Sample records for streaming potential coupling

  1. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  2. Electrokinetic coupling in unsaturated porous media.

    PubMed

    Revil, A; Linde, N; Cerepi, A; Jougnot, D; Matthäi, S; Finsterle, S

    2007-09-01

    We consider a charged porous material that is saturated by two fluid phases that are immiscible and continuous on the scale of a representative elementary volume. The wetting phase for the grains is water and the nonwetting phase is assumed to be an electrically insulating viscous fluid. We use a volume-averaging approach to derive the linear constitutive equations for the electrical current density as well as the seepage velocities of the wetting and nonwetting phases on the scale of a representative elementary volume. These macroscopic constitutive equations are obtained by volume-averaging Ampère's law together with the Nernst-Planck equation and the Stokes equations. The material properties entering the macroscopic constitutive equations are explicitly described as functions of the saturation of the water phase, the electrical formation factor, and parameters that describe the capillary pressure function, the relative permeability functions, and the variation of electrical conductivity with saturation. New equations are derived for the streaming potential and electro-osmosis coupling coefficients. A primary drainage and imbibition experiment is simulated numerically to demonstrate that the relative streaming potential coupling coefficient depends not only on the water saturation, but also on the material properties of the sample, as well as the saturation history. We also compare the predicted streaming potential coupling coefficients with experimental data from four dolomite core samples. Measurements on these samples include electrical conductivity, capillary pressure, the streaming potential coupling coefficient at various levels of saturation, and the permeability at saturation of the rock samples. We found very good agreement between these experimental data and the model predictions.

  3. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : a new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, E.; Tardif, E.; Glover, P. W.; Ruel, J.; Hadjigeorgiou, J.

    2009-12-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient Cs is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of CO2. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.

  4. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : A new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, Emilie; Tardif, Eric; Glover, Paul; Ruel, Jean; Lalande, Guillaume; Hadjigeorgiou, John

    2010-05-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of carbon dioxide. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.

  5. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    NASA Astrophysics Data System (ADS)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  6. NUMERICAL MODELS AS ENABLING TOOLS FOR TIDAL-STREAM ENERGY EXTRACTION AND ENVIRONMENTAL IMPACT ASSESSMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping

    This paper presents a modeling study conducted to evaluate tidal-stream energy extraction and its associated potential environmental impacts using a three-dimensional unstructured-grid coastal ocean model, which was coupled with a water-quality model and a tidal-turbine module.

  7. Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.

    2017-12-01

    Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.

  8. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  9. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions

    NASA Astrophysics Data System (ADS)

    Beskow, Samuel; de Mello, Carlos Rogério; Vargas, Marcelle M.; Corrêa, Leonardo de L.; Caldeira, Tamara L.; Durães, Matheus F.; de Aguiar, Marilton S.

    2016-10-01

    Information on stream flows is essential for water resources management. The stream flow that is equaled or exceeded 90% of the time (Q90) is one the most used low stream flow indicators in many countries, and its determination is made from the frequency analysis of stream flows considering a historical series. However, stream flow gauging network is generally not spatially sufficient to meet the necessary demands of technicians, thus the most plausible alternative is the use of hydrological regionalization. The objective of this study was to couple the artificial intelligence techniques (AI) K-means, Partitioning Around Medoids (PAM), K-harmonic means (KHM), Fuzzy C-means (FCM) and Genetic K-means (GKA), with measures of low stream flow seasonality, for verification of its potential to delineate hydrologically homogeneous regions for the regionalization of Q90. For the performance analysis of the proposed methodology, location attributes from 108 watersheds situated in southern Brazil, and attributes associated with their seasonality of low stream flows were considered in this study. It was concluded that: (i) AI techniques have the potential to delineate hydrologically homogeneous regions in the context of Q90 in the study region, especially the FCM method based on fuzzy logic, and GKA, based on genetic algorithms; (ii) the attributes related to seasonality of low stream flows added important information that increased the accuracy of the grouping; and (iii) the adjusted mathematical models have excellent performance and can be used to estimate Q90 in locations lacking monitoring.

  10. Stationary and Dynamic Permeability and Coupling Coefficient Measurements in Sintered Glass Bead Systems

    NASA Astrophysics Data System (ADS)

    Gueven, I.; Steeb, H.; Luding, S.

    2014-12-01

    Electrokinetic waves describe the coupling between seismic and electromagnetic waves that exist in porous media. The coupling between them arise from an electrochemical boundary layer between grain and fluid interface of saturated porous media. Acoustical waves cause a disturbance of the electrical fluid charge within the double layer, which therefore creates an electric streaming current (seismoelectric effect). Inversely, electromagnetic waves can generate mechanical signals (electroseismic effect). Electrokinetic conversion potentially combines high seismic resolution with good electromagnetic hydrocarbon sensitivity. The (stationary and frequency-dependent) streaming potential coefficient is a key property, which gives rise to the coupling between electromagnetic and acoustical waves. It depends strongly on the fluid conductivity, porosity, tortuosity, permeability, pore throat and zeta potential of porous media. We examine experimentally both, the stationary and dynamic permeabilities and coupling coefficients of sintered glass bead systems. For this purpose a multi-purpose measuring cell was developed which allows us to carry out - besides common ultrasound experiments - also to perform stationary and frequency-dependent permeability and coupling coefficient measurements. For the experiments sintered mono- and slightly polydisperse glass bead samples with different glass bead diameters between 0.4 and 8mm and porosities ranging between 21 and 39% were used. The stationary and dynamic permeability and streaming potential measurements are supported by μCT scans which enable us a deeper insight into the porous medium. Based on the μCT scans of the produced sintered glass bead samples essential influence parameters, like tortuosity, porosity, effective particle diameters and pore throats in different regions of the entire scanned region have been analyzed in detail to understand the laboratory experiments, cf. Illustration 1. In addition lattice Boltzmann simulations on voxel-based data were performed to determine the numerical permeabilities of different-sized subsets and finally compared with laboratory experiments. A clearly defined permeability-, and porosity-gradient in dependence on the sample height due to gravitational influences could be determined.

  11. Measurements of the streaming potential of clay soils from tropical and subtropical regions using self-made apparatus.

    PubMed

    Li, Zhong-Yi; Li, Jiu-Yu; Liu, Yuan; Xu, Ren-Kou

    2014-09-01

    The streaming potential has been wildly used in charged parallel plates, capillaries, and porous media. However, there have been few studies involving the ζ potential of clay soils based on streaming potential measurements. A laboratory apparatus was developed in this study to measure the streaming potential (ΔE) of bulk clay soils' coupling coefficient (C) and cell resistance (R) of saturated granular soil samples. Excellent linearity of ΔE versus liquid pressure (ΔP) ensured the validity of measurements. The obtained parameters of C and R can be used to calculate the ζ potential of bulk soils. The results indicated that the ζ potentials measured by streaming potential method were significantly correlated with the ζ potentials of soil colloids determined by electrophoresis (r (2) = 0.960**). Therefore, the streaming potential method can be used to study the ζ potentials of bulk clay soils. The absolute values of the ζ potentials of four soils followed the order: Ultisol from Jiangxi > Ultisol from Anhui > Oxisol from Guangdong > Oxisol from Hainan, and this was consistent with the cation exchange capacities of these soils. The type and concentration of electrolytes affected soil ζ potentials. The ζ potential became less negative with increased electrolyte concentration. The ζ potentials were more negative in monovalent than in divalent cationic electrolyte solutions because more divalent cations were distributed in the shear plane of the diffuse layer as counter-cations on the soil surfaces than monovalent cations at the same electrolyte concentration.

  12. Quantum stream instability in coupled two-dimensional plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-08-01

    In this paper the quantum counter-streaming instability problem is studied in planar two-dimensional (2D) quantum plasmas using the coupled quantum hydrodynamic (CQHD) model which incorporates the most important quantum features such as the statistical Fermi-Dirac electron pressure, the electron-exchange potential and the quantum diffraction effect. The instability is investigated for different 2D quantum electron systems using the dynamics of Coulomb-coupled carriers on each plasma sheet when these plasmas are both monolayer doped graphene or metalfilm (corresponding to 2D Dirac or Fermi electron fluids). It is revealed that there are fundamental differences between these two cases regarding the effects of Bohm's quantum potential and the electron-exchange on the instability criteria. These differences mark yet another interesting feature of the effect of the energy band dispersion of Dirac electrons in graphene. Moreover, the effects of plasma number-density and coupling parameter on the instability criteria are shown to be significant. This study is most relevant to low dimensional graphene-based field-effect-transistor (FET) devices. The current study helps in understanding the collective interactions of the low-dimensional coupled ballistic conductors and the nanofabrication of future graphene-based integrated circuits.

  13. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period 2010–2100 showed increases in maximum and minimum temperature over the scenario period. Scenarios of future precipitation did not show a monotonic trend like temperature. Uncertainty in the climate drivers increased over time for both temperature and precipitation. Separate calibration of the uncoupled groundwater and surface-water models did not provide a representative initial parameter set for coupled model calibration. A sequentially linked calibration, in which the uncoupled models were linked by means of utility software, provided a starting parameter set suitable for coupled model calibration. Even with sequentially linked calibration, however, transmissivity of the lower part of the aquifer required further adjustment during coupled model calibration to attain reasonable parameter values for evaporation rates off a small seepage lake (a lake with no appreciable surface-water outlets) with a long history of study. The resulting coupled model was well calibrated to most types of observed time-series data used for calibration. Daily stream temperatures measured during 2002 were successfully simulated with SNTEMP; the model fit was acceptable for a range of groundwater inflow rates into the streams. Forecasts of potential climate change scenarios showed growing season length increasing by weeks, and both potential and actual evapotranspiration rates increasing appreciably, in response to increasing air temperature. Simulated actual evapotranspiration rates increased less than simulated potential evapotranspiration rates as a result of water limitation in the root zone during the summer high-evapotranspiration period. The hydrologic-system response to climate change was characterized by a reduction in the importance of the snow-melt pulse and an increase in the importance of fall and winter groundwater recharge. The less dynamic hydrologic regime is likely to result in drier soil conditions in rainfed wetlands and uplands, in contrast to less drying in groundwater-fed systems. Seepage lakes showed larger forecast stage declines related to climate change than did drainage lakes (lakes with outlet streams). Seepage lakes higher in the watershed (nearer to groundwater divides) had less groundwater inflow and thus had larger forecast declines in lake stage; however, ground-water inflow to seepage lakes in general tended to increase as a fraction of the lake budgets with lake-stage decline because inward hydraulic gradients increased. Drainage lakes were characterized by less simulated stage decline as reductions in outlet streamflow of set losses to other water flows. Net groundwater inflow tended to decrease in drainage lakes over the scenario period. Simulated stream temperatures increased appreciably with climate change. The estimated increase in annual average temperature ranged from approximately 1 to 2 degrees Celsius by 2100 in the stream characterized by a high groundwater inflow rate and 2 to 3 degrees Celsius in the stream with a lower rate. The climate drivers used for the climate-change scenarios had appreciable variation between the General Circulation Model and emission scenario selected; this uncertainty was reflected in hydrologic flow and temperature model results. Thus, as with all forecasts of this type, the results are best considered to approximate potential outcomes of climate change.

  14. Electroosmosis over charge-modulated surfaces with finite electrical double layer thicknesses: Asymptotic and numerical investigations

    NASA Astrophysics Data System (ADS)

    Ghosh, Uddipta; Mandal, Shubhadeep; Chakraborty, Suman

    2017-06-01

    Here we attempt to solve the fully coupled Poisson-Nernst-Planck-Navier-Stokes equations, to ascertain the influence of finite electric double layer (EDL) thickness on coupled charge and fluid dynamics over patterned charged surfaces. We go beyond the well-studied "weak-field" limit and obtain numerical solutions for a wide range of EDL thicknesses, applied electric field strengths, and the surface potentials. Asymptotic solutions to the coupled system are also derived using a combination of singular and regular perturbation, for thin EDLs and low surface potential, and good agreement between the two solutions is observed. Counterintuitively to common arguments, our analysis reveals that finite EDL thickness may either increase or decrease the "free-stream velocity" (equivalent to net throughput), depending on the strength of the applied electric field. We also unveil a critical EDL thickness for which the effect of finite EDL thickness on the free-stream velocity is the most prominent. Finally, we demonstrate that increasing the surface potential and the applied field tends to influence the overall flow patterns in the contrasting manners. These results may be of profound importance in developing a comprehensive theoretical basis for designing electro-osmotically actuated microfluidic mixtures.

  15. Urban Streams as Transporters or Transformers of Carbon and Nutrients: Does Size Matter?

    NASA Astrophysics Data System (ADS)

    Wood, K. L.; Kaushal, S.

    2017-12-01

    Urbanization degrades water quality, channel form/ function, and related ecosystem services. Biological and hydrological responses to urbanization vary between sites potentially due to watershed size, channel size, and geomorphology along the broader urban watershed continuum. We investigated if/when the size of a stream can influence water quality in urban watersheds. We conducted high-frequency sampling of a small polluted headwater stream and a large restored stream in the Anacostia watershed, Washington D.C. metro area. Temperature, pH, conductivity, discharge, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured 2-3 times a week at two locations near the University of Maryland campus. DOC showed strong positive linear relationships with discharge at both sites, but TDN showed significant but contrasting linear relationships in the small polluted headwater site vs. the larger restored stream. In the larger restored stream, TDN significantly decreased with increasing water temperatures, which potentially suggested biological uptake. In the headwater stream, TDN concentrations significantly increased with increasing temperature, which suggests a possible seasonal input from terrestrial or in-stream sources. Interestingly, there were significant relationships between DIC and DOC in the larger restored stream, which suggested that there may have been a biological coupling of carbon forms due to stream ecosystem metabolism. Differences in relationships between TDN, DIC, and DOC and discharge, pH, and water temperatures may indicate the effects of stream size and floodplain restoration on water chemistry responses to human inputs. Larger streams may show greater potential for biogeochemical transformations, and stream size may need to be better evaluated in efforts to prioritize restoration strategies.

  16. Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system.

    PubMed

    Bohutskyi, Pavlo; Kucek, Leo A; Hill, Eric; Pinchuk, Grigoriy E; Mundree, Sagadevan G; Beliaev, Alexander S

    2018-07-01

    Growth of heterotrophic bacterium Bacillus subtilis was metabolically coupled with the photosynthetic activity of an astaxanthin-producing alga Haematococcus pluvialis for conversion of starch-containing waste stream into carotenoid-enriched biomass. The H. pluvialis accounted for 63% of the produced co-culture biomass of 2.2 g/L. Importantly, the binary system requires neither exogenous supply of gaseous substrates nor application of energy-intensive mass transfer technologies due to in-situ exchange in CO 2 and O 2 . The maximum reduction in COD, total nitrogen and phosphorus reached 65%, 55% and 30%, respectively. Conducted techno-economic assessment suggested that the astaxanthin-rich biomass may potentially offset the costs of waste treatment, and, with specific productivity enhancements (induction of astaxanthin to 2% and increase H. pluvialis fraction to 80%), provide and additional revenue stream. The outcome of this study demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into value-added products through metabolic coupling of heterotrophic and phototrophic metabolisms. Copyright © 2018. Published by Elsevier Ltd.

  17. Streaming Potential In Rocks Saturated With Water And Oil

    NASA Astrophysics Data System (ADS)

    Tarvin, J. A.; Caston, A.

    2011-12-01

    Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).

  18. A framework to assess the impacts of climate change on stream health indicators in Michigan watersheds

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.

    2016-12-01

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of vulnerable stream ecosystems were developed, which can be used in the watershed management decision-making process.

  19. Impact of Gulf Stream SST biases on the global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Woollings, Tim J.; Hoskins, Brian J.; Williams, Keith D.; O'Reilly, Christopher H.; Masato, Giacomo

    2018-02-01

    The UK Met Office Unified Model in the Global Coupled 2 (GC2) configuration has a warm bias of up to almost 7 K in the Gulf Stream SSTs in the winter season, which is associated with surface heat flux biases and potentially related to biases in the atmospheric circulation. The role of this SST bias is examined with a focus on the tropospheric response by performing three sensitivity experiments. The SST biases are imposed on the atmosphere-only configuration of the model over a small and medium section of the Gulf Stream, and also the wider North Atlantic. Here we show that the dynamical response to this anomalous Gulf Stream heating (and associated shifting and changing SST gradients) is to enhance vertical motion in the transient eddies over the Gulf Stream, rather than balance the heating with a linear dynamical meridional wind or meridional eddy heat transport. Together with the imposed Gulf Stream heating bias, the response affects the troposphere not only locally but also in remote regions of the Northern Hemisphere via a planetary Rossby wave response. The sensitivity experiments partially reproduce some of the differences in the coupled configuration of the model relative to the atmosphere-only configuration and to the ERA-Interim reanalysis. These biases may have implications for the ability of the model to respond correctly to variability or changes in the Gulf Stream. Better global prediction therefore requires particular focus on reducing any large western boundary current SST biases in these regions of high ocean-atmosphere interaction.

  20. Changes in solar wind-magnetosphere coupling with solar cycle, season, and time relative to stream interfaces

    NASA Astrophysics Data System (ADS)

    McPherron, Robert L.; Baker, Daniel N.; Pulkkinen, T. I.; Hsu, T.-S.; Kissinger, J.; Chu, X.

    2013-07-01

    Geomagnetic activity depends on a variety of factors including solar zenith angle, solar UV, strength of the interplanetary magnetic field, speed and density of the solar wind, orientation of the Earth’s dipole, distance of the Earth from Sun, occurrence of CMEs and CIRs, and possibly other parameters. We have investigated some of these using state-dependant linear prediction filters. For a given state a prediction filter transforms a coupling function such as rectified solar wind electric field (VBs) to an output like the auroral electrojet index (AL). The area of this filter calculated from the sum of the filter coefficients measures the strength of the coupling. When the input and output are steady for a time longer than the duration of the filter the ratio of output to input is equal to this area. We find coupling strength defined in this way for Es=VBs to AL (and AU) is weakest at solar maximum and strongest at solar minimum. AL coupling displays a semiannual variation being weakest at the solstices and strongest at the equinoxes. AU coupling has only an annual variation being strongest at summer solstice. AL and AU coupling also vary with time relative to a stream interface. Es coupling is weaker after the interface, but ULF coupling is stronger. Total prediction efficiency remains about constant at the interface. The change in coupling strength with the solar cycle can be explained as an effect of more frequent saturation of the polar cap potential causing a smaller ratio of AL to Es. Stronger AL coupling at the equinoxes possibly indicates some process that makes magnetic reconnection less efficient when the dipole axis is tilted along the Earth-Sun line. Strong AU coupling at summer solstice is likely due to high conductivity in northern summer. Coupling changes at a stream interface are correlated with the presence of strong wave activity in ground and satellite measurements and may be an artifact of the method by which solar wind data are propagated.

  1. What's a stream without water? Disproportionality in headwater regions impacting water quality.

    PubMed

    Armstrong, Andrea; Stedman, Richard C; Bishop, Joseph A; Sullivan, Patrick J

    2012-11-01

    Headwater streams are critical components of the stream network, yet landowner perceptions, attitudes, and property management behaviors surrounding these intermittent and ephemeral streams are not well understood. Our research uses the concept of watershed disproportionality, where coupled social-biophysical conditions bear a disproportionate responsibility for harmful water quality outcomes, to analyze the potential influence of riparian landowner perceptions and attitudes on water quality in headwater regions. We combine social science survey data, aerial imagery, and an analysis of spatial point processes to assess the relationship between riparian landowner perceptions and attitudes in relation to stream flow regularity. Stream flow regularity directly and positively shapes landowners' water quality concerns, and also positively influences landowners' attitudes of stream importance-a key determinant of water quality concern as identified in a path analysis. Similarly, riparian landowners who do not notice or perceive a stream on their property are likely located in headwater regions. Our findings indicate that landowners of headwater streams, which are critical areas for watershed-scale water quality, are less likely to manage for water quality than landowners with perennial streams in an obvious, natural channel. We discuss the relationships between streamflow and how landowners develop understandings of their stream, and relate this to the broader water quality implications of headwater stream mismanagement.

  2. Coupling GIS and multivariate approaches to reference site selection for wadeable stream monitoring.

    PubMed

    Collier, Kevin J; Haigh, Andy; Kelly, Johlene

    2007-04-01

    Geographic Information System (GIS) was used to identify potential reference sites for wadeable stream monitoring, and multivariate analyses were applied to test whether invertebrate communities reflected a priori spatial and stream type classifications. We identified potential reference sites in segments with unmodified vegetation cover adjacent to the stream and in >85% of the upstream catchment. We then used various landcover, amenity and environmental impact databases to eliminate sites that had potential anthropogenic influences upstream and that fell into a range of access classes. Each site identified by this process was coded by four dominant stream classes and seven zones, and 119 candidate sites were randomly selected for follow-up assessment. This process yielded 16 sites conforming to reference site criteria using a conditional-probabilistic design, and these were augmented by an additional 14 existing or special interest reference sites. Non-metric multidimensional scaling (NMS) analysis of percent abundance invertebrate data indicated significant differences in community composition among some of the zones and stream classes identified a priori providing qualified support for this framework in reference site selection. NMS analysis of a range standardised condition and diversity metrics derived from the invertebrate data indicated a core set of 26 closely related sites, and four outliers that were considered atypical of reference site conditions and subsequently dropped from the network. Use of GIS linked to stream typology, available spatial databases and aerial photography greatly enhanced the objectivity and efficiency of reference site selection. The multi-metric ordination approach reduced variability among stream types and bias associated with non-random site selection, and provided an effective way to identify representative reference sites.

  3. A Physically Based Analytical Model to Describe Effective Excess Charge for Streaming Potential Generation in Water Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Guarracino, L.; Jougnot, D.

    2018-01-01

    Among the different contributions generating self-potential, the streaming potential is of particular interest in hydrogeology for its sensitivity to water flow. Estimating water flux in porous media using streaming potential data relies on our capacity to understand, model, and upscale the electrokinetic coupling at the mineral-solution interface. Different approaches have been proposed to predict streaming potential generation in porous media. One of these approaches is the flux averaging which is based on determining the excess charge which is effectively dragged in the medium by water flow. In this study, we develop a physically based analytical model to predict the effective excess charge in saturated porous media using a flux-averaging approach in a bundle of capillary tubes with a fractal pore size distribution. The proposed model allows the determination of the effective excess charge as a function of pore water ionic concentration and hydrogeological parameters like porosity, permeability, and tortuosity. The new model has been successfully tested against different set of experimental data from the literature. One of the main findings of this study is the mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by several researchers. The proposed model also highlights the link to other lithological properties, and it is able to reproduce the evolution of effective excess charge with electrolyte concentrations.

  4. Denitrification in sediments from the hyporheic zone adjacent to a small forested stream

    USGS Publications Warehouse

    Duff, J.H.; Triska, F.J.

    1990-01-01

    Denitrifying potentials increased with increasing distance from the stream channel. Dissolved oxygen was 100% of the concentration expected in equilibrium with the atmosphere in water obtained from monitoring wells immediately adjacent to the stream but was as low as 7% of the expected value in water 11.4 m inland. Both nitrate and dissolved organic carbon decreased over summer in wells at the base of the alder-forested slope. A 48-h injection of nitrate-amended stream water into hyporheic water 8.4 m inland stimulated nitrous oxide production in the presence of acetylene. Nitrous oxide was generated as nitrate and acetylene were co-transported to a well 13 m down-gradient. Acetylene-block experiments coupled with the chemistry data suggest that denitrification can modify the chemistry of water during passage through the hyporheic zone. -from Authors

  5. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.

    PubMed

    Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier

    2016-02-03

    Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole auditory scene and how increasing background noise corrupts this process is still debated. In this magnetoencephalography study, subjects had to attend a speech stream with or without multitalker background noise. Results argue for frequency-dependent cortical tracking mechanisms for the attended speech stream. The left superior temporal gyrus tracked the ∼0.5 Hz modulations of the attended speech stream only when the speech was embedded in multitalker background, whereas the right supratemporal auditory cortex tracked 4-8 Hz modulations during both noiseless and cocktail-party conditions. Copyright © 2016 the authors 0270-6474/16/361597-11$15.00/0.

  6. A cross-validated cytoarchitectonic atlas of the human ventral visual stream.

    PubMed

    Rosenke, Mona; Weiner, Kevin S; Barnett, Michael A; Zilles, Karl; Amunts, Katrin; Goebel, Rainer; Grill-Spector, Kalanit

    2018-04-15

    The human ventral visual stream consists of several areas that are considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang et al., 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4), then we tested how the different alignment techniques affect the accuracy of the resulting atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore, that this coupling can be utilized for generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in understanding how anatomical features contribute to brain function. We make this cytoarchitectonic atlas freely available in both BrainVoyager and FreeSurfer formats (http://vpnl.stanford.edu/vcAtlas). The availability of this atlas will enable future studies to link cytoarchitectonic organization to other parcellations of the human ventral visual stream with potential to advance the understanding of this pathway in typical and atypical populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The role of DOM in nitrogen processing in streams across arctic regions affected by fire

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.

    2017-12-01

    In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.

  8. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin

    USGS Publications Warehouse

    Selbig, William R.

    2015-01-01

    The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2 °C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery.

  9. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin.

    PubMed

    Selbig, William R

    2015-07-15

    The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2°C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery. Published by Elsevier B.V.

  10. The Effect of Sub-Auroral Polarization Streams (SAPS) on Ionosphere and Thermosphere during 2015 St. Patrick's Day storm: Global Ionosphere-Thermosphere Model (GITM) Simulations

    NASA Astrophysics Data System (ADS)

    Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.

  11. Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed

    USGS Publications Warehouse

    Hartman, M.D.; Baron, Jill S.; Ojima, D.S.

    2007-01-01

    Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.

  12. Energy Harvesting Systems and Methods of Assembling Same

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2013-01-01

    A method of assembling an energy harvesting system is provided. The method includes coupling at least one energy storage device in flow communication with at least one apparatus that is configured to generate thermal energy and to transfer the thermal energy into at least one fluid stream. The energy storage device is configured to store the fluid stream. Moreover, the method includes coupling at least one fluid transfer device downstream from the energy storage device. The fluid transfer device receives the fluid stream from the energy storage device. A bladeless turbine is coupled in flow communication with the fluid transfer device, wherein the bladeless turbine receives the fluid stream to generate power.

  13. System for processing an encrypted instruction stream in hardware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Richard L.; Nickless, William K.; Conrad, Ryan C.

    A system and method of processing an encrypted instruction stream in hardware is disclosed. Main memory stores the encrypted instruction stream and unencrypted data. A central processing unit (CPU) is operatively coupled to the main memory. A decryptor is operatively coupled to the main memory and located within the CPU. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core. Unencrypted data is passed through to the CPU core without decryption upon receipt of a data fetch signal.

  14. Self-potential monitoring of a thermal pulse advecting through a preferential flow path

    NASA Astrophysics Data System (ADS)

    Ikard, S. J.; Revil, A.

    2014-11-01

    There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes experience temperature changes.

  15. Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.

    2011-12-01

    The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical meteorological variables are also selected using the k-nn method. We present the statistical modeling framework using Generalized Linear Models (GLMs), along with diagnostics and measurements of skill. We will also provide a comparison of the stream temperature projections from the future years of 2020, 2040, and 2080 and discuss the potential implications on fish habitat in the Methow River. Future integration of the hourly climate scenarios in the hydraulic model will provide the ability to assess the spatial extent of habitat impacts and allow the USBR to evaluate the effectiveness of various river restoration projects in maintaining or improving habitat in a changing climate.

  16. Potential Stream Density in Mid-Atlantic U.S. Watersheds

    PubMed Central

    Elmore, Andrew J.; Julian, Jason P.; Guinn, Steven M.; Fitzpatrick, Matthew C.

    2013-01-01

    Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (<1%) for catchments larger than 10 ha. We apply this model to the entire Potomac River watershed (37,800 km2) and several adjacent watersheds to map stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts. PMID:24023704

  17. Stream-sediment samples reanalyzed for major, rare earth, and trace elements from seven 1:250,000-scale quadrangles, south-central Alaska, 2007-09

    USGS Publications Warehouse

    Gamble, Bruce M.; Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.

    2010-01-01

    During the 1960s through the 1980s, the U.S. Geological Survey conducted reconnaissance geochemical surveys of drainage basins throughout most of the Iliamna, Lake Clark, Lime Hills, and Talkeetna 1:250,000-scale quadrangles and parts of the McGrath, Seldovia, and Tyonek 1:250,000-scale quadrangles in Alaska. These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources and provide data that may be used to determine regional-scale element baselines. This report provides new data for 1,075 of the previously collected stream-sediment samples. The new analyses include a broader spectrum of elements and provide data that are more precise than the original analyses. All samples were analyzed for arsenic by hydride generation atomic absorption spectrometry, for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation, and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry after sodium peroxide sinter at 450 degrees Celsius.

  18. The Effect of Waves on the Tidal-Stream Energy Resource

    NASA Astrophysics Data System (ADS)

    Lewis, M. J.; Neill, S. P.; Robins, P. E.; Hashemi, M. R.

    2016-02-01

    The tidal-stream energy resource is typically estimated using depth-averaged "tide-only" hydrodynamic models and do not consider the influence of waves. We find that waves will reduce the available resource, and the wave climate needs to be considered when designing a resilient and efficient tidal-stream energy device. Using well-validated oceanographic models of the Irish Sea and Northwest European shelf, we show tidal-stream energy sites with quiescent wave climates are extremely limited, with limited sea-space and limited scope for future development. To fully realise the potential of tidal-stream energy and to ensure globally deployable devices, the influence of waves on the resource and turbines must be considered. The effect of waves upon the tidal current was investigated using observations (ADCP and wave buoy time-series), and a state-of-the-art, 3-dimensional, dynamically coupled wave-tide model (COAWST). The presence of waves reduced the depth-averaged tidal current, which reduced the potential extractable power by 10% per metre wave height increase. To ensure resilience and survivability, tidal-stream energy device may cease to produce electricity during extremes (often called downtime), however the wave conditions threshold for device shut-down is unknown, and requires future work. The presence of waves will also effect turbine performance and design criteria; for example, the presence of waves was found to alter the shape of the velocity profile, and wave-current misalignment (waves propagating at an angle oblique to the plane of tidal flow) was found to occur for a significant amount of time at many potential tidal-stream energy sites. Therefore, waves reduced the available resource, furthermore the influence of waves on the interaction between tidal energy devices and the tidal-stream resource needs to be characterised in physically-scaled tank experiments and computational fluid dynamics (CFD) numerical models.

  19. Coupled Spatio-Temporal Patterns of Solute Transport, Metabolism and Nutrient Uptake in Streams

    NASA Astrophysics Data System (ADS)

    Kurz, M. J.; Schmidt, C.

    2017-12-01

    Slower flow velocities and longer residence times within stream transient storage (TS) zones facilitate interaction between solutes and microbial communities, potentially increasing local rates of metabolic activity. Multiple factors, including channel morphology and substrate, variable hydrology, and seasonal changes in biological and physical parameters, result in changes in the solute transport dynamics and reactivity of TS zones over time and space. These changes would be expected to, in turn, influence rates of whole-stream ecosystem functions such as metabolism and nutrient uptake. However, the linkages between solute transport and ecosystem functioning within TS zones, and the contribution of TS zones to whole-stream functioning, are not always so straight forward. This may be due, in part, to methodological challenges. In this study we investigated the influence of stream channel hydro-morphology and substrate type on reach (103 m) and sub-reach (102 m) scale TS and ecosystem functioning. Patterns in solute transport, metabolism and nitrate uptake were tracked from April through October in two contrasting upland streams using several methods. The two streams, located in the Harz Mountains, Germany, are characterized by differing size (0.02 vs. 0.3 m3/s), dominant stream channel substrate (bedrock vs. alluvium) and sub-reach morphology (predominance of pools, riffles and glides). Solute transport parameters and respiration rates at the reach and sub-reach scale were estimated monthly from coupled pulse injections of the reactive tracer resazurin (Raz) and conservative tracers uranine and salt. Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration. Daily rates of primary productivity, respiration and nitrate retention at the reach scale were estimated using the diel cycles in dissolved oxygen and nitrate concentrations measured by in-situ sensors. Preliminary results indicate distinct differences in common metrics of TS and Raz transformation rates within and between the two streams. However, transformation rates and TS metrics are not well correlated, indicating complexities in the relationship between solute transport dynamics and metabolism in streams.

  20. Enzymatic coupling of 2,4-dichlorophenol to stream fulvic acid in the presence of oxidoreductases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, J.M.; Malcolm, R.L.; Bollag, J.M.

    The coupling {sup 14}C-ring-labelled 2,4-dichlorophenol (2,4-DCP) to stream fulvic acid was investigated in the presence of several oxidoreductases including tyrosinase, peroxidase, and laccases of Rhizoctonia praticola and Trametes vesicolor. During 12-h incubation of the oxidoreductases with {sup 14}C-2, 4-DCP and stream fulvic acid, a substantial amount of the radioactivity was incorporated into fulvic acid. Chromatographic analysis indicated that although a large portion of the radioactivity remained in solution, no unbound {sup 14}C-2,4-DCP was present in the supernatant. The effects of pH, temperature, concentration of fulvic acid, and concentration of enzyme on the coupling processes were studied. The results of thismore » research provide evidence that the enzymatic coupling of certain xenobiotic pollutants to humic substances is an important natural process which must be considered in studies of the fate, reactivity, and persistence of these organic compounds in soils and stream waters.« less

  1. Coupled oxygen-carbon dioxide modelling to partition potential external contribution to stream carbon dioxide concentrations.

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Holtgrieve, G. W.

    2017-12-01

    Recent modelling studies in large catchments have estimated that in excess of 74% of the dissolved carbon dioxide found in first and second order streams originate from allochthonous sources. Stable isotopes of carbon-13 in carbon dioxide have been used to identify ground water seeps in stream systems, where decreases in δ13CO2 occur along gaining stream reaches, suggesting that carbon dioxide in ground water is more depleted than what is found in surface water due to fractionation of CO2 during emissions across the air water interface. Although isotopes represent a chemical tracer in stream systems for potential groundwater contribution, the temporal resolution of discrete samples make partitioning allochthonous versus autochthonous sources of CO2 difficult on hydrologically relevant time scales. Here we show results of field deployments of high frequent dissolved CO2, O2, PAR, Temperature and pH from the Thornton Creek Watershed, the largest urban watershed in Seattle, WA. We present an exploration into using high resolution time series of dissolved oxygen and carbon dioxide in a dual gas approach to separate the contribution of in stream respiration from external sources. We extend upon previous efforts to model stream metabolism across diel cycles by incorporating simultaneous direct measurements of dissolved oxygen, PCO2, and pH within an inverse modeling framework and Bayesian parameter estimation. With an initial assumption of a stoichiometric ratio of 1:1 for O2 and CO2 for autochthonous driven metabolism, we investigate positive or negative departures from this ratio as an indicator of external CO2 to the stream (terrestrial or atmospheric) and factors contributing to this flux.

  2. A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1978-01-01

    The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.

  3. From terrestrial to aquatic fluxes: Integrating stream dynamics within a dynamic global vegetation modeling framework

    NASA Astrophysics Data System (ADS)

    Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco

    2016-04-01

    Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.

  4. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    USGS Publications Warehouse

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  5. Denitrification in Agriculturally Impacted Streams: Seasonal Changes in Structure and Function of the Bacterial Community

    PubMed Central

    Manis, Erin; Royer, Todd V.; Johnson, Laura T.; Leff, Laura G.

    2014-01-01

    Denitrifiers remove fixed nitrogen from aquatic environments and hydrologic conditions are one potential driver of denitrification rate and denitrifier community composition. In this study, two agriculturally impacted streams in the Sugar Creek watershed in Indiana, USA with different hydrologic regimes were examined; one stream is seasonally ephemeral because of its source (tile drainage), whereas the other stream has permanent flow. Additionally, a simulated flooding experiment was performed on the riparian benches of the ephemeral stream during a dry period. Denitrification activity was assayed using the chloramphenicol amended acetylene block method and bacterial communities were examined based on quantitative PCR and terminal restriction length polymorphisms of the nitrous oxide reductase (nosZ) and 16S rRNA genes. In the stream channel, hydrology had a substantial impact on denitrification rates, likely by significantly lowering water potential in sediments. Clear patterns in denitrification rates were observed among pre-drying, dry, and post-drying dates; however, a less clear scenario was apparent when analyzing bacterial community structure suggesting that denitrifier community structure and denitrification rate were not strongly coupled. This implies that the nature of the response to short-term hydrologic changes was physiological rather than increases in abundance of denitrifiers or changes in composition of the denitrifier community. Flooding of riparian bench soils had a short-term, transient effect on denitrification rate. Our results imply that brief flooding of riparian zones is unlikely to contribute substantially to removal of nitrate (NO3 -) and that seasonal drying of stream channels has a negative impact on NO3 - removal, particularly because of the time lag required for denitrification to rebound. This time lag is presumably attributable to the time required for the denitrifiers to respond physiologically rather than a change in abundance or community composition. PMID:25171209

  6. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream

    NASA Astrophysics Data System (ADS)

    Westhoff, M. C.; Gooseff, M. N.; Bogaard, T. A.; Savenije, H. H. G.

    2011-10-01

    Hyporheic exchange is an important process that underpins stream ecosystem function, and there have been numerous ways to characterize and quantify exchange flow rates and hyporheic zone size. The most common approach, using conservative stream tracer experiments and 1-D solute transport modeling, results in oversimplified representations of the system. Here we present a new approach to quantify hyporheic exchange and the size of the hyporheic zone (HZ) using high-resolution temperature measurements and a coupled 1-D transient storage and energy balance model to simulate in-stream water temperatures. Distributed temperature sensing was used to observe in-stream water temperatures with a spatial and temporal resolution of 2 and 3 min, respectively. The hyporheic exchange coefficient (which describes the rate of exchange) and the volume of the HZ were determined to range between 0 and 2.7 × 10-3 s-1 and 0 and 0.032 m3 m-1, respectively, at a spatial resolution of 1-10 m, by simulating a time series of in-stream water temperatures along a 565 m long stretch of a small first-order stream in central Luxembourg. As opposed to conventional stream tracer tests, two advantages of this approach are that exchange parameters can be determined for any stream segment over which data have been collected and that the depth of the HZ can be estimated as well. Although the presented method was tested on a small stream, it has potential for any stream where rapid (in regard to time) temperature change of a few degrees can be obtained.

  7. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    NASA Astrophysics Data System (ADS)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  8. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1996-01-01

    Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream stages calculated by BRANCH, aquifer properties, and stresses. This process is repeated until convergence criteria are met for head and stage. Because time steps used in ground-water modeling can be much longer than time intervals used in surface- water simulations, provision has been made for handling multiple BRANCH time intervals within one MODFLOW time step. An option was also added to BRANCH to allow the simulation of channel drying and rewetting. Testing of the coupled model was verified by using data from previous studies; by comparing results with output from a simpler, four-point implicit, open-channel flow model linked with MODFLOW; and by comparison to field studies of L-31N canal in southern Florida.

  9. Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular porous media.

    PubMed

    Crespy, A; Bolève, A; Revil, A

    2007-01-01

    The Helmholtz-Smoluchowski (HS) equation is widely used to determine the apparent zeta potential of porous materials using the streaming potential method. We present a model able to correct this apparent zeta potential of granular media of the influence of the Dukhin and Reynolds numbers. The Dukhin number represents the ratio between the surface conductivity (mainly occurring in the Stern layer) and the pore water conductivity. The Reynolds number represents the ratio between inertial and viscous forces in the Navier-Stokes equation. We show here that the HS equation can lead to serious errors if it is used to predict the dependence of zeta potential on flow in the inertial laminar flow regime without taking into account these corrections. For indifferent 1:1 electrolytes (such as sodium chloride), we derived two simple scaling laws for the dependence of the streaming potential coupling coefficient (or the apparent zeta potential) on the Dukhin and Reynolds numbers. Our model is compared with a new set of experimental data obtained on glass bead packs saturated with NaCl solutions at different salinities and pH. We find fairly good agreement between the model and these experimental data.

  10. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  11. Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics.

    PubMed

    Thomaz, Edivaldo L; Peretto, Gustavo T

    2016-04-15

    Unpaved roads are ubiquitous features that have been transforming the landscape through human history. Unpaved roads affect the water and sediment pathways through a catchment and impacts the aquatic ecosystem. In this study, we describe the effect of unpaved road on the hydrogeomorphic connectivity at the rural headwater scale. Measurement was based on the stream crossing approach, i.e., road superimposing the drainage system. We installed a Parshall flume coupled with single-stage suspended sediment sampler at each stream crossing. In addition, we displayed our monitoring scheme with an upscaling perspective from second-order to third-order stream. We concluded that the road-stream coupling dramatically changed the stream dynamic. The increase of discharge caused by roads at the headwater was 50% larger compared to unaffected streams. Additionally, suspended sediment concentration enhancement at stream crossings ranged from to 413% at second-order streams to 145% at third-order streams. The landform characteristics associated with the road network produced an important hydrogeomorphic disruption in the landscape. As a result, the sediment filter function of the riparian zone was reduced dramatically. Therefore, we recommend that projects for aquatic system restoration or conservation in rural landscape consider the role of the road network on stream dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.

    PubMed

    Peng, Ran; Li, Dongqing

    2015-02-15

    Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A Framework to Assess the Impacts of Climate Change on ...

    EPA Pesticide Factsheets

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  14. Recognition of degraded handwritten digits using dynamic Bayesian networks

    NASA Astrophysics Data System (ADS)

    Likforman-Sulem, Laurence; Sigelle, Marc

    2007-01-01

    We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.

