Sample records for streams clumpy disks

  1. AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bournaud, Frederic; Juneau, Stephanie; Le Floc'h, Emeric

    2012-09-20

    We provide evidence for a correlation between the presence of giant clumps and the occurrence of active galactic nuclei (AGNs) in disk galaxies. Giant clumps of 10{sup 8}-10{sup 9} M{sub Sun} arise from violent gravitational instability in gas-rich galaxies, and it has been proposed that this instability could feed supermassive black holes (BHs). We use emission line diagnostics to compare a sample of 14 clumpy (unstable) disks and a sample of 13 smoother (stable) disks at redshift z {approx} 0.7. The majority of clumpy disks in our sample have a high probability of containing AGNs. Their [O III] {lambda}5007 emissionmore » line is strongly excited, inconsistent with low-metallicity star formation (SF) alone. [Ne III] {lambda}3869 excitation is also higher. Stable disks rarely have such properties. Stacking ultra sensitive Chandra observations (4 Ms) reveals an X-ray excess in clumpy galaxies, which confirms the presence of AGNs. The clumpy galaxies in our intermediate-redshift sample have properties typical of gas-rich disk galaxies rather than mergers, being in particular on the main sequence of SF. This suggests that our findings apply to the physically similar and numerous gas-rich unstable disks at z > 1. Using the observed [O III] and X-ray luminosities, we conservatively estimate that AGNs hosted by clumpy disks have typical bolometric luminosities of the order of a few 10{sup 43} erg s{sup -1}, BH growth rates m-dot{sub BH}{approx}10{sup -2} M{sub Sun} yr{sup -1}, and that these AGNs are substantially obscured in X-rays. This moderate-luminosity mode could provide a large fraction of today's BH mass with a high duty cycle (>10%), accretion bursts with higher luminosities being possible over shorter phases. Violent instabilities at high redshift (giant clumps) are a much more efficient driver of BH growth than the weak instabilities in nearby spirals (bars), and the evolution of disk instabilities with mass and redshift could explain the simultaneous downsizing of SF and of BH growth.« less

  2. The onset of spiral structure in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2014-01-20

    The onset of spiral structure in galaxies appears to occur between redshifts 1.4 and 1.8 when disks have developed a cool stellar component, rotation dominates over turbulent motions in the gas, and massive clumps become less frequent. During the transition from clumpy to spiral disks, two unusual types of spirals are found in the Hubble Ultra Deep Field that are massive, clumpy, and irregular like their predecessor clumpy disks, yet spiral-like or sheared like their descendants. One type is 'woolly' with massive clumpy arms all over the disk and is brighter than other disk galaxies at the same redshift, whilemore » another type has irregular multiple arms with high pitch angles, star formation knots, and no inner symmetry like today's multiple-arm galaxies. The common types of spirals seen locally are also present in a redshift range around z ∼ 1, namely grand design with two symmetric arms, multiple arm with symmetry in the inner parts and several long, thin arms in the outer parts, and flocculent, with short, irregular, and patchy arms that are mostly from star formation. Normal multiple-arm galaxies are found only closer than z ∼ 0.6 in the Ultra Deep Field. Grand design galaxies extend furthest to z ∼ 1.8, presumably because interactions can drive a two-arm spiral in a disk that would otherwise have a more irregular structure. The difference between these types is understandable in terms of the usual stability parameters for gas and stars, and the ratio of the velocity dispersion to rotation speed.« less

  3. Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Meisenheimer, K.; Camenzind, M.; Wolf, S.; Tristram, K. R. W.; Henning, T.

    2008-04-01

    Context: Tori of Active Galactic Nuclei (AGN) are made up of a mixture of hot and cold gas, as well as dust. In order to protect the dust grains from destruction by the surrounding hot gas as well as by the energetic (UV/optical) radiation from the accretion disk, the dust is often assumed to be distributed in clouds. Aims: A new three-dimensional model of AGN dust tori is extensively investigated. The torus is modelled as a wedge-shaped disk within which dusty clouds are randomly distributed throughout the volume, by taking the dust density distribution of the corresponding continuous model into account. We especially concentrate on the differences between clumpy and continuous models in terms of the temperature distributions, the surface brightness distributions and interferometric visibilities, as well as spectral energy distributions. Methods: Radiative transfer calculations with the help of the three-dimensional Monte Carlo radiative transfer code MC3D are used in order to simulate spectral energy distributions as well as surface brightness distributions at various wavelengths. In a second step, interferometric visibilities for various inclination as well as position angles and baselines are calculated, which can be used to directly compare our models to interferometric observations with the MIDI instrument. Results: We find that the radial temperature distributions of clumpy models possess significantly enhanced scatter compared to the continuous cases. Even at large distances, clouds can be heated directly by the central accretion disk. The existence of the silicate 10 μm-feature in absorption or in emission depends sensitively on the distribution, the size and optical depth of clouds in the innermost part of the dust distribution. With this explanation, failure and success of previous modelling efforts of clumpy tori can be understood. The main reason for this outcome are shadowing effects of clouds within the central region. We underline this result with the help of several parameter variations. After adapting the parameters of our clumpy standard model to the circumstances of the Seyfert 2 Circinus galaxy, it can qualitatively explain recent mid-infrared interferometric observations performed with MIDI, as well as high resolution spectral data.

  4. The ages and baryonic masses of clumps in turbulent, clumpy disk galaxies

    NASA Astrophysics Data System (ADS)

    Fisher, David

    2017-08-01

    We propose to measure the stellar populations and masses of massive star forming clumps at the resolution of the Jeans' length in a sample of massive, turbulent disk galaxies. Massive star-forming clumps are a critical component of the morphogical transformation of galaxies and the build-up of bulges. If, however, clumps dissipate quickly bulges may not form through clump phase, then clumps would build thick disks. Different feedback prescriptions have drastically different effects on clumps. Some feedback models (e.g. Hopkins et al 2012, FIRE simulations) completely destroy clumps whereas other feedback models allow clumps to persist (e.g. Bournaud et al. 2014). Therefore, to build accurate models of galaxy evolution we must know how long the lives of clumps are. The problem is that both due to resolution and available wavelength coverage it is impossible to precisely measure the ages and stellar masses of individual clumps in high-z galaxies. We have discovered a sample of extremely rare galaxies at z 0.1 that are extremely gas rich, turbulent and have a clumpy distribution of ionized gas. In all ways they are identical to those of the high-redshift Universe. We propose to employ UV-optical-near IR imaging with WFC3 to measure the stellar masses and mean ages of a set of 6 clumpy galaxies, containing 80 giant star forming clumps. This data complements our ALMA CO(1-0) maps of the same targets, and we will thus make the first maps of the full baryonic mass in turbulent disk galaxies. This work builds on our previous HST Halpha imaging program, and validates massive investments of HST time on high-z surveys of galaxies.

  5. CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < z < 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yicheng; Koo, David C.; Barro, Guillermo

    Although giant clumps of stars are thought to be crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we carry out a study of the basic demographics of clumps in star-forming galaxies at 0.5 < z < 3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the H II regions of nearby large spiral galaxies,more » either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of star-forming galaxies that have at least one off-center clump (f {sub clumpy}) and the contributions of clumps to the rest-frame UV light and star formation rate (SFR) of star-forming galaxies in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q > 0.5. The redshift evolution of f {sub clumpy} changes with the stellar mass (M {sub *}) of the galaxies. Low-mass (log (M {sub *}/M {sub ☉}) < 9.8) galaxies keep an almost constant f {sub clumpy} of ∼60% from z ∼ 3 to z ∼ 0.5. Intermediate-mass and massive galaxies drop their f {sub clumpy} from 55% at z ∼ 3 to 40% and 15%, respectively, at z ∼ 0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the f {sub clumpy} trend of massive galaxies; (2) minor mergers are a viable explanation of the f {sub clumpy} trend of intermediate-mass galaxies at z < 1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the f {sub clumpy} trend in all masses at z < 1.5. The clump contribution to the rest-frame UV light of star-forming galaxies shows a broad peak around galaxies with log (M {sub *}/M {sub ☉}) ∼ 10.5 at all redshifts. The clump contribution in the intermediate-mass and massive galaxies is possibly linked to the molecular gas fraction of the galaxies. The clump contribution to the SFR of star-forming galaxies, generally around 4%-10%, also shows dependence on the galaxy M {sub *}, but for a given galaxy M {sub *}, its dependence on the redshift is mild.« less

  6. Thick Disks in the Hubble Space Telescope Frontier Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Tompkins, Brittany

    Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring.more » A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.« less

  7. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M {sub star} > 10{sup 9.5} M {sub ☉} decreases with time from ∼0.35 at 0.8 < z < 1.0 to ∼0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massivemore » galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ∼ 0.9 to z ∼ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.« less

  8. Mapping out the origins of compact stellar systems

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Brodie, Jean P.; SAGES Collaboration

    2017-03-01

    We present a suite of extragalactic explorations of the origins and nature of globular clusters (GCs) and ultra-compact dwarfs (UCDs), and the connections between them. An example of GC metallicity bimodality is shown to reflect underlying, distinct metal-poor and metal-rich stellar halo populations. Metallicity-matching methods are used to trace the birth sites and epochs of GCs in giant E/S0s, pointing to clumpy disk galaxies at z ~ 3 for the metal-rich GCs, and to a combination of accreted and in-situ formation modes at z ~ 5-6 for the metal-poor GCs. An increasingly diverse zoo of compact stellar systems is being discovered, including objects that bridge the gaps between UCDs and faint fuzzies, and between UCDs and compact ellipticals. Many of these have properties pointing to origins as the stripped nuclei of larger galaxies, and a smoking-gun example is presented of an ω Cen-like star cluster embedded in a tidal stream.

  9. Interaction of clumpy dark matter with interstellar medium in astrophysical systems

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2012-02-01

    Contemporary cosmological conceptions suggest that the dark matter in haloes of galaxies and galaxy clusters has most likely a clumpy structure. If a stream of gas penetrates through it, a small-scale gravitational field created by the clumps disturbs the flow resulting in momentum exchange between the stream and the dark matter. In this article, we perform an analysis of this effect, based on the hierarchical halo model of the dark matter structure and Navarro-Frenk-White density profiles. We consider the clumps of various masses, from the smallest up to the highest ones M≥ 109 M⊙. It has been found that in any event the effect grows with the mass of the clump: not only the drag force ? acting on the clump but also its acceleration ? increases. We discuss various astrophysical systems. The mechanism proved to be ineffective in the case of galaxy or galaxy cluster collisions. On the other hand, it played an important role during the process of galaxy formation. As a result, the dark matter should have formed a more compact, oblate and faster rotating substructure in the halo of our Galaxy. We have shown that this thick disc should be more clumpy than the halo. This fact is very important for the indirect detection experiments since it is the clumps that give the main contribution to the annihilation signal. Our calculations show that the mechanism of momentum exchange between the dark and baryon matter is ineffective on the outskirts of the galactic halo. It means that the clumps from there were not transported to the thick disc, and this region should be more clumpy than the halo on the average.

  10. Probing the Building Blocks of Galactic Disks: An Analysis of Ultraviolet Clumps

    NASA Astrophysics Data System (ADS)

    Soto, Emmaris

    The universe is filled with a diversity of galaxies; however, despite these diversities we are able to group galaxies into morphological categories, such as Hubble types, that may indicate different paths of evolution. In order to understand the evolution of galaxies, such as our own Milk Way, it is necessary to study the underlying star formation over cosmic time. At high redshift (z>2) star-forming galaxies reveal asymmetric and clumpy morphologies. However, the evolutionary process which takes clumpy galaxies from z>2 to the smooth axially symmetric Hubble-type galaxies in place at z˜0.5 is still unknown. Therefore, it is vital to make a connection between the morphologies of galaxies at the peak epoch of cosmic star formation at z˜2 with the galaxies observed in the local universe to better understand the mechanisms that led to their evolution. To address this and chronicle the progression of galaxy evolution, deep high resolution multi-wavelength data is used to study galaxies across cosmic time. This dissertation provides a detailed study of clumpy star-forming galaxies at intermediate redshifts, 0.5 ≤ z ≤ 1.5, focusing on sub-galactic regions of star formation which provide a mechanism to explain the evolution of clumpy galaxies to the spiral galaxies we observe today. We developed a clump-finding algorithm to select a sample of clumpy galaxies from the Ultraviolet Ultra Deep Field (UVUDF). The UVUDF was the first deep image (˜28 AB mag) ever taken with the Hubble Space Telescope (HST) showing the rest-frame far-ultraviolet (FUV, 1500A) at intermediate-z. The rest-frame FUV probes the young star-forming regions which are often seen in clumpy galaxies at high redshift. We identified 209 clumpy galaxies (hereafter host galaxies) from 1,404 candidates at intermediate redshifts. We used the HST Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS) broadband images from the UVUDF with observed near-ultraviolet, optical, and near-infrared photometry to determine their stellar properties via spectral energy distribution (SED) fitting. We estimated properties such as the mass, age, star formation rate (SFR), and metallicity of host galaxies. The deep high resolution WFC3 rest-frame FUV data allowed us to detect and measure the sizes of 403 clumps. The results provided evidence to support clump migration as a mechanism for galaxy evolution. We show that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Additionally, individual clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from less than 1% up to 93%. We showed that clumps in the outskirts of galaxies are typically younger, with higher star formation rates than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.

  11. Forming Disk Galaxies Early in the Universe

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    What were galaxies like in the first 500 million years of the universe? According to simulations by Yu Feng (UC Berkeley) and collaborators, the earliest massive galaxies to form were mostly disk-shaped, rather than the compact clumps previously predicted. Early-Galaxy Models. Current models for galaxy formation predict that small perturbations in the distribution of matter in the early universe collapsed to form very compact, irregular, clumpy first galaxies. Observations support this: the furthest out that we've spotted disk-shaped galaxies is at z=3, whereas the galaxies we've observed from earlier times -- up to redshifts of z=8-10 -- are very compact. But could this be a selection effect, arising from the rarity of large galaxies in the early universe? Current surveys at high redshift have thus far only covered relatively small volumes of space, so it's not necessarily surprising that we haven't yet spotted any large disk galaxies. Similarly, numerical simulations of galaxy formation are limited in the size of the volume they can evolve, so resulting models of early galaxy formation also tend to favor compact clumpy galaxies over large disks. An Enormous Simulation. Pushing at these limitations, Feng and his collaborators used the Blue Waters supercomputer to carry out an enormous cosmological hydrodynamic simulation called BlueTides. In this simulation, they track 700 billion particles as they evolve in a volume of 400 comoving Mpc/h -- 40 times the volume of the largest previous simulation and 300 times the volume of the largest observational survey at these redshifts. What they find is that by z=8, a whopping 70% of the most massive galaxies (over 7 billion solar masses each) were disk-shaped, though they are more compact, gas-rich, and turbulent than present-day disk galaxies like the Milky Way. The way the most massive galaxies formed in the simulation also wasn't expected: rather than resulting from major mergers, they were built from smooth accretion onto the disks from nearby filaments. These simulations suggest we still have a lot to learn about the structure of galaxies in the early universe and how they formed. Luckily, future telescope projects should help us out: Feng and collaborators estimate that the WFIRST satellite, for instance, should have the capability to detect 8000 disk galaxies of the type BlueTides predicts -- compared to the weak 30% chance of finding a single one in the current largest-area Hubble survey!

  12. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Ji, Jiang-hui

    2013-10-01

    The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.

  13. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, T.; Ji, J. H.

    2013-03-01

    Clumpy structure in the Vega's debris disk has been previously reported at millimeter wavelengths and attributed to the concentrations of dust grains trapped in resonances with a potential planet. However, current imaging at multi-wavelengths with higher sensitivity is against the former observed structure. The disk is now revealed to have a smooth structure. A planet orbiting Vega could not be neglected,but the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize modified MERCURY codes to numerically simulate Vega system, consisting of debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80~AU and 120~AU, respectively. The radius of dust grains distributes in the range from 10 μm to 100 μm, in nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e=0.6), the planetary semi-major axis cannot be larger than 60~AU, otherwise, the structure of debris disk will congregate due to the existence of the postulated planet. The 2:1 mean motion resonances may play a significant role in sculpting the debris disk.

  14. Inner Disk Structure and Transport Mechanisms in the Transitional Disk around T Cha

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    2017-08-01

    To better understand how Earth-like planets form around low-mass stars, we propose to study the UV (HST), X-ray (XMM), and optical (LCOGT) variability of the young star T Cha. This variability is caused by obscuration of the star by clumpy material in the rim of its inner disk. Changing sight lines through the disk allow measurement of the temperature and column density of both molecular and atomic gas and the physical properties of the dust grains in the well-mixed inner disk, as well as determining the gas-to-dust ratio. The gas-to-dust ratio affects planetesimal growth and disk stability but is difficult to measure in local regions of disks. Three 5 orbit visits, separated by 3-7 days, are required for use of analysis techniques comprising both differential pair-method comparison of spectra with differing A_v (particularly important for determining the dust extinction curve, A_lambda, where removal of the foreground extinction requires multiple epochs) and detailed spectral fitting of gas absorption features at each epoch. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. Characterizing the high energy (UV/X-ray) radiation field is also essential for in-depth studies of the disk in other spectral regions. Results from these observations will have wide relevance to the modeling and understanding of protoplanetary disk structure and evolution, and the complex gas and dust physics and chemistry in disk surface layers.

  15. The Secular Evolution Of Disc Galaxies And The Origin Of Exponential And Double Exponential Surface Density Profiles

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-10-01

    Exponential radial profiles are ubiquitous in spiral and dwarf Irregular galaxies, but the origin of this structural form is not understood. This talk will review the observations of exponential and double exponential disks, considering both the light and the mass profiles, and the contributions from stars and gas. Several theories for this structure will also be reviewed, including primordial collapse, bar and spiral torques, clump torques, galaxy interactions, disk viscosity and other internal processes of angular momentum exchange, and stellar scattering off of clumpy structure. The only process currently known that can account for this structure in the most theoretically difficult case is stellar scattering off disks clumps. Stellar orbit models suggest that such scattering can produce exponentials even in isolated dwarf irregulars that have no bars or spirals, little shear or viscosity, and profiles that go out too far for the classical Mestel case of primordial collapse with specific angular momentum conservation.

  16. Multi-scale simulations of black hole accretion in barred galaxies. Self-gravitating disk models

    NASA Astrophysics Data System (ADS)

    Jung, M.; Illenseer, T. F.; Duschl, W. J.

    2018-06-01

    Due to the non-axisymmetric potential of the central bar, in addition to their characteristic arms and bar, barred spiral galaxies form a variety of structures within the thin gas disk, such as nuclear rings, inner spirals, and dust lanes. These structures in the inner kiloparsec are extremely important in order to explain and understand the rate of black hole feeding. The aim of this work is to investigate the influence of stellar bars in spiral galaxies on the thin self-gravitating gas disk. We focus on the accretion of gas onto the central supermassive black hole and its time-dependent evolution. We conducted multi-scale simulations simultaneously resolving the galactic disk and the accretion disk around the central black hole. In all the simulations we varied the initial gas disk mass. As an additional parameter we chose either the gas temperature for isothermal simulations or the cooling timescale for non-isothermal simulations. Accretion was either driven by a gravitationally unstable or clumpy accretion disk or by energy dissipation in strong shocks. Most of the simulations show a strong dependence of the accretion rate at the outer boundary of the central accretion disk (r < 300 pc) on the gas flow at kiloparsec scales. The final black hole masses reach up to 109 M⊙ after 1.6 Gyr. Our models show the expected influence of the Eddington limit and a decline in growth rate at the corresponding sub-Eddington limit.

  17. First X-ray Statistical Tests for Clumpy-Torus Models: Constraints from RXTEmonitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex; Krumpe, Mirko; Nikutta, R.

    2016-06-01

    In two papers (Markowitz, Krumpe, & Nikutta 2014, and Nikutta et al., in prep.), we derive the first X-ray statistical constraints for clumpy-torus models in Seyfert AGN by quantifying multi-timescale variability in line of-sight X-ray absorbing gas as a function of optical classification.We systematically search for discrete absorption events in the vast archive of RXTE monitoring of 55 nearby type Is and Compton-thin type IIs. We are sensitive to discrete absorption events due to clouds of full-covering, neutral/mildly ionized gas transiting the line of sight. Our results apply to both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for eclipses observed with XMM-Newton, Suzaku, and Chandra.We detect twelve eclipse events in eight Seyferts, roughly tripling the number previously published from this archive. Event durations span hours to years. Most of our detected clouds are Compton-thin, and most clouds' distances from the black hole are inferred to be commensurate with the outer portions of the BLR or the inner regions of infrared-emitting dusty tori.We present the density profiles of the highest-quality eclipse events; the column density profile for an eclipsing cloud in NGC 3783 is doubly spiked, possibly indicating a cloud that is being tidallysheared. We discuss implications for cloud distributions in the context of clumpy-torus models. We calculate eclipse probabilities for orientation-dependent Type I/II unification schemes.We present constraints on cloud sizes, stability, and radial distribution. We infer that clouds' small angular sizes as seen from the SMBH imply 107 clouds required across the BLR + torus. Cloud size is roughly proportional to distance from the black hole, hinting at the formation processes (e.g., disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces, such as magnetic fields or ambient pressure, are needed to contain them; otherwise, clouds must be short-lived.

  18. The evidence for clumpy accretion in the Herbig Ae star HR 5999

    NASA Technical Reports Server (NTRS)

    Perez, M. R.; Grady, C. A.; The, P. S.

    1993-01-01

    Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I, and C IV emission lines, which are correlated with the UV excess luminosity. Variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state, was also observed. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M greater than or equal to 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as plus 300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, V sini=180 plus or minus 20 km/s for this system) also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, is consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 Myr less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.

  19. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less

  20. Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z~2

    NASA Astrophysics Data System (ADS)

    Brisbin, Drew; Aravena, Manuel; Hodge, Jacqueline; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut; Riechers, Dominik; Wagg, Jeff

    2018-06-01

    We have resolved molecular gas in a 'typical' star forming disk galaxy at z>2 down to the scale of ~500 pc. Previous observations of CO and [CI] lines on larger spatial scales have revealed bulk molecular and atomic gas properties indicating that the target is a massive disk galaxy with large gas reserves. Unlike many galaxies studied at high redshift, it is undergoing modest quiescent star formation rather than bursty centrally concentrated star formation. Therefore this galaxy represents an under-studied, but cosmologically important population in the early universe. Our new observations of CO (4-3) highlight the clumpy molecular gas fuelling star formation throughout the disk. Underlying continuum from cold dust provides a key constraint on star formation rate surface densities, allowing us to examine the star formation rate surface density scaling law in a never-before-tested regime of early universe galaxies.These observations enable an unprecedented view of the obscured star formation that is hidden to optical/UV imaging and trace molecular gas on a fine enough scale to resolve morphological traits and provide a view akin to single dish surveys in the local universe.

  1. Evolution of the Fraction of Clumpy Galaxies at 0.2 < z < 1.0 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.; Kobayashi, M. A. R.; Shioya, Y.; Capak, P.; Ilbert, O.; Koekemoer, A. M.; Salvato, M.; Scoville, N. Z.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M star > 109.5 M ⊙ decreases with time from ~0.35 at 0.8 < z < 1.0 to ~0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with M star > 1010.5 M ⊙ at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ~ 0.9 to z ~ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory and the National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the NRC and CADC of Canada, the CNRS of France, TERAPIX, and the University of Hawaii.

  2. Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel

    2018-01-01

    We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.

  3. A Circumstellar Disk around HD 169142 in the Mid-Infrared (N-Band)

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshiko Kataza; Kataza, Hirokazu; Honda, M.; Yamashita, T.; Fujiyoshi, T.; Miyata, T.; Sako, S.; Fujiwara, H.; Sakon, I.; Fukagawa, M.; Momose, M.; Onaka, T.

    2017-07-01

    The Herbig Ae star HD 169142 is one of the objects that show complex structure, such as multiple (innermost, middle, and outer) disks, gaps, and unresolved sources. We made N-band (8-13 μm) observations of HD 169142 with the Cooled Mid-Infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The images are spatially resolved out to an ˜1″ radius in all the observed bands. We made a simple disk model composed of an unresolved central source (representing the innermost disk/halo) and the ring at a radius r ˜ 25 au (corresponding to the inner wall or edge of a middle disk at ˜25-40 au). The radial intensity profile within the central region (≲0.″3 or ≲ 40 au) is well reproduced by the model. Furthermore, we subtracted the model image from the observed one to search for additional structures. In the model-subtracted images, we found an unresolved west source separated by 17.0 ± 2.9 au in the direction of position angle 260° ± 5° from the original emission peak, which is supposed to correspond to the position of the central star, and a bright east arc located at r ˜ 60 au. The west source is different from the L‧-band unresolved source recently found in coronagraphic observations. It could be a structure related to planet formation in the disk, such as a circumplanetary disk or clumpy disk structure. The east arc corresponds to the inner wall or edge of the outer disk. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. Clumpy Disks as a Testbed for Feedback-regulated Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Mayer, Lucio; Tamburello, Valentina; Lupi, Alessandro; Keller, Ben; Wadsley, James; Madau, Piero

    2016-10-01

    We study the dependence of fragmentation in massive gas-rich galaxy disks at z > 1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses are in the range 107-108 M ⊙, lower than in most previous works, while giant clumps with masses above 109 M ⊙ are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z > 1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.

  5. MAPPING THE CLUMPY STRUCTURES WITHIN SUBMILLIMETER GALAXIES USING LASER-GUIDE STAR ADAPTIVE OPTICS SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menendez-Delmestre, Karin; Goncalves, Thiago S.; Blain, Andrew W.

    2013-04-20

    We present the first integral-field spectroscopic observations of high-redshift submillimeter-selected galaxies (SMGs) using Laser-Guide Star Adaptive Optics. We target H{alpha} emission of three SMGs at redshifts z {approx} 1.4-2.4 with the OH-Suppressing Infrared Imaging Spectrograph on Keck. The spatially resolved spectroscopy of these galaxies reveals unresolved broad-H{alpha} line regions (FWHM >1000 km s{sup -1}) likely associated with an active galactic nucleus (AGN) and regions of diffuse star formation traced by narrow-line H{alpha} emission (FWHM {approx}< 500 km s{sup -1}) dominated by multiple H{alpha}-bright stellar clumps, each contributing 1%-30% of the total clump-integrated H{alpha} emission. We find that these SMGs hostmore » high star formation rate surface densities, similar to local extreme sources, such as circumnuclear starbursts and luminous infrared galaxies. However, in contrast to these local environments, SMGs appear to be undergoing such intense activity on significantly larger spatial scales as revealed by extended H{alpha} emission over 4-16 kpc. H{alpha} kinematics show no evidence of ordered global motion as would be found in a disk, but rather large velocity offsets ({approx}few Multiplication-Sign 100 km s{sup -1}) between the distinct stellar clumps. Together with the asymmetric distribution of the stellar clumps around the AGN in these objects, it is unlikely that we are unveiling a clumpy disk structure as has been suggested in other high-redshift populations of star-forming galaxies. The SMG clumps in this sample may correspond to remnants of originally independent gas-rich systems that are in the process of merging, hence triggering the ultraluminous SMG phase.« less

  6. New insights on the formation and assembly of M83 from deep near-infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.

    2014-07-10

    We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{submore » 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.« less

  7. First X-ray Statistical Tests for Clumpy Torii Models: Constraints from RXTE monitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2015-09-01

    We summarize two papers providing the first X-ray-derived statistical constraints for both clumpy-torus model parameters and cloud ensemble properties. In Markowitz, Krumpe, & Nikutta (2014), we explored multi-timescale variability in line-of-sight X-ray absorbing gas as a function of optical classification. We examined 55 Seyferts monitored with the Rossi X-ray Timing Explorer, and found in 8 objects a total of 12 eclipses, with durations between hours and years. Most clouds are commensurate with the outer portions of the BLR, or the inner regions of infrared-emitting dusty tori. The detection of eclipses in type Is disfavors sharp-edged tori. We provide probabilities to observe a source undergoing an absorption event for both type Is and IIs, yielding constraints in [N_0, sigma, i] parameter space. In Nikutta et al., in prep., we infer that the small cloud angular sizes, as seen from the SMBH, imply the presence of >10^7 clouds in BLR+torus to explain observed covering factors. Cloud size is roughly proportional to distance from the SMBH, hinting at the formation processes (e.g. disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces (e.g. magnetic fields, ambient pressure) are needed to contain them, or otherwise the clouds must be short-lived. Finally, we infer that the radial cloud density distribution behaves as 1/r^{0.7}, compatible with VLTI observations. Our results span both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for short-term eclipses observed with XMM-Newton, Suzaku, and Chandra.

  8. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  9. Interaction of the stream from L 1 with the outer edge of the accretion disk in a cataclysmic variable

    NASA Astrophysics Data System (ADS)

    Kaigorodov, P. V.; Bisikalo, D. V.; Kurbatov, E. P.

    2017-08-01

    Vertical oscillations of the gas at the outer edge of the accretion disk in a semi-detached binary due to interaction with the stream of matter from the inner Lagrangian point L 1 are considered. Mixing of the matter from the stream from L 1 with matter of the disk halo results in the formation of a system of two diverging shocks and a contact discontinuity, or so-called "hot line". The passage of matter through the region of the hot line leads to an increase in its vertical velocity and a thickening of the disk at phases 0.7-0.8. Subsequently, the matter moving along the outer edge of the disk also experiences vertical oscillations, forming secondary maxima at phases 0.2-0.4. It is shown that, for systems with component mass ratios of 0.6, these oscillations will be amplified with each passage of the matter through the hotline zone, while the observations will be quenched in systems with component mass ratios 0.07 and 7. The most favorable conditions for the flow of matter from the stream through the edge of the disk arise for component mass ratios 0.62. A theoretical relation between the phases of disk thickenings and the component mass ratio of the system is derived.

  10. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular momentum from the inner disk to distant parts of the flow without associated viscous heating in the disk.

  11. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Heidi A.; Abraham, Roberto G.; Fisher, David B.

    2017-09-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T {sub dust} < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly richmore » in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f {sub gas} and σ / v {sub c}, consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t {sub dep} (∼0.5 Gyr) have the highest ratios of σ / v{sub c} and more pronounced clumps, even at the same high molecular gas fraction.« less

  12. CLUMPY DISKS AS A TESTBED FOR FEEDBACK-REGULATED GALAXY FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Lucio; Tamburello, Valentina; Lupi, Alessandro

    2016-10-10

    We study the dependence of fragmentation in massive gas-rich galaxy disks at z >1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses aremore » in the range 10{sup 7}–10{sup 8} M {sub ⊙}, lower than in most previous works, while giant clumps with masses above 10{sup 9} M {sub ⊙} are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z >1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.« less

  13. Transient iron fluorescence: new clues on the AGN disk/corona?

    NASA Astrophysics Data System (ADS)

    Nardini, E.

    2017-10-01

    Deep X-ray observations of the so-called `bare' active galaxies represent the most effective means of probing the physical conditions in the immediate surroundings of a radiatively efficient supermassive black hole, thus aiding our understanding of the emission processes in AGN. Indeed, the structure and properties of the putative X-ray corona, and the nature of coupling with the disk, are still largely unknown. The recent, surprising discovery of transient iron fluorescence on timescales of 10-15 hours during the 7.5 days of XMM-Newton monitoring of Ark 120, the nearest and X-ray brightest bare AGN, poses several challenges to the commonly adopted X-ray emission paradigm of a very compact corona. Such a rapid variability implies that the inner accretion flow is highly dynamic and inhomogeneous, involving the presence of orbiting hotspots, density gradients, or other forms of clumpiness and instability. Whatever the case, these results offer a compelling glimpse of what could be achieved in the future with Athena's capabilities.

  14. Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.

    2017-04-10

    Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60–130 M {sub ⊕}) planetesimal belts beyond 100 au and up to ∼20 M {sub ⊕} of planetesimals in the middle regions (3–100 au). Our most comprehensive model forms 8more » M {sub ⊕} of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet-forming regions of protoplanetary disks.« less

  15. Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Soker, Noam

    2018-04-01

    We find that the remnant of supernova (SN) 1987A shares some morphological features with four supernova remnants (SNRs) that have signatures of shaping by jets, and from that we strengthen the claim that jets played a crucial role in the explosion of SN 1987A. Some of the morphological features appear also in planetary nebulae (PNe) where jets are observed. The clumpy ejecta bring us to support the claim that the jittering jets explosion mechanism can account for the structure of the remnant of SN 1987A, i.e., SNR 1987A. We conduct a preliminary attempt to quantify the fluctuations in the angular momentum of the mass that is accreted on to the newly born neutron star via an accretion disk or belt. The accretion disk/belt launches the jets that explode core collapse supernovae (CCSNe). The relaxation time of the accretion disk/belt is comparable to the duration of a typical jet-launching episode in the jittering jets explosion mechanism, and hence the disk/belt has no time to relax. We suggest that this might explain two unequal opposite jets that later lead to unequal sides of the elongated structures in some SNRs of CCSNe. We reiterate our earlier call for a paradigm shift from neutrino-driven explosion to a jet-driven explosion of CCSNe.

  16. Accretion and Structure in the SW Sextantis Stars

    NASA Astrophysics Data System (ADS)

    Hoard, Donald Wayne

    1998-09-01

    The SW Sextantis stars are cataclysmic variables (CVs) sharing properties that set them apart from other CVs. These include: strong He II λ4686 emission, velocity curves implying asymmetric disk emission, and variable line profiles displaying a transient absorption feature at specific orbital phases. A number of mechanisms have been proposed to explain these characteristics including (non-disk) circumstellar material, a bipolar disk wind, a white dwarf magnetic field, and coherent accretion stream overflow across the disk, but none has been completely satisfying. I present the results of new photometric and spectroscopic observations of seven SW Sex stars, including Doppler tomogram mapping of emission regions in these systems. These observations, along with recent advances in simulations of accretion disks, suggest a scenario in which the accretion stream undergoes a violent impact with the disk edge. Depending on the mass transfer rate in the stream, the impact site will either cool efficiently (low M) and allow substantial material to flow directly over the disk, or will cool inefficiently (high M) and form a prominent bright spot at the impact site with hot stream material swept 'downstream' along the disk edge. In the former case, non-axisymmetric vertical structure develops in the disk at the terminus of the stream overflow (accounting for absorption seen at φapprox0.5), while in the latter case vertical structure is built up along the disk edge (accounting for absorption at φapprox0.8). The absorption feature phasing in different SW Sex stars implies M decreases as P orb decreases (as expected during CV evolution), but it is not clear whether normal CV evolution can drive changes in M rapidly enough to generate the onset of the SW Sex phenomenon in the narrow range of orbital period they occupy (P orb=3[-]4 hr). I present a gallery of new and archived IUE spectra of the SW Sex stars that display the typically strong UV resonant scattering lines seen in these CVs. The orbital-phase dependence of UV spectral characteristics in UU Aquarii is investigated through a time series of archived IUE spectra, and provides additional evidence of asymmetric structure in this system. The scBINSYN light curve and spectrum modeling package for binary stars has been modified for application to CVs. First results for several SW Sex stars are shown and planned future improvements to the scBINSYN routines are described.

  17. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmer, Bernd; Leroy, Adam K., E-mail: bvollmer@astro.u-strasbg.fr

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproducedmore » by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.« less

  18. Sustaining Star Formation Rates in Spiral Galaxies Supernova-driven Turbulent Accretion Disk Models Applied to THINGS Galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M ⊙) <~ 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  19. Wing galaxies: A formation mechanism of the clumpy irregular galaxy Markarian 297

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Noguchi, Masafumi

    1990-01-01

    In order to contribute to an understanding of collision-induced starburst activities, the authors present a detailed case study on the starburst galaxy Markarian 297 (= NGC 6052 = Arp 209; hereafter Mrk 297). This galaxy is classified as a clumpy irregular galaxy (CIG) according to its morphological properties (cf. Heidmann, 1987). Two major clumps and many small clumps are observed in the entire region of Mrk 297 (Hecquet, Coupinot, and Maucherat 1987). The overall morphology of Mrk 297 is highly chaotic and thus it seems difficult to determine possible orbits of galaxy-galaxy collision. However, the authors have serendipitously found a possible orbit during a course of numerical simulations for a radial-penetration collision between galaxies. The radial-penetration collision means that an intruder penetrates a target galaxy radially passing by its nucleus. This kind of collision is known to explain a formation mechanism of ripples around disk galaxies (Wallin and Struck-Marcell 1988). Here, the authors show that the radial-penetration collision between galaxies successfully explains both overall morphological and kinematical properties of Mrk 297. The authors made two kinds of numerical simulations for Mrk 297. One is N-body (1x10(exp 4) particles) simulations in which effects of self gravity of the stellar disk are taken into account. These simulations are used to study detailed morphological feature of Mrk 297. The response of gas clouds are also investigated in order to estimate star formation rates in such collisions. The other is test-particle simulations, which are utilized to obtain a rough picture of Mrk 297 and to analyze the velocity field of Mrk 297. The techniques of the numerical simulations are the same as those in Noguchi (1988) and Noguchi and Ishibashi (1986). In the present model, an intruding galaxy with the same mass of a target galaxy moves on a rectilinear orbit which passes the center of the target.

  20. CANDELS Visual Classifications: Scheme, Data Release, and First Results

    NASA Technical Reports Server (NTRS)

    Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Henry; Koo, David; Bassett, Robert; hide

    2014-01-01

    We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H <24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed - GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and restframe colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.

  1. PX Andromedae and the SW Sextantis phenomenon

    NASA Technical Reports Server (NTRS)

    Hellier, Coel; Robinson, E. L.

    1994-01-01

    We show that the emission-line peculiarities of PX And and other SW Sex stars can be explained by an accretion stream which overflows the initial impact with the accretion disk and continues to a later reimpact. The overflowing stream is seen projected against a brighter disk and produces the 'phase 0.5 absorption' features. Emission from the reimpact site produces the high-velocity line wings which alternate from red to blue on the orbital cycle. We conclude that substantial disk overflow is the property distinguishing SW Sex stars from other cataclysmic variables.

  2. Disk-Anchored Magnetic Propellers - A Cure for the SW Sex Syndrome

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    In AE Aqr, magnetic fields transfer energy and angular momentum from a rapidly-spinning white dwarf to material in the gas stream from the companion star, with the effect of spinning down the white dwarf while flinging the gas stream material out of the binary system. This magnetic propeller produces a host of observable signatures, chief among which are broad, single-peaked, flaring emission lines with phase-shifted orbital kinematics. SW Sex stars have accretion disks, but also broad, single-peaked, phase-shifted emission lines similar to those seen in AE Aqr. We propose that a magnetic propeller similar to that which operates in AE Aqr is also at work in SW Sex stars - and to some extent in all nova-like systems. The propeller is anchored in the inner accretion disk, rather than, or in addition to, the white dwarf. Energy and angular momentum are thereby extracted from the inner disk and transferred to gas-stream material flowing above the disk, which is consequently pitched out of the system. This provides a non-local, dissipationless angular-momentum-extraction mechanism, which should result in cool inner disks with temperature profiles flatter than T propto R^{-3/4}, as observed in eclipse mapping studies of nova-like variables. The disk-anchored magnetic propeller model appears to explain qualitatively most if not all of the peculiar features of the SW Sex syndrome.

  3. Cultural Treatments Influence Hardwood Growth and Foliar Nutrient Concentration on a Minor Stream Bottom Site

    Treesearch

    Harvey E. Kennedy

    1985-01-01

    Seedlings or cuttings of nine species of hardwoods were planted on a minor stream bottom (Aeric Fluvaquents) in southeast Arkansas and mowed or disked several times annually for 4 years. Disking to eliminate competition significantly increased heights and diameters of all, and survival of some, species. Soil nitrogen, organic matter, and pH were significantly lowered...

  4. Dynamics and formation of obscuring tori in AGNs

    NASA Astrophysics Data System (ADS)

    Bannikova, Elena Yu.; Sergeyev, Alexey V.

    2017-12-01

    We considered the evolution of a self-gravitating clumpy torus in the gravitational field of the central mass of an active galactic nucleus (AGN) in the framework of the N-body problem. The initial conditions take into account winds with different opening angles. Results of our N-body simulations show that the clouds moving on orbits with a spread in inclinations and eccentricities form a toroidal region. This mechanism can solve the problem of the geometrical thickness of the torus. The velocity of the clouds at the inner edge of the torus is lower than in a disk model that can explain the observed rotation curves. We discuss the scenario of torus formation related with the beginning of the AGN stage.

  5. VLA+WSRT HI Imaging of Two "Almost Dark" Galaxies

    NASA Astrophysics Data System (ADS)

    Ball, Catie; Singer, Quinton; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph

    2017-01-01

    We present sensitive HI imaging of the "Almost Dark" galaxies AGC229385 and AGC229101. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. Deeper ground- and space-based imaging reveals very low surface brightness optical counterparts in both systems. The resulting M_HI/L_B ratios are among the highest ever measured for individual galaxies. Here we combine VLA and WSRT imaging of these two systems, allowing us to preserve surface brightness sensitivity while working at high angular resolution. The resulting maps of HI mass surface density, velocity field, and velocity dispersion are compared to deep optical and ultraviolet imaging. In both systems the highest column density HI gas is clumpy and resolved into multiple components. In the case of AGC229385, the kinematics are inconsistent with a simple rotating disk and may be the result of either an infall episode or an interaction between two HI-rich disks.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  6. Modelling the spectral energy distribution of galaxies. V. The dust and PAH emission SEDs of disk galaxies

    NASA Astrophysics Data System (ADS)

    Popescu, C. C.; Tuffs, R. J.; Dopita, M. A.; Fischera, J.; Kylafis, N. D.; Madore, B. F.

    2011-03-01

    We present a self-consistent model of the spectral energy distributions (SEDs) of spiral galaxies from the ultraviolet (UV) to the mid-infrared (MIR)/far-infrared (FIR)/submillimeter (submm) based on a full radiative transfer calculation of the propagation of starlight in galaxy disks. This model predicts not only the total integrated energy absorbed in the UV/optical and re-emitted in the infrared/submm, but also the colours of the dust emission based on an explicit calculation of the strength and colour of the UV/optical radiation fields heating the dust, and incorporating a full calculation of the stochastic heating of small dust grains and PAH molecules. The geometry of the translucent components of the model is empirically constrained using the results from the radiation transfer analysis of Xilouris et al. on spirals in the middle range of the Hubble sequence, while the geometry of the optically thick components is constrained from physical considerations with a posteriori checks of the model predictions with observational data. Following the observational constraints, the model has both a distribution of diffuse dust associated with the old and young disk stellar populations as well as a clumpy component arising from dust in the parent molecular clouds in star forming regions. In accordance with the fragmented nature of dense molecular gas in typical star-forming regions, UV light from massive stars is allowed to either freely stream away into the diffuse medium in some fraction of directions or be geometrically blocked and locally absorbed in clumps. These geometrical constraints enable the dust emission to be predicted in terms of a minimum set of free parameters: the central face-on dust opacity in the B-band τ^f_B, a clumpiness factor F for the star-forming regions, the star-formation rate SFR, the normalised luminosity of the old stellar population old and the bulge-to-disk ratio B/D. We show that these parameters are almost orthogonal in their predicted effect on the colours of the dust/PAH emission. In most practical applications B/D will actually not be a free parameter but (together with the angular size θgal and inclination i of the disk) act as a constraint derived from morphological decomposition of higher resolution optical images. This also extends the range of applicability of the model along the Hubble sequence. We further show that the dependence of the dust emission SED on the colour of the stellar photon field depends primarily on the ratio between the luminosities of the young and old stellar populations (as specified by the parameters SFR and old) rather than on the detailed colour of the emissions from either of these populations. The model is thereby independent of a priori assumptions of the detailed mathematical form of the dependence of SFR on time, allowing UV/optical SEDs to be dereddened without recourse to population synthesis models. Utilising these findings, we show how the predictive power of radiative transfer calculations can be combined with measurements of θgal, i and B/D from optical images to self-consistently fit UV/optical-MIR/FIR/submm SEDs observed in large statistical surveys in a fast and flexible way, deriving physical parameters on an object-by-object basis. We also identify a non-parametric test of the fidelity of the model in practical applications through comparison of the model predictions for FIR colour and surface brightness with the corresponding observed quantities. This should be effective in identifying objects such as AGNs or star-forming galaxies with markedly different geometries to those of the calibrators of Xilouris et al. The results of the calculations are made available in the form of a large library of simulated dust emission SEDs spanning the whole parameter space of our model, together with the corresponding library of dust attenuation calculated using the same model. We dedicate this paper to the memory of Angelos Misiriotis, sorely missed as a friend, collaborator and exceptional scientist.Appendices are only available in electronic form at http://www.aanda.orgThe data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/527/A109

  7. Web server for priority ordered multimedia services

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Godavari, Rakesh K.; Vetnes, Vermund

    2001-10-01

    In this work, our aim is to provide finer priority levels in the design of a general-purpose Web multimedia server with provisions of the CM services. The type of services provided include reading/writing a web page, downloading/uploading an audio/video stream, navigating the Web through browsing, and interactive video teleconferencing. The selected priority encoding levels for such operations follow the order of admin read/write, hot page CM and Web multicasting, CM read, Web read, CM write and Web write. Hot pages are the most requested CM streams (e.g., the newest movies, video clips, and HDTV channels) and Web pages (e.g., portal pages of the commercial Internet search engines). Maintaining a list of these hot Web pages and CM streams in a content addressable buffer enables a server to multicast hot streams with lower latency and higher system throughput. Cold Web pages and CM streams are treated as regular Web and CM requests. Interactive CM operations such as pause (P), resume (R), fast-forward (FF), and rewind (RW) have to be executed without allocation of extra resources. The proposed multimedia server model is a part of the distributed network with load balancing schedulers. The SM is connected to an integrated disk scheduler (IDS), which supervises an allocated disk manager. The IDS follows the same priority handling as the SM, and implements a SCAN disk-scheduling method for an improved disk access and a higher throughput. Different disks are used for the Web and CM services in order to meet the QoS requirements of CM services. The IDS ouput is forwarded to an Integrated Transmission Scheduler (ITS). The ITS creates a priority ordered buffering of the retrieved Web pages and CM data streams that are fed into an auto regressive moving average (ARMA) based traffic shaping circuitry before being transmitted through the network.

  8. TRACING THE HERCULES STREAM AROUND THE GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo, E-mail: jb2777@nyu.ed

    2010-12-20

    It has been proposed that the Hercules stream, a group of co-moving stars in the solar neighborhood offset from the bulk of the velocity distribution, is the result of resonant interactions between stars in the outer disk and the Galactic bar. So far it has only been seen in the immediate solar neighborhood, but the resonance model makes a prediction over a large fraction of the Galactic disk. I predict the distribution of stellar velocities and the changing Hercules feature in this distribution as a function of location in the Galactic disk in a simple model for the Galaxy andmore » the bar that produces the observed Hercules stream. The Hercules feature is expected to be strong enough to be unambiguously detected in the distribution of line-of-sight velocities in selected directions. I identify quantitatively the most promising lines of sight for detection in line-of-sight velocities using the Kullback-Leibler divergence between the predictions of the resonance model and an axisymmetric model; these directions are at 250{sup 0} {approx}< l {approx}< 290{sup 0}. The predictions presented here are only weakly affected by distance uncertainties, assumptions about the distribution function in the stellar disk, and the details of the Galactic potential including the effect of spiral structure. Gaia and future spectroscopic surveys of the Galactic disk such as APOGEE and HERMES will be able to robustly test the origin of the Hercules stream and constrain the properties of the Galactic bar.« less

  9. Time-series Photometry of the Pre-Main Sequence Binary V4046 Sgr: Testing the Accretion Stream Theory

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Ciardi, David R.

