in the field; and performing a literature search.

  17. A modified siphon sampler for shallow water

    USGS Publications Warehouse

    Diehl, Timothy H.

    2008-01-01

    A modified siphon sampler (or 'single-stage sampler') was developed to sample shallow water at closely spaced vertical intervals. The modified design uses horizontal rather than vertical sample bottles. Previous siphon samplers are limited to water about 20 centimeters (cm) or more in depth; the modified design can sample water 10 cm deep. Several mounting options were used to deploy the modified siphon sampler in shallow bedrock streams of Middle Tennessee, while minimizing alteration of the stream bed. Sampling characteristics and limitations of the modified design are similar to those of the original design. Testing showed that the modified sampler collects unbiased samples of suspended silt and clay. Similarity of the intake to the original siphon sampler suggests that the modified sampler would probably take downward-biased samples of suspended sand. Like other siphon samplers, it does not sample isokinetically, and the efficiency of sand sampling can be expected to change with flow velocity. The sampler needs to be located in the main flow of the stream, and is subject to damage from rapid flow and floating debris. Water traps were added to the air vents to detect the flow of water through the sampler, which can cause a strong upward bias in sampled suspended-sediment concentration. Water did flow through the sampler, in some cases even when the top of the air vent remained above water. Air vents need to be extended well above maximum water level to prevent flow through the sampler.

  18. Effects and Non-effects of Stream Drying on Stonefly(Plecoptera) Assemblages in two Ouachita Mountains,AR, Catchments

    NASA Astrophysics Data System (ADS)

    Sheldon, A. L.; Warren, M. L.

    2005-05-01

    Streams integrate landscape change. To establish baseline conditions and predictive relationships in two experimental catchments, we collected adult stoneflies at 38 sites for a year. We used a stratified random sampling design and regular collections of adults, which are identifiable to species level, to ensure thorough coverage. We collected 43 species (1-27 per site). We characterized sites by two descriptors: stream size as drainage AREA, and DRY, a time-weighted average of absence of surface water in measured sections. Sites ranged from continuous surface flow to partial or total drying for months. Species composition (NMS ordination) was influenced strongly by DRY. Richness of species and genera were well described (R2>85%) by multiple regressions on AREA and DRY. However, species richness was related strongly to AREA (P<0.001) but independent of DRY (P>0.45). Generic richness, in contrast, was related significantly(P<0.001)to both descriptors but the negative effect of DRY was stronger. Seasonal drying is common in the Ouachita region and part of the fauna is resistant to drying. Our results have implications for diversity-stress relationships and taxonomic resolution in community ecology and monitoring.

  19. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    USGS Publications Warehouse

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to isolate contamination in the sample bottle, the automatic sampler and splitter, and the filtration system. Significant contamination caused excessive concentrations of dissolved chloride, alkalinity, and biochemical oxygen demand. The level of contamination may be large enough to affect data for water samples in which these analytes are present at low concentration. Further investigation is being done to determine the source of contamination and take measures to minimize its effect on the sampling. A preliminary regression analysis was done for the rural sites using data collected during water years 1989-93. Loads of suspended solids and total phosphorus in stormflow were regressed against various precipitation-related measures. The results indicate that, for most sites, changes in constituent load on the order of 40 to 50 percent could be detected with a statistical test. For two sites, the change would have to be 60 to 70 percent to be detected. A detailed comparison of snowmelt runoff and rainfall stormflow in urban and rural areas was done using data collected during water years 1985-93. For the rural sites where statistically significant differences were found between constituent loads in snowmelt and storm runoff, the loads of suspended solids and total phosphorus in snowmelt runoff were greater than those in storm runoff. For the urban sites where statistically significant differences were found between snowmelt and storm runoff, the loads of suspended solids and total phosphorus in storm runoff were greater than those in snowmelt runoff. The importance of including snowmelt runoff in designing and analyzing the effects of BMP's on streamwater quality, particularly in rural areas, is emphasized by these results.

  20. Water-Quality Conditions of Chester Creek, Anchorage, Alaska, 1998-2001

    USGS Publications Warehouse

    Glass, Roy L.; Ourso, Robert T.

    2006-01-01

    Between October 1998 and September 2001, the U.S. Geological Survey's National Water-Quality Assessment Program evaluated the water-quality conditions of Chester Creek, a stream draining forest and urban settings in Anchorage, Alaska. Data collection included water, streambed sediments, lakebed sediments, and aquatic organisms samples from urban sites along the stream. Urban land use ranged from less than 1 percent of the basin above the furthest upstream site to 46 percent above the most downstream site. Findings suggest that water quality of Chester Creek declines in the downstream direction and as urbanization in the watershed increases. Water samples were collected monthly and during storms at a site near the stream's mouth (Chester Creek at Arctic Boulevard) and analyzed for major ions and nutrients. Water samples collected during water year 1999 were analyzed for selected pesticides and volatile organic compounds. Concentrations of fecal-indicator bacteria were determined monthly during calendar year 2000. During winter, spring, and summer, four water samples were collected at a site upstream of urban development (South Branch of South Fork Chester Creek at Tank Trail) and five from an intermediate site (South Branch of South Fork Chester Creek at Boniface Parkway). Concentrations of calcium, magnesium, sodium, chloride, and sulfate in water increased in the downstream direction. Nitrate concentrations were similar at the three sites and all were less than the drinking-water standard. About one-quarter of the samples from the Arctic Boulevard site had concentrations of phosphorus that exceeded the U.S. Environmental Protection Agency (USEPA) guideline for preventing nuisance plant growth. Water samples collected at the Arctic Boulevard site contained concentrations of the insecticide carbaryl that exceeded the guideline for protecting aquatic life. Every water sample revealed a low concentration of volatile organic compounds, including benzene, toluene, tetrachloroethylene, methyl tert-butyl ether, and chloroform. No water samples contained volatile organic compounds concentrations that exceeded any USEPA drinking-water standard or guideline. Fecal-indicator bacteria concentrations in water from the Arctic Boulevard site commonly exceeded Federal and State guidelines for water-contact recreation. Concentrations of cadmium, copper, lead, and zinc in streambed sediments increased in the downstream direction. Some concentrations of arsenic, chromium, lead, and zinc in sediments were at levels that can adversely affect aquatic organisms. Analysis of sediment chemistry in successive lakebed-sediment layers from Westchester Lagoon near the stream's mouth provided a record of water-quality trends since about 1970. Concentrations of lead have decreased from peak levels in the mid-1970s, most likely because of removing lead from gasoline and lower lead content in other products. However, concen-trations in recently-deposited lakebed sediments are still about 10 times greater than measured in streambed sediments at the upstream Tank Trail site. Zinc concentrations in lakebed sediments also increased in the early 1970s to levels that exceeded guidelines to protect aquatic life and have remained at elevated but variable levels. Pyrene, benz[a]anthracene, and phenanthrene in lakebed sediments also have varied in concentrations and have exceeded protection guidelines for aquatic life since the 1970s. Concentrations of dichloro-diphenyl-trichloroethane, polychlorinated biphenyls (PCBs), or their by-products generally were highest in lakebed sediments deposited in the 1970s. More recent sediments have concentrations that vary widely and do not show distinct temporal trends. Tissue samples of whole slimy sculpin (Cottus cognatus), a non-migratory species of fish, showed con-centrations of trace elements and organic contaminants. Of the constituents analyzed, only selenium concentra-tions showed levels of potential concern for

Top