  15. Impact of stream restoration on flood waves

    NASA Astrophysics Data System (ADS)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  16. Simulation of future stream alkalinity under changing deposition and climate scenarios.

    PubMed

    Welsch, Daniel L; Cosby, B Jack; Hornberger, George M

    2006-08-31

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 microeq L-1) except where climate is gradually warming and becoming more moist (average increase of 13 microeq L-1). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions.

  17. P2S--Coupled simulation with the Precipitation-Runoff Modeling System (PRMS) and the Stream Temperature Network (SNTemp) Models

    USGS Publications Warehouse

    Markstrom, Steven L.

    2012-01-01

    A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.

  18. Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling.

    PubMed

    Ng, Tuck Wah; Neild, Adrian; Heeraman, Pascal

    2008-03-15

    Feasible sorters need to function rapidly and permit the input and delivery of particles continuously. Here, we describe a scheme that incorporates (i) restricted spatial input location and (ii) orthogonal sort and movement direction features. Sorting is achieved using an asymmetric potential that is cycled on and off, whereas movement is accomplished using photophoresis. Simulations with 0.2 and 0.5 microm diameter spherical particles indicate that sorting can commence quickly from a continuous stream. Procedures to optimize the sorting scheme are also described.

  19. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.

  20. Using Self Potential and Multiphase Flow Modeling to Optimize Groundwater Pumping

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Zhang, Y.; Hubbard, S.

    2008-12-01

    Numerical and field hydrological and geophysical studies have been conducted to investigate the impact of groundwater pumping on near-river hydrology for a segment of the Russian River at the Wohler Site, California, which is a riverbed filtration system managed by the Sonoma County Water Agency. Groundwater pumping near streams can cause a creation of unsaturated regions and hence reduce the pumping capacity and change the flow paths. A three-dimensional multiphase flow and transport model can be calibrated to the temperature, and water levels at monitoring wells based on known pumping rates, and the river stage. Streaming (self) potential (SP) is one of the electrokinetic processes that describes the coupled behavior of hydraulic and electrical flow within a porous medium, and is easily measured on the surface or in boreholes. Observing temporal and spatial variations in geophysical signatures provides a powerful approach for monitoring changes in the natural systems due to natural or forced (pumping) system perturbations. Geophysical and hydrological data were collected before, during and after a pumping experiment at the Wohler Site. Using this monitoring dataset, we illustrate how loose coupling between hydrogeological and geophysical (SP) processes and data can be used to calibrate the flow model and to optimize pumping schedules as needed to guide sustainable water resource development.

  1. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mahardika, H.

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods.

  2. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    PubMed Central

    Revil, A; Mahardika, H

    2013-01-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods. PMID:23741078

  3. Spatial and Temporal Patterns In Ecohydrological Separation

    NASA Astrophysics Data System (ADS)

    Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.

    2017-12-01

    The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.

  4. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.

  5. Stream-sediment samples reanalyzed for major, rare earth, and trace elements from ten 1:250,000-scale quadrangles, south-central Alaska, 2007-08

    USGS Publications Warehouse

    Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.

    2010-01-01

    During the 1960s through the 1980s, the U.S. Geological Survey (USGS) conducted reconnaissance geochemical surveys of the drainage basins throughout most of the Anchorage, Bering Glacier, Big Delta, Gulkana, Healy, McCarthy, Mount Hayes, Nabesna, Talkeetna Mountains, and Valdez 1:250,000-scale quadrangles in Alaska as part of the Alaska Mineral Resource Assessment Program (AMRAP). These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources on public and other lands, and provide data that may be used to determine regional-scale element baselines. This report provides new data for 366 of the previously collected stream-sediment samples. These samples were selected for reanalysis because recently developed analytical methods can detect additional elements of interest and have lower detection limits than the methods used when these samples were originally analyzed. These samples were all analyzed for arsenic by hydride generation atomic absorption spectrometry (HGAAS), for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation (FA/ICP-MS), and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry (ICP-AES-MS) after sodium peroxide sinter at 450 degrees Celsius.

  6. Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2015-04-01

    Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.

  7. Flooding in ephemeral streams: incorporating transmission losses

    USDA-ARS?s Scientific Manuscript database

    Stream flow in semiarid lands commonly occurs as a form of flash floods in dry ephemeral stream beds. The goal of this research is to couple hydrological and hydraulic models treats channel transmission losses and test the methodology in the USDA-ARS Walnut Gulch Experimental Watershed (WGEW). For h...

  8. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    PubMed

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems.

  9. Re-Meandering of Lowland Streams: Will Disobeying the Laws of Geomorphology Have Ecological Consequences?

    PubMed Central

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems. PMID:25264627

  10. Subglacial hydrology and the formation of ice streams

    PubMed Central

    Kyrke-Smith, T. M; Katz, R. F; Fowler, A. C

    2014-01-01

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. PMID:24399921

  11. A stream temperature model for the Peace-Athabasca River basin

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  12. Is the Stream Always Bluer on the Other Side?

    NASA Astrophysics Data System (ADS)

    Jenkins, T.; Chase, Z.

    2017-12-01

    Examining water quality, fish species present, habitat quality, and sources of pollution are important to better understanding the health of a stream. In Florida, the Fish and Wildlife Conservation Commission (FWC) works to monitor the health of its streams, and partnerships with . By collecting, analyzing, and comparing fish abundance data from a couple of streams in Escambia County, Florida, we can help FWC determine how to best support and protect stream habitats and fish-species in our Florida community.

  13. Multiscale Models for the Two-Stream Instability

    NASA Astrophysics Data System (ADS)

    Joseph, Ilon; Dimits, Andris; Banks, Jeffrey; Berger, Richard; Brunner, Stephan; Chapman, Thomas

    2017-10-01

    Interpenetrating streams of plasma found in many important scenarios in nature and in the laboratory can develop kinetic two-stream instabilities that exchange momentum and energy between the streams. A quasilinear model for the electrostatic two-stream instability is under development as a component of a multiscale model that couples fluid simulations to kinetic theory. Parameters of the model will be validated with comparison to full kinetic simulations using LOKI and efficient strategies for numerical solution of the quasilinear model and for coupling to the fluid model will be discussed. Extending the kinetic models into the collisional regime requires an efficient treatment of the collision operator. Useful reductions of the collision operator relative to the full multi-species Landau-Fokker-Plank operator are being explored. These are further motivated both by careful consideration of the parameter orderings relevant to two-stream scenarios and by the particular 2D+2V phase space used in the LOKI code. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 17- ERD-081.

  14. Comparison of stream reach scale transport of rhodamine WT and NaCl in coupled mountain stream-hyporheic system

    Treesearch

    A. Bouchier; M. N. Gooseff; B. McGlynn; R. A. Payn; M. A. Briggs

    2006-01-01

    Rather than interpret the late-time behavior of rhodamine WT (RWT) breakthrough curves in stream tracer studies as indications of hyporheic exchanges we suggest that RWT is lost by sorption. We assessed the transport of RWT compared with NaCl during and after a 5 hour co-injection steady state drip experiment conducted in a headwater mountain stream. We hypothesize...

  15. Regional-scale, fully coupled modelling of stream aquifer interaction in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Werner, Adrian D.; Gallagher, Mark R.; Weeks, Scott W.

    2006-09-01

    SummaryThe planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance.

  16. Deflate decompressor

    DOEpatents

    Hamlet, Jason R [Albuquerque, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM; Olsberg, Ronald R [Albuquerque, NM

    2012-02-28

    A deflate decompressor includes at least one decompressor unit, a memory access controller, a feedback path, and an output buffer unit. The memory access controller is coupled to the decompressor unit via a data path and includes a data buffer to receive the data stream and temporarily buffer a first portion the data stream. The memory access controller transfers fixed length data units of the data stream from the data buffer to the decompressor unit with reference to a memory pointer pointing into the memory buffer. The feedback path couples the decompressor unit to the memory access controller to feed back decrement values to the memory access controller for updating the memory pointer. The decrement values each indicate a number of bits unused by the decompressor unit when decoding the fixed length data units. The output buffer unit buffers a second portion of the data stream after decompression.

  17. Disrupted carbon cycling in restored and unrestored urban streams: Critical timescales and controls

    USGS Publications Warehouse

    Larsen, L. G.; Harvey, Judson

    2017-01-01

    Carbon fixation and respiration in flowing waterways play significant roles in global and regional carbon budgets, yet how land use and watershed management interact with temporal disturbances (storms) to influence metabolism remains poorly understood. Here, we combine long-term with synoptic sampling of metabolism and its variable controls in neighboring watersheds of the Chesapeake Bay to resolve limiting factors and critical timescales associated with recovery from disturbance. We found that, relative to predictions of the river continuum concept, focal streams have “disrupted” carbon cycles, with carbon balances closer to zero, and, in some cases, tighter coupling between gross primary production (GPP) and ecosystem respiration (ER), attributable to carbon limitation. Carbon became limiting to ER where flashy storm hydrographs and simplified channel geomorphology inhibited accumulation of fine sediment. Shannon entropy analysis of timescales revealed that fine sediment served as a time-release capsule for nutrients and carbon over 4–6 months, fueling biogeochemical transformations. Loss of fines through hydraulic disturbance had up to 30-d impacts on GPP and 50-d impacts on ER in the stream with carbon limitation. In contrast, where GPP and ER were not tightly coupled, recovery occurred within 1 d. Results suggest that a complex interplay between nutrient and carbon limitation and mechanical and chemical disturbance governs patterns and consequences of disrupted carbon cycling in urban streams. Carbon limitation and tight GPP/ER coupling enhance the vulnerability of stream ecosystem functions, but best management practices that target stormflow reduction and channel geomorphic diversity can break that coupling and minimize carbon cycle disruptions.

  18. Impacts of beaver ponds on dissolved organic matter cycling in small temperate streams.

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Lambert, T.; Larsen, A.; Lane, S.

    2017-12-01

    Beavers are engineers that modify the structure of river reaches and their hydrological functioning. By building dams, they modify the travel time of running waters and can lead to the flooding of surrounding soils and terrestrial vegetation, with potentially significant impact on biogeochemical cycles. Contradictory effects of beaver ponds on dissolved organic matter (DOM) concentration and composition have however been reported, and the underlying reasons are still unclear. In this study, we aimed to investigate the role of the landscape morphology as an important driver determining how a beaver population can affect stream DOM cycling. Four streams localized in Switzerland and Germany were visited during different seasons (spring, summer, winter) and monitored at upstream and downstream locations of beaver ponds across a hydrological cycle. The sites differed in terms of river channel morphology, presence or absence of floodplain, and vegetation cover. DOM composition was investigated through absorbance and fluorescence measurements coupled with parallel factor analysis (PARAFAC) along with stream water quality (nutrients, pH, dissolved oxygen and water temperature). The results show that the effects of beaver dams were variable, and emphasizes the importance of the geomorphological context.

  19. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE PAGES

    Roth, Elliot; Bank, Tracy; Howard, Bret; ...

    2017-04-05

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  20. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Elliot; Bank, Tracy; Howard, Bret

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  1. Thermoelectric and electrochemical self-potential anomalies induced by water injection into hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Gulamali, Murtaza; Leinov, Eli; Jackson, Matthew; Pain, Christopher

    2010-05-01

    Downhole measurements of electrokinetic (EK) streaming potential, using electrodes mounted on the outside of insulated casing, has been shown to be useful for informing production strategies in oil and gas reservoirs. However, spontaneous potentials due to thermoelectric (TE) and/or electrochemical (EC) effects may also be present during production and may contribute to the signal measured at the production well. We present a study of the contribution of these effects based on numerical models of subsurface potentials during production. We find that the injection of seawater, which typically has a different temperature and salinity to the formation brine, leads to the generation of both TE and EC potential signals in an oil reservoir, which may be measured at the production well along with EK potential signals. In particular, there is a peak in the TE potential before and after the temperature front, with a change in sign occurring close to the midpoint of the front, and the signal decaying with distance from the front. The EC potential has a similar profile, with a change in sign occurring close to the location of the salinity front. In both cases, the absolute magnitude of the signal is related to the overall temperature and/or salinity contrast between the injected fluids and the formation brine, and the magnitude of the TE and EC coupling coefficient. When we use the maximum theoretical magnitude for the TE and EC coupling coefficients, in the case of a perfect membrane, the lag in the temperature front relative to the saturation front leads to a negligible TE potential signal at the production well until long after water breakthrough occurs. In contrast, the EC potential contributes significantly to the spontaneous potential measured at the production well before the waterfront arrives, as the salinity front and the saturation front approximately coincide. The dependence of the TE and EC coupling coefficients upon temperature, salinity and/or partial water saturation is still uncertain. We explore the contribution of the EK and EC potential signals to the overall signal measured at the well as a function of salinity and water saturation. Our results imply that measurements of the spontaneous potential at a production well will combine contributions from both streaming and electrochemical effects, and may be used to detect an advancing waterfront some time before water breakthrough occurs at the well. Moreover, inversion of the measured signals could be used to determine the water saturation in the vicinity of the well, and to regulate flow into the well using control valves in order to maintain or increase oil production.

  2. Modeling CO2 degassing and pH in a stream-aquifer system

    USGS Publications Warehouse

    Choi, J.; Hulseapple, S.M.; Conklin, M.H.; Harvey, J.W.

    1998-01-01

    Pinal Creek, Arizona receives an inflow of ground water with high dissolved inorganic carbon (57-75 mg/l) and low pH (5.8-6.3). There is an observed increase of in-stream pH from approximately 6.0-7.8 over the 3 km downstream of the point of groundwater inflow. We hypothesized that CO2 gas-exchange was the most important factor causing the pH increase in this stream-aquifer system. An existing transport model, for coupled ground water-surface water systems (OTIS), was modified to include carbonate equilibria and CO2 degassing, used to simulate alkalinity, total dissolved inorganic carbon (C(T)), and pH in Pinal Creek. Because of the non-linear relation between pH and C(T), the modified transport model used the numerical iteration method to solve the non-linearity. The transport model parameters were determined by the injection of two tracers, bromide and propane. The resulting simulations of alkalinity, C(T) and pH reproduced, without fitting, the overall trends in downstream concentrations. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that C(T) and pH in stream water were controlled by the mixing of ground water with stream water and CO2 degassing. The relative importance of these two processes varied spatially depending on the hydrologic conditions, such as stream flow velocity and whether a reach gained or lost stream water caused by the interaction with the ground water. The coupled transport model with CO2 degassing and generalized sensitivity analysis presented in this study can be applied to evaluate carbon transport and pH in other coupled stream-ground water systems.An existing transport model for coupled groundwater-surface water systems was modified to include carbonate equilibria and CO2 degassing. The modified model was used to simulate alkalinity, total dissolved inorganic carbon (CT) and pH in Pinal Creek. The model used the numerical iteration method to solve the nonlinear relation between pH and CT. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that CT and pH in the stream water were controlled by the mixing of groundwater with stream water and CO2 degassing.

  3. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  4. Simulating Streamflow and Dissolved Organic Matter Export from small Forested Watersheds

    NASA Astrophysics Data System (ADS)

    Xu, N.; Wilson, H.; Saiers, J. E.

    2010-12-01

    Coupling the rainfall-runoff process and solute transport in catchment models is important for understanding the dynamics of water-quality-relevant constituents in a watershed. To simulate the hydrologic and biogeochemical processes in a parametrically parsimonious way remains challenging. The purpose of this study is to quantify the export of water and dissolved organic matter (DOM) from a forested catchment by developing and testing a coupled model for rainfall-runoff and soil-water flushing of DOM. Natural DOM plays an important role in terrestrial and aquatic systems by affecting nutrient cycling, contaminant mobility and toxicity, and drinking water quality. Stream-water discharge and DOM concentrations were measured in a first-order stream in Harvard Forest, Massachusetts. These measurements show that stream water DOM concentrations are greatest during hydrologic events induced by rainfall or snowmelt and decline to low, steady levels during periods of baseflow. Comparison of the stream-discharge data to calculations of a simple rainfall-runoff model reveals a hysteretic relationship between stream-flow rates and the storage of water within the catchment. A modified version of the rainfall-runoff model that accounts for hysteresis in the storage-discharge relationship in a parametrically simple way is capable of describing much, but not all, of the variation in the time-series data on stream discharge. Our ongoing research is aimed at linking the new rainfall-runoff formulation with coupled equations that predict soil-flushing and stream-water concentrations of DOM as functions of the temporal change in catchment water storage. This model will provide a predictive tool for examining how changes in climatic variables would affect the runoff generation and DOM fluxes from terrestrial landscape.

  5. Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T; Thelhawadigedara, Lahiru Niroshan Jayakody; Johnson, Christopher W

    Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putidamore » grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.« less

  6. A novel chaotic stream cipher and its application to palmprint template protection

    NASA Astrophysics Data System (ADS)

    Li, Heng-Jian; Zhang, Jia-Shu

    2010-04-01

    Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.

  7. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.

  8. Modeling Coupled Physical and Chemical Erosional Processes Using Structure from Motion Reconstruction and Multiphysics Simulation: Applications to Knickpoints in Bedrock Streams in Limestone Caves and on Earth's Surface

    NASA Astrophysics Data System (ADS)

    Bosch, R.; Ward, D.

    2017-12-01

    Investigation of erosion rates and processes at knickpoints in surface bedrock streams is an active area of research, involving complex feedbacks in the coupled relationships between dissolution, abrasion, and plucking that have not been sufficiently addressed. Even less research has addressed how these processes operate to propagate knickpoints through cave passages in layered sedimentary rocks, despite these features being common along subsurface streams. In both settings, there is evidence for mechanical and chemical erosion, but in cave passages the different hydrologic and hydraulic regimes, combined with an important role for the dissolution process, affect the relative roles and coupled interactions between these processes, and distinguish them from surface stream knickpoints. Using a novel approach of imaging cave passages using Structure from Motion (SFM), we create 3D geometry meshes to explore these systems using multiphysics simulation, and compare the processes as they occur in caves with those in surface streams. Here we focus on four field sites with actively eroding streambeds that include knickpoints: Upper River Acheron and Devil's Cooling Tub in Mammoth Cave, Kentucky; and two surface streams in Clermont County, Ohio, Avey's Run and Fox Run. SFM 3D reconstructions are built using images exported from 4K video shot at each field location. We demonstrate that SFM is a viable imaging approach for reconstructing cave passages with complex morphologies. We then use these reconstructions to create meshes upon which to run multiphysics simulations using STAR-CCM+. Our approach incorporates multiphase free-surface computational fluid dynamics simulations with sediment transport modeled using discrete element method grains. Physical and chemical properties of the water, bedrock, and sediment enable computation of shear stress, sediment impact forces, and chemical kinetic conditions at the bed surface. Preliminary results prove the efficacy of commercially available multiphysics simulation software for modeling various flow conditions, erosional processes, and their complex coupled interactions in cave passages and in surface stream channels to expand knowledge and understanding of overall cave system development and river profile erosion.

  9. Streaming potential in nature

    NASA Astrophysics Data System (ADS)

    Schuch, M.

    For the first time, QUINCKE found in 1859 the phenomenon of electric streaming potential. Twenty years later HELMHOLTZ published a mathematical expression for the streaming potential. In the following years a number of scientists studied the phenomenon. BIKERMAN (1932) showed that each electric streaming potential causes an electric current in the contrary direction. SWARTZENDRUBER postulated in 1967 that this electric field tries to stop the streaming potential as a result of the energy balance.

  10. Investigating the Role of Sub-Auroral Polarization Stream Electric Field in Coupled Magnetosphere-Ionosphere-Thermosphere Systemwide Processes

    DTIC Science & Technology

    2017-04-04

    AFRL -AFOSR-JP-TR-2017-0028 Investigating the role of sub-auroral polarization stream electric field in coupled magnetosphere-ionosphere-thermosphere...SPONSOR/MONITOR’S ACRONYM(S) AFRL /AFOSR IOA 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -AFOSR-JP-TR-2017-0028     12. DISTRIBUTION/AVAILABILITY STATEMENT...during the 31 August 2005 geomagnetic storm Date: 19-24 June 2016 Presenter: Dr Cheryl Huang, Senior Research Physicist, AFRL /RVBXP

  11. Influence of geomorphological properties and stage on in-stream travel time

    NASA Astrophysics Data System (ADS)

    Åkesson, Anna; Wörman, Anders

    2014-05-01

    The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream networks (representing catchments of the spatial scale of a few hundred km2) in different geographic regions in Sweden displaying different geomorphological properties. Results show that the geomorphological properties (data that is often available in the form of maps and/or DEMs) of individual stream networks have major influence on the stream network travel times. By coupling the geomorphological information to general expressions for stage dependency, catchment-specific relationships of how the travel times within stream networks can be determined. Basing the parameterisation procedure of a hydrological model in physical catchment properties and process understanding rather than statistical parameterisation (based in how a catchment has responded in the past) - is believed to lead to more reliable hydrological predictions - during extreme conditions as well as during changing conditions such as climate change and landscape modifications, and/or when making predictions in ungauged basins.

  12. Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data

    USGS Publications Warehouse

    Norris, Lam; Kean, Jason W.; Lyon, Steve

    2016-01-01

    The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.

  13. Exploring the Effect of Media, Salinity and Clay on the Thermoelectric Coupling Coefficient in Self-Potential Data

    NASA Astrophysics Data System (ADS)

    Meyer, C. D.; Revil, A.

    2014-12-01

    Self-potential is a non-invasive, passive geophysical technique with applications ranging from imaging oil and gas reservoirs to identifying preferential flow paths in earthen embankments. Several cross-coupled flow phenomena contribute to self-potential data, and there is a need to further quantify these various sources to enable better resolution and quantification of self-potential models. Very little research has been done to constrain thermoelectric source mechanisms that contribute to self-potential signals. A laboratory experiment has been designed to investigate the thermoelectric coupling coefficient (CTE) that relates the voltage change per degree centigrade (V/°C) in porous media. This study focuses on a sand tank experiment using a saturated silica sand. To isolate the temperature gradient dependence of self-potential measurements, no hydraulic gradient is applied to the tank, eliminating the streaming potential component of source current. Self-potential and temperature data are recorded while reservoirs of hot and cold water are established on opposite ends of the tank in order to generate thermoelectric source currents. Various thermal gradients ranging from 0 °C to 80 °C over 20 cm are examined for various salinities (10-3M- 1M NaCl), sand grain sizes and clay content to investigate influences on CTE. A short-duration contact of non-polarizing (Pb/PbCl) electrodes is implemented to minimize temperature drift of electrodes during the experiment. Surface self-potential and temperature measurements are made in 30 minute intervals. Initial measurements have revealed non-linear effects, including a decreased CTE as temperature gradient bounds approach 0 °C.

  14. Mercury methylation in forested uplands; how important is it?

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Marvin-Dipasquale, M.; Schuster, P. F.; Chalmers, A.; Reddy, M. M.

    2004-05-01

    Episodic fluxes of mercury during high flows at the headwater catchment at the Sleepers River Research Watershed in Vermont indicate that uplands are an important source of total mercury (Hg) to known downstream methylation sites (i.e. large wetlands). Methylmercury (MeHg) behavior in streamwater, soil water, and sediment porewater coupled with high potential methylation rates suggests that forested uplands may be significant source areas for MeHg as well. In a July 2003 incubation, potential Hg methylation rates exceeded potential demethylation rates by factors of 1.6 each in shallow (0-4 cm) swamp and riparian soils and by 19.6 in anoxic stream sediments. The stream sediment had the greatest methylation rate of 7.5 ng/ g of wet sediment / day. However, MeHg concentrations in filtered (0.4 um) porewater at these sites ranged only from 0.07 to 0.37 ng/ L, similar to the range at low-lying wetland sites elsewhere in Vermont (0.06 to 0.56 ng/L). In Sleepers River headwaters as well as larger Vermont rivers, most of the MeHg export occurs during snowmelt and summer / fall storms, with nearly all of the MeHg occurring in the particulate phase. Stream total Hg and MeHg concentrations were consistently correlated, suggesting a common source, probably soil organic matter. The methylation efficiency (ratio MeHg / total Hg) was near 2% in the Sleepers River headwaters, similar to that in Vermont rivers draining large wetland systems, indicating that the methylation process originates in the headwaters.

  15. Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.

    2007-01-01

    The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.

  16. Shock-capturing parabolized Navier-Stokes model /SCIPVIS/ for the analysis of turbulent underexpanded jets

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Wolf, D. E.

    1983-01-01

    A new computational model, SCIPVIS, has been developed to predict the multiple-cell wave/shock structure in under or over-expanded turbulent jets. SCIPVIS solves the parabolized Navier-Stokes jet mixing equations utilizing a shock-capturing approach in supersonic regions of the jet and a pressure-split approach in subsonic regions. Turbulence processes are represented by the solution of compressibility corrected two-equation turbulence models. The formation of Mach discs in the jet and the interactive turbulent mixing process occurring behind the disc are handled in a detailed fashion. SCIPVIS presently analyzes jets exhausting into a quiescent or supersonic external stream for which a single-pass spatial marching solution can be obtained. The iterative coupling of SCIPVIS with a potential flow solver for the analysis of subsonic/transonic external streams is under development.

  17. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  18. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data

    NASA Astrophysics Data System (ADS)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.

    2015-12-01

    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  19. Development of a Mechanistically Based, Basin-Scale Stream Temperature Model: Applications to Cumulative Effects Modeling

    Treesearch

    Douglas Allen; William Dietrich; Peter Baker; Frank Ligon; Bruce Orr

    2007-01-01

    We describe a mechanistically-based stream model, BasinTemp, which assumes that direct shortwave radiation moderated by riparian and topographic shading, controls stream temperatures during the hottest part of the year. The model was developed to support a temperature TMDL for the South Fork Eel basin in Northern California and couples a GIS and a 1-D energy balance...

  20. Void/particulate detector

    DOEpatents

    Claytor, T.N.; Karplus, H.B.

    1983-09-26

    Apparatus for detecting voids and particulates in a flowing stream of fluid contained in a pipe may comprise: (a) a transducer for transmitting an ultrasonic signal into the stream, coupled to the pipe at a first location; (b) a second transducer for detecting the through-transmission of said signal, coupled to the pipe at a second location; (c) a third transducer for detecting the back-scattering of said signal, coupled to the pipe at a third location, said third location being upstream from said first location; (d) circuit means for normalizing the back-scattered signal from said third transducer to the through-transmitted signal from said second transducer; which normalized signal provides a measure of the voids and particulates flowing past said first location.

  1. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  2. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  3. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOEpatents

    Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  4. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams

    USGS Publications Warehouse

    Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.

    2018-01-01

    Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.

  5. Modeling stream temperature in the Anthropocene: An earth system modeling approach

    DOE PAGES

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu; ...

    2015-10-29

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  6. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    NASA Astrophysics Data System (ADS)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  7. Predicting alpine headwater stream intermittency: a case study in the northern Rocky Mountains

    USGS Publications Warehouse

    Sando, Thomas R.; Blasch, Kyle W.

    2015-01-01

    This investigation used climatic, geological, and environmental data coupled with observational stream intermittency data to predict alpine headwater stream intermittency. Prediction was made using a random forest classification model. Results showed that the most important variables in the prediction model were snowpack persistence, represented by average snow extent from March through July, mean annual mean monthly minimum temperature, and surface geology types. For stream catchments with intermittent headwater streams, snowpack, on average, persisted until early June, whereas for stream catchments with perennial headwater streams, snowpack, on average, persisted until early July. Additionally, on average, stream catchments with intermittent headwater streams were about 0.7 °C warmer than stream catchments with perennial headwater streams. Finally, headwater stream catchments primarily underlain by coarse, permeable sediment are significantly more likely to have intermittent headwater streams than those primarily underlain by impermeable bedrock. Comparison of the predicted streamflow classification with observed stream status indicated a four percent classification error for first-order streams and a 21 percent classification error for all stream orders in the study area.

  8. Streaming potential generated by a pressure-driven flow over a super-hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2010-11-01

    The streaming potential generated by a pressured-driven flow over a weakly charged striped slip-stick surface (the zeta potential of the surface is smaller than the thermal potential (25 mV) with an arbitrary double layer thickness is theoretically studied by solving the Poisson-Boltzmann equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also presented, in excellent agreement with the full solution. The streaming potential is compared against that over a homogenously charged smooth surface. Our results indicate that the streaming potential over a super-hydrophobic surface only can be enhanced when the liquid-gas interface is charged. In addition, as the double layer thickness increases, the advantage of the super-hydrophobic surface diminishes. The impact of a slip-stick surface on the streaming potential might provide guidance for designing novel and efficient microfludic energy conversion devices using a super-hydrophobic surface.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  10. River restoration: separating myths from reality

    NASA Astrophysics Data System (ADS)

    Friberg, N.; Woodward, G.

    2015-12-01

    River restorations are a social construct where degraded systems are physically modified to obtain a pre-disturbance set of attributes. These can be purely esthetic but are often linked to some kind of biotic recovery or the provision of important ecosystem services such as flood control or self-purification. The social setting of restoration projects, with a range of potential conflicts, significantly reduces scale of most interventions to a size with little room, or wish, for natural processes. We show that projects sizes are still very small and that the restoration target is not to recover natural geomorphic processes but rather to fulfil human perception of what a nice stream looks like. One case from Danish lowland streams, using a space-for-time substitution approach, shows excess use of pebble and gravel when restoring channelized sandy bottom streams, de-coupling the link between energy and substrate characteristics that are found in natural lowland systems. This has implication for both the biological structure and functioning of these systems as a direct link between substrate heterogeneity and macroinvertebrate diversity was not found in restored streams, while the density of grazer increased indicating an increased use of periphyton as a basal resource. Another case of adding woody debris to UK lowland streams, using a BACI study design, showed very little effect on the macroinvertebrate community even after a 100-year flood, which indicate that added tree trunks did not provide additional flow refugia. We suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers.

  11. Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.

    2005-05-01

    To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the catchment scale.

  12. Long-term enrichment of the stable isotopic composition of stream water due to the release of groundwater recharge from extreme precipitation events

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.

    2017-12-01

    The isotopic composition of surface and groundwater is impacted by a multitude of hydrologic processes. The long-term response of these systems to hydrologic change is critical for appropriately interpreting isotopic information for streamflow generation, stream-aquifer-coupling, sources of water to wells, and understanding recharge processes. To evaluate the response time of stream-aquifer systems to extreme precipitation events we use a long-term isotope dataset from Western Massachusetts with drainage areas ranging from 0.1 to > 800 km2. The year of 2011 was the wettest calendar year on record and the months of August and September of 2011 were the wettest consecutive two-month period in the 123 year record. Stable isotopic composition of surface waters of catchments ranging from 1 - 1000 km2 show an enrichment due to summertime and Tropical Storm precipitation. Enrichment in potential recharge water is shown to have a significant long-term impact (> 3 hydrologic years) on the isotopic composition of both surface and groundwater. This highlights the importance of groundwater sources of baseflow to streams and the transient storage and release mechanisms of shallow groundwater storage. The length of isotopic recession of stream water are also a strong function of watershed area. It is concluded that the stream water isotopes are consistent with a large pulse of water being stored and released from enriched groundwater emplaced during this period of above-average precipitation. Ultimately the results point to the importance of considering hydrological processes of streamflow generation and their role in hydrologic processes beyond traditional catchment response analysis.

  13. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach

    USGS Publications Warehouse

    Norman, Laura M.; Sankey, Joel B.; Dean, David; Caster, Joshua J.; DeLong, Stephen B.; Henderson-DeLong, Whitney; Pelletier, Jon D.

    2017-01-01

    Rock-detention structures are used as restoration treatments to engineer ephemeral stream channels of southeast Arizona, USA, to reduce streamflow velocity, limit erosion, retain sediment, and promote surface-water infiltration. Structures are intended to aggrade incised stream channels, yet little quantified evidence of efficacy is available. The goal of this 3-year study was to characterize the geomorphic impacts of rock-detention structures used as a restoration strategy and develop a methodology to predict the associated changes. We studied reaches of two ephemeral streams with different watershed management histories: one where thousands of loose-rock check dams were installed 30 years prior to our study, and one with structures constructed at the beginning of our study. The methods used included runoff, sediment transport, and geomorphic modelling and repeat terrestrial laser scanner (TLS) surveys to map landscape change. Where discharge data were not available, event-based runoff was estimated using KINEROS2, a one-dimensional kinematic-wave runoff and erosion model. Discharge measurements and estimates were used as input to a two-dimensional unsteady flow-and-sedimentation model (Nays2DH) that combined a gridded flow, transport, and bed and bank simulation with geomorphic change. Through comparison of consecutive DEMs, the potential to substitute uncalibrated models to analyze stream restoration is introduced. We demonstrate a new approach to assess hydraulics and associated patterns of aggradation and degradation resulting from the construction of check-dams and other transverse structures. Notably, we find that stream restoration using rock-detention structures is effective across vastly different timescales.

  14. Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten

    2017-04-01

    Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.

  15. Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2004-05-01

    Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.

  16. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  17. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID

    2009-09-29

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

  18. Data-proximate Visualization via Unidata Cloud Technologies

    NASA Astrophysics Data System (ADS)

    Fisher, W. I.; Oxelson Ganter, J.; Weber, J.

    2016-12-01

    The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service.The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. The challenge now becomes creating tools which are cloud-ready.The solution to this challenge is provided by Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be.Unidata has harnessed Application Streaming to provide a cloud-capable version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.

  19. Cloud-based data-proximate visualization and analysis

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2017-04-01

    The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service. The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. The challenge now becomes creating tools which are cloud-ready. The solution to this challenge is provided by Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be. Unidata has harnessed Application Streaming to provide a cloud-capable version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.

  20. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Castro-Bolinaga, C. F.; Zavaleta, E. R.; Diplas, P.

    2015-03-01

    This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  1. Periodic processes in vapor phase biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, W.M.; Irvine, R.L.

    1998-07-01

    Most industrial processes and environmental remediation activities generate large volumes of air contaminated with low concentrations of volatile organic compounds. Carbon adsorption is the most widely used conventional treatment technology, but it has many drawbacks including secondary waste streams and excessive regeneration costs. Biofiltration, a microbial-based treatment technology, removes and biodegrades contaminants from a wide variety of waste streams without the disadvantages of carbon adsorption. In biofiltration, contaminated air flows through a packed bed containing microorganisms which convert contaminants primarily into carbon dioxide, water, and biomass. This paper describes how periodically operated, controlled unsteady state conditions were imposed on biofiltersmore » which used a new polyurethane foam medium that couples high porosity, suitable pore size, and low density with an ability to sorb water. The potential benefits associated with the controlled, unsteady-state operation of biofilters containing this new polyurethane foam medium are described herein. An example system treating a toluene contaminated waste gas is presented.« less

  2. Ecoregions and stream morphology in eastern Oklahoma

    USGS Publications Warehouse

    Splinter, D.K.; Dauwalter, D.C.; Marston, R.A.; Fisher, W.L.

    2010-01-01

    Broad-scale variables (i.e., geology, topography, climate, land use, vegetation, and soils) influence channel morphology. How and to what extent the longitudinal pattern of channel morphology is influenced by broad-scale variables is important to fluvial geomorphologists and stream ecologists. In the last couple of decades, there has been an increase in the amount of interdisciplinary research between fluvial geomorphologists and stream ecologists. In a historical context, fluvial geomorphologists are more apt to use physiographic regions to distinguish broad-scale variables, while stream ecologists are more apt to use the concept of an ecosystem to address the broad-scale variables that influence stream habitat. For this reason, we designed a study using ecoregions, which uses physical and biological variables to understand how landscapes influence channel processes. Ecoregions are delineated by similarities in geology, climate, soils, land use, and potential natural vegetation. In the fluvial system, stream form and function are dictated by processes observed throughout the fluvial hierarchy. Recognizing that stream form and function should differ by ecoregion, a study was designed to evaluate how the characteristics of stream channels differed longitudinally among three ecoregions in eastern Oklahoma, USA: Boston Mountains, Ozark Highlands, and Ouachita Mountains. Channel morphology of 149 stream reaches was surveyed in 1st- through 4th-order streams, and effects of drainage area and ecoregion on channel morphology was evaluated using multiple regressions. Differences existed (?????0.05) among ecoregions for particle size, bankfull width, and width/depth ratio. No differences existed among ecoregions for gradient or sinuosity. Particle size was smallest in the Ozark Highlands and largest in the Ouachita Mountains. Bankfull width was larger in the Ozark Highlands than in the Boston Mountains and Ouachita Mountains in larger streams. Width/depth ratios of the Boston Mountains and Ozark Highlands were not statistically different. Significant differences existed, however, between the Boston Mountains and Ozark Highlands when compared individually to the Ouachita Mountains. We found that ecoregions afforded a good spatial structure that can help in understanding longitudinal trends in stream reach morphology surveyed at the reach scale. The hierarchy of the fluvial system begins within a broad, relatively homogenous setting that imparts control on processes that affect stream function. Ecoregions provide an adequate regional division to begin a large-scale geomorphic study of processes in stream channels. ?? 2010 Elsevier B.V.

  3. Hydrologic response of catchments to precipitation: Quantification of mechanical carriers and origins of water

    NASA Astrophysics Data System (ADS)

    Park, Y.-J.; Sudicky, E. A.; Brookfield, A. E.; Jones, J. P.

    2011-12-01

    Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study.

  4. Hydrologic response of catchments to precipitation: Quantification of mechanical carriers and origins of water

    USGS Publications Warehouse

    Park, Y.-J.; Sudicky, E.A.; Brookfield, A.E.; Jones, J.P.

    2011-01-01

    Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study. Copyright 2011 by the American Geophysical Union.

  5. A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the zeta Potential of Granular Porous Media Surfaces.

    PubMed

    Johnson

    1999-01-01

    The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.

  6. The Parker Instability with Cosmic-Ray Streaming

    NASA Astrophysics Data System (ADS)

    Heintz, Evan; Zweibel, Ellen G.

    2018-06-01

    Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.

  7. Hydrologic Predictions in the Anthropocene: Exploration with Co-evolutionary Socio-hydrologic Models

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2013-04-01

    Socio-hydrology studies the co-evolution and self-organization of humans in the hydrologic landscape, which requires a thorough understanding of the complex interactions between humans and water. On the one hand, the nature of water availability greatly impacts the development of society. On the other hand, humans can significantly alter the spatio-temporal distribution of water and in this way provide feedback to the society itself. The human-water system functions underlying such complex human-water interactions are not well understood. Exploratory models with the appropriate level of simplification in any given area can be valuable to understand these functions and the self-organization associated with socio-hydrology. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed, and is used to illustrate the explanatory power of such models. In the Tarim River, humans depend heavily on agricultural production (other industries can be ignored for a start), and the social processes can be described principally by two variables, i.e., irrigated-area and human population. The eco-hydrological processes are expressed in terms of area under natural vegetation and stream discharge. The study area is the middle and the lower reaches of the Tarim River, which is divided into two modeling units, i.e. middle reach and lower reach. In each modeling unit, four ordinary differential equations are used to simulate the dynamics of the hydrological system represented by stream discharge, ecological system represented by area under natural vegetation, the economic system represented by irrigated area under agriculture and social system represented by human population. The four dominant variables are coupled together by several internal variables. For example, the stream discharge is coupled to irrigated area by the colonization rate and mortality rate of the irrigated area in the middle reach and the irrigated area is coupled to stream discharge by water used for irrigation. In a similar way, the stream discharge and natural vegetation are coupled together. The irrigated area is coupled to population by the colonization rate and mortality rate of the population. The discharge of the lower reach is determined by the discharge from the middle reach. The natural vegetation area in the lower reach is coupled to the discharge in the middle reach by water resources management policy. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and sensitivity to the external drivers and internal system variables.

  8. Finite element analysis of acoustic streaming in a Kundt tube with bended wall

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei

    2018-07-01

    Acoustic streaming near artificially prescribed ridges is simulated and discussed to understand the mechanism of Kundt tube powder-ridge generation. A viscoacoustic harmonic finite element analysis (FEA) and a static-fluid FEA are coupled using an acoustic streaming driving force to derive acoustic streaming. The half-wavelength mode is excited in an acoustic tube where the calculation mesh is distorted to form a sinusoidal bottom stick wall. Consequently, intense Schlichting streaming is obtained when the height and interval of the ridge agree with those in the literature. The mechanism underlying the regular ridge interval is related to the conversion of mainstream particle velocity into ridge-localized velocity, which produces an inlet or outlet vertical streaming in ridge valleys.

  9. Climate change and wetland loss impacts on a Western river's water quality

    NASA Astrophysics Data System (ADS)

    Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.

    2014-05-01

    An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss. This study assessed the potential climate-induced changes to in-stream sediment and nutrients loads in the historically snow melt-dominated Sprague River, Oregon, Western United States. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that in the Sprague River (1) mid-21st century nutrient and sediment loads could increase significantly during the high flow season under warmer-wetter climate projections, or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

  10. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    NASA Astrophysics Data System (ADS)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  11. Optimizing the well pumping rate and its distance from a stream

    NASA Astrophysics Data System (ADS)

    Abdel-Hafez, M. H.; Ogden, F. L.