    2015-01-01

    Most stars are born in binaries, and the evolution of protostellar disks in pre-main sequence (PMS) binary stars is a current frontier of star formation research. PMS binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces. Thus, accretion in PMS binaries is controlled by not only radiation, disk viscosity, and magnetic fields, but also by orbital dynamics.As part of a larger, ongoing effort to characterize mass accretion in young binary systems, we test the predictions of the binary accretion stream theory through continuous, multi-orbit, multi-color optical and near-infrared (NIR) time-series photometry. Observations such as these are capable of detecting and characterizing these modulated accretion streams, if they are generally present. Broad-band blue and ultraviolet photometry trace the accretion luminosity and photospheric temperature while NIR photometry provide a measurement of warm circumstellar material, all as a function of orbital phase. The predicted phase and magnitude of enhanced accretion are highly dependent on the binary orbital parameters and as such, our campaign focuses on 10 PMS binaries of varying periods and eccentricities. Here we present multi-color optical (U, B,V, R), narrowband (Hα), and multi-color NIR (J, H) lightcurves of the PMS binary V4046 Sgr (P=2.42 days) obtained with the SMARTS 1.3m telescope and LCOGT 1m telescope network. These results act to showcase the quality and breadth of data we have, or are currently obtaining, for each of the PMS binaries in our sample. With the full characterization of our sample, these observations will guide an extension of the accretion paradigm from single young stars to multiple systems.

  10. Dusty Winds in Active Galactic Nuclei: Reconciling Observations with Models

    NASA Astrophysics Data System (ADS)

    Hönig, Sebastian F.; Kishimoto, Makoto

    2017-04-01

    This Letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGNs). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGNs, spatially resolved observations indicate that the majority of the IR emission from ≲100 pc in many AGNs originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGNs consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall a similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g., the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3-5 μm bump observed in many type 1 AGNs unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGNs at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scale dusty medium around AGNs: the disk gives rise to the 3-5 μm near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.

  11. On the observability of resonant structures in planetesimal disks due to planetary migration

    NASA Astrophysics Data System (ADS)

    Reche, R.; Beust, H.; Augereau, J.-C.; Absil, O.

    2008-03-01

    Context: The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims: We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods: We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results: The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions: This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures. Figures 4-7 and Tables 2-4 are only available in electronic form at http://www.aanda.org

  12. Hot SPOT Eclipses in Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Smak, J.

    1996-10-01

    Eclipses of the hot spot in four dwarf novae: U Gem, IP Peg, Z Cha, and OY Car are re-analyzed, assuming two models for the shape of the spot. In Model 1 an elliptical spot is assumed, with the semi-axes s_a in the orbital plane and s_b perpendicular to the orbital plane, its center located on the stream trajectory. The results show that such an ellipse is, within errors, tangent to the disk's circumference. In all four cases the resulting dimensions of the spot s_a are larger than the theoretical cross-section of the stream. Accordingly, in Model2 the spot is assumed to consist of a head, centered on the stream trajectory, and a tail, extending downstream, ie., along disk's circumference. In some cases the resulting parameters, eg., mass ratios or disk radii, differ significantly from those obtained with Model 1.

  13. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential-decay typical of flares. While both are present, accretion dominates the observed variability providing evidence for the accretion stream theory and detailed mass accretion rates for comparison with numerical simulations.

  14. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  15. H I Structure and Topology of the Galaxy Revealed by the I-GALFA H I 21-cm Line Survey

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Park, G.; Cho, W.; Gibson, S. J.; Kang, J.; Douglas, K. A.; Peek, J. E. G.; Korpela, E. J.; Heiles, C. E.

    2011-05-01

    The I-GALFA survey mapping all the H I in the inner Galactic disk visible to the Arecibo 305m telescope within 10 degrees of the Galactic plane (longitudes of 32 to 77 degrees at b = 0) completed observations in 2009 September and will soon be made publicly available. The high (3.4 arcmin) resolution and tremendous sensitivity of the survey offer a great opportunity to observe the fine details of H I both in the inner and in the far outer Galaxy. The reduced HI column density maps show that the HI structure is highly filamentary and clumpy, pervaded by shell-like structures, vertical filaments, and small clumps. By inspecting individual maps, we have found 36 shell candidates of angular sizes ranging from 0.4 to 12 degrees, half of which appear to be expanding. In order to characterize the filamentary/clumpy morphology of the HI structure, we have carried out statistical analyses of selected areas representing the spiral arms in the inner and outer Galaxy. Genus statistics that can distinguish the ``meatball'' and ``swiss-cheese'' topologies show that the HI topology is clump-like in most regions. The two-dimensional Fourier analysis further shows the HI structures are filamentary and mainly parallel to the plane in the outer Galaxy. We also examine the level-crossing statistics, the results of which are described in detail in an accompanying poster by Park et al.

  16. The low-mass stellar population in the young cluster Tr 37. Disk evolution, accretion, and environment

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Kim, Jinyoung Serena; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min

    2013-11-01

    Aims: We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution. Methods: We used low-resolution spectroscopy to identify and classify 141 members (78 new ones) and 64 probable members, mostly M-type stars. Hα emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the spectral energy distributions (SEDs) and search for disks. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Results: Including the new members and the known solar-type stars, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (with low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or undetectable) accretion signatures, especially among M-type stars. Conclusions: The analysis of accretion and disk structure suggests a parallel evolution of dust and gas. We find several distinct classes of evolved disks, based on SED type and accretion status, pointing to different disk dispersal mechanisms and probably different evolutionary paths. Dust depletion and opening of inner holes appear to be independent processes: most transition disks are not dust-depleted, and most dust-depleted disks do not require inner holes. The differences in disk structure between M-type and solar-type stars in Tr 37 (4 Myr old) are not as remarkable as in the young, sparse, Coronet cluster (1-2 Myr old), suggesting that other factors, like the environment/interactions in each cluster, are likely to play an important role in the disk evolution and dispersal. Finally, we also find some evidence of clumpy star formation or mini-clusters within Tr 37. Observations reported here were obtained at the MMT Observatory, a jointfacility of the Smithsonian Institution and the University of Arizona.Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).Appendices A and B are available in electronic form at http://www.aanda.orgFull Tables A.1-A.5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A3

  17. CANDELS Visual Classifications: Scheme, Data Release, and First Results

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Harry; Koo, David; Bassett, Robert; Bernyk, Maksym; Blancato, Kirsten; Bournaud, Frederic; Cassata, Paolo; Castellano, Marco; Cheung, Edmond; Conselice, Christopher J.; Croton, Darren; Dahlen, Tomas; de Mello, Duilia F.; DeGroot, Laura; Donley, Jennifer; Guedes, Javiera; Grogin, Norman; Hathi, Nimish; Hilton, Matt; Hollon, Brett; Koekemoer, Anton; Liu, Nick; Lucas, Ray A.; Martig, Marie; McGrath, Elizabeth; McPartland, Conor; Mobasher, Bahram; Morlock, Alice; O'Leary, Erin; Peth, Mike; Pforr, Janine; Pillepich, Annalisa; Rosario, David; Soto, Emmaris; Straughn, Amber; Telford, Olivia; Sunnquist, Ben; Trump, Jonathan; Weiner, Benjamin; Wuyts, Stijn; Inami, Hanae; Kassin, Susan; Lani, Caterina; Poole, Gregory B.; Rizer, Zachary

    2015-11-01

    We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H < 24.5 involving the dedicated efforts of over 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields, with classifications from 3 to 5 independent classifiers for each galaxy. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed—GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sérsic index. We find that the level of agreement among classifiers is quite good (>70% across the full magnitude range) and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement (>50%) and irregulars the lowest (<10%). A comparison of our classifications with the Sérsic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.

  18. Massive star clusters in a z=1 star-forming galaxy seen at a 100 pc scale thanks to strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Cava, Antonio; Richard, Johan; Schaerer, Daniel; Egami, Eiichi

    2015-08-01

    Deep and high-resolution imaging has revealed clumpy, rest-frame UV morphologies among z=1-3 galaxies. The majority of these galaxies has been shown to be dominated by ordered disk rotation, which led to the conclusion that the observed giant clumps, resolved on kpc-scales, are generated from disk fragmentation due to gravitational instability. State-of-the-art numerical simulations show that they may occupy a relevant role in galaxy evolution, contributing to the galactic bulge formation. Despite the high resolution attained by the most advanced ground- and space-based facilities, as well as in numerical simulations, the intrinsic typical masses and scale sizes of these star-forming clumps remain unconstrained, since they are barely resolved at z=1-3.Thanks to the amplification and stretching power provided by strong gravitational lensing, we are likely to reach the spatial resolving power for unveiling the physics of these star-forming regions. We report on the study of clumpy star formation observed in the Cosmic Snake, a strongly lensed galaxy at z=1, representative of the typical star-forming population close to the peak of Universe activity. About 20 clumps are identified in the HST images. Benefiting from extreme amplification factors up to 100, they are resolved down to an intrinsic scale of 100 pc, never reached before at z=1.The HST multi-wavelength analysis of these individual star clusters allows us to determine their intrinsic physical properties, showing stellar masses (Ms) from 106 to 108.3 Msun, sizes from 100 to 400 pc, and ages from 106 to 108.5 yr. The masses we find are in line with the new, very high resolution numerical simulations, which also suggest that the massive giant clumps previously observed at high redshift with Ms as high as 109-10 Msun may suffer from low resolution effects, being unresolved conglomerates of less massive star clusters. We also compare our results with those of massive young clusters in nearby galaxies. Our approved ALMA observations will reach the same 100 pc scale, which is essential for the study of associated giant molecular clouds in this galaxy.

  19. Insights into the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin

    2017-10-01

    The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.

  20. VLTI-Pionier Imaging of the Carbon AGB Star R Sculptoris and the Supergiant V766 Centauri

    NASA Astrophysics Data System (ADS)

    Wittkowski, Markus

    2018-04-01

    I will present reconstructed images of the carbon-rich AGB star R Scl and of the supergiant V766 Cen, both recently obtained from VLTI-PIONIER data. The images are compared to state-of-the art atmosphere and wind models. The images of R Scl exhibit a complex structure within the stellar disk. This structure is most likely caused by giant convection cells, resulting in large-scale shock fronts, and their effects on clumpy molecule and dust formation seen against the photosphere. Images of V 766 Cen were obtained at three epochs. The first epoch shows a complex elongated structure within the photospheric disk, consistent with a red supergiant harboring giant photospheric convection cells. The second and third epochs show a qualitatively and quantitatively different structure with significantly increased contrast, which is not compatible with current models of convection. Instead we interpret the 2016 and 2017 epochs as showing a previously suggested close eclipsing companion in front of the primary, which was located behind the primary at the 2014 epoch. Finally, I will show preliminary reconstructed images of a small sample of further red supergiants.

  1. Analysis of cache for streaming tape drive

    NASA Technical Reports Server (NTRS)

    Chinnaswamy, V.

    1993-01-01

    A tape subsystem consists of a controller and a tape drive. Tapes are used for backup, data interchange, and software distribution. The backup operation is addressed. During a backup operation, data is read from disk, processed in CPU, and then sent to tape. The processing speeds of a disk subsystem, CPU, and a tape subsystem are likely to be different. A powerful CPU can read data from a fast disk, process it, and supply the data to the tape subsystem at a faster rate than the tape subsystem can handle. On the other hand, a slow disk drive and a slow CPU may not be able to supply data fast enough to keep a tape drive busy all the time. The backup process may supply data to tape drive in bursts. Each burst may be followed by an idle period. Depending on the nature of the file distribution in the disk, the input stream to the tape subsystem may vary significantly during backup. To compensate for these differences and optimize the utilization of a tape subsystem, a cache or buffer is introduced in the tape controller. Most of the tape drives today are streaming tape drives. A streaming tape drive goes into reposition when there is no data from the controller. Once the drive goes into reposition, the controller can receive data, but it cannot supply data to the tape drive until the drive completes its reposition. A controller can also receive data from the host and send data to the tape drive at the same time. The relationship of cache size, host transfer rate, drive transfer rate, reposition, and ramp up times for optimal performance of the tape subsystem are investigated. Formulas developed will also show the advantages of cache watermarks to increase the streaming time of the tape drive, maximum loss due to insufficient cache, tradeoffs between cache and reposition times and the effectiveness of cache on a streaming tape drive due to idle times or interruptions due in host transfers. Several mathematical formulas are developed to predict the performance of the tape drive. Some examples are given illustrating the usefulness of these formulas. Finally, a summary and some conclusions are provided.

  2. Industrial-Strength Streaming Video.

    ERIC Educational Resources Information Center

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  3. HST Spatially Resolved Spectra of the Accretion Disc and Gas Stream of the Nova-Like Variable UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.

    1998-01-01

    Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November (from V = 10 (exp -8.3 +/-0.1) to 10(exp -8.1 +/- 0.1 solar mass yr(exp -1)), in accordance with the observed increase in brightness. Since the UX UMA disc seems to be in a high mass accretion, high-viscosity regime in both epochs, this result suggests that the mass transfer rate of UX UMA varies substantially (approximately equal to 50 per cent) on time-scales of a few months. It is suggested that the reason for the discrepancies between the prediction of the standard disk model and observations is not an inadequate treatment of radiative transfer in the disc atmosphere, but rather the presence of addition important sources of light in the system besides the accretion disk (e.g., optically thin contiuum emission from the disk wind and possible absorption by circumstellar cool gas).

  4. Kinematics in the Circumnuclear Disk

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth; Casey-Clyde, J. Andrew; Rodriguez, Julio; Kruijssen, Diederik; Martin, Sergio; Moser, Lydia; Riquelme, Denise; Harada, Nanase; Zhao, Jun-Hui; Lu, Hauyu

    2018-01-01

    The Circumnuclear Disk (CND) extends from 1.5-5pc in radius around our Galaxy's central supermassive black hole, Sagittarius A*. New ALMA observations reveal that the CND is a more complex system than previously thought, containing multiple streams, filaments and other structures inconsistent with the uniform circular rotation that is typically assumed for this source. We will present position-position-velocity maps of this region using the HNC 3-2 and HCN 3-2 transitions, which reveal line of sight velocities that are highly discontinuous in several regions, suggesting the CND consists of several overlapping and possibly interacting clouds, rather than one continuous and circularized disk. In particular, we single out a uniquely linear stream on the eastern side of this region, which is continuous in both position and velocity, with a size of 3 x 0.1 pc and velocities ranging from -50 to 100 km/s. For this stream, we will also present the results of recently performed orbital fitting, establishing its 3 dimensional position in the central potential around Sagittarius A*.

  5. Witnessing Gas Mixing in the Metal Distribution during a Galaxy Merger.

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2015-08-01

    I will present direct evidence that in a merger of disk galaxies, the pre-existing central metallicities will mix as a result of gas being transported in the merger interface region along the line that joins the two coalescing nuclei. In focusing on the emission line gas, this is shown using detailed two-dimensional kinematics as well as metallicity measurements for the nearby ongoing merger in the center of the compact group HCG 31. The two coalescing cores display similar oxygen abundances, while in between the two nuclei, the metallicity changes smoothly from one nucleus to the other indicating a mix of metals in this region. This nearby system involves the merging of two fairly low-mass and clumpy galaxies (LMC-like galaxies), making it an important system for comparison with high-redshift galaxies.

  6. Strongly Magnetized Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell

    Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co-exist with accretion at large heights. Using simulations, we will study fragmentation conditions, the clumpiness of stable AGN disks, and the mass function of collapsed clumps. (3) Physics of the broad emission line region and dusty torus . We will study the possible role of the strong toroidal field in promoting thermal instabilities to create dense lineemitting filaments, transporting them in height, and confining the line-emitting gas. Extrapolating to slightly larger distances, we will examine whether the field can elevate dusty gas to heights at which it can reprocess a substantial fraction of the AGN radiation. This study will establish a new theoretical framework for interpreting multi-wavelength observations of AGN, involving NASA s infrared, ultraviolet and X-ray observatories as well as ground-based detectors. It addresses fundamental questions about how supermassive black holes interact with their galactic environments, as well as broader issues of feedback and black hole-galaxy co-evolution.

  7. Planetesimal Formation through the Streaming Instability

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chin; Johansen, Anders; Schäfer, Urs

    2015-12-01

    The streaming instability is a promising mechanism to circumvent the barriers in direct dust growth and lead to the formation of planetesimals, as demonstrated by many previous studies. In order to resolve the thin layer of solids, however, most of these studies were focused on a local region of a protoplanetary disk with a limited simulation domain. It remains uncertain how the streaming instability is affected by the disk gas on large scales, and models that have sufficient dynamical range to capture both the thin particle layer and the large-scale disk dynamics are required.We hereby systematically push the limits of the computational domain up to more than the gas scale height, and study the particle-gas interaction on large scales in the saturated state of the streaming instability and the initial mass function of the resulting planetesimals. To overcome the numerical challenges posed by this kind of models, we have developed a new technique to simultaneously relieve the stringent time step constraints due to small-sized particles and strong local solid concentrations. Using these models, we demonstrate that the streaming instability can drive multiple radial, filamentary concentrations of solids, implying that planetesimals are born in well separated belt-like structures. We also find that the initial mass function of planetesimals via the streaming instability has a characteristic exponential form, which is robust against computational domain as well as resolution. These findings will help us further constrain the cosmochemical history of the Solar system as well as the planet formation theory in general.

  8. Dusty Winds in Active Galactic Nuclei: Reconciling Observations with Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hönig, Sebastian F.; Kishimoto, Makoto, E-mail: S.Hoenig@soton.ac.uk

    2017-04-01

    This Letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGNs). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGNs, spatially resolved observations indicate that the majority of the IR emission from ≲100 pc in many AGNs originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGNs consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall amore » similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g., the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3–5 μ m bump observed in many type 1 AGNs unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGNs at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scale dusty medium around AGNs: the disk gives rise to the 3–5 μ m near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.« less

  9. Performances of multiprocessor multidisk architectures for continuous media storage

    NASA Astrophysics Data System (ADS)

    Gennart, Benoit A.; Messerli, Vincent; Hersch, Roger D.

    1996-03-01

    Multimedia interfaces increase the need for large image databases, capable of storing and reading streams of data with strict synchronicity and isochronicity requirements. In order to fulfill these requirements, we consider a parallel image server architecture which relies on arrays of intelligent disk nodes, each disk node being composed of one processor and one or more disks. This contribution analyzes through bottleneck performance evaluation and simulation the behavior of two multi-processor multi-disk architectures: a point-to-point architecture and a shared-bus architecture similar to current multiprocessor workstation architectures. We compare the two architectures on the basis of two multimedia algorithms: the compute-bound frame resizing by resampling and the data-bound disk-to-client stream transfer. The results suggest that the shared bus is a potential bottleneck despite its very high hardware throughput (400Mbytes/s) and that an architecture with addressable local memories located closely to their respective processors could partially remove this bottleneck. The point- to-point architecture is scalable and able to sustain high throughputs for simultaneous compute- bound and data-bound operations.

  10. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distributionmore » with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.« less

  11. Evaluation of USEPA method 1622 for detection of Cryptosporidium oocysts in stream waters

    USGS Publications Warehouse

    Simmons, O. D.; Sobsey, M.D.; Schaefer, F. W.; Francy, D.S.; Nally, R.A.; Heaney, C.D.

    2001-01-01

    To improve surveillance for Cryptosporidium oocysts in water, the US Environmental Protection Agency developed method 1622, which consists of filtration, concentration, immunomagnetic separation, fluorescent antibody and 4, 6-diamidino-2-phenylindole (DAPI) counter-staining, and microscopic evaluation. Two filters were compared for analysis of 11 stream water samples collected throughout the United States. Replicate 10-L stream water samples (unspiked and spiked with 100-250 oocysts) were tested to evaluate matrix effects. Oocyst recoveries from the stream water samples averaged 22% (standard deviation [SD] = ??17%) with a membrane disk and 12% (SD = ??6%) with a capsule filter. Oocyst recoveries from reagent water precision and recovery samples averaged 39% (SD = ??13%) with a membrane disk and 47% (SD = ??19%) with a capsule filter. These results demonstrate that Cryptosporidium oocysts can be recovered from stream waters using method 1622, but recoveries are lower than those from reagent-grade water. This research also evaluated concentrations of indicator bacteria in the stream water samples. Because few samples were oocyst-positive, relationships between detections of oocysts and concentrations of indicator organisms could not be determined.

  12. Calibration and field application of passive sampling for episodic exposure to polar organic pesticides in streams.

    PubMed

    Fernández, Diego; Vermeirssen, Etiënne L M; Bandow, Nicole; Muñoz, Katherine; Schäfer, Ralf B

    2014-11-01

    Rainfall-triggered runoff is a major driver of pesticide input in streams. Only few studies have examined the suitability of passive sampling to quantify such episodic exposures. In this study, we used Empore™ styrene-divinylbenzene reverse phase sulfonated disks (SDB disks) and event-driven water samples (EDS) to assess exposure to 15 fungicides and 4 insecticides in 17 streams in a German vineyard area during 4 rainfall events. We also conducted a microcosm experiment to determine the SDB-disk sampling rates and provide a free-software solution to derive sampling rates under time-variable exposure. Sampling rates ranged from 0.26 to 0.77 L d(-1) and time-weighted average (TWA) concentrations from 0.05 to 2.11 μg/L. The 2 sampling systems were in good agreement and EDS exceeded TWA concentrations on average by a factor of 3. Our study demonstrates that passive sampling is suitable to quantify episodic exposures from polar organic pesticides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Erkal, Denis; Sanders, Jason L.

    2017-04-01

    Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r < 20 kpc) ≈ 0.2 per cent] assuming that the Pal 5 stream is 5 Gyr old. Improved data will allow measurements of the subhalo mass function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.

  14. FROM X-RAY DIPS TO ECLIPSE: WITNESSING DISK REFORMATION IN THE RECURRENT NOVA U Sco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, J.-U.; Talavera, A.; Gonzalez-Riestra, R.

    2012-01-20

    The tenth recorded outburst of the recurrent eclipsing nova U Sco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after the outburst. Two full passages of the companion in front of the nova ejecta were observed, as was the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve that disappeared by day 34.9, yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highlymore » elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal 87.« less

  15. Fluid dynamics of stellar jets in real time: Third Epoch Hubble Space Telescope images of HH 1, HH 34, AND HH 47

    DOE PAGES

    Hartigan, P.; Frank, A.; Foster, J. M.; ...

    2011-07-01

    We present new, third-epoch Hubble Space Telescope Hα and [S II] images of three Herbig-Haro (HH) jets (HH 1&2, HH 34, and HH 47) and compare the new images with those from previous epochs. The high spatial resolution, coupled with a time series whose cadence is of order both the hydrodynamic and radiative cooling timescales of the flow, allows us to follow the hydrodynamic/magnetohydrodynamic evolution of an astrophysical plasma system in which ionization and radiative cooling play significant roles. Cooling zones behind the shocks are resolved, so it is possible to identify which way material flows through a given shockmore » wave. The images show that heterogeneity is paramount in these jets, with clumps dominating the morphologies of both bow shocks and their Mach disks. This clumpiness exists on scales smaller than the jet widths and determines the behavior of many of the features in the jets. Evidence also exists for considerable shear as jets interact with their surrounding molecular clouds, and in several cases we observe shock waves as they form and fade where material emerges from the source and as it proceeds along the beam of the jet. Fine structure within two extended bow shocks may result from Mach stems that form at the intersection points of oblique shocks within these clumpy objects. Taken altogether, these observations represent the most significant foray thus far into the time domain for stellar jets, and comprise one of the richest data sets in existence for comparing the behavior of a complex astrophysical plasma flow with numerical simulations and laboratory experiments.« less

  16. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459. II. What is Missed at the Normal Resolution of the Hubble Space Telescope?

    NASA Astrophysics Data System (ADS)

    Rigby, J. R.; Johnson, T. L.; Sharon, K.; Whitaker, K.; Gladders, M. D.; Florian, M.; Lotz, J.; Bayliss, M.; Wuyts, E.

    2017-07-01

    For lensed galaxy SGAS J111020.0+645950.8 at redshift z = 2.481, which is magnified by a factor of 28 ± 8, we analyze the morphology of star formation, as traced by rest-frame ultraviolet emission, in both the highly magnified source plane and simulations of how this galaxy would appear without lensing magnification. Were this galaxy not lensed, but rather drawn from a Hubble Space Telescope deep field, we would conclude that almost all its star formation arises from an exponential disk (Sérsic index of 1.0 ± 0.4) with an effective radius of {r}e=2.7+/- 0.3 {kpc} measured from two-dimensional fitting to F606W using Galfit, and {r}e=1.9+/- 0.1 {kpc} measured by fitting a radial profile to F606W elliptical isophotes. At the normal spatial resolution of the deep fields, there is no sign of clumpy star formation within SGAS J111020.0+645950.8. However, the enhanced spatial resolution enabled by gravitational lensing tells a very different story; much of the star formation arises in two dozen clumps with sizes of r = 30-50 pc spread across the 7 kpc length of the galaxy. The color and spatial distribution of the diffuse component suggests that still-smaller clumps are unresolved. Despite this clumpy, messy morphology, the radial profile is still well-characterized by an exponential profile. In this lensed galaxy, stars are forming in complexes with sizes well below 100 pc such sizes are wholly unexplored by surveys of galaxy evolution at 1< z< 3.

  17. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, Manoel; Diaz, Marcos

    2009-12-15

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less

  18. Multiple Stellar Flybys Sculpting the Circumstellar Architecture in RW Aurigae

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joseph E.; Loomis, Ryan; Cabrit, Sylvie; Haworth, Thomas J.; Facchini, Stefano; Dougados, Catherine; Booth, Richard A.; Jensen, Eric L. N.; Clarke, Cathie J.; Stassun, Keivan G.; Dent, William R. F.; Pety, Jérôme

    2018-06-01

    We present high-resolution ALMA Band 6 and 7 observations of the tidally disrupted protoplanetary disks of the RW Aurigae binary. Our observations reveal tidal streams in addition to the previously observed tidal arm around RW Aur A. The observed configuration of tidal streams surrounding RW Aur A and B is incompatible with a single star–disk tidal encounter, suggesting that the RW Aurigae system has undergone multiple flyby interactions. We also resolve the circumstellar disks around RW Aur A and B, with CO radii of 58 au and 38 au consistent with tidal truncation, and 2.5 times smaller dust emission radii. The disks appear misaligned by 12° or 57°. Using new photometric observations from the American Association of Variable Star Observers (AAVSO) and the All Sky Automated Survey for SuperNovae (ASAS-SN) archives, we have also identified an additional dimming event of the primary that began in late 2017 and is currently ongoing. With over a century of photometric observations, we are beginning to explore the same spatial scales as ALMA.

  19. Search for and follow-up imaging of subparsec accretion disks in AGN

    NASA Astrophysics Data System (ADS)

    Kondratko, Paul Thomas

    We report results of several large surveys for water maser emission among Active Galactic Nuclei with the 100-m Green Bank Telescope and the two NASA Deep Space Network 70-m antennas at Tidbinbilla, Australia and at Robledo, Spain. We detected 23 new sources, which resulted in a 60% increase in the number of then known nuclear water maser sources. Eight new detections show the characteristic spectral signature of emission from an edge-on accretion disk and therefore constitute good candidates for the determination of black hole mass and geometric distance. This increase in the number of known sources has enabled us to reconsider statistical properties of the resulting sample. For the 30 water maser sources with available hard X-ray data, we found a possible correlation between unabsorbed X-ray luminosity (2-10 keV) and total isotropic water maser luminosity of the form L 2-10 0([Special characters omitted.] , consistent with the model proposed by Neufeld et al. (1994) in which X-ray irradiation of molecular accretion disk gas by the central engine excites the maser emission. We mapped for the first time with Very Long Baseline Interferomatey (VLBI) the full extent of the pc-scale accretion disk in NGC 3079 as traced by water maser emission. Positions and line-of-sight velocities of maser emission are consistent with a nearly edge-on pc-scale disk and a central mass of ~ 2 x 10^6 [Special characters omitted.] enclosed within ~ 0.4 pc. Based on the kinematics of the system, we propose that the disk is geometrically-thick, massive, subject to gravitational instabilities, and hence most likely clumpy and star- forming. The accretion disk in NGC 3079 is thus markedly different from the compact, thin, warped, differentially rotating disk in the archetypal maser galaxy NGC 4258. We also detect maser emission at high latitudes above the disk and suggest that it traces an inward extension of the kpc-scale bipolar wide- angle outflow previously observed along the galactic minor axis. We also report the first VLBI map of the pc-scale accretion disk in NGC 3393. Water maser emission in this source appears to follow Keplerian rotation and traces a linear structure between disk radii of 0.36 and ~ 1 pc. Assuming an edge-on disk and Keplerian rotation, the inferred central mass is (3.1±0.2) × 10^7 [Special characters omitted.] enclosed within 0.36±0.02 pc, which corresponds to a mean mass density of ~ 10 8.2 [Special characters omitted.] pc -3 . We also measured with the Green Bank Telescope centripetal acceleration within the disk, from which we infer the disk radius of 0.17±0.02 pc for the maser feature that is located along the line of sight to the dynamical center. This emission evidently occurs much closer to the center than the emission from the disk midline (0.17 vs. 0.36 pc), contrary to the situation in the two archetypal maser systems NGC 4258 and NGC 1068.

  20. Coronal Hole Facing Earth

    NASA Image and Video Library

    2018-05-15

    An extensive equatorial coronal hole has rotated so that it is now facing Earth (May 2-4, 2018). The dark coronal hole extends about halfway across the solar disk. It was observed in a wavelength of extreme ultraviolet light. This magnetically open area is streaming solar wind (i.e., a stream of charged particles released from the sun) into space. When Earth enters a solar wind stream and the stream interacts with our magnetosphere, we often experience nice displays of aurora. https://photojournal.jpl.nasa.gov/catalog/PIA00577

  1. Nanolensed Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2017-12-01

    It is suggested that fast radio bursts can probe gravitational lensing by clumpy dark matter objects that range in mass from 10-3 M ⊙-102 M ⊙. They may provide a more sensitive probe than observations of lensings of objects in the Magellanic Clouds, and could find or rule out clumpy dark matter with an extended mass spectrum.

  2. Disk Refining and Ultrasonication Treated Sugarcane Bagasse Residues for Poly(Vinyl Alcohol) Bio-composites

    Treesearch

    Qingzheng Cheng; Zhaohui Tong; Luisa Dempere; Lonnie Ingram; Letian Wang; J.Y. Zhu

    2013-01-01

    Disk refining and ultrasonication treated sugarcane bagasse residues reclaimed from the waste stream of a simplified bioethanol process after fermentation were used to fabricate biobased composites with poly(vinyl alcohol) (PVA) by film casting. The morphologies and the size distributions of residue particles were characterized by scanning electronic microscopy and...

  3. Phase-Resolved Spectroscopy of the Low-Mass X-ray Binary V801 Ara

    NASA Astrophysics Data System (ADS)

    Brauer, Kaley; Vrtilek, Saeqa Dil; Peris, Charith; McCollough, Michael

    2018-06-01

    We present phase-resolved optical spectra of the low mass X-ray binary system V801 Ara. The spectra, obtained in 2014 with IMACS on the Magellan/Baade telescope at Las Campanas Observatory, cover the full binary orbit of 3.8 hours. They contain strong emission features allowing us to map the emission of Hα, Hβ, He II λ4686, and the Bowen blend at λ4640. The radial velocity curves of the Bowen blend shows significantly stronger modulation at the orbital period than Hα as expected for the former originating on the secondary with the latter consistent with emission dominated by the disk. Our tomograms of Hα and Hβ are the most detailed studies of these lines for V801 to date and they clearly detect the accretion disk. The Hβ emission extends to higher velocities than Hα, suggesting emission from closer to the neutron star and differentiating temperature variance in the accretion disk for the first time. The center of the accretion disk appears offset from the center-of-mass of the neutron star as has been seen in several other X-ray binaries. This is often interpreted to imply disk eccentricity. Our tomograms do not show strong evidence for a hot spot at the point where the accretion stream hits the disk. This could imply a reduced accretion rate or could be due to the spot being drowned out by bright accretion flow around it. There is enhanced emission further along the disk, however, which implies gas stream interaction downstream of the hot spot.

  4. Was the Milky Way Bulge Formed from the Buckling Disk Instability, Hierarchical Collapse, Accretion of Clumps, or All of the Above?

    NASA Astrophysics Data System (ADS)

    Nataf, David M.

    2017-09-01

    The assembly of the Milky Way bulge is an old topic in astronomy, one now in a period of renewed and rapid development. That is due to tremendous advances in observations of bulge stars, motivating observations of both local and high-redshift galaxies, and increasingly sophisticated simulations. The dominant scenario for bulge formation is that of the Milky Way as a nearly pure disk galaxy, with the inner disk having formed a bar and buckled. This can potentially explain virtually all bulge stars with [Fe/H] ≳ -1.0, which comprise 95% of the stellar population. The evidence is the incredible success in N-body models of this type in making non-trivial, non-generic predictions, such as the rotation curve and velocity dispersion measured from radial velocities, and the spatial morphologies of the peanut/X-shape and the long bar. The classical bulge scenario, whereby the bulge formed from early dissipative collapse and mergers, remains viable for stars with [Fe/H] ≲ -1.0 and potentially a minority of the other stars. A classical bulge is expected from Λ-CDM cosmological simulations, can accentuate the properties of an existing bar in a hybrid system, and is most consistent with the bulge abundance trends such as [Mg/Fe], which are elevated relative to both the thin and thick disks. Finally, the clumpy-galaxy scenario is considered, as it is the correct description of most Milky Way precursors given observations of high-redshift galaxies. Simulations predict that these star-forming clumps will sometimes migrate to the centres of galaxies where they may form a bulge, and galaxies often include a bulge clump as well. They will possibly form a bar with properties consistent with those of the Milky Way, such as the exponential profile and metallicity gradient. Given the relative successes of these scenarios, the Milky Way bulge is plausibly of composite origin, with a classical bulge and/or inner halo numerically dominant for stars with [Fe/H] ≲ -1.0, a buckling thick disk for stars with - 1.0 ≲ [Fe/H

  5. Structure in the Disk of epsilon Aurigae -- Analysis of ARCES and TripleSpec data from the 2010 eclipse

    NASA Astrophysics Data System (ADS)

    Gibson, Justus; Stencel, Robert E.; ARCES Team; Ketzeback, W.; Barentine, J.; Bradley, A.; Coughlin, J.; Dembicky, J.; Hawley, S.; Huehnerhoff, J.; Leadbeater, R.; McMillan, R.; Saurage, G.; Schmidt, S.; Ule, N.; Wallerstein, G.; York, D.

    2018-06-01

    Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. One hundred and sixteen epochs of data were obtained between 2009 and 2012, and equivalent widths and line velocities measured for high versus low eccentricity accretion disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830A line, and the discovery of the P Cygni shape of the Pa-beta line at third contact. We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualized the disk and stream interaction using SHAPE software, and used CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with log nH = 11 cm-3 and temperature of 20,000 K, consistent with a mid-B type central star. We thank the following for their contributions to this paper: William Ketzeback, John Barentine, Jeffrey Coughlin, Robin Leadbeater, Gabrelle Saurage, and others. This paper has been submitted to Monthly Notices.

  6. FULL SPECTRAL SURVEY OF ACTIVE GALACTIC NUCLEI IN THE ROSSI X-RAY TIMING EXPLORER ARCHIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu

    2013-08-01

    We have analyzed spectra for all active galactic nuclei (AGNs) in the Rossi X-ray Timing Explorer archive. We present long-term average values of absorption, Fe line equivalent width (EW), Compton reflection, and photon index, and calculate fluxes and luminosities in the 2-10 keV band for 100 AGN with sufficient brightness and overall observation time to yield high-quality spectral results. We compare these parameters across the different classifications of Seyferts and blazars. Our distributions of photon indices for Seyfert 1s and 2s are consistent with the idea that Seyferts share a common central engine; however, our distributions of Compton reflection humpmore » strengths do not support the classical picture of absorption by a torus and reflection off a Compton-thick disk with type depending only on inclination angle. We conclude that a more complex reflecting geometry such as a combined disk and torus or clumpy torus is likely a more accurate picture of the Compton-thick material. We find that Compton reflection is present in {approx}85% of Seyferts and by comparing Fe line EW's to Compton reflection hump strengths we have found that on average 40% of the Fe line arises in Compton thick material; however, this ratio was not consistent from object to object and did not seem to be dependent on optical classification.« less

  7. SHORT-LIVED STAR-FORMING GIANT CLUMPS IN COSMOLOGICAL SIMULATIONS OF z Almost-Equal-To 2 DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genel, Shy; Genzel, Reinhard; Foerster Schreiber, Natascha M.

    Many observed massive star-forming z Almost-Equal-To 2 galaxies are large disks that exhibit irregular morphologies, with Almost-Equal-To 1 kpc, Almost-Equal-To 10{sup 8}-10{sup 10}M{sub o-dot} clumps. We present the largest sample to date of high-resolution cosmological smoothed particle hydrodynamics simulations that zoom-in on the formation of individual M{sub *} Almost-Equal-To 10{sup 10.5}M{sub o-dot} galaxies in Almost-Equal-To 10{sup 12}M{sub o-dot} halos at z Almost-Equal-To 2. Our code includes strong stellar feedback parameterized as momentum-driven galactic winds. This model reproduces many characteristic features of this observed class of galaxies, such as their clumpy morphologies, smooth and monotonic velocity gradients, high gas fractions (f{submore » g} Almost-Equal-To 50%), and high specific star formation rates ({approx}>1 Gyr{sup -1}). In accord with recent models, giant clumps (M{sub clump} Almost-Equal-To (5 Multiplication-Sign 10{sup 8}-10{sup 9})M{sub o-dot}) form in situ via gravitational instabilities. However, the galactic winds are critical for their subsequent evolution. The giant clumps we obtain are short-lived and are disrupted by wind-driven mass loss. They do not virialize or migrate to the galaxy centers as suggested in recent work neglecting strong winds. By phenomenologically implementing the winds that are observed from high-redshift galaxies and in particular from individual clumps, our simulations reproduce well new observational constraints on clump kinematics and clump ages. In particular, the observation that older clumps appear closer to their galaxy centers is reproduced in our simulations, as a result of inside-out formation of the disks rather than inward clump migration.« less

  8. Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Pontzen, Andrew; Christensen, Charlotte; Dekel, Avishai; Quinn, Tom; Shen, Sijing; Wadsley, James

    2012-12-01

    Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M vir >= 109 M ⊙, M * >= 107 M ⊙) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Way's dwarf satellites.

  9. Spin Dependence in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Stone, Nicholas; van Velzen, Sjoert

    2018-01-01

    A supermassive black hole (SBH) can tidally disrupt stars when its tidal field overwhelms the stars’ self-gravity. The stellar debris produced in such tidal disruption events (TDEs) evolves into tidal streams that can self-intersect. These inelastic stream collisions dissipate orbital energy, both circularizing the tidal stream and contributing to the emission observed during the TDE. Once circularized into a disk, the stellar debris can be viscously accreted by the SBH powering additional luminous emission. We explore how SBH spin can affect the tidal disruption process. Tidal forces are spin dependent, as is the minimum orbital angular momentum below which stars are directly captured by the SBH. This implies that the TDE rate will be spin dependent, particularly for more massive SBHs for which relativistic effects are more significant. SBH spin also affects TDE light curves through the initial debris orbits, the nature of the stream collisions, the viscous evolution of the accretion disk, and the possibility of launching jets. We explore the spin dependence of these phenomena to identify promising signatures for upcoming surveys expected to discover hundreds of TDE candidates in the next decade.

  10. Coronal Hole Facing Earth

    NASA Image and Video Library

    2018-05-08

    An extensive equatorial coronal hole has rotated so that it is now facing Earth (May 2-4, 2018). The dark coronal hole extends about halfway across the solar disk. It was observed in a wavelength of extreme ultraviolet light. This magnetically open area is streaming solar wind (i.e., a stream of charged particles released from the sun) into space. When Earth enters a solar wind stream and the stream interacts with our magnetosphere, we often experience nice displays of aurora. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA00624

  11. The stability of perfect elliptic disks. 1: The maximum streaming case

    NASA Technical Reports Server (NTRS)

    Levine, Stephen E.; Sparke, Linda S.

    1994-01-01

    Self-consistent distribution functions are constructed for two-dimensional perfect elliptic disks (for which the potential is exactly integrable) in the limit of maximum streaming; these are tested for stability by N-body integration. To obtain a discrete representation for each model, simulated annealing is used to choose a set of orbits which sample the distribution function and reproduce the required density profile while carrying the greatest possible amount of angular momentum. A quiet start technique is developed to place particles on these orbits uniformly in action-angle space, making the initial conditions as smooth as possible. The roundest models exhibit spiral instabilities similar to those of cold axisymmetric disks; the most elongated models show bending instabilities like those seen in prolate systems. Between these extremes, there is a range of axial ratios 0.25 approximately less than b/a approximately less than 0.6 within which these models appear to be stable. All the methods developed in this investigation can easily be extended to integrable potentials in three dimensions.

  12. An X-Ray Spectral Model for Clumpy Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Xiaobo

    2014-05-01

    We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N H = 1023 cm-2), whereas it is much more evident in the high column density case (N H = 1025 cm-2). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.

  13. On bipolar ejection. [of matter in astronomical systems

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1985-01-01

    Observations of bipolar outflows, including jets often with clumpy concentrations of matter, have been made for a wide variety of astronomical systems. In most but not all of the systems, an accretion disk is present. It is proposed that the general process responsible for bipolar ejection involves the conversion of rotational energy into magnetic energy, usually in the form of a polar magnetic torus, deep in the interiors of the systems involved. If the buoyancy of the torus resullts in draining the field lines of most of the matter which they thread, then the acceleration of the remaining matter in the toroidal bubble may produce velocities in excess of the escape velocity from the surface of the system. It is contemplated that this process will be repeated many times in most systems. A discussion is given of the application of these ideas to protostars, to stars evolved beyond the main sequence, to neutron stars, and to black holes on both stellar and galactic scales.

  14. WITNESSING GAS MIXING IN THE METAL DISTRIBUTION OF THE HICKSON COMPACT GROUP HCG 31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres-Flores, S.; Alfaro-Cuello, M.; De Oliveira, C. Mendes

    2015-01-01

    We present for the first time direct evidence that in a merger of disk galaxies, the pre-existing central metallicities will mix as a result of gas being transported in the merger interface region along the line that joins the two coalescing nuclei. This is shown using detailed two-dimensional kinematics as well as metallicity measurements for the nearby ongoing merger in the center of the compact group HCG 31. We focus on the emission line gas, which is extensive in the system. The two coalescing cores display similar oxygen abundances. While in between the two nuclei, the metallicity changes smoothly frommore » one nucleus to the other indicating a mix of metals in this region, which is confirmed by the high-resolution Hα kinematics (R = 45,900). This nearby system is especially important because it involves the merging of two fairly low-mass and clumpy galaxies (LMC-like galaxies), making it an important system for comparison with high-redshift galaxies.« less

  15. The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.

    2016-08-01

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  16. THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overallmore » clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.« less

  17. EVIDENCE FOR MASS EJECTION ASSOCIATED WITH LONG SECONDARY PERIODS IN RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, P. R.; Nicholls, C. P., E-mail: wood@mso.anu.edu.a, E-mail: nicholls@mso.anu.edu.a

    2009-12-10

    Approximately 30% of luminous red giants exhibit a long secondary period (LSP) of variation in their light curves in addition to a shorter primary period of oscillation. The cause of the LSP has so far defied explanation: leading possibilities are binarity and a nonradial mode of oscillation. Here, large samples of red giants in the Large Magellanic Cloud both with and without LSPs are examined for evidence of an 8 or 24 mum mid-IR excess caused by circumstellar dust. It is found that stars with LSPs show a significant mid-IR excess compared to stars without LSPs. Furthermore, the near-IR Jmore » - K color seems unaffected by the presence of the 24 mum excess. These findings indicate that LSPs cause mass ejection from red giants and that the lost mass and circumstellar dust is most likely in either a clumpy or a disk-like configuration. The underlying cause of the LSP and the mass ejection remains unknown.« less

  18. Ginga observations of the dipping low-mass X-ray binaries XB 1916-053 and EXO 1748-676

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.; Mukai, Koji; Williams, O. R.; Jones, Mark H.; Corbet, Robin H. D.

    1992-01-01

    Ginga observations of XB 1916-053 and EXO 0748-676, low-mass X-ray binaries with pronounced dips of variable depth and duration in their X-ray light curves, are reported. Periodicity studies of XB-1916-053 show results consistent with those from previous Ginga observations, specifically, that the derived X-ray period is shorter than the optical period by about 1 percent. This problem is discussed, and a more refined model for the system is described. Three bursts were detected during the observation of XB 1916-053, the second of which occurred during a dip. Spectral analysis suggests that the second burst caused an almost instantaneous ionization of the absorbing medium in the line of sight. This material then returned to its equilibrium state on the same time scale as the burst decay. Loose limits are placed upon the possible clumpiness of the material responsible for the accretion disk structure in XB 1916-053 and EXO 0748-676.

  19. First Images of R Aquarii and Its Asymmetric H2O Shell

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Le Coroller, H.; Pluzhnik, E.; Cotton, W. D.; Danchi, W. C.; Monnier, J. D.; Traub, W. A.; Willson, L. A.; Berger, J.-P.; Lacasse, M. G.

    2008-05-01

    We report imaging observations of the symbiotic long-period Mira variable R Aquarii (R Aqr) at near-infrared and radio wavelengths. The near-infrared observations were made with the IOTA imaging interferometer in three narrowband filters centered at 1.51, 1.64, and 1.78 μm, which sample mainly water, continuum, and water features, respectively. Our near-infrared fringe visibility and closure phase data are analyzed using three models. (1) A uniform disk model with wavelength-dependent sizes fails to fit the visibility data, and is inconsistent with the closure phase data. (2) A three-component model, consisting of a Mira star, water shell, and an off-axis point source, provide a good fit to all data. (3) A model generated by a constrained image reconstruction analysis provides more insight, suggesting that the water shell is highly nonuniform, i.e., clumpy. The VLBA observations of SiO masers in the outer molecular envelope show evidence of turbulence, with jetlike features containing velocity gradients.

  20. The structure and nature of NGC 2017 IRS. 1: High-resolution radio continuum maps

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Beck, Sara C.