    2008-12-01

    Both ground water and surface water are very important component of the water resources. Since they are coupled systems in riparian areas, management strategies that neglect interactions between them penalize senior surface water rights to the benefit of junior ground water rights holders in the prior appropriation rights system. Water rights managers face a problem in deciding which wells need to be shut down and when, in the case of depleted stream flow. A simulation model representing a combined hypothetical aquifer and stream has been developed using MODFLOW 2000 to capture parameter sensitivity, test management strategies and guide field data collection campaigns to support modeling. An optimization approach has been applied to optimize both the well distance from the stream and the maximum pumping rate that does not affect the stream discharge downstream the pumping wells. Conjunctive management can be modeled by coupling the numerical simulation model with the optimization techniques using the response matrix technique. The response matrix can be obtained by calculating the response coefficient for each well and stream. The main assumption of the response matrix technique is that the amount of water out of the stream to the aquifer is linearly proportional to the well pumping rate (Barlow et al. 2003). The results are presented in dimensionless form, which can be used by the water managers to solve conflicts between surface water and ground water holders by making the appropriate decision to choose which well need to be shut down first.

  12. Dusty disc-planet interaction with dust-free simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jhih-Wei; Lin, Min-Kai

    2018-05-01

    Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.

  13. Development of a second generation biofiltration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinheinz, G.T.; McGinnis, G.D.; Niemi, B.A.

    1999-07-01

    Biofiltration utilizes microbial processes which are immobilized on a solid support to biodegrade contaminants in air. Biofilters traditionally have been utilized in applications where there is a high volume of air containing low levels of compounds. There are several operational problems biofilters are currently encountering. Some of these problems include systems which are very large, microbial breakdown of the solid support, cycling of compounds onto the biofilters (uneven amounts of compounds in the air), and very short residence times in the biofiltration units. This project was undertaken to determine the feasibility of using physical/chemical methods to adsorb and then desorbmore » analytes to convert a dilute, high volume air stream to a more concentrated low volume air stream. The chemical/physical (adsorption/desorption) system will also serve to provide a relatively consistent air stream to the biofiltration units in order to alleviate the perturbations to the system as a result of uneven analyte concentrations. The ability to concentrate a dilute air stream and provide a constant stream of VOCs to the biofiltration unit will allow for smaller, more efficient, and more economical biofilters. Two years of laboratory studies and initial pilot-scale trials on these coupled systems have shown that they are indeed able to efficiently concentrate dilute streams, and the coupled biofilters are able to remove 90+% of the VOCs from the adsorption/desorption unit.« less

  14. Contribution of thermoelectric and electrochemical effects to spontaneous potential signals induced by water injection into hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M.; Pain, C. C.

    2009-12-01

    Recent work has demonstrated that downhole measurements of streaming potential, using electrodes mounted on the outside of insulated casing, may be used to inform production strategies in oil and gas reservoirs. However, spontaneous potentials due to thermoelectric and/or electrochemical effects may also be present during production and may contribute to the signal measured at the production well. We present a workflow to numerically model spontaneous potentials in the subsurface and ascertain their magnitude in oil reservoirs during production. Our results suggest that the injection of seawater, which typically has a different temperature and salinity to the formation brine, leads to the generation of both thermoelectric and electrochemical potential signals which may be measured at the production well. We observe a peak in the thermoelectric potential before and after the temperature front, with a change in sign occurring close to the midpoint of the front, and the signal decaying with distance from the front. The electrochemical potential has a similar profile, with a change in sign occurring close to the location of the salinity front. In both cases, the absolute magnitude of the signal is related to the overall temperature and/or salinity contrast between the injected fluids and the formation brine, and the magnitude of the thermoelectric or electrochemical coupling coefficient. The lag in the temperature front relative to the saturation front leads to a negligible thermoelectric potential signal at the production well until long after water breakthrough occurs. In contrast, the electrochemical potential contributes significantly to the spontaneous potential measured at the production well before the waterfront arrives, as the salinity front and the saturation front coincide. However, the dependency of the thermoelectric and electrochemical coupling coefficients upon temperature and/or salinity is still uncertain, especially at partial water saturation. We have used the maximum theoretical limit, in the case of the perfect membrane, to estimate these parameters. These results imply that measurements of the spontaneous potential at a production well will combine contributions from both streaming and electrochemical effects, and may be used to detect an advancing waterfront some time before water breakthrough occurs at the well. Moreover, inversion of the measured signals could be used to determine the water saturation in the vicinity of the well, and to regulate flow into the well using control valves in order to maintain or increase oil production.

  15. Coupling Self-Organizing Maps with a Naïve Bayesian classifier: A case study for classifying Vermont streams using geomorphic, habitat and biological assessment data

    NASA Astrophysics Data System (ADS)

    Fytilis, N.; Rizzo, D. M.

    2012-12-01

    Environmental managers are increasingly required to forecast the long-term effects and the resilience or vulnerability of biophysical systems to human-generated stresses. Mitigation strategies for hydrological and environmental systems need to be assessed in the presence of uncertainty. An important aspect of such complex systems is the assessment of variable uncertainty on the model response outputs. We develop a new classification tool that couples a Naïve Bayesian Classifier with a modified Kohonen Self-Organizing Map to tackle this challenge. For proof-of-concept, we use rapid geomorphic and reach-scale habitat assessments data from over 2500 Vermont stream reaches (~1371 stream miles) assessed by the Vermont Agency of Natural Resources (VTANR). In addition, the Vermont Department of Environmental Conservation (VTDEC) estimates stream habitat biodiversity indices (macro-invertebrates and fish) and a variety of water quality data. Our approach fully utilizes the existing VTANR and VTDEC data sets to improve classification of stream-reach habitat and biological integrity. The combined SOM-Naïve Bayesian architecture is sufficiently flexible to allow for continual updates and increased accuracy associated with acquiring new data. The Kohonen Self-Organizing Map (SOM) is an unsupervised artificial neural network that autonomously analyzes properties inherent in a given a set of data. It is typically used to cluster data vectors into similar categories when a priori classes do not exist. The ability of the SOM to convert nonlinear, high dimensional data to some user-defined lower dimension and mine large amounts of data types (i.e., discrete or continuous, biological or geomorphic data) makes it ideal for characterizing the sensitivity of river networks in a variety of contexts. The procedure is data-driven, and therefore does not require the development of site-specific, process-based classification stream models, or sets of if-then-else rules associated with expert systems. This has the potential to save time and resources, while enabling a truly adaptive management approach using existing knowledge (expressed as prior probabilities) and new information (expressed as likelihood functions) to update estimates (i.e., in this case, improved stream classifications expressed as posterior probabilities). The distribution parameters of these posterior probabilities are used to quantify uncertainty associated with environmental data. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of engineering applications. The ability of the new classification neural network to characterize streams with high environmental risk is essential for a proactive adaptive watershed management approach.

  16. Assessing the Importance of Cross-Stream Transport in Bedload Flux Estimates from Migrating Dunes: Colorado River, Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.

    2017-12-01

    Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially variable translation and deformation rates. Parameterization of cross-stream sediment transport could lead to accounting for ambiguities in bedload flux calculations caused by dune deformation, which in turn could significantly improve overall calculation of bedload and total load sediment transport in sand bedded rivers.

  17. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA

    2007-05-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  18. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.

    2005-11-08

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  19. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2005-05-03

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  20. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2003-06-24

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  1. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    USDA-ARS?s Scientific Manuscript database

    Water temperature is a primary physical factor affecting aquatic organisms. Assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream t...

  2. Dynamics of streaming instability with quantum correction

    NASA Astrophysics Data System (ADS)

    Goutam, H. P.; Karmakar, P. K.

    2017-05-01

    A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.

  3. Estimating Discharge and Nonpoint Source Nitrate Loading to Streams From Three End-Member Pathways Using High-Frequency Water Quality Data

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  4. Implications of a quadratic stream definition in radiative transfer theory.

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1972-01-01

    An explicit definition of the radiation-stream concept is stated and applied to approximate the integro-differential equation of radiative transfer with a set of twelve coupled differential equations. Computational efficiency is enhanced by distributing the corresponding streams in three-dimensional space in a totally symmetric way. Polarization is then incorporated in this model. A computer program based on the model is briefly compared with a Monte Carlo program for simulation of horizon scans of the earth's atmosphere. It is found to be considerably faster.

  5. A coupled metabolic-hydraulic model and calibration scheme for estimating of whole-river metabolism during dynamic flow conditions

    USGS Publications Warehouse

    Payn, Robert A.; Hall, Robert O Jr.; Kennedy, Theodore A.; Poole, Geoff C; Marshall, Lucy A.

    2017-01-01

    Conventional methods for estimating whole-stream metabolic rates from measured dissolved oxygen dynamics do not account for the variation in solute transport times created by dynamic flow conditions. Changes in flow at hourly time scales are common downstream of hydroelectric dams (i.e. hydropeaking), and hydrologic limitations of conventional metabolic models have resulted in a poor understanding of the controls on biological production in these highly managed river ecosystems. To overcome these limitations, we coupled a two-station metabolic model of dissolved oxygen dynamics with a hydrologic river routing model. We designed calibration and parameter estimation tools to infer values for hydrologic and metabolic parameters based on time series of water quality data, achieving the ultimate goal of estimating whole-river gross primary production and ecosystem respiration during dynamic flow conditions. Our case study data for model design and calibration were collected in the tailwater of Glen Canyon Dam (Arizona, USA), a large hydropower facility where the mean discharge was 325 m3 s 1 and the average daily coefficient of variation of flow was 0.17 (i.e. the hydropeaking index averaged from 2006 to 2016). We demonstrate the coupled model’s conceptual consistency with conventional models during steady flow conditions, and illustrate the potential bias in metabolism estimates with conventional models during unsteady flow conditions. This effort contributes an approach to solute transport modeling and parameter estimation that allows study of whole-ecosystem metabolic regimes across a more diverse range of hydrologic conditions commonly encountered in streams and rivers.

  6. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    NASA Astrophysics Data System (ADS)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an iterative modelling methodology, which ensures the consistency of stream-aquifer exchanges between the intermediate and regional scales. Finally, practical recommendations are provided for the study of the interface using the innovative methodology MIM (Measurements-Interpolation-Modelling), which is graphically developed, scaling in space the three pools of methods needed to fully understand stream-aquifer interfaces at various scales. In the MIM space, stream-aquifer interfaces that can be studied by a given approach are localised. The efficiency of the method is demonstrated with two examples. The first one proposes an upscaling framework, structured around river reaches of ~10-100 m, from the local to the watershed scale. The second example highlights the usefulness of space borne data to improve the assessment of stream-aquifer exchanges at the regional and continental scales. We conclude that further developments in modelling and field measurements have to be undertaken at the regional scale to enable a proper modelling of stream-aquifer exchanges from the local to the continental scale.

  7. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Turner, Terry D [Ammon, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID

    2009-09-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.

  8. Apparatus for the liquefaction of a gas and methods relating to same

    DOEpatents

    Turner, Terry D [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID

    2009-12-29

    Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.

  9. Scattering of light by colloidal aluminosilicate particles produces the unusual sky-blue color of Río Celeste (Tenorio volcano complex, Costa Rica).

    PubMed

    Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E; Chavarría, Max

    2013-01-01

    Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams--Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)--is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one.

  10. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  11. Range imaging laser radar

    DOEpatents

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  12. Range imaging laser radar

    DOEpatents

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  13. Synthesis gas method and apparatus

    DOEpatents

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie; Kosowski, Lawrence W; Robinson, Charles

    2015-11-06

    A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.

  14. Synthesis gas method and apparatus

    DOEpatents

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2013-01-08

    A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.

  15. Determination of rock properties by low-frequency AC electrokinetics

    NASA Astrophysics Data System (ADS)

    Pengra, David B.; Xi Li, Sidney; Wong, Po-Zen

    1999-12-01

    In brine-saturated rock the existence of a mobile space charge at the fluid/solid interface leads to the electrokinetic phenomena of electroosmotic pressure and streaming potential. The coupling coefficients of these electrokinetic effects, when combined with the conductivity of the brine-saturated rock, determine the brine permeability of rock exactly. A sensitive low-frequency AC technique has been used to measure electrokinetic response of a collection of eight rock and four glass bead samples saturated with NaCl brine as a function of salt concentration (fluid conductivity of 0.5 to 6.38 S/m); the response of four of the original 12 samples has also been measured as a function of temperature from 0° to 50°C. All data verify the predicted permeability relationship. Additionally, the frequency response of the electroosmotic pressure signal alone can also be used to determine the permeability, given knowledge of experimental parameters. The concentration and temperature dependence of electroosmosis and streaming potential is found to mostly conform to the predictions of a simple model based on the Helmholtz-Smoluchowski equation, the Stern model of the electrochemical double layer, and an elementary theory of ionic conduction.

  16. Climate change and wetland loss impacts on a western river's water quality

    NASA Astrophysics Data System (ADS)

    Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.

    2014-11-01

    An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

  17. Quantifying tidal stream disruption in a simulated Milky Way

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Küpper, Andreas H. W.; Johnston, Kathryn V.; Diemand, Jürg

    2017-09-01

    Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream 'disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (I) the thinness of the stream on-sky, (II) the symmetry of the leading and trailing tails and (III) the deviation of the tails from a low-order polynomial path on-sky ('path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ˜30-80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.

  18. Coupled cycling of dissolved organic nitrogen and carbon in a forest stream

    Treesearch

    E.N. Jack Brookshire; H. Maurice Valett; Steven A. Thomas; Jackson R. Webster

    2005-01-01

    Dissolved organic nitrogen (DON) is an abundant but poorly understood pool of N in many ecosystems. We assessed DON cycling in a N-limited headwater forest stream via whole-ecosystem additions of dissolved inorganic nitrogen (DIN) and labile dissolved organic matter (DOM), hydrologic transport and biogeochemical modeling, and laboratory experiments with native...

  19. Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina, E-mail: robyn@astro.columbia.edu

    2017-02-20

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify thismore » further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.« less

  20. A coupled modeling framework of the co-evolution of humans and water: case study of Tarim River Basin, western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2014-04-01

    The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e. social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. In a similar way, the stream discharge and natural vegetation cover are coupled together. The irrigated crop area is coupled to human population by the colonization rate and mortality rate of the population. The inflow of the lower reach is determined by the outflow from the upper reach. The natural vegetation cover in the lower reach is coupled to the outflow from the upper reach and governed by regional water resources management policy. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. In the modeling framework, the state of each subsystem is holistically described by one state variable and the framework is flexible enough to comprise more processes and constitutive relationships if they are needed to illustrate the interaction and feedback mechanisms of the human-water system.

  1. Residence-time framework for modeling multicomponent reactive transport in stream hyporheic zones

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Coon, E. T.; Brooks, S. C.

    2017-12-01

    Process-based models for transport and transformation of nutrients and contaminants in streams require tractable representations of solute exchange between the stream channel and biogeochemically active hyporheic zones. Residence-time based formulations provide an alternative to detailed three-dimensional simulations and have had good success in representing hyporheic exchange of non-reacting solutes. We extend the residence-time formulation for hyporheic transport to accommodate general multicomponent reactive transport. To that end, the integro-differential form of previous residence time models is replaced by an equivalent formulation based on a one-dimensional advection dispersion equation along the channel coupled at each channel location to a one-dimensional transport model in Lagrangian travel-time form. With the channel discretized for numerical solution, the associated Lagrangian model becomes a subgrid model representing an ensemble of streamlines that are diverted into the hyporheic zone before returning to the channel. In contrast to the previous integro-differential forms of the residence-time based models, the hyporheic flowpaths have semi-explicit spatial representation (parameterized by travel time), thus allowing coupling to general biogeochemical models. The approach has been implemented as a stream-corridor subgrid model in the open-source integrated surface/subsurface modeling software ATS. We use bedform-driven flow coupled to a biogeochemical model with explicit microbial biomass dynamics as an example to show that the subgrid representation is able to represent redox zonation in sediments and resulting effects on metal biogeochemical dynamics in a tractable manner that can be scaled to reach scales.

  2. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were < 21 % based on isotope tracers but were significantly overestimated (40 to 82 %) by the chemical tracers. These observations, coupled with the storm-to-storm patterns in precipitation isotope inputs and the associated stream water isotope response, led to a conceptual hypothesis for runoff generation in the catchment. Under this hypothesis, the pre-event water that is mobilized by precipitation events may, depending on antecedent moisture conditions, be significantly shallower, younger, and less mineralized than the deeper, older water that feeds baseflow and thus defines the pre-event endmember used in hydrograph separation. This proof-of-concept study illustrates the potential advantages of capturing isotopic and hydrochemical behavior at a high frequency over extended periods that span multiple hydrologic events.

  3. Milky Way mass and potential recovery using tidal streams in a realistic halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonaca, Ana; Geha, Marla; Küpper, Andreas H. W.

    2014-11-01

    We present a new method for determining the Galactic gravitational potential based on forward modeling of tidal stellar streams. We use this method to test the performance of smooth and static analytic potentials in representing realistic dark matter halos, which have substructure and are continually evolving by accretion. Our FAST-FORWARD method uses a Markov Chain Monte Carlo algorithm to compare, in six-dimensional phase space, an 'observed' stream to models created in trial analytic potentials. We analyze a large sample of streams that evolved in the Via Lactea II (VL2) simulation, which represents a realistic Galactic halo potential. The recovered potentialmore » parameters are in agreement with the best fit to the global, present-day VL2 potential. However, merely assuming an analytic potential limits the dark matter halo mass measurement to an accuracy of 5%-20%, depending on the choice of analytic parameterization. Collectively, the mass estimates using streams from our sample reach this fundamental limit, but individually they can be highly biased. Individual streams can both under- and overestimate the mass, and the bias is progressively worse for those with smaller perigalacticons, motivating the search for tidal streams at galactocentric distances larger than 70 kpc. We estimate that the assumption of a static and smooth dark matter potential in modeling of the GD-1- and Pal5-like streams introduces an error of up to 50% in the Milky Way mass estimates.« less

  4. Watershed Controls on the Proper Scale of Economic Markets for Pollution Reduction

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Doyle, M. W.; Yates, A.

    2010-12-01

    Markets for tradable discharge permits (TDPs) are an increasingly popular policy instrument for obtaining cost-effective nutrient reduction targets across watersheds. Such markets are also an emerging, dynamic coupling between economic institutions and stream hydrology/biogeochemistry as trading markets become explicit determinants for the spatial distribution of stream nutrient loads. A central problem in any environmental market program is setting the size of the market, as there are distinct trade-offs for large versus small markets. While the overall cost-effectiveness of permit trading increases with the size of the market, the potential for localized and highly damaging nutrient concentrations, or “hotspots”, also increases. Smaller market size reduces the potential for hot spots by dispersing the location of trades, but this may increase the net costs of water quality compliance significantly through both the restriction of possible trading partners and price manipulation by market participants. This project couples a microeconomic model for TDPs (based on possible configurations of mutually exclusive trading zones within the basin) with a semi-distributed water quality model to examine watershed controls on the configuration and scale of such markets. Our results show a wide variation in total annual cost of pollution abatement based on choice of market design -- often with large differences in cost between very similar configurations. This framework is also applied to a 10-member trading program among wastewater treatment plants in the Neuse River, NC, in order to assess (1) the optimum market design for the Upper Neuse basin and (2) how these costs compare with expected costs under alternative market structures (e.g., trading ratio system) and (3) the cost improvements over traditional command-and-control regulatory frameworks. We find that the optimal zone configuration is almost always a lower cost option when compared to a trading ratio scheme and that the optimal design depends largely on the range of plant sizes and their geographic distribution within the stream network. Leveraging this model, we can develop a heuristic understanding of how the shape or topography of watersheds, and/or the spatial distribution of polluters may constrain the utility of market mechanisms in water quality regulation.

  5. Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis

    NASA Astrophysics Data System (ADS)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.

    2017-04-01

    A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.

  6. Denitrification potential in sediments of headwater streams in the southern appalachian mountains, USA

    Treesearch

    Lara A. Martin; Patrick J. Mulholland; Jackson R. Webster; H. Maurice Vallett

    2001-01-01

    We investigated variations in resource availability (NOa-N and labile organic C [LOCJ] as determinants of potential denitrification in stream sediments in the southern Appalachian Mountains, USA. stream-water and sediments were sampled seasonally in 2 streams of contrasting NO3,-N availability, Noland Creek (high NO

  7. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS

    USGS Publications Warehouse

    Schultz, M.M.; Furlong, E.T.

    2008-01-01

    Treated wastewater effluent is a potential environmental point source for antidepressant pharmaceuticals. A quantitative method was developed for the determination of trace levels of antidepressants in environmental aquatic matrixes using solid-phase extraction coupled with liquid chromatography- electrospray ionization tandem mass spectrometry. Recoveries of parent antidepressants from matrix spiking experiments for the individual antidepressants ranged from 72 to 118% at low concentrations (0.5 ng/L) and 70 to 118% at high concentrations (100 ng/L) for the solid-phase extraction method. Method detection limits for the individual antidepressant compounds ranged from 0.19 to 0.45 ng/L. The method was applied to wastewater effluent and samples collected from a wastewater-dominated stream. Venlafaxine was the predominant antidepressant observed in wastewater and river water samples. Individual antidepressant concentrations found in the wastewater effluent ranged from 3 (duloxetine) to 2190 ng/L (venlafaxine), whereas individual concentrations in the waste-dominated stream ranged from 0.72 (norfluoxetine) to 1310 ng/L (venlafaxine). ?? 2008 American Chemical Society.

  8. Assessing Stream Restoration Potential of Recreational Enhancements on an Urban Stream, Springfield, OH

    NASA Astrophysics Data System (ADS)

    Ritter, J. B.; Evelsizor, A.; Minter, K.; Rigsby, C.; Shaw, K.; Shearer, K.

    2010-12-01

    Restoration potential of urban streams is inherently constrained by urban infrastructure. Roads and built structures may necessitate a static stream planform while water, sewage, and electrical utilities buried in the stream channel require a stable grade. A privately-led initiative to improve the recreational potential of a 9-km reach of Buck Creek and its tributary Beaver Creek in Springfield, Ohio, includes the modification of four lowhead dams with hydraulic heights up to 3 m. Modifications to the dams include replacing their hydraulic height with a series of drop structures engineered to create hydraulics conducive to kayak play. Two of the lowhead dams have been modified to date. The purpose of this study is to assess the potential benefits of modifications designed for their recreational value for stream restoration. The drop structure is a constructed channel constriction comprised of a hard step in the long stream profile immediately upstream of a scour pool, forming a morphologic sequence of constriction, step, and pool. Up to 4 drop structures are used along a given stream reach, constructed in the area of the former dam, its scour pool and a portion of the impounded area. Though not designed for stream restoration purposes, these structures potentially act as series a riffle-pool sequences. Changes in the stream habitat, water chemistry, and macroinvertebrates in response to dam modification highlight the potential for incorporating stream restoration into the engineering design. Following modification of two of the dams, the in-stream habitat quality, as measured by physical and biological indices, increased at one site and decreased at the other site, depending on whether the uppermost drop structure at the site reduced or expanded the impounded area. In the best case, channel sands and gravels, free of fine sand, silt, and organics, have deposited in a crescentic-shaped bar paralleling and grading to the constriction and step. Greater abundance and diversity of pollution-intolerant macroinvertebrates, supported by higher dissolved oxygen in the substrate, characterizes riffles at these sites.

  9. Ecohydrologic separation of water between trees and streams in a Mediterranean climate

    Treesearch

    J. Renee Brooks; Holly R. Barnard; Rob Coulombe; Jeffrey J. McDonnell

    2010-01-01

    Here, we directly explore links between hydrology and transpiration at the small watershed scale in a seasonally dry climate. Our central questions were: to what extent do trees and streams return the same water pool to the hydrosphere and how does this vary spatially within a watershed? These questions are fundamental to testing watershed hydrology models and coupled...

  10. HIE sustainability secrets. NeHC report shares HIE success stories of alternate revenue streams and payer buy-in.

    PubMed

    Prestigiacomo, Jennifer

    2011-11-01

    Getting effective stakeholder engagement, including that of payers, and creating innovative value-added services that provide alternate revenue streams beyond basic subscription services, are just a couple of the common traits of the flourishing health information exchanges profiled in the sustainability report released in August by the National eHealth Collaborative.

  11. Continental-scale transport of sediments by the Baltic Ice Stream elucidated by coupled grain size and Nd provenance analyses

    NASA Astrophysics Data System (ADS)

    Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.

    2018-05-01

    We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (<63 μm). Coupled εNd and grain size analyses reveal a common erosion source for the Baltic Ice Stream sediments located near the Åland sill, more than 850 km upstream from the terminal moraines. This result is in agreement with both numerical modeling and geomorphological investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.

  12. Methods and apparatuses for cutting, abrading, and drilling

    DOEpatents

    Bingham, Dennis N.; Swainston, Richard C.; Palmer, Gary L.; Ferguson, Russell L.

    2001-01-01

    Methods and apparatuses for treating a surface of a work piece are described. In one implementation, a laser delivery subsystem is configured to direct a laser beam toward a treatment zone on a work surface. A cryogenic material delivery subsystem is operably coupled with the laser delivery subsystem and is configured to direct a stream comprising cryogenic material toward the treatment zone. Both the laser beam and stream cooperate to treat material of the work surface within the treatment zone. In one aspect, a nozzle assembly provides the laser beam and stream of cryogenic material along a common flow axis. In another aspect, the laser beam and stream are provided along different axes.

  13. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  14. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    DOE PAGES

    Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.; ...

    2017-05-10

    Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less

  15. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.

    Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less

  16. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Toth, Gabor; Heelis, Roderick

    2017-05-01

    We report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, and the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a "tongue" of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.

  17. Effectiveness of forestry BMPS for stream crossing sediment reduction using rainfall simulation

    Treesearch

    Brian C. Morris; M. Chad Bolding; W. Michael Aust

    2015-01-01

    Recent decisions by the United States Supreme Court and United States Environmental Protection Agency (EPA) have re-emphasized the importance of forestry best management practices (BMPs) at stream crossings. Stream crossings are potential major sources of sediment due to their direct connectivity between the potential erosion source and the stream, which eliminates...

  18. The role of headwater streams in downstream water quality

    USGS Publications Warehouse

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.

  19. The Role of Headwater Streams in Downstream Water Quality1

    PubMed Central

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565

  20. Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.

    Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collectedmore » from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.« less

  1. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    NASA Astrophysics Data System (ADS)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  2. GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu

    2017-01-10

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less

  3. Runoff sources and flowpaths in a partially burned, upland boreal catchment underlain by permafrost

    USGS Publications Warehouse

    Koch, Joshua C.; Kikuchi, Colin P.; Wickland, Kimberly P.; Schuster, Paul

    2014-01-01

    Boreal soils in permafrost regions contain vast quantities of frozen organic material that is released to terrestrial and aquatic environments via subsurface flowpaths as permafrost thaws. Longer flowpaths may allow chemical reduction of solutes, nutrients, and contaminants, with implications for greenhouse gas emissions and aqueous export. Predicting boreal catchment runoff is complicated by soil heterogeneities related to variability in active layer thickness, soil type, fire history, and preferential flow potential. By coupling measurements of permeability, infiltration potential, and water chemistry with a stream chemistry end member mixing model, we tested the hypothesis that organic soils and burned slopes are the primary sources of runoff, and that runoff from burned soils is greater due to increased hydraulic connectivity. Organic soils were more permeable than mineral soils, and 25% of infiltration moved laterally upon reaching the organic-mineral soil boundary on unburned hillslopes. A large portion of the remaining water infiltrated into deeper, less permeable soils. In contrast, burned hillslopes displayed poorly defined soil horizons, allowing rapid, mineral-rich runoff through preferential pathways at various depths. On the catchment scale, mineral/organic runoff ratios averaged 1.6 and were as high as 5.2 for an individual storm. Our results suggest that burned soils are the dominant source of water and solutes reaching the stream in summer, whereas unburned soils may provide longer term storage and residence times necessary for production of anaerobic compounds. These results are relevant to predicting how boreal catchment drainage networks and stream export will evolve given continued warming and altered fire regimes.

  4. Demonstrating usefulness of real-time monitoring at streambank wells coupled with active streamgages - Pilot studies in Wyoming, Montana, and Mississippi

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Constantz, Jim; Wheeler, Jerrod D.; Caldwell, Rodney R.; Barlow, Jeannie R.B.

    2012-01-01

    Groundwater and surface water in many cases are considered separate resources, but there is growing recognition of a need to treat them as a single resource. For example, groundwater inflow during low streamflow is vitally important to the health of a stream for many reasons, including buffering temperature, providing good quality water to the stream, and maintaining flow for aquatic organisms. The U.S. Geological Survey (USGS) has measured stream stage and flow at thousands of locations since 1889 and has the ability to distribute the information to the public within hours of collection, but collecting shallow groundwater data at co-located measuring sites is a new concept. Recently developed techniques using heat as a tracer to quantify groundwater and surface-water exchanges have shown the value of coupling these resources to increase the understanding of the water resources of an area. In 2009, the USGS Office of Groundwater began a pilot study to examine the feasibility and utility of widespread use of real-time groundwater monitoring at streambank wells coupled with real-time surface-water monitoring at active streamgages to assist in understanding the exchange of groundwater and surface water in a cost effective manner.

  5. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity-nutrient interactions, and on underlying mechanisms and controls. The magnitude/frequency of salt pulses may increase in the future due to the interactive effect of climate change and urbanization. An improved understanding of the salinization-nutrients interactions is necessary to better manage aquatic resources.

  6. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    Treesearch

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer; Carol Kendall; Daniel H. Doctor

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this...

  7. Stochastic ice stream dynamics

    PubMed Central

    Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-01-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  8. Cloning and Characterization of a Bursicon-Regulated Gene Su(H) in the House Fly Musca domestica

    USDA-ARS?s Scientific Manuscript database

    Bursicon is a neuropeptide that regulates cuticle sclerotization (hardening and tanning) in insect via G-protein coupled receptor. However, the signal transduction pathway down stream of the G-protein coupled receptor is currently not well known. In our recent microarray analysis, we identified a pa...

  9. Understanding the Spatial and Temporal Variations in Hormone Transport within the Stream Ecosystem

    NASA Astrophysics Data System (ADS)

    Mallakpour, I.; Ward, A. S.; Basu, N. B.

    2012-12-01

    Agricultural, urban, and industrial activities, including land application of manures and discharge of municipal and industrial wastewater, act as point and nonpoint sources for steroid hormones in soils, water, and sediments. Hormones are endocrine disruptors, and their occurrence in stream ecosystems has been implicated in the decline of certain species and change of sex in fish. Laboratory studies indicate that steroid hormones tend to have moderately large sorption coefficients and relatively short half-lives, from a few hours to a few days, suggesting that their persistence and subsequent leaching from soils will be limited. However, these chemicals continue to be detected in streams, indicating that laboratory studies may not capture the coupled hydrologic and biogeochemical dynamics occurring at the field or stream-reach scale. Understanding the spatial and temporal persistence of these chemicals downstream of a confined animal feeding operation (CAFO) or wastewater treatment plant (WWTP) requires a coupled hydrologic and biogeochemical model that takes into account multiple interacting species, sediment processes, and different aerobic and anaerobic reaction pathways and rates. In this study, we focus on two hormones, estrone (E1) and 17β-estradiol (E2), with redox dynamics controlling the conversion between E1 and E2. A 1D stream-reach model with a main-channel and a hyporheic zone was developed similar to the commonly used OTIS model. Processes such as photolysis, decay, and sorption to sediments were included in the model framework. The inclusion of coupled reactions, with specific reaction rates and pathways driven by different reaction pathway, that in turn can be dynamic during a storm event (for example, increasing discharge might lead to more aerobic conditions), was the novelty of the approach. The modeling framework was then used to quantify the relative importance of the different reaction pathways under varying flow conditions, and evaluate the persistence of these chemicals as a function of hydrologic and biogeochemical controls.

  10. Septic tank discharges as multi-pollutant hotspots in catchments.

    PubMed

    Richards, Samia; Paterson, Eric; Withers, Paul J A; Stutter, Marc

    2016-01-15

    Small point sources of pollutants such as septic tanks are recognised as significant contributors to streams' pathogen and nutrient loadings, however there is little data in the UK on which to judge the potential risks that septic tank effluents (STEs) pose to water quality and human health. We present the first comprehensive analysis of STE to help assess multi-pollutant characteristics, management-related risk factors and potential tracers that might be used to identify STE sources. Thirty-two septic tank effluents from residential households located in North East of Scotland were sampled along with adjacent stream waters. Biological, physical, chemical and fluorescence characterisation was coupled with information on system age, design, type of tank, tank management and number of users. Biological characterisation revealed that total coliforms and Escherichia coli (E. coli) concentration ranges were: 10(3)-10(8) and 10(3)-10(7)MPN/100 mL, respectively. Physical parameters such as electrical conductivity, turbidity and alkalinity ranged 160-1730 μS/cm, 8-916 NTU and 15-698 mg/L, respectively. Effluent total phosphorus (TP), soluble reactive P (SRP), total nitrogen (TN) and ammonium-N (NH4-N) concentrations ranged 1-32, <1-26, 11-146 and 2-144 mg/L, respectively. Positive correlations were obtained between phosphorus, sodium, potassium, barium, copper and aluminium. Domestic STE may pose pollution risks particularly for NH4-N, dissolved P, SRP, copper, dissolved N, and potassium since enrichment factors were >1651, 213, 176, 63, 14 and 8 times that of stream waters, respectively. Fluorescence characterisation revealed the presence of tryptophan peak in the effluent and downstream waters but not detected upstream from the source. Tank condition, management and number of users had influenced effluent quality that can pose a direct risk to stream waters as multiple points of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. POTENTIAL USE OF ALGAE AS INDICATORS OF HYDROLOGIC PERMANENCE IN HEADWATER STREAMS: INITIAL DATA EXPLORATION

    EPA Science Inventory

    Periphyton from headwater intermittent streams was sampled in order to evaluate the potential use of algal assemblages as indicators of flow permanence. Streams from four forests near Cincinnati, Ohio were classified according to hydrologic permanence as ephemeral, intermittent ...

  12. Potential for energy recovery from humid air streams.

    Treesearch

    Howard H. Rosen

    1979-01-01

    The potential for energy recovery from the vent stream of dryers is examined by assuming the vent stream transfers its energy in a regenerative heat exchanger. Tables present energy recovery over a range of conditions. Example problems demonstrate the use of the energy recovery tables.

  13. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes.

    PubMed Central

    Tripathi, S; Hladky, S B

    1998-01-01

    Streaming potentials have been measured for gramicidin channels with a new method employing ion-selective microelectrodes. It is shown that ideally ion-selective electrodes placed at the membrane surface record the true streaming potential. Using this method for ion concentrations below 100 mM, approximately seven water molecules are transported whenever a sodium, potassium, or cesium ion, passes through the channel. This new method confirms earlier measurements (Rosenberg, P.A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels. J. Gen. Physiol. 72:327-340) in which the streaming potentials were calculated as the difference between electrical potentials measured in the presence of gramicidin and in the presence of the ion carriers valinomycin and nonactin. PMID:9635745

  14. The Jet Stream's Precursor of M7.7 Russia Earthquake on 2017/07/17

    NASA Astrophysics Data System (ADS)

    Wu, H. C.

    2017-12-01

    Before M>6.0 earthquakes occurred, jet stream in the epicenter area will interrupt or velocity flow lines cross. That meaning is that before earthquake happen, atmospheric pressure in high altitude suddenly dropped during 6 12 hours (Wu & Tikhonov, 2014; Wu et.al,2015). The 70 knots speed line in jet stream was crossed at the epicenter on 2017/07/13, and then M7.7 Russia earthquake happened on 2017/07/17. Lithosphere-atmosphere-ionosphere (LAI) coupling model may be explained this phenomenon : Ionization of the air produced by an increased emanation of radon at epicenter. The water molecules in the air react with these ions, and then release heat. The heat result in temperature rise and pressure drop in the air(Pulinets, Ouzounov, 2011), and then the speed line of jet stream was changed. ps.Russia earthquake:M7.7 2017-07-17 23:34:13 (UTC) 54.471°N 168.815°E 11.0 kmReference: H.C Wu, I.N. Tikhonov, 2014, "Jet streams anomalies as possible short-term precursors of earthquakes with M>6.0", Research in geophysics. H.C.Wu., Ivan N. Tikhonov, and Ariel R. Ćesped,2015, Multi-parametric analysis of earthquake precursors, Russ. J. Earth. Sci., 15, ES3002, doi:10.2205/2015ES000553 S Pulinets, D Ouzounov, 2011,"Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation", Journal of Asian Earth Sciences 41 (4), 371-382.

  15. Application Layer Multicast

    NASA Astrophysics Data System (ADS)

    Allani, Mouna; Garbinato, Benoît; Pedone, Fernando

    An increasing number of Peer-to-Peer (P2P) Internet applications rely today on data dissemination as their cornerstone, e.g., audio or video streaming, multi-party games. These applications typically depend on some support for multicast communication, where peers interested in a given data stream can join a corresponding multicast group. As a consequence, the efficiency, scalability, and reliability guarantees of these applications are tightly coupled with that of the underlying multicast mechanism.

  16. Applications of a New England stream temperature model to ...

    EPA Pesticide Factsheets

    We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that extend into Canada (Detenbeck et al., in review). We excluded stream temperature observations within one kilometer downstream of dams from our model development, so our predictions for those reaches represent potential thermal regimes in the absence of dam effects. We used stream thermal thresholds for mean July temperatures delineating transitions between coldwater, transitional coolwater, and warmwater fish communities derived by Beauchene et al. (2014) to classify expected stream and river thermal regimes across New England. Within the model domain and based on 2006 land-use and air temperatures, the model predicts that 21.8% of stream + river kilometers would support coldwater fish communities (mean July water temperatures 22.3 degrees C mean July temperatures). Application of the model allows us to assess potential condition given full riparian zone restoration as well as potential loss of cold or coolwater habitat given loss of riparian shading. Given restoration of all ripa

  17. Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale.

    PubMed

    O'Connor, Ben L; Hamada, Yuki; Bowen, Esther E; Grippo, Mark A; Hartmann, Heidi M; Patton, Terri L; Van Lonkhuyzen, Robert A; Carr, Adrianne E

    2014-11-01

    Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbance of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as high-resolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale. The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches.

  18. Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, Ben L.; Hamada, Yuki; Bowen, Esther E.

    2014-08-17

    Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbancemore » of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as highresolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale.The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches.« less

  19. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    USGS Publications Warehouse

    Stelzer, Robert S.; Bartsch, Lynn

    2012-01-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates can be high in deep sediments of upwelling stream reaches, which may have implications for efforts to understand and quantify nitrogen transport and removal at larger scales.

  20. High throughput, parallel imaging and biomarker quantification of human spermatozoa by ImageStream flow cytometry.

    PubMed

    Buckman, Clayton; George, Thaddeus C; Friend, Sherree; Sutovsky, Miriam; Miranda-Vizuete, Antonio; Ozanon, Christophe; Morrissey, Phil; Sutovsky, Peter

    2009-12-01

    Spermatid specific thioredoxin-3 protein (SPTRX-3) accumulates in the superfluous cytoplasm of defective human spermatozoa. Novel ImageStream technology combining flow cytometry with cell imaging was used for parallel quantification and visualization of SPTRX-3 protein in defective spermatozoa of five men from infertile couples. The majority of the SPTRX-3 containing cells were overwhelmingly spermatozoa with a variety of morphological defects, detectable in the ImageStream recorded images. Quantitative parameters of relative SPTRX-3 induced fluorescence measured by ImageStream correlated closely with conventional flow cytometric measurements of the same sample set and reflected the results of clinical semen evaluation. Image Stream quantification of SPTRX-3 combines and surpasses the informative value of both conventional flow cytometry and light microscopic semen evaluation. The observed patterns of the retention of SPTRX-3 in the sperm samples from infertility patients support the view that SPTRX3 is a biomarker of male infertility.

  1. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    NASA Astrophysics Data System (ADS)

    Ford, William I.; King, Kevin; Williams, Mark R.

    2018-01-01

    In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.

  2. Stream stability at highway structures.

    DOT National Transportation Integrated Search

    1995-11-01

    This document provides guidelines for identifying stream instability problems at highway stream crossings and for the selection and design of appropriate countermeasures to mitigate potential damages to bridges and other highway components at stream ...

  3. Mesoscale Air-Sea Interactions along the Gulf Stream: An Eddy-Resolving and Convection-Permitting Coupled Regional Climate Model Study

    NASA Astrophysics Data System (ADS)

    Hsieh, J. S.; Chang, P.; Saravanan, R.

    2017-12-01

    Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.

  4. Long-term bed degradation in Maryland streams (phase 3, part I) : urban streams in the Piedmont Plateau province, [research summary].

    DOT National Transportation Integrated Search

    2014-09-01

    Estimation of potential long-term down-cutting of the stream bed is necessary for evaluation and design of bridges for scour and culverts for fish passage. Existing guidelines for assessing this potential long-term bed degradation (LTBD) in Maryland ...

  5. A Coupled Modeling Framework of the Co-evolution of Humans and Water: Case Study of Tarim River Basin, Western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2014-12-01

    The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e., social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. In the modeling framework, the state of each subsystem is holistically described by one state variable and the framework is flexible enough to comprise more processes and constitutive relationships if they are needed to illustrate the interaction and feedback mechanisms of the human-water system.

  6. Theoretical technique for predicting the cumulative impact of iron and manganese oxidation in streams receiving discharge from coal mines

    USGS Publications Warehouse

    Bobay, Keith E.

    1986-01-01

    Two U.S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge water on the dissolved chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved iron, dissolved manganese, and dissolved oxygen concentrations; alkalinity; and, pH of surface water downstream from the point of discharge. First, the one-dimensional, stead-state stream, water quality program uses a dissolved oxygen model to calculate the changes in concentration of elements as a function of the chemical reaction rates and time-of-travel. Second, a program (PHREEQE) combining pH, reduction-oxidation potential, and equilibrium equations uses an aqueous-ion association model to determine the saturation indices and to calculate pH; it then mixes the discharge with a receiving stream. The kinetic processes of the first program dominate the system, whereas the equilibrium thermodynamics of the second define the limits of the reactions. A comprehensive test of the technique was not possible because a complete set of data was unavailable. However, the cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to illustrate the operation of the technique and to determine its sensitivity to changes in physical, chemical, and kinetic parameters. Mine discharges averaged 2 cu ft/sec, with a pH of 6.0, and concentrations of 7.0 mg/L dissolved iron, 4.0 mg/L dissolved manganese, and 8.08 mg/L dissolved oxygen. The receiving stream discharge was 2 cu ft/sec, with a pH of 7.0, and concentrations of 0.1 mg/L dissolved iron, 0.1 mg/L dissolved manganese, and 8.70 mg/L dissolved oxygen. Results of the simulations indicated the following cumulative impact on the receiving stream from five discharges as compared with the effect from one discharge: 0.30 unit decrease in pH, 1.82 mg/L increase in dissolved iron, 1.50 mg/L increase in dissolved manganese, and 0.24 mg/L decrease in dissolved oxygen concentration.

  7. Detecting changes in water limitation in the West using integrated ecosystem modeling approaches

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Hoy, J.; Emmett, K.; Cross, M.; Maneta, M. P.; Al-Chokhachy, R.

    2016-12-01

    Water in the western United States is the critical currency for determining a range of ecosystem services, such as wildlife habitat, carbon sequestration, and timber and water resources for an expanding human population. The current generation of catchment models trades a detailed representation of hydrologic processes for a generalization of vegetation processes and thus ignores many land-surface feedbacks that are driven by physiological responses to atmospheric CO2 and changes in vegetation structure following disturbance and climate change. Here we demonstrate how catchment scale modeling can better couple vegetation dynamics and disturbance processes to reconstruct historic streamflow, stream temperature and vegetation greening for the Greater Yellowstone Ecosystem. Using a new catchment routing model coupled to the LPJ-GUESS dynamic global vegetation model, simulations are made at 1 km spatial resolution using two different climate products. Decreased winter snowpack has led to increasing spring runoff and declines in summertime slow, and increasing the likelihood that stream temperature exceeds thresholds for cold-water fish growth. Since the mid-1980s, vegetation greening is projected by both the model and detected from space-borne normalized difference vegetation index observations. These greening trends are superimposed on a landscape matrix defined by frequent disturbance and intensive land management, making the climate and CO2 fingerprint difficult to discern. Integrating dynamical vegetation models with in-situ and spaceborne measurements to understand and interpret catchment-scale trends in water availability has potential to better disentangle historical climate, CO2, and human drivers and their ecosystem consequences.

  8. Hydrologic controls on the transport and cycling of carbon and nitrogen in a boreal catchment underlain by continuous permafrost

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Runkel, R. L.; Striegl, R.; McKnight, D. M.

    2013-06-01

    ecosystems represent a large carbon (C) reservoir and a substantial source of greenhouse gases. Hydrologic conditions dictate whether C leached from boreal soils is processed in catchments or flushed to less productive environments via the stream. This study quantified hydrologic and biogeochemical C loss from a boreal catchment underlain by frozen silt, where flowpaths may deepen as the active layer thaws over the summer. We hypothesized a decrease in the magnitude of C mineralization over the summer associated with changing flowpaths and decreasing hydrologic connectivity, organic matter lability, and nitrogen (N) availability. Conservative tracers were used to partition C and N loss between catchment export and biogeochemical processing. Coupling tracers with tributary and porewater chemistry indicated C and N cycling in soil flowpaths, with an exponential decrease over the summer. Nitrate was primarily reduced in hillslope flowpaths and the lack of N reaching the stream appeared to limit C mineralization. Stream export accounted for the greatest loss of C, removing 247 and 113 mol hr-1 in the early and late summer, respectively. Reactivity was related to hydrologic connectivity between the soils and stream, which was greatest early in the summer and following a large flood. While a warming climate may increase storage potential in thawed soils, the early-season flush of labile material and late-season runoff through mineral flowpaths may maintain high C export rates. Therefore, we highlight physical export as a dominant cause of aqueous C loss from silty catchments as the Arctic continues to thaw.

  9. The Impact of Infiltration Losses and Model Resolution on the Simulated Hydrometeorological Response of a Semi-Arid Catchment

    NASA Astrophysics Data System (ADS)

    Mitchell, M. F.; Goodrich, D. C.; Gochis, D. J.; Lahmers, T. M.

    2017-12-01

    In semi-arid environments with complex terrain, redistribution of moisture occurs through runoff, stream infiltration, and regional groundwater flow. In semi-arid regions, stream infiltration has been shown to account for 10-40% of total recharge in high runoff years. These processes can potentially significantly alter land-atmosphere interactions through changes in sensible and latent heat release. However, currently, their overall impact is still unclear as historical model simulations generally made use of a coarse grid resolution, where these smaller-scale processes were either parameterized or not accounted for. To improve our understanding on the importance of stream infiltration and our ability to represent them in a coupled land-atmosphere model, this study focuses on the Walnut Gulch Experimental Watershed (WGEW) and Long-Term Agro-ecosystem Research (LTAR) site, surrounding the city of Tombstone, AZ. High-resolution surface precipitation, meteorological forcing and distributed runoff measurements have been obtained in WGEW since the 1960s. These data will be used as input for the spatially distributed WRF-Hydro model, a spatially distributed hydrological model that uses the NOAH-MP land surface model. Recently, we have implemented an infiltration loss scheme to WRF-Hydro. We will present the performance of WRF-Hydro to account for stream infiltration by comparing model simulation with in-situ observations. More specifically, as the performance of the model simulations has been shown to depend on the used model grid resolution, in the current work results will present WRF-Hydro simulations obtained at different pixel resolution (10-1000m).

  10. An unexpected truth: increasing nitrate loading can decrease nitrate export from watersheds

    NASA Astrophysics Data System (ADS)

    Askarizadeh Bardsiri, A.; Grant, S. B.; Rippy, M.

    2015-12-01

    The discharge of anthropogenic nitrate (e.g., from partially treated sewage, return flows from agricultural irrigation, and runoff from animal feeding operations) to streams can negatively impact both human and ecosystem health. Managing these many point and non-point sources to achieve some specific end-point—for example, reducing the annual mass of nitrate exported from a watershed—can be a challenge, particularly in rapidly growing urban areas. Adding to this complexity is the fact that streams are not inert: they too can add or remove nitrate through assimilation (e.g., by stream-associated plants and animals) and microbially-mediated biogeochemical reactions that occur in streambed sediments (e.g., respiration, ammonification, nitrification, denitrification). By coupling a previously published correlation for in-stream processing of nitrate [Mulholland et al., Nature, 2008, 452, 202-205] with a stream network model of the Jacksons Creek watershed (Victoria, Australia) I demonstrate that managing anthropogenic sources of stream nitrate without consideration of in-stream processing can result in a number of non-intuitive "surprises"; for example, wastewater effluent discharges that increase nitrate loading but decrease in-stream nitrate concentrations can reduce the mass of nitrate exported from a watershed.

  11. Research to inform policy on headwater streams: ongoing and future directions

    EPA Science Inventory

    Headwater streams are the exterior links of stream networks and represent a substantial proportion of U.S. stream miles. Alteration and loss of headwater streams have occurred without an understanding of the potential consequences to larger downstream waterbodies. Recent court ca...

  12. Effects of outdoor education stream classes on substrate movement and macroinvertebrate colonization

    USDA-ARS?s Scientific Manuscript database

    Environmental education and stream quality monitoring overlap in stream classes conducted at resident outdoor education (ROE) programs. ROE programs frequently use the same stream locations for their stream classes. The repeated use of the same location can potentially degrade aquatic macroinverte...

  13. PREDICTION OF FUNDAMENTAL ASSEMBLAGES OF MID-ATLANTIC HIGHLAND STREAM FISHES

    EPA Science Inventory

    A statistical software tool, the Stream Fish Assemblage Predictor (SFAP), based on stream sampling data collected by the EPA in the mid-Atlantic Highlands, was developed to predict potential stream fish communities using characteristics of the stream and its watershed.
    Step o...

  14. RIPARIAN FOREST INDICATORS OF POTENTIAL FUTURE STREAM CONDITION

    EPA Science Inventory

    Large wood in streams can play an extraordinarily important role in influencing the physical structure of streams and in providing habitat for aquatic organisms. Since wood is continually lost from streams, predicting the future input of wood to streams from riparian forests is c...

  15. Automatic Associations Between One's Partner and One's Affect as the Proximal Mechanism of Change in Relationship Satisfaction: Evidence From Evaluative Conditioning.

    PubMed

    McNulty, James K; Olson, Michael A; Jones, Rachael E; Acosta, Laura M

    2017-08-01

    The current study examined whether directly altering affective associations involving a relationship partner through evaluative conditioning can lead to changes in relationship satisfaction. Married couples ( N = 144) were asked to view a brief stream of images once every 3 days for 6 weeks. Embedded in this stream were pictures of the partner, which, according to random assignment of couples to experimental group, were paired with either positive or neutral stimuli. Couples also completed measures of automatic partner attitudes and explicit marital satisfaction at baseline and once every 2 weeks for 8 weeks. Spouses who viewed their partners paired with positive stimuli demonstrated more-positive automatic partner attitudes than did control spouses, and these attitudes predicted increased self-reported marital satisfaction over time. These results provide novel evidence for a mechanism of change in relationship satisfaction, represent a step toward documenting how strong attitudes can evolve through passive exposure to information, and suggest novel avenues for relationship interventions.

  16. Minimum Energy of Multicomponent Distillation Systems Using Minimum Additional Heat and Mass Integration Sections

    DOE PAGES

    Jiang, Zheyu; Ramapriya, Gautham Madenoor; Tawarmalani, Mohit; ...

    2018-04-20

    Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost effective configurations. In this paper, we identify a powerful and simple-to-use fact about heat and mass integration. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. We compare the energy savings of HMP configurationsmore » with the well-known fully thermally coupled (FTC) configurations. We demonstrate that HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations.« less

  17. Minimum Energy of Multicomponent Distillation Systems Using Minimum Additional Heat and Mass Integration Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zheyu; Ramapriya, Gautham Madenoor; Tawarmalani, Mohit

    Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost effective configurations. In this paper, we identify a powerful and simple-to-use fact about heat and mass integration. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. We compare the energy savings of HMP configurationsmore » with the well-known fully thermally coupled (FTC) configurations. We demonstrate that HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations.« less

  18. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Ryskin, N. M.; Won, J. H.; Han, S. T.; Park, G. S.

    2006-03-01

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/π modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillator shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, ˜3.5Ist, compared to typical vacuum tube oscillators (10-100Ist), where Ist is a start-oscillation current.

  19. Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X{sup −}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurahashi, Naoya; Horio, Takuya; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp

    2014-05-07

    The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I{sup −},more » Br{sup −}, and Cl{sup −} anions are revisited and determined more accurately than in previous studies.« less

  20. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    USGS Publications Warehouse

    Constantz, James; Naranjo, Ramon C.; Niswonger, Richard G.; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.

    2016-01-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  1. Coupling fine particle and bedload transport in gravel-bedded streams

    NASA Astrophysics Data System (ADS)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  2. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771

  3. Data-Proximate Analysis and Visualization in the Cloud using Cloudstream, an Open-Source Application Streaming Technology Stack

    NASA Astrophysics Data System (ADS)

    Fisher, W. I.

    2017-12-01

    The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service. The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. Moving standard desktop analysis and visualization tools to the cloud is enabled via a technique called "Application Streaming". This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be. Unidata has created a Docker-based solution for easily adapting legacy software for Application Streaming. This technology stack, dubbed Cloudstream, allows desktop software to run in the cloud with little-to-no effort. The docker container is configured by editing text files, and the legacy software does not need to be modified in any way. This work will discuss the underlying technologies used by Cloudstream, and outline how to use Cloudstream to run and access an existing desktop application to the cloud.

  4. Experimental reductions in stream flow alter litter processing and consumer subsidies in headwater streams

    Treesearch

    Robert M. Northington; Jackson R. Webster

    2017-01-01

    SummaryForested headwater streams are connected to their surrounding catchments by a reliance on terrestrial subsidies. Changes in precipitation patterns and stream flow represent a potential disruption in stream ecosystem function, as the delivery of terrestrial detritus to aquatic consumers and...

  5. Modeling the effects of LID practices on streams health at watershed scale

    NASA Astrophysics Data System (ADS)

    Shannak, S.; Jaber, F. H.

    2013-12-01

    Increasing impervious covers due to urbanization will lead to an increase in runoff volumes, and eventually increase flooding. Stream channels adjust by widening and eroding stream bank which would impact downstream property negatively (Chin and Gregory, 2001). Also, urban runoff drains in sediment bank areas in what's known as riparian zones and constricts stream channels (Walsh, 2009). Both physical and chemical factors associated with urbanization such as high peak flows and low water quality further stress aquatic life and contribute to overall biological condition of urban streams (Maxted et al., 1995). While LID practices have been mentioned and studied in literature for stormwater management, they have not been studied in respect to reducing potential impact on stream health. To evaluate the performance and the effectiveness of LID practices at a watershed scale, sustainable detention pond, bioretention, and permeable pavement will be modeled at watershed scale. These measures affect the storm peak flows and base flow patterns over long periods, and there is a need to characterize their effect on stream bank and bed erosion, and aquatic life. These measures will create a linkage between urban watershed development and stream conditions specifically biological health. The first phase of this study is to design and construct LID practices at the Texas A&M AgriLife Research and Extension Center-Dallas, TX to collect field data about the performance of these practices on a smaller scale. The second phase consists of simulating the performance of LID practices on a watershed scale. This simulation presents a long term model (23 years) using SWAT to evaluate the potential impacts of these practices on; potential stream bank and bed erosion, and potential impact on aquatic life in the Blunn Watershed located in Austin, TX. Sub-daily time step model simulations will be developed to simulate the effectiveness of the three LID practices with respect to reducing potential erosion from stream beds and banks by studying annual average excess shear and reducing potential impact on aquatic life by studying rapid changes and variation in flow regimes in urban streams. This study will contribute to develop a methodology that evaluates the impact of hydrological changes that occur due to urban development, on aquatic life, stream bank and bed erosion. This is an ongoing research project and results will be shared and discussed at the conference.

  6. How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Thomas J. Voltz; Michael Fitzgerald; Kamini Singha; Jay P. Zarnetske

    2013-01-01

    Measurements of transient storage in coupled surface-water and groundwater systems are widely made during base flow periods and rarely made during storm flow periods. We completed 24 sets of slug injections in three contiguous study reaches during a 1.25 year return interval storm event (discharge ranging from 21.5 to 434 L s1 ) in a net gaining headwater stream within...

  7. Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport

    USGS Publications Warehouse

    Bencala, Kenneth E.

    1984-01-01

    Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.

  8. Long-term bed degradation in Maryland streams (phase 3, part I) : urban streams in the Piedmont Plateau province.

    DOT National Transportation Integrated Search

    2014-05-01

    Estimation of potential long-term down-cutting of the stream bed is necessary for evaluation and design of bridges for scour and culverts for fish passage. The purpose of this study has been to improve predictions of this potential long-term bed degr...

  9. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    PubMed

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health.

  10. Surface-water quality in agricultural watersheds of the North Carolina Coastal Plain associated with concentrated animal feeding operations

    USGS Publications Warehouse

    Harden, Stephen L.

    2015-01-01

    A classification tree model was developed to examine relations of watershed environmental attributes among the study sites with and without CAFO manure effects. Model results indicated that variations in swine barn density, percentage of wetlands, and total acres available for applying swine-waste manures had an important influence on those watersheds where CAFO effects on water quality were either evident or mitigated. Measurable effects of CAFO waste manures on stream water quality were most evident in those SW and SP watersheds having lower percentages of wetlands combined with higher swine barn densities and (or) higher total acres available for applying waste manure at the swine CAFOs. Stream water quality was similar to background agricultural conditions in SW and SP watersheds with lower swine barn densities coupled with higher percentages of wetlands or lower acres available for swine manure applications. The model provides a useful tool for exploring and identifying similar, unmonitored watersheds in the North Carolina Coastal Plain with potential CAFO manure influences on water quality that might warrant further examination.

  11. Imaging of metal bioaccumulation in hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablation ICP-MS.

    PubMed

    Koelmel, Jeremy; Amarasiriwardena, Dulasiri

    2012-09-01

    Understanding Pb removal from the translocation stream is vital to engineering Pb hyperaccumulation in above ground organs, which would enhance the economic feasibility of Pb phytoextraction technologies. We investigated Cu, Pb, Sb and Zn distributions in Hay-scented fern (Dennstaedtia punctilobula) rhizomes on shooting range soils by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), analyzing digested rhizomes, stems, and fronds using ICP-MS. Nutrients Cu and Zn concentrated in fronds while toxic elements Pb and Sb did not, showing potential Pb and Sb sequestration in the rhizome. Frond and rhizome concentration of Pb was 0.17 ± 0.10% and 0.32 ± 0.21% of dry biomass, respectively. The 208Pb/13C and 121Sb/13C determined by LA-ICP-MS increased from inner sclerotic cortex to the epidermis, while Pb concentrated in the starchy cortex only in contaminated sites. These results suggest that concentration dependent bioaccumulation in the rhizome outer cortex removes Pb from the vascular transport stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Evaluating the perennial stream using logistic regression in central Taiwan

    NASA Astrophysics Data System (ADS)

    Ruljigaljig, T.; Cheng, Y. S.; Lin, H. I.; Lee, C. H.; Yu, T. T.

    2014-12-01

    This study produces a perennial stream head potential map, based on a logistic regression method with a Geographic Information System (GIS). Perennial stream initiation locations, indicates the location of the groundwater and surface contact, were identified in the study area from field survey. The perennial stream potential map in central Taiwan was constructed using the relationship between perennial stream and their causative factors, such as Catchment area, slope gradient, aspect, elevation, groundwater recharge and precipitation. Here, the field surveys of 272 streams were determined in the study area. The areas under the curve for logistic regression methods were calculated as 0.87. The results illustrate the importance of catchment area and groundwater recharge as key factors within the model. The results obtained from the model within the GIS were then used to produce a map of perennial stream and estimate the location of perennial stream head.

  13. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management.

    PubMed

    Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R

    2016-05-01

    Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.

    1995-01-01

    A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.

  15. Coupled three-layer model for turbulent flow over large-scale roughness: On the hydrodynamics of boulder-bed streams

    NASA Astrophysics Data System (ADS)

    Pan, Wen-hao; Liu, Shi-he; Huang, Li

    2018-02-01

    This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.

  16. SAPS simulation with GITM/UCLA-RCM coupled model

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Deng, Y.; Guo, J.; Zhang, D.; Wang, C. P.; Sheng, C.

    2017-12-01

    Abstract: SAPS simulation with GITM/UCLA-RCM coupled model Author: Yang Lu, Yue Deng, Jiapeng Guo, Donghe Zhang, Chih-Ping Wang, Cheng Sheng Ion velocity in the Sub Aurora region observed by Satellites in storm time often shows a significant westward component. The high speed westward stream is distinguished with convection pattern. These kind of events are called Sub Aurora Polarization Stream (SAPS). In March 17th 2013 storm, DMSP F18 satellite observed several SAPS cases when crossing Sub Aurora region. In this study, Global Ionosphere Thermosphere Model (GITM) has been coupled to UCLA-RCM model to simulate the impact of SAPS during March 2013 event on the ionosphere/thermosphere. The particle precipitation and electric field from RCM has been used to drive GITM. The conductance calculated from GITM has feedback to RCM to make the coupling to be self-consistent. The comparison of GITM simulations with different SAPS specifications will be conducted. The neutral wind from simulation will be compared with GOCE satellite. The comparison between runs with SAPS and without SAPS will separate the effect of SAPS from others and illustrate the impact on the TIDS/TADS propagating to both poleward and equatorward directions.

  17. Apparatus and Method for Communication over Power Lines

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, III, Lawrence C. (Inventor); Nappier, Jennifer M. (Inventor)

    2017-01-01

    An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.

  18. Apparatus and Method for Communication over Power Lines

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, Lawrence C., III (Inventor); Nappier, Jennifer M. (Inventor)

    2015-01-01

    An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.

  19. Improved understanding of the relationship between hydraulic properties and streaming potentials

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Brovelli, A.

    2009-12-01

    Streaming potential (SP) measurements have been satisfactorily used in a number of recent studies as a non-invasive tool to monitor fluid movement in both the vadose and the saturated zone. SPs are generated from the coupling between two independent physical processes oc-curring at the pore-level, namely water flow and excess of ions at the negatively charged solid matrix-water interface. The intensity of the measured potentials depends on physical proper-ties of the medium, including the internal micro-geometry of the system, the charge density of the interface and the composition of the pore fluid, which affects its ionic strength, pH and redox potential. The goal of this work is to investigate whether a relationship between the intensity of the SPs and the saturated hydraulic conductivity can be identified. Both properties are - at least to some extent - dependent on the pore-size distribution and connectivity of the pores, and there-fore some degree of correlation is expected. We used a pore-scale numerical model previously developed to simulate both the bulk hydraulic conductivity and the intensity of the SPs gener-ated in a three-dimensional pore-network. The chemical-physical properties of both the inter-face (Zeta-potential) and of the aqueous phase are computed using an analytical, physically based model that has shown good agreement with experimental data. Modelling results were satisfactorily compared with experimental data, showing that the model, although simplified retains the key properties and mechanisms that control SP generation. A sensitivity analysis with respect to the key geometrical and chemical parameters was conducted to evaluate how the correlation between the two studied variables changes and to ascertain whether the bulk hydraulic conductivity can be estimated from SP measurements alone.

  20. Implementation of sediment dynamics in a global integrated assessment model for an improved simulation of nutrient retention and transfers in surface freshwaters

    NASA Astrophysics Data System (ADS)

    Vilmin, L.; Beusen, A.; Mogollón, J.; Bouwman, L.

    2017-12-01

    Sediment dynamics play a significant role in river biogeochemical functioning. They notably control the transfer of particle-bound nutrients, have a direct influence on light availability for primary production, and particle accumulation can affect oxic conditions of river beds. In the perspective of improving our current understanding of large scale nutrient fluxes in rivers, it is hence necessary to include these dynamics in global models. In this scope, we implement particle accumulation and remobilization in a coupled global hydrology-nutrient model (IMAGE-GNM), at a spatial resolution of 0.5°. The transfer of soil loss from natural and agricultural lands is simulated mechanistically, from headwater streams to estuaries. First tests of the model are performed in the Mississippi river basin. At a yearly time step for the period 1978-2000, the average difference between simulated and measured suspended sediment concentrations at the most downstream monitoring station is 25%. Sediment retention is estimated in the different Strahler stream orders, in lakes and reservoirs. We discuss: 1) the distribution of sediment loads to small streams, which has a significant effect on transfers through watersheds and larger scale river fluxes and 2) the potential effect of damming on the fate of particle-bound nutrients. These new developments are crucial for future assessments of large scale nutrient and carbon fluxes in river systems.

  1. Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream.

    PubMed

    Roley, Sarah S; Tank, Jennifer L; Stephen, Mia L; Johnson, Laura T; Beaulieu, Jake J; Witter, Jonathan D

    2012-01-01

    Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditch's effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.

  2. Research note: Mapping spatial patterns in sewer age, material, and proximity to surface waterways to infer sewer leakage hotspots

    USGS Publications Warehouse

    Hopkins, Kristina G.; Bain, Daniel J.

    2018-01-01

    Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.

  3. Geotechnical Applications of the Self-Potential Method. Report 3. Development of Self-Potential Interpretation Techniques for Seepage Detection

    DTIC Science & Technology

    1989-02-01

    potentials M Modeling or interpretation of SP data T Streaming potential theory TM Telluric current measurement 0 Other 57 REFERENCES Abaza, M. M. I ...470-483. L, T Abaza, M. M. I . 1966. Streaming Current and Streaming Potential Induced by Water Flow Through Porous Media: Ph.D. Thesis, Utah State...IO-- L* - CDU -c) low- -co M~ <__ _ _ i7L - 7 ____~~~~ < K- I ~ 1I1iiij § r~L K mn LKzz{ - i ----_ - t -C 71L- C > 0amp- Daily_ _ Recrd fo Ce uft an

  4. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  5. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  6. A model for evaluating stream temperature response to climate change scenarios in Wisconsin

    USGS Publications Warehouse

    Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven

    2010-01-01

    Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.

  7. Long-term bed degradation in Maryland streams (Phase III Part 2) : urban streams in the Piedmont Plateau Province : research report : final report.

    DOT National Transportation Integrated Search

    2017-02-01

    Estimation of potential long-term down-cutting of the stream bed is necessary for evaluation and design of bridges for scour and culverts for fish passage. The purpose of this study has been to improve predictions of this potential long-term bed degr...

  8. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts

    Treesearch

    Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose

    2015-01-01

    Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...

  9. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Helmi, Amina; Hogg, David W., E-mail: robyn@astro.columbia.edu

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like datamore » in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.« less

  10. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    NASA Astrophysics Data System (ADS)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  11. Nonlinear magnetic electron tripolar vortices in streaming plasmas.

    PubMed

    Vranjes, J; Marić, G; Shukla, P K

    2000-06-01

    Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with characteristic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized plasma) or self-generated (for the unmagnetized plasma case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.

  12. One-dimensional flow model of the river-hyporheic zone system

    NASA Astrophysics Data System (ADS)

    Pokrajac, D.

    2016-12-01

    The hyporheic zone is a shallow layer beneath natural streams that is characterized by intense exchange of water, nutrients, pollutants and thermal energy. Understanding these exchange processes is crucial for successful modelling of the river hydrodynamics and morphodynamics at various scales from the river corridor up to the river network scale (Cardenas, 2015). Existing simulation models of hyporheic exchange processes are either idealized models of the tracer movement through the river-hyporheic zone system (e.g. TSM, Bencala and Walters, 1983) or detailed models of turbulent flow in a stream, coupled with a conventional 2D Darcian groundwater model (e.g. Cardenas and Wilson, 2007). This paper presents an alternative approach which involves a simple 1-D simulation model of the hyporheic zone system based on the classical SWE equations coupled with the newly developed porous media analogue. This allows incorporating the effects of flow unsteadiness and non-Darcian parameterization od the drag term in the hyporheic zone model. The conceptual model of the stream-hyporheic zone system consists of a 1D model of the open channel flow in the river, coupled with a 1D model of the flow in the hyporheic zone via volume flux due to the difference in the water level in the river and the hyporheic zone. The interaction with the underlying groundwater aquifer is neglected, but coupling the present model with any conventional groundwater model is straightforward. The paper presents the derivation of the 1D flow equations for flow in the hyporheic zone, the details of the numerical scheme used for solving them and the model validation by comparison with published experimental data. References Bencala, K. E., and R. A. Walters (1983) "Simulation of solute transport in a mountain pool-and-riffle stream- a transient storage model", Water Resources Reseach 19(3): 718-724. Cardenas, M. B. (2015) "Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus", Water Resources Research 51: 3601-3616 Cardenas, M. B., and J. L. Wilson (2007) "Dunes, turbulent eddies, and interfacial exchange with permeable sediments", Water Resour. Res. 43:W08412

  13. New Stream-reach Development: A Comprehensive Assessment of Hydropower Energy Potential in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shih-Chieh; McManamay, Ryan A; Stewart, Kevin M

    2014-04-01

    The rapid development of multiple national geospatial datasets related to topography, hydrology, and environmental characteristics in the past decade have provided new opportunities for the refinement of hydropower resource potential from undeveloped stream-reaches. Through 2011 to 2013, the Oak Ridge National Laboratory (ORNL) was tasked by the Department of Energy (DOE) Water Power Program to evaluate the new stream-reach development (NSD) resource potential for more than 3 million US streams. A methodology was designed that contains three main components: (1) identification of stream-reaches with high energy density, (2) topographical analysis of stream-reaches to estimate inundated surface area and reservoir storage,more » and (3) environmental attribution to spatially join information related to the natural ecological systems, social and cultural settings, policies, management, and legal constraints to stream-reaches of energy potential. An initial report on methodology (Hadjerioua et al., 2013) was later reviewed and revised based on the comments gathered from two peer review workshops. After implementing the assessment across the entire United States, major findings were summarized in this final report. The estimated NSD capacity and generation, including both higher-energy-density (>1 MW per reach) and lower-energy-density (<1 MW per reach) stream-reaches is 84.7 GW, around the same size as the existing US conventional hydropower nameplate capacity (79.5 GW; NHAAP, 2013). In terms of energy, the total undeveloped NSD generation is estimated to be 460 TWh/year, around 169% of average 2002 2011 net annual generation from existing conventional hydropower plants (272 TWh/year; EIA, 2013). Given the run-of-river assumption, NSD stream-reaches have higher capacity factors (53 71%), especially compared with conventional larger-storage peaking-operation projects that usually have capacity factors of around 30%. The highest potential is identified in the Pacific Northwest Region (32%), followed by Missouri Region (15%) and California Region (9%). In terms of states, the highest potential is found in Oregon, Washington, and Idaho, the three states in the Pacific Northwest, followed by California, Alaska, Montana, and Colorado. In addition to the resource potential, abundant environmental attributes were also organized and attributed to the identified stream-reaches to support further hydropower market analysis. The prevalence of environmental variables and proportion of capacity from stream-reaches intersecting environmental variables varied according to hydrologic region. Detailed NSD findings are organized by hydrologic regions and presented in each chapter of this report.« less

  14. Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.

    2006-12-01

    To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.

  15. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams.

    PubMed

    Holitzki, Tara M; MacKenzie, Richard A; Wiegner, Tracy N; McDermid, Karla J

    2013-09-01

    Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (sigmaNO3(-) = NO3(-) + NO2(-)), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5x higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for developing and implementing effective eradication and restoration strategies.

  16. Continuous multi-component geophysical experiment on LUSI mud edifice: What can we learn from it?

    NASA Astrophysics Data System (ADS)

    Mauri, Guillaume; Husein, Alwi; Karyono, Karyono; Hadi, Soffian; Mazzini, Adriano; Collignon, Marine; Faubert, Maïté; Miller, Stephen A.; Lupi, Matteo

    2016-04-01

    The Lusi eruption is located in East Java, Indonesia, and is ongoing since May 29th, 2006. In the framework of joined international projects, several joint geophysical studies focussing on seismic monitoring, spatial investigation over the mud edifice and its surroundings are being conducted. Here we present freshly acquired data from a test site to investigate: (1) potential change in the natural electrical self-potential generation over time (2) potential change in gravity field associated to change in mass or volume, (3) if the geysering activity generates disruption on either the electrical or gravity field. We selected a location ˜200m to the NE of the active Lusi crater. The experiment site covers an area of 60m x 80m, crossing the boundaries between the soft and the solid walkable mud. The western edge of the study area was less than 100m away from the rim of the crater site. A self-potential array made of 6 Pb-PbCl2 electrodes was deployed over the site. The electrodes were positioned inside active seeps, on dry unaltered zones and close to the mud stream that flushes the water erupted from the crater site. All the electrodes were connected to a single Pb-PbCl2 electrode reference. A second array of 7 thermometers was installed positioning 5 of them next to SP electrodes, one to measure atmospheric temperature and another P/T probe to monitor the stream water. In addition a seismometer coupled with a HD video camera, a thermal camera and a gravimeter recorded on site for several days monitoring visual and seismic activity of the crater. The collected data allows us to 1) monitor and define the different geysering activities ongoing at the crater, 2) define the delay existing between the recorded seismicity and the visual observations, 3) verify if the crater activity triggers perturbations that are transmitted to e.g. the thousands of satellite seeps distributed in the 7 square kilometers zone inside the embankment; 4) how significant is the delay between the crater activity and the water streamed out.

  17. ASSESSING STREAM BED STABILITY AND EXCESS SEDIMENTATION IN MOUNTAIN STREAMS

    EPA Science Inventory

    Land use and resource exploitation in headwaters catchments?such as logging, mining, and road building?often increase sediment supply to streams, potentially causing excess sedimentation. Decreases in mean substrate size and increases in fine stream bed sediments can lead to inc...

  18. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    USGS Publications Warehouse

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following dam releases. Direct coupling may have occurred between streamflow and stream temperature for losing stream reaches, such that reduced streamflows facilitated increased afternoon stream temperatures and increased afternoon stream temperatures induced increased streambed losses, leading to even greater increases in both stream temperature and streamflow losses.

  19. Identifying dissolved oxygen variability and stress in tidal freshwater streams of northern New Zealand.

    PubMed

    Wilding, Thomas K; Brown, Edmund; Collier, Kevin J

    2012-10-01

    Tidal streams are ecologically important components of lotic network, and we identify dissolved oxygen (DO) depletion as a potentially important stressor in freshwater tidal streams of northern New Zealand. Other studies have examined temporal DO variability within rivers and we build on this by examining variability between streams as a basis for regional-scale predictors of risk for DO stress. Diel DO variability in these streams was driven by: (1) photosynthesis by aquatic plants and community respiration which produced DO maxima in the afternoon and minima early morning (range, 0.6-4.7 g/m(3)) as a product of the solar cycle and (2) tidal variability as a product of the lunar cycle, including saline intrusions with variable DO concentrations plus a small residual effect on freshwater DO for low-velocity streams. The lowest DO concentrations were observed during March (early autumn) when water temperatures and macrophyte biomass were high. Spatial comparisons indicated that low-gradient tidal streams were at greater risk of DO depletions harmful to aquatic life. Tidal influence was stronger in low-gradient streams, which typically drain more developed catchments, have lower reaeration potential and offer conditions more suitable for aquatic plant proliferation. Combined, these characteristics supported a simple method based on the extent of low-gradient channel for identifying coastal streams at risk of DO depletion. High-risk streams can then be targeted for riparian planting, nutrient limits and water allocation controls to reduce potential ecological stress.

  20. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  1. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  2. New Stream-reach Development (NSD): A Comprehensive Assessment of Hydropower Energy Potential in the United States Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shih-Chieh

    2014-04-25

    The U.S. Department of Energy (DOE) Water Power Program tasked Oak Ridge National Laboratory with evaluating the new stream-reach development (NSD) resource potential of more than 3 million U.S. streams in order to help individuals and organizations evaluate the feasibility of developing new hydropower sources in the United States.

  3. Complex Catchment Processes that Control Stream Nitrogen and Organic Matter Concentrations in a Northeastern USA Upland Catchment

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2009-05-01

    There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.

  4. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch

    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetrymore » factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.« less

  5. In vivo optical activation of astrocytes as a potential therapeutic strategy for neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxin; Mancuso, James; Zhao, Zhen; Li, Xuping; Xue, Zhong; Wong, Stephen T. C.

    2013-03-01

    Neurovascular dysfunction in many neurodegenerative diseases, such as Alzheimer's disease (AD), reduces blood flow to affected brain areas and causes neuronal dysfunction and loss. A new optical imaging technique is developed to activate astrocytes in live animal models in order to investigate the increase of local cerebral blood flow as a potential therapeutic strategy for AD. The technique uses fluorescent labeling of vasculature and astrocytes coupled with intravital 2-photon microscopy to visualize the astrocyte-vasculature interactions in live animals. Using femtosecond laser stimulation, calcium uncaging is applied to specifically target and activate astrocytes in vivo with high spatial and temporal resolutions. Intravital 2-photon microscopy imaging was employed to demonstrate that single endfoot optical activation around an arteriole induced a 25% increase in arteriole diameter, which in turn increased cerebral local blood flow in down-stream capillaries. This quantitative result indicates the potential of using optical activation of astrocytes in afflicted brain areas of neurodegeneration to restore normal neurovascular functions.

  6. Integration and segregation in auditory streaming

    NASA Astrophysics Data System (ADS)

    Almonte, Felix; Jirsa, Viktor K.; Large, Edward W.; Tuller, Betty

    2005-12-01

    We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing. Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.

  7. An ecohydraulic view on stream resilience and ecosystem functioning - what can science teach management?

    NASA Astrophysics Data System (ADS)

    Battin, Tom J.; Dzubakova, Katharina; Boodoo, Kyle; Ulseth, Amber

    2017-04-01

    Streams and rivers are increasingly exposed to environmental change across various spatial and temporal scales. Consequently, ecosystem health and integrity are becoming compromised. Most management strategies designed to recover and maintain stream ecosystem health involve engineering measures of geomorphology. The success of such engineering measures relies on a thorough understanding of the underlying physical, chemical and biological process coupling across scales. First, we present results from experimental work unraveling the relevance of streambed heterogeneity for the resilience of phototrophic biofilms. This is critical as phototrophic biofilms are key for nutrient removal and hence for keeping the water clean. These biofilms are also the machinery of primary production and related carbon fluxes in stream ecosystems. Next, we show how climate change may affect primary production, including CO2, in streams and the networks they form. In fact, streams are now recognized as major sources of CO2 to the atmosphere and contributors to the global carbon cycle. Despite this, we do not yet understand how geomorphological features, themselves continuously reworked by hydrology and sedimentary dynamics, affect CO2 fluxes in streams. We show that gravel bars, clearly conspicuous geomorphological features, are hotspots of CO2 fluxes compared to the streamwater itself. This has major implications for carbon cycling and stream ecosystem functioning. Finally, we discuss what stream management could learn from ecohydraulic insights from young scientists doing excellent basic research.

  8. Ambient groundwater flow diminishes nitrogen cycling in streams

    NASA Astrophysics Data System (ADS)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  9. Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.

    2012-12-01

    Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in representative live-bed meandering waterways and simulated numerically to systematically investigate the sensitivity of various design and installation parameters on structure performance and reliability. Waterway geometries are selected by a statistical classification of rivers and streams to represent typical sand-bed and gravel-bed systems found in nature. Results will be presented for rock vanes, J-hook vanes and bendway weirs. Our findings provide novel physical insights into the effects of various in-stream structures on turbulent flow and sediment transport processes in meandering rivers, underscore these effects for different stream-bed materials, and demonstrate how such physics-based analysis can yield design guidelines that often challenge what is commonly done in practice today. To our knowledge, our work is the first systematic attempt to employ advanced numerical modeling coupled with massively parallel supercomputers to design hydraulic structures for stream restoration. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, National Cooperative Highway Research Program Grant NCHRP-HR 24-33.

  10. Ozone pretreatment of olive mill wastewaters (OMW) and its effect on OMW biochemical methane potential (BMP).

    PubMed

    Tsintavi, E; Pontillo, N; Dareioti, M A; Kornaros, M

    2013-01-01

    The possibility of coupling a physicochemical pretreatment (ozonation) with a biological treatment (anaerobic digestion) was investigated for the case of olive mill wastewaters (OMW). Batch ozonation experiments were performed in a glass bubble reactor. The parameters which were tested included the ozone concentration in the inlet gas stream, the reactor temperature and the composition of the liquid medium in terms of raw or fractionated OMW used. In the sequel, ozone-pretreated OMW samples were tested for their biochemical methane potential (BMP) under mesophilic conditions and these results were compared to the BMP of untreated OMW. The ozonation process alone resulted in a 57-76% decrease of total phenols and a 5-18% decrease of total carbohydrates contained in OMW, depending on the experimental conditions. Nevertheless, the ozone-pretreated OMW exhibited lower chemical oxygen demand removal and methane production during BMP testing compared to the untreated OMW.

  11. Hydrologic landscape regions for predicting and generalizing the refuge function of intermittent and ephemeral streams

    EPA Science Inventory

    Intermittent and ephemeral (IE) streams can provide important functions within stream networks. Understanding the relative benefit provided to downstream waters is needed to better inform watershed management. Although the potential functions of IE streams are relatively well kn...

  12. Insights from event-related potentials into the temporal and hierarchical organization of the ventral and dorsal streams of the visual system in selective attention.

    PubMed

    Martín-Loeches, M; Hinojosa, J A; Rubia, F J

    1999-11-01

    The temporal and hierarchical relationships between the dorsal and the ventral streams in selective attention are known only in relation to the use of spatial location as the attentional cue mediated by the dorsal stream. To improve this state of affairs, event-related brain potentials were recorded while subjects attended simultaneously to motion direction (mediated by the dorsal stream) and to a property mediated by the ventral stream (color or shape). At about the same time, a selection positivity (SP) started for attention mediated by both streams. However, the SP for color and shape peaked about 60 ms later than motion SP. Subsequently, a selection negativity (SN) followed by a late positive component (LPC) were found simultaneously for attention mediated by both streams. A hierarchical relationship between the two streams was not observed, but neither SN nor LPC for one property was completely insensitive to the values of the other property.

  13. Coupling flood forecasting and social media crowdsourcing

    NASA Astrophysics Data System (ADS)

    Kalas, Milan; Kliment, Tomas; Salamon, Peter

    2016-04-01

    Social and mainstream media monitoring is being more and more recognized as valuable source of information in disaster management and response. The information on ongoing disasters could be detected in very short time and the social media can bring additional information to traditional data feeds (ground, remote observation schemes). Probably the biggest attempt to use the social media in the crisis management was the activation of the Digital Humanitarian Network by the United Nations Office for the Coordination of Humanitarian Affairs in response to Typhoon Yolanda. The network of volunteers performing rapid needs & damage assessment by tagging reports posted to social media which were then used by machine learning classifiers as a training set to automatically identify tweets referring to both urgent needs and offers of help. In this work we will present the potential of coupling a social media streaming and news monitoring application ( GlobalFloodNews - www.globalfloodsystem.com) with a flood forecasting system (www.globalfloods.eu) and the geo-catalogue of the OGC services discovered in the Google Search Engine (WMS, WFS, WCS, etc.) to provide a full suite of information available to crisis management centers as fast as possible. In GlobalFloodNews we use advanced filtering of the real-time Twitter stream, where the relevant information is automatically extracted using natural language and signal processing techniques. The keyword filters are adjusted and optimized automatically using machine learning algorithms as new reports are added to the system. In order to refine the search results the forecasting system will be triggering an event-based search on the social media and OGC services relevant for crisis response (population distribution, critical infrastructure, hospitals etc.). The current version of the system makes use of USHAHIDI Crowdmap platform, which is designed to easily crowdsource information using multiple channels, including SMS, email, Twitter and the web we want to show the potential of monitoring floods at the global scale.