    1994-01-01

    We have observed the star formation cluster NGC 2071 IRS 1, 2, and 3, with 0.14 sec spatial resolution at 2 cm. The strong source IRS 1 breaks up into a bright peak sitting on a narrow line emission extending over about 400 AU, with three much weaker peaks. This ridge, which has a p.a. = 100 deg, is not aligned with any of the other structures that have previously been seen around IRS 1: its orientation is about 55 deg from the CO outflow direction, and 35 deg from a hypothetical disk direction. The spectral and spatial results, combined with earlier radio and infrared observations, indicate that most likely the radio and infrared emission from the exciting source, IRS 1, is produced by a dense wind hidden by at least 100 visual magnitudes of extinction; the extended ridge of emission comes from an optically thin H II region with characteristic dimensions of approximately AU and which may result from a clumpy distribution of local gas and dust.

  1. A Game of Hide and Seek: Expectations of Clumpy Resources Influence Hiding and Searching Patterns

    PubMed Central

    Wilke, Andreas; Minich, Steven; Panis, Megane; Langen, Tom A.; Skufca, Joseph D.; Todd, Peter M.

    2015-01-01

    Resources are often distributed in clumps or patches in space, unless an agent is trying to protect them from discovery and theft using a dispersed distribution. We uncover human expectations of such spatial resource patterns in collaborative and competitive settings via a sequential multi-person game in which participants hid resources for the next participant to seek. When collaborating, resources were mostly hidden in clumpy distributions, but when competing, resources were hidden in more dispersed (random or hyperdispersed) patterns to increase the searching difficulty for the other player. More dispersed resource distributions came at the cost of higher overall hiding (as well as searching) times, decreased payoffs, and an increased difficulty when the hider had to recall earlier hiding locations at the end of the experiment. Participants’ search strategies were also affected by their underlying expectations, using a win-stay lose-shift strategy appropriate for clumpy resources when searching for collaboratively-hidden items, but moving equally far after finding or not finding an item in competitive settings, as appropriate for dispersed resources. Thus participants showed expectations for clumpy versus dispersed spatial resources that matched the distributions commonly found in collaborative versus competitive foraging settings. PMID:26154661

  2. VizieR Online Data Catalog: CANDELS z~2 galaxy properties (Trump+, 2014)

    NASA Astrophysics Data System (ADS)

    Trump, J. R.; Barro, G.; Juneau, S.; Weiner, B. J.; Luo, B.; Brammer, G. B.; Bell, E. F.; Brandt, W. N.; Dekel, A.; Guo, Y.; Hopkins, P. F.; Koo, D. C.; Kocevski, D. D.; McIntosh, D. H.; Momcheva, I.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Kartaltepe, J.; Koekemoer, A. M.; Lotz, J.; Maseda, M.; Mozena, M.; Nandra, K.; Rosario, D. J.; Zeimann, G. R.

    2017-04-01

    We select a sample of 44 clumpy galaxies from the Great Observatories Origins Deep Survey South (GOODS-S; Giavalisco et al. 2004ApJ...600L..93G) region of CANDELS. For comparison, we also construct mass-matched samples of 41 smooth (non-clumpy) and 35 intermediate galaxies. All galaxies have H<24 (to ensure reliable classification of clumpiness) and have [O III] detected at the 3σ level (for reliable AGN line ratio diagnostics) in the redshift range 1.3

  3. Tidal Streams Near and Far

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.

    2014-06-01

    The Pandas survey of stars in M31's disk and halo is crisscrossed by numerous tidal features from both M31 and the Milky Way. Here I focus on two narrow stellar streams visible in the survey. They have comparable angular extent in the survey (10-13 degrees long versus only 0.3 degree wide), but one is a local Milky Way stream at about 30 kpc and one is in M31, roughly 25 times more distant. I estimate the stellar mass and metallicity in the streams and the distance gradient along them. The kinematics of the M31 stream is sparsely sampled by red giant stars and globular clusters. Bayesian modeling of the stream data yields accurate constraints on the orbital parameters of the streams.

  4. Numerical Simulations of Naturally Tilted, Retrogradely Precessing, Nodal Superhumping Accretion Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2012-02-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  5. Design and reliability analysis of high-speed and continuous data recording system based on disk array

    NASA Astrophysics Data System (ADS)

    Jiang, Changlong; Ma, Cheng; He, Ning; Zhang, Xugang; Wang, Chongyang; Jia, Huibo

    2002-12-01

    In many real-time fields the sustained high-speed data recording system is required. This paper proposes a high-speed and sustained data recording system based on the complex-RAID 3+0. The system consists of Array Controller Module (ACM), String Controller Module (SCM) and Main Controller Module (MCM). ACM implemented by an FPGA chip is used to split the high-speed incoming data stream into several lower-speed streams and generate one parity code stream synchronously. It also can inversely recover the original data stream while reading. SCMs record lower-speed streams from the ACM into the SCSI disk drivers. In the SCM, the dual-page buffer technology is adopted to implement speed-matching function and satisfy the need of sustainable recording. MCM monitors the whole system, controls ACM and SCMs to realize the data stripping, reconstruction, and recovery functions. The method of how to determine the system scale is presented. At the end, two new ways Floating Parity Group (FPG) and full 2D-Parity Group (full 2D-PG) are proposed to improve the system reliability and compared with the Traditional Parity Group (TPG). This recording system can be used conveniently in many areas of data recording, storing, playback and remote backup with its high-reliability.

  6. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on the mass loss from the AGB star. Our simulations of gravitationally focused wind accretion in symbiotic binaries show the formation of stream flows and enhanced accretion rates onto the compact component. We conclude that mass transfer through a focused wind is an important mechanism in wind accreting interacting binaries and can have a significant impact on the evolution of the binary itself and the individual components.

  7. Modelling Epsilon Aurigae without solid particles

    NASA Technical Reports Server (NTRS)

    Cheng, A. Y. S.; Woolf, N. J.

    1985-01-01

    Three components can be expected to contribute to the emission of epsilon Aurigae. There is a primary F star. There is an opaque disk which occults it, and there is a gas stream which is observed to produce absorption lines. Evidence that the disk is not responsible for the gas stream lines comes both from the radial velocities, which are too small, and from the IR energy distribution out of eclipse, which shows free-free emission that would produce inadequate optical depth in electron scattering. The color temperature of the IR excess can give misleading indications of low temperature material. Free-free emission at 10,000 K between 10 and 20 microns has a color temperature of 350 K. Attempts to mold the system are discussed.

  8. Theory of magnetic cataclysmic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.

    1988-01-01

    The theory of magnetic cataclysmic binary X-ray sources is reviewed. The physics of the accretion torque for disk and for stream accretion is described, and the magnetic field strengths of DQ Her stars inferred from their spin behavior and of AM Her stars from direct measurement are discussed. The implications of disk and stream accretion for the geometry of the emission region and for the X-ray pulse profiles are considered. The physicl properties of the X-ray emission region and the expected infrared, optical, soft X-ray, and hard X-ray spectra are described. The orientations of the magnetic moment in AM Her stars inferred from the circular and linear polarization of the optical light and the optical light curve are commented on.

  9. Feeding supermassive black holes by collisional cascades

    NASA Astrophysics Data System (ADS)

    Faber, Christian; Dehnen, Walter

    2018-05-01

    The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3 pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide, and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.

  10. Feeding supermassive black holes by collisional cascades

    NASA Astrophysics Data System (ADS)

    Faber, Christian; Dehnen, Walter

    2018-07-01

    The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.

  11. Stream-Field Interactions in the Magnetic Accretor AO Piscium

    NASA Astrophysics Data System (ADS)

    Hellier, Coel; van Zyl, Liza

    2005-06-01

    UV spectra of the magnetic accretor AO Psc show absorption features for half the binary orbit. The absorption is unlike the wind-formed features often seen in similar stars. Instead, we attribute it to a fraction of the stream that overflows the impact with the accretion disk. Rapid velocity variations can be explained by changes in the trajectory of the stream depending on the orientation of the white dwarf's magnetic field. Hence, we are directly observing the interaction of an accretion stream with a rotating field. We compare this behavior to that seen in other intermediate polars and in SW Sex stars.

  12. Application of M-JPEG compression hardware to dynamic stimulus production.

    PubMed

    Mulligan, J B

    1997-01-01

    Inexpensive circuit boards have appeared on the market which transform a normal micro-computer's disk drive into a video disk capable of playing extended video sequences in real time. This technology enables the performance of experiments which were previously impossible, or at least prohibitively expensive. The new technology achieves this capability using special-purpose hardware to compress and decompress individual video frames, enabling a video stream to be transferred over relatively low-bandwidth disk interfaces. This paper will describe the use of such devices for visual psychophysics and present the technical issues that must be considered when evaluating individual products.

  13. Two Key Parameters Controlling Particle Clumping Caused by Streaming Instability in the Dead-zone Dust Layer of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Sekiya, Minoru; Onishi, Isamu K.

    2018-06-01

    The streaming instability and Kelvin–Helmholtz instability are considered the two major sources causing clumping of dust particles and turbulence in the dust layer of a protoplanetary disk as long as we consider the dead zone where the magnetorotational instability does not grow. Extensive numerical simulations have been carried out in order to elucidate the condition for the development of particle clumping caused by the streaming instability. In this paper, a set of two parameters suitable for classifying the numerical results is proposed. One is the Stokes number that has been employed in previous works and the other is the dust particle column density that is nondimensionalized using the gas density in the midplane, Keplerian angular velocity, and difference between the Keplerian and gaseous orbital velocities. The magnitude of dust clumping is a measure of the behavior of the dust layer. Using three-dimensional numerical simulations of dust particles and gas based on Athena code v. 4.2, it is confirmed that the magnitude of dust clumping for two disk models are similar if the corresponding sets of values of the two parameters are identical to each other, even if the values of the metallicity (i.e., the ratio of the columns density of the dust particles to that of the gas) are different.

  14. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.

  15. The Orbit of the Orphan Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newberg, Heidi Jo; Willett, Benjamin A.; Yanny, Brian

    2010-01-01

    We use recent SEGUE spectroscopy and SDSS and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the 'Orphan Stream.' We fit orbital parameters to the data, and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud have velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but nomore » other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253{sup o}; 49{sup o}), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g-r){sub 0} = 0.22. The BHB stars have a low metallicity of [Fe/H]{sub WBG} = -2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 x 10{sup 11} M{sub {circle_dot}}, integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of v{sub halo} = 73 {+-} 24 km s{sup -1}, a disk+bulge mass of M(R < 60 kpc) = 1.3 x 10{sup 11} M{sub {circle_dot}}, and a halo mass of M(R < 60 kpc) = 1.4 x 10{sup 11} M{sub {circle_dot}}. However, we can find similar fits to the data that use an NFW halo profile, or that have smaller disk masses and correspondingly larger halo masses. Distinguishing between different classes of models requires data over a larger range of distances. The Orphan Stream is projected to extend to 90 kpc from the Galactic center, and measurements of these distant parts of the stream would be a powerful probe of the mass of the Milky Way.« less

  16. Three-dimensional relativistic field-electron interaction in a multicavity high-power klystron. 1: Basic theory

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    A theoretical investigation of three dimensional relativistic klystron action is described. The relativistic axisymmetric equations of motion are derived from the time-dependent Lagrangian function for a charged particle in electromagnetic fields. An analytical expression of the fringing RF electric and magnetic fields within and in the vicinity of the interaction gap and the space-charge forces between axially and radially elastic deformable rings of charges are both included in the formulation. This makes an accurate computation of electron motion through the tunnel of the cavities and the drift tube spaces possible. Method of analysis is based on Lagrangian formulation. Bunching is computed using a disk model of electron stream in which the electron stream is divided into axisymmetric disks of equal charge and each disk is assumed to consist of a number of concentric rings of equal charges. The Individual representative groups of electrons are followed through the interaction gaps and drift tube spaces. Induced currents and voltages in interacting cavities are calculated by invoking the Shockley-Ramo theorem.

  17. Inhomogeneous molecular ring around the B[e] supergiant LHA 120-S 73

    NASA Astrophysics Data System (ADS)

    Kraus, M.; Cidale, L. S.; Arias, M. L.; Maravelias, G.; Nickeler, D. H.; Torres, A. F.; Borges Fernandes, M.; Aret, A.; Curé, M.; Vallverdú, R.; Barbá, R. H.

    2016-10-01

    Context. B[e] supergiants are evolved massive stars, enshrouded in a dense wind and surrounded by a molecular and dusty disk. The mechanisms that drive phases of enhanced mass loss and mass ejections, responsible for the shaping of the circumstellar material of these objects, are still unclear. Aims: We aim to improve our knowledge on the structure and dynamics of the circumstellar disk of the Large Magellanic Cloud B[e] supergiant LHA 120-S 73. Methods: High-resolution optical and near-infrared spectroscopic data were obtained over a period of 16 and 7 yr, respectively. The spectra cover the diagnostic emission lines from [Ca II] and [O I], as well as the CO bands. These features trace the disk at different distances from the star. We analyzed the kinematics of the individual emission regions by modeling their emission profiles. A low-resolution mid-infrared spectrum was obtained as well, which provides information on the composition of the dusty disk. Results: All diagnostic emission features display double-peaked line profiles, which we interpret as due to Keplerian rotation. We find that the profile of each forbidden line contains contributions from two spatially clearly distinct rings. In total, we find that LHA 120-S 73 is surrounded by at least four individual rings of material with alternating densities (or by a disk with strongly non-monotonic radial density distribution). Moreover, we find that the molecular ring must have gaps or at least strong density inhomogeneities, or in other words, a clumpy structure. The optical spectra additionally display a broad emission feature at 6160-6180 Å, which we interpret as molecular emission from TiO. The mid-infrared spectrum displays features of oxygen- and carbon-rich grain species, which indicates a long-lived, stable dusty disk. We cannot confirm the previously reported high value for the stellar rotation velocity. He I λ 5876 is the only clearly detectable pure atmospheric absorption line in our data. Its line profile is strongly variable in both width and shape and resembles of those seen in non-radially pulsating stars. A proper determination of the real underlying stellar rotation velocity is hence not possible. Conclusions: The existence of multiple stable and clumpy rings of alternating density recalls ring structures around planets. Although there is currently insufficient observational evidence, it is tempting to propose a scenario with one (or more) minor bodies or planets revolving around LHA 120-S 73 and stabilizing the ring system, in analogy to the shepherd moons in planetary systems. Based on observations: (1) with the 1.52-m and 2.2-m telescopes at the European Southern Observatory (La Silla, Chile), under the programme 076.D-0609(A) and under the agreement with the Observatório Nacional-MCT (Brazil); (2) at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under the programmes GS-2004B-Q-54, GS-2010B-Q-31, and GS-2012B-Q-90; (3) at Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan (Visiting Astronomer: A.F.T.); and (4) with the du Pont Telescope at Las Campanas Observatory, Chile, under the programme CNTAC 2008-02 (Visiting Astronomer: R.B. and A.F.T.).Presented spectroscopic data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A112

  18. MOLECULAR GAS DISK STRUCTURES AROUND ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Keiichi; Papadopoulos, Padeli P.; Spaans, Marco

    We present new high-resolution numerical simulations of the interstellar medium (ISM) in a central R {<=} 32 parsecs region around a supermassive black hole (1.3 x 10{sup 7} M{sub sun}) at a galactic center. Three-dimensional hydrodynamic modeling of the ISM (Wada and Norman 2002) with the nuclear starburst now includes tracking of the formation of molecular hydrogen (H{sub 2}) out of the neutral hydrogen phase as a function of the evolving ambient ISM conditions with a finer spatial resolution (0.125 pc). In a quasi-equilibrium state, mass fraction of H{sub 2} is about 0.4 (total H{sub 2} mass is {approx_equal}1.5 xmore » 10{sup 6} M{sub sun}) of the total gas mass for the uniform far ultra-violet (FUV) with G {sub 0} = 10 in Habing unit. As shown in the previous model, the gas forms an inhomogeneous disk, whose scale height becomes larger in the outer region. H{sub 2} forms a thin nuclear disk in the inner {approx_equal}5 pc, which is surrounded by molecular clouds swelled up toward h {approx}< 10 pc. The velocity field of the disk is highly turbulent in the torus region, whose velocity dispersion is {approx_equal}20 km s{sup -1} on average. Average supernova (SN) rate of {approx_equal}5 x 10{sup -5} yr{sup -1} is large enough to energize these structures. Gas column densities toward the nucleus larger than 10{sup 22} cm{sup -2} are observed if the viewing angle is smaller than {theta} {sub v} {approx_equal} 50 deg. from the edge-on. However, the column densities are distributed over almost two orders of magnitude around the average for any given viewing angle due to the clumpy nature of the torus. For a stronger FUV (G {sub 0} = 100), the total H{sub 2} mass in an equilibrium is only slightly smaller ({approx_equal}0.35), a testimony to the strong self-shielding nature of H{sub 2}, and the molecular gas is somewhat more concentrated in a midplane. Other properties of the ISM are not very sensitive either to the FUV intensity or the SN rate. Finally, the morphology and kinematics of the circum nuclear molecular gas disks emerging from our models are similar to that revealed by recent near infrared observations using VLTI/Keck.« less

  19. Structure in the Disk of epsilon Aurigae - Analysis of ARCES and TripleSpec spectra from the 2010 eclipse

    NASA Astrophysics Data System (ADS)

    Gibson, Justus L.; Stencel, Robert E.; Ketzeback, William; Barentine, John; Coughlin, Jeffrey; Leadbeater, Robin; Saurage, Gabrelle

    2018-06-01

    Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. One hundred and sixteen epochs of data were obtained between 2009 and 2012, and equivalent widths and line velocities measured for high versus low eccentricity accretion disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830Å line, and the discovery of the P Cygni shape of the Pa-β line at third contact. We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualized the disk and stream interaction using SHAPE software, and used CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with nH = 1011 cm-3 and temperature of 20,000 K, consistent with a mid-B type central star. Van Rensbergen binary star evolutionary models are somewhat consistent with the current binary parameters for their case of a 9 plus 8 solar mass initial binary, evolving into a 2.3 and 14.11 solar mass end product after 35 Myr. With these results, it is possible to make predictions which suggest that continued monitoring prior to the next eclipse (2036) will help resolve standing questions about the mass and age of this binary.

  20. IDE spatio-temporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Montague, Nancy L.; Wortman, Jim J.; Kassel, Phillip C.; Kinard, William H.

    1992-01-01

    The purpose of the Interplanetary Dust Experiment (IDE) on the Long Duration Exposure Facility (LDEF) was to sample the cosmic dust environment and to use the spatio-temporal aspect of the experiment to distinguish between the various components of the environment: zodiacal cloud, beta meteoroids, meteor streams, interstellar dust, and orbital debris. It was found that the introduction of precise time and even rudimentary directionality as co-lateral observables in sampling the particulate environment in near-Earth space produces an enormous qualitative improvement in the information content of the impact data. The orbital debris population is extremely clumpy, being dominated by persistent clouds in which the fluxes may rise orders of magnitude above the background. The IDE data suggest a strategy to minimize the damage to sensitive spacecraft components, using the observed characteristics of cloud encounters.

  1. Impact of magnetic fields on ram pressure stripping in disk galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, M.; Brüggen, M.; Lee, D.

    Ram pressure stripping can remove significant amounts of gas from galaxies in clusters and massive groups and thus has a large impact on the evolution of cluster galaxies. Recent observations have shown that key properties of ram-pressure-stripped tails of galaxies, such as their width and structure, are in conflict with predictions by simulations. To increase the realism of existing simulations, we simulated for the first time a disk galaxy exposed to a uniformly magnetized wind including radiative cooling and self-gravity of the gas. We find that magnetic fields have a strong effect on the morphology of the gas in themore » tail of the galaxy. While in the purely hydrodynamical case the tail is very clumpy, the magnetohydrodynamical case shows very filamentary structures in the tail. The filaments can be strongly supported by magnetic pressure and, wherever this is the case, the magnetic fields vectors tend to be aligned with the filaments. The ram pressure stripping process may lead to the formation of magnetized density tails that appear as bifurcated in the plane of the sky and resemble the double tails observed in ESO 137-001 and ESO 137-002. Such tails can be formed under a variety of situations, both for the disks oriented face-on with respect to the intracluster medium (ICM) wind and for the tilted ones. While this bifurcation is the consequence of the generic tendency for the magnetic fields to produce very filamentary tail morphology, the tail properties are further shaped by the combination of the magnetic field orientation and the sliding of the field past the disk surface exposed to the wind. Despite the fact that the effect of the magnetic field on the morphology of the tail is strong, magnetic draping does not strongly change the rate of gas stripping. For a face-on galaxy, the field tends to reduce the amount of gas stripping compared to the pure hydrodynamical case, and is associated with the formation of a stable magnetic draping layer on the side of the galaxy exposed to the incoming ICM wind. For significantly tilted disks, the situation may be reversed and the stripping rate may be enhanced by the 'scraping' of the disk surface by the magnetic fields sliding past the ISM/ICM interface. Instabilities, such as gravitational instabilities, undo the protective effect of this layer and allow the gas to leak out of the galaxy.« less

  2. Instability of counter-rotating stellar disks

    NASA Astrophysics Data System (ADS)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  3. Silicate Crystal Formation in the Disk of an Erupting Star Artist Concept

    NASA Image and Video Library

    2009-05-13

    This artist's concept illustrates how silicate crystals like those found in comets can be created by an outburst from a growing star. The image shows a young sun-like star encircled by its planet-forming disk of gas and dust. The silicate that makes up most of the dust would have begun as non-crystallized, amorphous particles. Streams of material are seen spiraling from the disk onto the star increasing its mass and causing the star to brighten and heat up dramatically. The outburst causes temperatures to rise in the star's surrounding disk. The animation (figure 1) zooms into the disk to show close-ups of silicate particles. When the disk warms from the star's outburst, the amorphous particles of silicate melt. As they cool off, they transform into forsterite (figure 2), a type of silicate crystal often found in comets in our solar system. In April 2008, NASA's Spitzer Space Telescope detected evidence of this process taking place on the disk of a young sun-like star called EX Lupi. http://photojournal.jpl.nasa.gov/catalog/PIA12008

  4. Testing AGN unification via inference from large catalogs

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Ivezic, Zeljko; Elitzur, Moshe; Nenkova, Maia

    2018-01-01

    Source orientation and clumpiness of the central dust are the main factors in AGN classification. Type-1 QSOs are easy to observe and large samples are available (e.g. in SDSS), but obscured type-2 AGN are dimmer and redder as our line of sight is more obscured, making it difficult to obtain a complete sample. WISE has found up to a million QSOs. With only 4 bands and a relatively small aperture the analysis of individual sources is challenging, but the large sample allows inference of bulk properties at a very significant level.CLUMPY (www.clumpy.org) is arguably the most popular database of AGN torus SEDs. We model the ensemble properties of the entire WISE AGN content using regularized linear regression, with orientation-dependent CLUMPY color-color-magnitude (CCM) tracks as basis functions. We can reproduce the observed number counts per CCM bin with percent-level accuracy, and simultaneously infer the probability distributions of all torus parameters, redshifts, additional SED components, and identify type-1/2 AGN populations through their IR properties alone. We increase the statistical power of our AGN unification tests even further, by adding other datasets as axes in the regression problem. To this end, we make use of the NOAO Data Lab (datalab.noao.edu), which hosts several high-level large datasets and provides very powerful tools for handling large data, e.g. cross-matched catalogs, fast remote queries, etc.

  5. NUMERICAL SIMULATIONS OF THE POSSIBLE ORIGIN OF THE TWO SUB-PARSEC SCALE AND COUNTERROTATING STELLAR DISKS AROUND SgrA*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alig, C.; Schartmann, M.; Burkert, A.

    2013-07-10

    We present a high-resolution simulation of an idealized model to explain the origin of the two young, counterrotating, sub-parsec scale stellar disks around the supermassive black hole SgrA* at the center of the Milky Way. In our model, the collision of a single molecular cloud with a circumnuclear gas disk (similar to the one observed presently) leads to multiple streams of gas flowing toward the black hole and creating accretion disks with angular momentum depending on the ratio of cloud and circumnuclear disk material. The infalling gas creates two inclined, counterrotating sub-parsec scale accretion disks around the supermassive black holemore » with the first disk forming roughly 1 Myr earlier, allowing it to fragment into stars and get dispersed before the second counterrotating disk forms. Fragmentation of the second disk would lead to the two inclined, counterrotating stellar disks which are observed at the Galactic center. A similar event might be happening again right now at the Milky Way Galactic center. Our model predicts that the collision event generates spiral-like filaments of gas, feeding the Galactic center prior to disk formation with a geometry and inflow pattern that is in agreement with the structure of the so-called mini spiral that has been detected in the Galactic center.« less

  6. Applying a Hydrodynamical Treatment of Stream Flow and Accretion Disk Formation in WASP-12/b Exoplanetary System

    NASA Astrophysics Data System (ADS)

    Weaver, Ian; Lopez, Aaron; Macias, Phil

    2016-01-01

    WASP-12b is a hot Jupiter orbiting dangerously close to its parent star WASP-12 at a radius 1/44th the distance between the Earth and the Sun, or roughly 16 times closer than Mercury. WASP-12's gravitational influence at this incredibly close proximity generates tidal forces on WASP-12b that distort the planet into an egg-like shape. As a result, the planet's surface overflows its Roche lobe through L1, transferring mass to the host star at a rate of 270 million metric tonnes per second. This mass transferring stream forms an accretion disk that transits the parent star, which aids sensitive instruments, such as the Kepler spacecraft, whose role is to examine the periodic dimming of main sequence stars in order to detect ones with orbiting planets. The quasi-ballistic stream trajectory is approximated by that of a massless point particle released from analogous initial conditions in 2D. The particle dynamics are shown to deviate negligibly across a broad range of initial conditions, indicating applicability of our model to "WASP-like" systems in general. We then apply a comprehensive fluid treatment by way of hydrodynamical code FLASH in order to directly model the behavior of mass transfer in a non-inertial reference frame and subsequent disk formation. We hope to employ this model to generate virtual spectroscopic signatures and compare them against collected light curve data from the Hubble Space Telescope's Cosmic Origins Spectrograph (COS).

  7. On the cross-stream spectral method for the Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Hodge, Steven L.

    1993-01-01

    Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.

  8. INTEGRAL and XMM-Newton observations of the puzzling binary system LSI +61 303

    NASA Astrophysics Data System (ADS)

    Chernyakova, Masha; Neronov, A.; Walter, R.

    LSI +61° 303 is one of the few X-ray binaries with Be star companion from which both radio and high-energy gamma-ray emission have been observed. We present XMM-Newton and INTE- GRAL observations which reveal variability of the X-ray spectral index of the system. The X-ray spectrum is hard (photon index Γ ≃ 1.5) during the orbital phases of both high and low X-ray flux. However, the spectrum softens at the moment of transition from high to low X-ray state. The spectrum of the system in the hard X-ray band does not reveal the presence of a cut-off (or, at least a spectral break) at 10-60 keV energies, expected if the compact object is an accreting neu- tron star. The observed spectrum and spectral variability can be explained if the compact object in the system is a rotation powered pulsar. In this case the recently found X-ray spectral variability of the system on the several kiloseconds time scale can be explained by the clumpy structure of the Be star disk.

  9. Spatially Resolved Hα Maps and Sizes of 57 Strongly Star-forming Galaxies at z ~ 1 from 3D-HST: Evidence for Rapid Inside-out Assembly of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Nelson, Erica June; van Dokkum, Pieter G.; Brammer, Gabriel; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Bezanson, Rachel; Da Cunha, Elisabete; Kriek, Mariska; Labbe, Ivo; Lundgren, Britt; Quadri, Ryan; Schmidt, Kasper B.

    2012-03-01

    We investigate the buildup of galaxies at z ~ 1 using maps of Hα and stellar continuum emission for a sample of 57 galaxies with rest-frame Hα equivalent widths >100 Å in the 3D-HST grism survey. We find that the Hα emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Hα effective radius re (Hα) is 4.2 ± 0.1 kpc but the sizes span a large range, from compact objects with re (Hα) ~ 1.0 kpc to extended disks with re (Hα) ~ 15 kpc. Comparing Hα sizes to continuum sizes, we find =1.3 ± 0.1 for the full sample. That is, star formation, as traced by Hα, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured Hα sizes, we derive star formation rate surface densities, ΣSFR. We find that ΣSFR ranges from ~0.05 M ⊙ yr-1 kpc-2 for the largest galaxies to ~5 M ⊙ yr-1 kpc-2 for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z ~ 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z ~ 1.

  10. Warm Molecular Gas Traced with CO J = 7 --> 6 in the Galaxy's Central 2 Parsecs: Dynamical Heating of the Circumnuclear Disks

    NASA Technical Reports Server (NTRS)

    Bradford, C. M.; Stacey, G. J.; Nikola, T.; Bolatto, A. D.; Jackson, J. M.; Savage, M. L.; Davidson, J. A.

    2005-01-01

    We present an 11" resolution map of the central 2 pc of the Galaxy in the CO J = 7 --> 6 rotational transition. The CO emission shows rotation about Sgr A* but also evidence for noncircular turbulent motion and a clumpy morphology. We combine our data set with available CO measurements to model the physical conditions in the disk. We find that the molecular gas in the region is both warm and dense, with T approx. 200-300 K and n(sub H2) approx. (5-7) x 10(exp 4) cm(exp -3). The mass of warm molecular gas we measure in the central 2 pc is at least 2000 M(solar), about 20 times the UV-excited atomic gas mass, ruling out a UV heating scenario for the molecular material. We compare the available spectral tracers with theoretical models and conclude that molecular gas is heated with magnetohydrodynamic shocks with v approx. 10-20 km s(exp -1) and B approx. 0.3- 0.5 mG. Using the conditions derived with the CO analysis, we include the other important coolants, neutral oxygen and molecular hydrogen, to estimate the total cooling budget of the molecular material. We derive a mass-to-luminosity ratio of approx. 2-3 M(solar)(L(solar)exp -1), which is consistent with the total power dissipated via turbulent decay in 0.1 pc cells with v(sub rms) approx. 15 kilometers per second. These size and velocity scales are comparable to the observed clumping scale and the velocity dispersion. At this rate, the material near Sgr A* is dissipating its orbital energy on an orbital timescale and cannot last for more than a few orbits. Our conclusions support a scenario in which the features near Sgr A* such as the circumnuclear disk and northern arm are generated by infalling clouds with low specific angular momentum.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2003-06-09

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  12. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  13. One Large Blob and Many Streams Frosting the nearby Stellar Halo in Gaia DR2

    NASA Astrophysics Data System (ADS)

    Koppelman, Helmer; Helmi, Amina; Veljanoski, Jovan

    2018-06-01

    We explore the phase-space structure of nearby halo stars identified kinematically from the Gaia second data release (DR2). We focus on their distribution in velocity and in “integrals of motion” space, as well as on their photometric properties. Our sample of stars selected to be moving at a relative velocity of at least 210 km s‑1, with respect to the Local Standard of Rest, contains an important contribution from the low rotational velocity tail of the disk(s). The V R -distribution of these stars depicts a small asymmetry similar to that seen for the faster rotating thin disk stars near the Sun. We also identify a prominent, slightly retrograde “blob” that traces the metal-poor halo main sequence reported by Gaia Collaboration et al. We also find many small clumps that are especially noticeable in the tails of the velocity distribution of the stars in our sample. Their Hertzsprung–Russell (HR) diagrams disclose narrow sequences characteristic of simple stellar populations. This stream-frosting confirms predictions from cosmological simulations, namely that substructure is most apparent among the fastest moving stars, typically reflecting more recent accretion events.

  14. How to form planetesimals from mm-sized chondrules and chondrule aggregates

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.

    2015-07-01

    The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org

  15. Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.

    PubMed

    Tuduri, Ludovic; Harner, Tom; Hung, Hayley

    2006-11-01

    Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at approximately 4.5-14.6 m3 d-1 and then increased sharply to approximately 42 m3 d-1 at approximately 1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations.

  16. The Effect of Turbulence on the Drag of Flat Plates

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Dryden, H L

    1937-01-01

    in determining the effect of turbulence on the forces exerted on bodies in the air stream of a wind tunnel, it is commonly assumed that the indications of the standard Pitot-static tube used to determine the air speed are not dependent on the turbulence. To investigate the truth of this assumption, the drag of a normally exposed flat plate, the difference in pressure between the front and rear of a thin circular disk, the rate of rotation of a vane anemometer, and the pressure developed by a standard Pitot-static tube were measured in an air stream for several conditions of turbulence. The results may be interpreted as indicating that there is no appreciable effect of turbulence on the vane anemometer and the standard pitot-static tube, but that there is small effect on the drag of a flat plate and the pressure difference between front and rear of a disk.

  17. DUST CAPTURE AND LONG-LIVED DENSITY ENHANCEMENTS TRIGGERED BY VORTICES IN 2D PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surville, Clément; Mayer, Lucio; Lin, Douglas N. C., E-mail: clement.surville@physik.uzh.ch

    We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ϵ varies in the range of 10{sup −4}–10{sup −2}. Irrespective of the value of ϵ , we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside themore » vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity; they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.« less

  18. Planetesimal formation starts at the snow line

    NASA Astrophysics Data System (ADS)

    Drążkowska, J.; Alibert, Y.

    2017-12-01

    Context. The formation stage of planetesimals represents a major gap in our understanding of the planet formation process. Late-stage planet accretion models typically make arbitrary assumptions about planetesimal and pebble distribution, while dust evolution models predict that planetesimal formation is only possible at some orbital distances. Aims: We wish to test the importance of the water snow line in triggering the formation of the first planetesimals during the gas-rich phase of a protoplanetary disk, when cores of giant planets have to form. Methods: We connected prescriptions for gas disk evolution, dust growth and fragmentation, water ice evaporation and recondensation, the transport of both solids and water vapor, and planetesimal formation via streaming instability into a single one-dimensional model for protoplanetary disk evolution. Results: We find that processes taking place around the snow line facilitate planetesimal formation in two ways. First, because the sticking properties between wet and dry aggregates change, a "traffic jam" inside of the snow line slows the fall of solids onto the star. Second, ice evaporation and outward diffusion of water followed by its recondensation increases the abundance of icy pebbles that trigger planetesimal formation via streaming instability just outside of the snow line. Conclusions: Planetesimal formation is hindered by growth barriers and radial drift and thus requires particular conditions to take place. The snow line is a favorable location where planetesimal formation is possible for a wide range of conditions, but not in every protoplanetary disk model, however. This process is particularly promoted in large cool disks with low intrinsic turbulence and an increased initial dust-to-gas ratio. The movie attached to Fig. 3 is only available at http://www.aanda.org

  19. Dust Capture and Long-lived Density Enhancements Triggered by Vortices in 2D Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Surville, Clément; Mayer, Lucio; Lin, Douglas N. C.

    2016-11-01

    We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ɛ varies in the range of 10-4-10-2. Irrespective of the value of ɛ, we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside the vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.

  20. Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fragile, P C; Lindner, C C; Anninos, P

    2008-09-24

    In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcomingmore » we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.« less

  1. WHITE DWARFS IN LOCAL STAR STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Burkhard; Dettbarn, Christian

    2011-01-15

    We have studied the fine structure of the phase space distribution of white dwarfs in the solar neighborhood. White dwarfs have kinematics that are typical for the stellar population of the old thin disk of the Milky Way. Using a projection of the space velocities of stars onto vertical angular momentum components and eccentricities of the stellar orbits we demonstrate that stellar streams can be identified in the phase space distribution of the white dwarfs. These correspond to the well-known Sirius, Pleiades, and Hercules star streams. Membership of white dwarfs, which represent the oldest population in the Galaxy, in thesemore » streams lends support to the interpretation that the streams owe their existence to dynamical resonance effects of the stars with Galactic spiral arms or the Galactic bar, because these indiscriminately affect all stellar populations.« less

  2. Cannibalization and Rebirth in the NGC 5387 System. I. The Stellar Stream and Star-forming Region

    NASA Astrophysics Data System (ADS)

    Beaton, Rachael L.; Martínez-Delgado, David; Majewski, Steven R.; D'Onghia, Elena; Zibetti, Stefano; Gabany, R. Jay; Johnson, Kelsey E.; Blanton, Michael; Verbiscer, Anne

    2014-08-01

    We have identified a low surface brightness stellar stream from visual inspection of Sloan Digital Sky Survey (SDSS) imaging for the edge-on, spiral galaxy NGC 5387. An optically blue overdensity coincident with the stream intersection with the NGC 5387 disk was also identified in SDSS and in the Galaxy Evolution Explorer Deep Imaging Survey contributing 38% of the total far-UV integrated flux from NGC 5387. Deeper optical imaging was acquired with the Vatican Advanced Technology Telescope that confirmed the presence of both features. The stellar stream is red in color, (B - V) = 0.7, has a stellar mass of 6 × 108 M ⊙, which implies a 1:50 merger ratio, has a circular radius, R circ ~ 11.7 kpc, formed in ~240 Myr, and the progenitor had a total mass of ~4 × 1010 M ⊙. Spectroscopy from LBT+MODS1 was used to determine that the blue overdensity is at the same redshift as NGC 5387, consists of young stellar populations (~10 Myr), is metal-poor (12 + log (O/H) = 8.03), and is forming stars at an enhanced rate (~1-3 M ⊙ yr-1). The most likely interpretations are that the blue overdensity is (1) a region of enhanced star formation in the outer disk of NGC 5387 induced by the minor accretion event or (2) the progenitor of the stellar stream experiencing enhanced star formation. Additional exploration of these scenarios is presented in a companion paper. Based on observations with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  3. Performance Evaluations of Ion Exchanged Zeolite Membranes on Alumina Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.

    2017-08-27

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. In the first phase of this effort, several monovalent and divalent cation-exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. In the second phase, Linde Type A (LTA) zeolite membranes were synthesized in disk and tubular supports. The pervaporation process performance was evaluated for the separation and concentration of tritiated water.

  4. Hypercat - Hypercube of AGN tori

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Lopez-Rodriguez, Enrique; Ichikawa, Kohei; Levenson, Nancy A.; Packham, Christopher C.

    2018-06-01

    AGN unification and observations hold that a dusty torus obscures the central accretion engine along some lines of sight. SEDs of dust tori have been modeled for a long time, but resolved emission morphologies have not been studied in much detail, because resolved observations are only possible recently (VLTI,ALMA) and in the near future (TMT,ELT,GMT). Some observations challenge a simple torus model, because in several objects most of MIR emission appears to emanate from polar regions high above the equatorial plane, i.e. not where the dust supposedly resides.We introduce our software framework and hypercube of AGN tori (Hypercat) made with CLUMPY (www.clumpy.org), a large set of images (6 model parameters + wavelength) to facilitate studies of emission and dust morphologies. We make use of Hypercat to study the morphological properties of the emission and dust distributions as function of model parameters. We find that a simple clumpy torus can indeed produce 10-micron emission patterns extended in polar directions, with extension ratios compatible with those found in observations. We are able to constrain the range of parameters that produce such morphologies.

  5. Streaming simplification of tetrahedral meshes.

    PubMed

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  6. Problems of gaseous motion around stars

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    A distinction is drawn between radial and tangential modes of ejection from stars, and the possible flow patterns are described. They are: expanding streams, falling streams, jet streams, circulatory streams, and gaseous envelopes. Motion around Be stars is discussed at some length, as a preliminary to studying more complicated flow in binary systems. The rotational velocity of the Be star is insufficient to form the ring. It appears likely that radial instability is temperature sensitive. Rings and disks in binary systems are discussed from the point of view of periodic orbits for particles within the gravitational field of such a system. The formation of these rings is discussed. The expected relation between rotational velocity of the ring and the orbital period is discussed. The relation of circumstellar streams to period changes is mentioned. Finally, the influence of magnetic fields on the circumstellar material and the system is discussed.

  7. Long-term Spectroscopic and Photometric Monitoring of Bright Interacting Algol-type Binary Stars

    NASA Astrophysics Data System (ADS)

    Reed, Phillip A.

    2018-01-01

    Binary stars have long been used as natural laboratories for studying such fundamental stellar properties as mass. Interacting binaries allow us to examine more complicated aspects such as mass flow between stars, accretion processes, magnetic fields, and stellar mergers. Algol-type interacting binary stars -- consisting of a cool giant or sub-giant donating mass to a much hotter, less evolved, and more massive main-sequence companion -- undergo steady mass transfer and have been used to measure mass transfer rates and to test stellar evolution theories. The method of back-projection Doppler tomography has also been applied to interacting Algols and has produced indirect velocity-space images of the accretion structures (gas streams, accretion disks, etc.) derived from spectroscopic observations of hydrogen and helium emission lines. The accretion structures in several Algol systems have actually been observed to change between disk-like states and stream-like states on timescales as short as several orbital cycles (Richards et al., 2014). Presented here are the first results from a project aimed at studying bright interacting Algol systems with simultaneous mid-resolution (11,000

  8. The Milky Way, the Galactic halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2015-08-01

    The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  9. Hydrodynamics on Supercomputers: Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Blondin, J. M.

    1997-05-01

    The interaction of close binary stars accounts for a wide variety of peculiar objects scattered throughout our Galaxy. The unique features of Algols, Symbiotics, X-ray binaries, cataclysmic variables and many others are linked to the dynamics of the circumstellar gas which can take forms from tidal streams and accretion disks to colliding stellar winds. As in many other areas of astrophysics, large scale computing has provided a powerful new tool in the study of interacting binaries. In the research to be described, hydrodynamic simulations are used to create a "laboratory", within which one can "experiment": change the system and observe (and predict) the effects of those changes. This type of numerical experimentation, when buttressed by analytic studies, provides a means of interpreting observations, identifying and understanding the relevant physics, and visualizing the physical system. The results of such experiments will be shown, including the structure of tidal streams in Roche lobe overflow systems, mass accretion in X-ray binaries, and the formation of accretion disks.

  10. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  11. Spitzer Spies Spectacular Sombrero

    NASA Image and Video Library

    2005-05-04

    NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a "sombrero," but here looks more like a "bulls-eye." Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions. Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen. The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun. This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features. http://photojournal.jpl.nasa.gov/catalog/PIA07899

  12. TIMESERIESSTREAMING.VI: LabVIEW program for reliable data streaming of large analog time series

    NASA Astrophysics Data System (ADS)

    Czerwinski, Fabian; Oddershede, Lene B.

    2011-02-01

    With modern data acquisition devices that work fast and very precise, scientists often face the task of dealing with huge amounts of data. These need to be rapidly processed and stored onto a hard disk. We present a LabVIEW program which reliably streams analog time series of MHz sampling. Its run time has virtually no limitation. We explicitly show how to use the program to extract time series from two experiments: For a photodiode detection system that tracks the position of an optically trapped particle and for a measurement of ionic current through a glass capillary. The program is easy to use and versatile as the input can be any type of analog signal. Also, the data streaming software is simple, highly reliable, and can be easily customized to include, e.g., real-time power spectral analysis and Allan variance noise quantification. Program summaryProgram title: TimeSeriesStreaming.VI Catalogue identifier: AEHT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 250 No. of bytes in distributed program, including test data, etc.: 63 259 Distribution format: tar.gz Programming language: LabVIEW ( http://www.ni.com/labview/) Computer: Any machine running LabVIEW 8.6 or higher Operating system: Windows XP and Windows 7 RAM: 60-360 Mbyte Classification: 3 Nature of problem: For numerous scientific and engineering applications, it is highly desirable to have an efficient, reliable, and flexible program to perform data streaming of time series sampled with high frequencies and possibly for long time intervals. This type of data acquisition often produces very large amounts of data not easily streamed onto a computer hard disk using standard methods. Solution method: This LabVIEW program is developed to directly stream any kind of time series onto a hard disk. Due to optimized timing and usage of computational resources, such as multicores and protocols for memory usage, this program provides extremely reliable data acquisition. In particular, the program is optimized to deal with large amounts of data, e.g., taken with high sampling frequencies and over long time intervals. The program can be easily customized for time series analyses. Restrictions: Only tested in Windows-operating LabVIEW environments, must use TDMS format, acquisition cards must be LabVIEW compatible, driver DAQmx installed. Running time: As desirable: microseconds to hours

  13. Interaction of the jet from the neutron star with the interstellar medium

    NASA Astrophysics Data System (ADS)

    Kiikov, S. O.

    2017-12-01

    The interaction between the hypersonic plasma jet from the accreting neutron star and the ambient interstellar medium is studied. It is assumed that the jet is launched from the accretion disk via the open magnetic field anchored in the disk. The analytical investigation for the structure of the working surface of the jet is carried out. The estimates of the volume stream functions in the region of the interaction between the jet and the interstellar medium are derived. The obtained results allow to examine the distribution of the plasma velocity fields in the interaction region.

  14. Three-dimensional modeling of radiative disks in binaries

    NASA Astrophysics Data System (ADS)

    Picogna, G.; Marzari, F.

    2013-08-01

    Context. Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. Aims: We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. Methods: We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation via variable smoothing and softening length. The energy equation includes a flux-limited radiative transfer algorithm. The disk cooling is obtained with the use of "boundary particles" populating the outer surfaces of the disk and radiating to infinity. We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. Results: The numerical simulations performed for different values of binary separation and disk density show that trailing spiral shock waves develop when the stars approach their pericenter. Strong hydraulic jumps occur at the shock front, in particular for small separation binaries, creating breaking waves, and a consistent mass stream between the two disks. Both shock waves and mass transfer cause significant heating of the disk. At apocenter these perturbations are reduced and the disks are cooled down and less eccentric. Conclusions: The disk morphology is substantially affected by the companion perturbations, in particular in the vertical direction. The hydraulic jumps may slow down or even halt the dust coagulation process. The disk is significantly heated up by spiral waves and mass transfer, and the high gas temperature may prevent the ice condensation by moving the "snow line" outward. The disordered motion triggered by the spiral waves may, on the other hand, favor direct formation of large planetesimals from pebbles. The strength of the hydraulic jumps, disk heating, and mass exchange depends on the binary separation, and for larger semi-major axes, the tidal spiral pattern is substantially reduced. The environment then appears less hostile to planet formation.

  15. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    DOE PAGES

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; ...

    2018-02-26

    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface couldmore » have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.« less

  16. Three moving groups detected in the LAMOST DR1 archive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. K.; Zhao, G.; Chen, Y. Q.