  14. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin.

    PubMed

    Roberts, James J; Fausch, Kurt D; Peterson, Douglas P; Hooten, Mevin B

    2013-05-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. © 2013 Blackwell Publishing Ltd.

  15. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Peterson, Douglas P.; Hooten, Mevin B.

    2013-01-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a greater than or equal to 90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. 

  16. Scattering of Light by Colloidal Aluminosilicate Particles Produces the Unusual Sky-Blue Color of Río Celeste (Tenorio Volcano Complex, Costa Rica)

    PubMed Central

    Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E.; Chavarría, Max

    2013-01-01

    Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams—Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)—is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one. PMID:24058661

  17. Joint Doctrine for Unmanned Aircraft Systems: The Air Force and the Army Hold the Key to Success

    DTIC Science & Technology

    2010-05-03

    concept, coupled with sensor technologies that provide multiple video streams to multiple ground units, delivers increased capability and capacity to...airborne surveillance” allow one UAS to collect up to ten video transmissions, sending them to ten different users on the ground. Future iterations...of this technology, dubbed Gorgon Stare, will increase to as many as 65 video streams per UAS by 2014. 31 Being able to send multiple views of an

  18. Proceedings of the Gulf Stream Workshop Held at West Greenwich, Rhode Island on 23-26 April 1985,

    DTIC Science & Technology

    1985-04-01

    complex. We now realize that a correct dytiamical description must intrinsically couple the mass-, momentum -, energy-, and vorticity-fluxes of a strong mean...path and structure, and the mass- and momentum transport. 2. Meander dynamics "intrinsic" to the Gulf Stream, such as growth and propagation of...contribute to the dissipation of momentum through wave and form drag. A general study of the influence of the seamounts seems more appropriate for the

  19. Studies on the interference of wings and propeller slipstreams

    NASA Technical Reports Server (NTRS)

    Prabhu, R. K.; Tiwari, S. N.

    1985-01-01

    The small disturbance potential flow theory is applied to determine the lift of an airfoil in a nonuniform parallel stream. The given stream is replaced by an equivalent stream with a certain number of velocity discontinuities, and the influence of these discontinuities is obtained by the method of images. Next, this method is extended to the problem of an airfoil in a nonuniform stream of smooth velocity profile. This model allows perturbation velocity potential in a rotational undisturbed stream. A comparison of these results with numerical solutions of Euler equations indicates that, although approximate, the present method provides useful information about the interaction problem while avoiding the need to solve the Euler equations.

  20. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Y.M.; Ryskin, N.M.; Won, J.H.

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/{pi} modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillatormore » shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, {approx}3.5I{sub st}, compared to typical vacuum tube oscillators (10-100I{sub st}), where I{sub st} is a start-oscillation current.« less

  1. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Treesearch

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  2. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Ryu, Young; Lim, Yoon-Jin; Ji, Hee-Sook; Park, Hyun-Hee; Chang, Eun-Chul; Kim, Baek-Jo

    2017-11-01

    In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.

  3. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    PubMed Central

    Pollock, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are on large tracts of privately-owned timber land. Thus, although there are a large number of areas that could be suitable for relocation and restoration using beavers, current land use patterns may substantially limit feasibility in these areas. PMID:29489853

  4. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    USGS Publications Warehouse

    Dittbrenner, Benjamin J.; Pollack, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are on large tracts of privately-owned timber land. Thus, although there are a large number of areas that could be suitable for relocation and restoration using beavers, current land use patterns may substantially limit feasibility in these areas.

  5. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation.

    PubMed

    Dittbrenner, Benjamin J; Pollock, Michael M; Schilling, Jason W; Olden, Julian D; Lawler, Joshua J; Torgersen, Christian E

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors-information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are on large tracts of privately-owned timber land. Thus, although there are a large number of areas that could be suitable for relocation and restoration using beavers, current land use patterns may substantially limit feasibility in these areas.

  6. Insights on the energy-water nexus through modeling of the integrated water cycle

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Li, H. Y.; Zhang, X.; Wan, W.; Voisin, N.; Leng, G.

    2016-12-01

    For sustainable energy planning, understanding the impacts of climate change, land use change, and water management is essential as they all exert notable controls on streamflow and stream temperature that influence energy production. An integrated water model representing river processes, irrigation water use and water management has been developed and coupled to a land surface model to investigate the energy-water nexus. Simulations driven by two climate change projections with the RCP 4.5 and RCP 8.5 emissions scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature. The simulations revealed important impacts of climate change and water management on both floods and droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the climate mitigation (RCP 4.5) and business as usual (RCP 8.5) scenarios that influence streamflow and stream temperature, with important consequences to energy production. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME) to enable investigation of the energy-water nexus in the fully coupled Earth system.

  7. Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data

    USGS Publications Warehouse

    Miller, Matthew P.; Tesoriero, Anthony J.; Capel, Paul D.; Pellerin, Brian A.; Hyer, Kenneth E.; Burns, Douglas A.

    2016-01-01

    We describe a new approach that couples hydrograph separation with high-frequency nitrate data to quantify time-variable groundwater and runoff loading of nitrate to streams, and the net in-stream fate of nitrate at the watershed-scale. The approach was applied at three sites spanning gradients in watershed size and land use in the Chesapeake Bay watershed. Results indicate that 58-73% of the annual nitrate load to the streams was groundwater-discharged nitrate. Average annual first order nitrate loss rate constants (k) were similar to those reported in both modelling and in-stream process-based studies, and were greater at the small streams (0.06 and 0.22 d-1) than at the large river (0.05 d-1), but 11% of the annual loads were retained/lost in the small streams, compared with 23% in the large river. Larger streambed area to water volume ratios in small streams result in greater loss rates, but shorter residence times in small streams result in a smaller fraction of nitrate loads being removed than in larger streams. A seasonal evaluation of k values suggests that nitrate was retained/lost at varying rates during the growing season. Consistent with previous studies, streamflow and nitrate concentration were inversely related to k. This new approach for interpreting high-frequency nitrate data and the associated findings furthers our ability to understand, predict, and mitigate nitrate impacts on streams and receiving waters by providing insights into temporal nitrate dynamics that would be difficult to obtain using traditional field-based studies.

  8. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    PubMed Central

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592

  9. A Decision Support System for Mitigating Stream Temperature Impacts in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Zagona, E. A.; Rajagopalan, B.

    2014-12-01

    Increasing demands on the limited and variable water supply across the West can result in insufficient streamflow to sustain healthy fish habitat. We develop an integrated decision support system (DSS) for modeling and mitigating stream temperature impacts and demonstrate it on the Sacramento River system in California. Water management in the Sacramento River is a complex task with a diverse set of demands ranging from municipal supply to mitigation of fisheries impacts due to high water temperatures. Current operations utilize the temperature control device (TCD) structure at Shasta Dam to mitigate these high water temperatures downstream at designated compliance points. The TCD structure at Shasta Dam offers a rather unique opportunity to mitigate water temperature violations through adjustments to both release volume and temperature. In this study, we develop and evaluate a model-based DSS with four broad components that are coupled to produce the decision tool for stream temperature mitigation: (i) a suite of statistical models for modeling stream temperature attributes using hydrology and climate variables of critical importance to fish habitat; (ii) a reservoir thermal model for modeling the thermal structure and, consequently, the water release temperature, (iii) a stochastic weather generator to simulate weather sequences consistent with seasonal outlooks; and, (iv) a set of decision rules (i.e., 'rubric') for reservoir water releases in response to outputs from the above components. Multiple options for modifying releases at Shasta Dam were considered in the DSS, including mixing water from multiple elevations through the TCD and using different acceptable levels of risk. The DSS also incorporates forecast uncertainties and reservoir operating options to help mitigate stream temperature impacts for fish habitat, while efficiently using the reservoir water supply and cold pool storage. The use of these coupled tools in simulating impacts of future climate on stream temperature variability is also demonstrated. Results indicate that the DSS could substantially reduce the number of violations of thermal criteria, while ensuring maintenance of the cold pool storage throughout the summer.

  10. Climate-induced seasonal changes in smallmouth bass growth rate potential at the southern range extent

    USGS Publications Warehouse

    Middaugh, Christopher R.; Kessinger, Brin; Magoulick, Daniel D.

    2018-01-01

    Temperature increases due to climate change over the coming century will likely affect smallmouth bass (Micropterus dolomieu) growth in lotic systems at the southern extent of their native range. However, the thermal response of a stream to warming climate conditions could be affected by the flow regime of each stream, mitigating the effects on smallmouth bass populations. We developed bioenergetics models to compare change in smallmouth bass growth rate potential (GRP) from present to future projected monthly stream temperatures across two flow regimes: runoff and groundwater-dominated. Seasonal differences in GRP between stream types were then compared. The models were developed for fourteen streams within the Ozark–Ouachita Interior Highlands in Arkansas, Oklahoma and Missouri, USA, which contain smallmouth bass. In our simulations, smallmouth bass mean GRP during summer months decreased by 0.005 g g−1 day−1 in runoff streams and 0.002 g g−1 day−1 in groundwater streams by the end of century. Mean GRP during winter, fall and early spring increased under future climate conditions within both stream types (e.g., 0.00019 g g−1 day−1 in runoff and 0.0014 g g−1 day−1 in groundwater streams in spring months). We found significant differences in change in GRP between runoff and groundwater streams in three seasons in end-of-century simulations (spring, summer and fall). Potential differences in stream temperature across flow regimes could be an important habitat component to consider when investigating effects of climate change as fishes from various flow regimes that are relatively close geographically could be affected differently by warming climate conditions.

  11. Improving the Ionospheric Auroral Conductance in a Global Ring Current Model and the Effects on the Ionospheric Electrodynamics

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Jordanova, V. K.; McGranaghan, R. M.; Solomon, S. C.

    2017-12-01

    The ionospheric conductance, height-integrated electric conductivity, can regulate both the ionospheric electrodynamics and the magnetospheric dynamics because of its key role in determining the electric field within the coupled magnetosphere-ionosphere system. State-of-the-art global magnetosphere models commonly adopt empirical conductance calculators to obtain the auroral conductance. Such specification can bypass the complexity of the ionosphere-thermosphere chemistry but on the other hand breaks the self-consistent link within the coupled system. In this study, we couple a kinetic ring current model RAM-SCB-E that solves for anisotropic particle distributions with a two-stream electron transport code (GLOW) to more self-consistently compute the height-dependent electric conductivity, provided the auroral electron precipitation from the ring current model. Comparisons with the traditional empirical formula are carried out. It is found that the newly coupled modeling framework reveals smaller Hall and Pedersen conductance, resulting in a larger electric field. As a consequence, the subauroral polarization streams demonstrate a better agreement with observations from DMSP satellites. It is further found that the commonly assumed Maxwellian spectrum of the particle precipitation is not globally appropriate. Instead, a full precipitation spectrum resulted from wave particle interactions in the ring current accounts for a more comprehensive precipitation spectrum.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modeste Nguimdo, Romain, E-mail: Romain.Nguimdo@vub.ac.be; Tchitnga, Robert; Woafo, Paul

    We numerically investigate the possibility of using a coupling to increase the complexity in simplest chaotic two-component electronic circuits operating at high frequency. We subsequently show that complex behaviors generated in such coupled systems, together with the post-processing are suitable for generating bit-streams which pass all the NIST tests for randomness. The electronic circuit is built up by unidirectionally coupling three two-component (one active and one passive) oscillators in a ring configuration through resistances. It turns out that, with such a coupling, high chaotic signals can be obtained. By extracting points at fixed interval of 10 ns (corresponding to a bitmore » rate of 100 Mb/s) on such chaotic signals, each point being simultaneously converted in 16-bits (or 8-bits), we find that the binary sequence constructed by including the 10(or 2) least significant bits pass statistical tests of randomness, meaning that bit-streams with random properties can be achieved with an overall bit rate up to 10×100 Mb/s =1Gbit/s (or 2×100 Mb/s =200 Megabit/s). Moreover, by varying the bias voltages, we also investigate the parameter range for which more complex signals can be obtained. Besides being simple to implement, the two-component electronic circuit setup is very cheap as compared to optical and electro-optical systems.« less

  13. Aluminum in Precipitation, Streams, and Shallow Groundwater in the New Jersey Pine Barrens

    NASA Astrophysics Data System (ADS)

    Budd, W. W.; Johnson, A. H.; Huss, J. B.; Turner, R. S.

    1981-08-01

    Total (acid reactive) aluminum deposited in bulk precipitation in the McDonalds Branch (New Jersey) basin was 140 mg m-2 yr-1 for the period May 1978-May 1980. Stream and groundwater outputs for the same period were 149 and 110 mg m-2 yr-1, respectively. Aluminum inputs and outputs were highest during summer months because of elevated concentrations coupled with increased precipitation and streamflow. Median acid reactive Al concentrations in precipitation, stream water, and groundwater were 100, 350, and 230 μg 1-1, respectively. In streams, acid reactive Al concentration is correlated with dissolved organic matter concentration, suggesting that Al is transported as an organometallic complex. Shallow groundwater Al concentration is apparently controlled by gibbsite solubility in mineral soils and thus is pH dependent. The relatively high Al concentrations are attributable to acid conditions and mobile organic matter.

  14. High-performance sailboat hydrofoil optimization using vortex lattice methods, and the effects of free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Meneghello, Gianluca; Beyhaghi, Pooriya; Bewley, Thomas

    2016-11-01

    The identification of an optimized hydrofoil shape depends on an accurate characterization of both its geometry and the incoming, turbulent, free-stream flow. We analyze this dependence using the computationally inexpensive vortex lattice model implemented in AVL, coupled with the recently developed global, derivative-free optimization algorithm implemented in Δ - DOGS . Particular attention will be given to the effect of the free-stream turbulence level - as modeled by a change in the viscous drag coefficients - on the optimized values of the parameters describing the three dimensional shape of the foil. Because the simplicity of AVL, when contrasted with more complex and computationally expensive LES or RANS models, may cast doubts on its usefulness, its validity and limitations will be discussed by comparison with water tank measurement, and again taking into account the effect of the uncertainty in the free-stream characterization.

  15. Influence of surface conductivity on the apparent zeta potential of calcite.

    PubMed

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    NASA Astrophysics Data System (ADS)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  17. Dissolved oxygen concentration profiles in the hyporheic zone through the use of a high density fiber optic measurement network

    NASA Astrophysics Data System (ADS)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2013-12-01

    The hyporheic zone (HZ) is a potentially important source of the potent greenhouse gas, nitrous oxide (N2O); stream processes may account for up to 10% of global anthropogenic N2O emissions. However, mechanistic understanding and predictive quantification of this gas flux is hampered by complex temporally and spatially variable interactions between flow dynamics and biogeochemical processes. Reactive inorganic nitrogen (Nr) is typically present at low concentrations in natural stream waters, but many rural and urban streams suffer from an excess of Nr, typically in the form of ammonium (NH4+) and nitrate (NO3-). These reactive species are either assimilated by living biomass or transformed by microbial processes. The two primary microbial transformations of Nr are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2). Denitrification, which occurs almost exclusively in the anoxic zone of the HZ, permanently removes between 30-70% of all Nr entering streams, other mechanisms may retain nitrogen. The mass transport of reactive species (i.e. O2, NO3- and N2O) by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O flux. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. By recreating the stream processes in the University of Idaho flume, we are able to control the bed morphology, fluxes and residence times through the HZ and concentrations of Nr from exogenous (stream water) and endogenous (organic material in the streambed) sources. For the present experiment, the flume was divided into three streams, each with different morphologies (3, 6 and 9cm dunes) and all using the same source water. Stream water for this first experimental phase had no significant loading of Nr. As such, all reaction products were the result of endogenous sources of Nr. To measure dissolved oxygen (DO) concentrations we deployed 120 channels of a novel, fiber-optic optode system which was coupled with an advanced optical multiplexer that allowed us to cycle continuously through all 120 channels. Using this approach, we were able to accurately map the evolution and extent of the anoxic regions within the HZ and demonstrate that bed morphology exhibits significant control over residence times and the spatial temporal evolution of the anoxic region. In addition to the DO measurements, we deployed 240 Rhizon water samplers to extract pore water, which we used to measure Nr and N2O concentrations, and an ion Clark-type electrode sensor to measure N2O concentrations at the streambed surface (results discussed separately). Integrating these various results will allow us to refine the existing models for N2O emissions from urban and rural streams.

  18. A landslide is a landslide is a landslide… Or is it? Defining landslide potential across large landscapes

    Treesearch

    Jonathan Thompson; Kelly Burnett

    2008-01-01

    Not all landslides are created equal. Some have the potential to run out to streams and others do not. Some are likely to simplify and damage stream habitat, and others can be important sources of gravel and large wood, fundamental components of habitat complexity for salmon and other stream inhabitants. Forest managers want to avoid negative consequences and promote...

  19. Potential Applicability of Assembled Chemical Weapons Assessment Technologies to RCRA Waste Streams and Contaminated Media (PDF)

    EPA Pesticide Factsheets

    This report provides an evaluation of the potential applicability of Assembled Chemical Weapons Assessment (ACWA) technologies to RCRA waste streams and contaminated media found at RCRA and Superfund sites.

  20. Parametric distribution approach for flow availability in small hydro potential analysis

    NASA Astrophysics Data System (ADS)

    Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel

    2016-10-01

    Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.

  1. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong

    2018-06-01

    This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.

  2. Life history strategies of fish species and biodiversity in eastern USA streams

    USGS Publications Warehouse

    Meador, Michael R.; Brown, Larry M.

    2015-01-01

    Predictive models have been used to determine fish species that occur less frequently than expected (decreasers) and those that occur more frequently than expected (increasers) in streams in the eastern U.S. Coupling life history traits with 51 decreaser and 38 increaser fish species provided the opportunity to examine potential mechanisms associated with predicted changes in fish species distributions in eastern streams. We assigned six life history traits – fecundity, longevity, maturation age, maximum total length, parental care, and spawning season duration – to each fish species. Decreaser species were significantly smaller in size and shorter-lived with reduced fecundity and shorter spawning seasons compared to increaser species. Cluster analysis of traits revealed correspondence with a life history model defining equilibrium (low fecundity, high parental care), opportunistic (early maturation, low parental care), and periodic (late maturation, high fecundity, low parental care) end-point strategies. Nearly 50 % of decreaser species were associated with an intermediate opportunistic-periodic strategy, suggesting that abiotic factors such as habitat specialization and streamflow alteration may serve as important influences on life history traits and strategies of decreaser species. In contrast, the percent of increaser species among life history strategy groups ranged from 21 to 32 %, suggesting that life history strategies of increaser species were more diverse than those of decreaser species. This study highlights the utility of linking life history theory to biodiversity to better understand mechanisms that contribute to fish species distributions in the eastern U.S.

  3. CO2 Removal from Biogas by Cyanobacterium Leptolyngbya sp. CChF1 Isolated from the Lake Chapala, Mexico: Optimization of the Temperature and Light Intensity.

    PubMed

    Choix, Francisco J; Snell-Castro, Raúl; Arreola-Vargas, Jorge; Carbajal-López, Alberto; Méndez-Acosta, Hugo O

    2017-12-01

    In the present study, the capacity of the cyanobacterium Leptolyngbya sp. CChF1 to remove CO 2 from real and synthetic biogas was evaluated. The identification of the cyanobacterium, isolated from the lake Chapala, was carried out by means of morphological and molecular analyses, while its potential for CO 2 removal from biogas streams was evaluated by kinetic experiments and optimized by a central composite design coupled to a response surface methodology. Results demonstrated that Leptolyngbya sp. CChF1 is able to remove CO 2 and grow indistinctly in real or synthetic biogas streams, showing tolerance to high concentrations of CO 2 and CH 4 , 25 and 75%, respectively. The characterization of the biomass composition at the end of the kinetic assays revealed that the main accumulated by-products under both biogas streams were lipids, followed by proteins and carbohydrates. Regarding the optimization experiments, light intensity and temperature were the studied variables, while synthetic biogas was the carbon source. Results showed that light intensity was significant for CO 2 capture efficiency (p = 0.0290), while temperature was significant for biomass production (p = 0.0024). The predicted CO 2 capture efficiency under optimal conditions (27.1 °C and 920 lx) was 93.48%. Overall, the results of the present study suggest that Leptolyngbya sp. CChF1 is a suitable candidate for biogas upgrading.

  4. Coupling a three-dimensional subsurface flow model with a land surface model to simulate stream-aquifer-land interactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.

    2016-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.

  5. Effectiveness of best management practices for sediment reduction at operation forest stream crossings

    Treesearch

    Laura R. Wear; Michael W. Aust; M. Chad Bolding; Brian D. Strahm; C. Andrew Dolloff

    2013-01-01

    Temporary skid trail stream crossings have repeatedly been identified as having considerable potential to introduce sediment to streams. Forestry Best Management Practices (BMPs) have proven to be effective for controlling erosion and subsequent sedimentation, yet few studies have quantified sedimentation associated with various levels of BMPs for skidder stream...

  6. Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams

    NASA Astrophysics Data System (ADS)

    Azizian, Morvarid; Boano, Fulvio; Cook, Perran L. M.; Detwiler, Russell L.; Rippy, Megan A.; Grant, Stanley B.

    2017-05-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. Here we utilize a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N-cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damköhler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  7. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into freshwater aquifers is a global problem, threatening the water supply of millions of people in coastal settlements. Abstraction rates could be much more efficiently managed if encroaching saline water could be detected before it arrived at the borehole. However, current monitoring is based largely on borehole conductivity measurements, which requires a dense network of monitoring boreholes to map the saline front. Recent laboratory and field experiments suggest that the concentration gradient associated with the front generates an SP signal which can be detected at an abstraction well prior to the arrival of the front, potentially allowing monitoring using a comparatively cheap array of non-polarising borehole electrodes. Current challenges in interpreting SP measurements for subsurface flow are also discussed, particularly the use of models to predict the values of C and Q. The importance of accounting for the pore-level distribution of flow and excess charge in such models is emphasised, and a way forward is suggested in which pore-scale network models, used previously to predict relative permeability and capillary pressure, are extended to include charge transport at the pore-level.

  8. Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream

    NASA Astrophysics Data System (ADS)

    Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia

    2018-05-01

    The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.

  9. Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams

    USGS Publications Warehouse

    Niswonger, R.G.; Prudic, David E.; Fogg, G.E.; Stonestrom, David A.; Buckland, E.M.

    2008-01-01

    A method is presented for estimating seepage loss and streambed hydraulic conductivity along intermittent and ephemeral streams using streamflow front velocities in initially dry channels. The method uses the kinematic wave equation for routing streamflow in channels coupled to Philip's equation for infiltration. The coupled model considers variations in seepage loss both across and along the channel. Water redistribution in the unsaturated zone is also represented in the model. Sensitivity of the streamflow front velocity to parameters used for calculating seepage loss and for routing streamflow shows that the streambed hydraulic conductivity has the greatest sensitivity for moderate to large seepage loss rates. Channel roughness, geometry, and slope are most important for low seepage loss rates; however, streambed hydraulic conductivity is still important for values greater than 0.008 m/d. Two example applications are presented to demonstrate the utility of the method.

  10. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    USGS Publications Warehouse

    Gomez-Velez, Jesus D.; Harvey, Judson

    2014-01-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  11. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    NASA Astrophysics Data System (ADS)

    Gomez-Velez, Jesus D.; Harvey, Judson W.

    2014-09-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  12. A method for estimating spatially variable seepage and hydrualic conductivity in channels with very mild slopes

    USGS Publications Warehouse

    Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab

    2014-01-01

    Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.

  13. Microbial formation of labile organic carbon in Antarctic glacial environments

    USGS Publications Warehouse

    Smith, H.J.; Foster, R.; McKnight, D.M.; Lisle, John T.; Littmann, S.; Kuypers, M.M.M.; Foreman, C.M.

    2017-01-01

    Roughly six petagrams of organic carbon are stored within ice worldwide. This organic carbon is thought to be of old age and highly bioavailable. Along with storage of ancient and new atmospherically deposited organic carbon, microorganisms may contribute substantially to the glacial organic carbon pool. Models of glacial microbial carbon cycling vary from net respiration to net carbon fixation. Supraglacial streams have not been considered in models although they are amongst the largest ecosystems on most glaciers and are inhabited by diverse microbial communities. Here we investigate the biogeochemical sequence of organic carbon production and uptake in an Antarctic supraglacial stream in the McMurdo Dry Valleys using nanometre-scale secondary ion mass spectrometry, fluorescence spectroscopy, stable isotope analysis and incubation experiments. We find that heterotrophic production relies on highly labile organic carbon freshly derived from photosynthetic bacteria rather than legacy organic carbon. Exudates from primary production were utilized by heterotrophs within 24 h, and supported bacterial growth demands. The tight coupling of microbially released organic carbon and rapid uptake by heterotrophs suggests a dynamic local carbon cycle. Moreover, as temperatures increase there is the potential for positive feedback between glacial melt and microbial transformations of organic carbon.

  14. Tracing seasonal groundwater contributions to stream flow using a suite of environmental isotopes

    NASA Astrophysics Data System (ADS)

    Pritchard, J. L.; Herczeg, A. L.; Lamontagne, S.

    2003-04-01

    Groundwater discharge to streams is important for delivering essential solutes to maintain ecosystem health and flow throughout dry seasons. However, managing the groundwater components of stream flow is difficult because several sources of water can contribute, including delayed drainage from bank storage and regional groundwater. In this study we assessed the potential for a variety of environmental tracers to discriminate between different sources of water to stream flow. A case study comparing Cl-, delta O-18 &delta H-2, Rn-222 and 87Sr/86Sr to investigate the spatial and temporal variability of groundwater inputs to stream flow was conducted in the Wollombi Brook Catchment (SE Australia). The objectives were to characterise the three potential sources of water to stream flow (surface water, groundwater from the near-stream sandy alluvial aquifer system, and groundwater from the regional sandstone aquifer system) and estimate their relative contributions to stream discharge at flood recession and baseflow. Surface water was sampled at various locations along the Wollombi Brook and from its tributaries during flood recession (Mar-01) and under baseflow conditions (Oct-01). Alluvial groundwater was sampled from a piezometer network and regional groundwater from deeper bores in the lower to mid-catchment biannually over two years to characterise these potential sources of water to stream flow. Chloride identified specific reaches of the catchment that were either subjected to evaporation or received regional groundwater contributions to stream flow. The water isotopes verified which of these reaches were dominated by evaporation versus groundwater contributions. They also revealed that the predominant sources of water to stream flow during flood recession were either rainfall and storm runoff or regional groundwater, and that during baseflow the predominant source of water to stream flow was alluvial groundwater. Radon showed that there was a greater proportion of groundwater contributing to stream flow in the upper part of the catchment than the lower catchment during both flood recession and baseflow. Strontium isotopes showed that regional groundwater contributed less than 10% to stream flow in all parts of the catchment under baseflow conditions.

  15. Reconstructing the Dwarf Galaxy Progenitor from Tidal Streams Using MilkyWay@home

    NASA Astrophysics Data System (ADS)

    Newberg, Heidi; Shelton, Siddhartha

    2018-04-01

    We attempt to reconstruct the mass and radial profile of stars and dark matter in the dwarf galaxy progenitor of the Orphan Stream, using only information from the stars in the Orphan Stream. We show that given perfect data and perfect knowledge of the dwarf galaxy profile and Milky Way potential, we are able to reconstruct the mass and radial profiles of both the stars and dark matter in the progenitor to high accuracy using only the density of stars along the stream and either the velocity dispersion or width of the stream in the sky. To perform this test, we simulated the tidal disruption of a two component (stars and dark matter) dwarf galaxy along the orbit of the Orphan Stream. We then created a histogram of the density of stars along the stream and a histogram of either the velocity dispersion or width of the stream in the sky as a function of position along the stream. The volunteer supercomputer MilkyWay@home was given these two histograms, the Milky Way potential model, and the orbital parameters for the progenitor. N-body simulations were run, varying dwarf galaxy parameters and the time of disruption. The goodness-of-fit of the model to the data was determined using an Earth-Mover Distance algorithm. The parameters were optimized using Differential Evolution. Future work will explore whether currently available information on the Orphan Stream stars is sufficient to constrain its progenitor, and how sensitive the optimization is to our knowledge of the Milky Way potential and the density model of the dwarf galaxy progenitor, as well as a host of other real-life unknowns.

  16. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  17. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    PubMed

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat. Published by Elsevier B.V.

  18. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed

    USGS Publications Warehouse

    Essaid, Hedeff I.; Caldwell, Rodney R.

    2017-01-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat.

  19. Hybrid simulation combining two space-time discretization of the discrete-velocity Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Horstmann, Jan Tobias; Le Garrec, Thomas; Mincu, Daniel-Ciprian; Lévêque, Emmanuel

    2017-11-01

    Despite the efficiency and low dissipation of the stream-collide scheme of the discrete-velocity Boltzmann equation, which is nowadays implemented in many lattice Boltzmann solvers, a major drawback exists over alternative discretization schemes, i.e. finite-volume or finite-difference, that is the limitation to Cartesian uniform grids. In this paper, an algorithm is presented that combines the positive features of each scheme in a hybrid lattice Boltzmann method. In particular, the node-based streaming of the distribution functions is coupled with a second-order finite-volume discretization of the advection term of the Boltzmann equation under the Bhatnagar-Gross-Krook approximation. The algorithm is established on a multi-domain configuration, with the individual schemes being solved on separate sub-domains and connected by an overlapping interface of at least 2 grid cells. A critical parameter in the coupling is the CFL number equal to unity, which is imposed by the stream-collide algorithm. Nevertheless, a semi-implicit treatment of the collision term in the finite-volume formulation allows us to obtain a stable solution for this condition. The algorithm is validated in the scope of three different test cases on a 2D periodic mesh. It is shown that the accuracy of the combined discretization schemes agrees with the order of each separate scheme involved. The overall numerical error of the hybrid algorithm in the macroscopic quantities is contained between the error of the two individual algorithms. Finally, we demonstrate how such a coupling can be used to adapt to anisotropic flows with some gradual mesh refinement in the FV domain.

  20. Groundwater-Surface water interaction in agricultural watershed that encompasses dense network of High Capacity wells

    NASA Astrophysics Data System (ADS)

    Talib, A.; Desai, A. R.

    2017-12-01

    The Central Sands region of Wisconsin is characterized by productive trout streams, lakes, farmland and forest. However, stream channelization, past wetland drainage, and ground water withdrawals have disrupted the hydrology of this Central Sands region. Climatically driven conditions in last decade (2000-2008) alone are unable to account for the severely depressed water levels. Increased interception and evapotranspiration from afforested areas in central sand Wisconsin may also be culprit for reduced water recharge. Hence, there is need to study the cumulative effects of changing precipitation patterns, groundwater withdrawals, and forest evapotranspiration to improve projections of the future of lake levels and water availability in this region. Here, the SWAT-MODFLOW coupled model approach was applied at large spatio-temporal scale. The coupled model fully integrates a watershed model (SWAT) with a groundwater flow model (MODFLOW). Surface water and ground water flows were simulated integratively at daily time step to estimate the groundwater discharge to the stream network in Central Sands that encompasses high capacity wells. The model was calibrated (2010-2013) and validated (2014-2017) based on streamflow, groundwater extraction, and water table elevation. As the long-term trends in some of the primary drivers is presently ambiguous in Central Sands under future climate, as is the case for total precipitation or timing of precipitation, we relied on a sensitivity student to quantitatively access how primary and secondary drivers may influence future net groundwater recharge. We demonstrate how such an approach could then be coupled with decision-making models to evaluate the effectiveness of groundwater withdrawal policies under a changing climate.

  1. A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.

    2005-02-01

    In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.

  2. Spatial Patterns of Road-Induced Backwater Sediment Storage Across A Rural to Urban Gradient

    NASA Astrophysics Data System (ADS)

    Copeland, M.; Bain, D.

    2017-12-01

    Road networks dominate many landscapes and often interact with stream networks to alter basin sediment dynamics. Currently, conceptual models of catchment-scale sediment fluxes remain at a coarse scale (i.e., the entire catchment) and are unable to resolve important human-driven sediment storage processes. The spatio-temporal complexity of the interactions between road networks and streams has made it challenging to infer the fine-scale impacts of road crossings on fluvial systems. Here, road crossings in multiple drainage networks and the associated backwater sediment accumulations are examined along a rural to urban gradient around Pittsburgh, PA. Preliminary results indicate that upstream drainage area, channel slope, and human activities control stream crossing type and therefore drive associated sediment accumulation, particularly in urban headwater channels. The data indicate that the combination of land use intensity and infrastructure age influences the volume of sediment trapped in road-induced backwaters. Clarification of the coupled human, road-building, and natural stream adjustments will allow for more effective treatments of fluvial impacts, such as the "urban stream syndrome."

  3. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    Treesearch

    Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter

    2013-01-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...

  4. Stream Classification Tool User Manual: For Use in Applications in Hydropower-Related Evironmental Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Troia, Matthew J.; DeRolph, Christopher R.

    Stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystems. We developed a nested, layered, and spatially contiguous stream classification to characterize the biophysical settings of stream reaches within the Eastern United States (~ 900,000 reaches). The classification is composed of five natural characteristics (hydrology, temperature, size, confinement, and substrate) along with several disturbance regime layers, and each was selected because of their relevance to hydropower mitigation. We developed the classification at the stream reach levelmore » using the National Hydrography Dataset Plus Version 1 (1:100k scale). The stream classification is useful to environmental mitigation for hydropower dams in multiple ways. First, it creates efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. Secondly, the SCT addresses data gaps as it quickly provides an inventory of hydrology, temperature, morphology, and ecological communities for the immediate project area, but also surrounding streams. This includes identifying potential reference streams as those that are proximate to the hydropower facility and fall within the same class. These streams can potentially be used to identify ideal environmental conditions or identify desired ecological communities. In doing so, the stream provides some context for how streams may function, respond to dam regulation, and an overview of specific mitigation needs. Herein, we describe the methodology in developing each stream classification layer and provide a tutorial to guide applications of the classification (and associated data) in regulatory settings, such as hydropower (re)licensing.« less

  5. Taxonomic and Functional Differences between Microbial Communities in Qinghai Lake and Its Input Streams

    PubMed Central

    Ren, Ze; Wang, Fang; Qu, Xiaodong; Elser, James J.; Liu, Yang; Chu, Limin

    2017-01-01

    Understanding microbial communities in terms of taxon and function is essential to decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input streams are highly linked. However, the differences between microbial assemblages in streams and lakes are still unclear. In this study, we conducted an intensive field sampling of microbial communities from lake water and stream biofilms in the Qinghai Lake watershed, the largest lake in China. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt to determine the taxonomic and functional differences between microbial communities in stream biofilms and lake water. The results showed that stream biofilms and lake water harbored distinct microbial communities. The microbial communities were different taxonomically and functionally between stream and lake. Moreover, streams biofilms had a microbial network with higher connectivity and modularity than lake water. Functional beta diversity was strongly correlated with taxonomic beta diversity in both the stream and lake microbial communities. Lake microbial assemblages displayed greater predicted metabolic potentials of many metabolism pathways while the microbial assemblages in stream biofilms were more abundant in xenobiotic biodegradation and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had stronger predicted metabolic potentials in amino acid metabolism, carbon fixation, and photosynthesis while stream microbial assemblages were higher in carbohydrate metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to our knowledge of stream-lake linkages from the functional and taxonomic composition of microbial assemblages. PMID:29213266

  6. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOEpatents

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  7. Whole-stream response to nitrate loading in three streams draining agricultural landscapes

    USGS Publications Warehouse

    Duff, J.H.; Tesoriero, A.J.; Richardson, W.B.; Strauss, E.A.; Munn, M.D.

    2008-01-01

    Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3 −) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d “snapshots” during biotically active periods, we estimated reach-level NO3 − sources, NO3 − mass balance, in-stream processing (nitrification, denitrification, and NO3 − uptake), and NO3 − retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3 − input. Streambed processes potentially reduced 45 to 75% of ground water NO3 − before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3 − retention. Estimated nitrification (1.6–4.4 mg N m−2 h−1) and unamended denitrification rates (2.0–16.3 mg N m−2 h−1) in sediment slurries were high relative to pristine streams. Denitrification of NO3 − was largely independent of nitrification because both stream and ground water were sources of NO3 − Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3 − exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3 − inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3 − variation. Biotic processing potentially removed 75% of ground water NO3 − at this site, suggesting an important role for photosynthetic assimilation of ground water NO3 − relative to subsurface denitrification as water passed directly through benthic diatom beds.

  8. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  9. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy

    2015-01-01

    Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.

  10. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    PubMed

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired.

  11. Nitrogen Fate in a Phreatic Fluviokarst Watershed: a Stable Isotope, Sediment Tracing, and Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.

    2017-12-01

    Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system. For the first time to our knowledge, results shed light on sediment processes that help control nutrient retention in phreatic karst conduits and tend to suggest that the karst systems behave as an intermediate N conveyor relative to surface agricultural streams and porous media aquifers.

  12. Solving coupled groundwater flow systems using a Jacobian Free Newton Krylov method

    NASA Astrophysics Data System (ADS)

    Mehl, S.

    2012-12-01

    Jacobian Free Newton Kyrlov (JFNK) methods can have several advantages for simulating coupled groundwater flow processes versus conventional methods. Conventional methods are defined here as those based on an iterative coupling (rather than a direct coupling) and/or that use Picard iteration rather than Newton iteration. In an iterative coupling, the systems are solved separately, coupling information is updated and exchanged between the systems, and the systems are re-solved, etc., until convergence is achieved. Trusted simulators, such as Modflow, are based on these conventional methods of coupling and work well in many cases. An advantage of the JFNK method is that it only requires calculation of the residual vector of the system of equations and thus can make use of existing simulators regardless of how the equations are formulated. This opens the possibility of coupling different process models via augmentation of a residual vector by each separate process, which often requires substantially fewer changes to the existing source code than if the processes were directly coupled. However, appropriate perturbation sizes need to be determined for accurate approximations of the Frechet derivative, which is not always straightforward. Furthermore, preconditioning is necessary for reasonable convergence of the linear solution required at each Kyrlov iteration. Existing preconditioners can be used and applied separately to each process which maximizes use of existing code and robust preconditioners. In this work, iteratively coupled parent-child local grid refinement models of groundwater flow and groundwater flow models with nonlinear exchanges to streams are used to demonstrate the utility of the JFNK approach for Modflow models. Use of incomplete Cholesky preconditioners with various levels of fill are examined on a suite of nonlinear and linear models to analyze the effect of the preconditioner. Comparisons of convergence and computer simulation time are made using conventional iteratively coupled methods and those based on Picard iteration to those formulated with JFNK to gain insights on the types of nonlinearities and system features that make one approach advantageous. Results indicate that nonlinearities associated with stream/aquifer exchanges are more problematic than those resulting from unconfined flow.

  13. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    NASA Astrophysics Data System (ADS)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral precipitation and ion exchange. The calibrated model was then re-run assuming different evapotranspiration and crop growth regimes, and different seasonally-adjusted applied water compositions, to elucidate possible impacts to salt loading reactive chemistry. The results of the predictive modeling indicate the extent to which salts could be redistributed within the soil column as a consequence of climate change. The degree to which these findings are applicable to process waste land application operations at other sites was explored by varying the soil unsaturated flow parameters as a model sensitivity assessment. Taken together, the model results help to quantify operational changes to land application that may be necessary to avoid future adverse environmental impacts to soil and groundwater.

  14. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ( 99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove 90Sr and actinides, inorganic reducing agents for 99Tc, and zeolites for 137Cs. Test results indicate that excellent removal of 99Tc was achieved using Sn(II)Cl 2 as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alkaline pH, with a DF of 17.9. As anticipated, ammonium ion probably interfered with the Ionsiv®a IE-95 zeolite uptake of 137Cs. Although this DF of 137Cs was moderate, additional testing is expected to identify more effective conditions. Similarly, Monosodium Titanate (MST) was more effective at alkaline pH at removing Sr, Pu, and U, with a DF of 319, 11.6, and 10.5, respectively, within 24 hours. Actually, the Ionsiv® IE-95, which was targeting removal of Cs, was also moderately effective for Sr, and highly effective for Pu and U at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}Tc during the SnCl 2 reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Results of this separation testing indicate that sorption/precipitation was a viable concept and has the potential to decontaminate the stream. All radionuclides were at least partially removed by one or more of the materials tested. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl 2) and sorbent at neutral pH to remove the Tc, followed by pH adjustment and the addition of zeolite (Ionsiv® IE-95) to remove the Cs, Sr, and actinides. Addition of MST to remove Sr and actinides may not be needed. Since this was an initial phase of testing, additional tasks to improve separation methods were expected to be identified. Primarily, further testing is needed to identify the conditions for the decontamination process. Once these conditions are established, follow-on tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated LAW Off-Gas Condensate evaporation and solidification.« less

  15. Influence of local riparian cover and watershed runoff potential on invertebrate communities in agricultural streams in the Minnesota River Basin

    USGS Publications Warehouse

    ZumBerge, Jeremy Ryan; Perry, James A.; Lee, Kathy E.