    2014-05-20

    We analyze the kinematics of thick disk and halo stars observed by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope. We have constructed a sample of 7993 F, G, and K nearby main-sequence stars (d < 2 kpc) with estimates of position (x, y, z) and space velocity (U, V, W) based on color and proper motion from the Sloan Digital Sky Survey DR9 catalog. Three 'phase-space overdensities' are identified in (V, √(U{sup 2}+2V{sup 2})) with significance levels of σ > 3. Two of them (the Hyades-Pleiades stream and the Arcturus-AF06 stream) have been identified previously. We also find evidencemore » for a new stream (centered at V ∼ –180 km s{sup –1}) in the halo. The formation mechanisms of these three streams are analyzed. Our results support the hypothesis that the Arcturus-AF06 stream and the new stream originated from the debris of a disrupted satellite, while the Hyades-Pleiades stream has a dynamical origin.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Andrew F.; Marzari, F., E-mail: andy.nelson@lanl.gov, E-mail: francesco.marzari@pd.infn.it

    We present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from a measuremore » of the radiation intercepted by the disk at its photosphere. We simulate a suite of systems configured with semimajor axes of either a = 62 AU (“wide”) or a = 32 AU (“close”), and with assumed orbital eccentricity of either e = 0 or e = 0.3. Each simulation follows the evolution for ∼6500–7500 yr, corresponding to about three orbits of the torus around the center of mass. Our simulations show that strong, sharply defined spiral structures are generated from the stirring action of the binary and that, in some cases, these structures fragment into 1–2 massive clumps. The torus quickly fragments into several dozen such fragments in configurations in which either the binary is replaced by a single star of equal mass, or radiative heating is neglected. The spiral structures extend inwards to the circumstellar environment as large scale material streams for which most material is found on trajectories that return it to the torus on a timescale of 1–200 yr, with only a small fraction accreting into the circumstellar environment. The spiral structures also propagate outwards through the torus, generating net outwards mass flow, and eventually losing coherence at large distances from the stars. The torus becomes significantly eccentric in shape over most of its evolution. In all configurations, accretion onto the stars occurs at a steady rate of a few ×10{sup −8} M {sub ⊙} yr{sup −1}, with the net result that, without replenishment, the disk lifetimes would be shorter than ∼10{sup 4} yr. Our simulations show that only wide orbit configurations are able to retain circumstellar disks, by virtue of accretion driven from the robust material streams generated in wide configurations, which are very weak in close configurations. In wide, eccentric orbit configurations, accretion is episodic and occurs preferentially onto the secondary, with rates strongly peaked near the binary periapse. Based on our results, we conclude that the GG Tau A torus is strongly self gravitating and that a major contribution to its thermal energy input is the shock dissipation associated with spiral structures generated both by self gravitating disturbances and by the stirring action of the binary. We interpret the sharply defined features observed in the torus as manifestations of such spiral structures. We interpret the low density disk surrounding it as an excretion disk created by the outward mass flux generated by the spiral arms as they propagate outwards. Typical eccentricities calculated for the shape of the tori modeled in our simulations are large enough to account for the supposed ∼20° mutual inclination between the stellar orbit plane of GG Tau A and its surrounding torus through a degeneracy between the interpretation of inclination of the torus and its eccentricity. We therefore interpret the observations in favor of a coplanar system with an eccentric torus. Because accretion onto the disks occurs at rates sufficient to sustain them only in wide orbit configurations, we conclude that the gas currently resident in the circumstellar disks of the GG Tau A system has been accreted from the torus within the past few thousand years. Although circumstellar disks will persist over time spans long enough to permit planet formation, the overall environment remains unfavorable due to high temperatures and other conditions. Given the presence of circumstellar disks, robust accretion streams, and our interpretation of the GG Tau A stellar orbit plane as coplanar with the torus surrounding it, we conclude that the GG Tau A system is in an eccentric, a ∼ 62 AU orbit, resolving questions in the literature regarding its orbit parameters.« less

  18. The clumpy absorber in the high-mass X-ray binary Vela X-1

    DOE PAGES

    Grinberg, V.; Hell, N.; El Mellah, I.; ...

    2017-12-15

    Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less

  19. The clumpy absorber in the high-mass X-ray binary Vela X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinberg, V.; Hell, N.; El Mellah, I.

    Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.

    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface couldmore » have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.« less

  1. Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojia; Lin, Douglas N. C.; Liu, Beibei

    2014-12-10

    According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} >more » 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.« less

  2. Sonic boom generated by a slender body aerodynamically shaded by a disk spike

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2018-03-01

    The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated.

  3. An Ultraviolet/Optical Atlas of Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Marcum, Pamela M.; O'Connell, Robert W.; Fanelli, Michael N.; Cornett, Robert H.; Waller, William H.; Bohlin, Ralph C.; Neff, Susan G.; Roberts, Morton S.; Smith, Andrew M.; Cheng, K.-P.; Collins, Nicholas R.; Hennessy, Gregory S.; Hill, Jesse K.; Hill, Robert S.; Hintzen, Paul; Landsman, Wayne B.; Ohl, Raymond G.; Parise, Ronald A.; Smith, Eric P.; Freedman, Wendy L.; Kuchinski, Leslie E.; Madore, Barry; Angione, Ronald; Palma, Christopher; Talbert, Freddie; Stecher, Theodore P.

    2001-02-01

    We present wide-field imagery and photometry of 43 selected nearby galaxies of all morphological types at ultraviolet and optical wavelengths. The ultraviolet (UV) images, in two broad bands at 1500 and 2500 Å, were obtained using the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission. The UV images have ~3" resolution, and the comparison sets of ground-based CCD images (in one or more of B, V, R, and Hα) have pixel scales and fields of view closely matching the UV frames. The atlas consists of multiband images and plots of UV/optical surface brightness and color profiles. Other associated parameters, such as integrated photometry and half-light radii, are tabulated. In an appendix, we discuss the sensitivity of different wavebands to a galaxy's star formation history in the form of ``history weighting functions'' and emphasize the importance of UV observations as probes of evolution during the past 10-1000 Myr. We find that UV galaxy morphologies are usually significantly different from visible band morphologies as a consequence of spatially inhomogeneous stellar populations. Differences are quite pronounced for systems in the middle range of Hubble types, Sa through Sc, but less so for ellipticals or late-type disks. Normal ellipticals and large spiral bulges are fainter and more compact in the UV. However, they typically exhibit smooth UV profiles with far-UV/optical color gradients which are larger than any at optical/IR wavelengths. The far-UV light in these cases is probably produced by extreme horizontal branch stars and their descendants in the dominant, low-mass, metal-rich population. The cool stars in the large bulges of Sa and Sb spirals fade in the UV while hot OB stars in their disks brighten, such that their Hubble classifications become significantly later. In the far-UV, early-type spirals often appear as peculiar, ringlike systems. In some spiral disks, UV-bright structures closely outline the spiral pattern; in others, the disks can be much more fragmented and chaotic than at optical wavelengths. Contributions by bright active galactic nuclei (AGNs) to the integrated UV light in our sample range from less than 10% to nearly 100%. A number of systems have unusual UV-bright structures in their inner disks, including rings, compact knots, and starburst nuclei, which could easily dominate the UV light in high-redshift analogs. A significant but variable fraction of the far-UV light in spiral disks is diffuse rather than closely concentrated to star-forming regions. Dust in normal spiral disks does not control UV morphologies, even in some highly inclined disk systems. The heaviest extinction is apparently confined to thin layers and the immediate vicinity of young H II complexes; the UV light emerges from thicker star distributions, regions evacuated of dust by photodestruction or winds, or by virtue of strong dust clumpiness. Only in cases where the dust layers are disturbed does dust appear to be a major factor in UV morphology. The UV-bright plume of M82 indicates that dust scattering of UV photons can be important in some cases. In a companion paper, we discuss far-UV data from the Astro-2 mission and optical comparisons for another 35 galaxies, emphasizing face-on spirals.

  4. Impact of Ice on Evolution of Protoplanetary Disks and Formation of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Saunders, William; Gorti, Uma

    2018-01-01

    We use a 1+1D model of disk evolution, where gas and dust evolve under the influence of viscous evolution and photoevaporation. Planetesimal formation is simulated using a simple criterion for triggering the streaming instability. We modeled the disk around a young M3 star of mass 0.25M⊙, a characteristic Milky Way main sequence star. We carried out simulations of the disk with and without water ice to determine the impact of ice on the formation of planetesimals and retention of solids in the disk, but found little impact of ice, leading to the conclusion that the presence of ice alone does not significantly facilitate planetesimal growth in these models. The majority of initial dust in the disk drifts into the star. We investigated the range of possible viscous parameter (α) values and photoevaporation mass loss rates (M'pe) that could mitigate the drift problem. Both these values were treated as free parameters constant in time. We varied α between 10-4 and 10-2 M'pe between 10-10 and 10-7 M⊙/yr. Based on estimated disk lifetimes between 2 and 6 Myr, and estimated solid retention rates of 30-70% from the literature, we determined the range of α and M'pe for which this is possible. Results indicate a region of overlap exists, in which the disk evolves into planetesimals totaling tens of Earth masses. This region is defined by α in the range [7x10-4, 3x10-3] and M'pe in the range [2x10-8, 8x10-8] M⊙/yr.

  5. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.

    PubMed

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew

    2018-03-15

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  6. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew

    2018-03-01

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  7. A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.

    2018-04-01

    We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.

  8. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  9. Lake Aquilla - Habitat Survey Hill County, Texas

    DTIC Science & Technology

    2017-08-01

    the year, when the ground is covered with herbage; when the trees are in their green leaf, and the glens are enlivened by running streams. I shall not...Mutel 1997). Shallow disking, with the blades oriented to the direction being pulled can be used to reduce the vigor of native plants (e.g. switchgrass

  10. Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R=20 kpc

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot S.; Guhathakurta, Puragra; Gilbert, Karoline M.; Reitzel, David B.; Majewski, Steven R.; Rich, R. Michael; Cooper, Michael C.

    2006-04-01

    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10 m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R=20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality-a primary peak centered at v¯1=-513 km s-1 and a secondary one at v¯2=-417 km s-1-along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of σ(v)~16 km s-1. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: <[Fe/H]>~-0.45 and σ([Fe/H])=0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; or (3) a warp or overdensity in M31's disk at Rdisk>50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile). Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  11. Photophoretic Levitation and Trapping of Dust in the Inner Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; McClure, Melissa K.

    2017-01-01

    In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.

  12. A New Perspective on Galaxy Evolution from the Low Density Outskirts of Galaxies

    NASA Astrophysics Data System (ADS)

    Emery Watkins, Aaron

    2017-01-01

    In order to investigate the nature of galaxy outskirts, we carried out a deep imaging campaign of several nearby ($D\\lesssim$10Mpc) galaxies, across a range of environments. We found that most of the galaxies we imaged show red and non-star-forming outer disks, implying evolved stellar populations. Such populations in outer disks are expected as the result of radial migration, yet through Fourier analysis we found no evidence of extended spiral structure in these galaxies. Without star formation or outer spiral structure, it is difficult to determine how these outer disks formed. To investigate the effects of interactions on outer disks, we also observed the Leo I Group; however, while group environments are expected to promote frequent interactions, we found only three extremely faint tidal streams, implying a calm interaction history. As Leo I is fairly low density, this implies that loose groups are ineffective at producing intragroup light (IGL). In the famous interacting system M51, we found that its extended tidal features show similarly red colors as the typical outer disks we observed, implying that M51 had a similar outer disk prior to the interaction, and that the interaction induced no extended star formation, including in the system's HI tail. Therefore, to investigate the nature of star formation in low-density environments, we carried out deep narrow-band H$\\alpha$ imaging of M101 and M51.

  13. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    NASA Technical Reports Server (NTRS)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  14. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  15. The molecular chemistry of diffuse and translucent clouds in the line-of-sight to Sgr B2: Absorption by simple organic and inorganic molecules in the GBT PRIMOS survey

    NASA Astrophysics Data System (ADS)

    Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.

    2018-02-01

    The 1-50 GHz PRebiotic Interstellar MOlecular Survey (PRIMOS) contains 50 molecular absorption lines observed in clouds located in the line-of-sight to Sgr B2(N). The line-of-sight material is associated with diffuse and translucent clouds located in the Galactic center, bar, and spiral arms in the disk. We measured the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues observed in this material. We used absorption by optically thin transitions of c-C3H2 to estimate the molecular hydrogen columns, and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. Finally, we discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic bar and in or near the Galactic center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance. We also determine that the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C/13C ratio, whereas H2CO/H213CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of AV. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A10

  16. Minidisks in Binary Black Hole Accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress thatmore » causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.« less

  17. GHOSTS: The Stellar Populations in the Outskirts of Massive Disk Galaxies

    NASA Astrophysics Data System (ADS)

    De Jong, Roelof; Radburn-Smith, D. J.; Seth, A. C.; GHOSTS Team

    2007-12-01

    In recent years we have started to appreciate that the outskirts of galaxies contain valuable information about the formation process of galaxies. In hierarchical galaxy formation the stellar halos and thick disks of galaxies are thought to be the result of accretion of minor satellites, predominantly in the earlier assembly phases. The size, metallicity, and amount of substructure in current day halos are therefore directly related to issues like the small scale properties of the primordial power spectrum of density fluctuations and the suppression of star formation in small dark matter halos. I will show highlights from our ongoing HST/ACS/WFPC2 GHOSTS survey of the resolved stellar populations of 14 nearby, massive disk galaxies. I will show that the smaller galaxies (Vrot 100 km/s) have very small halos, but that most massive disk galaxies (Vrot 200 km/s) have very extended stellar envelopes. The luminosity of these envelopes seems to correlate with Hubble type and bulge-to-disk ratio, calling into question whether these are very extended bulge populations or inner halo populations. The amount of substructure varies strongly between galaxies. Finally, I will present the stellar populations of a very low surface brightness stream around M83, showing that it is old and fairly metal rich.

  18. The Soft X-ray View of Ultra Fast Outflows

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.

    2017-10-01

    The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.

  19. Hubble Watches Planetary Nurseries Being Torched by Radiation from Hot Star

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Planet formation is a hazardous process. These four snapshots, taken by NASA's Hubble Space Telescope, show dust disks around embryonic stars in the Orion Nebula being 'blowtorched' by a blistering flood of ultraviolet radiation from the region's brightest star. Within these disks are the seeds of planets. The doomed systems look like hapless comets, with wayward tails of gas boiling off the withering, pancake-shaped disks. The Frisbee-shaped disks, called protoplanetary disks, are wider than our solar system and reside in the centers of the cocoons of gas. These cocoons were formed from material evaporating off the surface of the disks. Evidence from Hubble's Wide Field and Planetary Camera 2 suggests that dust grains in the disk are already forming larger particles, which range in size from snowflakes to gravel. But these particles may not have time to grow into full-fledged planets because of the relentless 'hurricane' of radiation from the nebula's hottest star, called Theta 1 Orionis C. In the picture at top left, the disk is the green-colored oval near the center. Radiation from the hot star is heating up the disk, causing matter to dissipate, like steam evaporating from the surface of boiling water. A strong 'stellar wind,' a stream of particles moving at 4,500 to 8,900 miles per hour (7,200 to 14,400 kilometers per hour), is propelling the material away from the disk. The material is glowing because it is being energized by radiation from the hot star. Located 1,500 light-years away, the Orion Nebula is the nearest 'star factory' to Earth. The Hubble pictures were taken Feb. 26, 1998 and Jan. 11, 1999. Credits: NASA, J. Bally (University of Colorado, Boulder, CO), H. Throop (Southwest Research Institute, Boulder, CO), C.R. O'Dell (Vanderbilt University, Nashville, TN)

  20. Selected results from the epsilon Aurigae eclipse campaign, and what lies ahead

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.

    2013-07-01

    The torrent of data generated during the 2009-2011 eclipse of the enigmatic binary, epsilon Aurigae, has provided abundant opportunity to test and refine the many ideas associated with this system. The UBVRIJH photometric light curves established times of ingress and egress, and also revealed that the differential color of the disk varied, relative to pre- or post- mid-eclipse phase. Inter-eclipse monitoring indicated secular variations suggestive of a rapidly evolving F supergiant star. Interferometric imaging decisively identified the eclipse-causing agent to be an opaque disk (CHARA+MIRC). Spectroscopy has shown that a hot source occupies the center of this disk (He I 10830A, Far-UV excess), that the disk exhibits substructure (K I 7699A) and may have an extended atmosphere (CHARA+VEGA), and that the disk is isotopically-enhanced in 13C (GNIRS) and in rare-earth elements during a third contact "still-stand" in the light curve, suggestive of a mass transfer stream. Polarimetry and spectro-polarimetry provided additional constraints on the F star atmospheric variation and the nature of the dust scattering in the disk. Numerical models of the disk are exploring its relationship to the wider class of transitional and debris-type disks, and how differential heating of the dust may reveal properties not otherwise detected spectroscopically. As the system moves to quadrature in coming years, continued observing opportunities will continue to exist. I am grateful for support from the estate of William Herschel Womble for astronomy at the University of Denver, which has made possible two decades of research on this star that otherwise has revealed its secrets only very slowly.

  1. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, M. M.

    2009-11-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths'more » equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if accretion disks are present or not. Our results suggest that the accretion disk's geometric shape directly affects the disk's precession rate.« less

  2. A total and polarized infrared flux view of the AGN clumpy torus

    NASA Astrophysics Data System (ADS)

    Lopez Rodriguez, Enrique

    2013-12-01

    Magnetohydrodynamical theories consider the torus of Active Galactic Nuclei (AGN) to be part of an outflow wind moving away from the central engine. In this framework, the torus is a particular region of the wind, where dusty and optically thick clouds are formed. The outflows are strongly related to the accretion rate and magnetic field strength, which play an important role in the creation, morphology and evolution of the torus. Through infrared (IR) imaging and polarimetry observations, this dissertation (1) searches for signatures of dusty tori in low-luminosity AGN (LLAGN); (2) explores the role and strength of magnetic field in the torus; and (3) investigates the nucleus of radio-loud AGN. Recent theoretical models predicted that LLAGN do not host a Seyfert-like torus, since low-luminosities (<1042 erg s-1 ) cannot sustain the required outflow rate. High-spatial resolution mid-IR (MIR) imaging and nuclear spectral energy distribution of 22 LLAGN reveals different IR characteristics by dividing the sample in terms of the Eddington ratio. These galaxies show a diversity of nuclear morphologies and have a high MIR/X-ray luminosity ratio compared to higher-luminosity AGN. Star formation, jets and/or truncated accretion disk can explain the MIR excess. Although several models have been made to account for the outflowing dusty winds from the central engine, the magnetic field strength at the position of the torus remains poorly characterized. Through a novel study using near-IR polarimetry, the magnetic field strength in the clumpy torus was estimated. Specifically, if paramagnetic alignment is assumed in the dusty clouds of the torus, the magnetic field strength of the torus of IC5063 is estimated to be in the range of 12--128 mG. Alternatively, Chandrasekhar-Fermi method suggests a lower-limit magnetic field strength of 13 mG. For the archetypical radio-loud AGN, Cygnus A, MIR polarimetry using CanariCam on the 10.4-m Gran Telescopio de Canarias revealed a high polarized, 11+/-3% and 12+/-3% (at Si2 and Si5 respectively) unresolved nucleus. Polarimetric modeling suggests that the MIR polarization arises from a synchrotron component. This result represents the most compelling MIR polarization detection of synchrotron radiation in Cygnus A.

  3. On the feeding zone of planetesimal formation by the streaming instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao-Chin; Johansen, Anders, E-mail: ccyang@astro.lu.se, E-mail: anders@astro.lu.se

    2014-09-10

    The streaming instability is a promising mechanism to overcome the barriers in direct dust growth and lead to the formation of planetesimals. Most previous studies of the streaming instability, however, were focused on a local region of a protoplanetary disk with a limited simulation domain such that only one filamentary concentration of solids has been observed. The characteristic separation between filaments is therefore not known. To address this, we conduct the largest-scale simulations of the streaming instability to date, with computational domains up to 1.6 gas scale heights both horizontally and vertically. The large dynamical range allows the effect ofmore » vertical gas stratification to become prominent. We observe more frequent merging and splitting of filaments in simulation boxes of high vertical extent. We find multiple filamentary concentrations of solids with an average separation of about 0.2 local gas scale heights, much higher than the most unstable wavelength from linear stability analysis. This measures the characteristic separation of planetesimal forming events driven by the streaming instability and thus the initial feeding zone of planetesimals.« less

  4. A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Klarmann, L.; Birnstiel, T.; Benisty, M.; Dominik, C.; Dullemond, C. P.

    2016-01-01

    Context. Transition disks are circumstellar disks that show evidence of a dust cavity, which may be related to dynamical clearing by embedded planet(s). Most of these objects show signs of significant accretion, indicating that the inner disks are not truly empty, but that gas is still streaming through to the star. A subset of transition disks, sometimes called pre-transition disks, also shows a strong near-infrared excess, interpreted as an optically thick dusty belt located close to the dust sublimation radius within the first astronomical unit. Aims: We study the conditions for the survival and maintenance of such an inner disk in the case where a massive planet opens a gap in the disk. In this scenario, the planet filters out large dust grains that are trapped at the outer edge of the gap, while the inner regions of the disk may or may not be replenished with small grains. Methods: We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Results: Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myr within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1 MJup), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. Conclusions: The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.

  5. PHOTOPHORETIC LEVITATION AND TRAPPING OF DUST IN THE INNER REGIONS OF PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, Colin P.; McClure, Melissa K., E-mail: cmcnally@nbi.dk, E-mail: mmcclure@eso.org

    In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk.more » In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.« less

  6. Satellitesimal Formation via Collisional Dust Growth in Steady Circumplanetary Disks

    NASA Astrophysics Data System (ADS)

    Shibaike, Yuhito; Okuzumi, Satoshi; Sasaki, Takanori; Ida, Shigeru

    2017-09-01

    The icy satellites around Jupiter are considered to have formed in a circumplanetary disk. While previous models have focused on the formation of the satellites starting from satellitesimals, the question of how satellitesimals themselves form from smaller dust particles has not yet been addressed. In this work, we study the possibility that satellitesimals form in situ in a circumplanetary disk. We calculate the radial distribution of the surface density and representative size of icy dust particles that grow by colliding with each other and drift toward the central planet in a steady circumplanetary disk with a continuous supply of gas and dust from the parent protoplanetary disk. The radial drift barrier is overcome if the ratio of the dust-to-gas accretion rates onto the circumplanetary disk, {\\dot{M}}{{d}}/{\\dot{M}}{{g}}, is high and the strength of turbulence, α, is not too low. The collision velocity is lower than the critical velocity of fragmentation when α is low. Taken together, we find that the conditions for satellitesimal formation via dust coagulation are given by {\\dot{M}}{{d}}/{\\dot{M}}{{g}}≥slant 1 and {10}-4≤slant α < {10}-2. The former condition is generally difficult to achieve, suggesting that the in situ satellitesimal formation via particle sticking is viable only under extreme conditions. We also show that neither satellitesimal formation via the collisional growth of porous aggregates nor via streaming instability is viable as long as {\\dot{M}}{{d}}/{\\dot{M}}{{g}} is low.

  7. GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakmor, R.; Pfrommer, C.; Simpson, C. M.

    2016-06-20

    The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 10{sup 11} M {sub ⊙} halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. Wemore » show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.« less

  8. Properties and evolution of dense structures in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Parikka, Anna

    2015-09-01

    In this thesis I present a study of two kinds of dense ISM structures: compact cold sources detected by Planck and dense condensations in a photodissociation region (PDR), namely the Orion Bar detected by ground-based and Herschel telescopes. Both kinds of structures are closely related to star formation. The cold sources are investigated as potentially gravitationally bound, prestellar, objects. The Orion Bar is a highly FUV-illuminated (G0=10^4) prototypical PDR, with several known protoplanetary disks, illuminated by the young Trapezium stars. First I introduce a paper published in A&A: The Physical state of selected cold clumps. In this paper we compared the Herschel dust continuum observations from the open time key program Galactic Cold Cores to ground based molecular line observations from the 20-m radio telescope of the Onsala Space Observatory in Sweden. The clumps were selected based on their brightness and low dust color temperatures (T=10-15 K). We calculated the virial and Bonnor-Ebert masses and compared them to the masses calculated from the observations. The results indicate that most of the observed cold clumps are not necessarily prestellar.Then I move on to the warm and dense condensations of the ISM. In my study of the Orion Bar, I use observations from PACS instrument on board Herschel from the open time program Unveiling the origin and excitation mechanisms of the warm CO, OH and CH+. I present maps of 110"x110" of the methylidyne cation (CH+ J=3-2), OH doublets at 84 μm, and high-J CO (J=19-18). This is the first time that these PDR tracers are presented in such a high spatial resolution and high signal-to-noise ratio. The CH+ and OH have critical densities (10^10 cm-3) and upper level energy temperatures (250 K). In addition the endothermicity of the CH+ + H2 reaction (4300 K) that forms CH+ is comparable to the activation barrier of the O + H2 reaction (4800 K) forming OH. Given these similarities it is interesting to compare their emission. The spatial distribution of CH+ and OH shows the same clumpy structure of the Bar that has been seen in other observations. The morphology of CH+ and H2 confirms that CH+ formation and excitation is strongly dependent on the vibrationally excited H2, while OH is not. The peak in the OH 84 μm emission corresponds to a bright young object, identified as the externally illuminated protoplanetary disk 244-440.Finally, I study the high-J CO in the Orion Bar. I also introduce low- and mid-J CO observations of the area. The high-J CO morphology shows a clumpy structure in the Bar and we establish a link between the dense core of the clumps, traced in CS J=2-1 by Lee et al. (2013) and in H13CN by Lis and Schilke (2003). We also show that the high-J CO is mainly excited by the UV heating.

  9. Diversity of the Lyman continuum escape fractions of high-z galaxies and its origins

    NASA Astrophysics Data System (ADS)

    Sumida, Takumi; Kashino, Daichi; Hasegawa, Kenji

    2018-04-01

    The Lyman continuum (LyC) escape fraction is a key quantity to determine the contribution of galaxies to cosmic reionization. It has been known that the escape fractions estimated by observations and numerical simulations show a large diversity. However, the origins of the diversity are still uncertain. In this work, to understand what quantities of galaxies are responsible for controlling the escape fraction, we numerically evaluate the escape fraction by performing ray-tracing calculation with simplified disc galaxy models. With a smooth disc model, we explore the dependence of the escape fraction on the disposition of ionizing sources and find that the escape fraction varies up to ˜3 orders of magnitude. It is also found that the halo mass dependence of disc scale height determines whether the escape fraction increases or decreases with halo mass. With a clumpy disc model, it turns out that the escape fraction increases as the clump mass fraction increases because the density in the inter-clump region decreases. In addition, we find that clumpiness regulates the escape fraction via two ways when the total clump mass dominates the total gas mass; the escape fraction is controlled by the covering factor of clumps if the clumps are dense sufficient to block LyC photons, otherwise the clumpiness works to reduce the escape fraction by increasing the total number of recombination events in a galaxy.

  10. Tracing the properties of the Sagittarius stream across the sky with LAMOST spectra

    NASA Astrophysics Data System (ADS)

    Walder, Madison Victoria; Carlin, Jeffrey

    2018-01-01

    The Sagittarius dwarf galaxy is a satellite that is currently being consumed by the Milky Way’s gravity. Its disruption has created the most prominent and widely studied tidal stream in our halo which wraps around our Galaxy with its leading arm in the northern Galactic hemisphere and its trailing arm in the southern hemisphere. Using optical spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, we identify stars that belong to the Sagittarius tidal stream based on their positions, distances, velocities, stellar parameters, and metallicities. We trace the velocity, metallicity, and distance of the Sagittarius stream over 200 degrees of its extent on the sky using a homogenous spectroscopic data set. In doing this, we will be able to trace the stream in regions where the disk of the Galaxy makes it difficult to distinguish Sagittarius members from the far more numerous foreground stars, and therefore use the entirety of the stream to deepen our understanding of tidal disruption. We use the spectroscopic metallicities from LAMOST to derive the metallicity as a function of position along the stream, providing an important probe of the ongoing process of tidal disruption, and a window into the stellar populations that made up the Sagittarius dwarf before its cannibalization by the Milky Way.

  11. Silver concentrations and selected hydrologic data in the Upper Colorado River basin, 1991-92

    USGS Publications Warehouse

    Johncox, D.A.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District and the Northern Colorado Water Conservancy District, collected water and sediment samples in May and September 1991 and 1992 from nine stream-sampling sites and three lake-sampling sites within the Upper Colorado River Basin upstream from Kremmling, Colorado. Data were collected to determine the present (1992) conditions of the Upper Colorado River Basin regarding silver concentrations in the water and sediment. Lake-water and stream-water samples were analyzed for concentrations of total recoverable silver, dissolved silver, and suspended solids. Lake- and stream-bottom material was analyzed for concentrations of total recoverable silver. Additional data collected were streamflow, specific conductance, pH, and water temperature. Transparency (Secchi-disk measurements) also was measured in the lakes.

  12. A model for 3-D sonic/supersonic transverse fuel injection into a supersonic air stream

    NASA Technical Reports Server (NTRS)

    Bussing, Thomas R. A.; Lidstone, Gary L.

    1989-01-01

    A model for sonic/supersonic transverse fuel injection into a supersonic airstream is proposed. The model replaces the hydrogen jet up to the Mach disk plane and the elliptic parts of the air flow field around the jet by an equivalent body. The main features of the model were validated on the basis of experimental data.

  13. A New Giant Stellar Structure in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Zucker, Daniel B.; Kniazev, Alexei Y.; Bell, Eric F.; Martínez-Delgado, David; Grebel, Eva K.; Rix, Hans-Walter; Rockosi, Constance M.; Holtzman, Jon A.; Walterbos, Rene A. M.; Ivezić, Željko; Brinkmann, J.; Brewington, Howard; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Lamb, Don Q.; Long, Dan; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

    2004-09-01

    The Sloan Digital Sky Survey has revealed an overdensity of luminous red giant stars ~3° (40 projected kpc) to the northeast of M31, which we have called Andromeda NE. The line-of-sight distance to Andromeda NE is within ~50 kpc of M31; Andromeda NE is not a physically unrelated projection. Andromeda NE has a g-band absolute magnitude of ~-11.6 and a central surface brightness of ~29 mag arcsec-2, making it nearly 2 orders of magnitude more diffuse than any known Local Group dwarf galaxy at that luminosity. Based on its distance and morphology, Andromeda NE is likely undergoing tidal disruption. Andromeda NE's red giant branch color is unlike that of M31's present-day outer disk or the stellar stream reported by Ibata et al., arguing against a direct link between Andromeda NE and these structures. However, Andromeda NE has a red giant branch color similar to that of the G1 clump; it is possible that these structures are both material torn off of M31's disk in the distant past or that these are both part of one ancient stellar stream.

  14. Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries (a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (˜daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres nearmore » periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.« less

  16. NGC 5523: An isolated product of soft galaxy mergers?

    NASA Astrophysics Data System (ADS)

    Fulmer, Leah M.; Gallagher, John S.; Kotulla, Ralf

    2017-02-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger. (1) Near-infrared images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk; (2) the bulge is offset by 1.8 kpc from a brightness minimum at the center of the optically bright inner disk; (3) a tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A119

  17. SOFIA Observations of S106: Dynamics of the Warm Gas

    NASA Technical Reports Server (NTRS)

    Simon, R.; Schneider, N.; Stutzki, J.; Gusten, R.; Graf, U. U.; Hartogh, P.; Guan, X.; Staguhn, J. G.; Benford, D. J.

    2012-01-01

    Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region.

  18. Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions

    NASA Astrophysics Data System (ADS)

    Famaey, Benoit; Khoury, Justin; Penco, Riccardo

    2018-03-01

    The observed tightness of the mass discrepancy-acceleration relation (MDAR) poses a fine-tuning challenge to current models of galaxy formation. We propose that this relation could arise from collisional interactions between baryons and dark matter (DM) particles, without the need for modification of gravity or ad hoc feedback processes. We assume that these interactions satisfy the following three conditions: (i) the relaxation time of DM particles is comparable to the dynamical time in disk galaxies; (ii) DM exchanges energy with baryons due to elastic collisions; (iii) the product between the baryon-DM cross section and the typical energy exchanged in a collision is inversely proportional to the DM number density. As a proof of principle, we present an example of a particle physics model that gives a DM-baryon cross section with the desired density and velocity dependence. For consistency with direct detection constraints, our DM particles must be either very light (m ll mb) or very heavy (mgg mb), corresponding respectively to heating and cooling of DM by baryons. In both cases, our mechanism applies and an equilibrium configuration can in principle be reached. In this exploratory paper, we focus on the heavy DM/cooling case because it is technically simpler, since the average energy exchanged turns out to be approximately constant throughout galaxies. Under these assumptions, we find that rotationally-supported disk galaxies could naturally settle to equilibrium configurations satisfying a MDAR at all radii without invoking finely tuned feedback processes. We also discuss issues related to the small scale clumpiness of baryons, as well as predictions for pressure-supported systems. We argue in particular that galaxy clusters do not follow the MDAR despite being DM-dominated because they have not reached their equilibrium configuration. Finally, we revisit existing phenomenological, astrophysical and cosmological constraints on baryon-DM interactions in light of the unusual density dependence of the cross section of DM particles.

  19. Numerical investigation of separated nozzle flows

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Chakravarthy, S. R.; Hung, C. M.

    1994-01-01

    A numerical study of axisymmetric overexpanded nozzle is presented. The flow structure of the startup and throttle-down processes are examined. During the impulsive startup process, observed flow features include the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream, initial shock front, and shocklet. Also the movement of the Mach disk is not monotonical in the downstream direction. For a range of pressure ratios, hysteresis phenomenon occurs; different solutions were obtained depending on different processes. Three types of flow structures were observed. The location of separation point and the lower end turning point of hysteresis are closely predicted. A high peak of pressure is associated with the nozzle flow reattachment. The reversed vortical structure and affects engine performance.

  20. A fully coupled flow simulation around spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Justiz, C. R.; Sega, R. M.

    1991-01-01

    The primary objective of this investigation is to provide a full flow simulation of a spacecraft in low earth orbit (LEO). Due to the nature of the environment, the simulation includes the highly coupled effects of neutral particle flow, free stream plasma flow, nonequilibrium gas dynamics effects, spacecraft charging and electromagnetic field effects. Emphasis is placed on the near wake phenomenon and will be verified in space by the Wake Shield Facility (WSF) and developed for application to Space Station conditions as well as for other spacecraft. The WSF is a metallic disk-type structure that will provide a controlled space platform for highly accurate measurements. Preliminary results are presented for a full flow around a metallic disk.

  1. On the 10 μm Silicate Feature in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark

    2009-12-01

    The 10 μm silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 μm silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r -1.5 and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual ~60-80. The source bolometric luminosity is ~3 × 1012 Lsun. Our modeling suggests that lsim35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 μm emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 μm silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed distribution, and the feature never occurs deeply absorbed. Comparing such distributions in several AGN samples we also show that the silicate emission feature becomes stronger in the transition from Seyfert to quasar luminosities.

  2. An Observational Study of Accretion Dynamics in Short-Period Pre-Main Sequence Binaries

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin; Mathieu, Robert; Herczeg, Greg; Johns-Krull, Christopher; Akeson, Rachel; Ciardi, David

    2018-01-01

    Over the past thirty years, a detailed picture of star formation has emerged that highlights the importance of the interaction between a pre-main sequence (pre-MS) star and its protoplanetary disk. The properties of an emergent star, the lifetime of a protoplanetary disk, and the formation of planets are all, in part, determined by this star-disk interaction. Many stars, however, form in binary or higher-order systems where orbital dynamics are capable of fundamentally altering this star-disk interaction. Orbital resonances, especially in short-period systems, are capable of clearing the central region of a protoplanetary disk, leaving the possibility for three stable accretion disks: a circumstellar disk around each star and a circumbinary disk. In this model, accretion onto the stars is predicted to proceed in periodic streams that form at the inner edge of the circumbinary disk, cross the dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars themselves. This pulsed-accretion paradigm predicts bursts of accretion that are periodic with the orbital period, where the duration, amplitude, location in orbital phase, and which star if preferentially fed, all depend on the orbital parameters. To test these predictions, we have carried out intensive observational campaigns combining time-series, optical and near-infrared photometry with time-series, optical spectroscopy. These data are capable of monitoring the stellar accretion rate, the properties of warm circumstellar dust, and the kinematics of accretion flows, all as a function of orbital phase. In our sample of 9 pre-MS binaries with diverse orbital parameters, we search for evidence of periodic accretion events and seek to determine the role orbital parameters have on the characteristics of accretion events. Two results from our campaign will be highlighted: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system. We compare these findings to the results of numerical simulations and comment on the role of magnetospheric accretion in pre-MS binaries.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearl, Alan N.; Newberg, Heidi Jo; Smith, R. Fiona

    We confirm, quantify, and provide a table of the coherent velocity substructure of the Milky Way disk within 2 kpc of the Sun toward the Galactic anticenter, with a 0.2 kpc resolution. We use the radial velocities of ∼340,000 F-type stars obtained with the Guoshoujing Telescope (also known as the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST), and proper motions derived from the PPMXL catalog. The PPMXL proper motions have been corrected to remove systematic errors by subtracting the average proper motions of galaxies and QSOs that have been confirmed in the LAMOST spectroscopic survey, and that are withinmore » 2.°5 of the star’s position. We provide the resulting table of systematic offsets derived from the PPMXL proper motion measurements of extragalactic objects identified in the LAMOST spectroscopic survey. Using the corrected phase-space stellar sample, we find statistically significant deviations in the bulk disk velocity of 20 km s{sup −1} or more in the three-dimensional velocities of Galactic disk stars. The bulk velocity varies significantly over length scales of half a kiloparsec or less. The rotation velocity of the disk increases by 20 km s{sup −1} from the Sun’s position to 1.5 kpc outside the solar circle. Disk stars in the second quadrant, within 1 kpc of the Sun, are moving radially toward the Galactic center and vertically toward a point a few tenths of a kiloparsec above the Galactic plane; looking down on the disk, the stars appear to move in a circular streaming motion with a radius of the order of 1 kpc.« less

  4. DENSITY VARIATIONS IN THE NW STAR STREAM OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, R. G.; Richer, Harvey B.; McConnachie, Alan W., E-mail: carlberg@astro.utoronto.ca, E-mail: richer@astro.ubc.ca, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca

    2011-04-20

    The Pan Andromeda Archeological Survey (PAndAS) CFHT Megaprime survey of the M31-M33 system has found a star stream which extends about 120 kpc NW from the center of M31. The great length of the stream, and the likelihood that it does not significantly intersect the disk of M31, means that it is unusually well suited for a measurement of stream gaps and clumps along its length as a test for the predicted thousands of dark matter sub-halos. The main result of this paper is that the density of the stream varies between zero and about three times the mean alongmore » its length on scales of 2-20 kpc. The probability that the variations are random fluctuations in the star density is less than 10{sup -5}. As a control sample, we search for density variations at precisely the same location in stars with metallicity higher than the stream [Fe/H] = [0, -0.5] and find no variations above the expected shot noise. The lumpiness of the stream is not compatible with a low mass star stream in a smooth galactic potential, nor is it readily compatible with the disturbance caused by the visible M31 satellite galaxies. The stream's density variations appear to be consistent with the effects of a large population of steep mass function dark matter sub-halos, such as found in LCDM simulations, acting on an approximately 10 Gyr old star stream. The effects of a single set of halo substructure realizations are shown for illustration, reserving a statistical comparison for another study.« less

  5. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Treesearch

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  6. Numerical study of fluid motion in bioreactor with two mixers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg; Lecheva, A., E-mail: alecheva@uni-ruse.bg

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  7. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc

    PubMed Central

    Kenworthy, Matthew A.; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Wyatt, Mark C.

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc’s bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc. PMID:28280566

  8. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc.

    PubMed

    Kennedy, Grant M; Kenworthy, Matthew A; Pepper, Joshua; Rodriguez, Joseph E; Siverd, Robert J; Stassun, Keivan G; Wyatt, Mark C

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc's bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc.

  9. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Kenworthy, Matthew A.; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Wyatt, Mark C.

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc's bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc.

  10. Dating the Tidal Disruption of Globular Clusters with GAIA Data on Their Stellar Streams

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Ginsburg, Idan; Loeb, Abraham

    2018-05-01

    The Gaia mission promises to deliver precision astrometry at an unprecedented level, heralding a new era for discerning the kinematic and spatial coordinates of stars in our Galaxy. Here, we present a new technique for estimating the age of tidally disrupted globular cluster streams using the proper motions and parallaxes of tracer stars. We evolve the collisional dynamics of globular clusters within the evolving potential of a Milky Way-like halo extracted from a cosmological ΛCDM simulation and analyze the resultant streams as they would be observed by Gaia. The simulations sample a variety of globular cluster orbits, and account for stellar evolution and the gravitational influence of the disk of the Milky Way. We show that a characteristic timescale, obtained from the dispersion of the proper motions and parallaxes of stars within the stream, is a good indicator for the time elapsed since the stream has been freely expanding away due to the tidal disruption of the globular cluster. This timescale, in turn, places a lower limit on the age of the cluster. The age can be deduced from astrometry using a modest number of stars, with the error on this estimate depending on the proximity of the stream and the number of tracer stars used.

  11. The Parker Instability with Cosmic-Ray Streaming

    NASA Astrophysics Data System (ADS)

    Heintz, Evan; Zweibel, Ellen G.

    2018-06-01

    Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.

  12. Mapping the Asymmetric Thick Disk. II. Distance, Size, and Mass of the Hercules Thick Disk Cloud

    NASA Astrophysics Data System (ADS)

    Larsen, Jeffrey A.; Cabanela, Juan E.; Humphreys, Roberta M.

    2011-04-01

    The Hercules Thick Disk Cloud was initially discovered as an excess in the number of faint blue stars between Quadrants 1 and 4 of the Galaxy. The origin of the Cloud could be an interaction with the disk bar, a triaxial Thick Disk, or a merger remnant or stream. To better map the spatial extent of the Cloud along the line of sight, we have obtained multi-color UBVR photometry for 1.2 million stars in 63 fields each of approximately 1 deg2. Our analysis of the fields beyond the apparent boundaries of the excess has already ruled out a triaxial Thick Disk as a likely explanation. In this paper, we present our results for the star counts over all of our fields, determine the spatial extent of the overdensity across and along the line of sight, and estimate the size and mass of the Cloud. Using photometric parallaxes, the stars responsible for the excess are between 1 and 6 kpc from the Sun, 0.5-4 kpc above the Galactic plane, and extend approximately 3-4 kpc across our line of sight. The Cloud is thus a major substructure in the Galaxy. The distribution of the excess along our sight lines corresponds with the density contours of the bar in the Disk, and its most distant stars are directly over the bar. We also see through the Cloud to its far side. Over the entire 500 deg2 of the sky containing the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses of material. If the overdensity is associated with the bar, it would exceed 1.4 billion stars and more than 50 million solar masses. Finally, we argue that the Hercules-Aquila Cloud is actually the Hercules Thick Disk Cloud.

  13. MAPPING THE ASYMMETRIC THICK DISK. II. DISTANCE, SIZE, AND MASS OF THE HERCULES THICK DISK CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Jeffrey A.; Cabanela, Juan E.; Humphreys, Roberta M., E-mail: larsen@usna.edu, E-mail: cabanela@mnstate.edu, E-mail: roberta@umn.edu

    2011-04-15

    The Hercules Thick Disk Cloud was initially discovered as an excess in the number of faint blue stars between Quadrants 1 and 4 of the Galaxy. The origin of the Cloud could be an interaction with the disk bar, a triaxial Thick Disk, or a merger remnant or stream. To better map the spatial extent of the Cloud along the line of sight, we have obtained multi-color UBVR photometry for 1.2 million stars in 63 fields each of approximately 1 deg{sup 2}. Our analysis of the fields beyond the apparent boundaries of the excess has already ruled out a triaxialmore » Thick Disk as a likely explanation. In this paper, we present our results for the star counts over all of our fields, determine the spatial extent of the overdensity across and along the line of sight, and estimate the size and mass of the Cloud. Using photometric parallaxes, the stars responsible for the excess are between 1 and 6 kpc from the Sun, 0.5-4 kpc above the Galactic plane, and extend approximately 3-4 kpc across our line of sight. The Cloud is thus a major substructure in the Galaxy. The distribution of the excess along our sight lines corresponds with the density contours of the bar in the Disk, and its most distant stars are directly over the bar. We also see through the Cloud to its far side. Over the entire 500 deg{sup 2} of the sky containing the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses of material. If the overdensity is associated with the bar, it would exceed 1.4 billion stars and more than 50 million solar masses. Finally, we argue that the Hercules-Aquila Cloud is actually the Hercules Thick Disk Cloud.« less

  14. The near-infrared properties of compact binary systems

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia Suzanne

    I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)

  15. Mapping Milky Way Halo Structure with Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Martin, Charles; Newberg, Heidi Jo; Carlin, Jeffrey L.

    2017-01-01

    The use of blue horizontal brach (BHB) and red giant branch stars as tracers of stellar debris streams is a common practice and has been useful in the confirmation of kinematic properties of previously identified streams. This work explores less common ways of untangling the velocity signatures of streams traveling radially to our line of sight, and to peer toward the higher density region of the Galactic Center using data from the Sloan Digital Sky Survey (SDSS). Using spectra of BHB stars, we are able to kinematically distinguish moving groups in the Milky Way halo. The results of this thesis advance our knowledge of the following stellar halo substructures: the Pisces Stellar Stream, the Hercules-Aquila Cloud, the Hercules Halo Stream, and the Hermus Stream. A study of red giant stars led to the kinematic discovery of the Pisces Stellar Stream. Red giant stars were also examined to determine that the previously identified velocity signature that was suggested for the Hercules-Aquila Cloud was due to disk star contamination and errors in preliminary SDSS velocities. The Hercules Halo Stream is a previously unidentified structure that could be related to the Hercules-Aquila Cloud, and was discovered as a velocity excess of SDSS BHB stars. We identify a group of 10 stars with similar velocities that are spatially coincident with the Hermus Stream. An orbit is fit to the Hermus Stream that rules out a connection with the Phoenix Stream.This work was supported by NSF grants AST 09-37523, 14-09421, 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.

  16. A Suzaku, NuSTAR and XMMNewton} view on variable absorption and relativistic reflection in NGC 4151

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A.; Dauser, T.; Garcia, J.; Keck, M.; Wilms, J.; Kadler, M.; Brenneman, L.; Zdziarski, A.

    2017-10-01

    We disentangle X-ray disk reflection from complex line-of-sight absorption in NGC 4151 using Suzaku, NuSTAR, and XMMNewton}. Extending upon Keck et al. (2015), we develop a physically-motivated baseline model using the latest lamp-post reflection code relxillCp_lp, which includes a Comptonization continuum. We identify two components at heights of 1.2 and 15.0 gravitational radii using a long-look simultaneous Suzaku/NuSTAR observation but argue for a vertically extended corona as opposed to distinct primary sources. We also find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber (log ξ=2.8), and a highly-ionized ultra-fast outflow, all reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability on time-scales from days to years can be attributed to changes of both neutral absorbers, which are inversely correlated with the hard X-ray continuum flux. The observed evolution is either consistent with changes in the absorber structure (clumpy absorber in the outer BLR or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas, which may act as a warm mirror for the nuclear radiation.

  17. Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF

    NASA Astrophysics Data System (ADS)

    Soto, Emmaris; de Mello, Duilia F.; Rafelski, Marc; Gardner, Jonathan P.; Teplitz, Harry I.; Koekemoer, Anton M.; Ravindranath, Swara; Grogin, Norman A.; Scarlata, Claudia; Kurczynski, Peter; Gawiser, Eric

    2017-03-01

    We present an investigation of clumpy galaxies in the Hubble Ultra Deep Field at 0.5≤slant z≤slant 1.5 in the rest-frame far-ultraviolet (FUV) using Hubble Space Telescope Wide Field Camera 3 broadband imaging in F225W, F275W, and F336W. An analysis of 1404 galaxies yields 209 galaxies that host 403 kpc scale clumps. These host galaxies appear to be typical star-forming galaxies, with an average of 2 clumps per galaxy and reaching a maximum of 8 clumps. We measure the photometry of the clumps and determine the mass, age, and star formation rates (SFR) using the spectral energy distribution fitting code FAST. We find that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Individually, clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from lower than 1% up to 93%. Clumps in the outskirts of galaxies are typically younger, with higher SFRs, than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.