    2003-01-01

    While it is difficult to determine the relative influence of watershed runoff potential and local riparian cover, invertebrate communities may be more strongly influenced by local wooded riparian cover than by watershed runoff potential. Invertebrate community measures indicate greater degradation at the open riparian cover, high runoff potential sites and less degradation at the wooded riparian cover, low runoff potential sites. In addition, differences between streams with wooded riparian cover and sites with open riparian cover were greater in watersheds with high runoff potential. The variance explained by riparian cover and runoff potential is relatively independent of other land-use effects. Wooded riparian cover influences invertebrate community composition by its relation to the other physical environmental variables. This study indicates that wooded riparian cover may be effective in maintaining stream biotic integrity in watersheds dominated by agricultural land use.

  16. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    USGS Publications Warehouse

    Alexander, Richard B.; Böhlke, John Karl; Boyer, Elizabeth W.; David, Mark B.; Harvey, Judson W.; Mulholland, Patrick J.; Seitzinger, Sybil P.; Tobias, Craig R.; Tonitto, Christina; Wollheim, Wilfred M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly equally to seasonal and stream-size related variations in the percentage of the stream nitrate flux removed in each watershed.

  17. Implementation and use of direct-flow connections in a coupled ground-water and surface-water model

    USGS Publications Warehouse

    Swain, Eric D.

    1994-01-01

    The U.S. Geological Survey's MODFLOW finite-difference ground-water flow model has been coupled with three surface-water packages - the MODBRANCH, River, and Stream packages - to simulate surface water and its interaction with ground water. Prior to the development of the coupling packages, the only interaction between these modeling packages was that leakage values could be passed between MODFLOW and the three surface-water packages. To facilitate wider and more flexible uses of the models, a computer program was developed and added to MODFLOW to allow direct flows or stages to be passed between any of the packages and MODFLOW. The flows or stages calculated in one package can be set as boundary discharges or stages to be used in another package. Several modeling packages can be used in the same simulation depending upon the level of sophistication needed in the various reaches being modeled. This computer program is especially useful when any of the River, Stream, or MODBRANCH packages are used to model a river flowing directly into or out of wetlands in direct connection with the aquifer and represented in the model as an aquifer block. A field case study is shown to illustrate an application.

  18. Subauroral Ion-neutral Coupling During the March 2015 Superstorm

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Erickson, P. J.; Foster, J. C.; Holt, J. M.; Coster, A. J.; Makela, J. J.; Noto, J.; Meriwether, J. W.; Otsuka, Y.; Nicolls, M. J.; McCready, M. A.

    2015-12-01

    The arrival of solar Coronal Mass Ejection materials overlapping a high-speed solar wind stream originated from a nearby coronal hole caused huge magnetic disturbances during March 17-18, 2015. We have coordinated an international campaign to monitor their geospace effects using ground-based facilities, including incoherent scatter radars and Fabry-Perot Interferometers in the America sectors and other instruments in East Asia sectors, forming an observational network along approximately the 60W/120E meridional circle. The presentation will provide highlights of these observations, with a focus on the ion-neutral coupling processes at subauroral and mid-latitudes. One of the most stiking findings is the northward neutral wind surge, observed in multiple sites, accompanying strong westward winds developed at earlier times. We ascribe this unexpected wind disturbances to Subauroal Polarization Stream (SAPS) asscoated strong plasma flows driving ion-neutral coupling. SAPS and strong ion flow were observed by Millstone Hill ISR and DMSP in situ measurements. We will also report the Millstone Hill ISR observations of a significant enhancement in the storm-time molecular ion composition in the F1-region height. This enhancement appears to be caused by strong vertical ion drift due to penetration electric fields.

  19. Spatial and seasonal variation in the ecological significance of nutrient recycling by larval salamanders in Appalachian headwater streams

    Treesearch

    S. Conor Keitzer; Reuben R. Goforth

    2013-01-01

    Salamanders are abundant consumers in many temperate streams and may be important recyclers of biologically essential nutrients, but their ecological role is poorly understood. The ecological significance of nutrient recycling by salamanders may vary spatially and seasonally because of their potentially patchy distribution in streams and the dynamic nature of stream...

  20. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  1. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  2. Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.

    2017-12-01

    Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.

  3. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  4. STREAM CORRIDOR RESTORATION AND ITS POTENTIAL TO IMPROVE WATER QUALITY

    EPA Science Inventory

    Watershed stream corridors are being degraded by anthropogenic impacts of increased flow from runoff, sediment loading from erosion and contaminants such as nitrate from non-point sources. One solution is to restore stream corridors with bank stabilization and energy dissipation ...

  5. Tracing Nitrogen Sources in Forested Catchments Under Varying Flow Conditions: Seasonal and Event Scale Patterns

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2004-12-01

    Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.

  6. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupledmore » operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the variability study has significantly added value to the DWPF's qualification strategy. The variability study has evolved to become the primary aspect of the DWPF's compliance strategy as it has been shown to be versatile and capable of adapting to the DWPF's various and diverse waste streams and blending strategies. The variability study, which aims to ensure durability requirements and the PCT and chemical composition correlations are valid for the compositional region to be processed at the DWPF, must continue to be performed. Due to the importance of the variability study and its place in the DWPF's qualification strategy, it will also be discussed in this report. An analysis of historical data and Production Records indicated that the recommendation of the Six Sigma team to eliminate all characterization of pour stream glass samples and the glass fabrication and PCT performed with the qualification glass does not compromise the DWPF's current compliance plan. Furthermore, the DWPF should continue to produce an acceptable waste form following the remaining elements of the Glass Product Control Program; regardless of a sludge-only or coupled operations strategy. If the DWPF does decide to eliminate the characterization of pour stream samples, pour stream samples should continue to be collected for archival reasons, which would allow testing to be performed should any issues arise or new repository test methods be developed.« less

  7. Linearized potential solution for an airfoil in nonuniform parallel streams

    NASA Technical Reports Server (NTRS)

    Prabhu, R. K.; Tiwari, S. N.

    1983-01-01

    A small perturbation potential flow theory is applied to the problem of determining the chordwise pressure distribution, lift and pitching moment of a thin airfoil in the middle of five parallel streams. This theory is then extended to the case of an undisturbed stream having a given smooth velocity profile. Two typical examples are considered and the results obtained are compared with available solutions of Euler's equations. The agreement between these two results is not quite satisfactory. Possible reasons for the differences are indicated.

  8. Dissolved triazines in watersheds under sugarcane cultivation

    NASA Astrophysics Data System (ADS)

    Portocarrero, Rocio; Aparicio, Virginia; De Gerónimo, Eduardo; Costa, José Luis

    2017-04-01

    Sugarcane is an important extensive crop in north western of Argentina. Chemical weed control have been increasing over the last years. The typical period of this practice takes place from October to December, at beginnig of rainy season. Atrazine and ametryn are the main herbicides used, they have moderate to high potential mobility in soils, which is a potential source of contamination for nearby streams. The aim of this study was to quantify both atrazine and ametryn contamination levels in two streams of the southeast of Tucuman (Argentina) under sugarcane production. This area has a subtropical climate, and a monsoon rainfall regime with an annual average of 700 mm. Five sampling points of Mista and Saladillo streams were monitored from September to April, during three growing season. In each growing season, four sampling moments were defined: M1) Before the herbicides application; M2) Beginning of the rainy season and during the chemical weed control period; M3) High accumulated rainfall; M4) End of the rainy season. Water samples were taken and stored in polypropylene bottles at -20°C until analysis. Samples were analyzed by ultra performance liquid chromatography (Waters® ACQUITY® UPLC) coupled to a mass spectrometer (MS/MS Quattro Premier XE Waters). Atrazine was quantified in all samples and the highest concentrations were found in M2 (0.03-3.07 μg L-1). For the others sampling moments, atrazine concentrations were ranged from 0.003 to 0.2 μg L-1. Ametryn was detected in the 90% of the samples. Ametryn concentrations in M2 varied from 0.004 to 0.32 μg L-1, and in the rest sampling moments were less than 0.11 μg L-1. Both herbicides were highly detected in the study area. Although atrazine is authorized for other crops in the area, ametryn is only authorized for sugarcane, the largest cultivation in the area.

  9. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15

  10. Changing Groundwater-Surface Water Interactions Impact Stream Chemistry and Ecology at the Arctic-Boreal Transition in Western Alaska

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Carey, M.; O'Donnell, J.; Sjoberg, Y.; Zimmerman, C. E.

    2016-12-01

    The arctic-boreal transition zone of Alaska is experiencing rapid change related to unprecedented warming and subsequent loss of permafrost. These changes in turn may affect groundwater-surface water (GW-SW) interactions, biogeochemical cycling, and ecosystem processes. While recent field and modeling studies have improved our understanding of hydrology in watersheds underlain by thawing permafrost, little is known about how these hydrologic shifts will impact bottom-up controls on stream food webs. To address this uncertainty, we are using an integrative experimental design to link GW-SW interactions to stream biogeochemistry and biota in 10 first-order streams in northwest Alaska. These study streams drain watersheds that span several gradients, including elevation, aspect, and vegetation (tundra vs. forest). We have developed a robust, multi-disciplinary data set to characterize GW-SW interactions and to mechanistically link GW-SW dynamics to water quality and the stream ecosystem. Data includes soil hydrology and chemistry; stream discharge, temperature, and inflow rates; water chemistry (including water isotopes, major ions, carbon concentration and isotopes, nutrients and chlorophyll-a), and invertebrate and fish communities. Stream recession curves indicate a decreasing rate later in the summer in some streams, consistent with seasonal thaw in lower elevation and south-facing catchments. Base cation and water isotope chemistry display similar impacts of seasonal thaw and also suggest the dominance of groundwater in many streams. Coupled with estimates of GW-SW exchange at point, reach, and catchment scales, these results will be used to predict how hydrology and water quality are likely to impact fish habitat and growth given continued warming at the arctic-boreal transition.

  11. Conjunctive-management models for sustained yield of stream-aquifer systems

    USGS Publications Warehouse

    Barlow, P.M.; Ahlfeld, D.P.; Dickerman, D.C.

    2003-01-01

    Conjunctive-management models that couple numerical simulation with linear optimization were developed to evaluate trade-offs between groundwater withdrawals and streamflow depletions for alluvial-valley stream-aquifer systems representative of those of the northeastern United States. A conjunctive-management model developed for a hypothetical stream-aquifer system was used to assess the effect of interannual hydrologic variability on minimum monthly streamflow requirements. The conjunctive-management model was applied to the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system of central Rhode Island. Results show that it is possible to increase the amount of current withdrawal from the aquifer by as much as 50% by modifying current withdrawal schedules, modifying the number and configuration of wells in the supply-well network, or allowing increased streamflow depletion in the Annaquatucket and Pettaquamscutt rivers. Alternatively, it is possible to reduce current rates of streamflow depletion in the Hunt River by as much as 35% during the summer, but such reductions would result increases in groundwater withdrawals.

  12. Natural fluoride levels in some springs and streams from the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of south eastern Nigeria.

    PubMed

    Ibe, K K; Adlegbembo, A O; Mafeni, J O; Danfillo, I S

    1999-09-01

    The aim of this study was to provide baseline data on the fluoride levels in waters associated with the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of South Eastern Nigeria. Water samples from 14 artesian, perched springs and eight streams from the formation were collected with plastic containers. Fluoride analysis was carried out with inductively coupled plasma Atomic Emission Spectrometry (ICP-AES) equipment at the laboratories of the Department of Earth Science, University of Leeds, United Kingdom. The results showed that fluoride occurred in only one of the 14 spring water samples. Fluoride level in the sample was 0.03 ppm. The spring water, which contained some fluoride, was possibly associated with another rock formation: namely, the limestone bearing Nsukka formation, which overlies the Ajali formation. No fluoride was observed in all the stream water samples. This study reported the absence of fluoride in spring and stream waters associated with the late Maastrichtian formations in Nigeria.

  13. Estimation of potential maximum biomass of trout in Wyoming streams to assist management decisions

    USGS Publications Warehouse

    Hubert, W.A.; Marwitz, T.D.; Gerow, K.G.; Binns, N.A.; Wiley, R.W.

    1996-01-01

    Fishery managers can benefit from knowledge of the potential maximum biomass (PMB) of trout in streams when making decisions on the allocation of resources to improve fisheries. Resources are most likely to he expended on streams with high PMB and with large differences between PMB and currently measured biomass. We developed and tested a model that uses four easily measured habitat variables to estimate PMB (upper 90th percentile of predicted mean bid mass) of trout (Oncorhynchus spp., Salmo trutta, and Salvelinus fontinalis) in Wyoming streams. The habitat variables were proportion of cover, elevation, wetted width, and channel gradient. The PMB model was constructed from data on 166 stream reaches throughout Wyoming and validated on an independent data set of 50 stream reaches. Prediction of PMB in combination with estimation of current biomass and information on habitat quality can provide managers with insight into the extent to which management actions may enhance trout biomass.

  14. Organic waste compounds as contaminants in Milwaukee-area streams

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Magruder, Christopher; Magruder, Matthew; Bruce, Jennifer L.

    2015-09-22

    Organic waste compounds (OWCs) are ingredients and by-products of common agricultural, industrial, and household substances that can contaminate our streams through sources like urban runoff, sewage overflows, and leaking septic systems. To better understand how OWCs are affecting Milwaukee-area streams, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District, conducted a three-year study to investigate the presence and potential toxicity of 69 OWCs in base flow, stormflow, pore water, and sediment at 14 stream sites and 3 Milwaukee harbor locations. This fact sheet summarizes the major findings of this study, including detection frequencies and concentrations, potential toxicity, the prevalence of polycyclic aromatic hydrocarbons (PAHs), and the influence of urbanization.

  15. Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy.

    PubMed

    Yang, Peihua; Qu, Xiaopeng; Liu, Kang; Duan, Jiangjiang; Li, Jia; Chen, Qian; Xue, Guobin; Xie, Wenke; Xu, Zhimou; Zhou, Jun

    2018-03-07

    Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane. Pressure-driven electrolyte flow through the nanochannels generates streaming potential, which can be used to charge the capacitive electrodes, accomplishing simultaneous energy generation and storage. The device stores electric charge density of 0.4 mC cm -2 after fully charging under pressure of 2.5 bar. This work may offer a train of thought for the development of a new type of energy unit for self-powered systems.

  16. A semiconductor photon-sorter

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2016-10-01

    Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.

  17. Carbohydrate and alditol analysis by high-performance anion-exchange chromatography coupled with electrochemical detection at a cobalt-modified electrode.

    PubMed

    Casella, Innocenzo G; Contursi, Michela

    2003-07-01

    A cobalt oxyhydroxide film dispersed on a carbon electrode surface was characterized and proposed as an amperometric sensor for determination of alditols and carbohydrates in flowing streams. Complex mixtures of carbohydrates were separated by anion-exchange chromatography using a moderately alkaline solution as mobile phase. The cobalt modified electrode (GC-Co) was employed under a constant applied potential of 0.5 V (vs Ag/AgCl). Under these experimental conditions the detection limits (S/N=3) for all analyzed electroactive molecules ranged between 0.3 micromol L(-1) and 1.5 micromol L(-1) and the dynamic linear ranges spanned generally three orders of magnitude above the relevant detection limits. Analytical determinations of carbohydrates and alditols in red and white wines, are reported.

  18. The devil is in the tails: the role of globular cluster mass evolution on stream properties

    NASA Astrophysics Data System (ADS)

    Balbinot, Eduardo; Gieles, Mark

    2018-02-01

    We present a study of the effects of collisional dynamics on the formation and detectability of cold tidal streams. A semi-analytical model for the evolution of the stellar mass function was implemented and coupled to a fast stellar stream simulation code, as well as the synthetic cluster evolution code EMACSS for the mass evolution as a function of a globular cluster orbit. We find that the increase in the average mass of the escaping stars for clusters close to dissolution has a major effect on the observable stream surface density. As an example, we show that Palomar 5 would have undetectable streams (in an SDSS-like survey) if it was currently three times more massive, despite the fact that a more massive cluster loses stars at a higher rate. This bias due to the preferential escape of low-mass stars is an alternative explanation for the absence of tails near massive clusters, than a dark matter halo associated with the cluster. We explore the orbits of a large sample of Milky Way globular clusters and derive their initial masses and remaining mass fraction. Using properties of known tidal tails, we explore regions of parameter space that favour the detectability of a stream. A list of high-probability candidates is discussed.

  19. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    NASA Astrophysics Data System (ADS)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  20. Evaluation of road approaches to four different types of stream crossings in the Virginia Piedmont

    Treesearch

    Matthew B. Carroll; W. Michael Aust; C. Andrew Dolloff; Robert M. Shaffer

    2013-01-01

    Erosion potential was estimated for road approaches during 4 phases of a timber harvesting scheduled for 23 stream crossings in the Virginia Piedmont. The objectives of this study were to: (1) examine four different types of stream crossing structures (steel bridges, pole bridges, standard culverts, and reenforced fords) in order to determine if the type of stream...

  1. The effect of increasing gravel cover on forest roads for reduced sediment delivery to stream crossings

    Treesearch

    Kristopher Brown; Kevin J. McGuire; W. Michael Aust; W. Cully Hession; C. Andrew Dolloff

    2014-01-01

    Direct sediment inputs from forest roads at stream crossings are a major concern for water quality and aquatic habitat. Legacy road–stream crossing approaches, or the section of road leading to the stream, may have poor water and grade control upon reopening, thus increasing the potential for negative impacts to water quality. Rainfall simulation experiments were...

  2. Assessment of the risk of invasion of national forest streams in the Pacific Northwest by farmed Atlantic salmon.

    Treesearch

    Peter A. Bisson

    2006-01-01

    This report describes the evidence for invasion of Pacific Northwest streams by Atlantic salmon (Salmo salar) that have escaped from marine salmon farms, and assesses the potential impact of farmed salmon invasion on native fishes inhabiting streams on National Forest System lands. The current risk to streams on National Forest lands in the Pacific Northwest from...

  3. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    NASA Astrophysics Data System (ADS)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused elevated concentrations of chlorinated ethenes, benzene and site specific pharmaceuticals in both the hyporheic zone and the stream water. Observed stream water vinyl chloride concentrations (up to 6 μg/L) are far above the Danish EQS (0.05 μg/L) for several km downstream of the discharge area. For heavy metals, comparison with EQS in stream water, the hyporheic zone and streambed showed concentrations around or above the threshold values for barium, copper, lead, nickel and zinc. The calculated TU was generally similar along the stream, but for arsenic and nickel higher values were observed where the groundwater plume discharges into the stream. Also, log TU sum values for organic contaminants were elevated in both the hyporheic zone and stream. Thus, the overall chemical stress in the main discharge area is much higher than upstream, while it gradually decreases downstream. In conclusion, this work clearly shows that groundwater contaminant plumes can impact stream water quality significantly in discharge areas, and extend far downstream. A surprisingly high impact of heavy metals with diffuse and/or biogenic origin on stream quality was identified. This work highlights the importance of a holistic assessment of stream water quality to identify and quantify the main contaminant sources and resulting chemical stream stressors leading to potential ecological impacts.

  4. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge.

    PubMed

    Alizadeh, Amer; Wang, Moran

    2017-03-01

    Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Combination of dynamic Bayesian network classifiers for the recognition of degraded characters

    NASA Astrophysics Data System (ADS)

    Likforman-Sulem, Laurence; Sigelle, Marc

    2009-01-01

    We investigate in this paper the combination of DBN (Dynamic Bayesian Network) classifiers, either independent or coupled, for the recognition of degraded characters. The independent classifiers are a vertical HMM and a horizontal HMM whose observable outputs are the image columns and the image rows respectively. The coupled classifiers, presented in a previous study, associate the vertical and horizontal observation streams into single DBNs. The scores of the independent and coupled classifiers are then combined linearly at the decision level. We compare the different classifiers -independent, coupled or linearly combined- on two tasks: the recognition of artificially degraded handwritten digits and the recognition of real degraded old printed characters. Our results show that coupled DBNs perform better on degraded characters than the linear combination of independent HMM scores. Our results also show that the best classifier is obtained by linearly combining the scores of the best coupled DBN and the best independent HMM.

  6. Simultaneous in situ determination of both U-Th-Pb and Sm-Nd isotopes in monazite by laser ablation using a magnetic sector ICP-MS and a multicollector ICP-MS

    NASA Astrophysics Data System (ADS)

    Goudie, D. J.; Fisher, C. M.; Hanchar, J. M.; Davis, W. J.; Crowley, J. L.; Ayers, J. C.

    2012-12-01

    We present a method for the simultaneous in situ determination of U-Th-Pb and Sm-Nd isotopes in monazite, using a laser ablation (LA) system coupled to both a magnetic sector inductively coupled plasma mass spectrometer (HR) ICP-MS and a multicollector (MC) ICP-MS. The ablated material is split using a glass Y-connector and transported simultaneously to both mass spectrometers via helium carrier gas. The MC-ICP-MS is configured to provide relative Ce, Gd, and Eu contents, in addition to Sm and Nd. This approach obtains both age (U-Pb), tracer isotope (Sm-Nd), and REE element data (Ce, Gd, and Eu), in the same ablation volume, thus reducing sampling problems associated with fine-scale zoning and other internal structures. The accuracy and precision of the U-Pb data are demonstrated using six well characterized monazite reference materials from the Geological Survey of Canada (three of which are currently used as SHRIMP standards) and agree well with previously determined ID-TIMS ages. The accuracy of the Sm-Nd isotopic data was assessed by comparison to TIMS measurements on a well-characterized in-house monazite standard. The dual LA-ICP-MS method was applied to the Birch Creek Pluton (BCP) in the White Mountains, California in a case study to test the utility of U-Th-Pb dating coupled with Sm-Nd (and Ce, Gd, Eu) isotopic data for solving geologic problems. Previous work on the Cretaceous BCP [1] used Th-Pb ages coupled with O isotopic data to constrain hydrothermal fluid events, as recorded in monazite. The original study suggested that the high delta 18O monazite in Paleozoic country rocks adjacent to the BCP grew in response to fluid alternation associated with the intrusion of the BCP, based on overlapping age with the BCP. New monazite split-stream U-Pb and Sm-Nd data show that monazite from the BCP pluton and monazite from altered country rock have homogenous and overlapping initial Nd isotopic composition, further strengthening the proposal that monazite in altered country rock can be a tracer of fluid alternation events. The split-stream U-Pb ages agrees with new high precision ID-TIMS U-Pb ages from the same monazite grains. These results demonstrate how monazite age and Sm-Nd isotopic data, coupled with delta 18O, can identify hydrothermal monazite and constrain the timing and potential sources of fluid events. [1] Ayers et al., Geology 34 (2006) 653-656.

  7. Fiber-Coupled Cavity-QED Source of Identical Single Photons

    NASA Astrophysics Data System (ADS)

    Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.

    2018-03-01

    We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.

  8. REGIONAL ASSESSMENT OF LAND USE IMPACTS ON STREAM CHANNEL HABITAT IN THE MIDDLE COLUMBIA RIVER BASIN

    EPA Science Inventory

    Many human land uses and land cover modifications (e.g., logging, grazing, roads) tend to increase erosion, leading to an increase in fine sediment supplied to streams and potentially degrading aquatic habitat for benthic organisms. This study evaluated potential human impacts o...

  9. Long-term bed degradation in Maryland streams (phase 2) : Blue Ridge and western Piedmont provinces [research summary].

    DOT National Transportation Integrated Search

    2012-03-01

    Problem: : Estimation of potential long-term down-cutting of the stream bed is necessary for evaluation and design of bridges for scour and culverts for fish passage. Existing guidelines for assessing this potential long-term bed degradation (LTBD) i...

  10. Long-term bed degradation in Maryland streams (phase 2) : Blue Ridge and Western Piedmont provinces.

    DOT National Transportation Integrated Search

    2012-03-01

    Estimation of potential long-term down-cutting of the stream bed is necessary for evaluation and design of bridges for scour and culverts for fish passage. The purpose of this study has been to improve predictions of this potential long-term bed degr...

  11. Mathematical modelling of the uptake and transport of salt in plant roots.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2013-11-07

    In this paper, we present and discuss a mathematical model of ion uptake and transport in roots of plants. The underlying physical model of transport is based on the mechanisms of forced diffusion and convection. The model can take account of local variations in effective ion and water permeabilities across the major tissue regions of plant roots, represented through a discretized coupled system of governing equations including mass balance, forced diffusion, convection and electric potential. We present simulation results of an exploration of the consequent enormous parameter space. Among our findings we identify the electric potential as a major factor affecting ion transport across, and accumulation in, root tissues. We also find that under conditions of a constant but realistic level of bulk soil salt concentration and plant-soil hydraulic pressure, diffusion plays a significant role even when convection by the water transpiration stream is operating. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

  12. Improving the feasibility of producing biofuels from microalgae using wastewater.

    PubMed

    Rawat, I; Bhola, V; Kumar, R Ranjith; Bux, F

    2013-01-01

    Biofuels have received much attention recently owing to energy consumption and environmental concerns. Despite many of the technologies being technically feasible, the processes are often too costly to be commercially viable. The major stumbling block to full-scale production of algal biofuels is the cost of upstream and downstream processes and environmental impacts such as water footprint and indirect greenhouse gas emissions from chemical nutrient production. The technoeconomics of biofuels production from microalgae is currently unfeasible due to the cost of inputs and productivities achieved. The use of a biorefinery approach sees the production costs reduced greatly due to utilization of waste streams for cultivation and the generation of several potential energy sources and value-added products while offering environmental protection. The use of wastewater as a production media, coupled with CO2 sequestration from flue gas greatly reduces the microalgal cultivation costs. Conversion of residual biomass and by-products, such as glycerol, for fuel production using an integrated approach potentially holds the key to near future commercial implementation of biofuels production.

  13. Locating Groundwater Pathways of Anthropogenic Contaminants Using a Novel Approach in Kānéohe Watershed, Óahu, Hawaíi

    NASA Astrophysics Data System (ADS)

    McKenzie, T.; Dulai, H.; Popp, B. N.; Whittier, R. B.

    2017-12-01

    We have applied a novel approach using radon, δ15N and δ18O values of nitrate, and contaminants of emerging concern (CECs) to identify groundwater pathways of anthropogenic contaminants. This approach was applied in Kānéohe watershed, located on the windward side of Óahu, which has been subject to persistent near shore water pollution. Previous research has indicated that there are strong seasonal differences between surface runoff and groundwater discharge into Kānéohe Bay. Three sub-watersheds of varying land-use (e.g. cesspool density, agriculture, urbanization) bordering Kānéohe Bay were studied. Seasonality, as well as spatial and temporal variations of groundwater discharge into streams and the bay were captured by a series of snapshot studies using a natural isotope of radon as a tracer for groundwater inflow. δ15N and δ18O values of nitrate were used as source tracking tools to determine the potential origin (e.g. wastewater, agriculture) of nitrate. These results were paired with spatial analysis of land-use and further coupled with CEC concentrations in order to evaluate how land-use relates to stream and groundwater contaminant distribution. Previously unrecognized groundwater pathways for contaminant transport were identified using radon in conjunction with CEC and stable isotopic techniques. We present results for stream and coastal water quality, focusing on nutrient and CEC fluxes across the land-ocean interface, as well as discuss the application of CECs as novel wastewater tracers.

  14. Capturing Hot Moments of Carbon Cycling in the Hyporheic Zone of an Intermittent Stream

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Harjung, A.; Vieweg, M.; Butturini, A.; Schmidt, C.; Fleckenstein, J. H.; Sabater, F.

    2016-12-01

    Intermittent streams are increasingly recognized as a factor for underestimating potential CO2 emissions of aquatic ecosystems, because they are neglected during their dry phase. This can be partly attributed to poor understanding of dissolved organic matter (DOM) processing at highly reactive interfaces such as the hyporheic zone (HZ). Here, hydrological transitions drive rapid changes in the spatiotemporal distribution of dissolved oxygen (DO), thus creating hot moments of increased biogeochemical cycling. However, capturing these process-dynamics requires a continuous monitoring of hyporheic pore water at a sufficient temporal and spatial resolution. In order to investigate the transitions between the wet and dry phase, we used a combination of automated pore water sampling and in situ measurements. By combining conventional pumping approaches with recently developed technology we achieved a high resolution multi-scale, quasi continuous monitoring of relevant parameters of the carbon cycle. Our novel approach coupled continuous fluorescence DOM and infrared CO2 sensor measurements with spatially continuous vertical oxygen profiling in situ. A proof-of-concept application was established in a semi-pristine Mediterranean stream during the drying period in summer 2015. Previous sampling campaigns already identified the water level as a driver of DOM composition in the HZ. Once the surface flow switches to subsurface flow, the HZ becomes a sink for aromatic, high molecular weight compounds, while protein-like, autochthonous DOM gets released. Generally, we observed exponential increases in hyporheic CO2 from this point on, co-occurring with a sharp vertical DO gradient as a function of changing hydrological conditions.

  15. Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum.

    PubMed

    Lange, Julian; Müller, Felix; Bernecker, Kerstin; Dahmen, Nicolaus; Takors, Ralf; Blombach, Bastian

    2017-01-01

    A future bioeconomy relies on the efficient use of renewable resources for energy and material product supply. In this context, biorefineries have been developed and play a key role in converting lignocellulosic residues. Although a holistic use of the biomass feed is desired, side streams evoke in current biorefinery approaches. To ensure profitability, efficiency, and sustainability of the overall conversion process, a meaningful valorization of these materials is needed. Here, a so far unexploited side stream derived from fast pyrolysis of wheat straw-pyrolysis water-was used for production of 1,2-propanediol in microbial fermentation with engineered Corynebacterium glutamicum . A protocol for pretreatment of pyrolysis water was established and enabled growth on its major constituents, acetate and acetol, with rates up to 0.36 ± 0.04 h -1 . To convert acetol to 1,2-propanediol, the plasmid pJUL gldA expressing the glycerol dehydrogenase from Escherichia coli was introduced into C. glutamicum . 1,2-propanediol was formed in a growth-coupled biotransformation and production was further increased by construction of C. glutamicum Δ pqo Δ aceE Δ ldhA Δ mdh pJUL gldA . In a two-phase aerobic/microaerobic fed-batch process with pyrolysis water as substrate, this strain produced 18.3 ± 1.2 mM 1,2-propanediol with a yield of 0.96 ± 0.05 mol 1,2-propanediol per mol acetol and showed an overall volumetric productivity of 1.4 ± 0.1 mmol 1,2-propanediol L -1  h -1 . This study implements microbial fermentation into a biorefinery based on pyrolytic liquefaction of lignocellulosic biomass and accesses a novel value chain by valorizing the side stream pyrolysis water for 1,2-PDO production with engineered C. glutamicum . The established bioprocess operated at maximal product yield and accomplished the so far highest overall volumetric productivity for microbial 1,2-PDO production with an engineered producer strain. Besides, the results highlight the potential of microbial conversion of this biorefinery side stream to other valuable products.

  16. Spatial and temporal variability of runoff and streamflow generation within and among headwater catchments: a combined hydrometric and stable isotope approach

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Emanuel, R. E.; McGlynn, B. L.

    2012-12-01

    The combined influence of topography and vegetation on runoff generation and streamflow in headwater catchments remains unclear. We aim to understand how spatial, hydrological and climate variables affect runoff generation and streamflow at hillslope and watershed scales at the Coweeta Hydrologic Laboratory (CHL) in the southern Appalachian Mountains by analyzing stable isotopes of hydrogen (2H) and oxygen (18O) coupled with measurements of hydrological variables (stream discharge, soil moisture, shallow groundwater) and landscape variables (upslope accumulated area, vegetation density slope, and aspect). We investigated four small catchments, two of which contained broadleaf deciduous vegetation and two of which contained evergreen coniferous vegetation. Beginning in June 2011, we collected monthly water samples at 25 m intervals along each stream, monthly samples from 24 shallow groundwater wells, and weekly to monthly samples from 10 rain gauges distributed across CHL. Water samples were analyzed for 2H and 18O using cavity ring-down spectroscopy. During the same time period we recorded shallow groundwater stage at 30 min intervals from each well, and beginning in fall 2011 we collected volumetric soil moisture data at 30 min intervals from multiple depths at 16 landscape positions. Results show high spatial and temporal variability in δ2H and δ18O within and among streams, but in general we found isotopic enrichment with increasing contributing area along each stream. We used a combination of hydrometric observations and geospatial analyses to understand why stream isotope patterns varied during the year and among watersheds, and we used complementary measurements of δ2H and δ18O from other pools within the watersheds to understand the movement and mixing of precipitation that precedes runoff formation. This combination of high resolution stable isotope data and hydrometric observations facilitates a clearer understanding of spatial controls on streamflow generation. In addition, understanding the relative influences of topography and vegetation on runoff generation could help scientists and managers better assess potential impacts of disturbance on water supplies downstream of forested headwater catchments.

  17. Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation

    NASA Astrophysics Data System (ADS)

    Ye, Sheng; Reisinger, Alexander J.; Tank, Jennifer L.; Baker, Michelle A.; Hall, Robert O.; Rosi, Emma J.; Sivapalan, Murugesu

    2017-11-01

    Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is limited due to a lack of empirical measurements in large, (nonwadeable), rivers. The goal of this paper was to develop a coupled hydrological and biogeochemical process model to simulate nutrient uptake at the network scale during summer base flow conditions. The model was parameterized with literature values from headwater streams, and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics, to simulate nutrient uptake at the network scale. We applied the coupled model to 15 catchments describing patterns in uptake for three different solutes to determine the role of rivers in network-scale nutrient cycling. Model simulation results, constrained by empirical data, suggested that rivers contributed proportionally more to nutrient removal than headwater streams given the fraction of their length represented in a network. In addition, variability of nutrient removal patterns among catchments was varied among solutes, and as expected, was influenced by nutrient concentration and discharge. Net ammonium uptake was not significantly correlated with any environmental descriptor. In contrast, net daily nitrate removal was linked to suspended chlorophyll a (an indicator of primary producers) and land use characteristics. Finally, suspended sediment characteristics and agricultural land use were correlated with net daily removal of soluble reactive phosphorus, likely reflecting abiotic sorption dynamics. Rivers are understudied relative to streams, and our model suggests that rivers can contribute more to network-scale nutrient removal than would be expected based upon their representative fraction of network channel length.

  18. Pseudo-Random Number Generator Based on Coupled Map Lattices

    NASA Astrophysics Data System (ADS)

    Lü, Huaping; Wang, Shihong; Hu, Gang

    A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.

  19. TRACING THE ORPHAN STREAM TO 55 kpc WITH RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesar, Branimir; Cohen, Judith G.; Bellm, Eric C.

    2013-10-10

    We report positions, velocities, and metallicities of 50 ab-type RR Lyrae (RRab) stars observed in the vicinity of the Orphan stellar stream. Using about 30 RRab stars classified as being likely members of the Orphan stream, we study the metallicity and the spatial extent of the stream. We find that RRab stars in the Orphan stream have a wide range of metallicities, from –1.5 dex to –2.7 dex. The average metallicity of the stream is –2.1 dex, identical to the value obtained by Newberg et al. using blue horizontal branch stars. We find that the most distant parts of themore » stream (40-50 kpc from the Sun) are about 0.3 dex more metal-poor than the closer parts (within ∼30 kpc), suggesting a possible metallicity gradient along the stream's length. We have extended the previous studies and have mapped the stream up to 55 kpc from the Sun. Even after a careful search, we did not identify any more distant RRab stars that could plausibly be members of the Orphan stream. If confirmed with other tracers, this result would indicate a detection of the end of the leading arm of the stream. We have compared the distances of Orphan stream RRab stars with the best-fit orbits obtained by Newberg et al. We find that model 6 of Newberg et al. cannot explain the distances of the most remote Orphan stream RRab stars, and conclude that the best fit to distances of Orphan stream RRab stars and to the local circular velocity is provided by potentials where the total mass of the Galaxy within 60 kpc is M{sub 60} ∼ 2.7 × 10{sup 11} M{sub ☉}, or about 60% of the mass found by previous studies. More extensive modeling that would consider non-spherical potentials and the possibility of misalignment between the stream and the orbit is highly encouraged.« less

  20. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  1. Winter NH low-frequency variability in a hierarchy of low-order stochastic dynamical models of earth-atmosphere system

    NASA Astrophysics Data System (ADS)

    Zhao, Nan

    2018-02-01

    The origin of winter Northern Hemispheric low-frequency variability (hereafter, LFV) is regarded to be related to the coupled earth-atmosphere system characterized by the interaction of the jet stream with mid-latitude mountain ranges. On the other hand, observed LFV usually appears as transitions among multiple planetary-scale flow regimes of Northern Hemisphere like NAO + , AO +, AO - and NAO - . Moreover, the interaction between synoptic-scale eddies and the planetary-scale disturbance is also inevitable in the origin of LFV. These raise a question regarding how to incorporate all these aspects into just one framework to demonstrate (1) a planetary-scale dynamics of interaction of the jet stream with mid-latitude mountain ranges can really produce LFV, (2) such a dynamics can be responsible for the existence of above multiple flow regimes, and (3) the role of interaction with eddy is also clarified. For this purpose, a hierarchy of low-order stochastic dynamical models of the coupled earth-atmosphere system derived empirically from different timescale ranges of indices of Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific/North American (PNA), and length of day (LOD) and related probability density function (PDF) analysis are employed in this study. The results seem to suggest that the origin of LFV cannot be understood completely within the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain ranges, because (1) the existence of multiple flow regimes such as NAO+, AO+, AO- and NAO- resulted from processes with timescales much longer than LFV itself, which may have underlying dynamics other than topography-jet stream interaction, and (2) we find LFV seems not necessarily to come directly from the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain, although it can produce similar oscillatory behavior. The feedback/forcing of synoptic-scale eddies on the planetary-scale dynamics seems to play a more essential role in its origin.

  2. The hydrological modeling in terms of determining the potential European beaver effect

    NASA Astrophysics Data System (ADS)

    Szostak, Marta; Jagodzińska, Jadwiga

    2017-06-01

    The objective of the paper was the hydrological analysis, in terms of categorizing main watercourses (based on coupled catchments) and marking areas covered by potential impact of the occurrence and activities of the European beaver Castor fiber. At the analysed area - the Forest District Głogów Małopolski there is a population of about 200 beavers in that Forest District. Damage inflicted by beavers was detected on 33.0 ha of the Forest District, while in the area of 13.9 ha the damage was small (below 10%). The monitoring of the beavers' behaviour and the analysis of their influence on hydrology of the area became an important element of using geoinformationtools in the management of forest areas. ArcHydro ArcGIS Esri module was applied, as an integrated set of tools for hydrographical analysis and modelling. Further steps of the procedure are hydrologic analyses such as: marking river networks on the DTM, filling holes, making maps of the flow direction, making the map of the accumulation flow, defining and segmentation of streams, marking elementary basins, marking coupled basins, making dams in the places, where beavers occur and localization of the area with a visible impact of damming. The result of the study includes maps prepared for the Forest District: the map of main rivers and their basins, categories of watercourses and compartments particularly threatened by beaver's foraging.

  3. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  4. Reconstruction of the water table from self-potential data: a bayesian approach.

    PubMed

    Jardani, A; Revil, A; Barrash, W; Crespy, A; Rizzo, E; Straface, S; Cardiff, M; Malama, B; Miller, C; Johnson, T

    2009-01-01

    Ground water flow associated with pumping and injection tests generates self-potential signals that can be measured at the ground surface and used to estimate the pattern of ground water flow at depth. We propose an inversion of the self-potential signals that accounts for the heterogeneous nature of the aquifer and a relationship between the electrical resistivity and the streaming current coupling coefficient. We recast the inversion of the self-potential data into a Bayesian framework. Synthetic tests are performed showing the advantage in using self-potential signals in addition to in situ measurements of the potentiometric levels to reconstruct the shape of the water table. This methodology is applied to a new data set from a series of coordinated hydraulic tomography, self-potential, and electrical resistivity tomography experiments performed at the Boise Hydrogeophysical Research Site, Idaho. In particular, we examine one of the dipole hydraulic tests and its reciprocal to show the sensitivity of the self-potential signals to variations of the potentiometric levels under steady-state conditions. However, because of the high pumping rate, the response was also influenced by the Reynolds number, especially near the pumping well for a given test. Ground water flow in the inertial laminar flow regime is responsible for nonlinearity that is not yet accounted for in self-potential tomography. Numerical modeling addresses the sensitivity of the self-potential response to this problem.

  5. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  6. `Skinny Milky Way please', says Sagittarius

    NASA Astrophysics Data System (ADS)

    Gibbons, S. L. J.; Belokurov, V.; Evans, N. W.

    2014-12-01

    Motivated by recent observations of the Sagittarius stream, we devise a rapid algorithm to generate faithful representations of the centroids of stellar tidal streams formed in a disruption of a progenitor of an arbitrary mass in an arbitrary potential. Our method works by releasing swarms of test particles at the Lagrange points around the satellite and subsequently evolving them in a combined potential of the host and the progenitor. We stress that the action of the progenitor's gravity is crucial to making streams that look almost indistinguishable from the N-body realizations, as indeed ours do. The method is tested on mock stream data in three different Milky Way potentials with increasing complexity, and is shown to deliver unbiased inference on the Galactic mass distribution out to large radii. When applied to the observations of the Sagittarius stream, our model gives a natural explanation of the stream's apocentric distances and the differential orbital precession. We, therefore, provide a new independent measurement of the Galactic mass distribution beyond 50 kpc. The Sagittarius stream model favours a light Milky Way with the mass 4.1 ± 0.4 × 1011 M⊙ at 100 kpc, which can be extrapolated to 5.6 ± 1.2 × 1011 M⊙ at 200 kpc. Such a low mass for the Milky Way Galaxy is in good agreement with estimates from the kinematics of halo stars and from the satellite galaxies (once Leo I is removed from the sample). It entirely removes the `Too Big To Fail Problem'.