  18. Water Around a Carbon Star

    NASA Image and Video Library

    2010-09-01

    This ESA Herschel image shows IRC+10216, also known as CW Leonis, a star rich in carbon where astronomers were surprised to find water. This color-coded image shows the star, surrounded by a clumpy envelope of dust.

  19. A Multi-ringed, Modestly Inclined Protoplanetary Disk around AA Tau

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; MacGregor, Meredith A.

    2017-05-01

    AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution (˜0.″2) ALMA observations of the 0.87 and 1.3 mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.″34, 0.″66, and 0.″99, all viewed at a modest inclination of 59.°1 ± 0.°3 (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features, including a “bridge” of emission that connects opposite sides of the innermost ring. We speculate on the nature of this “bridge” in light of accompanying observations of HCO+ and 13CO (J = 3-2) line emission. The HCO+ emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO+ line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.

  20. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    NASA Technical Reports Server (NTRS)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  1. Concentrating small particles in protoplanetary disks through the streaming instability

    NASA Astrophysics Data System (ADS)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  2. Influence of a non-uniform free stream velocity distribution on performance/acoustics of counterrotating propeller configurations

    NASA Astrophysics Data System (ADS)

    Allen, C. S.; Korkan, K. D.

    1991-01-01

    A methodology for predicting the performance and acoustics of counterrotating propeller configurations was modified to take into account the effects of a non-uniform free stream velocity distribution entering the disk plane. The method utilizes the analytical techniques of Lock and Theodorson as described by Davidson to determine the influence of the non-uniform free stream velocity distribution in the prediction of the steady aerodynamic loads. The unsteady load contribution is determined according to the procedure of Leseture with rigid helical tip vortices simulating the previous rotations of each propeller. The steady and unsteady loads are combined to obtain the total blade loading required for acoustic prediction employing the Ffowcs Williams-Hawking equation as simplified by Succi with the assumption of compact sources. The numerical method is used to redesign the previous commuter class counterrotating propeller configuration of Denner. The specifications, performance, and acoustics of the new design are compared with the results of Denner thereby determining the influence of the non-uniform free stream velocity distribution on these metrics.

  3. A Stream Tilling Approach to Surface Area Estimation for Large Scale Spatial Data in a Shared Memory System

    NASA Astrophysics Data System (ADS)

    Liu, Jiping; Kang, Xiaochen; Dong, Chun; Xu, Shenghua

    2017-12-01

    Surface area estimation is a widely used tool for resource evaluation in the physical world. When processing large scale spatial data, the input/output (I/O) can easily become the bottleneck in parallelizing the algorithm due to the limited physical memory resources and the very slow disk transfer rate. In this paper, we proposed a stream tilling approach to surface area estimation that first decomposed a spatial data set into tiles with topological expansions. With these tiles, the one-to-one mapping relationship between the input and the computing process was broken. Then, we realized a streaming framework towards the scheduling of the I/O processes and computing units. Herein, each computing unit encapsulated a same copy of the estimation algorithm, and multiple asynchronous computing units could work individually in parallel. Finally, the performed experiment demonstrated that our stream tilling estimation can efficiently alleviate the heavy pressures from the I/O-bound work, and the measured speedup after being optimized have greatly outperformed the directly parallel versions in shared memory systems with multi-core processors.

  4. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1977-01-01

    The free surface shapes of circular liquid jets impinging normal to sharp-edged disks in zero gravity are determined. Zero gravity drop tower experiments yielded three distinct flow patterns that were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted that indicated regions where viscous forces were not significant in the computation of free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane, where the stream function and velocity potential became the coordinates. The resulting nonlinear equations were solved by standard finite difference methods, and comparisons were made with the experimental data for the inertia dominated regime.

  5. NASA Missions Monitor a Waking Black Hole

    NASA Image and Video Library

    2015-06-30

    On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this system, a stream of gas from a star much like the sun flows toward a 10 solar mass black hole. Instead of spiraling toward the black hole, the gas accumulates in an accretion disk around it. Every couple of decades, the disk switches into a state that sends the gas rushing inward, starting a new outburst. Read more: www.nasa.gov/feature/goddard/nasa-missions-monitor-a-waki... Credits: NASA's Goddard Space Flight Center Download this video in HD formats from NASA Goddard's Scientific Visualization Studio svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11110

  6. Impact Vaporization as a Possible Source of Mercury's Calcium Exosphere

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Hahn, Joseph M.

    2015-01-01

    Mercury's calcium exosphere varies in a periodic way with that planet's true anomaly. We show that this pattern can be explained by impact vaporization from interplanetary dust with variations being due to Mercury's radial and vertical excursions through an interplanetary dust disk having an inclination within 5 degrees of the plane of Mercury's orbit. Both a highly inclined dust disk and a two-disk model (where the two disks have a mutual inclination) fail to reproduce the observed variation in calcium exospheric abundance with Mercury true anomaly angle. However, an additional source of impacting dust beyond the nominal dust disk is required near Mercury's true anomaly (?) 25deg +/-5deg. This is close to but not coincident with Mercury's true anomaly (?=45deg) when it crosses comet 2P/Encke's present day orbital plane. Interestingly, the Taurid meteor storms at Earth, which are also due to Comet Encke, are observed to occur when Earth's true anomaly is +/-20 or so degrees before and after the position where Earth and Encke orbital planes cross. The lack of exact correspondence with the present day orbit of Encke may indicate the width of the potential stream along Mercury's orbit or a previous cometary orbit. The extreme energy of the escaping calcium, estimated to have a temperature greater than 50000 K if the source is thermal, cannot be due to the impact process itself but must be imparted by an additional mechanism such as dissociation of a calcium-bearing molecule or ionization followed by recombination.

  7. UV, optical and infrared properties of star forming galaxies

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  8. Chemical Abundances of Planetary Nebulae in the Substructures of M31. II. The Extended Sample and a Comparison Study with the Outer-disk Group

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; García-Benito, Rubén; Guerrero, Martín A.; Zhang, Yong; Liu, Xiaowei; Morisset, Christophe; Karakas, Amanda I.; Miller Bertolami, Marcelo M.; Yuan, Haibo; Cabrera-Lavers, Antonio

    2018-01-01

    We report deep spectroscopy of 10 planetary nebulae (PNe) in the Andromeda Galaxy (M31) using the 10.4 m Gran Telescopio Canarias (GTC). Our targets reside in different regions of M31, including halo streams and the dwarf satellite M32, and kinematically deviate from the extended disk. The temperature-sensitive [O III] λ4363 line is observed in all PNe. For four PNe, the GTC spectra extend beyond 1 μm, enabling the explicit detection of the [S III] λ6312 and λλ9069, 9531 lines and thus determination of the [S III] temperature. Abundance ratios are derived and generally consistent with AGB model predictions. Our PNe probably all evolved from low-mass (<2 M ⊙) stars, as analyzed with the most up-to-date post-AGB evolutionary models, and their main-sequence ages are mostly ∼2–5 Gyr. Compared to the underlying, smooth, metal-poor halo of M31, our targets are uniformly metal rich ([O/H] ≳ ‑0.4), and seem to resemble the younger population in the stream. We thus speculate that our halo PNe formed in the Giant Stream’s progenitor through extended star formation. Alternatively, they might have formed from the same metal-rich gas as did the outer-disk PNe but were displaced into their present locations as a result of galactic interactions. These interpretations are, although speculative, qualitatively in line with the current picture, as inferred from previous wide-field photometric surveys, that M31's halo is the result of complex interactions and merger processes. The behavior of the N/O of the combined sample of the outer-disk and our halo/substructure PNe signifies that hot bottom burning might actually occur at <3 M ⊙ but careful assessment is needed. Based on observations made with the Gran Telescopio Canarias, installed at the Spanish Observatorio del Roque de los Muchachos of Instituto de Astrofísica de Canarias, in the island of La Palma. The observations presented in this paper are associated with GTC programs #GTC66-16A and #GTC25-16B.

  9. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  10. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  11. High-resolution imaging of Saturn's main rings during the Cassini Ring-Grazing Orbits and Grand Finale

    NASA Astrophysics Data System (ADS)

    Tiscareno, M. S.

    2017-12-01

    Cassini is ending its spectacular 13-year mission at Saturn with a two-part farewell, during which it has obtained the sharpest and highest-fidelity images ever taken of Saturn's rings. From December 2016 to April 2017, the spacecraft executed 20 near-polar orbits that passed just outside the outer edge of the main rings; these "Ring-Grazing Orbits" provided the mission's best viewing of the A and F rings and the outer B ring. From April to September 2017, the spacecraft is executing 22 near-polar orbits that pass between the innermost D ring and the planet's clouds; this "Grand Finale" provides the mission's best viewing of the C and D rings and the inner B ring. 1) Clumpy BeltsClumpy structure called "straw" was previously observed in parts of the main rings [Porco et al. 2005, Science]. New images show this structure with greater clarity. More surprisingly, new images reveal strong radial variations in the degree and character of clumpiness, which are probably an index for particle properties and interactions. Belts with different clumpiness characteristics are often adjacent to each other and not easily correlated with other ring characteristics. 2) PropellersA "propeller" is a local disturbance in the ring created by an embedded moon [Tiscareno et al. 2006, Nature; 2010, ApJL]. Cassini has observed two classes of propellers: small propellers that swarm in the "Propeller Belts" of the mid-A ring, and "Giant Propellers" whose individual orbits can be tracked in the outer A ring. Both are shown in unprecedented detail in new images. Targeted flybys of Giant Propellers were executed on both the lit and unlit sides of the ring (see figure), yielding enhanced ability to convert brightness to optical depth and surface density. 3) Impact Ejecta CloudsBeing a large and delicate system, Saturn's rings function as a detector of their planetary environment. Cassini images of impact ejecta clouds in the rings previously constrained the population of decimeter-to-meter-sized meteoroids in Saturn's vicinity [Tiscareno et al. 2013, Science]. Many more IECs are detected in new images, with color data that may constrain the particle-size distribution of the ejecta, and thus the fracture properties of ring material.

  12. European Scientific Notes. Volume 36, Number 2,

    DTIC Science & Technology

    1982-02-28

    colleagues at creases in process complexity and cost of the the University College of Swansea have con- product . So far, aluminum alloy, steel, and...associated with metal spray processing can stream of metal impinging on a disk rotating at impart to the solidified product . 3,000 to 5,000 rpm is...the point. Indeed, the pilot can simplicity, economy , stand-alone operability, often "fly the point" as the approach continues, portability, and

  13. A Multi-scale Cognitive Approach to Intrusion Detection and Response

    DTIC Science & Technology

    2015-12-28

    the behavior of the traffic on the network, either by using mathematical formulas or by replaying packet streams. As a result, simulators depend...large scale. Summary of the most important results We obtained a powerful machine, which has 768 cores and 1.25 TB memory . RBG has been...time. Each client is configured with 1GB memory , 10 GB disk space, and one 100M Ethernet interface. The server nodes include web servers

  14. Resonant Drag Instability of Grains Streaming in Fluids

    NASA Astrophysics Data System (ADS)

    Squire, J.; Hopkins, P. F.

    2018-03-01

    We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.

  15. Final Report: Efficient Databases for MPC Microdata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Bender; Martin Farach-Colton; Bradley C. Kuszmaul

    2011-08-31

    The purpose of this grant was to develop the theory and practice of high-performance databases for massive streamed datasets. Over the last three years, we have developed fast indexing technology, that is, technology for rapidly ingesting data and storing that data so that it can be efficiently queried and analyzed. During this project we developed the technology so that high-bandwidth data streams can be indexed and queried efficiently. Our technology has been proven to work data sets composed of tens of billions of rows when the data streams arrives at over 40,000 rows per second. We achieved these numbers evenmore » on a single disk driven by two cores. Our work comprised (1) new write-optimized data structures with better asymptotic complexity than traditional structures, (2) implementation, and (3) benchmarking. We furthermore developed a prototype of TokuFS, a middleware layer that can handle microdata I/O packaged up in an MPI-IO abstraction.« less

  16. Scientific Staff | ast.noao.edu

    Science.gov Websites

    Emeritus Double stars; stellar rotation; stellar characteristics; publication practices in astronomy Thai formation; infrared astronomy and instrumentation NOAO Associate Director for Kitt Peak National Observatory clumpy media, software development, modeling & SED fitting, big data, HPC in astronomy, visualization

  17. Studies of Young, Star-forming Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan

    2017-08-01

    Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks. When a planet forms in a disk, the gravitational interaction between the planet and disk can create structures, such as spiral arms and gaps. In Chapter 5, I compared the disk structures formed by planetary companions in numerical simulations with the observed structures in the disk surrounding an 8 Myr-old Herbig Ae star SAO 206462. Based on the experiments, I made predictions for the mass and position of a currently unrevealed planet, which can help guide future observations to search for more conclusive evidence for the existence of a planetary companion in the system. In Chapter 6, I showed for the first time in global simulation domains that spiral waves, driven for instance by planets or gravitational instability, can be unstable due to resonant interactions with inertial modes, breaking into turbulence. In Chapter 7, I showed that the spiral wave instability operates on the waves launched by planets and that the resulting turbulence can significantly stir up solid particles from the disk midplane. The stirring of solid particles can have influences on the observation appearance of the parent disk and on the subsequent assembly of planetary bodies in the disk. Finally, in Chapter 8, I investigated the dispersal of circumstellar disks via photoevaporative winds, finding that the photoevaporative loss alone, coupled with a range of initial angular momenta of protostellar clouds, can explain the observed decline of the disk frequency with increasing age. The findings and future possibilities are summarized in Chapter 9.

  18. A giant protogalactic disk linked to the cosmic web

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J. Xavier; Chang, Daphne

    2015-08-01

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that `cold accretion flows'--relatively cool (temperatures of the order of 104 kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 1013 solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  19. The nova-like cataclysmic variable star: KUV 0859+415

    NASA Astrophysics Data System (ADS)

    Grauer, Albert D.; Ringwald, F. A.; Wegner, Gary; Liebert, James; Schmidt, Gary D.; Green, Richard F.

    1994-07-01

    KUV 0859+415 has been found to be an eclipsing, nova-like cataclysmic variable with an orbital period of 3 h and 40 min. We find that it differs from other eclipsing systems of similar period (sometimes called the SW Sex stars) in several important respects. First, the eclipses are shallow, V-shaped dips, suggesting that the inclination angle is relatively low. Also, while the excitation of the emission lines are relatively high (He II comparable to H-beta), they are relatively weak compared to the continuum. The high Balmer lines have broad absorption wings, characteristic of an optically thick accretion disk. Yet there is evidence for a 'hot spot' in the system, which reaches peak brightness near phase 0.9 before the eclipse. Perhaps the most puzzling property of this system is that the H-alpha emission line radial velocity leads rather than lags the expected position for the location of the accretion disk. We present briefly a phenomenological model for the system which has a hot spot located at the normal location for the accretion stream to first impact the disk and is the source of excess optical continuum. However, the velocity curve of the emission lines requires us to conclude that the bulk of this radiation forms on the opposite side of the disk. This also explains the fact that the peak equivalent widths of H-alpha occur at phases 0.4-0.5.

  20. A giant protogalactic disk linked to the cosmic web.

    PubMed

    Martin, D Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J Xavier; Chang, Daphne

    2015-08-13

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'--relatively cool (temperatures of the order of 10(4) kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 10(13) solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  1. The VIMOS Ultra-Deep Survey: A major merger origin for the high fraction of galaxies at 2 < z < 6 with two bright clumps

    NASA Astrophysics Data System (ADS)

    Ribeiro, B.; Le Fèvre, O.; Cassata, P.; Garilli, B.; Lemaux, B. C.; Maccagni, D.; Schaerer, D.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Hathi, N. P.; Koekemoer, A.; Pforr, J.

    2017-11-01

    The properties of stellar clumps in star-forming galaxies and their evolution over the redshift range 2 ≲ z ≲ 6 are presented and discussed in the context of the build-up of massive galaxies at early cosmic times. We focused on galaxies with spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS) and stellar masses log 10(M⋆/M⊙) > -0.204 × (z-4.5) + 9.35. We analyzed HST-ACS images to identify clumps within a 20 kpc radius using a method taking into account differential surface brightness dimming and luminosity evolution with redshift. We find that the population of galaxies with more than one clump is dominated by galaxies with two clumps, representing 21-25% of the population, while the fraction of galaxies with three, or four and more, clumps is 8-11% and 7-9%, respectively. The fraction of clumpy galaxies is in the range 35-55% over 2 < z < 6, increasing at higher redshifts, indicating that the fraction of irregular galaxies remains high up to the highest redshifts. The large and bright clumps (M⋆ 109 up to 1010 M⊙) are found to reside predominantly in galaxies with two clumps. Smaller and lower luminosity clumps (M⋆ < 109 M⊙) are found in galaxies with three clumps or more. We interpret these results as evidence for two different modes of clump formation working in parallel. The small low luminosity clumps are likely the result of disk fragmentation, with violent disk instabilities (VDI) forming several long-lived clumps in-situ as suggested from simulations. A fraction of these clumps is also likely coming from minor mergers as confirmed from spectroscopy in several cases. The clumps in the dominating population of galaxies with two clumps are significantly more massive and have properties akin to those in galaxy pairs undergoing massive merging observed at similar redshifts; they appear as more massive than the most massive clumps observed in numerical simulations of disks with VDI. We infer from these properties that the bright and large clumps are most likely the result of major mergers bringing-in ex situ matter onto a galaxy, and we derive a high major merger fraction of 20%. The diversity of clump properties therefore suggests that the assembly of star-forming galaxies at z 2-6 proceeds from several different dissipative processes including an important contribution from major and minor mergers. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.

  2. Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.

    1995-01-01

    A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iono, Daisuke; Hatsukade, Bunyo; Kawabe, Ryohei

    The central structure in three of the brightest unlensed z = 3–4 submillimeter galaxies is investigated through 0.″015–0.″05 (120–360 pc) 860 μ m continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kiloparsec in AzTEC1 and AzTEC8 is extremely complex, and they are composed of multiple ∼200 pc clumps. AzTEC4 consists of two sources that are separated by ∼1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ∼300–3000 M {sub ⊙} yr{sup −1} kpc{sup −2}, suggesting regions with extreme star formation near the Eddington limit. Bymore » comparing the flux obtained by ALMA and Submillimeter Array, we find that 68%–90% of the emission is extended (≳1 kpc) in AzTEC4 and 8. For AzTEC1, we identify at least 11 additional compact (∼200 pc) clumps in the extended 3–4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at ≲150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10% and 30% of the 860 μ m continuum is concentrated in clumpy structures in the central kiloparsec, while the remaining flux is distributed over ≳1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.« less

  4. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    NASA Astrophysics Data System (ADS)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  5. New Constraints for X-ray Reprocessing Around Supermassive Black Holes: Near and Far with State-of-the-Art Multi-Mission Modeling

    NASA Astrophysics Data System (ADS)

    Tzanavaris, Panayiotis

    Fluorescent Fe K emission from neutral matter in AGN spectracan arise in the accretion disk around the centralsupermassive black hole [SMBH] ("broad" line) and/or in distant matter ("narrow"line). If it is broad, it provides a unique windowto the strong gravity SMBH regime, including information on SMBH spin;if it is narrow, it probesthe distant reprocessor, likely a clumpy torus. We will use broadband X-ray data from four NASA X-ray missionsfor 45 nearby AGNs, and 1. Assess whether any known "broad" relativistic lines can be modeledas "narrow"instead, by means of self-consistent modeling of fluorescence,direct, and scattered continua; 2. Measure absorbing column densities both in and out of the line of sight; 3. Bootstrap measures of intrinsic bolometric AGN luminosity, with X-ray and optical data. This work will provide updated results on a) black hole spin, with implications on AGN jet power and accretion history; b) the census of highly-obscured (Compton thick) vs. Compton thin AGNs, with implications on models of the Cosmic X-ray Background; c) calibrations of Fe K line, X-ray intrinsic continuum, [OIII] and [OIV] luminosities as measures of intrinsc bolometric AGN luminosity, with implications on AGN feedback and galaxy evolution. Key in our approach is a physically based, self-consistent modeling of the narrow line, with finite column density in and out of the line of sight, and the latest relativistic modeling of the broad line.

  6. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genzel, R.; Tacconi, L. J.; Kurk, J.

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similarmore » and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.« less

  7. Witnessing Gas Mixing in the Metal Distribution of the Hickson Compact Group HCG 31

    NASA Astrophysics Data System (ADS)

    Torres-Flores, S.; Mendes de Oliveira, C.; Amram, P.; Alfaro-Cuello, M.; Carrasco, E. R.; de Mello, D. F.

    2015-01-01

    We present for the first time direct evidence that in a merger of disk galaxies, the pre-existing central metallicities will mix as a result of gas being transported in the merger interface region along the line that joins the two coalescing nuclei. This is shown using detailed two-dimensional kinematics as well as metallicity measurements for the nearby ongoing merger in the center of the compact group HCG 31. We focus on the emission line gas, which is extensive in the system. The two coalescing cores display similar oxygen abundances. While in between the two nuclei, the metallicity changes smoothly from one nucleus to the other indicating a mix of metals in this region, which is confirmed by the high-resolution Hα kinematics (R = 45,900). This nearby system is especially important because it involves the merging of two fairly low-mass and clumpy galaxies (LMC-like galaxies), making it an important system for comparison with high-redshift galaxies. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) - Observing run: GS-2012B-Q-60.

  8. A2111: A z= 0.23 Butcher-Oemler Cluster with a Non-Isothermal Atmosphere and Normal Metallicity

    NASA Technical Reports Server (NTRS)

    Wang, Q. Daniel; Henriksen, Mark

    1998-01-01

    We report results from an x-ray spectral study of the z=0.23 Abell 2111 galaxy cluster using the Advanced Satellite for Astrophysics and Cosmology and the ROSAT Position Sensitive Proportional Counter. By correcting for the energy-dependent point-spread function of the instruments, we have examined the temperature structure of the cluster. The cluster's core within 3 is found to have a temperature of 5.4 +/- 0.5 keV, significantly higher than 2.8 +/-0.7 keV in the surrounding region of r = 3-6. This radially decreasing temperature structure can be parameterized by a polytropic index of gamma less than 1.4. Furthermore, the intracluster medium appears clumpy on scales less than 1. Early studies have revealed that the x-ray centroid of the cluster shifts with spatial scale and the overall optical and x-ray morphology is strongly elongated. These results together suggest that A2111 in undergoing a merger, which is likely responsible for the high fraction of blue galaxies observed in the cluster. We have further measured the abundance of the medium as 0.25 +/- 0.14 solar. This value is similar to those of nearby clusters which do not show a large blue galaxy function, suggesting that star formation in disk galaxies and subsequent loss to the intracluster medium do not drastically alter the average abundance of a cluster since z=0.23.

  9. A Compton-thick Wind in the High Luminosity Quasar, PDS 456

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; O'Brien, P. T.; Behar, E.; Miller, L.; Turner, T. J.; Braito, V.; Fabian, A. C.; Kaspi, S.; Mushotzky, R.; Ward, M.

    2009-01-01

    PDS 456 is a nearby (z=0.184), luminous (L(sub bol) approximately equal to 10(exp 47) ergs(exp -1) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant absorption features near 9 keV in the quasar rest-frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (0.26-0.31c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (N(sub H) greater than 10(exp 24)cm(exp -2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of 4(pi) steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.

  10. Swift/XRT Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2011-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418.4532, for which both orbital and spin periods are known (approx. 3.7d and approx. 1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 5 X 10(exp 16) g to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT

  11. Swift-X-Ray Telescope Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2012-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (approx. 3.7 d and approx.1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations, we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from approx. 5 × 10(exp 16) to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.

  12. Light propagation and the distance-redshift relation in a realistic inhomogeneous universe

    NASA Technical Reports Server (NTRS)

    Futamase, Toshifumi; Sasaki, Misao

    1989-01-01

    The propagation of light rays in a clumpy universe constructed by cosmological version of the post-Newtonian approximation was investigated. It is shown that linear approximation to the propagation equations is valid in the region where zeta is approximately less than 1 even if the density contrast is much larger than unity. Based on a gerneral order-of-magnitude statistical consideration, it is argued that the linear approximation is still valid where zeta is approximately greater than 1. A general formula for the distance-redshift relation in a clumpy universe is given. An explicit expression is derived for a simplified situation in which the effect of the gravitational potential of inhomogeneities dominates. In the light of the derived relation, the validity of the Dyer-Roeder distance is discussed. Also, statistical properties of light rays are investigated for a simple model of an inhomogeneous universe. The result of this example supports the validity of the linear approximation.

  13. NGC 2548: clumpy spatial and kinematic structure in an intermediate-age Galactic cluster

    NASA Astrophysics Data System (ADS)

    Vicente, Belén; Sánchez, Néstor; Alfaro, Emilio J.

    2016-09-01

    NGC 2548 is a ˜400-500 Myr old open cluster with evidence of spatial substructures likely caused by its interaction with the Galactic disc. In this work we use precise astrometric data from the Carte du Ciel - San Fernando (CdC-SF) catalogue to study the clumpy structure in this cluster. We confirm the fragmented structure of NGC 2548 but, additionally, the relatively high precision of our kinematic data lead us to the first detection of substructures in the proper motion space of a stellar cluster. There are three spatially separated cores each of which has its own counterpart in the proper motion distribution. The two main cores lie nearly parallel to the Galactic plane whereas the third one is significantly fainter than the others and it moves towards the Galactic plane separating from the rest of the cluster. We derive core positions and proper motions, as well as the stars belonging to each core.

  14. Time-resolved IUE studies of cataclysmic variables. I - Eclipsing systems IP Peg, PG 1030+590, and V1315 Aql

    NASA Technical Reports Server (NTRS)

    Szkody, Paula

    1987-01-01

    IUE time-resolved spectra of the high-inclination cataclysmic variables IP Peg, PG 1030+590, and V1315 Aql are analyzed in order to determine the characteristics of the disk, hotspots, and white dwarfs. The UV continuum flux distributions are generally flatter than systems of low inclination and high mass-transfer rate, and the white dwarfs/inner disk appear to be relatively cool (15,000-19,000 K) for their orbital periods, possibly because the boundary layers are blocked from view. The continuum fluxes increase at spot phases, with the spot providing the dominant flux in IP Peg. The spot temperatures range from hot (20,000 K) in IP Peg, and perhaps in PG 1030+590, to cool (11,000 K) in V1315 Aql. The C IV emission lines show slightly larger decreases at spot phases than during eclipse, which implies an extended stream area.

  15. Physics and Hard Disk Drives-A Career in Industry

    NASA Astrophysics Data System (ADS)

    Lambert, Steven

    2014-03-01

    I will participate in a panel discussion about ``Career Opportunities for Physicists.'' I enjoyed 27 years doing technology development and product support in the hard disk drive business. My PhD in low temperature physics was excellent training for this career since I learned how to work in a lab, analyze data, write and present technical information, and define experiments that got to the heart of a problem. An academic position did not appeal to me because I had no passion to pursue a particular topic in basic physics. My work in industry provided an unending stream of challenging problems to solve, and it was a rich and rewarding experience. I'm now employed by the APS to focus on our interactions with physicists in industry. I welcome the chance to share my industrial experience with students, post-docs, and others who are making decisions about their career path. Industrial Physics Fellow, APS Headquarters.

  16. Density Variations in the NW Star Stream of M31

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.; Richer, Harvey B.; McConnachie, Alan W.; Irwin, Mike; Ibata, Rodrigo A.; Dotter, Aaron L.; Chapman, Scott; Fardal, Mark; Ferguson, A. M. N.; Lewis, G. F.; Navarro, Julio F.; Puzia, Thomas H.; Valls-Gabaud, David

    2011-04-01

    The Pan Andromeda Archeological Survey (PAndAS) CFHT Megaprime survey of the M31-M33 system has found a star stream which extends about 120 kpc NW from the center of M31. The great length of the stream, and the likelihood that it does not significantly intersect the disk of M31, means that it is unusually well suited for a measurement of stream gaps and clumps along its length as a test for the predicted thousands of dark matter sub-halos. The main result of this paper is that the density of the stream varies between zero and about three times the mean along its length on scales of 2-20 kpc. The probability that the variations are random fluctuations in the star density is less than 10-5. As a control sample, we search for density variations at precisely the same location in stars with metallicity higher than the stream [Fe/H] = [0, -0.5] and find no variations above the expected shot noise. The lumpiness of the stream is not compatible with a low mass star stream in a smooth galactic potential, nor is it readily compatible with the disturbance caused by the visible M31 satellite galaxies. The stream's density variations appear to be consistent with the effects of a large population of steep mass function dark matter sub-halos, such as found in LCDM simulations, acting on an approximately 10 Gyr old star stream. The effects of a single set of halo substructure realizations are shown for illustration, reserving a statistical comparison for another study. Based on observations obtained with MegaPrime / MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  17. Galaxy and Mass Assembly (GAMA): variation in galaxy structure across the green valley

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee S.; Bremer, Malcolm N.; Phillipps, Steven; James, Philip A.; Davies, Luke J. M.; De Propris, Roberto; Moffett, Amanda J.; Percival, Susan M.; Baldry, Ivan K.; Collins, Chris A.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle; Driver, Simon P.; Hashemizadeh, Abdolhosein; Holwerda, Benne W.; Laine, Jarkko; Lara-Lopez, Maritza A.; Liske, Jochen; Maciejewski, Witold; Napolitano, Nicola R.; Penny, Samantha J.; Popescu, Cristina C.; Sansom, Anne E.; Sutherland, Will; Taylor, Edward N.; van Kampen, Eelco; Wang, Lingyu

    2018-07-01

    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 {<} log {M}_{\\star }/{M}_{⊙} {<} 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo-Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of {˜ }44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ˜20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.

  18. Galaxy and Mass Assembly (GAMA): Variation in Galaxy Structure Across the Green Valley

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee S.; Bremer, Malcolm N.; Phillipps, Steven; James, Philip A.; Davies, Luke J. M.; De Propris, Roberto; Moffett, Amanda J.; Percival, Susan M.; Baldry, Ivan K.; Collins, Chris A.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle; Driver, Simon P.; Hashemizadeh, Abdolhosein; Holwerda, Benne W.; Laine, Jarkko; Lara-Lopez, Maritza A.; Liske, Jochen; Maciejewski, Witold; Napolitano, Nicola R.; Penny, Samantha J.; Popescu, Cristina C.; Sansom, Anne E.; Sutherland, Will; Taylor, Edward N.; van Kampen, Eelco; Wang, Lingyu

    2018-04-01

    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25< log M_{\\star }/M_{⊙}<10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is sub-divided into red, green and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using KiDS and VIKING derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ˜44% which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ˜20 - 30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.

  19. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    NASA Astrophysics Data System (ADS)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  20. Galactic Disk Winds Driven by Cosmic Ray Pressure

    NASA Astrophysics Data System (ADS)

    Mao, S. Alwin; Ostriker, Eve C.

    2018-02-01

    Cosmic ray pressure gradients transfer energy and momentum to extraplanar gas in disk galaxies, potentially driving significant mass loss as galactic winds. This may be particularly important for launching high-velocity outflows of “cool” (T ≲ 104 K) gas. We study cosmic ray-driven disk winds using a simplified semi-analytic model assuming streamlines follow the large-scale gravitational potential gradient. We consider scaled Milky Way–like potentials including a disk, bulge, and halo with a range of halo velocities V H = 50–300 km s-1 and streamline footpoints with radii in the disk R 0 = 1–16 kpc at a height of 1 kpc. Our solutions cover a wide range of footpoint gas velocity u 0, magnetic–to–cosmic ray pressure ratio, gas–to–cosmic ray pressure ratio, and angular momentum. Cosmic ray streaming at the Alfvén speed enables the effective sound speed C eff to increase from the footpoint to a critical point where C eff,c = u c ∼ V H; this differs from thermal winds, in which C eff decreases outward. The critical point is typically at a height of 1–6 kpc from the disk, increasing with V H, and the asymptotic wind velocity exceeds the escape speed of the halo. Mass-loss rates are insensitive to the footpoint values of the magnetic field and angular momentum. In addition to numerical parameter space exploration, we develop and compare to analytic scaling relations. We show that winds have mass-loss rates per unit area up to \\dot{Σ}∼ Π0VH-5/3u02/3, where Π0 is the footpoint cosmic ray pressure and u 0 is set by the upwelling of galactic fountains. The predicted wind mass-loss rate exceeds the star formation rate for V H ≲ 200 km s-1 and u 0 = 50 km s-1, a typical fountain velocity.

  1. An Experimental Study of the Dynamics of an Unsteady Turbulent Boundary Layer.

    DTIC Science & Technology

    1982-12-01

    honeycomb combination into the screen box. The screen box is made of plexiglas, and the screens are made of stainless steel wire (24 gauge, 70% porosity...port plug was modified to accommodate at its cen- ter a stainless steel stem with a disk on the end toward the inside of the tunnel. The stem is spring...necessay and Identify by block nomber) * turbulent boundary layers fluid dynamics free stream velocity A B r R CT si royy.rs ebb it ,imseesa nd ideiiit

  2. Evolution of magnetic cataclysmic binaries

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Melia, F.

    1988-01-01

    The evolution of magnetic cataclysmic binaries is reviewed, with emphasis on the synchronization process by which DQ Herculis stars become AM Herculis stars. The various mechanisms that are thought to drive the evolution of cataclysmic binaries are discussed, and the criterion for stream versus disk accretion, the physics of the accretion and synchronization torques, and the conditions required for synchronization are described. The different physical regimes to which magnetic cataclysmic binaries belong are summarized, and how synchronization may be achieved, and how it may be broken, are considered.

  3. A Kinematic Link Between Boxy Bulges, Stellar Bars, and Nuclear Activity in NGC 3079 and NGC 4388

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthrorn, J.; Cecil, Gerald

    1999-01-01

    We present direct kinematic evidence for bar streaming in two active galaxies with boxy stellar bulges. The Hawaii Imaging Fabry-Perot Interferometer was used on the Canada-France-Hawaii 3.6-m telescope and the University of Hawaii 2.2-m telescope to derive the two-dimensional velocity field of the line-emitting gas in the disks of the Sc galaxy NGC 3079 and the Sb galaxy NGC 4388. In contrast to previous work based on long-slit data, the detection of the bar potential from the Fabry-Perot data does not rely on the existence of inner Lindblad resonances or strong bar-induced shocks. Simple kinematic models which approximate the intrinsic gas orbits as nonintersecting, inclined elliptical annuli that conserve angular momentum characterize the observed velocity fields. In NGC 3079, bar streaming motions with moderately eccentric orbits (e = b/a approx. 0.7) aligned along PA = 130 deg. intrinsic to the disk (PA = 97 deg. on the sky) are detected out to R(sub b) = 3.6 kpc. The orbits become increasingly circular beyond that radius (e = 1 at R(sub d) approx. = 6 kpc). The best model for NGC 4388 includes highly eccentric orbits (e approx. 0.3) for R(sub) less than or equal to 1.5 kpc which are aligned along PA = 135 deg. intrinsic to the disk (PA = 100 deg. on the sky). The observed "spiral arms" are produced by having the orbits become increasingly circular from the ends of the bar to the edge of the disk (R(sub d) approx. = 5 kpc), and the intrinsic bar PA shifting from 135 deg. to 90 deg.. Box-shaped bulges in both NGC 3079 and NGC 4388 are confirmed using new near-infrared images to reduce dust obscuration. Morphological analysis of starlight in these galaxies is combined with the gas kinematics derived from the Fabry-Perot spectra to test evolutionary models of stellar bars that involve transitory boxy bulges, and to quantify the importance of such bars in fueling active nuclei. Our data support the evolutionary bar models, but fail to prove convincingly that the stellar bars in NGC 3079 and NGC 4388 directly trigger or sustain the nuclear activity.

  4. DPM: Future Proof Storage

    NASA Astrophysics Data System (ADS)

    Alvarez, Alejandro; Beche, Alexandre; Furano, Fabrizio; Hellmich, Martin; Keeble, Oliver; Rocha, Ricardo

    2012-12-01

    The Disk Pool Manager (DPM) is a lightweight solution for grid enabled disk storage management. Operated at more than 240 sites it has the widest distribution of all grid storage solutions in the WLCG infrastructure. It provides an easy way to manage and configure disk pools, and exposes multiple interfaces for data access (rfio, xroot, nfs, gridftp and http/dav) and control (srm). During the last year we have been working on providing stable, high performant data access to our storage system using standard protocols, while extending the storage management functionality and adapting both configuration and deployment procedures to reuse commonly used building blocks. In this contribution we cover in detail the extensive evaluation we have performed of our new HTTP/WebDAV and NFS 4.1 frontends, in terms of functionality and performance. We summarize the issues we faced and the solutions we developed to turn them into valid alternatives to the existing grid protocols - namely the additional work required to provide multi-stream transfers for high performance wide area access, support for third party copies, credential delegation or the required changes in the experiment and fabric management frameworks and tools. We describe new functionality that has been added to ease system administration, such as different filesystem weights and a faster disk drain, and new configuration and monitoring solutions based on the industry standards Puppet and Nagios. Finally, we explain some of the internal changes we had to do in the DPM architecture to better handle the additional load from the analysis use cases.

  5. 1H 1752 + 081: An eclipsing cataclysmic variable with a small accretion disk

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.

    1994-01-01

    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average m(sub v) of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M(sub 1) = 0.80 +/- 0.06 solar masses and M(sub 2) = 0.32 +/- 0.06 solar masses. The disk is faint and small (R(sub D) = 0.25 +/- 0.05 r(sub L1), where r(sub L1) is the distance from the primary to the L(sub 1) point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m(sub 1) = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  6. HUBBLE UNCOVERS DUST DISK AROUND A MASSIVE BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling a gigantic hubcap in space, a 3,700 light-year-diameter dust disk encircles a 300 million solar-mass black hole in the center of the elliptical galaxy NGC 7052. The disk, possibly a remnant of an ancient galaxy collision, will be swallowed up by the black hole in several billion years. Because the front end of the disk eclipses more stars than the back, it appears darker. Also, because dust absorbs blue light more effectively than red light, the disk is redder than the rest of the galaxy (this same phenomenon causes the Sun to appear red when it sets in a smoggy afternoon). This NASA Hubble Space Telescope image was taken with the Wide Field and Planetary Camera 2, in visible light. Details as small as 50 light-years across can be seen. Hubble's Faint Object Spectrograph (replaced by the STIS spectrograph in 1997) was used to observe hydrogen and nitrogen emission lines from gas in the disk. Hubble measurements show that the disk rotates like an enormous carousel, 341,000 miles per hour (155 kilometers per second) at 186 light-years from the center. The rotation velocity provides a direct measure of the gravitational force acting on the gas by the black hole. Though 300 million times the mass of our Sun, the black hole is still only 0.05 per cent of the total mass of the NGC 7052 galaxy. Despite its size, the disk is 100 times less massive than the black hole. Still, it contains enough raw material to make three million sun-like stars. The bright spot in the center of the disk is the combined light of stars that have crowded around the black hole due to its strong gravitational pull. This stellar concentration matches theoretical models linking stellar density to a central black hole's mass. NGC 7052 is a strong source of radio emission and has two oppositely directed `jets' emanating from the nucleus. (The jets are streams of energetic electrons moving in a strong magnetic field and unleashing radio energy). Because the jets in NGC 7052 are not perpendicular to the disk, it may indicate that the black hole and the dust disk in NGC 7052 do not have a common origin. One possibility is that the dust was acquired from a collision with a small neighboring galaxy, after the black hole had already formed. NGC 7052 is located in the constellation of Vulpecula, 191 million light-years from Earth. Credit: Roeland P. van der Marel (STScI), Frank C. van den Bosch (Univ. of Washington), and NASA. A caption and image files are available via the Internet at http://oposite.stsci.edu/pubinfo/1998/22.html.

  7. DETECTION OF A STELLAR STREAM BEHIND OPEN CLUSTER NGC 188: ANOTHER PART OF THE MONOCEROS STREAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F.

    2010-05-15

    We present results from a WIYN/Orthogonal Parallel Transfer Imaging Camera photometric and astrometric survey of the field of the open cluster NGC 188 ((l, b) = (122.{sup 0}8, 22.{sup 0}5)). We combine these results with the proper-motion and photometry catalog of Platais et al. and demonstrate the existence of a stellar overdensity in the background of NGC 188. The theoretical isochrone fits to the color-magnitude diagram of the overdensity are consistent with an age between 6 and 10 Gyr and an intermediately metal poor population ([Fe/H] = -0.5 to -1.0). The distance to the overdensity is estimated to be betweenmore » 10.0 and 12.6 kpc. The proper motions indicate that the stellar population of the overdensity is kinematically cold. The distance estimate and the absolute proper motion of the overdensity agree reasonably well with the predictions of the Penarrubia et al. model of the formation of the Monoceros stream. Orbits for this material constructed with plausible radial-velocity values, indicate that dynamically, this material is unlikely to belong to the thick disk. Taken together, this evidence suggests that the newly found overdensity is part of the Monoceros stream.« less

  8. GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu

    2017-01-10

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less

  9. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Oosterloo, Tom; Raymond Oonk, J. B.; Morganti, Raffaella; Combes, Françoise; Dasyra, Kalliopi; Salomé, Philippe; Vlahakis, Nektarios; Tadhunter, Clive

    2017-12-01

    We present a detailed study of the properties of the molecular gas in the fast outflow driven by the active galactic nucleus (AGN) in the nearby radio-loud Seyfert galaxy IC 5063. By using ALMA observations of a number of tracers of the molecular gas (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the differences in excitation, density and temperature of the gas as function of position and kinematics. The results show that in the immediate vicinity of the radio jet, a fast outflow, with velocities up to 800 km s-1, is occurring of which the gas has high excitation with excitation temperatures in the range 30-55 K, demonstrating the direct impact of the jet on the ISM. The relative brightness of the 12CO lines, as well as that of 13CO(2-1) vs. 12CO(2-1), show that the outflow is optically thin. We estimate the mass of the molecular outflow to be at least 1.2 × 106 M⊙ and likely to be a factor between two and three larger than this value. This is similar to that of the outflow of atomic gas, but much larger than that of the ionised outflow, showing that the outflow in IC 5063 is dominated by cold gas. The total mass outflow rate we estimated to be 12 M⊙ yr-1. The mass of the outflow is much smaller than the total gas mass of the ISM of IC 5063. Therefore, although the influence of the AGN and its radio jet is very significant in the inner regions of IC 5063, globally speaking the impact will be very modest. We used RADEX non-LTE modelling to explore the physical conditions of the molecular gas in the outflow. Models with the outflowing gas being quite clumpy give the most consistent results and our preferred solutions have kinetic temperatures in the range 20-100 K and densities between 105 and 106 cm-3. The resulting pressures are 106-107.5 K cm-3, about two orders of magnitude higher than in the outer quiescent disk. The highest densities and temperatures are found in the regions with the fastest outflow. The results strongly suggest that the outflow in IC 5063 is driven by the radio plasma jet expanding into a clumpy gaseous medium and creating a cocoon of (shocked) gas which is pushed away from the jet axis resulting in a lateral outflow, very similar to what is predicted by numerical simulations.

  10. Star Formation at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh ultraviolet radiation streaming from hot stars orbiting close to Sgr A*. The gas of the proplyds is heated and stripped away by this radiation, forming bow shocks around the disks. Both the proplyds themselves and the bow shocks surrounding them are visible in Yusef-Zadeh’s observations. Potential for Planet Formation: Unlike the young massive stars that have previously been identified in the galactic center, the proplyd candidates in this study are associated with low-mass stars. This has led to speculation that it may in fact be easier for low-mass stars to form in the hostile surroundings of the black hole than it is for them to form elsewhere in the Milky Way. In addition, the rate at which material is lost from such proplyds is expected to be low, so there is a chance for the disk to eventually form planets. With that comes the tantalizing possibility that as telescope resolution and data-analysis techniques improve, we may even be able to watch planet formation occur near Sgr A*. Citation: F. Yusef-Zadeh et al. 2015, ApJ, 801, L26, doi:10.088/2041-8205/801/2/L26 Bonus: Check out the authors' video abstract below, which shows the locations of the proplyd candidates relative to Sgr A* and provides more information about how the observations were made and analyzed.

  11. Accretion Structures in Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine

    The physics of mass transfer in interacting binaries of the Algol type will be investigated through an analysis of an extensive collection of FUV spectra from the FUSE spacecraft, Kepler photometry, and FUV spectra from IUE and ORFEUS-SPAS II. The Algols range from close direct impact systems to wider systems that contain prominent accretion disks. Several components of the circumstellar (CS) material have been identified, including the gas stream, splash/outflow domains, a high temperature accretion region (HTAR), accretion disk, and magnetically-controlled flows (cf. Peters 2001, 2007, Richards et al. 2010). Hot spots are sometimes seen at the site where the gas stream impacts the mass gainer's photosphere. Collectively we call these components of mass transfer "accretion structures". The CS material will be studied from an analysis of both line-of-sight FUV absorption features and emission lines. The emission line regions will be mapped in and above/below the orbital plane with 2D and 3D Doppler tomography techniques. We will look for the presence of hot accretion spots in both the Kepler photometry of Algols in the Kepler fields and phase-dependent flux variability in the FUSE spectra. We will also search for evidence of microflaring at the impact site of the gas stream. An abundance study of the mass gainer will reveal the extent to which CNO-processed material from the core of the mass loser is being deposited on the primary. Analysis codes that will be used include 2D and 3D tomography codes, SHELLSPEC, light curve analysis programs such as PHOEBE and Wilson-Devinney, and the NLTE codes TLUSTY/SYNSPEC. This project will transform our understanding of the mass transfer process from a generic to a hydrodynamical one and provide important information on the degree of mass loss from the system which is needed for calculations of the evolution of Algol binaries.

  12. Wood decay in desert riverine environments

    USGS Publications Warehouse

    Andersen, Douglas; Stricker, Craig A.; Nelson, S. Mark

    2016-01-01

    Floodplain forests and the woody debris they produce are major components of riverine ecosystems in many arid and semiarid regions (drylands). We monitored breakdown and nitrogen dynamics in wood and bark from a native riparian tree, Fremont cottonwood (Populus deltoides subsp. wislizeni), along four North American desert streams. We placed locally-obtained, fresh, coarse material [disks or cylinders (∼500–2000 cm3)] along two cold-desert and two warm-desert rivers in the Colorado River Basin. Material was placed in both floodplain and aquatic environments, and left in situ for up to 12 years. We tested the hypothesis that breakdown would be fastest in relatively warm and moist aerobic environments by comparing the time required for 50% loss of initial ash-free dry matter (T50) calculated using exponential decay models incorporating a lag term. In cold-desert sites (Green and Yampa rivers, Colorado), disks of wood with bark attached exposed for up to 12 years in locations rarely inundated lost mass at a slower rate (T50 = 34 yr) than in locations inundated during most spring floods (T50 = 12 yr). At the latter locations, bark alone loss mass at a rate initially similar to whole disks (T50 = 13 yr), but which subsequently slowed. In warm-desert sites monitored for 3 years, cylinders of wood with bark removed lost mass very slowly (T50 = 60 yr) at a location never inundated (Bill Williams River, Arizona), whereas decay rate varied among aquatic locations (T50 = 20 yr in Bill Williams River; T50 = 3 yr in Las Vegas Wash, an effluent-dominated stream warmed by treated wastewater inflows). Invertebrates had a minor role in wood breakdown except at in-stream locations in Las Vegas Wash. The presence and form of change in nitrogen content during exposure varied among riverine environments. Our results suggest woody debris breakdown in desert riverine ecosystems is primarily a microbial process with rates determined by landscape position, local weather, and especially the regional climate through its effect on the flow regime. The increased warmth and aridity expected to accompany climate change in the North American southwest will likely retard the already slow wood decay process on naturally functioning desert river floodplains. Our results have implications for designing environmental flows to manage floodplain forest wood budgets, carbon storage, and nutrient cycling along regulated dryland rivers.

  13. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    DOE PAGES

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less

  14. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.

  15. A massive, dead disk galaxy in the early Universe.

    PubMed

    Toft, Sune; Zabl, Johannes; Richard, Johan; Gallazzi, Anna; Zibetti, Stefano; Prescott, Moire; Grillo, Claudio; Man, Allison W S; Lee, Nicholas Y; Gómez-Guijarro, Carlos; Stockmann, Mikkel; Magdis, Georgios; Steinhardt, Charles L

    2017-06-21

    At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies. Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which-surprisingly-turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst. The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo. This result confirms previous indirect indications that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.

  16. System level traffic shaping in disk servers with heterogeneous protocols

    NASA Astrophysics Data System (ADS)

    Cano, Eric; Kruse, Daniele Francesco

    2014-06-01

    Disk access and tape migrations compete for network bandwidth in CASTORs disk servers, over various protocols: RFIO, Xroot, root and GridFTP. As there are a limited number of tape drives, it is important to keep them busy all the time, at their nominal speed. With potentially 100s of user read streams per server, the bandwidth for the tape migrations has to be guaranteed to a controlled level, and not the fair share the system gives by default. Xroot provides a prioritization mechanism, but using it implies moving exclusively to the Xroot protocol, which is not possible in short to mid-term time frame, as users are equally using all protocols. The greatest commonality of all those protocols is not more than the usage of TCP/IP. We investigated the Linux kernel traffic shaper to control TCP/ IP bandwidth. The performance and limitations of the traffic shaper have been understood in test environment, and satisfactory working point has been found for production. Notably, TCP offload engines' negative impact on traffic shaping, and the limitations of the length of the traffic shaping rules were discovered and measured. A suitable working point has been found and the traffic shaping is now successfully deployed in the CASTOR production systems at CERN. This system level approach could be transposed easily to other environments.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.

    AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution (∼0.″2) ALMA observations of the 0.87 and 1.3 mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.″34, 0.″66, and 0.″99, all viewed at a modest inclination of 59.°1 ± 0.°3 (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features, including a “bridge” of emission thatmore » connects opposite sides of the innermost ring. We speculate on the nature of this “bridge” in light of accompanying observations of HCO{sup +} and {sup 13}CO ( J = 3–2) line emission. The HCO{sup +} emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO{sup +} line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.« less

  18. Reverse Radiative Shock Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R. P.; Kuranz, C. K.; Huntington, C. M.; Grosskopf, M. J.; Marion, D. C.; Young, R.; Plewa, T.

    2011-05-01

    In many Cataclysmic Binary systems, mass onto an accretion disk produces a `hot spot’ where the infalling supersonic flow obliquely strikes the rotating accretion disk. This collision region has many ambiguities as a radiation hydrodynamic system, but shock development in the infalling flow can be modeled. Depending upon conditions, it has been argued (Armitage & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter the hot spot's structure and emissions. We report the first experimental attempt to produce colliding flows that create a radiative reverse shock at the Omega-60 laser facility. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. We will discuss the experimental design, the available data, and our astrophysical context. Funded by the NNSA-DS and SC-OFES Joint Prog. in High-Energy-Density Lab. Plasmas, by the Nat. Laser User Facility Prog. in NNSA-DS and by the Predictive Sci. Acad. Alliances Prog. in NNSA-ASC, under grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  19. Acoustic filtration and sedimentation of soot particles

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Ezekoye, O. A.

    Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1-2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone.

  20. Digital-map grids of mean-annual precipitation for 1961-90, and generalized skew coefficients of annual maximum streamflow for Oklahoma

    USGS Publications Warehouse

    Rea, A.H.; Tortorelli, R.L.

    1997-01-01

    This digital report contains two digital-map grids of data that were used to develop peak-flow regression equations in Tortorelli, 1997, 'Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 97-4202. One data set is a grid of mean annual precipitation, in inches, based on the period 1961-90, for Oklahoma. The data set was derived from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) mean annual precipitation grid for the United States, developed by Daly, Neilson, and Phillips (1994, 'A statistical-topographic model for mapping climatological precipitation over mountainous terrain:' Journal of Applied Meteorology, v. 33, no. 2, p. 140-158). The second data set is a grid of generalized skew coefficients of logarithms of annual maximum streamflow for Oklahoma streams less than or equal to 2,510 square miles in drainage area. This grid of skew coefficients is taken from figure 11 of Tortorelli and Bergman, 1985, 'Techniques for estimating flood peak discharges for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 84-4358. To save disk space, the skew coefficient values have been multiplied by 100 and rounded to integers with two significant digits. The data sets are provided in an ASCII grid format.

  1. A low-cost PC-based telemetry data-reduction system

    NASA Astrophysics Data System (ADS)

    Simms, D. A.; Butterfield, C. P.

    1990-04-01

    The Solar Energy Research Institute's (SERI) Wind Research Branch is using Pulse Code Modulation (PCM) telemetry data-acquisition systems to study horizontal-axis wind turbines. PCM telemetry systems are used in test installations that require accurate multiple-channel measurements taken from a variety of different locations. SERI has found them ideal for use in tests requiring concurrent acquisition of data-reduction system to facilitate quick, in-the-field multiple-channel data analysis. Called the PC-PCM System, it consists of two basic components. First, AT-compatible hardware boards are used for decoding and combining PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for the DOS operating system was developed to simplify data-acquisition control and management. The software provides a quick, easy-to-use interface between the PC and PCM data streams. Called the Quick-Look Data Management Program, it is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. This paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data. Also discussed are problems and techniques associated with PC-based telemetry data acquisition, processing, and real-time display.

  2. Revealing the Ionization Properties of the Magellanic Stream Using Optical Emission

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Madsen, G. J.; Fox, A. J.; Wakker, B. P.; Bland-Hawthorn, J.; Nidever, D.; Haffner, L. M.; Antwi-Danso, Jacqueline; Hernandez, Michael; Lehner, N.; Hill, A. S.; Curzons, A.; Tepper-García, T.

    2017-12-01

    The Magellanic Stream, a gaseous tail that trails behind the Magellanic Clouds, could replenish the Milky Way (MW) with a tremendous amount of gas if it reaches the Galactic disk before it evaporates into the halo. To determine how the Magellanic Stream’s properties change along its length, we have conducted an observational study of the Hα emission, along with other optical warm ionized gas tracers, toward 39 sight lines. Using the Wisconsin Hα Mapper telescope, we detect Hα emission brighter than 30–50 mR in 26 of our 39 sight lines. This Hα emission extends over 2^\\circ away from the H I emission. By comparing {I}{{H}α } and {I}[{{O}{{I}}]}, we find that regions with {log}{N}{{H}{{I}}}/{{cm}}-2≈ 19.5{--}20.0 are 16%–67% ionized. Most of the {I}{{H}α } along the Magellanic Stream are much higher than expected if the primary ionization source is photoionization from Magellanic Clouds, the MW, and the extragalactic background. We find that the additional contribution from self ionization through a “shock cascade” that results as the Stream plows through the halo might be sufficient to reproduce the underlying level of Hα emission along the Stream. In the sparsely sampled region below the South Galactic Pole, there exists a subset of sight lines with uncharacteristically bright emission, which suggest that gas is being ionized further by an additional source that could be a linked to energetic processes associated with the Galactic center.

  3. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  4. Gas distribution and clumpiness in the galaxy group NGC 2563

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Sun, Ming; Mulchaey, John; Nagai, Daisuke; Bonamente, Massimiliano

    2017-08-01

    We present a Chandra study of the hot intragroup medium of the galaxy group NCG 2563. The Chandra mosaic observations, with a total exposure time of ˜430 ks, allow the gas density to be detected beyond R200 and the gas temperature out to 0.75 R200. This represents the first observational measurement of the physical properties of a poor groups beyond R500. By capitalizing on the exquisite spatial resolution of Chandra that is capable to remove unrelated emission from point sources and substructures, we are able to radially constrain the inhomogeneities of gas ('clumpiness'), gas fraction, temperature and entropy distribution. Although there is some uncertainty in the measurements, we find evidences of gas clumping in the virialization region, with clumping factor of about 2-3 at R200. The gas clumping-corrected gas fraction is significantly lower than the cosmological baryon budget. These results may indicate a larger impact of the gas inhomogeneities with respect to the prediction from hydrodynamic numerical simulations, and we discuss possible explanations for our findings.

  5. Early dynamical evolution of young substructured clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2017-03-01

    Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

  6. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  7. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Feltzing, S.; Oey, M. S.

    2014-02-01

    Aims: The aim of this paper is to explore and map the age and abundance structure of the stars in the nearby Galactic disk. Methods: We have conducted a high-resolution spectroscopic study of 714 F and G dwarf and subgiant stars in the Solar neighbourhood. The star sample has been kinematically selected to trace the Galactic thin and thick disks to their extremes, the metal-rich stellar halo, sub-structures in velocity space such as the Hercules stream and the Arcturus moving group, as well as stars that cannot (kinematically) be associated with either the thin disk or the thick disk. The determination of stellar parameters and elemental abundances is based on a standard analysis using equivalent widths and one-dimensional, plane-parallel model atmospheres calculated under the assumption of local thermodynamical equilibrium (LTE). The spectra have high resolution (R = 40 000-110 000) and high signal-to-noise (S/N = 150-300) and were obtained with the FEROS spectrograph on the ESO 1.5 m and 2.2 m telescopes, the SOFIN and FIES spectrographs on the Nordic Optical Telescope, the UVES spectrograph on the ESO Very Large Telescope, the HARPS spectrograph on the ESO 3.6 m telescope, and the MIKE spectrograph on the Magellan Clay telescope. The abundances from individual Fe i lines were were corrected for non-LTE effects in every step of the analysis. Results: We present stellar parameters, stellar ages, kinematical parameters, orbital parameters, and detailed elemental abundances for O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba for 714 nearby F and G dwarf stars. Our data show that there is an old and α-enhanced disk population, and a younger and less α-enhanced disk population. While they overlap greatly in metallicity between -0.7 < [Fe/H] ≲ +0.1, they show a bimodal distribution in [α/Fe]. This bimodality becomes even clearer if stars where stellar parameters and abundances show larger uncertainties (Teff ≲ 5400 K) are discarded, showing that it is important to constrain the data set to a narrow range in the stellar parameters if small differences between stellar populations are to be revealed. In addition, we find that the α-enhanced population has orbital parameters placing the stellar birthplaces in the inner Galactic disk while the low-α stars mainly come from the outer Galactic disk, fully consistent with the recent claims of a short scale-length for the α-enhanced Galactic thick disk. We have also investigated the properties of the Hercules stream and the Arcturus moving group and find that neither of them presents chemical or age signatures that could suggest that they are disrupted clusters or extragalactic accretion remnants from ancient merger events. Instead, they are most likely dynamical features originating within the Galaxy. We have also discovered that a standard 1D, LTE analysis, utilising ionisation and excitation balance of Fe i and Fe ii lines produces a flat lower main sequence. As the exact cause for this effect is unclear we chose to apply an empirical correction. Turn-off stars and more evolved stars appear to be unaffected. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5 m, 2.2 m, and 3.6 m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables C.1-C.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A71Appendices are available in electronic form at http://www.aanda.org

  8. The Inner Structure of OH Megamaser Galaxies: The Genesis of the Unified Scheme of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Axon, David

    OH megamaser galaxies (OHMG) represent a key post-merger phase in the evolution of the Ultra-Luminous Infrared Galaxies (ULIRGs) population, in which an edge-on circum-nuclear gas disk (proto-torus) has already formed. Detailed interferometric mapping of maser sources implies that they originate in dense edge-on rotating molecular gas within a few tens of parsecs of the AGN. In addition, the OH lines are often broad (Doppler widths ~ 1000 km/s), implying large dynamical masses in the central few parsecs. In many systems the OH lines also show high velocity asymmetric tails suggesting large-scale outflows that could be clearing away enshrouding dense molecular material. Taken together this evidence points to a picture in which an OHMG hosts a nascent QSO surrounded by a flattened distribution of dense molecular gas that is in the process of being cleared away along the rotation axis of the maser disk. A great advantage of studying OHMG systems over the general ULIRG population is that the circum-nuclear disks are effectively "fixed" at an edge on orientation, thereby breaking the degeneracy between the number of clumps and inclination in state of the art clumpy torus models. We have been awarded HST time in cycle 17 to conduct a comprehensive study of structure of the circum-nuclear gas, and its relationship to the radio structure and that of the maser disk, of large sample (80) of OHMG. This work is supported by ground-based spectropolarimetry, integral field spectroscopy and new radio continuum observations, Our overall objective is to probe the final stages of evolution immediately before the full- emergence of an enshrouded AGN as the circum-nuclear dust is dispersed by starburst and AGN-induced outflows. The specific scientific goals of this ADP proposal are to retrieve and analyze the Spitzer thermal-IR 5-70 micron imaging and IRS spectra of the subset of 72 of our targets for which Spitzer observations are available in the archive. We aim to establish the relationship between host and circum-nuclear ionized gas and dust structures in different OHMG spectroscopic types (AGN, Starburst, Composite) and model the AGN and starburst contributions to the mid-IR SED. Combining these with our other data we will address a number of important questions: is the mid-IR SED consistent with an edge-on circum-nuclear dust structure, as expected from the maser observations? What is the relative orientation of the Maser molecular structure and the ionized gas? Is there a connection between AGN heating of the circum-nuclear dust and wind or radiation driven outflows from the nucleus? How does the bolometric luminosity of the AGN relate to the OH line luminosity, FWHM and line shape? In turn these will relate the ionizing luminosity to the covering factor of the torus and the enclosed dynamical mass. When complete, this study should provide new insights on the relationships between the fundamental physical parameters of the AGN, including black hole mass, accretion and mass outflow rates, and the large scale properties of the host galaxy.

  9. On the radiation mechanism of repeating fast radio bursts

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan

    2018-06-01

    Recent observations show that fast radio bursts (FRBs) are energetic but probably non-catastrophic events occurring at cosmological distances. The properties of their progenitors are largely unknown in spite of many attempts to determine them using the event rate, duration, and energetics. Understanding the radiation mechanism for FRBs should provide the missing insights regarding their progenitors, which is investigated in this paper. The high brightness temperatures (≳1035 K) of FRBs mean that the emission process must be coherent. Two general classes of coherent radiation mechanisms are considered - maser and the antenna mechanism. We use the observed properties of the repeater FRB 121102 to constrain the plasma conditions needed for these two mechanisms. We have looked into a wide variety of maser mechanisms operating in either vacuum or plasma and find that none of them can explain the high luminosity of FRBs without invoking unrealistic or fine-tuned plasma conditions. The most favourable mechanism is antenna curvature emission by coherent charge bunches where the burst is powered by magnetic reconnection near the surface of a magnetar (B ≳ 1014 G). We show that the plasma in the twisted magnetosphere of a magnetar may be clumpy due to two-stream instability. When magnetic reconnection occurs, the pre-existing density clumps may provide charge bunches for the antenna mechanism to operate. This model should be applicable to all FRBs that have multiple outbursts like FRB 121102.

  10. Narrow absorption lines complex I: one form of broad absorption line

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Jian; Lin, Ying-Ru

    2018-03-01

    We discover that some of the broad absorption lines (BALs) are actually a complex of narrow absorption lines (NALs). As a pilot study of this type of BAL, we show this discovery through a typical example in this paper. Utilizing the two-epoch observations of J002710.06-094435.3 (hereafter J0027-0944) from the Sloan Digital Sky Survey (SDSS), we find that each of the C IV and Si IV BAL troughs contains at least four NAL doublets. By resolving the Si IV BAL into multiple NALs, we present the following main results and conclusions. First, all these NALs show coordinated variations between the two-epoch SDSS observations, suggesting that they all originate in the quasar outflow, and that their variations are due to global changes in the ionization condition of the absorbing gas. Secondly, a BAL consisting of a number of NAL components indicates that this type of BAL is basically the same as the intrinsic NAL, which tends to support the inclination model rather than the evolution model. Thirdly, although both the C IV and Si IV BALs originate from the same clumpy substructures of the outflow, they show different profile shapes: multiple absorption troughs for the Si IV BAL in a wider velocity range, while P-Cygni for the C IV BAL in a narrower velocity range. This can be interpreted by the substantial differences in fine structure and oscillator strength between the Si IVλλ1393, 1402 and C IVλλ1548, 1551 doublets. Based on the above conclusions, we consider that the decomposition of a BAL into NALs can serve as a way to resolve the clumpy structure for outflows, and it can be used to learn more about characteristics of the clumpy structure and to test the outflow model, when utilizing high-resolution spectra and photoionization model.

  11. Flux-limited diffusion in a scattering medium. [such as accretion-disk coronae

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Zylstra, Gregory J.

    1991-01-01

    A diffusion equation (FDT) is presented with a coefficient that reduces to the appropriate limiting form in the streaming and near thermodynamic limits for a moving fluid in which the dominant source of opacity is Thomson scattering. The present results are compared to those obtained with the corresponding equations for an absorptive medium. It is found that FDT for a scattering medium is accurate to better than less than about 17 percent over the range of optical depths of tau in the range of about 0 to 3.

  12. Dynamical turbulent flow on the Galton board with friction.

    PubMed

    Chepelianskii, A D; Shepelyansky, D L

    2001-07-16

    We study numerically and analytically the dynamics of charged particles on the Galton board, a regular lattice of disk scatters, in the presence of constant external force, magnetic field, and friction. It is shown that under certain conditions friction leads to the appearance of a strange chaotic attractor. In this regime the average velocity and direction of particle flow can be effectively affected by electric and magnetic fields. We discuss the applications of these results to the charge transport in antidot superlattices and the stream of suspended particles in a viscous flow through scatters.

  13. GEOPAC

    USGS Publications Warehouse

    Godson, Richard H.

    1974-01-01

    GEOPAC .consists of a series of subroutines to primarily process potential-field geophysical data but other types of data can also be used with the program. The package contains routines to reduce, store, process and display information in two-dimensional or three-dimensional form. Input and output formats are standardized and temporary disk storage permits data sets to be processed by several subroutines in one job step. The subroutines are link-edited in an overlay mode to form one program and they can be executed by submitting a card containing the subroutine name in the input stream.

  14. Chandra High Resolution Spectroscopy of the Circumnuclear Matter in the Broad Line Radio Galaxy, 3C 445

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.

    2010-01-01

    We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).

  15. Evidence for Fluorescent Fe II Emission from Extended Low Ionization Outflows in Obscured Quasars

    NASA Astrophysics Data System (ADS)

    Wang, Tinggui; Ferland, Gary J.; Yang, Chenwei; Wang, Huiyuan; Zhang, Shaohua

    2016-06-01

    Recent studies have shown that outflows in at least some broad absorption line (BAL) quasars are extended well beyond the putative dusty torus. Such outflows should be detectable in obscured quasars. We present four WISE selected infrared red quasars with very strong and peculiar ultraviolet Fe II emission lines: strong UV Fe II UV arising from transitions to ground/low excitation levels, and very weak Fe II at wavelengths longer than 2800 Å. The spectra of these quasars display strong resonant emission lines, such as C IV, Al III and Mg II but sometimes, a lack of non-resonant lines such as C III], S III and He II. We interpret the Fe II lines as resonantly scattered light from the extended outflows that are viewed nearly edge-on, so that the accretion disk and broad line region are obscured by the dusty torus, while the extended outflows are not. We show that dust free gas exposed to strong radiation longward of 912 Å produces Fe II emission very similar to that observed. The gas is too cool to collisionally excite Fe II lines, accounting for the lack of optical emission. The spectral energy distribution from the UV to the mid-infrared can be modeled as emission from a clumpy dusty torus, with UV emission being reflected/scattered light either by the dusty torus or the outflow. Within this scenario, we estimate a minimum covering factor of the outflows from a few to 20% for the Fe II scattering region, suggesting that Fe II BAL quasars are at a special stage of quasar evolution.

  16. Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less

  17. Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process

    DOE PAGES

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; ...

    2017-06-05

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less

  18. CERES AuTomAted job Loading SYSTem (CATALYST): An automated workflow manager for satellite data production

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Hillyer, T. N.; Wilkins, J.

    2012-12-01

    The CERES Science Team integrates data from 5 CERES instruments onboard the Terra, Aqua and NPP missions. The processing chain fuses CERES observations with data from 19 other unique sources. The addition of CERES Flight Model 5 (FM5) onboard NPP, coupled with ground processing system upgrades further emphasizes the need for an automated job-submission utility to manage multiple processing streams concurrently. The operator-driven, legacy-processing approach relied on manually staging data from magnetic tape to limited spinning disk attached to a shared memory architecture system. The migration of CERES production code to a distributed, cluster computing environment with approximately one petabyte of spinning disk containing all precursor input data products facilitates the development of a CERES-specific, automated workflow manager. In the cluster environment, I/O is the primary system resource in contention across jobs. Therefore, system load can be maximized with a throttling workload manager. This poster discusses a Java and Perl implementation of an automated job management tool tailored for CERES processing.

  19. UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Colombo, Salvatore; Orlando, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-07-01

    According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. The analysis of a large solar eruption has shown that EUV excesses might be e ectively produced by the impact of dense fragments onto the stellar surface. Since a steady accretion stream does not reprouce observations, in this work we investi- gate the e ects of a fragmented accretion stream on the uxes and pro les of C IV and O VIII emission lines. To this end we model the impact of a fragmented accretion stream onto the chromosphere of a CTTS with 2D axysimmetric magneto-hydrodynamic simulations. Our model takes into account of the gravity, the stellar magnetic eld, the thermal conduction and the radiative cooling from an optically thin plasma. From the model results, we synthesize the UV and X-ray emission including the e ect of Doppler shift along the line of sight. We nd that a fragmented accretion stream produces complex pro les of UV emission lines which consists of multiple components with di erent Doppler shifts. Our model predicts line pro les that are consistent with those observed and explain their origin as due to the stream fragmentation.

  20. 2MASS J22560844+5954299: the newly discovered cataclysmic star with the deepest eclipse

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D.; Khruzina, T.; Dimitrov, D.; Groebel, R.; Ibryamov, S.; Nikolov, G.

    2015-12-01

    Context. The SW Sex stars are assumed to represent a distinguished stage in cataclysmic variable (CV) evolution, making it especially important to study them. Aims: We discovered a new cataclysmic star and carried out prolonged and precise photometric observations, as well as medium-resolution spectral observations. Modelling these data allowed us to determine the physical parameters and to establish its peculiarities. Methods: To obtain a light curve solution we used model whose emission sources are a white dwarf surrounded by an accretion disk with a hot spot, a gaseous stream near the disk's lateral side, and a secondary star filling its Roche lobe. The obtained physical parameters are compared with those of other SW Sex-subtype stars. Results: The newly discovered cataclysmic variable 2MASS J22560844+5954299 shows the deepest eclipse amongst the known nova-like stars. It was reproduced by totally covering a very luminous accretion disk by a red secondary component. The temperature distribution of the disk is flatter than that of steady-state disk. The target is unusual with the combination of a low mass ratio q ~ 1.0 (considerably below the limit q = 1.2 of stable mass transfer of CVs) and an M-star secondary. The intensity of the observed three emission lines, Hα, He 5875, and He 6678, sharply increases around phase 0.0, accompanied by a Doppler jump to the shorter wavelength. The absence of eclipses of the emission lines and their single-peaked profiles means that they originate mainly in a vertically extended hot-spot halo. The emission Hα line reveals S-wave wavelength shifts with semi-amplitude of around 210 km s-1 and phase lag of 0.03. Conclusions: The non-steady-state emission of the luminous accretion disk of 2MASS J22560844+5954299 was attributed to the low viscosity of the disk matter caused by its unusually high temperature. The star shows all spectral properties of an SW Sex variable apart from the 0.5 central absorption. Based on data collected with the telescopes at Rozhen National Astronomical Observatory.Spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A40

  1. A FUSE Survey of Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, C.

    We propose a survey of Algol-type interacting binaries with FUSE. The observing list contains 15 systems with deltage40o for which systemic parameters are known. The program stars span the range from early-type contact systems that will eventually become conventional Algols to wide binaries in an advanced evolutionary state with prominent accretion disks. Some physical parameters that can be obtained include the ionization temperature and density in the accretion disk, domain of infall (gas stream), high temperature plasma on the trailing side of the system, and in certain systems the splash zone. We will look for the presence of ionO6 absorption and assess the phase interval over which it is observed. Emission from this ion has already been found in FUSE observations of three Algols (V356Sgr, TTHya, and RYPer) during total eclipse and confirms the presence of a sim300,000K plasma abovebelow the orbital plane. In accordance with the policy on the FUSE Survey and Supplementary Program, the observations will be obtained at random phases, but we request 5 visits of each target in order to secure good phase coverage and maximize the probability of obtaining data at interesting phases, such as the interval containing the mass outflow in the splash region where a tangentially-impacting gas stream is deflected off of the mass gainers photosphere. The physical parameters that are obtained in this project will constrain future 3-D hydrodynamical simulations of mass flow in Algols. This project will build upon the successful one (Z902) carried through in FUSE Cycle3.

  2. Orbital Light Curves of UU Aquarii in Stunted Outburst

    NASA Astrophysics Data System (ADS)

    Robertson, J. W.; Honeycutt, R. K.; Henden, A. A.; Campbell, R. T.

    2018-02-01

    Stunted outbursts are ∼0.ͫ6 eruptions, typically lasting 5–10 days, which are found in some novalike cataclysmic variables, including UU Aqr. The mechanism responsible for stunted outbursts is uncertain but is likely related to an accretion disk instability or to variations in the mass transfer rate. A campaign to monitor the eclipse light curves in UU Aqr has been conducted in order to detect any light curve distortions due to the appearance of a hot spot on the disk at the location of the impact point of the accretion stream. If stunted outbursts are due to a temporary mass transfer enhancement, then predictable deformations of the orbital light curve are expected to occur during such outbursts. This study used 156 eclipses on 135 nights during the years 2000–2012. During this interval, random samples found the system to be in stunted outbursts 4%–5% of the time, yielding ∼7 eclipses obtained during some stage of stunted outburst. About half of the eclipses obtained during stunted outbursts showed clear evidence for hot spot enhancement, providing strong evidence that the stunted outbursts in UU Aqr are associated with mass transfer variations. The other half of the eclipses during stunted outburst showed little or no evidence for hot spot enhancement. Furthermore, there were no systematic changes in the hot spot signature as stunted outbursts progressed. Therefore, we have tentatively attributed the changes in hot spot visibility during stunted outburst to random blobby accretion, which likely further modulates the strength of the accretion stream on orbital timescales.

  3. INTEGRATION OF PARTICLE-GAS SYSTEMS WITH STIFF MUTUAL DRAG INTERACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao-Chin; Johansen, Anders, E-mail: ccyang@astro.lu.se, E-mail: anders@astro.lu.se

    2016-06-01

    Numerical simulation of numerous mm/cm-sized particles embedded in a gaseous disk has become an important tool in the study of planet formation and in understanding the dust distribution in observed protoplanetary disks. However, the mutual drag force between the gas and the particles can become so stiff—particularly because of small particles and/or strong local solid concentration—that an explicit integration of this system is computationally formidable. In this work, we consider the integration of the mutual drag force in a system of Eulerian gas and Lagrangian solid particles. Despite the entanglement between the gas and the particles under the particle-mesh construct,more » we are able to devise a numerical algorithm that effectively decomposes the globally coupled system of equations for the mutual drag force, and makes it possible to integrate this system on a cell-by-cell basis, which considerably reduces the computational task required. We use an analytical solution for the temporal evolution of each cell to relieve the time-step constraint posed by the mutual drag force, as well as to achieve the highest degree of accuracy. To validate our algorithm, we use an extensive suite of benchmarks with known solutions in one, two, and three dimensions, including the linear growth and the nonlinear saturation of the streaming instability. We demonstrate numerical convergence and satisfactory consistency in all cases. Our algorithm can, for example, be applied to model the evolution of the streaming instability with mm/cm-sized pebbles at high mass loading, which has important consequences for the formation scenarios of planetesimals.« less

  4. Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.

    2018-05-01

    We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.

  5. Planetary Rings: a Brief History of Observation and Theory

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2000-05-01

    Over several centuries, and extending down to today, the ring systems encircling Saturn and the other jovian planets have provided an endless source of speculation and theorizing for astronomers, theologians, and physicists. In the past two decades they have also become a testing ground for dynamical models of more distant astrophysical disks, such as those which surround protostars and even the stellar disks of spiral galaxies. I will review some of the early theories, and their sometimes rude confrontation with observational data, starting with Christiaan Huygens and touching on seminal contributions by Laplace, Bessel, Maxwell, Barnard, Russell (of H-R diagram fame) and Jeffreys. In the modern era, observations at infrared and radio wavelengths have revealed Saturn's rings to be composed of large chunks of almost pure water ice, and to have a vertical thickness measured in tens of meters. A renaissance in planetary rings studies occurred in the period 1977--1981, first with the discoveries of the narrow, dark and non-circular rings of Uranus and the tenuous jovian ring system, and capped off by the spectacular images returned during the twin Voyager flybys of Saturn. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings themselves and their retinues of attendant satellites. Between the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the galactic context), electromagnetic resonances, many-armed spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to a collective instability, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. I will conclude with a glimpse at what may well be a dynamicist's worst nightmare --- Saturn's multi-stranded, kinky and clumpy F ring, which continues to puzzle 20 years after it was first seen. The author would like to acknowledge many discussions with Joe Burns, Jeff Cuzzi, Luke Dones, Jim Elliot, Dick French, Peter Goldreich, Mark Showalter and Bruno Sicardy, as well as generous support from NASA.

  6. CANDELS+3D-HST: Compact SFGs at z ∼ 2-3, the progenitors of the first quiescent galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barro, G.; Faber, S. M.; Koo, D. C.

    We analyze the star-forming and structural properties of 45 massive (log(M/M{sub ☉}) >10) compact star-forming galaxies (SFGs) at 2 < z < 3 to explore whether they are progenitors of compact quiescent galaxies at z ∼ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray-bright active galactic nucleus (AGN). In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally concentrated light profiles and spheroidal morphologies similar to quiescent galaxies and are thus strikingly different from other SFGs, which typically aremore » disk-like and sometimes clumpy or irregular. Most compact SFGs lie either within the star formation rate (SFR)-mass main sequence (65%) or below it (30%), on the expected evolutionary path toward quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (τ) star formation histories (SFHs) or physically motivated SFHs drawn from semianalytic models (SAMs). SAMs predict longer formation timescales and older ages ∼2 Gyr, which are nearly twice as old as the estimates of the τ models. Both models yield good spectral energy distribution fits, indicating that the systematic uncertainty in the age due to degeneracies in the SFH is of that order of magnitude. However, SAM SFHs better match the observed slope and zero point of the SFR-mass main sequence. Contrary to expectations, some low-mass compact SFGs (log(M/M{sub ☉}) =10-10.6) have younger ages but lower specific SFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk instabilities (DIs) are both able to shrink galaxies, but DIs are more frequent (60% versus 40%) and form more concentrated galaxies. We confirm this result via high-resolution hydrodynamic simulations.« less

  7. Self-consistent two-phase AGN torus models⋆. SED library for observers

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, Ralf; Heymann, Frank; Efstathiou, Andreas

    2015-11-01

    We assume that dust near active galactic nuclei (AGNs) is distributed in a torus-like geometry, which can be described as a clumpy medium or a homogeneous disk, or as a combination of the two (i.e. a two-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse interstellar medium. The dust-photon interaction is treated in a fully self-consistent three-dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGNs, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10 μm silicate band. The AGN library accounts well for the observed scatter of the feature strengths and wavelengths of the peak emission. AGN extinction curves are discussed and we find that there is no direct one-to-one link between the observed extinction and the wavelength dependence of the dust cross sections. We show that objects in the library cover the observed range of mid-infrared colors of known AGNs. The validity of the approach is demonstrated by matching the SEDs of a number of representative objects: Four Seyferts and two quasars for which we present new Herschel photometry, two radio galaxies, and one hyperluminous infrared galaxy. Strikingly, for the five luminous objects we find that pure AGN models fit the SED without needing to postulate starburst activity. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The SED library of the AGN models is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A120, and at http://www.eso.org/~rsiebenm/agn_models/

  8. A PC-based telemetry system for acquiring and reducing data from multiple PCM streams

    NASA Astrophysics Data System (ADS)

    Simms, D. A.; Butterfield, C. P.

    1991-07-01

    The Solar Energy Research Institute's (SERI) Wind Research Program is using Pulse Code Modulation (PCM) Telemetry Data-Acquisition Systems to study horizontal-axis wind turbines. Many PCM systems are combined for use in test installations that require accurate measurements from a variety of different locations. SERI has found them ideal for data-acquisition from multiple wind turbines and meteorological towers in wind parks. A major problem has been in providing the capability to quickly combine and examine incoming data from multiple PCM sources in the field. To solve this problem, SERI has developed a low-cost PC-based PCM Telemetry Data-Reduction System (PC-PCM System) to facilitate quick, in-the-field multiple-channel data analysis. The PC-PCM System consists of two basic components. First, PC-compatible hardware boards are used to decode and combine multiple PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for use under DOS was developed to simplify data-acquisition control and management. The software, called the Quick-Look Data Management Program, provides a quick, easy-to-use interface between the PC and multiple PCM data streams. The Quick-Look Data Management Program is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. The paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data from multiple PCM streams. Also discussed are problems and techniques associated with PC-based telemetry data-acquisition, processing, and real-time display.

  9. Planetesimal Growth through the Accretion of Small Solids: Hydrodynamics Simulations with Gas-Particle Coupling

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron C.

    2016-10-01

    The growth and migration of planetesimals in young protoplanetary disks are fundamental to the planet formation process. A number of mechanisms seemingly inhibit small grains from growing to sizes much larger than a centimeter, limiting planetesimal growth. In spite of this, the meteoritic record, abundance of exoplanets, and the lifetimes of disks considered altogether indicate that growth must be rapid and common. If a small number of 100-km sized planetesimals do form by some method such as the streaming instability, then gas drag effects could enable those objects to accrete small solids efficiently. In particular, accretion rates for such planetesimals could be higher or lower than rates based on the geometric cross-section and gravitational focusing alone. The local gas conditions and properties of accreting bodies select a locally optimal accretion size for the pebbles. As planetesimals accrete pebbles, they feel an additional angular momentum exchange - causing the planetesimal to slowly drift inward, which becomes significant at short orbital periods. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes, planetesimal properties, and disk conditions using wind tunnel simulations. These results are followed by numerical analysis of planetesimal drift rates at a variety of stellar distances.

  10. Flight Test of a 40-Foot Nominal Diameter Disk-Gap-Band Parachute Deployed at a Mach Number of 3.31 and a Dynamic Pressure of 10.6 Pounds per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.

    1969-01-01

    A 40-foot-nominal-diameter (12.2 meter) disk-gap-band parachute was flight tested as part of the NASA supersonic high altitude parachute experiment (SHAPE) program. The test parachute (which included an experimental energy absorber in the attachment riser) was deployed from an instrumented payload by means of a deployment mortar when the payload was at a Mach number of 3.31 and a free-stream dynamic pressure of 10.6 pounds per square foot (508 newtons per square meter). The parachute deployed properly, the canopy inflating to a full-open condition at 1.03 seconds after mortar firing. The first full inflation of the canopy was immediately followed by a partial collapse with subsequent oscillations of the frontal area from about 30 to 75 percent of the full-open frontal area. After 1.07 seconds of operation, a large tear appeared in the cloth near the canopy apex. This tear was followed by two additional tears shortly thereafter. It was later determined that a section of the canopy cloth was severely weakened by the effects of aerodynamic heating. As a result of the damage to the disk area of the canopy, the parachute performance was significantly reduced; however, the parachute remained operationally intact throughout the flight test and the instrumented payload was recovered undamaged.

  11. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentarymore » intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.« less

  12. MESA models for the evolutionary status of the epsilon Aurigae disk-eclipsed binary system

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.; Gibson, Justus

    2018-06-01

    The brightest member of the class of disk-eclipsed binary stars is the Algol-like long-period binary, epsilon Aurigae (HD 31964, F0Iap + disk, http://adsabs.harvard.edu/abs/2016SPIE.9907E..17S ). Using MESA (Modules for Experiments in Stellar Astrophysics, version 9575), we have made an evaluation of its evolutionary state. We sought to satisfy several observational constraints, including: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C / 13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 solar masses, with a 100 day initial period, produces a 1.2 + 10.6 solar masses result having a 547 day period, plus a single digit 12C / 13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long period binary stars. This report has been submitted to MNRAS, along with a parallel investigation of mass transfer stream and disk sub-structure. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver.

  13. Dust-trapping Vortices and a Potentially Planet-triggered Spiral Wake in the Pre-transitional Disk of V1247 Orionis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Stefan; Kreplin, Alexander; Young, Alison K.

    The radial drift problem constitutes one of the most fundamental problems in planet formation theory, as it predicts particles to drift into the star before they are able to grow to planetesimal size. Dust-trapping vortices have been proposed as a possible solution to this problem, as they might be able to trap particles over millions of years, allowing them to grow beyond the radial drift barrier. Here, we present ALMA 0.″04 resolution imaging of the pre-transitional disk of V1247 Orionis that reveals an asymmetric ring as well as a sharply confined crescent structure, resembling morphologies seen in theoretical models ofmore » vortex formation. The asymmetric ring (at 0.″17 = 54 au separation from the star) and the crescent (at 0.″38 = 120 au) seem smoothly connected through a one-armed spiral-arm structure that has been found previously in scattered light. We propose a physical scenario with a planet orbiting at ∼0.″3 ≈ 100 au, where the one-armed spiral arm detected in polarized light traces the accretion stream feeding the protoplanet. The dynamical influence of the planet clears the gap between the ring and the crescent and triggers two vortices that trap millimeter-sized particles, namely, the crescent and the bright asymmetry seen in the ring. We conducted dedicated hydrodynamics simulations of a disk with an embedded planet, which results in similar spiral-arm morphologies as seen in our scattered-light images. At the position of the spiral wake and the crescent we also observe {sup 12}CO(3-2) and H{sup 12}CO{sup +} (4-3) excess line emission, likely tracing the increased scale-height in these disk regions.« less

  14. Dust-trapping Vortices and a Potentially Planet-triggered Spiral Wake in the Pre-transitional Disk of V1247 Orionis

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan; Kreplin, Alexander; Fukugawa, Misato; Muto, Takayuki; Sitko, Michael L.; Young, Alison K.; Bate, Matthew R.; Grady, Carol; Harries, Tim T.; Monnier, John D.; Willson, Matthew; Wisniewski, John

    2017-10-01

    The radial drift problem constitutes one of the most fundamental problems in planet formation theory, as it predicts particles to drift into the star before they are able to grow to planetesimal size. Dust-trapping vortices have been proposed as a possible solution to this problem, as they might be able to trap particles over millions of years, allowing them to grow beyond the radial drift barrier. Here, we present ALMA 0.″04 resolution imaging of the pre-transitional disk of V1247 Orionis that reveals an asymmetric ring as well as a sharply confined crescent structure, resembling morphologies seen in theoretical models of vortex formation. The asymmetric ring (at 0.″17 = 54 au separation from the star) and the crescent (at 0.″38 = 120 au) seem smoothly connected through a one-armed spiral-arm structure that has been found previously in scattered light. We propose a physical scenario with a planet orbiting at ˜0.″3 ≈ 100 au, where the one-armed spiral arm detected in polarized light traces the accretion stream feeding the protoplanet. The dynamical influence of the planet clears the gap between the ring and the crescent and triggers two vortices that trap millimeter-sized particles, namely, the crescent and the bright asymmetry seen in the ring. We conducted dedicated hydrodynamics simulations of a disk with an embedded planet, which results in similar spiral-arm morphologies as seen in our scattered-light images. At the position of the spiral wake and the crescent we also observe 12CO(3-2) and H12CO+ (4-3) excess line emission, likely tracing the increased scale-height in these disk regions.

  15. NGC 7538 IRS. 1. Interaction of a Polarized Dust Spiral and a Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Wright, M. C. H.; Hull, Charles L. H.; Pillai, Thushara; Zhao, Jun-Hui; Sandell, Göran

    2014-12-01

    We present dust polarization and CO molecular line images of NGC 7538 IRS 1. We combined data from the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the James Clerk Maxwell Telescope to make images with ~2.''5 resolution at 230 and 345 GHz. The images show a remarkable spiral pattern in both the dust polarization and molecular outflow. These data dramatically illustrate the interplay between a high infall rate onto IRS 1 and a powerful outflow disrupting the dense, clumpy medium surrounding the star. The images of the dust polarization and the CO outflow presented here provide observational evidence for the exchange of energy and angular momentum between the infall and the outflow. The spiral dust pattern, which rotates through over 180° from IRS 1, may be a clumpy filament wound up by conservation of angular momentum in the infalling material. The redshifted CO emission ridge traces the dust spiral closely through the MM dust cores, several of which may contain protostars. We propose that the CO maps the boundary layer where the outflow is ablating gas from the dense gas in the spiral.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furui, Shun’ya; Fukazawa, Yasushi; Ohno, Masanori

    We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with the Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Rayleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives results consistent with other available models, such as MYTorus, except for differencesmore » due to different physical parameters and assumptions. We studied the dependence on torus parameters for a Compton shoulder, and found that a intensity ratio of a Compton shoulder to the line core mainly depends on column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes a Compton shoulder relatively weak. Also, the shape of a Compton shoulder depends on the column density. Furthermore, these dependences become different between smooth and clumpy cases. Then, we discuss the possibility of ASTRO-H/SXS spectroscopy of Compton shoulders in AGN reflection spectra.« less

  17. Opening the CHOCBOX: clumpy stellar winds in Cyg X-1

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Uttley, P.; Wilms, J.; Miller-Jones, J.; Pottschmidt, K.; Niu, S.; Hirsch, M.; Chocbox Collaboration

    2017-10-01

    Winds of O/B-stars are key drivers of enrichment and star formation and evolution. Yet, our understanding of their clumpy structure is limited. Luckily, high mass X-ray binaries, where the compact object accretes from the stellar wind of the companion, are perfect laboratories to study such winds: the X-ray radiation from the vicinity of the compact object is quasi-pointlike and effectively X-rays the clumps crossing the line of sight. We observed the high mass X-ray binary Cyg X-1 with XMM for 7 consecutive days with simultaneous coverage with NuSTAR, INTEGRAL and VLBA. One of our main aims was to probe the wind of the O-type companion in an unprecedented uninterrupted campaign, spanning more than an orbital period and including two superior conjunctions where we expect the densest wind. Here, we present first results from the CHOCBOX (Cyg X-1 Hard state Observations of a Complete Binary Orbit in X-rays) campaign and compare them to previous work, in particular multi-year studies of absorption variability and high resolution snapshots with Chandra-HETG. We argue that the clumps have a complex structure with hotter outer and colder inner layers and are not symmetrical.

  18. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  19. Real-time high-resolution PC-based system for measurement of errors on compact disks

    NASA Astrophysics Data System (ADS)

    Tehranchi, Babak; Howe, Dennis G.

    1994-10-01

    Hardware and software utilities are developed to directly monitor the Eight-to-Fourteen (EFM) demodulated data bytes at the input of a CD player's Cross-Interleaved Reed-Solomon Code (CIRC) block decoder. The hardware is capable of identifying erroneous data with single-byte resolution in the serial data stream read from a Compact Disc by a CDD 461 Philips CD-ROM drive. In addition, the system produces graphical maps that show the physical location of the measured errors on the entire disc, or via a zooming and planning feature, on user selectable local disc regions.

  20. NASA's search for the solar connection. I. [OSO Skylab, Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Chapman, R. W.

    1979-01-01

    NASA's solar research, which leans toward the study of the sun as a star, is surveyed. The Orbiting Solar Observatory (OSO) program is covered, which yielded data such as spectras of 140-400 A wavelength of the entire solar disk. Attention is also given to the results obtained by Skylab, such as data showing that whenever a large coronal hole exists near the sun's equator, a stream of high-speed solar wind will be observed at the earth. Finally areas of future research, such as a concerted study of flare phenomenon, are discussed.

  1. Overview of the H.264/AVC video coding standard

    NASA Astrophysics Data System (ADS)

    Luthra, Ajay; Topiwala, Pankaj N.

    2003-11-01

    H.264/MPEG-4 AVC is the latest coding standard jointly developed by the Video Coding Experts Group (VCEG) of ITU-T and Moving Picture Experts Group (MPEG) of ISO/IEC. It uses state of the art coding tools and provides enhanced coding efficiency for a wide range of applications including video telephony, video conferencing, TV, storage (DVD and/or hard disk based), streaming video, digital video creation, digital cinema and others. In this paper an overview of this standard is provided. Some comparisons with the existing standards, MPEG-2 and MPEG-4 Part 2, are also provided.

  2. Holographic optical disc

    NASA Astrophysics Data System (ADS)

    Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.

    1999-11-01

    The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.

  3. He2-90'S APPEARANCE DECEIVES ASTRONOMERS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them. The Hubble picture at top shows a centrally bright object with jets, appearing like strings of beads, emanating from both sides of center. (The other streaks of light running diagonally from He2-90 are artificial effects of the telescope's optical system.) Each jet possesses at least six bright clumps of gas, which are speeding along at rates estimated to be at least 375,000 miles an hour (600,000 kilometers an hour). These gaseous salvos are being ejected into space about every 100 years, and may be caused by periodic instabilities in He2-90's accretion disk. The jets from very young stars behave in a similar way. Deep images taken from terrestrial observatories show each jet extending at least 100,000 astronomical units (one astronomical unit equals the Earth-Sun distance, 93 million miles). The jets' relatively modest speed implies that one member of the duo is a white dwarf. Observations by the Compton Gamma-Ray Observatory, however, discovered a gamma-ray source in the vicinity of He2-90, suggesting that the companion may be a neutron star or a black hole (the compact corpses of dying, massive stars). But the jets from accretion disks around neutron stars or black holes travel at a few tenths the speed of light, much faster than the plodding pace of He2-90's jets. The Hubble astronomers are planning more observations to pinpoint the gamma-ray source to determine whether it is associated with He2-90. An accretion disk needs gravity to form. For gravity to create He2-90's disk, the pair of stars must reside at a cozy distance from each other: within about 10 astronomical units. Although the astronomers are uncertain about the details, they believe that magnetic fields associated with the accretion disk produce and constrict the pencil-thin jets seen in the Hubble image. The close-up Hubble photo at bottom shows a dark, flaring, disk-like structure [off-center] bisecting the bright light from the object. The disk is seen edge-on. Although too large to be an accretion disk, this dark, flaring disk may provide indirect proof of the other's existence. Most theories for producing jets require the presence of an accretion disk. The jets are seen streaming from both sides of the central object. The round, white objects at the lower left and upper right corners are two bright clumps of gas in the jets. The astronomers traced the jets to within 1,000 astronomical units of the central obscured star. The star ejected this jet material about 30 years ago. Scientists discovered this puzzling object while taking a census of planetary nebulae. They knew it had been classified as a dying, sun-like star. He2-90 is enshrouded in very hot (17,500 degrees Fahrenheit or 10,000 degrees Kelvin), glowing gas, a typical feature of planetary nebulae. And yet the disk and jets indicated the presence of an embryonic star. The mystified astronomers needed more information. Since embryonic stars are usually associated with cool, dense clouds of gas and dust, they used a ground-based radio telescope in Chile to look for evidence of such a cloud around He2-90. No such cloud was found, and He2-90's neighborhood showed no traces of developing stars. He2-90 lies about 8,000 light-years from Earth in the constellation Centaurus in the southern sky. The images were taken Sept 28, 1999 with the Wide Field and Planetary Camera 2. The images and results appear in the Aug. 1 issue of the Astrophysical Journal Letters. Credits: NASA, Raghvendra Sahai (NASA Jet Propulsion Laboratory), Lars-Ake Nyman (European Southern Observatory, Chile and Onsala Space Observatory, Sweden)

  4. Optimum performance and potential flow field of hovering rotors

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Sigman, R. K.