  7. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    USDA-ARS?s Scientific Manuscript database

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  8. Seasonal nitrate uptake and denitrification potential in small headwater streams in the Willamette Valley, Oregon

    EPA Science Inventory

    Background/Question/Methods Headwater streams can serve as important sources and sinks for nitrogen (N) for downstream receiving waters. Prior research on N removal in small streams has largely focused on growing season conditions. Here we examine the influence of headwater...

  9. LAND USE IMPACTS ON STREAM BED SUBSTRATE MODERATED BY GEOLOGY IN THE JOHN DAY BASIN, OREGON

    EPA Science Inventory

    Human land uses and land cover modifications (e.g., logging, agriculture, roads) can alter runoff and increase sediment supply to streams, potentially degrading aquatic habitat for benthic organisms and fish. This study used synoptic stream habitat survey data from a regional as...

  10. Stream-Groundwater Interactions Along Streams of the Eastern Sierra Nevada, California: Implications for Assessing Potential Impacts of Flow Diversions

    Treesearch

    G. Mathias Kondolf

    1989-01-01

    One of the most fundamental hydrologic determinations to be made in assessing the probable impacts of flow diversions on riparian vegetation is whether flows are gaining or losing water to groundwater in the reach of interest. Flow measurements on eight streams in the Owens River and Mono Lake basins show that stream- groundwater interactions can produce substantial...

  11. Hydropower assessment of Bolivia—A multisource satellite data and hydrologic modeling approach

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Pervez, Shahriar; Cushing, W. Matthew

    2016-11-28

    This study produced a geospatial database for use in a decision support system by the Bolivian authorities to investigate further development and investment potentials in sustainable hydropower in Bolivia. The study assessed theoretical hydropower of all 1-kilometer (km) stream segments in the country using multisource satellite data and a hydrologic modeling approach. With the assessment covering the 2 million square kilometer (km2) region influencing Bolivia’s drainage network, the potential hydropower figures are based on theoretical yield assuming that the systems generating the power are 100 percent efficient. There are several factors to consider when determining the real-world or technical power potential of a hydropower system, and these factors can vary depending on local conditions. Since this assessment covers a large area, it was necessary to reduce these variables to the two that can be modeled consistently throughout the region, streamflow or discharge, and elevation drop or head. First, the Shuttle Radar Topography Mission high-resolution 30-meter (m) digital elevation model was used to identify stream segments with greater than 10 km2 of upstream drainage. We applied several preconditioning processes to the 30-m digital elevation model to reduce errors and improve the accuracy of stream delineation and head height estimation. A total of 316,500 1-km stream segments were identified and used in this study to assess the total theoretical hydropower potential of Bolivia. Precipitation observations from a total of 463 stations obtained from the Bolivian Servicio Nacional de Meteorología e Hidrología (Bolivian National Meteorology and Hydrology Service) and the Brazilian Agência Nacional de Águas (Brazilian National Water Agency) were used to validate six different gridded precipitation estimates for Bolivia obtained from various sources. Validation results indicated that gridded precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) reanalysis product (3B43) had the highest accuracies. The coarse-resolution (25-km) TRMM data were disaggregated to 5-km pixels using climatology information obtained from the Climate Hazards Group Infrared Precipitation with Stations dataset. About a 17-percent bias was observed in the disaggregated TRMM estimates, which was corrected using the station observations. The bias-corrected, disaggregated TRMM precipitation estimate was used to compute stream discharge using a regionalization approach. In regionalization approach, required homogeneous regions for Bolivia were derived from precipitation patterns and topographic characteristics using a k-means clustering approach. Using the discharge and head height estimates for each 1-km stream segment, we computed hydropower potential for 316,490 stream segments within Bolivia and that share borders with Bolivia. The total theoretical hydropower potential (TTHP) of these stream segments was found to be 212 gigawatts (GW). Out of this total, 77.4 GW was within protected areas where hydropower projects cannot be developed; hence, the remaining total theoretical hydropower in Bolivia (outside the protected areas) was estimated as 135 GW. Nearly 1,000 1-km stream segments, however, were within the boundaries of existing hydropower projects. The TTHP of these stream segments was nearly 1.4 GW, so the residual TTHP of the streams in Bolivia was estimated as 133 GW. Care should be exercised to understand and interpret the TTHP identified in this study because all the stream segments identified and assessed in this study cannot be harnessed to their full capacity; furthermore, factors such as required environmental flows, efficiency, economics, and feasibility need to be considered to better identify a more real-world hydropower potential. If environmental flow requirements of 20–40 percent are considered, the total theoretical power available reduces by 60–80 percent. In addition, a 0.72 efficiency factor further reduces the estimation by another 28 percent. This study provides the base theoretical hydropower potential for Bolivia, the next step is to identify optimal hydropower plant locations and factor in the principles to appraise a real-world power potential in Bolivia.

  12. Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive.

    PubMed

    Sánchez-Montoya, María del Mar; Arce, Maria Isabel; Vidal-Abarca, María Rosario; Suárez, María Luisa; Prat, Narcís; Gómez, Rosa

    2012-05-01

    Type-specific physico-chemical reference conditions are required for the assessment of ecological status in the Water Framework Directive context, similarly to the biological and hydro-morphological elements. This directive emphasises that natural variability of quality elements in high status (reference condition) needs to be quantified. Mediterranean streams often present a marked seasonal pattern in hydrological, biological and geochemical processes which could affect physico-chemical reference conditions. This study establishes general physico-chemical reference conditions (oxygenation, nutrient, salinity and acidification conditions) for different Mediterranean stream types. 116 potential reference sites located in 23 Mediterranean catchments in Spain were sampled in spring, summer and autumn in 2003. All sites were subjected to a screening method for the selection of reference sites in Mediterranean streams (Mediterranean Reference Criteria) and classified using a pre-established stream typology that establishes five different stream types (temporary streams, evaporite-calcareous at medium altitude, siliceous headwaters, calcareous headwaters and large watercourses). Reference conditions (reference value and reference threshold equivalents to high-good class boundary) were calculated using two different methods according to the availability of reference sites: the reference site 75th percentile approach of all reference sites and the 25th percentile of the population approach. The majority of the studied potential reference sites (76 out of 116) were selected as reference sites. Regarding type-specific reference conditions, only siliceous headwaters could be considered different from the rest of stream types because lower conductivity and pH. All reference stream types presented seasonal differences as regards some parameters, except for temporary streams due to the high natural variation of this stream type. For those parameters which presented seasonal differences in a specific stream type, the least restrictive values were proposed as reference conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Potential metal recovery from waste streams

    USGS Publications Warehouse

    Smith, Kathleen S.; Hageman, Philip L.; Plumlee, Geoffrey S.; Budahn, James R.; Bleiwas, Donald I.

    2015-01-01

    ‘Waste stream’ is a general term that describes the total flow of waste from homes, businesses, industrial facilities, and institutions that are recycled, burned or isolated from the environment in landfills or other types of storage, or dissipated into the environment. The recovery and reuse of chemical elements from waste streams have the potential to decrease U.S. reliance on primary resources and imports, and to lessen unwanted dispersion of some potentially harmful elements into the environment. Additional benefits might include reducing disposal or treatment costs and decreasing the risk of future environmental liabilities for waste generators. Elemental chemistry and mineralogical residences of the elements are poorly documented for many types of waste streams.

  14. Reactive solute transport in streams: 1. Development of an equilibrium- based model

    USGS Publications Warehouse

    Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  15. Interpretation of the electric fields measured in an ionospheric critical ionization velocity experiment

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Faelthammar, C.-G.; Marklund, G.; Haerendel, G.; Kelley, M. C.; Pfaff, R.

    1991-01-01

    The quasi-dc electric fields measured in the CRIT I ionospheric release experiment are studied. In the experiment, two identical barium shaped charges were fired toward a main payload, and three-dimensional measurements of the electric field inside the streams were made. The relevance of proposed mechanisms for electron heating in the critical ionization velocity (CIV) mechanism is addressed. It is concluded that both the 'homogeneous' and the 'ionizing front' models probably are valid, but in different parts of the streams. It is also possible that electrons are directly accelerated by a magnetic field-aligned component of the electric field. The coupling between the ambient ionosphere and the ionized barium stream is more complicated that is usually assumed in CIV theories, with strong magnetic-field-aligned electric fields and probably current limitation as important processes.

  16. Pesticides in U.S. streams and rivers: occurrence and trends during 1992-2011

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Ryberg, Karen R.

    2014-01-01

    During the 20 years from 1992 to 2011, pesticides were found at concentrations that exceeded aquatic-life benchmarks in many rivers and streams that drain agricultural, urban, and mixed-land use watersheds. Overall, the proportions of assessed streams with one or more pesticides that exceeded an aquatic-life benchmark were very similar between the two decades for agricultural (69% during 1992−2001 compared to 61% during 2002−2011) and mixed-land-use streams (45% compared to 46%). Urban streams, in contrast, increased from 53% during 1992−2011 to 90% during 2002−2011, largely because of fipronil and dichlorvos. The potential for adverse effects on aquatic life is likely greater than these results indicate because potentially important pesticide compounds were not included in the assessment. Human-health benchmarks were much less frequently exceeded, and during 2002−2011, only one agricultural stream and no urban or mixed-land-use streams exceeded human-health benchmarks for any of the measured pesticides. Widespread trends in pesticide concentrations, some downward and some upward, occurred in response to shifts in use patterns primarily driven by regulatory changes and introductions of new pesticides.

  17. Invasive European bird cherry disrupts stream-riparian linkages: effects on terrestrial invertebrate prey subsidies for juvenile coho salmon

    USGS Publications Warehouse

    Roon, David A.; Wipfli, Mark S.; Wurtz, Tricia L.; Blanchard, Arny L.

    2016-01-01

    The spread of invasive species in riparian forests has the potential to affect both terrestrial and aquatic organisms linked through cross-ecosystem resource subsidies. However, this potential had not been explored in regards to terrestrial prey subsidies for stream fishes. To address this, we examined the effects of an invasive riparian tree, European bird cherry (EBC, Prunus padus), spreading along urban Alaskan salmon streams, by collecting terrestrial invertebrates present on the foliage of riparian trees, their subsidies to streams, and their consumption by juvenile coho salmon (Oncorhynchus kisutch). Riparian EBC supported four to six times less terrestrial invertebrate biomass on its foliage and contributed two to three times lower subsidies relative to native deciduous trees. This reduction in terrestrial invertebrate biomass was consistent between two watersheds over 2 years. In spite of this reduction in terrestrial prey resource input, juvenile coho salmon consumed similar levels of terrestrial invertebrates in stream reaches bordered by EBC. Although we did not see ecological effects extending to stream salmonids, reduced terrestrial prey subsidies to streams are likely to have negative consequences as EBC continues to spread.

  18. Temporal stability and rates of post-depositional change in geochemical signatures of brown trout Salmo trutta scales.

    PubMed

    Ryan, D; Shephard, S; Kelly, F L

    2016-09-01

    This study investigates temporal stability in the scale microchemistry of brown trout Salmo trutta in feeder streams of a large heterogeneous lake catchment and rates of change after migration into the lake. Laser-ablation inductively coupled plasma mass spectrometry was used to quantify the elemental concentrations of Na, Mg, Mn, Cu, Zn, Ba and Sr in archived (1997-2002) scales of juvenile S. trutta collected from six major feeder streams of Lough Mask, County Mayo, Ireland. Water-element Ca ratios within these streams were determined for the fish sampling period and for a later period (2013-2015). Salmo trutta scale Sr and Ba concentrations were significantly (P < 0·05) correlated with stream water sample Sr:Ca and Ba:Ca ratios respectively from both periods, indicating multi-annual stability in scale and water-elemental signatures. Discriminant analysis of scale chemistries correctly classified 91% of sampled juvenile S. trutta to their stream of origin using a cross-validated classification model. This model was used to test whether assumed post-depositional change in scale element concentrations reduced correct natal stream classification of S. trutta in successive years after migration into Lough Mask. Fish residing in the lake for 1-3 years could be reliably classified to their most likely natal stream, but the probability of correct classification diminished strongly with longer lake residence. Use of scale chemistry to identify natal streams of lake S. trutta should focus on recent migrants, but may not require contemporary water chemistry data. © 2016 The Fisheries Society of the British Isles.

  19. Spatio-temporal variability in the distribution of ground-dwelling riparian spiders and their potential role in water-to-land energy transfer along Hong Kong forest streams

    PubMed Central

    Yuen, Elaine Y.L.

    2015-01-01

    Terrestrial predators have been shown to aggregate along stream margins during periods when the emergence of adult aquatic insects is high. Such aggregation may be especially evident when terrestrial surroundings are relatively unproductive, and there are steep productivity gradients across riparia. In tropical forests, however, the productivity of inland terrestrial habitats may decrease the resource gradient across riparia, thus lessening any tendency of terrestrial predators to aggregate along stream margins. We elucidated the spatio-temporal variability in the distribution of ground-dwelling spiders and terrestrial arthropod prey within the riparia of two forest streams in tropical Hong Kong by sampling arthropods along transects at different distances from the streams during the wet and dry seasons. Environmental variables that may have influenced spider distributions were also measured. The vast majority of ground-dwelling predators along all transects at both sites were spiders. Of the three most abundant spiders captured along stream margins, Heteropoda venatoria (Sparassidae) and Draconarius spp. (Agelenidae) were terrestrially inclined and abundant during both seasons. Only Pardosa sumatrana (Lycosidae) showed some degree of aggregation at the stream banks, indicating a potential reliance on aquatic insect prey. Circumstantial evidence supports this notion, as P. sumatrana was virtually absent during the dry season when aquatic insect emergence was low. In general, forest-stream riparia in Hong Kong did not appear to be feeding hotspots for ground-dwelling predators. The lack of aggregation in ground-dwelling spiders in general may be attributed to the low rates of emergence of aquatic insects from the study streams compared to counterpart systems, as well as the potentially high availability of terrestrial insect prey in the surrounding forest. Heteropoda venatoria, the largest of the three spiders maintained a high biomass (up to 28 mg dry weight/m2) in stream riparia, exceeding the total standing stock of all other spiders by 2–80 times. The biomass and inland distribution of H. venatoria could make it a likely conduit for the stream-to-land transfer of energy. PMID:26246974

  20. Event-Related Potentials Index Segmentation of Nonsense Sounds

    ERIC Educational Resources Information Center

    Sanders, Lisa D.; Ameral, Victoria; Sayles, Kathryn

    2009-01-01

    To understand the world around us, continuous streams of information including speech must be segmented into units that can be mapped onto stored representations. Recent evidence has shown that event-related potentials (ERPs) can index the online segmentation of sound streams. In the current study, listeners were trained to recognize sequences of…

  1. The zeta potential of extended dielectrics and conductors in terms of streaming potential and streaming current measurements.

    PubMed

    Gallardo-Moreno, Amparo M; Vadillo-Rodríguez, Virginia; Perera-Núñez, Julia; Bruque, José M; González-Martín, M Luisa

    2012-07-21

    The electrical characterization of surfaces in terms of the zeta potential (ζ), i.e., the electric potential contributing to the interaction potential energy, is of major importance in a wide variety of industrial, environmental and biomedical applications in which the integration of any material with the surrounding media is initially mediated by the physico-chemical properties of its outer surface layer. Among the different existing electrokinetic techniques for obtaining ζ, streaming potential (V(str)) and streaming current (I(str)) are important when dealing with flat-extended samples. Mostly dielectric materials have been subjected to this type of analysis and only a few papers can be found in the literature regarding the electrokinetic characterization of conducting materials. Nevertheless, a standardized procedure is typically followed to calculate ζ from the measured data and, importantly, it is shown in this paper that such a procedure leads to incorrect zeta potential values when conductors are investigated. In any case, assessment of a reliable numerical value of ζ requires careful consideration of the origin of the input data and the characteristics of the experimental setup. In particular, it is shown that the cell resistance (R) typically obtained through a.c. signals (R(a.c.)), and needed for the calculations of ζ, always underestimates the zeta potential values obtained from streaming potential measurements. The consideration of R(EK), derived from the V(str)/I(str) ratio, leads to reliable values of ζ when dielectrics are investigated. For metals, the contribution of conductivity of the sample to the cell resistance provokes an underestimation of R(EK), which leads to unrealistic values of ζ. For the electrical characterization of conducting samples I(str) measurements constitute a better choice. In general, the findings gathered in this manuscript establish a measurement protocol for obtaining reliable zeta potentials of dielectrics and conductors based on the intrinsic electrokinetic behavior of both types of samples.

  2. Tropical small streams are a consistent source of methane

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Waldron, Susan

    2013-04-01

    To date only a few studies have quantified diffusive methane emissions from headwater streams therefore the magnitude and seasonal variation of these emissions remain poorly understood. Here we present results from two Western Amazonian small streams (first and second order) in Tambopata National Reserve, Peru. Towards the end of wet season, April-May 2012, the streams were sampled using a static floating chamber to accumulate methane. Samples were drawn from the headspace twice daily over period of four days on three separate occasions. The methane concentrations were analysed using a gas chromatograph and the linear part of concentration increase used to calculate the flux rates. The streams were consistently outgassing methane. The seasonally active first order stream outgassed 6 ±2.4 nmol CH4-C m-2 s-1 and the second order stream 20 ±4.0 nmol CH4-C m-2 s-1. The latter flux rate is comparable to fluxes measured from seasonally flooded Amazonian forest in previous studies. The range measured in our streams is comparable to previous results in temperate streams and the lower end of fluxes observed in some peatland streams. The only other study on Amazonian small streams detected methane fluxes that were 100 times greater than those measured here. Depending on the density of small streams in Amazonian basin and the prevalent flux rate, the fluvial methane fluxes may constitute a significant global warming potential. Upscaling to the Amazon basin, assuming small stream density of 0.2 %, as was found at our field site, and the flux rates detected, yields an annual global warming potential equal to approximately 1.5 Mt of CO2 which is of minor importance compared to aquatic CO2-C flux of 500 Mt yr-1 from the basin. However, if the higher fluxes detected in the previous study were prevalent, the basin wide methane flux could become significant. Further studies are needed to establish the stream density in the Amazon basin and typical methane flux rates.

  3. Landuse legacies and small streams: Identifying relationships between historical land use and contemporary stream conditions

    USGS Publications Warehouse

    Maloney, K.O.; Feminella, J.W.; Mitchell, R.M.; Miller, S.A.; Mulholland, P.J.; Houser, J.N.

    2008-01-01

    The concept of landscape legacies has been examined extensively in terrestrial ecosystems and has led to a greater understanding of contemporary ecosystem processes. However, although stream ecosystems are tightly coupled with their catchments and, thus, probably are affected strongly by historical catchment conditions, few studies have directly examined the importance of landuse legacies on streams. We examined relationships between historical land use (1944) and contemporary (2000-2003) stream physical, chemical, and biological conditions after accounting for the influences of contemporary land use (1999) and natural landscape (catchment size) variation in 12 small streams at Fort Benning, Georgia, USA. Most stream variables showed strong relationships with contemporary land use and catchment size; however, after accounting for these factors, residual variation in many variables remained significantly related to historical land use. Residual variation in benthic particulate organic matter, diatom density, % of diatoms in Eunotia spp., fish density in runs, and whole-stream gross primary productivity correlated negatively, whereas streamwater pH correlated positively, with residual variation in fraction of disturbed land in catchments in 1944 (i.e., bare ground and unpaved road cover). Residual variation in % recovering land (i.e., early successional vegetation) in 1944 was correlated positively with residual variation in streambed instability, a macroinvertebrate biotic index, and fish richness, but correlated negatively with residual variation in most benthic macroinvertebrate metrics examined (e.g., Chironomidae and total richness, Shannon diversity). In contrast, residual variation in whole-stream respiration rates was not explained by historical land use. Our results suggest that historical land use continues to influence important physical and chemical variables in these streams, and in turn, probably influences associated biota. Beyond providing insight into biotic interactions and their associations with environmental conditions, identification of landuse legacies also will improve understanding of stream impairment in contemporary minimally disturbed catchments, enabling more accurate assessment of reference conditions in studies of biotic integrity and restoration. ?? 2008 by The North American Benthological Society.

  4. Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-12-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in air temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitats in freshwater systems is critical for predicting aquatic species' responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore the spatially and temporally varying changes in stream temperature for the late 21st century at the subbasin and ecological province scale for the Columbia River basin (CRB). On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil water flow, and groundwater inflow, are negatively correlated to increases in stream temperature depending on the ecological province and season. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa.

  5. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-06-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled General Circulation Model outputs to explore the spatially and temporally varying changes in stream temperature at the subbasin and ecological province scale for the Columbia River Basin. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil flow, and groundwater, are negatively correlated to increases in stream temperature depending on the season and ecological province. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by non-migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically-explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa.

  6. The pulse of a montane ecosystem: coupled diurnal cycles in solar flux, snowmelt, evapotranspiration, groundwater, and streamflow at Sagehen Creek (Sierra Nevada, California)

    NASA Astrophysics Data System (ADS)

    Kirchner, James

    2016-04-01

    Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). During this transition, the groundwater cycles briefly vanish when the opposing forcings (snowmelt and ET) are of equal magnitude, and thus cancel each other out. Stream stage fluctuations integrate these relationships over the altitude range of the catchment. Rates of rise and fall in stream stage are positively correlated with solar flux when the whole catchment is snow-covered, and negatively correlated with solar flux when the whole catchment is snow-free. The correlation with solar flux gradually shifts from positive to negative over several weeks, as the snow-covered area contracts higher and higher in the basin. The dates at which the snowmelt and ET signals in the stream cancel each other out occur systematically later at higher altitudes along the stream's longitudinal profile. At these particular dates, it may be possible to infer spatially averaged rates of ET (which are difficult to measure accurately) from spatially averaged rates of snowmelt (which can be estimated somewhat more straightforwardly from energy balance). These observations illustrate how groundwater and stream stage fluctuations are mirrors of the landscape, reflecting the energetics of snowmelt and evapotranspiration at the plot and catchment scale.

  7. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester.

    PubMed

    Browne, James D; Allen, Eoin; Murphy, Jerry D

    2013-01-01

    This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.

  8. Modeling fecal contamination in the Aljezur coastal stream (Portugal)

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marta; Oliveira, Anabela; Guerreiro, Martha; Fortunato, André Bustorff; Menaia, José; David, Luís Mesquita; Cravo, Alexandra

    2011-06-01

    This study aims at understanding the fecal contamination behavior in a small coastal stream (Aljezur, Portugal), which has significant economic and ecological values. Like in most small coastal systems, circulation and water renewal in the Aljezur stream exhibit a strong variability due to their dependence on tides, waves, intermittent river flows, and a highly variable morphology. Hence, the problem was approached through a combination of field surveys and the development and application of a hard-coupled three-dimensional hydrodynamic and fecal contamination model. Salinity and temperature results have shown that mixing and transport in the stream are very sensitive to the river flow and wind forcing. The model is able to represent the main patterns and trends observed in Escherichia coli and fecal enterococcus concentrations along the stream, for different environmental and contamination conditions, suggesting die-off rates on the order of 0.50-0.55 day-1. Die-off rate and the representation of the sediment-associated processes were identified as the major remaining sources of uncertainty in the model. Results show that, owing to the processes that occur along the stream, fecal bacteria reach the beaches water in numbers that comply with the European Bathing Waters Directive, even during the summer periods when the upstream concentrations are larger. In particular, results suggest a direct relation between the tidal propagation upstream and the reduction of the fecal bacteria concentrations along the stream that can be relevant for the development of a strategy for the management of the system's water safety.

  9. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  10. Nitrogen cycling process rates across urban ecosystems.

    PubMed

    Reisinger, Alexander J; Groffman, Peter M; Rosi-Marshall, Emma J

    2016-09-21

    Nitrogen (N) pollution of freshwater, estuarine, and marine ecosystems is widespread and has numerous environmental and economic impacts. A portion of this excess N comes from urban watersheds comprised of natural and engineered ecosystems which can alter downstream N export. Studies of urban N cycling have focused on either specific ecosystems or on watershed-scale mass balances. Comparisons of specific N transformations across ecosystems are required to contextualize rates from individual studies. Here we reviewed urban N cycling in terrestrial, aquatic, and engineered ecosystems, and compared N processing in these urban ecosystem types to native reference ecosystems. We found that net N mineralization and net nitrification rates were enhanced in urban forests and riparian zones relative to reference ecosystems. Denitrification was highly variable across urban ecosystem types, but no significant differences were found between urban and reference denitrification rates. When focusing on urban streams, ammonium uptake was more rapid than nitrate uptake in urban streams. Additionally, reduction of stormwater runoff coupled with potential decreases in N concentration suggests that green infrastructure may reduce downstream N export. Despite multiple environmental stressors in urban environments, ecosystems within urban watersheds can process and transform N at rates similar to or higher than reference ecosystems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Coupling between air travel and climate

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Donnelly, Jeffrey P.; Barkley, Hannah C.; Martin, Jonathan E.

    2015-12-01

    The airline industry closely monitors the midlatitude jet stream for short-term planning of flight paths and arrival times. In addition to passenger safety and on-time metrics, this is due to the acute sensitivity of airline profits to fuel cost. US carriers spent US$47 billion on jet fuel in 2011, compared with a total industry operating revenue of US$192 billion. Beyond the timescale of synoptic weather, the El Niño/Southern Oscillation (ENSO), Arctic Oscillation (AO) and other modes of variability modulate the strength and position of the Aleutian low and Pacific high on interannual timescales, which influence the tendency of the exit region of the midlatitude Pacific jet stream to extend, retract and meander poleward and equatorward. The impact of global aviation on climate change has been studied for decades owing to the radiative forcing of emitted greenhouse gases, contrails and other effects. The impact of climate variability on air travel, however, has only recently come into focus, primarily in terms of turbulence. Shifting attention to flight durations, here we show that 88% of the interannual variance in domestic flight times between Hawaii and the continental US is explained by a linear combination of ENSO and the AO. Further, we extend our analysis to CMIP5 model projections to explore potential feedbacks between anthropogenic climate change and air travel.

  12. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  13. Logging-related increases in stream density in a northern California watershed

    Treesearch

    Matthew S. Buffleben

    2012-01-01

    Although many sediment budgets estimate the effects of logging, few have considered the potential impact of timber harvesting on stream density. Failure to consider changes in stream density could lead to large errors in the sediment budget, particularly between the allocation of natural and anthropogenic sources of sediment.This study...

  14. Stable Isotope Analysis of stream organisms -- a potential tool for monitoring changes in catchment conditions and effects on stream ecosystems

    EPA Science Inventory

    Stable isotope analyses of stream organisms are performed usually as discrete site experiments (e.g., to study the effect of a direct manipulation), synoptically (e.g. to illustrate effects of longitudinal variation of influencing factors), or, less frequently, over the course of...

  15. Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms

    PubMed Central

    Wilhelm, Linda; Besemer, Katharina; Fragner, Lena; Peter, Hannes; Weckwerth, Wolfram; Battin, Tom J

    2015-01-01

    Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, community composition and functions of benthic biofilms. Combining bromodeoxyuridine labelling and 454 pyrosequencing, we showed that diversity was lower upstream than downstream of the treeline and that community composition changed along the altitudinal gradient. We also found that, especially for allochthonous resources, specialisation by biofilm bacteria increased along that same gradient. Our results suggest that in streams below the treeline biofilm diversity, specialisation and functioning are associated with increasing niche differentiation as potentially modulated by divers allochthonous and autochthonous constituents contributing to resources. These findings expand our current understanding on biofilm structure and function in alpine streams. PMID:25978543

  16. Trophic Interactions Between Insects and Stream-Associated Amphibians in Steep, Cobble-Bottom Streams of the Pacific Coast of North America

    PubMed Central

    Atwood, Trisha; Richardson, John S.

    2012-01-01

    Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also “bulldoze” insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems. PMID:26466536

  17. Climate Change Impacts on River Temperature in the Southeastern United States: A Case Study of the Tennessee River Basin

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Niemeyer, R. J.; Mao, Y.; Yearsley, J. R.; Nijssen, B.

    2016-12-01

    In the coming decades, climate change and population growth are expected to affect water and energy supply as well as demand in the southeastern United States. Changes in temperature and precipitation impact river flow and stream temperature with implications for hydropower generation, industrial and municipal water supply, cooling for thermo-electric power plants, agricultural irrigation, ecosystem functions and flood control. At the same time, water and energy demand are expected to change in response to temperature increase, population growth and changing crop water requirements. As part of a multi-institution study of the food-energy-water nexus in the southeastern U.S., we are developing coupled hydrological and stream temperature models that will be linked to water resources, power systems and crop models at a later stage. Here we evaluate the ability of our system to simulate water supply and stream temperature in the Tennessee River Basin using the Variable Infiltration Capacity (VIC) macroscale hydrology model coupled to the River Basin Model (RBM), a 1-D semi-Lagrangian river temperature model, which has recently been expanded with a two-layer reservoir temperature model. Simulations with VIC-RBM were performed for the Tennessee River Basin at 1/8-degree spatial resolution and a temporal resolution of 1 day or less. Reservoir releases were prescribed based on historic operating rules. In future iterations, these releases will be modeled directly by a water resources model that incorporates flood control, and power and agricultural water demands. We compare simulated flows, as well as stream and reservoir temperatures with observed flows and temperatures throughout the basin. In preparation for later stages of the project, we also perform a set of climate change sensitivity experiments to evaluate how changes in climate may impact river and reservoir temperature.

  18. Effects of the Huguenot Diaspora on the American Revolution

    DTIC Science & Technology

    2016-06-10

    99 Scots from Scotland and other warmer Locales...106 viii The Scots -Irish or Ulster Scots : Huguenots through the Back Door .......................... 111 The Minor Streams...immigrated to the Shenandoah Valley by way of Baltimore, Maryland. Over a couple of generations the family assimilated into the Scots

  19. Investigating Joint Attention Mechanisms through Spoken Human-Robot Interaction

    ERIC Educational Resources Information Center

    Staudte, Maria; Crocker, Matthew W.

    2011-01-01

    Referential gaze during situated language production and comprehension is tightly coupled with the unfolding speech stream (Griffin, 2001; Meyer, Sleiderink, & Levelt, 1998; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). In a shared environment, utterance comprehension may further be facilitated when the listener can exploit the speaker's…

  20. Modeling Long-Term Fluvial Incision : Shall we Care for the Details of Short-Term Fluvial Dynamics?

    NASA Astrophysics Data System (ADS)

    Lague, D.; Davy, P.

    2008-12-01

    Fluvial incision laws used in numerical models of coupled climate, erosion and tectonics systems are mainly based on the family of stream power laws for which the rate of local erosion E is a power function of the topographic slope S and the local mean discharge Q : E = K Qm Sn. The exponents m and n are generally taken as (0.35, 0.7) or (0.5, 1), and K is chosen such that the predicted topographic elevation given the prevailing rates of precipitation and tectonics stay within realistic values. The resulting topographies are reasonably realistic, and the coupled system dynamics behaves somehow as expected : more precipitation induces increased erosion and localization of the deformation. Yet, if we now focus on smaller scale fluvial dynamics (the reach scale), recent advances have suggested that discharge variability, channel width dynamics or sediment flux effects may play a significant role in controlling incision rates. These are not factored in the simple stream power law model. In this work, we study how these short- term details propagate into long-term incision dynamics within the framework of surface/tectonics coupled numerical models. To upscale the short term dynamics to geological timescales, we use a numerical model of a trapezoidal river in which vertical and lateral incision processes are computed from fluid shear stress at a daily timescale, sediment transport and protection effects are factored in, as well as a variable discharge. We show that the stream power law model might still be a valid model but that as soon as realistic effects are included such as a threshold for sediment transport, variable discharge and dynamic width the resulting exponents m and n can be as high as 2 and 4. This high non-linearity has a profound consequence on the sensitivity of fluvial relief to incision rate. We also show that additional complexity does not systematically translates into more non-linear behaviour. For instance, considering only a dynamical width without discharge variability does not induce a significant difference in the predicted long-term incision law and scaling of relief with incision rate at steady-state. We conclude that the simple stream power law models currently in use are false, and that details of short-term fluvial dynamics must make their way into long-term evolution models to avoid oversimplifying the coupled dynamics between erosion, tectonics and climate.

  1. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  2. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils.

    PubMed

    Fang, Hua; Han, Lingxi; Zhang, Houpu; Long, Zhengnan; Cai, Lin; Yu, Yunlong

    2018-05-29

    The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MFmore » coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.« less

  4. A novel image encryption algorithm based on chaos maps with Markov properties

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang

    2015-02-01

    In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.

  5. Catastrophic shifts in the aquatic primary production revealed by a small low-flow section of tropical downstream after dredging.

    PubMed

    Marotta, H; Enrich-Prast, A

    2015-11-01

    Dredging is a catastrophic disturbance that directly affects key biological processes in aquatic ecosystems, especially in those small and shallow. In the tropics, metabolic responses could still be enhanced by the high temperatures and solar incidence. Here, we assessed changes in the aquatic primary production along a small section of low-flow tropical downstream (Imboassica Stream, Brazil) after dredging. Our results suggested that these ecosystems may show catastrophic shifts between net heterotrophy and autotrophy in waters based on three short-term stages following the dredging: (I) a strongly heterotrophic net primary production -NPP- coupled to an intense respiration -R- likely supported by high resuspended organic sediments and nutrients from the bottom; (II) a strongly autotrophic NPP coupled to an intense gross primary production -GPP- favored by the high nutrient levels and low solar light attenuation from suspended solids or aquatic macrophytes; and (III) a NPP near to the equilibrium coupled to low GPP and R rates following, respectively, the shading by aquatic macrophytes and high particulate sedimentation. In conclusion, changes in aquatic primary production could be an important threshold for controlling drastic shifts in the organic matter cycling and the subsequent silting up of small tropical streams after dredging events.

  6. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  7. A River Runs Under It: Modeling the Distribution of Streams and Stream Burial in Large River Basins

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Julian, J.; Guinn, S.; Weitzell, R.; Fitzpatrick, M.

    2011-12-01

    Stream network density exerts a strong control on hydrologic processes in watersheds. Over land and through soil and bedrock substrate, water moves slowly and is subject to chemical transformations unique to conditions of continuous contact with geologic materials. In contrast, once water enters stream channels it is efficiently transported out of watersheds, reducing the amount of time for biological uptake and stream nutrient processing. Therefore, stream network density dictates both the relative importance of terrestrial and aquatic influences to stream chemistry and the residence time of water in watersheds, and is critical to modeling and empirical studies aimed at understanding the impact of land use on stream water quantity and quality. Stream network density is largely a function of the number and length of the smallest streams. Methods for mapping and measuring these headwater streams range from simple measurement of stream length from existing maps, to detailed field mapping efforts, which are difficult to implement over large areas. Confounding the simplest approaches, many headwater stream reaches are not included in hydrographical maps, such as the U.S. National Hydrography Dataset (NHD), either because they were buried during the course of urban development or because they were seen as smaller than the minimum mapping size at the time of map generation. These "missing streams" severely limit the effective analyses of stream network density based on the NHD, constituting a major problem for many efforts to understand land-use impacts on streams. Here we report on research that predicts stream presence and absence by coupling field observations of headwater stream channels with maximum entropy models (MaxEnt) commonly implemented in biogeographical studies to model species distributions. The model utilizes terrain variables that are continuously accumulated along hydrologic flowpaths derived from a 10-m digital elevation model. In validation, the model correctly predicts the presence of 91% of all 10-m stream segments, and rarely miscalculates tributary numbers. We apply this model to the entire Potomac River Basin (37,800 km2) and several adjacent basins to map stream channel density and compare our results with NHD flowline data. We find that NHD underestimates stream channel density by a factor of two in most sub watersheds and this effect is strongest in the densely urbanized cities of Washington, DC and Baltimore, MD. We then apply a second predictive model based on impervious surface area data to map the extent of stream burial. Results demonstrate that the extent of stream burial increases with decreasing stream catchment area. When applied at four time steps (1975, 1990, 2001, and 2006), we find that although stream burial rates have slowed in the recent decade, streams that are not mapped in NHD flowline data continue to be buried during development. This work is the most ambitious attempt yet to map stream network density over a large region and will have lasting implications for modeling and conservation efforts.

  8. Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide.

    PubMed

    Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon; Aslan, Mesut; Kim, Choonsoo; Presser, Volker

    2018-05-01

    Selective removal of ions by electrochemical processes is a promising approach to enable various water treatment applications such as water softening or heavy metal removal. Ion intercalation materials have been investigated for their intrinsic ability to prefer one specific ion over others, showing a preference for (small) monovalent ions over multivalent species. In this work, we present for the first time a fundamentally different approach: tunable ion selectivity not by modifying the electrode material, but by changing the operational voltage. We used titanium disulfide which shows distinctly different potentials for the intercalation of different cations and formed thereof binder-free composite electrodes with carbon nanotubes. Capitalizing on this potential difference, we demonstrate controllable cation selectivity by online monitoring the effluent stream during electrochemical operation by inductively coupled plasma optical emission spectrometry for aqueous 50 mM CsCl and MgCl2. We obtained a molar selectivity of Mg2+ over Cs+ of 31 (strong Mg preference) in the potential range between -396 mV and -220 mV vs. Ag/AgCl. By adjusting the operational potential window to -219 mV to +26 mV vs. Ag/AgCl, Cs+ is preferred over Mg2+ by 1.7-times (Cs preference). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Laser streaming: Turning a laser beam into a flow of liquid

    PubMed Central

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-01-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming. PMID:28959726

  10. Determination of hyporheic travel time distributions and other parameters from concurrent conservative and reactive tracer tests by local-in-global optimization

    NASA Astrophysics Data System (ADS)

    Knapp, Julia L. A.; Cirpka, Olaf A.

    2017-06-01

    The complexity of hyporheic flow paths requires reach-scale models of solute transport in streams that are flexible in their representation of the hyporheic passage. We use a model that couples advective-dispersive in-stream transport to hyporheic exchange with a shape-free distribution of hyporheic travel times. The model also accounts for two-site sorption and transformation of reactive solutes. The coefficients of the model are determined by fitting concurrent stream-tracer tests of conservative (fluorescein) and reactive (resazurin/resorufin) compounds. The flexibility of the shape-free models give rise to multiple local minima of the objective function in parameter estimation, thus requiring global-search algorithms, which is hindered by the large number of parameter values to be estimated. We present a local-in-global optimization approach, in which we use a Markov-Chain Monte Carlo method as global-search method to estimate a set of in-stream and hyporheic parameters. Nested therein, we infer the shape-free distribution of hyporheic travel times by a local Gauss-Newton method. The overall approach is independent of the initial guess and provides the joint posterior distribution of all parameters. We apply the described local-in-global optimization method to recorded tracer breakthrough curves of three consecutive stream sections, and infer section-wise hydraulic parameter distributions to analyze how hyporheic exchange processes differ between the stream sections.

  11. Tracking Extra Tropical Cyclones to Explore how the Jet Stream Shifted During The Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Garrett, H.

    2016-12-01

    The behavior of the jet stream during the last glacial maximum (LGM 21ka) has been the focus of multiple studies but remains highly debated. Proxy data shows that during this time in the United States, the northwest was drier than modern conditions and the southwest was wetter than modern conditions. To explain this there are two competing hypothesis, one which suggests that the jet stream shifted uniformly south and the other which suggests a stronger jet that split shifting both north and south. For this study we used TECA, to reanalyze model out-put, looking at the frequency and patterns of Extra Tropical Cyclones (ETC's), which have been found to be steered by the jet stream. We used the CCSM4 model based on its agreement with proxy data, and compared data from both the LGM and pre-industrial time periods. Initial results show a dramatic shift of ETC's north by about 10º-15º degrees and a decrease in frequency compared to pre-industrial conditions, coupled with a less pronounced southward shift of 5º-10º degrees.This evidence supports the idea that the jet stream split during the LGM. A stronger understanding of jet stream behavior will help to improve future models and prediction capabilities to prepare for hydro-climate change in drought sensitive areas.

  12. Laser streaming: Turning a laser beam into a flow of liquid.

    PubMed

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-09-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

  13. Trends in Streamflow Characteristics in Hawaii, 1913-2002

    USGS Publications Warehouse

    Oki, Delwyn S.

    2004-01-01

    The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. In Hawaii, surface-water resources are developed for both offstream uses (for example, drinking water, agriculture, and industrial uses) and instream uses (for example, maintenance of habitat and ecosystems, recreational activities, aesthetic values, maintenance of water quality, conveyance of irrigation and domestic water supplies, and protection of traditional and customary Hawaiian rights). Possible long-term trends in streamflow characteristics have important implications for water users, water suppliers, resource managers, and citizens in the State. Proper management of Hawaii's streams requires an understanding of long-term trends in streamflow characteristics and their potential implications. Effects of long-term downward trends in low flows in streams include potential loss of habitat for native stream fauna and reduced water availability for offstream and instream water uses. Effects of long-term upward trends in high flows in streams include construction of bridges and water-conveyance structures that are potentially unsafe if they are not designed with proper consideration of trends in high flows.

  14. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    USGS Publications Warehouse

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through stream rechanneling or wetland construction in appropriate hydrologic settings.

  15. Physical layer one-time-pad data encryption through synchronized semiconductor laser networks

    NASA Astrophysics Data System (ADS)

    Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-02-01

    Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.

  16. Water-supply potential of major streams and the Upper Floridan Aquifer in the vicinity of Savannah, Georgia

    USGS Publications Warehouse

    Garza, Reggina; Krause, Richard E.

    1997-01-01

    Surface- and ground-water resources in the Savannah, Georgia, area were evaluated for potential water-supply development. Stream-discharge and water-quality data were analyzed for two major streams considered to be viable water-supply sources. A ground-water flow model was developed to be used in conjunction with other previously calibrated models to simulate the effects of additional pumpage on water levels near areas of saltwater intrusion at Brunswick and seawater encroachment at Hilton Head Island. Hypothetical scenarios also were simulated involving redistributions and small increases, and decreases in pumpage.

  17. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  18. Monitoring the effects of knickpoint erosion on bridge pier and abutment structural damage due to scour.

    DOT National Transportation Integrated Search

    2012-04-01

    The goal of this study was to conduct a field-oriented evaluation, coupled with advanced laboratory techniques, of channel : degradation in a stream of the Deep Loess Region of western Iowa, namely Mud Creek. The Midwestern United States is : an idea...

  19. Two water worlds: Isotope evidence shows that trees and streams return different pools of water to the hydrosphere

    EPA Science Inventory

    Ecohydrological coupling at the watershed scale is poorly characterized. While soil-water storage is dynamic and strongly influenced by plants, few integrated tools exist for quantifying the spatial and temporal dynamics and interactions among the major components of the terrestr...

  20. Measurements of the energy spectrum of electrons emanating from solid materials irradiated by a picosecond laser

    DOE PAGES

    Di Stefano, C. A.; Kuranz, C. C.; Seely, J. F.; ...

    2015-04-01

    Here, we present the results of experiments observing the properties of the electron stream generated laterally when a laser irradiates a metal. We also found that the directionality of the electrons is dependent upon their energies, with the higher-energy tail of the spectrum ( 1MeV and higher) being more narrowly focused. This behavior is likely due to the coupling of the electrons to the electric field of the laser. We performed these experiments by using the Titan laser to irradiate a metal wire, creating the electron stream of interest. These electrons propagate to nearby spectator wires of differing metals, causingmore » them to fluoresce at their characteristic K-shell energies. This fluorescence is recorded by a crystal spectrometer. By varying the distances between the wires, we are able to probe the divergence of the electron stream, while by varying the medium through which the electrons propagate (and hence the energy-dependence of electron attenuation), we are able to probe the energy spectrum of the stream.« less

  1. Stream Chemistry After An Operational Fertilizer Application in the Ouachita Mountains

    Treesearch

    Hal O. Liechty; Jami Nettles; Daniel A. Marion; Donald J. Turton

    1999-01-01

    The amount of forested land annually fertilized in the southern United States has increased rapidly in the past 10 years. Although forest growth responses to fertilizer are fairly well understood, knowledge concerning the effects of fertilization on stream chemistry and health in this region is limited. To better understand the potential changes in stream chemistry...

  2. Are leaf breakdown rates a useful measure of stream integrity along an agricultural landuse gradient?

    Treesearch

    E.M. Hagen; J.R. Webster; E.F. Benfield

    2006-01-01

    Biological indicators often are used to assess and manage water quality in anthropogenically altered stream systems. Leaf breakdown has the potential to be a good indicator of stream integrity because it integrates a varietyof biological, chemical, and physical conditions. Red maple (Acer rubrum L.) leaf breakdown rates were measured along a gradient...

  3. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    Treesearch

    Jason B. Dunham; Brian S. Cade; James W. Terrell

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The...

  4. Effects of forest fire on headwater stream macroinvertebrate communities in eastern Washington, U.S.A.

    Treesearch

    Cassie D. Mellon; Mark S. Wipfli; Judith L. Li

    2008-01-01

    1. Recent increases in fire frequency in North America have focused interest on potential effects on adjacent ecosystems, induding streams. Headwaters could be particularly affected because of their high connectivity to riparian and downstream aquatic ecosystems through aquatic invertebrate drift and emergence. 2. Headwater streams from replicated burned and control...

  5. Assessment of corn and banana leaves as potential standardized substrates for leaf decomposition in streams affected by mountaintop removal coal mining, West Virginia, USA

    EPA Science Inventory

    Mountaintop removal and valley filling is a method of coal mining that buries Central Appalachian headwater streams. A 2007 federal court ruling highlighted the need for measurement of both ecosystem structure and function when assessing streams for mitigaton. Rapid functional as...

  6. Stream protection with small cable yarding systems

    Treesearch

    Penn A. Peters; Chris B. LeDoux

    1984-01-01

    Small cable yarder systems that can be purchased and operated by independent logging contractors have less potential negative impact on water quality than ground-based systems operating on steep terrain because they do not require such an intense road system. Stream protection costs were estimated at $3.78 per lineal foot of stream when a typical small yarder (Koller K...

  7. Detecting climate change oriented and human induced changes in stream temperature across the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.

    2017-12-01

    In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for multiple sectors of activities including electrical resources adequacy studies over the southeastern U.S.

  8. Response of Aquatic Bacterial Communities to Hydraulic Fracturing in Northwestern Pennsylvania: A Five-Year Study.

    PubMed

    Ulrich, Nikea; Kirchner, Veronica; Drucker, Rebecca; Wright, Justin R; McLimans, Christopher J; Hazen, Terry C; Campa, Maria F; Grant, Christopher J; Lamendella, Regina

    2018-04-09

    Horizontal drilling and hydraulic fracturing extraction procedures have become increasingly present in Pennsylvania where the Marcellus Shale play is largely located. The potential for long-term environmental impacts to nearby headwater stream ecosystems and aquatic bacterial assemblages is still incompletely understood. Here, we perform high-throughput sequencing of the 16 S rRNA gene to characterize the bacterial community structure of water, sediment, and other environmental samples (n = 189) from 31 headwater stream sites exhibiting different histories of fracking activity in northwestern Pennsylvania over five years (2012-2016). Stream pH was identified as a main driver of bacterial changes within the streams and fracking activity acted as an environmental selector for certain members at lower taxonomic levels within stream sediment. Methanotrophic and methanogenic bacteria (i.e. Methylocystaceae, Beijerinckiaceae, and Methanobacterium) were significantly enriched in sites exhibiting Marcellus shale activity (MSA+) compared to MSA- streams. This study highlighted potential sentinel taxa associated with nascent Marcellus shale activity and some of these taxa remained as stable biomarkers across this five-year study. Identifying the presence and functionality of specific microbial consortia within fracking-impacted streams will provide a clearer understanding of the natural microbial community's response to fracking and inform in situ remediation strategies.

  9. Tones Encountered with a Coannular Nozzle and a Method for Their Suppression

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul Bmq; Bridges, James E.; Fagan, Amy Florence; Miller, Christopher J.

    2017-01-01

    With multi-stream coannular nozzles, sometimes tones occur that may cause the nozzle to fail noise regulation standards. A two-stream nozzle was studied experimentally and numerically in an attempt to identify the sources of such tones and explore remedies. For the given nozzle configuration, sharp tones occurred in a range of low jet Mach numbers. The tones apparently occurred due to a coupling between vortex shedding from the struts, which held the nozzles and the center-body together, with various duct acoustic modes. A leading edge treatment of the struts is shown to eliminate the tones via disruption of the vortex shedding.

  10. Combined free and forced convection heat transfer in magneto fluid mechanic pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, R.A.; Lo, Y.T.

    1977-01-01

    A study is made of fully developed, laminar, free-and-forced convection heat transfer in an electrically conducting fluid flowing in an electrically insulated, horizontal, circular pipe in a vertical transverse magnetic field. The normalized magnetofluidmechanic and energy equations are reduced to three coupled partial differential equations by the introduction of a stream function of the secondary flow. A perturbation solution is generated in inverse powers of the Lykoudis number, Ly = M/sup 2//..sqrt..Gr, which yields the influence of the magnetic field on the stream function of the secondary flow, axial velocity profiles, temperature profiles, and Nusselt number. 6 figures, 1 table.

  11. Tones Encountered with a Coannular Nozzle and a Method for their Suppression

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul; Bridges, James; Fagan, Amy; Miller, Chris

    2017-01-01

    With multi-stream coannular nozzles, sometimes tones are generated that make the nozzle fail noise regulation criteria. A two-stream nozzle was studied experimentally in an attempt to identify the sources of such tones and explore remedies. With the given nozzle configuration, sharp tones occurred in a range of low jet Mach numbers (M (sub j)). The tones could be traced to a coupling of vortex shedding from the struts, that hold the nozzles and the center-body together, and various acoustic resonance modes of the ducts. A leading edge treatment of the struts is shown to suppress the vortex shedding and eliminate the tones.

  12. Stormtime Simulations of Sub-Auroral Polarization Streams (SAPS)

    NASA Astrophysics Data System (ADS)

    Huba, J.; Sazykin, S. Y.; Coster, A. J.

    2017-12-01

    We present simulation results from the self-consistently coupled SAMI3/RCM code on the impact of geomagnetic storms on the ionosphere/plasmasphere system with an emphasis on the development of sub-auroral plasma streams (SAPS). We consider the following storm events: March 31, 2001, March 17, 2013, March 17, 2015, September 3, 2012, and June 23, 2015. We compare and contrast the development of SAPS for these storms. The main results are the development of sub-auroral (< 60 degrees) low-density, high-speed flows (1 - 2 km/s). Additionally, we discuss the impact on plasmaspheric dynamics. We compare our model results to data (e.g., Millstone Hill radar, GPS TEC).

  13. Tones Encountered with a Coannular Nozzle and a Method for their Suppression

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Bridges, J. E.; Fagan, A. F.; Miller, C. J.

    2017-01-01

    With multi-stream coannular nozzles, sometimes tones occur that may cause the nozzle to fail noise regulation standards. A two-stream nozzle was studied experimentally and numerically in an at-tempt to identify the sources of such tones and explore remedies. For the given nozzle configuration, sharp tones occurred in a range of low jet Mach numbers. The tones apparently occurred due to a coupling between vortex shedding from the struts, which held the nozzles and the center-body together, with various duct acoustic modes. A leading edge treatment of the struts is shown to eliminate the tones via disruption of the vortex shedding.

  14. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts

    PubMed Central

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M.; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  15. The SMART MIL-STD-1553 bus adapter hardware manual

    NASA Technical Reports Server (NTRS)

    Ton, T. T.

    1981-01-01

    The SMART Multiplexer Interface Adapter, (SMIA) a complete system interface for message structure of the MIL-STD-1553, is described. It provides buffering and storage for transmitted and received data and handles all the necessary handshaking to interface between parallel 8-bit data bus and a MIL-STD serial bit stream. The bus adapter is configured as either a bus controller of a remote terminal interface. It is coupled directly to the multiplex bus, or stub coupled through an additional isolation transformer located at the connection point. Fault isolation resistors provide short circuit protection.

  16. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    NASA Astrophysics Data System (ADS)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  17. Exploring landscapes and ecosystems by studying their streams

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2016-12-01

    Streams integrate fluxes of water, solutes, and sediment from their catchments, and thus they act as mirrors of the surrounding landscape. Patterns of streamflow, chemistry, and sediment flux can therefore shed light on physical, chemical, and biological processes at the scale of whole ecosystems. However, landscapes also exhibit preferential flow and pervasive heterogeneity on all scales, and therefore store waters over a wide spectrum of time scales, complicating efforts to interpret hydrological and geochemical signals in streamwaters. Here I review current and recent research exploring how landscapes store, mix, and release water and solutes to streams. Groundwater levels and stream flows exhibit diurnal cycles in response to snowmelt in springtime and transpiration during the growing season. These cycles vividly illustrate how aquifers and streams mirror ecological processes in their surrounding landscapes. Stream networks extend and retract, both seasonally and in response to individual rainfall events, dynamically mapping out variations in subsurface transmissivity and in the balance between precipitation and transpiration. Water quality time series spanning the periodic table, from H+ to U, exhibit universal fractal scaling on time scales from hours to decades. This scaling behavior is a temporal expression of the spatial heterogeneity that pervades the subsurface, and it confounds efforts to identify water quality trends. Isotope tracers such as 18O, 2H, 3H, and 14C can used to quantify water ages over seven orders of magnitude, from hours to thousands of years. These tracers show that substantial fractions of streamflow are hours, days, and months old, even in streams fed by aquifers with significant proportions of pre-Holocene groundwater. Examples such as these will be presented to illustrate the close coupling between landscapes and the waters that drain them, and to demonstrate how streams can be used as windows into landscape processes.

  18. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.

    PubMed

    Jian, Yongjun; Li, Fengqin; Liu, Yongbo; Chang, Long; Liu, Quansheng; Yang, Liangui

    2017-08-01

    In order to conduct extensive investigation of energy harvesting capabilities of nanofluidic devices, we provide analytical solutions for streaming potential and electrokinetic energy conversion (EKEC) efficiency through taking the combined consequences of soft nanochannel, a rigid nanochannel whose surface is covered by charged polyelectrolyte layer, and viscoelastic rheology into account. The viscoelasticity of the fluid is considered by employing the Maxwell constitutive model when the forcing frequency of an oscillatory driving pressure flow matches with the inverse of the relaxation time scale of a typical viscoelastic fluid. We compare the streaming potential and EKEC efficiency with those of a rigid nanochannel, having zeta potential equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanochannels. Within the present selected parameter ranges, it is shown that the different peaks of maximal streaming potential and EKEC efficiency for the rigid nanochannel are larger than those for the soft nanochannel when forcing frequencies of the driving pressure gradient are close to resonating frequencies. However, more enhanced streaming potential and EKEC efficiency for a soft nanochannel can be found in most of the regions away from these resonant frequencies. Moreover, the influence of several dimensionless parameters on EKEC efficiency is discussed in detail. Finally, within the given parametric regions, the maximum efficiency at some resonant frequency obtained in present analysis is about 25%. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Map showing abundance and distribution of copper in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle. 

  20. Map showing abundance and distribution of arsenic in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Leinz, Reinhard W.; Grimes, David J.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle. 

  1. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    USGS Publications Warehouse

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; Mcdougal, Robert

    2015-01-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  2. Teaching and Technology Transfer as Alternative Revenue Streams: A Primer on the Potential Legal Implications for UK Universities

    ERIC Educational Resources Information Center

    Van Hoorebeek, Mark; Marson, James

    2005-01-01

    Purpose: The purpose of this paper is to assess the financial and intellectual issues facing the university sector as many institutions in the UK pursue alternative revenue streams. As a consequence to the increasing financial pressures, university departments are increasingly exposed to new forms of potential litigation and also face the risk to…

  3. WEPPCAT: An Online tool for assessing and managing the potential impacts of climate change on sediment loading to streams using the Water Erosion Prediction Project (WEPP) Model

    EPA Science Inventory

    WEPPCAT is an on-line tool that provides a flexible capability for creating user-determined climate change scenarios for assessing the potential impacts of climate change on sediment loading to streams using the USDA’s Water Erosion Prediction Project (WEPP) Model. In combination...

  4. Streaming potential of superhydrophobic microchannels.

    PubMed

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities

    USGS Publications Warehouse

    Johnson, Gordon R.

    1983-01-01

    Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.

  6. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  7. Groundwater contaminants in the deep benthic zone of urban streams in Canada (Invited)

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Bickerton, G.

    2010-12-01

    There is little information available on the potential threat that groundwater containing land-based contaminants poses to aquatic ecosystems in urban environments. In this study, a rapid screening approach was applied at the stream reach-scale for eight urban streams (reaches from 100 to < 1000 m). The objective was to determine what types of groundwater contaminants could be detected in the deeper benthic zone of these streams, if any, to start to address questions of whether such contaminants are a concern and which types are the most problematic. The benthic community may be especially at risk since it may experience higher contaminant concentrations than the stream itself due to fewer losses from sorption, degradation and volatilization processes. For each stream, groundwater samples from below the stream bed (typically 25-75 cm) were collected using a drive-point mini-profiler at intervals of 10-15 m along the stream and were subsequently analysed for general chemistry and a wide range of common and emerging urban contaminants. For a few test streams with known contamination, the area of contamination was identified with this technique. In addition, previously unknown contaminants or areas of contamination were identified at all nine streams. Identified contaminants included benzene and other petroleum hydrocarbons, fuel oxygenates (e.g. MTBE), perchlorate, pesticides, artificial sweeteners, and various chlorinated solvent compounds. In addition, elevated levels of nitrate, phosphate, some heavy metals, including cadmium and arsenic, and elevated chloride (likely indicating road salt) were detected. Most streams had many different types of contaminants, often overlapping over small stretches, and together often covering substantial portions of the monitored reach. The findings provide support for this screening approach for delineating areas of potential ecological concern and identifying possible sources of groundwater contamination, for urban settings. They also suggest that the presence of multiple groundwater contaminants may be a more common threat to the benthic community of urban streams than currently perceived.

  8. Auditing an intensive care unit recycling program.

    PubMed

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated (primarily by other plastics), but there was less than 1% contamination of other recycling streams. The estimated cost of the recycling program was about an additional $1000/year. In our 11-bed ICU, we recycled 14% of the total waste produced over 7-days, which was nearly half of the potentially recyclable waste. There was no infectious contamination of recyclables and minimal contamination with other waste streams, except for the PVC plastic. The estimated annual cost of the recycling program was $1000, reflecting the greater cost of disposal of some recyclables (paper and cardboard v most plastic types).

  9. Streaming driven by sessile microbubbles: Explaining flow patterns and frequency response

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2013-11-01

    Ultrasound excitation of bubbles drives powerful steady streaming flows which have found widespread applications in microfluidics, where bubbles are typically of semicircular cross section and attached to walls of the device (sessile). While bubble-driven streaming in bulk fluid is well understood, this practically relevant case presents additional complexity introduced by the wall and contact lines. We develop an asymptotic theory that takes into account the presence of the wall as well as the oscillation dynamics of the bubble, providing a complete description of the streaming flow as a function only of the driving frequency, the bubble size, and the physical properties of the fluid. We show that the coupling between different bubble oscillation modes sustains the experimentally observed streaming flow vortex pattern over a broad range of frequencies, greatly exceeding the widths of individual mode resonances. Above a threshold frequency, we predict, and observe in experiment, reversal of the flow direction. Our analytical theory can be used to guide the design of microfluidic devices, both in situations where robust flow patterns insensitive to parameter changes are desired (e.g. lab-on-a-chip sorters), and in cases where intentional modulation of the flow field appearance is key (e.g. efficient mixers). Current address: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology.

  10. Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohl, Ellen; Rathburn, Sara; Chignell, Stephen

    We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less

  11. Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado

    DOE PAGES

    Wohl, Ellen; Rathburn, Sara; Chignell, Stephen; ...

    2016-05-06

    We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less

  12. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams.

    PubMed

    McDonnell, T C; Sloat, M R; Sullivan, T J; Dolloff, C A; Hessburg, P F; Povak, N A; Jackson, W A; Sams, C

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species' distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions.

  13. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams

    PubMed Central

    Jackson, W. A; Sams, C.

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions. PMID:26247361

  14. Flow pathways in the Slapton Wood catchment using temperature as a tracer

    NASA Astrophysics Data System (ADS)

    Birkinshaw, Stephen J.; Webb, Bruce

    2010-03-01

    SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.

  15. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks and carbon transformation in fluvial networks.

  16. Influence of hillslope-channel coupling on two mountain headwater streams, Swiss National Park, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Hoffmann, Thomas; Dikau, Richard

    2014-05-01

    Sediment fluxes in mountain headwater streams are strongly conditioned by sediment supply from hillslopes and thus hillslope-channel coupling, defined as linkages connecting slopes and channels through sediment transport processes. Sediment supply from hillslopes can have major influences on channel characteristics. The main goal of my research is to achieve a better understanding of these influences on mountain headwater streams in two study areas. This is conducted through the investigation of "channel-reach morphology" according to MONTGOMERY AND BUFFINGTON (1997), morphometric and sedimentological characteristics of the channels and analysis of the slope-channel coupling system. The study was conducted in two valleys in the Swiss National Park, i.e. Val dal Botsch (VdB) and Val Mueschauns (VMu). In both headwaters slopes and channel are coupled effectively due to the small spatial vicinity and frequent debris flow processes connecting the two system components. Both catchments were glaciated in the Pleistocene but show contrasting glacial imprints today. While VdB has a V-shaped morphometry that is dominated by unconsolidated sediments (mainly talus and moraine material), VMu is U-shaped in the upper valley segments and the surface is mainly covered with bedrock. Several methods for data collection and analyses were used: (1) Channel-reach morphology classification, (2) DEM-based analysis of long profiles, ksn-values, slope-area plots and measurement of cross sections in the field, (3) investigation of sedimentological characteristics with pebble counts as well as (4) mapping of recent linkages between slopes and channel and determination of connectivity (effectivity of coupling) using a heuristic approach. The results show that sediment input into both headwater streams is dominated by debris flows. The debris flow catchments, as parts of the slope system, have the highest connectivity to the channels. Channel changes are greatest where debris flows cause massive sediment input. Channel changes include an increase in sediment size and density of boulders, a decline in grain roundness and particle sorting as well as slope steepening and alterations of cross sections due to channel incision into the deposited debris flow material. Channel-reach morphology can be modified as well, e.g. from step pool to cascade. The intensity of the influence on channels varies among the investigated debris flows. A comparison of the larger debris flows reveals that debris flows with catchments dominated by bedrock and large areal extend (absolute and relative to main channel drainage area) have the strongest influence on channels. These results suggest that the variable influence on the channel is linked to differences in the Pleistocene glacial imprint of the two study areas. Geomorphic heritage plays a crucial role in recent alpine systems. Reference: MONTGOMERY, D. R. AND J. M. BUFFINGTON (1997): Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109 (5), 596-611.

  17. The Ocean-Atmosphere Hydrothermohaline Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent

    2015-04-01

    The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each other along a "line" corresponding to the Clausius-Clapeyron relationship. A geographical description of how and where this occurs together with this new hydrothermohaline stream function will be searched for. The net heat and freshwater transport of the ocean and atmosphere can aslo be calculated from the thermohaline and hydrothermal stream functions. The heat transport across isohumes in the atmosphere and isohalines in the ocean as well as the freshwater transport across isotherms in both the atmosphere and ocean are computed. The maximum heat transport is about 16 PW in the atmosphere, while that of the ocean is just about 1 PW. The freshwater transport across isotherms in the atmosphere and ocean are shown to be tightly connected with a net maximum freshwater transport of 4 SV in the atmosphere and 2 Sv in the ocean.

  18. Potential tracers for tracking septic tank effluent discharges in watercourses.

    PubMed

    Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc

    2017-09-01

    Septic tank effluent (STE) contributes to catchment nutrient and pollutant loads. To assess the role of STE discharges in impairment of surface water, it is essential to identify the sources of pollution by tracing contaminants in watercourses. We examined tracers that were present in STE to establish their potential for identifying STE contamination in two stream systems (low and high dilution levels) against the background of upstream sources. The studied tracers were microbial, organic matter fluorescence, caffeine, artificial sweeteners and effluent chemical concentrations. The results revealed that tracer concentration ratios Cl/EC, Cl/NH 4 -N, Cl/TN, Cl/TSS, Cl/turbidity, Cl/total coliforms, Cl/sucralose, Cl/saccharin and Cl/Zn had potential as tracers in the stream with low dilution level (P < 0.05). Fluorescence spectroscopy could detect STE inputs through the presence of the tryptophan-like peak, but was limited to water courses with low level of dilution and was positively correlated with stream Escherichia coli (E. coli) and soluble reactive phosphorus (SRP). The results also suggested that caffeine and artificial sweeteners can be suitable tracers for effluent discharge in streams with low and high level of dilution. Caffeine and saccharin were positively correlated with faecal coliforms, E. coli, total P and SRP, indicating their potential to trace discharge of a faecal origin and to be a marker for effluent P. Caffeine and SRP had similar attenuation behaviour in the receiving stream waters suggesting caffeine's potential role as a surrogate indicator for the behaviour of P downstream of effluent inputs. Taken together, results suggest that a single tracer alone was not sufficient to evaluate STE contamination of watercourses, but rather a combination of multiple chemical and physical tracing approaches should be employed. A multiple tracing approach would help to identify individual and cumulative STE inputs that pose risks to stream waters in order to prioritise and target effective mitigation measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Methylmercury bioaccumulation across a productivity gradient in streams

    EPA Science Inventory

    Conceptual models have identified periphyton as a potentially improtant pathway for biomagnifying pollutants in streams. This hypothesis, however, has neither been tested experimentally, norinvestigated form ethylmercury (MeHg) a ubiquitous aquatic contaminant.

  20. Species Composition and Habitat Associations of Benthic Algal Assemblages in Headwater Streams of the Sierra Nevada, California

    Treesearch

    Larry R. Brown; Jason T. May; Carolyn T. Hunsaker

    2008-01-01

    Despite their trophic importance and potential importance as bioindicators of stream condition, benthic algae have not been well studied in California. In particular there are few studies from small streams in the Sierra Nevada. The objective of this study was to determine the standing crop of chlorophyll-a and benthic algal species assemblages...

  1. Variable infection of stream salamanders in the southern Appalachians by the trematode Metagonimoides oregonensis (family: Heterophyidae)

    Treesearch

    Jennie A. Wyderko; Ernest F. Benfield; John C. Maerz; Kristen C. Cecala; Lisa K. Belden

    2015-01-01

    Many factors contribute to parasites varying in host specificity and distribution among potential hosts. Metagonimoides oregonensis is a digenetic trematode that uses stream-dwelling plethodontid salamanders as second intermediate hosts in the Eastern US. We completed a field survey to identify which stream salamander species, at a regional level, are most...

  2. Influence of headwater site conditions and riparian buffers on terrestrial salamander response to forest thinning.

    Treesearch

    D.E. Rundio; D.H. Olson

    2007-01-01

    We examined the effect of forest thinning and riparian buffers along headwater streams on terrestrial salamanders at two sites in western Oregon. Salamander numbers were reduced postthinning at one site with lower down-wood volume. Terrestrial salamander distributions along stream-to-upslope transects suggest benefits of one and two site-potential tree-height stream...

  3. Flushing of distal hillslopes as an alternative source of stream dissolved organic carbon in a headwater catchment

    Treesearch

    John P. Gannon; Scott W. Bailey; Kevin J. McGuire; James B. Shanley

    2015-01-01

    We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM)...

  4. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    PubMed

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis

    NASA Astrophysics Data System (ADS)

    Awais, M.; Saleem, S.; Hayat, T.; Irum, S.

    2016-12-01

    This communication presents the magnetohydrodynamics (MHD) flow of a couple-stress nanofluid over a convective moving wall. The flow dynamics are analyzed in the boundary layer region. Convective cooling phenomenon combined with thermophoresis and Brownian motion effects has been discussed. Similarity transforms are utilized to convert the system of partial differential equations into coupled non-linear ordinary differential equation. Optimal homotopy analysis method (OHAM) is utilized and the concept of minimization is employed by defining the average squared residual errors. Effects of couple-stress parameter, convective cooling process parameter and energy enhancement parameters are displayed via graphs and discussed in detail. Various tables are also constructed to present the error analysis and a comparison of obtained results with the already published data. Stream lines are plotted showing a difference of Newtonian fluid model and couplestress fluid model.

  6. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  7. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  8. Stable isotope fractionation at a glacial hydrothermal field: implications for biogeochemistry and biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Cousins, C.; Bowden, R.; Fogel, M.; Cockell, C.; Crawford, I.; Gunn, M.; Karlsson, M. T.; Thorsteinsson, T.

    2012-12-01

    Hydrothermal environments that arise through the interaction between volcanogenic heat and glacial ice are ideal sites for understanding microbial biogeochemical processes on Earth, and also potentially on Mars where similar volcano-cryosphere interactions are thought to have occurred in the past. The Kverkfjöll subglacial basaltic volcano in central Iceland is geographically isolated, with little influence from flora, fauna, and human activity. Major environmental inputs include geothermal heat, meltwater from ice and snow, and outgassing of CO2, H2S, and SO2. Large physiochemical gradients exist, from steaming fumaroles and boiling hydrothermal pools, to frozen geothermal ground and glacial ice. Stable isotope measurements of total organic carbon, total sulphur, and total nitrogen were coupled with metagenomic analysis of the residing microbial communities, with the aim to identify biogeochemical relationships and processes operating within the Kverkfjöll geothermal environment, and also to identify any isotopic biosignatures that could be preserved within geothermal sediments. This study focused on a variety of samples taken along a hot spring stream that fed into a large ice-confined geothermal lake. Samples analysed range from unconsolidated hot spring sediments, well-developed microbial mats, and dissolved sulphate from hot spring fluids. From the anoxic spring source, the stream water increases in dissolved oxygen, decreases in temperature, yet maintains a pH of ~4. The spring environment is dominated by dissolved sulphate (~2.3 mM), with lower levels of nitrate (~50 μM), phosphorus (~5μM), and ammonium (~1.5 μM). Stable S isotope analysis reveals a fractionation of ~3.2 ‰ between sediment sulphide (as pyrite; δ34S ~0‰), and dissolved water sulphate (δ34S ~3.2 ‰) consistently along the hot spring stream, indicating the presence of an active sulphur cycle, although not one dominated by sulphate reduction (e.g. very negative sulphide δ34S). This fractionation trend was absent within lake sediments, possibly due to a number of mixed sources feeding into the lake, in addition to the spring stream. δ13C in sediments becomes increasingly more negative going downstream, along with increasing removal of TOC. Microbial mats were largely similar with very positive C isotope ratios (δ13C -9.4 to -12.6 ‰) typical of sulphur oxidizing microbes. Bulk genomic DNA was extracted from sediments and mats in order to identify firstly the community composition via 454-pyrosequencing, and secondly the functional diversity within these physiochemically varied environments. This metagenomic data will be combined with stable isotope patterns to elucidate the metabolic potential of hydrothermal environments at Kverkfjöll, which can be used to infer potential biogeochemical pathways of signatures of such pathways on Mars in similar, past environments.

  9. Around the Way: Testing ΛCDM with Milky Way Stellar Stream Constraints

    NASA Astrophysics Data System (ADS)

    Dai, Biwei; Robertson, Brant E.; Madau, Piero

    2018-05-01

    Recent analyses of the Pal 5 and GD-1 tidal streams suggest that the inner dark matter halo of the Milky Way is close to spherical, in tension with predictions from collisionless N-body simulations of cosmological structure formation. We use the Eris simulation to test whether the combination of dissipative physics and hierarchical structure formation can produce Milky Way–like galaxies whose dark matter halos match the tidal stream constraints from the GD-1 and Pal 5 clusters. We use a dynamical model of the simulated Eris galaxy to generate many realizations of the GD-1 and Pal 5 tidal streams, marginalize over observational uncertainties in the cluster galactocentric positions and velocities, and compare with the observational constraints. We find that the total density and potential of Eris contributed by baryons and dark matter satisfies constraints from the existing Milky Way stellar stream data, as the baryons both round and redistribute the dark matter during the dissipative formation of the galaxy, and provide a centrally concentrated mass distribution that rounds the inner potential. The Eris dark matter halo or a spherical Navarro–Frenk–White dark matter work comparably well in modeling the stream data. In contrast, the equivalent dark matter–only ErisDark simulation produces a prolate halo that cannot reproduce the observed stream data. The ongoing Gaia mission will provide decisive tests of the consistency between {{Λ }}{CDM} and Milky Way streams, and should distinguish between models like Eris and more spherical halos.

  10. Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds.

    PubMed

    Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin

    2012-11-01

    Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance.

  11. Stellar streams as gravitational experiments. II. Asymmetric tails of globular cluster streams

    NASA Astrophysics Data System (ADS)

    Thomas, G. F.; Famaey, B.; Ibata, R.; Renaud, F.; Martin, N. F.; Kroupa, P.

    2018-01-01

    Kinematically cold tidal streams of globular clusters (GC) are excellent tracers of the Galactic gravitational potential at moderate Galactocentric distances, and can also be used as probes of the law of gravity on Galactic scales. Here, we compare for the first time the generation of such streams in Newtonian and Milgromian gravity (MOND). We first computed analytical results to investigate the expected shape of the GC gravitational potential in both frameworks, and we then ran N-body simulations with the Phantom of Ramses code. We find that the GCs tend to become lopsided in MOND. This is a consequence of the external field effect which breaks the strong equivalence principle. When the GC is filling its tidal radius the lopsidedness generates a strongly asymmetric tidal stream. In Newtonian dynamics, such markedly asymmetric streams can in general only be the consequence of interactions with dark matter subhalos, giant molecular clouds, or interaction with the Galactic bar. In these Newtonian cases, the asymmetry is the consequence of a very large gap in the stream, whilst in MOND it is a true asymmetry. This should thus allow us in the future to distinguish these different scenarios by making deep observations of the environment of the asymmetric stellar stream of Palomar 5. Moreover, our simulations indicate that the high internal velocity dispersion of Palomar 5 for its small stellar mass would be natural in MOND. The movie is available in electronic form at http://www.aanda.org

  12. Implementation of local grid refinement (LGR) for the Lake Michigan Basin regional groundwater-flow model

    USGS Publications Warehouse

    Hoard, C.J.

    2010-01-01

    The U.S. Geological Survey is evaluating water availability and use within the Great Lakes Basin. This is a pilot effort to develop new techniques and methods to aid in the assessment of water availability. As part of the pilot program, a regional groundwater-flow model for the Lake Michigan Basin was developed using SEAWAT-2000. The regional model was used as a framework for assessing local-scale water availability through grid-refinement techniques. Two grid-refinement techniques, telescopic mesh refinement and local grid refinement, were used to illustrate the capability of the regional model to evaluate local-scale problems. An intermediate model was developed in central Michigan spanning an area of 454 square miles (mi2) using telescopic mesh refinement. Within the intermediate model, a smaller local model covering an area of 21.7 mi2 was developed and simulated using local grid refinement. Recharge was distributed in space and time using a daily output from a modified Thornthwaite-Mather soil-water-balance method. The soil-water-balance method derived recharge estimates from temperature and precipitation data output from an atmosphere-ocean coupled general-circulation model. The particular atmosphere-ocean coupled general-circulation model used, simulated climate change caused by high global greenhouse-gas emissions to the atmosphere. The surface-water network simulated in the regional model was refined and simulated using a streamflow-routing package for MODFLOW. The refined models were used to demonstrate streamflow depletion and potential climate change using five scenarios. The streamflow-depletion scenarios include (1) natural conditions (no pumping), (2) a pumping well near a stream; the well is screened in surficial glacial deposits, (3) a pumping well near a stream; the well is screened in deeper glacial deposits, and (4) a pumping well near a stream; the well is open to a deep bedrock aquifer. Results indicated that a range of 59 to 50 percent of the water pumped originated from the stream for the shallow glacial and deep bedrock pumping scenarios, respectively. The difference in streamflow reduction between the shallow and deep pumping scenarios was compensated for in the deep well by deriving more water from regional sources. The climate-change scenario only simulated natural conditions from 1991-2044, so there was no pumping stress simulated. Streamflows were calculated for the simulated period and indicated that recharge over the period generally increased from the start of the simulation until approximately 2017, and decreased from then to the end of the simulation. Streamflow was highly correlated with recharge so that the lowest streamflows occurred in the later stress periods of the model when recharge was lowest.

  13. Inferring the gravitational potential of the Milky Way with a few precisely measured stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.; Hendel, David

    2014-10-10

    The dark matter halo of the Milky Way is expected to be triaxial and filled with substructure. It is hoped that streams or shells of stars produced by tidal disruption of stellar systems will provide precise measures of the gravitational potential to test these predictions. We develop a method for inferring the Galactic potential with tidal streams based on the idea that the stream stars were once close in phase space. Our method can flexibly adapt to any form for the Galactic potential: it works in phase-space rather than action-space and hence relies neither on our ability to derive actionsmore » nor on the integrability of the potential. Our model is probabilistic, with a likelihood function and priors on the parameters. The method can properly account for finite observational uncertainties and missing data dimensions. We test our method on synthetic data sets generated from N-body simulations of satellite disruption in a static, multi-component Milky Way, including a triaxial dark matter halo with observational uncertainties chosen to mimic current and near-future surveys of various stars. We find that with just eight well-measured stream stars, we can infer properties of a triaxial potential with precisions of the order of 5%-7%. Without proper motions, we obtain 10% constraints on most potential parameters and precisions around 5%-10% for recovering missing phase-space coordinates. These results are encouraging for the goal of using flexible, time-dependent potential models combined with larger data sets to unravel the detailed shape of the dark matter distribution around the Milky Way.« less

  14. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs.

    PubMed

    Pálmai, Marcell; Szalay, Roland; Bartczak, Dorota; Varga, Zoltán; Nagy, Lívia Naszályi; Gollwitzer, Christian; Krumrey, Michael; Goenaga-Infante, Heidi

    2015-05-01

    A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles ((29)Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate ((29)Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride ((29)SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive (29)SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. (29)Si-TEOS was obtained by treating (29)SiCl4 with absolute ethanol. Structural characterisation of (29)Si-TEOS was performed by using (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Environmental drivers of denitrification rates and denitrifying gene abundances in channels and riparian areas

    NASA Astrophysics Data System (ADS)

    Tomasek, Abigail; Kozarek, Jessica L.; Hondzo, Miki; Lurndahl, Nicole; Sadowsky, Michael J.; Wang, Ping; Staley, Christopher

    2017-08-01

    Intensive agriculture in the Midwestern United States contributes to excess nitrogen in surface water and groundwater, negatively affecting human health and aquatic ecosystems. Complete denitrification removes reactive nitrogen from aquatic environments and releases inert dinitrogen gas. We examined denitrification rates and the abundances of denitrifying genes and total bacteria at three sites in an agricultural watershed and in an experimental stream in Minnesota. Sampling was conducted along transects with a gradient from always inundated (in-channel), to periodically inundated, to noninundated conditions to determine how denitrification rates and gene abundances varied from channels to riparian areas with different inundation histories. Results indicate a coupling between environmental parameters, gene abundances, and denitrification rates at the in-channel locations, and limited to no coupling at the periodically inundated and noninundated locations, respectively. Nutrient-amended potential denitrification rates for the in-channel locations were significantly correlated (α = 0.05) with five of six measured denitrifying gene abundances, whereas the periodically inundated and noninundated locations were each only significantly correlated with the abundance of one denitrifying gene. These results suggest that DNA-based analysis of denitrifying gene abundances alone cannot predict functional responses (denitrification potential), especially in studies with varying hydrologic regimes. A scaling analysis was performed to develop a predictive functional relationship relating environmental parameters to denitrification rates for in-channel locations. This method could be applied to other geographic and climatic regions to predict the occurrence of denitrification hot spots.

  16. Pressurized liquid extraction using water/isopropanol coupled with solid-phase extraction cleanup for industrial and anthropogenic waste-indicator compounds in sediment

    USGS Publications Warehouse

    Burkhardt, M.R.; ReVello, R.C.; Smith, S.G.; Zaugg, S.D.

    2005-01-01

    A broad range of organic compounds is recognized as environmentally relevant for their potential adverse effects on human and ecosystem health. This method was developed to better determine the distribution of 61 compounds that are typically associated with industrial and household waste as well as some that are toxic and known (or suspected) for endocrine-disrupting potential extracted from environmental sediment samples. Pressurized liquid extraction (PLE) coupled with solid-phase extraction (SPE) was used to reduce sample preparation time, reduce solvent consumption to one-fifth of that required using dichloromethane-based Soxhlet extraction, and to minimize background interferences for full scan GC/MS analysis. Recoveries from spiked Ottawa sand, commercially available topsoil, and environmental stream sediment, fortified at 4-720 ??g per compound, averaged 76 ?? 13%. Initial method detection limits for single-component compounds ranged from 12.5 to 520 ??g/kg, based on 25 g samples. Results from 103 environmental sediment samples show that 36 out of 61 compounds (59%) were detected in at least one sample with concentrations ranging from 20 to 100,000 ??g/kg. The most frequently detected compound, beta-sitosterol, a plant sterol, was detected in 87 of the 103 (84.5%) environmental samples with a concentration range 360-100,000 ??g/kg. Results for a standard reference material using dichloromethane Soxhlet-based extraction are also compared. ?? 2004 Published by Elsevier B.V.

  17. The Pulse Detonation Rocket Induced MHD Ejector (PDRIME) Concept (Preprint)

    DTIC Science & Technology

    2008-06-10

    flight applications. Thrust augmentation , such as PDE- ejector configurations, can potentially alleviate this problem. Here, we study the potential...flow, to assist in augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams...and the ejector operates. This is one of several configurations in which the PDRIME concept could be used for thrust augmentation in advanced

  18. Network analysis reveals multiscale controls on streamwater chemistry

    Treesearch

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  19. The land-cover cascade: relationships coupling land and water

    Treesearch

    C.L. Burcher; H.M. Valett; E.F. Benfield

    2007-01-01

    We introduce the land-cover cascade (LCC) as a conceptual framework to quantify the transfer of land-cover-disturbance effects to stream biota. We hypothesize that disturbance is propagated through multivariate systems through key variables that transform a disturbance and pass a reorganized disturbance effect to the next hierarchical level where the process repeats...

  20. A perioperative echocardiographic reporting and recording system.

    PubMed

    Pybus, David A

    2004-11-01

    Advances in video capture, compression, and streaming technology, coupled with improvements in central processing unit design and the inclusion of a database engine in the Windows operating system, have simplified the task of implementing a digital echocardiographic recording system. I describe an application that uses these technologies and runs on a notebook computer.

Top