    1975-01-01

    Rotor and propeller performance and induced potential flowfields were studied on the basis of a rotating actuator disk concept, with special emphasis on rotors hovering out of ground effect. A new theory for the optimum performance of rotors hovering OGE is developed and presented. An extended theory for the optimum performance of rotors and propellers in axial motion is also presented. Numerical results are presented for the optimum distributions of blade-bound circulation together with axial inflow and ultimate wake velocities for the hovering rotor over the range of thrust coefficient of interest in rotorcraft applications. Shapes of the stream tubes and of the velocities in the slipstream are obtained, using available methods, for optimum and off-optimum circulation distributions for rotors hovering in and out of ground effect. A number of explicit formulae useful in computing rotor and propeller induced flows are presented for stream functions and velocities due to distributions of circular vortices over axi-symmetric surfaces.

  5. Fine Structure in Quasar Flows Revealed by Lens-Aided Multi-Angle Spectroscopy (LAMAS)

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    2006-09-01

    Spectral differences between lensed quasar image components are common. Since lensing is intrinsically achromatic, these differences are typically explained as the effect of either microlensing, or as light path time delays sampling intrinsic quasar spectral variability. In some cases, neither explanation seems sufficient. Here we advance a novel third hypothesis: some spectral differences are due to small line-of- sight differences through quasar disk wind outflows, taking the widest separation lens SDSSJ1004+4112 as a key example. We show that small changes in sightline may traverse streams with significantly differing columns. The implications are many. Fine structure in these outflows may change the observed spectra on arcsec scales. Though difficult to detect observationally, high ionization, high velocity-width streams may sculpt the optical and X-ray spectra of most quasars. We discuss existing multi-epoch optical/UV spectroscopy and results from X-ray observations both by Chandra and XMM in this context, and sketch further possible tests. The author gratefully acknowledges support through NASA contract NAS8-03060 (CXC).

  6. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. IV. Structure of galaxies in the Local and Coma superclusters

    NASA Astrophysics Data System (ADS)

    Fossati, M.; Gavazzi, G.; Savorgnan, G.; Fumagalli, M.; Boselli, A.; Gutiérrez, L.; Hernández Toledo, H.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of the galaxy structural parameters from Hα3, an Hα narrow-band imaging follow-up survey of ~800 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local supercluster, including the Virgo cluster, and in the Coma supercluster. Aims: Taking advantage of Hα3, which provides the complete census of the recent star-forming, HI-rich galaxies in the local universe, we aim to investigate the structural parameters of the young (<10 Myr) and the old (>1 Gyr) stellar populations. By comparing the sizes of these stellar components, we investigated the spatial scale on which galaxies are growing at the present cosmological epoch and the role of the environment in quenching the star-formation activity. Methods: We computed the concentration, asymmetry, and clumpiness (CAS) structural parameters for recently born and old stars. To quantify the sizes we computed half-light radii and a new parameter dubbed EW/r based on the half-light radius of the Hα equivalent width map. To highlight the environmental perturbation, we adopt an updated calibration of the HI-deficiency parameter (DefHI) that we use to divide the sample in unperturbed galaxies (DefHI ≤ 0.3) and perturbed galaxies (DefHI > 0.3). Results: The concentration index computed in the r band depends on the stellar mass and on the Hubble type these variables are related because most massive galaxies are bulge dominated therefore highly concentrated. Going toward later spirals and irregulars the concentration index and the mass decrease along with the bulge-to-disk ratio. Blue compact dwarfs (BCDs) are an exception because they have similar mass, but they are more concentrated than dwarf irregulars. The asymmetry and the clumpiness increase along the spiral sequence up to Sc-Sd, but they decrease going in the dwarf regime, where the light distribution is smooth and more symmetric. When measured on Hα images, the CAS parameters show no obvious correlations with Hubble type. Irrespective of whether we used the ratio between effective radii or the EW/r parameter, we found that the concentration index is the main parameter that describes the current growth of isolated galaxies but, for a fixed concentration, the stellar mass plays a second-order role. At the present epoch, massive galaxies are growing inside-out, conversely, the dwarfs are growing on the scale of their already assembled mass. Observations taken at the observatory of San Pedro Martir (Baja California, Mexico), belonging to the Mexican Observatorio Astronómico Nacional.Tables A.1 and A.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A91

  7. Spiral structure of M51: Streaming motions across the spiral arms

    NASA Technical Reports Server (NTRS)

    Tilanus, R. P. J.; Allen, R. J.

    1990-01-01

    The atomic hydrogen (HI) and the H alpha emission line in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the Taurus Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity gradients are detected in the H alpha emission after subtraction of the axi-symmetric component of the velocity field. The shift is positive on the inside and negative on the outside of the northern arm. Across the southern arm this situation is reversed. The direction of the shifts is such that the material is moving inward and faster compared to circular rotation in both arms, consistent with the velocity perturbations predicted by spiral density wave models for gas downstream of a spiral shock. The observed shifts amount to 20 to 30 km (s-1), corresponding to streaming motions of 60 to 90 km (s-1) in the plane of the disk (inclination angle 20 degrees). Comparable velocity gradients have also been observed by Vogel et al. in the CO emission from the inner northern arm of M51. The streaming motions in M51 are about 2 to 3 times as large as the ones found in HI by Rots in M81, and successfully modelled by Visser with a self-consistent density wave model. Researchers have not been able to detect conclusively streaming motions in the HI emission from the arms, perhaps due to the relatively poor angular resolution (approx. 15 seconds) of the HI observations.

  8. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the Space Telescope Science Institute.

  9. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110 = 6459. I. Lens Modeling and Source Reconstruction

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Florian, Michael; Murray, Katherine T.

    2017-07-01

    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z˜ 2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star-forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z=0.659, with a total magnification ˜ 30× across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray-trace the model to the image plane, convolve with the instrumental point-spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray-tracing, of accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 13003.

  10. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Fieldmore » Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.« less

  11. Wind accretion and formation of disk structures in symbiotic binary systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  12. Prototype architecture for a VLSI level zero processing system. [Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Shi, Jianfei; Grebowsky, Gerald J.; Horner, Ward P.; Chesney, James R.

    1989-01-01

    The prototype architecture and implementation of a high-speed level zero processing (LZP) system are discussed. Due to the new processing algorithm and VLSI technology, the prototype LZP system features compact size, low cost, high processing throughput, and easy maintainability and increased reliability. Though extensive control functions have been done by hardware, the programmability of processing tasks makes it possible to adapt the system to different data formats and processing requirements. It is noted that the LZP system can handle up to 8 virtual channels and 24 sources with combined data volume of 15 Gbytes per orbit. For greater demands, multiple LZP systems can be configured in parallel, each called a processing channel and assigned a subset of virtual channels. The telemetry data stream will be steered into different processing channels in accordance with their virtual channel IDs. This super system can cope with a virtually unlimited number of virtual channels and sources. In the near future, it is expected that new disk farms with data rate exceeding 150 Mbps will be available from commercial vendors due to the advance in disk drive technology.

  13. Glass Frit Filters for Collecting Metal Oxide Nanoparticles

    NASA Technical Reports Server (NTRS)

    Ackerman, John; Buttry, Dan; Irvine, Geoffrey; Pope, John

    2005-01-01

    Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.

  14. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  15. Experimental study of the stability and flow characteristics of floating liquid columns confined between rotating disks

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.; Soto, L.; Strong, P. F.; Wang, C. A.

    1980-01-01

    A low Bond number simulation technique was used to establish the stability limits of cylindrical and conical floating liquid columns under conditions of isorotation, equal counter rotation, rotation of one end only, and parallel axis offset. The conditions for resonance in cylindrical liquid columns perturbed by axial, sinusoidal vibration of one end face are also reported. All tests were carried out under isothermal conditions with water and silicone fluids of various viscosities. A technique for the quantitative measurement of stream velocity within a floating, isothermal, liquid column confined between rotatable disks was developed. In the measurement, small, light scattering particles were used as streamline markers in common arrangement, but the capability of the measurement was extended by use of stereopair photography system to provide quantitative data. Results of velocity measurements made under a few selected conditions, which established the precision and accuracy of the technique, are given. The general qualitative features of the isothermal flow patterns under various conditions of end face rotation resulting from both still photography and motion pictures are presented.

  16. Disk-based compression of data from genome sequencing.

    PubMed

    Grabowski, Szymon; Deorowicz, Sebastian; Roguski, Łukasz

    2015-05-01

    High-coverage sequencing data have significant, yet hard to exploit, redundancy. Most FASTQ compressors cannot efficiently compress the DNA stream of large datasets, since the redundancy between overlapping reads cannot be easily captured in the (relatively small) main memory. More interesting solutions for this problem are disk based, where the better of these two, from Cox et al. (2012), is based on the Burrows-Wheeler transform (BWT) and achieves 0.518 bits per base for a 134.0 Gbp human genome sequencing collection with almost 45-fold coverage. We propose overlapping reads compression with minimizers, a compression algorithm dedicated to sequencing reads (DNA only). Our method makes use of a conceptually simple and easily parallelizable idea of minimizers, to obtain 0.317 bits per base as the compression ratio, allowing to fit the 134.0 Gbp dataset into only 5.31 GB of space. http://sun.aei.polsl.pl/orcom under a free license. sebastian.deorowicz@polsl.pl Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Galaxy Mass Assembly with VLT & HST and lessons for E-ELT/MOSAIC

    NASA Astrophysics Data System (ADS)

    Hammer, François; Flores, Hector; Puech, Mathieu

    2015-02-01

    The fraction of distant disks and mergers is still debated, while 3D-spectroscopy is revolutionizing the field. However its limited spatial resolution imposes a complimentary HST imagery and a robust analysis procedure. When applied to observations of IMAGES galaxies at z = 0.4-0.8, it reveals that half of the spiral progenitors were in a merger phase, 6 billion year ago. The excellent correspondence between methodologically-based classifications of morphologies and kinematics definitively probes a violent origin of disk galaxies as proposed by Hammer et al. (2005). Examination of nearby galaxy outskirts reveals fossil imprints of such ancient merger events, under the form of well organized stellar streams. Perhaps our neighbor, M31, is the best illustration of an ancient merger, which modeling in 2010 leads to predict the gigantic plane of satellites discovered by Ibata et al. (2013). There are still a lot of discoveries to be done until the ELT era, which will open an avenue for detailed and accurate 3D-spectroscopy of galaxies from the earliest epochs to the present.

  18. Multichannel Networked Phasemeter Readout and Analysis

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    Netmeter software reads a data stream from up to 250 networked phasemeters, synchronizes the data, saves the reduced data to disk (after applying a low-pass filter), and provides a Web server interface for remote control. Unlike older phasemeter software that requires a special, real-time operating system, this program can run on any general-purpose computer. It needs about five percent of the CPU (central processing unit) to process 20 channels because it adds built-in data logging and network-based GUIs (graphical user interfaces) that are implemented in Scalable Vector Graphics (SVG). Netmeter runs on Linux and Windows. It displays the instantaneous displacements measured by several phasemeters at a user-selectable rate, up to 1 kHz. The program monitors the measure and reference channel frequencies. For ease of use, levels of status in Netmeter are color coded: green for normal operation, yellow for network errors, and red for optical misalignment problems. Netmeter includes user-selectable filters up to 4 k samples, and user-selectable averaging windows (after filtering). Before filtering, the program saves raw data to disk using a burst-write technique.

  19. Abundances of neutron-capture elements in stars of the Galactic disk substructures

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Pignatari, M.; Korotin, S. A.; Soubiran, C.; Charbonnel, C.; Thielemann, F.-K.; Gorbaneva, T. I.; Basak, N. Yu.

    2013-04-01

    Aims: The aim of this work is to present and discuss the observations of the iron peak (Fe, Ni) and neutron-capture element (Y, Zr, Ba, La, Ce, Nd, Sm, and Eu) abundances for 276 FGK dwarfs, located in the Galactic disk with metallicity -1 < [Fe/H] < +0.3. Methods: Atmospheric parameters and chemical composition of the studied stars were determined from an high resolution, high signal-to-noise echelle spectra obtained with the echelle spectrograph ELODIE at the Observatoire de Haute-Provence (France). Effective temperatures were estimated by the line depth ratio method and from the Hα line-wing fitting. Surface gravities (log g) were determined by parallaxes and the ionization balance of iron. Abundance determinations were carried out using the LTE approach, taking the hyperfine structure for Eu into account, and the abundance of Ba was computed under the NLTE approximation. Results: We are able to assign most of the stars in our sample to the substructures of the Galaxy thick disk, thin disk, or Hercules stream according to their kinematics. The classification of 27 stars is uncertain. For most of the stars in the sample, the abundances of neutron-capture elements have not been measured earlier. For all of them, we provide the chemical composition and discuss the contribution from different nucleosynthesis processes. Conclusions: The [Ni/Fe] ratio shows a flat value close to the solar one for the whole metallicity range, with a small scatter, pointing to a nearly solar Ni/Fe ratio for the ejecta of both core-collapse SN and SNIa. The increase in the [Ni/Fe] for metallicity higher than solar is confirmed, and it is due to the metallicity dependence of 56Ni ejecta from SNIa. Under large uncertainty in the age determination of observed stars, we verified that there is a large dispersion in the AMR in the thin disk, and no clear trend as in the thick disk. That may be one of the main reasons for the dispersion, observed for the s-process elements in the thin disk (e.g., Ba and La), whereas much narrower dispersion can be seen for r-process elements (e.g., Eu). Within the current uncertainties, we do not see a clear decreasing trend of [Ba/Fe] or [La/Fe] with metallicity in the thin disk, except maybe for super-solar metallicities. We cannot confirm an increase in the mentioned ratios with decreasing stellar age. Based on spectra collected with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute Provence (France).Tables 4 and 5 are only available at the CDS via anonymous ftp to ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A128

  20. The PAndAS Field of Streams: Stellar Structures in the Milky Way Halo toward Andromeda and Triangulum

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Rich, R. Michael; Collins, Michelle L. M.; Fardal, Mark A.; Irwin, Michael J.; Lewis, Geraint F.; McConnachie, Alan W.; Babul, Arif; Bate, Nicholas F.; Chapman, Scott C.; Conn, Anthony R.; Crnojević, Denija; Ferguson, Annette M. N.; Mackey, A. Dougal; Navarro, Julio F.; Peñarrubia, Jorge; Tanvir, Nial T.; Valls-Gabaud, David

    2014-05-01

    We reveal the highly structured nature of the Milky Way (MW) stellar halo within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS) photometric survey from blue main sequence (MS) and MS turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ~5-30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of Σ V ~ 32-32.5 mag arcsec-2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the MW halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km s-1 at the 90% confidence level. Along with the width of the stream (300-650 pc), its dynamics point to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the MW stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.

  1. The PAndAS field of streams: Stellar structures in the milky way halo toward Andromeda and Triangulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Rich, R. Michael

    We reveal the highly structured nature of the Milky Way (MW) stellar halo within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS) photometric survey from blue main sequence (MS) and MS turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ∼5-30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ∼17more » kpc. With a surface brightness of Σ {sub V} ∼ 32-32.5 mag arcsec{sup –2}, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the MW halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km s{sup –1} at the 90% confidence level. Along with the width of the stream (300-650 pc), its dynamics point to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the MW stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.« less

  2. HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31

    NASA Technical Reports Server (NTRS)

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.

    2010-01-01

    We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  3. Visual motion disambiguation by a subliminal sound.

    PubMed

    Dufour, Andre; Touzalin, Pascale; Moessinger, Michèle; Brochard, Renaud; Després, Olivier

    2008-09-01

    There is growing interest in the effect of sound on visual motion perception. One model involves the illusion created when two identical objects moving towards each other on a two-dimensional visual display can be seen to either bounce off or stream through each other. Previous studies show that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, no reports to date provide sufficient evidence to indicate whether the sound bounce-inducing effect is due to a perceptual binding process or merely to an explicit inference resulting from the transient auditory stimulus resembling a physical collision of two objects. In the present study, we used a novel experimental design in which a subliminal sound was presented either 150 ms before, at, or 150 ms after the moment of coincidence of two disks moving towards each other. The results showed that there was an increased perception of bouncing (rather than streaming) when the subliminal sound was presented at or 150 ms after the moment of coincidence compared to when no sound was presented. These findings provide the first empirical demonstration that activation of the human auditory system without reaching consciousness affects the perception of an ambiguous visual motion display.

  4. Development of an HL7 interface engine, based on tree structure and streaming algorithm, for large-size messages which include image data.

    PubMed

    Um, Ki Sung; Kwak, Yun Sik; Cho, Hune; Kim, Il Kon

    2005-11-01

    A basic assumption of Health Level Seven (HL7) protocol is 'No limitation of message length'. However, most existing commercial HL7 interface engines do limit message length because they use the string array method, which is run in the main memory for the HL7 message parsing process. Specifically, messages with image and multi-media data create a long string array and thus cause the computer system to raise critical and fatal problem. Consequently, HL7 messages cannot handle the image and multi-media data necessary in modern medical records. This study aims to solve this problem with the 'streaming algorithm' method. This new method for HL7 message parsing applies the character-stream object which process character by character between the main memory and hard disk device with the consequence that the processing load on main memory could be alleviated. The main functions of this new engine are generating, parsing, validating, browsing, sending, and receiving HL7 messages. Also, the engine can parse and generate XML-formatted HL7 messages. This new HL7 engine successfully exchanged HL7 messages with 10 megabyte size images and discharge summary information between two university hospitals.

  5. Water resources of the Red Lake Indian Reservation, northwestern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1991-01-01

    The quality of ground water is suitable for drinking and other household uses, and the quality of the surface water generally meets U.S. Environmental Protection Agency criteria necessary for the maintenance of aquatic life. The major ions in both ground and surface water are calcium, magnesium, and bicarbonate. Lower and Upper Red Lakes are eutrophic to mesotrophic on the basis of their summer Secchi disk-transparency readings, which ranged from 2.6 to 8.2 feet. The concentration of total organic carbon in samples from Lower and Upper Red Lakes and four streams were below or, in the case of one stream, about equal to 30 milligrams per liter, which is indicative of water little affected by human activities. The sample with the highest organic carbon content was collected from a stream that drained peatlands, which were probably sources of organic matter in the runoff. The concentration of nitrite plus nitrate in samples collected from Lower and Upper Red Lakes in late summer was below 0.01 milligrams per liter, which is characteristic of water uncontaminated by animal wastes. Total phosphorus in these samples ranged from 0.01 to 0.02 milligrams per liter. Most of this phosphorus was in the particulate organic fraction because of the abundance of phytoplankton.

  6. The importance of dynamic stall in aerodynamic modeling of the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    The CAARDEX program is defined for analyzing the behavior of Darrieus wind turbines in terms of the Reynolds number, the geometrical characteristics of the wind turbine and the spreading of the stream tubes traversing the rotor volume. It is demonstrated that the maximum power conversion efficiency of the Darrieus rotor is 0.4, with the energy capture being divided at a 4:1 ratio upstream to downstream rotor. The model shows that the velocity induced on the rotor is a function of the specific velocity and solidity, and that previous stream tube theories are valid only at low values of these parameters. CARDAAX treats the rotor disk in terms of horizontal slices of stream tubes modeled separately for the upstream and downstream segments. Account is taken of the velocity profile in the atmospheric boundary layer, which can vary significantly in the case of large wind turbines, i.e., several hundred feet high. When applied to predicting the performance of a 1 kW, 2.6 m diam prototype Darrieus wind turbine in a 10 mps flow, fair agreement is obtained for power capture/wind velocity and cyclic aerodynamic forces. Additional flow visualization data is provided to illustrate the production of turbulence in the form of vortices shed between the blades.

  7. EX Hydrae in outburst

    NASA Technical Reports Server (NTRS)

    Hellier, C.; Mason, K. O.; Smale, A. P.; Corbet, R. H. D.; O'Donoghue, D.

    1989-01-01

    Photometry and red spectroscopy of the intermediate polar EX Hya in its rare outburst state are presented. Photometry during the declining phase of the July-August 1986 outburst shows the 67-min (spin) modulation to be present with similar characteristics to that in quiescence. In contrast, photometry from near the peak of the 1987 May outburst shows little evidence of the 67-min modulation, while spectroscopy obtained nearly simultaneously is similarly lacking in such evidence, despite its presence in quiescent spectroscopic data. Near the beginning of the May 1987 outburst the H alpha emission line develops a broad, high velocity base component whose velocity is modulated with the orbital cycle. The velocity and phase of the broad base component suggest that it is produced near the magnetosphere of the white dwarf at a point along the projected trajectory of the gas stream from the companion. The feature disappears later in the outburst and is not present during quiescence. It is suggested that the outbursts in EX Hya are caused by an increase in the rate of mass transfer from the companion, and that part of this enhanced mass-transfer stream skims over the top of the accretion disk to strike the magnetosphere directly. The interaction of the stream with the magnetosphere gives rise to the broad-base component observed.

  8. Galactic disk dynamical tracers: Open clusters and the local Milky Way rotation curve and velocity field

    NASA Astrophysics Data System (ADS)

    Frinchaboy, Peter Michael, III

    Establishing the rotation curve of the Milky Way is one of the fundamental contributions needed to understand the Galaxy and its mass distribution. We have undertaken a systematic spectroscopic survey of open star clusters which can serve as tracers of Galactic disk dynamics. We report on our initial sample of 67 clusters for which the Hydra multi-fiber spectrographs on the WIYN and Blanco telescopes have delivered ~1-2 km s -1 radial velocities (RVs) of many dozens of stars in the fields of each cluster, which are used to derive cluster membership and bulk cluster kinematics when combined with Tycho-2 proper motions. The clusters selected for study have a broad spatial distribution in order to be sensitive to the disk velocity field in all Galactic quadrants and across a Galactocentric radius range as much as 3.0 kpc from the solar circle. Through analysis of the cluster sample, we find (1) the rotation velocity of the Local Standard of Rest (LSR) is [Special characters omitted.] km s -1 , (2 ) the local rotation curve is declining with radius having a slope of -9.1 km s -1 kpc -1 , (3) we find (using R 0 = 8.5 kpc) the following Galactic parameters: A = 17.0 km s -1 kpc -1 and B = -8.9 km s -1 kpc -1 , which using a flat rotation curve and our determined values for the rotation velocity of the LSR yields a Galaxy mass within 1.5 R 0 of M = 1.4 ± 0.2 × 10 11 [Spe cial characters omitted.] and a M/L of 9 [Special characters omitted.] . We also explore the distribution of the local velocity field and find evidence for non- circular motion due to the spiral arms. Additionally, a number of outer disk ( R gc > 12 kpc) open clusters, including Be29 and Sa1, are studied that have potentially critical leverage on radial, age and metallicity gradients in the outer Galactic disk. We find that the measured kinematics of Sa1 and Be29 are consistent with being associated with the Galactic anticenter stellar structure (GASS; or Monoceros stream), which points to a possible "accretion" origin for these and possibly other outer disk open clusters, if one believes that GASS represents an accreting dwarf galaxy system.

  9. Thermal, chemical, and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was about 30 m. No long-term changes in the Secchi disk clarity were observed. Average turbidity of the water column (2-550 m) between June and September from 1991 to 2000 as measured by a transmissometer ranged between 88.8% and 90.7%. The depth of 1% of the incident solar radiation during thermal stratification varied annually between 80 m and 100 m. Both of these measurements provided additional evidence about the exceptional clarity of Crater Lake. ?? 2007 Springer Science+Business Media B.V.

  10. Using the Properties of Broad Absorption Line Quasars to Illuminate Quasar Structure

    NASA Astrophysics Data System (ADS)

    Yong, Suk Yee; King, Anthea L.; Webster, Rachel L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen

    2018-06-01

    A key to understanding quasar unification paradigms is the emission properties of broad absorption line quasars (BALQs). The fact that only a small fraction of quasar spectra exhibit deep absorption troughs blueward of the broad permitted emission lines provides a crucial clue to the structure of quasar emitting regions. To learn whether it is possible to discriminate between the BALQ and non-BALQ populations given the observed spectral properties of a quasar, we employ two approaches: one based on statistical methods and the other supervised machine learning classification, applied to quasar samples from the Sloan Digital Sky Survey. The features explored include continuum and emission line properties, in particular the absolute magnitude, redshift, spectral index, line width, asymmetry, strength, and relative velocity offsets of high-ionisation C IV λ1549 and low-ionisation Mg II λ2798 lines. We consider a complete population of quasars, and assume that the statistical distributions of properties represent all angles where the quasar is viewed without obscuration. The distributions of the BALQ and non-BALQ sample properties show few significant differences. None of the observed continuum and emission line features are capable of differentiating between the two samples. Most published narrow disk-wind models are inconsistent with these observations, and an alternative disk-wind model is proposed. The key feature of the proposed model is a disk-wind filling a wide opening angle with multiple radial streams of dense clumps.

  11. X-Ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Cenko, S. B.; Arcavi, I.

    2017-12-01

    We present late-time observations by Swift and XMM-Newton of the tidal disruption event (TDE) ASASSN-15oi that reveal that the source brightened in the X-rays by a factor of ∼10 one year after its discovery, while it faded in the UV/optical by a factor of ∼100. The XMM-Newton observations measure a soft X-ray blackbody component with {{kT}}{bb}∼ 45 {eV}, corresponding to radiation from several gravitational radii of a central ∼ {10}6 {M}ȯ black hole. The last Swift epoch taken almost 600 days after discovery shows that the X-ray source has faded back to its levels during the UV/optical peak. The timescale of the X-ray brightening suggests that the X-ray emission could be coming from delayed accretion through a newly forming debris disk and that the prompt UV/optical emission is from the prior circularization of the disk through stream–stream collisions. The lack of spectral evolution during the X-ray brightening disfavors ionization breakout of a TDE “veiled” by obscuring material. This is the first time a TDE has been shown to have a delayed peak in soft X-rays relative to the UV/optical peak, which may be the first clear signature of the real-time assembly of a nascent accretion disk, and provides strong evidence for the origin of the UV/optical emission from circularization, as opposed to reprocessed emission of accretion radiation.

  12. Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, Wayne G.

    2013-10-01

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  13. THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Jacob B., E-mail: jbsimon.astro@gmail.com

    2016-08-20

    Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura and Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α , and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving formore » the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.« less

  14. RUNAWAY M DWARF CANDIDATES FROM THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favia, Andrej; West, Andrew A.; Theissen, Christopher A., E-mail: andrej.favia@umit.maine.edu

    2015-11-01

    We present a sample of 20 runaway M dwarf candidates (RdMs) within 1 kpc of the Sun whose Galactocentric (GC) velocities exceed 400 km s{sup −1}. The candidates were selected from the Sloan Digital Sky Survey (SDSS) DR7 M Dwarf Catalog of West et al. Our RdMs have SDSS+USNO-B proper motions that are consistent with those recorded in the PPMXL, LSPM, and combined Wide-field Infrared Survey Explorer +SDSS+Two-micron All-sky Survey catalogs. Sixteen RdMs are classified as dwarfs, while the remaining four RdMs are subdwarfs. We model the Galactic potential using a bulge-disk-halo profile. Our fastest RdM, with a GC velocitymore » of 658.5 ± 236.9 km s{sup −1}, is a possible hypervelocity candidate, as it is unbound in 77% of our simulations. About half of our RdMs have kinematics that are consistent with ejection from the Galactic center. Seven of our RdMs have kinematics consistent with an ejection scenario from M31 or M32 to within 2 σ , although our distance-limited survey makes such a realization unlikely. No more than four of our RdMs may have originated from the Leo stream. We propose that to within measurement errors, most of our bound RdMs are likely disk runaways or halo objects, and may have been accelerated through a series of multi-body interactions within the Galactic disk or possibly supernovae explosions.« less

  15. Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)

    NASA Technical Reports Server (NTRS)

    Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.

    1994-01-01

    Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (T(sub eff) approximately 7000 K) outer edge and the hot (T(sub eff) approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 10(exp 18) sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 10(exp 19) sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10(exp -8) solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.

  16. Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)

    NASA Astrophysics Data System (ADS)

    Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.

    1994-03-01

    Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (Teff approximately 7000 K) outer edge and the hot (Teff approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 1018 sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 1019 sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10-8 solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.

  17. Closeup View of Compacted Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Soil on Mars can be a bit clumpy, as shown in this image of soil after it was compacted by one of the wheels of NASA's Mars Exploration Rover Spirit. Scientists think the light-colored material may be a global layer of airfall dust. Spirit's microscopic imager took this picture, showing an area approximately 3 centimeters (1.2 inches) square, during the rover's 314th martian day, or sol (Nov. 19, 2004).

  18. The connection between the peaks in velocity dispersion and star-forming clumps of turbulent galaxies

    NASA Astrophysics Data System (ADS)

    Oliva-Altamirano, P.; Fisher, D. B.; Glazebrook, K.; Wisnioski, E.; Bekiaris, G.; Bassett, R.; Obreschkow, D.; Abraham, R.

    2018-02-01

    We present Keck/OSIRIS adaptive optics observations with 150-400 pc spatial sampling of 7 turbulent, clumpy disc galaxies from the DYNAMO sample ($0.07

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronke, M.; Dijkstra, M., E-mail: maxbg@astro.uio.no

    We perform Lyman- α (Ly α ) Monte-Carlo radiative transfer calculations on a suite of 2500 models of multiphase, outflowing media, which are characterized by 14 parameters. We focus on the Ly α spectra emerging from these media and investigate which properties are dominant in shaping the emerging Ly α profile. Multiphase models give rise to a wide variety of emerging spectra, including single-, double-, and triple-peaked spectra. We find that the dominant parameters in shaping the spectra include (i) the cloud covering factor, f {sub c} , which is in agreement with earlier studies, and (ii) the temperature andmore » number density of residual H i in the hot ionized medium. We attempt to reproduce spectra emerging from multiphase models with “shell models” which are commonly used to fit observed Ly α spectra, and investigate the connection between shell-model parameters and the physical parameters of the clumpy media. In shell models, the neutral hydrogen content of the shell is one of the key parameters controlling Ly α radiative transfer. Because Ly α spectra emerging from multiphase media depend much less on the neutral hydrogen content of the clumps, the shell-model parameters such as H i column density (but also shell velocity and dust content) are generally not well matched to the associated physical parameters of the clumpy media.« less

  20. The Cheetah data management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, P.F.; Word, G.B.

    1992-09-01

    Cheetah is a data management system based on the C programming language, with support for other languages. Its main goal is to transfer data between memory and I/O steams in a general way. The streams are either associated with disk files or are network data stems. Cheetah provides optional convenience functions to assist in the management of C structures. Cheetah steams are self-describing so that general purpose applications can fully understand an incoming steam. This information can be used to display the data in an incoming steam to the user of an interactive general application, complete with variable names andmore » optional comments.« less

  1. HST eclipse mapping of dwarf nova OY Carinae in quiescence: An 'Fe II curtain' with Mach approx. = 6 velocity dispersion veils the white dwarf

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry

    1994-01-01

    Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.

  2. Stellar Death by Black Hole: How Tidal Disruption Events Unveil the High Energy Universe

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric Robert

    2017-08-01

    When a star comes very close to a supermassive black hole, the tidal field of the hole can be strong enough to deform and stretch the star into a stream of debris. Half of this stellar debris stream returns to the black hole and forms an accretion disk, briefly lighting up the black hole and, in the most extreme cases, launching relativistic jets. These ``tidal disruption events,'' from the initial stellar destruction to the eventual jet production, are the focus of my thesis, and during this talk I will describe some of the theoretical advances we have made in understanding them. I will also discuss more recent work that shows how this relatively simple picture can be more complicated when the disrupting black hole is part of a binary system. Despite the added complexity, I will argue that there is a timescale over which one expects to see variation in the luminosity of a tidal disruption event from a binary supermassive black hole system. Using these predictions and a set of simulations, I will motivate such an interpretation for the superluminous supernova ASASSN-15lh.

  3. Development of a fast framing detector for electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Ian J.; Bustillo, Karen C.; Ciston, Jim

    2016-10-01

    A high frame rate detector system is described that enables fast real-time data analysis of scanning diffraction experiments in scanning transmission electron microscopy (STEM). This is an end-to-end development that encompasses the data producing detector, data transportation, and real-time processing of data. The detector will consist of a central pixel sensor that is surrounded by annular silicon diodes. Both components of the detector system will synchronously capture data at almost 100 kHz frame rate, which produces an approximately 400 Gb/s data stream. Low-level preprocessing will be implemented in firmware before the data is streamed from the National Center for Electronmore » Microscopy (NCEM) to the National Energy Research Scientific Computing Center (NERSC). Live data processing, before it lands on disk, will happen on the Cori supercomputer and aims to present scientists with prompt experimental feedback. This online analysis will provide rough information of the sample that can be utilized for sample alignment, sample monitoring and verification that the experiment is set up correctly. Only a compressed version of the relevant data is then selected for more in-depth processing.« less

  4. Turbomachine Sealing and Secondary Flows - Part 3. Part 3; Review of Power-Stream Support, Unsteady Flow Systems, Seal and Disk Cavity Flows, Engine Externals, and Life and Reliability Issues

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Steinetz, B. M.; Zaretsky, E. V.; Athavale, M. M.; Przekwas, A. J.

    2004-01-01

    The issues and components supporting the engine power stream are reviewed. It is essential that companies pay close attention to engine sealing issues, particularly on the high-pressure spool or high-pressure pumps. Small changes in these systems are reflected throughout the entire engine. Although cavity, platform, and tip sealing are complex and have a significant effect on component and engine performance, computational tools (e.g., NASA-developed INDSEAL, SCISEAL, and ADPAC) are available to help guide the designer and the experimenter. Gas turbine engine and rocket engine externals must all function efficiently with a high degree of reliability in order for the engine to run but often receive little attention until they malfunction. Within the open literature statistically significant data for critical engine components are virtually nonexistent; the classic approach is deterministic. Studies show that variations with loading can have a significant effect on component performance and life. Without validation data they are just studies. These variations and deficits in statistical databases require immediate attention.

  5. The Canada-France Imaging Survey: First Results from the u-Band Component

    NASA Astrophysics Data System (ADS)

    Ibata, Rodrigo A.; McConnachie, Alan; Cuillandre, Jean-Charles; Fantin, Nicholas; Haywood, Misha; Martin, Nicolas F.; Bergeron, Pierre; Beckmann, Volker; Bernard, Edouard; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond; Côté, Patrick; Cabanac, Rémi; Chapman, Scott; Duc, Pierre-Alain; Durret, Florence; Famaey, Benoît; Fabbro, Sébastien; Gwyn, Stephen; Hammer, Francois; Hill, Vanessa; Hudson, Michael J.; Lançon, Ariane; Lewis, Geraint; Malhan, Khyati; di Matteo, Paola; McCracken, Henry; Mei, Simona; Mellier, Yannick; Navarro, Julio; Pires, Sandrine; Pritchet, Chris; Reylé, Celine; Richer, Harvey; Robin, Annie C.; Sánchez-Janssen, Rubén; Sawicki, Marcin; Scott, Douglas; Scottez, Vivien; Spekkens, Kristine; Starkenburg, Else; Thomas, Guillaume; Venn, Kim

    2017-10-01

    The Canada-France Imaging Survey (CFIS) will map the northern high Galactic latitude sky in the u-band ("CFIS-u," 10,000 °2) and in the r-band ("CFIS-r," 5000 °2), enabling a host of stand-alone science investigations, and providing some of the ground-based data necessary for photometric redshift determination for the Euclid mission. In this first contribution, we present the u-band component of the survey, describe the observational strategy, and discuss some first highlight results, based on approximately one-third of the final area. We show that the Galactic anticenter structure is distributed continuously along the line of sight, out to beyond 20 kpc, and possesses a metallicity distribution that is essentially identical to that of the outer disk sampled by APOGEE. This suggests that it is probably a buckled disk of old metal-rich stars, rather than a stream or a flare. We also discuss the future potential for CFIS-u in discovering star-forming dwarf galaxies around the Local Group, the characterization of the white dwarf and blue straggler population of the Milky Way, as well as its sensitivity to low surface brightness structures in external galaxies.

  6. The Story of UGC 11919: An Unusual Spiral Galaxy Possibly Having a Warp and Peculiarly Low Mass-to-Light Ratio

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.; Józsa, G. I. G.; Zasov, A. V.; Bizyaev, D. V.; Uklein, R. I.

    2014-05-01

    We present the results of a multi-wavelength study of the spiral galaxy UGC 11919 to verify that the galaxy has a peculiarly low dynamical mass-to-light ratio (M/LB) and to study its kinematical structure in general. We obtained an H I data cube of UGC 11919 with the Westerbork Synthesis Radio Telescope parallel with photometric observations with the Apache Point 0.5-m telescope. Two complementary models of the H I data cube provide a reasonable fit to the data: a model representing a symmetric S-shaped warp and a flat disc model with the deviations from axial symmetry caused by noncircular or bar streaming motions. In both cases UGC 11919 appears to have a disk of unusually low dynamical mass-to-light ratio in spite of its red color and a dark halo of moderate mass. A bottom-light stellar initial mass function could explain the results. Stellar kinematic profiles derived from long-slit observations, with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, show a signature of kinematically decoupled nuclear disk in the galaxy.

  7. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    PubMed

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  8. Dust Coagulation Regulated by Turbulent Clustering in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ishihara, Takashi; Kobayashi, Naoki; Enohata, Kei; Umemura, Masayuki; Shiraishi, Kenji

    2018-02-01

    The coagulation of dust particles is a key process in planetesimal formation. However, the radial drift and bouncing barriers are not completely resolved, especially for silicate dust. Since the collision velocities of dust particles are regulated by turbulence in a protoplanetary disk, turbulent clustering should be properly treated. To that end, direct numerical simulations (DNSs) of the Navier–Stokes equations are requisite. In a series of papers, Pan & Padoan used a DNS with Reynolds number Re ∼ 1000. Here, we perform DNSs with up to Re = 16,100, which allow us to track the motion of particles with Stokes numbers of 0.01 ≲ St ≲ 0.2 in the inertial range. Through the DNSs, we confirm that the rms relative velocity of particle pairs is smaller by more than a factor of two, compared to that by Ormel & Cuzzi. The distributions of the radial relative velocities are highly non-Gaussian. The results are almost consistent with those by Pan & Padoan or Pan et al. at low Re. Also, we find that the sticking rates for equal-sized particles are much higher than those for different-sized particles. Even in the strong-turbulence case with α-viscosity of 10‑2, the sticking rates are as high as ≳50% and the bouncing probabilities are as low as ∼10% for equal-sized particles of St ≲ 0.01. Thus, turbulent clustering plays a significant role in the growth of centimeter-sized compact aggregates (pebbles) and also enhances the solid abundance, which may lead to the streaming instability in a disk.

  9. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in themore » freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.« less

  10. THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, David V.; Jenkins, Edward B.; Chelouche, Doron

    We present Hubble Space Telescope far-UV spectra of four QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of ρ = 48–165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Ly α absorption is detected along all sightlines and Si iii λ 1206 is found along the three sightlines with the smallest ρ ; metalmore » lines of C ii, Si ii, and Si iv are only found with certainty toward the innermost sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H i disk, which is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption toward the innermost sightline may arise either from a small-scale outflow or from tidal debris associated with the minor merger that gives rise to the well known “dog-leg” stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a “typical” absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way toward explaining the wide range of these values seen in higher- z studies.« less

  11. Wide- and contact-binary formation in substructured young stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  12. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares.

    PubMed

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-21

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  13. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    PubMed Central

    Hayasaki, Kimitake; Loeb, Abraham

    2016-01-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade. PMID:27767188

  14. Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Fujita, Y.; Nakamura, M.; Orienti, M.; Kino, M.; Asada, K.; Giovannini, G.

    2017-11-01

    We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 105 rad m-2 and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 104 cm-3. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.

  15. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    NASA Astrophysics Data System (ADS)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  16. THE DIFFERENCES IN THE TORUS GEOMETRY BETWEEN HIDDEN AND NON-HIDDEN BROAD LINE ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichikawa, Kohei; Ueda, Yoshihiro; Packham, Christopher

    2015-04-20

    We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGNs) with clumpy torus models. We compiled high spatial resolution (∼0.3–0.7 arcsec) mid-IR (MIR) N-band spectroscopy, Q-band imaging, and nuclear near- and MIR photometry from the literature. Combining these nuclear near- and MIR observations, far-IR photometry, and clumpy torus models enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties: type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any publishedmore » HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGNs have smaller torus opening angles and larger covering factors than HBLR AGNs. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGNs.« less

  17. AN OCCULTATION EVENT IN CENTAURUS A AND THE CLUMPY TORUS MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu

    2011-12-15

    We have analyzed 16 months of sustained monitoring observations of Centaurus A from the Rossi X-Ray Timing Explorer to search for changes in the absorbing column in the line of sight to the central nucleus. We present time-resolved spectroscopy which indicates that a discrete clump of material transited the line of sight to the central illuminating source over the course of {approx}170 days between 2010 August and 2011 February with a maximum increase in the column density of about 8.4 Multiplication-Sign 10{sup 22} cm{sup -2}. This is the best quality data of such an event that has ever been analyzedmore » with the shape of the ingress and egress clearly seen. Modeling the clump of material as roughly spherical with a linearly decreasing density profile and assuming a distance from the central nucleus commensurate with the dusty torus, we found that the clump would have a diameter of (1.4-2.4) Multiplication-Sign 10{sup 15} cm with a central number density of n{sub H} = (1.8-3.0) Multiplication-Sign 10{sup 7} cm{sup -3}. This is consistent with previous results for a similar (though possibly much longer) occultation event inferred in this source in 2003-2004 and supports models of the molecular torus as a clumpy medium.« less

  18. THE MAGELLANIC STREAM: BREAK-UP AND ACCRETION ONTO THE HOT GALACTIC CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepper-García, Thor; Bland-Hawthorn, Joss; Sutherland, Ralph S.

    The Magellanic H i Stream (≈2 × 10{sup 9} M{sub ⊙} [d/55 kpc]{sup 2}) encircling the Galaxy at a distance d is arguably the most important tracer of what happens to gas accreting onto a disk galaxy. Recent observations reveal that the Stream’s mass is in fact dominated (3:1) by its ionized component. Here we revisit the origin of the mysterious Hα recombination emission observed along much of its length that is overly bright (∼150–200 mR) for the known Galactic ultraviolet (UV) background (≈20–40 mR [d/55 kpc]{sup −2}). In an earlier model, we proposed that a slow shock cascade wasmore » operating along the Stream due to its interaction with the extended Galactic hot corona. We find that for a smooth coronal density profile, this model can explain the bright Hα emission if the coronal density satisfies 2 × 10{sup −4} < (n/cm{sup −3}) < 4 × 10{sup −4} at d = 55 kpc. But in view of updated parameters for the Galactic halo and mounting evidence that most of the Stream must lie far beyond the Magellanic Clouds (d > 55 kpc), we revisit the shock cascade model in detail. At lower densities, the H i gas is broken down by the shock cascade but mostly mixes with the hot corona without significant recombination. At higher densities, the hot coronal mass (including the other baryonic components) exceeds the baryon budget of the Galaxy. If the Hα emission arises from the shock cascade, the upper limit on the smooth coronal density constrains the Stream’s mean distance to ≲75 kpc. If, as some models indicate, the Stream is even further out, either the shock cascade is operating in a regime where the corona is substantially mass-loaded with recent gas debris, or an entirely different ionization mechanism is responsible.« less

  19. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis.

    PubMed

    Beum, Paul V; Lindorfer, Margaret A; Beurskens, Frank; Stukenberg, P Todd; Lokhorst, Henk M; Pawluczkowycz, Andrew W; Parren, Paul W H I; van de Winkel, Jan G J; Taylor, Ronald P

    2008-07-01

    Binding of the CD20 mAb rituximab (RTX) to B lymphocytes in normal human serum (NHS) activates complement (C) and promotes C3b deposition on or in close proximity to cell-bound RTX. Based on spinning disk confocal microscopy analyses, we report the first real-time visualization of C3b deposition and C-mediated killing of RTX-opsonized B cells. C activation by RTX-opsonized Daudi B cells induces rapid membrane blebbing and generation of long, thin structures protruding from cell surfaces, which we call streamers. Ofatumumab, a unique mAb that targets a distinct binding site (the small loop epitope) of the CD20 Ag, induces more rapid killing and streaming on Daudi cells than RTX. In contrast to RTX, ofatumumab promotes streamer formation and killing of ARH77 cells and primary B cells from patients with chronic lymphocytic leukemia. Generation of streamers requires C activation; no streaming occurs in media, NHS-EDTA, or in sera depleted of C5 or C9. Streamers can be visualized in bright field by phase imaging, and fluorescence-staining patterns indicate they contain membrane lipids and polymerized actin. Streaming also occurs if cells are reacted in medium with bee venom melittin, which penetrates cells and forms membrane pores in a manner similar to the membrane-attack complex of C. Structures similar to streamers are demonstrable when Ab-opsonized sheep erythrocytes (non-nucleated cells) are reacted with NHS. Taken together, our findings indicate that the membrane-attack complex is a key mediator of streaming. Streamer formation may, thus, represent a membrane structural change that can occur shortly before complement-induced cell death.

  20. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.

    2017-06-01

    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. Conclusions: The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe, on average, a larger soft X-ray spectral component not observed in non-accreting stars.

  1. A new look at the kinematics of the bulge from an N-body model

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Di Matteo, P.; Stefanovitch, N.; Haywood, M.; Combes, F.; Katz, D.; Babusiaux, C.

    2016-05-01

    By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (I.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: b = -4°, -6°, -8°, and -10°, along the bulge minor axis as well as outside it, at l = ± 5° and l = ± 10°. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 km s-1, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, the most numerous, contribute predominantly to the X-shaped structure and present different kinematic characteristics. They display a rather symmetric velocity distribution and a smaller fraction of high-velocity stars. The stellar stream motion, which is induced by the bar changes with the star initial position, can reach more than 40 km s-1 for stars that originated in the external disk, depending on the observed direction. Otherwise it is smaller than approximately 20 km s-1. In all cases, it decreases from b = -4° to -10°. Our results may enable us to interpret the cold high-velocity peak observed in the APOGEE commissioning data, as well as the excess of high-velocity stars in the near and far arms of the X-shaped structure at l = 0° and b = -6°. When compared with real data, the kinematic picture becomes more complex due to the possible presence in the observed samples of classical bulge and/or thick disk stars. Overall, our results point to the existence of complex patterns and structures in the bulge velocity fields, which are generated by the bar. This suggests that caution should be used when interpreting the bulge kinematics: the presence of substructures, peaks and clumps in the velocity fields is not necessarily a sign of past accretion events.

  2. A geochemical atlas of North Carolina, USA

    USGS Publications Warehouse

    Reid, J.C.

    1993-01-01

    A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only very general indication of geochemical distribution patterns and should not be used for site specific studies. The atlas maps for each element were computer-generated at the state's geographic information system (Center for Geographic Information and Analysis [CGIA]). The Division of Statistics and Information Services provided input files. The maps in the atlas are point maps. Each sample is represented by a symbol generally corresponding to a quartile class. Other reports will transmit sample and analytical data for state regions. Data are tentatively planned to be available on disks in spreadsheet format for personal computers. During the second phase of this project, stream-sediment samples are being assigned to state geologic map unit names using a GIS system to determine background and anomaly values. Subsequent publications will make this geochemical data and accompanying interpretations available to a wide spectrum of interdisciplinary users. ?? 1993.

  3. Interstellar absorption of the extreme ultraviolet flux from two hot white dwarfs

    NASA Technical Reports Server (NTRS)

    Cash, W.; Bowyer, S.; Lampton, M.

    1979-01-01

    Photometric upper limits on the 300 A flux from the hot white dwarfs Feige 24 and G191-B2B are presented. The limits, which were obtained with a rocket-borne extreme ultraviolet imaging telescope, are interpreted as lower limits on the density of the intervening interstellar matter. The limits are used to investigate the state of interstellar gas within 100 pc. A local clumpiness factor, which is of value in planning future extreme ultraviolet observations, is derived.

  4. Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holwerda, B. W.; Bouwens, R.; Trenti, M.

    2014-06-10

    We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin{sup 2}) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r {sub 50}), a near-infrared J – H, G – J color region where M-dwarfs are found, and a V – J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selectionmore » of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m {sub F125W} < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z {sub 0} = 3-4 kpc) and later types M5 and above in the thin disk (z {sub 0} = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of high-redshift galaxies. The relative ubiquity of M-dwarfs however will make them ideal tracers of Galactic halo substructure with EUCLID and reference stars for James Webb Space Telescope observations.« less

  5. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, I.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  6. Cannibalization of Dwarf Galaxies by the Milky Way: Distance to the Leading Arm of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Antwi-Danso, Jacqueline; Barger, Kathleen; Haffner, L. Matthew

    2016-01-01

    Tidal interactions between two dwarf galaxies near the Milky Way, the Large and Small Magellanic Clouds, have caused large quantities of gas to be flung into the halo of the Milky Way. Much of this tidal debris, known as the Magellanic System, is currently headed towards the disk of the Milky Way, spearheaded by the Leading Arm, with the Bridge connecting the two dwarf galaxies, and the trailing Magellanic Stream at the end. Estimates for the amount of gas that the Magellanic System contains are in the range of (2 - 4) × 109 M⊙ and this could supply our Galaxy with (3.7 - 6.7) M⊙ yr-1 (Fox et al. 2014). Although this is higher than the present star-formation rate of the Galaxy, the position of the tidal debris predisposes it to ionizing radiation from the extragalactic background and Galactic disk, as well as ram-pressure stripping from the halo, hindering gas accretion. Some parts of the Leading Arm, however, appear to have already survived the trip to the disk as their morphology is indicative of interaction with the interstellar medium of the Galaxy. The exact amount of gas that this structure contains is uncertain because of weak constrains in its distance. In this study, we made seven pointed Hα observations using the Wisconsin Hα Mapper Telescope and then compared the Hα intensity we obtained to models of the anticipated ionizing flux from the Milky Way and extragalactic background. From this, we calculated the distance from the Sun to the Leading Arm of the Magellanic System at the locations of our observations.

  7. New Heating Mechanism of Asteroids in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, W. G.

    2013-10-01

    Heating of asteroids in the early solar system has been mainly attributed to two mechanisms: the decay of short-lived radionuclides and the unipolar induction mechanism originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, unipolar induction heating is the result of the dissipation of current inside the body driven by a “motional electric field”, which appears in the asteroid’s reference frame when it is immersed in a fully-ionized, magnetized T-Tauri solar wind. However we point out a subtle conceptual error in the way that the electric field is calculated. Strictly speaking, the motional electric field used by Sonett et al. is the electric field in the free-streaming plasma far from the asteroid. For realistic assumptions about the plasma density in protoplanetary disks, the interaction between the plasma and asteroid cause the formation of a shear layer, in which the motional electric field decreases and even vanishes at the asteroid surface. We reexamine and improve the induction heating mechanism by: (1) correcting this conceptual error by using non-ideal multifluid MHD to self consistently calculate the velocity, magnetic, and electric fields in and around the shear layer; and (2) considering more realistic environments and scenarios that are consistent with current theories about protoplanetary disks. We present solutions for two highly idealized flows, which demonstrate that the electric field inside the asteroid is actually produced by magnetic field gradients in the shear layer, and can either vanish or be comparable to the fields predicted by Sonett et al. depending on the flow geometry. We term this new mechanism “electrodynamic heating”, calculate its possible upper limits, and compare them to heating generated by the decay of short-lived radionuclides.

  8. Design of Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Young, R.; Plewa, T.

    2010-05-01

    In many Cataclysmic Binary systems, mass transfer via Roche lobe overflow onto an accretion disk occurs. This produces a hot spot from the heating created by the supersonic impact of the infalling flow with the rotating accretion disk, which can produce a radiative reverse shock in the infalling flow. This collision region has many ambiguities as a radiation hydrodynamic system. Depending upon conditions, it has been argued (Armitgae & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. Laboratory experiments have yet to produce colliding flows that create a radiative reverse shock or to produce obliquely incident colliding flows, both of which are aspects of these Binary systems. We have undertaken the design of such an experiment, aimed at the Omega-60 laser facility. The design elements include the production of postshock flows within a dense material layer or ejecta flows by release of material from a shocked layer. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. In this poster we will discuss the astrophysical context, the experimental design work we have done, and the challenges of implementing and diagnosing an actual experiment. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, by the National Laser User Facility Program in NNSA-DS and by the Predictive Sciences Academic Alliances Program in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo, E-mail: bovy@ias.edu

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetricmore » potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.« less

  10. Dynamics of Mass Transfer in Wide Symbiotic Systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, M.; Sasselov, D.

    2010-01-01

    We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.

  11. Experimental study of the effects of installation on singleand counter-rotation propeller noise

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1986-01-01

    Measurements which are required to define the directivity and the level of propeller noise were studied. The noise radiation pattern for various single-rotation (SR) propeller and counter-rotation (CR) propeller installations were mapped. The measurements covered + or - 60 deg from the propeller disk plane and + or - 60 deg in the cross-stream direction. Configurations examined included SR and CR propellers at angle of attack and an SR pusher installation. The increases in noise that arise from an unsteady loading operation such as an SR pusher or a CR exceeded 15 dB in the forward axial direction. Most of the additional noise radiates in the axial directions for unsteady loading operations of both the SR pusher and the CR tractor.

  12. Kinematic imprints from the bar and spiral structures in the galatic disk

    NASA Astrophysics Data System (ADS)

    Figueras, F.; Antoja, T.; Valenzuela, O.; Romero-Gómez, M.; Pichardo, B.; Moreno, E.

    2011-12-01

    At 140 years of the discovery of the moving groups, these stellar streams are emerging as powerful tools to constrain the models for the spiral arms and the Galactic bar in the Gaia era. From the kinematic-age-metallicity analysis in the solar neighbourhood it is now well established that some of these kinematic structures have a dynamical origin, different from the classical cluster disruption hypothesis. Test particle simulations allow us to definitively establish that these local structures can be created by the dynamical resonances of material spiral arms and not exclusively by the Galactic bar. First studies to evaluate the capabilities of the future Gaia data to detect and characterize moving groups at 2-6 kpc from the solar neighborhood are discussed.

  13. Dynamical instabilities in axisymmetric stellar systems. I - Oblate E6 models

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.; Duncan, Martin J.; Smith, Bruce F.

    1990-01-01

    The stability of a set of models based on isothermal oblate E6 elliptical galaxies is studied using N-body techniques. The only stable models are those that are near the isotropic model and have nearly equal number of stars in retrograde and prograde orbits. Fast rotators are unstable to modes that appear to be analogous to the classical streaming instability seen in many disk systems. Systems with a large velocity dispersion in the direction of the cylindrical radius are unstable to modes that appear to be similar to the radial orbit instability observed in some spherical systems. However, evidence is presented that these two instabilities may be related, and an instability criterion that applies to both is constructed.

  14. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  15. NMRPipe: a multidimensional spectral processing system based on UNIX pipes.

    PubMed

    Delaglio, F; Grzesiek, S; Vuister, G W; Zhu, G; Pfeifer, J; Bax, A

    1995-11-01

    The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

  16. Comparison of numerical results and multicavity purge and rim seal data with extensions to dynamics

    NASA Astrophysics Data System (ADS)

    Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.

    1995-05-01

    The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).

  17. Comparison of Numerical Results and Multicavity Purge and Rim Seal Data with Extensions to Dynamics

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.

    1995-01-01

    The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).

  18. Investigating the dusty torus of Seyfert galaxies using SOFIA/FORCAST photometry

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay; Lopez-Rodriguez, Enrique; Packham, Christopher C.; Ramos-Almeida, Cristina; Alonso-Herrero, Almudena; Levenson, Nancy; Radomski, James; Ichikawa, Kohei; Garcia-Bernete, Ismael; Gonzalez-Martin, Omaira; Diaz Santos, Tanio; Martinez-Paredes, Mariela

    2017-06-01

    We present 31.5 μm imaging photometry of 11 nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We tentatively detect extended 31 μm emission for the first time in our sample. In combination with this new data set, subarcsecond resolution 1-18 μm imaging and 7.5-13 μm spectroscopic observations were used to compute the nuclear spectral energy distribution (SED) of each galaxy. We found that the turnover of the torus emission does not occur at wavelengths ≤31.5 μm, which we interpret as a lower-limit for the wavelength of peak emission. We used Clumpy torus models to fit the nuclear infrared (IR) SED and infer trends in the physical parameters of the AGN torus for the galaxies in the sample. Including the 31.5 μm nuclear flux in the SED 1) reduces the number of clumpy torus models compatible with the data, and 2) modifies the model output for the outer radial extent of the torus for 10 of the 11 objects. Specifically, six (60%) objects show a decrease in radial extent while four (40%) show an increase. We find torus outer radii ranging from <1pc to 8.4 pc. We also present new 37.1 μm imaging data for 4 of the 11 Seyfert galaxies, as well as 3 additional Seyferts.

  19. SG1120-1202: Mass-quenching as Tracked by UV Emission in the Group Environment at z=0.37

    NASA Astrophysics Data System (ADS)

    Monroe, Jonathan T.; Tran, Kim-Vy H.; Gonzalez, Anthony H.

    2017-02-01

    We use the Hubble Space Telescope to obtain WFC3/F390W imaging of the supergroup SG1120-1202 at z=0.37, mapping the UV emission of 138 spectroscopically confirmed members. We measure total (F390W-F814W) colors and visually classify the UV morphology of individual galaxies as “clumpy” or “smooth.” Approximately 30% of the members have pockets of UV emission (clumpy) and we identify for the first time in the group environment galaxies with UV morphologies similar to the “jellyfish” galaxies observed in massive clusters. We stack the clumpy UV members and measure a shallow internal color gradient, which indicates that unobscured star formation is occurring throughout these galaxies. We also stack the four galaxy groups and measure a strong trend of decreasing UV emission with decreasing projected group distance ({R}{proj}). We find that the strong correlation between decreasing UV emission and increasing stellar mass can fully account for the observed trend in (F390W-F814W)-{R}{proj}, I.e., mass-quenching is the dominant mechanism for extinguishing UV emission in group galaxies. Our extensive multi-wavelength analysis of SG1120-1202 indicates that stellar mass is the primary predictor of UV emission, but that the increasing fraction of massive (red/smooth) galaxies at {R}{proj} ≲ 2 R 200 and existence of jellyfish candidates is due to the group environment.

  20. Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, H.; Kino, M.; Fujita, Y.

    2017-11-01

    We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 10{sup 5}more » rad m{sup −2} and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 10{sup 4} cm{sup −3}. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.« less

  1. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curvemore » is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.« less

  2. The Interstellar Medium of Blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Thuan, Trinh Xuan

    Blue compact dwarf (BCD) galaxies are metal-deficient and thus constitute excellent nearby laboratories for studying how the properties of the interstellar medium (ISM) in galaxies change with metallicity. Our sample consists of 4 BCDs chosen to span the metallicity range from 15 to 12 of the solar metallicity. This sample will extend the metallicity range covered by our Cycle 1 observations (141 to 110 solar). The proposed FUSE observations will allow us to investigate the 1) H_2 content of BCDs as a function of metallicity. No H_2 line has been detected in the 2 very metal-deficient BCDs which have been observed by FUSE so far. Will diffuse H_2 be present in more metal-rich BCDs and with less UV radiation density? 2) the structure of the ISM in BCDs. Analysis of 2 BCDs observed by FUSE in Cycle 1 (IZw18 and Mrk 59) show that in the first, the ISM appears to be relatively homogeneous while in the second, it is very clumpy. What are the factors which determine the gas clumpiness in BCDs 3) the abundances in the ISM. Analysis of the FUSE spectrum of Mrk 59 showed C, N, O, Si, Fe and S absorption lines which allow to derive abundances in the ISM using photoinization models. How do these abundances compare with the abundances derived from the emission-line optical spectra? 4) the evolutionary history and stellar winds in BCDs by detecting the P Cygni profiles of high ionization S VI and O VI lines.

  3. Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M.

    2012-04-01

    Aims: We investigate the atmospheric structure and fundamental properties of the red supergiant VY CMa. Methods: We obtained near-infrared spectro-interferometric observations of VY CMa with spectral resolutions of 35 and 1500 using the AMBER instrument at the VLTI. Results: The visibility data indicate the presence of molecular layers of water vapor and CO in the extended atmosphere with an asymmetric morphology. The uniform disk diameter in the water band around 2.0 μm is increased by ~20% compared to the near-continuum bandpass at 2.20-2.25 μm, and in the CO band at 2.3-2.5 μm it is increased by up to ~50%. The closure phases indicate relatively small deviations from point symmetry close to the photospheric layer, and stronger deviations in the extended H2O and CO layers. Making use of the high spatial and spectral resolution, a near-continuum bandpass can be isolated from contamination by molecular and dusty layers, and the Rosseland-mean photospheric angular diameter is estimated to 11.3 ± 0.3 mas based on a PHOENIX atmosphere model. Together with recent high-precision estimates of the distance and spectro-photometry, this estimate corresponds to a radius of 1420 ± 120 R⊙ and an effective temperature of 3490 ± 90 K. Conclusions: VY CMa exhibits asymmetric, possibly clumpy, atmospheric layers of H2O and CO, which are not co-spatial, within a larger elongated dusty envelope. Our revised fundamental parameters put VY CMa close to the Hayashi limit of recent evolutionary tracks of initial mass 25 M⊙ with rotation or 32 M⊙ without rotation, shortly before evolving blueward in the HR-diagram. Based on observations made with the VLT Interferometer (VLTI) at Paranal Observatory under programme ID 386.D-0012.Figures 2, 3 and 5 are available in electronic form at http://www.aanda.org

  4. Gone with the Wind: Watching Galaxy Transformation in Abell 2125

    NASA Astrophysics Data System (ADS)

    Keel, W.; Owen, F.; Ledlow, M.; Wang, D.

    2003-12-01

    Dense environments clearly foster the transformation of galaxies, but it has proven difficult to untangle the roles of various processes in cluster environments. We have found a uniquely strong case for ongoing stripping of gas from the galaxy C153 in Abell 2125. The cluster, at z=0.25, includes merging subsystems with a relative line-of-sight velocity near 2000 km/s. C153, identified using the VLA as a strong radio source powered by star formation, is the brightest cluster member with activity of this kind, and part of the less populous blueshifted grouping. Several lines of evidence indicate that it is being swept by a stripping event. (1) A tail of ionized gas is seen in [O II] emission, which extends at least 70 kpc toward the cluster core, coinciding with a soft X-ray feature seen in the Chandra observations reported by Wang et al. (2) HST WFPC2 images reveal disturbed and clumpy morphology, including luminous star-forming complexes and chaotic dust features. (3) The spectral energy distribution and Gemini GMOS absorption-line spectrum indicate a massive burst of star formation ≈ 108 years ago superimposed on an older and much fainter population. (4) The stellar and gas kinematics are decoupled, with multiple gas velocity systems including counter-rotating components. The large velocity difference between the galaxy and (most of the) intracluster medium may contribute to the signatures being more prominent than hitherto seen. The starburst age is consistent with estimates of the time since the closest encounter of the major subsystems during the cluster-level merger. We continue to explore whether a starburst outflow or tidal damage has added to the role of stripping by the ICM, and how star formation has proceeded in the gas after leaving the galaxy disk. This work was supported by NASA through HST grant GO-07279.01-96A, and by the NSF through facilities at NRAO, Kitt Peak, and Gemini-North.

  5. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U - Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  6. Determination of the mass function of extra-galactic GMCs via NIR color maps. Testing the method in a disk-like geometry

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Juvela, M.; Alves, J.

    2007-06-01

    The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.

  7. The sagittarius tidal stream and the shape of the galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Newby, Matthew T.

    The stellar halo that surrounds our Galaxy contains clues to understanding galaxy formation, cosmology, stellar evolution, and the nature of dark matter. Gravitationally disrupted dwarf galaxies form tidal streams, which roughly trace orbits through the Galactic halo. The Sagittarius (Sgr) dwarf tidal debris is the most dominant of these streams, and its properties place important constraints on the distribution of mass (including dark matter) in the Galaxy. Stars not associated with substructures form the "smooth" component of the stellar halo, the origin of which is still under investigation. Characterizing halo substructures such as the Sgr stream and the smooth halo provides valuable information on the formation history and evolution of our galaxy, and places constraints on cosmological models. This thesis is primarily concerned with characterizing the 3-dimensional stellar densities of the Sgr tidal debris system and the smooth stellar halo, using data from the Sloan Digital Sky Survey (SDSS). F turnoff stars are used to infer distances, as they are relatively bright, numerous, and distributed about a single intrinsic brightness (magnitude). The inherent spread in brightnesses of these stars is overcome through the use of the recently-developed technique of statistical photometric parallax, in which the bulk properties of a stellar population are used to create a probability distribution for a given star's distance. This was used to build a spatial density model for the smooth stellar halo and tidal streams. The free parameters in this model are then fit to SDSS data with a maximum likelihood technique, and the parameters are optimized by advanced computational methods. Several computing platforms are used in this study, including the RPI SUR Bluegene and the Milkyway home volunteer computing project. Fits to the Sgr stream in 18 SDSS data stripes were performed, and a continuous density profile is found for the major Sgr stream. The stellar halo is found to be strongly oblate (flattening parameter q=0.53). A catalog of stars consistent with this density profile is produced as a template for matching future disruption models. The results of this analysis favor a description of the Sgr debris system that includes more than one dwarf galaxy progenitor, with the major streams above and below the Galactic disk being separate substructures. Preliminary results for the minor tidal stream characterizations are presented and discussed. Additionally, a more robust characterization of halo turnoff star brightnesses is performed, and it is found that increasing color errors with distance result in a previously unaccounted for incompleteness in star counts as the SDSS magnitude limit is approached. These corrections are currently in the process of being implemented on MilkyWay home.

  8. A Tale of Tidal Tales in the Milky Way

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.

    2014-05-01

    Hundreds of globular clusters and dwarf galaxies encircle the Milky Way. Many of these systems have undergone partial disruption due to tidal forces, littering the halo with stellar streams. These tidal tails are sensitive to the Galactic potential, facilitating an excellent laboratory to investigate galaxy formation and evolution. To better understand the emergence of the Milky Way, this thesis examines the dynamics and chemistry of a number of known stellar streams. In particular the Sagittarius, Orphan and Aquarius streams are investigated. Low-resolution spectra for hundreds of stars in the direction of the Virgo Over-Density and the Sagittarius northern leading arms have been obtained. Multiple significant kinematic groups are recovered in this accretion-dominated region, confirming detections by previous studies. A metal-poor population ([Fe/H] = -1.7) in the Sagittarius stream is discovered due to a photometric selection that was inadvertently biased towards more metal-poor stars. Positions and kinematics of Sagittarius stream members are compared with existing best-fitting dark matter models, and a triaxial dark matter halo distribution is favoured. The Orphan stream is appropriately named, as no parent system has yet been identified. The stream has an extremely low surface brightness, which makes distinguishing stream members from field stars particularly challenging. From low-resolution spectra obtained for hundreds of stars, we identify likely Orphan stream red giant branch stars on the basis of velocity, metallicity, surface gravity, and proper motions. A negligible intrinsic velocity dispersion is found, and a wide spread in metallicities is observed, which suggests the undiscovered parent is similar to the present-day dwarf galaxies in the Milky Way. High-resolution spectra were obtained for five Orphan stream candidates, and the intrinsic chemical dispersion found from low-resolution spectra is confirmed from these data. Detailed chemical abundances for high-probability Orphan stream candidates further indicates a dwarf galaxy host. Low [α/Fe] abundance ratios are observed, and lower limits for [Ba/Y] are found, which sit well above the observed chemical evolution in the Milky Way. This thesis provides the first detailed chemical evidence for a dwarf galaxy origin, allowing us to rule out any association between the Orphan stream and the globular cluster NGC 2419. High-resolution, high S/N spectra for one third of the Aquarius stream have also been obtained. Contrary to previous work, there is no evidence that the Aquarius stream has resulted from a disrupted globular cluster. Detailed chemistry suggests that the Aquarius stars are galactic in origin, and not disrupted members from either a globular cluster or a dwarf galaxy. In the absence of compelling dynamic and/or chemical evidence to suggest otherwise, we advocate the 'Aquarius Group' as a more appropriate description, and hypothesise that the moving group has resulted from a disk-satellite interaction. The high-resolution spectra presented in this thesis has been analysed using custom written software, ironically named 'Spectroscopy Made Hard'. A detailed description of the software, capabilities and algorithms are presented. Spectroscopy Made Hard includes an intuitive graphical user interface, allowing the spectroscopist to interactively modify any aspect of their analysis. The software is designed to facilitate the transition between small and massive sample sizes, while ensuring data provenance, tangibility, and reproducibility. Future applications for this software are outlined, with a particular focus on the large scale high-resolution spectroscopic surveys being planned or currently undertaken.

  9. Cold dark matter plus not-so-clumpy dark relics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions,more » covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.« less

  10. The XMM Cluster Outskirts Project (X-COP): Thermodynamic properties of the intracluster medium out to R200 in Abell 2319

    NASA Astrophysics Data System (ADS)

    Ghirardini, V.; Ettori, S.; Eckert, D.; Molendi, S.; Gastaldello, F.; Pointecouteau, E.; Hurier, G.; Bourdin, H.

    2018-06-01

    Aims: We present the joint analysis of the X-ray and Sunyaev-Zel'dovich (SZ) signals in Abell 2319, the galaxy cluster with the highest signal-to-noise ratio in SZ Planck maps and that has been surveyed within our XMM-Newton Cluster Outskirts Project (X-COP), a very large program which aims to grasp the physical condition in 12 local (z < 0.1) and massive (M200 > 3 × 1014 M⊙) galaxy clusters out to R200 and beyond. Methods: We recover the profiles of the thermodynamic properties by the geometrical deprojection of the X-ray surface brightness, of the SZ Comptonization parameter, and accurate and robust spectroscopic measurements of the gas temperature out to 3.2 Mpc (1.6 R200), 4 Mpc (2 R200), and 1.6 Mpc (0.8 R200), respectively. We resolve the clumpiness of the gas density to be below 20% over the entire observed volume. We also demonstrate that most of this clumpiness originates from the ongoing merger and can be associated with large-scale inhomogeneities (the "residual" clumpiness). We estimate the total mass through the hydrostatic equilibrium equation. This analysis is done both in azimuthally averaged radial bins and in eight independent angular sectors, enabling us to study in detail the azimuthal variance of the recovered properties. Results: Given the exquisite quality of the X-ray and SZ datasets, their radial extension, and their complementarity, we constrain at R200 the total hydrostatic mass, modelled with a Navarro-Frenk-White profile at very high precision (M200 = 10.7 ± 0.5stat. ± 0.9syst. × 1014 M⊙). We identify the ongoing merger and how it is affecting differently the gas properties in the resolved azimuthal sectors. We have several indications that the merger has injected a high level of non-thermal pressure in this system: the clumping free density profile is above the average profile obtained by stacking Rosat/PSPC observations; the gas mass fraction recovered using our hydrostatic mass profile exceeds the expected cosmic gas fraction beyond R500; the pressure profile is flatter than the fit obtained by the Planck Collaboration; the entropy profile is flatter than the mean profile predicted from non-radiative simulations; the analysis in azimuthal sectors has revealed that these deviations occur in a preferred region of the cluster. All these tensions are resolved by requiring a relative support of about 40% from non-thermal to the total pressure at R200.

  11. A case study for hydromagnetic outflow in active galactic nuclei: NGC 5548

    NASA Astrophysics Data System (ADS)

    Bottorff, Mark Clinton

    1999-01-01

    A hydromagnetic (MHD) wind from a clumpy molecular accretion disk surrounding a supermassive black hole is invoked to explain observed emission and absorption features of gas at UV and X-ray energies in Seyfert 1 galaxies. It is the first attempt to explain a wide range of phenomena observed on the periphery of Active Galactic Nuclei (AGN) with a single dynamical model and within the framework of the AGN unification scheme. In the first part of this thesis, the results of long- term observations of the broadline region (BLR) in the Seyfert 1 galaxy NGC 5548 are analyzed and a critical comparison with the predictions of a hydromagnetically- driven outflow model is provided. The model reproduces the basic features of C IV line variability in this AGN, i.e., time evolution of the profile shape and strength of the C IV emission line without varying the model parameters . The best fit model provides the effective size, the dominant geometry, the emissivity distribution and the 3D velocity field of the C IV BLR and constrains the mass of the central black hole to ~3×107 Msolar . The inner part of the wind in NGC 5548 appears to be responsible for the anisotropically emitted C IV line, while its outer part remains dusty and molecular, thus having similar spectral characteristics to a molecular torus. In addition, the model predicts a differential response across the C IV line profile, producing a red-side-first response in the relative velocity interval of 3,000 km s-1 to 6,000 km s -1 followed by the blue mid-wing and finally by the line core. In the second part of this dissertation, we have analyzed the UV and X-ray absorption in NGC 5548 within the framework of warm absorbing gas. We focus on two important issues: (1)compatibility of kinematics and dynamics of the MHD wind with the observed properties of warm absorbers; and (2)the relationship between the UV and X-ray absorbing gases. An in-depth comparison between the MHD wind model and the well-studied Seyfert 1 galaxy NGC 5548 is made, which at high spectral resolution exhibits a number of discrete UV absorption components. Our results show that for NGC 5548: (1)the total column densities of O VII, O VIII and H, inferred from X-ray observations are reproduced by constraining the UV ion column densities of C IV and N V in each component to lie within a factor of 2 of their observed values; (2)the warm absorbing gas exists in the outer part of the wind and is not a continuation of the flow in the broad emission-line region; and (3)the warm absorber extends both in radial and polar directions and is ionization stratified. Analysis shows that the discrete absorption components along the line-of-sight are intrinsically clumpy. The applicability of the MHD wind to warm absorbers is further tested by constructing a quasi-continuous flow model and extending it to arbitrary aspect angles. We find that the ratio of O VII to O VIII optical depths can serve as a new diagnostic of AGN aspect angle. (Abstract shortened by UMI.)

  12. Investigating the 3D Structure of the Winds of Hot Supergiants

    NASA Astrophysics Data System (ADS)

    Klement, Robert

    2018-04-01

    An observational effort targeting supergiant stars of spectral classes B and A has been started using the VEGA high spectral resolution visible beam combiner at the CHARA array. The H-alpha emission from the structured stellar winds was resolved with respect to the surrounding continuum, showing signs of inhomogenities in the circumstellar environments as well as temporal variability on different time scales. We have begun a radiative transfer modelling effort to investigate the clumpy structure of the stellar winds and the origin of the inhomogenities, probably linked to the stellar photosphere features.

  13. Star Formation in Nearby Clusters (SFiNCs)

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin

    Most stars form in clusters that rapidly disperse, yet we have a poor understanding of the processes of cluster formation and early evolution. Do clusters form `top-down', rapidly in a dense molecular cloud core? Or, since clouds are turbulent, do clusters form `bottomup' by merging subclusters produced in small kinematically-distinct molecular structures? Do clusters principally form in elongated molecular structures such as Infrared Dark Clouds and Herschel filaments? One of the central reasons for slow progress in resolving these questions is the lack of homogeneous and reliable census of stellar members (both disk-bearing and disk-free) for a wide range of star forming environments. To address these issues we are now completing our major effort, called MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray). It combines the Chandra archive with UKIRT+2MASS near-infrared and Spitzer mid-infrared surveys to identify young stellar objects in a wide range of evolutionary stages, from protostars to disk-free pre-main sequence stars, in 20 star forming regions at distances from 0.4 to 3.6 kpc. Each MYStIX region was chosen to have a rich OB-dominated cluster. Started in 2009 with NASA/ADAP and NSF funding, MYStIX has emerged with 8 technical/catalog and the first 4 of a series of science papers (http://astro.psu.edu/mystix). Early MYStIX results include: demonstration of diverse morphologies of young clusters from simple ellipsoids to elongated, clumpy substructures; demonstration of spatio-age gradients across star formation regions; the discovery of core-halo age gradients within two rich nearby MYStIX clusters; and the discovery of important astrophysically empirical correlations among different subcluster properties such as age, absorption, core radius, central stellar density, and total intrinsic population. The early MYStIX result provide new observational evidence for subcluster merging and cluster expansion following gas dissipation. We propose here to extend the MYStIX effort to an archive study of 19 nearer and smaller star forming regions where the stellar clusters are dominated by a single late-OB star rather than numerous O stars as in the MYStIX fields. We call this project `Star Formation in Nearby Clusters' or SFiNCs (homophonic with `sphinx'). With a homogeneous analysis of the Chandra, 2MASS, Spitzer and Herschel archives, we expect to identify and characterize over 50 SFiNCs subclusters. The inferred empirical correlations among different cluster properties for nearly 200 SFiNCs+MYStIX subclusters with 30-3000 detected stars on scales of 0.1-20 pc will allow, for the first time, direct comparison with the results of theoretical simulations of cluster formation to seek deeper answers to the fundamental questions posed above. It is possible, for example, that smaller molecular clouds have less turbulence and thus produce small clusters in a single event rather than through subcluster mergers. Models based on meteoritic isotopes suggest that our Solar System formed in a complex of SFiNCs/MYStIX-like clusters (Gounelle & Meynet 2012, A&A, 545, 4). This project addresses NASA SMD Strategic Subgoals 3C (Advance scientific knowledge of the origin and history of the solar system) and 3D.3 (Understand how individual stars form and how those processes ultimately affect the formation of planetary systems). It lies in the `Star formation and pre-main sequence stars' Research Area of the Astrophysics Data Analysis program.

  14. Planetesimal Initial Mass Functions and Creation Rates Under Turbulent Concentration Using Scale-Dependent Cascades

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Hartlep, T.; Estrada, P.

    2016-01-01

    The initial accretion of primitive bodies from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models in turbulent nebulae encounter a "meter-size barrier" due to both drift and destruction, or even a millimeter-to-centimeter-size "bouncing" barrier. Recent suggestions have been made that some "lucky" particles might be able to outgrow the collision and/or drift barriers, and lead to so-called "streaming instabilities" or SI. However, new full models of growth by sticking in the presence of radial drift show that lucky particles (the largest particles, at the tail of the size distribution, that grow beyond the nominal fragmentation and drift barriers) are far too rare to lead to any collective effects such as streaming or gravitational instabilities. Thus we need to focus on typical radii gamma(sub M) which contain most of the mass. Our models of disks with weak-to-moderate turbulence, which include all the most recent experimental constraints on collisional growth, erosion, bouncing, and fragmentation, as well as radial drift, find that growth stalls quite generally at sizes gamma(sub M) which are too small to settle into layers which are dense enough for any collective effects (streaming or gravitational instabilities) to arise. Even if growth by sticking could somehow breach the nominal barriers (perhaps if the actual sticking or strength is larger than current estimates for pure ice or pure silicate, with specific grain sizes), turbulent nebulae present subsequent formidable obstacles to incremental growth through the 1-10km size range. On the other hand, non-turbulent nebulae alpha is less than 10(Sup -4).

  15. Characterizing Hydrological Processes in Vadose Zone by Direct Infiltration Water Sampling.

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Higashi, N.; Somura, H.; Takeda, I.; Inoue, M.

    2007-12-01

    These days, planted forest mountainside was roughly maintained due to the population descent and small birth rate. Because thinning operation would delayed, forest was always dark and floor weed was rare. Management induced non point source pollution like surface soil erosion was suspected, however, we could not approach to the source with the stream water analysis. Therefore, direct soil water sampling device using glass fiber capillary force was developed to examine hydrological processes in watershed. In our design, water was collected just by the capillary force and let the excess water down through so that infiltration water was truly sampled and solute concentration kept the same quality as in soil water. The experiment was conducted at two neighboring Japanese cedar planted forest under different management, i.e., south slope was roughly maintained and west slope was well maintained by thinning operation. Load discharges were higher in south slope and lower in west slope. Infiltration water analysis revealed that ion concentration was gradually decreased at west slope, however in south slope, it dropped to lower level in soil water and increased again in stream water. The trend showed that soil buffering function was poor in south slope. Actually, disk permeameter survey revealed that hydraulic conductivity was small in south slope; TOC and biological activity were lower. This entire soil environment explained the water environmental differences in stream water. Because changes in soil environment affects water environment in the future, monitoring or examination of soil environment was considered as preventive measure for environmentally sound water and solute circulation in watershed.

  16. Focus on the post-DVD formats

    NASA Astrophysics Data System (ADS)

    He, Hong; Wei, Jingsong

    2005-09-01

    As the digital TV(DTV) technologies are developing rapidly on its standard system, hardware desktop, software model, and interfaces between DTV and the home net, High Definition TV (HDTV) program worldwide broadcasting is scheduled. Enjoying high quality TV program at home is not a far-off dream for people. As for the main recording media, what would the main stream be for the optical storage technology to meet the HDTV requirements is becoming a great concern. At present, there are a few kinds of Post-DVD formats which are competing on technology, standard and market. Here we give a review on the co-existing Post-DVD formats in the world. We will discuss on the basic parameters for optical disk, video /audio coding strategy and system performance for HDTV program.

  17. A Probable Taurid Impact on the Moon

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, R. M.; Swift, Wesley R.

    2006-01-01

    On November 7, 2005, at 23:41:52 UT, observers located at the Marshall Space Flight Center captured the flash produced by a kilogram-size meteoroid striking the lunar surface. Photometric analysis of the event video, combined with the plausible assumptions of a luminous efficiency of 2x10" and that the meteoroid was a member of the Taurid meteoroid stream, yield a striking power of approximately 640 lbs of TNT and a mass of approximately 3.8 kg. Even though no confirming independent observations are known to exist, there is high confidence in the impact origin of the flash; reasonable attempts have been made to eliminate other possibilities, such as cosmic ray hits on the CCD and glints from satellites that may have crossed the lunar disk near the impact time.

  18. SDO Spots Extra Energy in the Sun's Corona [detail

    NASA Image and Video Library

    2017-12-08

    NASA release July 27, 2011 These jets, known as spicules, were captured in an SDO image on April 25, 2010. Combined with the energy from ripples in the magnetic field, they may contain enough energy to power the solar wind that streams from the sun toward Earth at 1.5 million miles per hour. Credit: NASA/SDO/AIA To see a full disk view go here: www.flickr.com/photos/gsfc/5982663752/in/photostream/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Font, Joan; Beckman, John E.; Fathi, Kambiz

    In this Letter, we introduce a technique for finding resonance radii in a disk galaxy. We use a two-dimensional velocity field in H{alpha} emission obtained with Fabry-Perot interferometry, derive the classical rotation curve, and subtract it off, leaving a residual velocity map. As the streaming motions should reverse sign at corotation, we detect these reversals and plot them in a histogram against galactocentric radius, excluding points where the amplitude of the reversal is smaller than the measurement uncertainty. The histograms show well-defined peaks which we assume to occur at resonance radii, identifying corotations as the most prominent peaks corresponding tomore » the relevant morphological features of the galaxy (notably bars and spiral arm systems). We compare our results with published measurements on the same galaxies using other methods and different types of data.« less

  20. Altitude-Wind-Tunnel Investigation of Performance of Several Propellers on YP-47M Airplane at High Blade Loading. 2; Curtiss 838-1C2-18R1 Four-Blade Propeller

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E.; Sorin, Solomon M.

    1946-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the performance of a Curtiss propeller with four 838-lC2-lSRl blades on a YP-47M airplane at high blade loadings and engine powers. The study was made for a range of power coefficients between 0.30 and 1.00 at free-stream Mach numbers of 0.40 and 0.50. The results of the force measurements indicate primarily the trend of propeller efficiency for changes in power coefficient or advance-diameter ratio, inasmuch as corrections for the effects of tunnel-wall constriction on the installation have not been applied. Slip-stream pressure surveys across the propeller disk are presented to illustrate blade thrust load distribution for several operating conditions. At a free-stream Mach number of 0.40, nearly constant peak efficiencies were obtained at power coefficients from 0.30 to 0.70. A change in power coefficient from 0.70 to 0.90 reduced the peak efficiency about 5 percent. Blade stall at the tip sections became evident for a power coefficient of 0.91 when the advance-diameter ratio was reduced to 1.87. At a free-stream Mach number of 0.50, the highest propeller efficiencies were obtained for power coefficients from 0.80 to 1.00 at advance-diameter ratios above 2.90. At advance-diameter ratios below 2.90, the highest efficiencies were obtained for power coefficients of 0.60 and 0.70. The envelope of the efficiency curves decreased about 12 percent between advance-diameter ratios of 2.60 and 4.20. Local compressibility effects became evident for a power coefficient of 0.40 when the advance-diameter ratio was decreased to 1.75.

  1. THE GALACTIC POSITRON ANNIHILATION RADIATION AND THE PROPAGATION OF POSITRONS IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higdon, J. C.; Lingenfelter, R. E.; Rothschild, R. E.

    2009-06-10

    The ratio of the luminosity of diffuse 511 keV positron annihilation radiation, measured by INTEGRAL in its four years, from a Galactic 'positron bulge' (<1.5 kpc) compared to that of the disk is {approx}1.4. This ratio is roughly 4 times larger than that expected simply from the stellar bulge-to-disk ratio of {approx}0.33 of the Galactic supernovae (SNe), which are thought to be the principal source of the annihilating positrons through the decay of radionuclei made by explosive nucleosynthesis in the SNe. This large discrepancy has prompted a search for new sources. Here, however, we show that the measured 511 keVmore » luminosity ratio can be fully understood in the context of a Galactic SN origin when the differential propagation of these {approx} MeV positrons in the various phases of the interstellar medium is taken into consideration, since these relativistic positrons must first slow down to energies {<=}10 eV before they can annihilate. Moreover, without propagation, none of the proposed positron sources, new or old, can explain the two basic properties on the Galactic annihilation radiation: the fraction of the annihilation that occurs through positronium formation and the ratio of the broad/narrow components of the 511 keV line. In particular, we show that in the neutral phases of the interstellar medium, which fill most of the disk (>3.5 kpc), the cascade of the magnetic turbulence, which scatters the positrons, is damped by ion-neutral friction, allowing positrons to stream along magnetic flux tubes. We find that nearly 1/2 of the positrons produced in the disk escape from it into the halo. On the other hand, we show that within the extended, or interstellar, bulge (<3.5 kpc), essentially all of the positrons are born in the hot plasmas which fill that volume. We find that the diffusion mean free path is long enough that only a negligible fraction annihilate there and {approx}80% of them escape down into the H II and H I envelopes of molecular clouds that lie within 1.5 kpc before they slow down and annihilate, while the remaining {approx}20% escape out into the halo and the disk beyond. This propagation accounts for the low observed annihilation radiation luminosity of the disk compared to the bulge. In addition, we show that the primary annihilation sites of the propagating positrons in both the bulge and the disk are in the warm ionized phases of the interstellar medium. Such annihilation can also account for those two basic properties of the emission, the fraction ({approx}93% {+-} 7%) of annihilation via positronium and the ratio ({approx}0.5) of broad ({approx}5.4 keV) to narrow ({approx}1.3 keV) components of the bulge 511 keV line emission. Moreover, we expect that the bulk of this broad line emission comes from the tilted disk region (0.5 < R < 1.5 kpc) with a very large broad/narrow flux ratio of {approx}6, while much of the narrow line emission comes from the inner bulge (R < 0.5 kpc) with a negligible broad/narrow flux ratio. Separate spectral analyses of the 511 keV line emission from these two regions should be able to test this prediction, and further probe the structure of the interstellar medium. Lastly, we show that the asymmetry in the inner disk annihilation line flux, which has been suggested as added evidence for new sources, can also be fully understood from positron propagation and the asymmetry in the inner spiral arms as viewed from our solar perspective without any additional sources.« less

  2. Synthetic Absorption Lines for a Clumpy Medium: A Spectral Signature for Cloud Acceleration in AGN?

    NASA Technical Reports Server (NTRS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionized multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called warm absorbers. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds that are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line-of-sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result that can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  3. Red Supergiants as Potential Type IIn Supernova Progenitors: Spatially Resolved 4.6 μm CO Emission Around VY CMa and Betelgeuse

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Hinkle, Kenneth H.; Ryde, Nils

    2009-03-01

    We present high-resolution 4.6 μm CO spectra of the circumstellar environments of two red supergiants (RSGs) that are potential supernova (SN) progenitors: Betelgeuse and VY Canis Majoris (VY CMa). Around Betelgeuse, 12CO emission within ±3'' (±12 km s-1) follows a mildly clumpy but otherwise spherical shell, smaller than its ~55'' shell in K I λ7699. In stark contrast, 4.6 μm CO emission around VY CMa is coincident with bright K I in its clumpy asymmetric reflection nebula, within ±5'' (±40 km s-1) of the star. Our CO data reveal redshifted features not seen in K I spectra of VY CMa, indicating a more isotropic distribution of gas punctuated by randomly distributed asymmetric clumps. The relative CO and K I distribution in Betelgeuse arises from ionization effects within a steady wind, whereas in VY CMa, K I is emitted from skins of CO cloudlets resulting from episodic mass ejections 500-1000 yr ago. In both cases, CO and K I trace potential pre-SN circumstellar matter: we conclude that an extreme RSG like VY CMa might produce a Type IIn event like SN 1988Z if it were to explode in its current state, but Betelgeuse will not. VY CMa demonstrates that luminous blue variables are not necessarily the only progenitors of SNe IIn, but it underscores the requirement that SNe IIn suffer enhanced episodic mass loss shortly before exploding. Based on observations obtained at the Gemini Observatory.

  4. Interpreting HST observations with simulations of reionization: the ionizing photon budget and the decline of Lyman-alpha emission in z>6 dropouts

    NASA Astrophysics Data System (ADS)

    D'Aloisio, Anson

    2017-08-01

    In recent years, HST surveys such as CANDELS, HUDF, BoRG/HIPPIES, ERS, and the Frontier Fields, have made possible the first robust measurements of the rest-frame UV luminosity function of z =6-10 galaxies, spanning much of the redshift range over which reionization likely occurred. These measurements provide an estimate of the galactic ionizing photon output, addressing the critical question of whether these galaxies could have reionized the Universe. In addition, follow-up spectroscopy has measured the fraction of these galaxies that show Lyman-alpha emission. Interestingly, a dramatic decrease in this fraction above z 6 has been observed, and this evolution has (controversially) been interpreted as evidence that much of reionization happened over z=6-8 (as intergalactic neutral gas leads to large damping wings that scatter the Lyman-alpha line). The clumpiness of the IGM and how it self shields to ionizing photons impacts whether the observed population of galaxies can reionize the Universe, as well as the interpretation of the evolving Lyman-alpha emitter fraction. We propose to run fully coupled radiative-hydrodynamics simulations that are the first to resolve the evaporation of small structures by passing ionization fronts and, hence, to accurately assess the level of clumpiness and self-shielding from the IGM. Our study will nail down the clumping factor used to assess whether the observed population of galaxies can drive reionization, and it will address whether neutral self-shielding clumps in recently reionized regions can scatter galaxies' Lyman-alpha lines.

  5. A clumpy and anisotropic galaxy halo at redshift 1 from gravitational-arc tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Sebastian; Tejos, Nicolas; Ledoux, Cédric; Barrientos, L. Felipe; Sharon, Keren; Rigby, Jane R.; Gladders, Michael D.; Bayliss, Matthew B.; Pessa, Ismael

    2018-02-01

    Every star-forming galaxy has a halo of metal-enriched gas that extends out to at least 100 kiloparsecs, as revealed by the absorption lines that this gas imprints on the spectra of background quasars. However, quasars are sparse and typically probe only one narrow beam of emission through the intervening galaxy. Close quasar pairs and gravitationally lensed quasars have been used to circumvent this inherently one-dimensional technique, but these objects are rare and the structure of the circumgalactic medium remains poorly constrained. As a result, our understanding of the physical processes that drive the recycling of baryons across the lifetime of a galaxy is limited. Here we report integral-field (tomographic) spectroscopy of an extended background source—a bright, giant gravitational arc. We can thus coherently map the spatial and kinematic distribution of Mg ɪɪ absorption—a standard tracer of enriched gas—in an intervening galaxy system at redshift 0.98 (around 8 billion years ago). Our gravitational-arc tomography unveils a clumpy medium in which the absorption strength decreases with increasing distance from the galaxy system, in good agreement with results for quasars. Furthermore, we find strong evidence that the gas is not distributed isotropically. Interestingly, we detect little kinematic variation over a projected area of approximately 600 square kiloparsecs, with all line-of-sight velocities confined to within a few tens of kilometres per second of each other. These results suggest that the detected absorption originates from entrained recycled material, rather than in a galactic outflow.

  6. A clumpy and anisotropic galaxy halo at redshift 1 from gravitational-arc tomography.

    PubMed

    Lopez, Sebastian; Tejos, Nicolas; Ledoux, Cédric; Barrientos, L Felipe; Sharon, Keren; Rigby, Jane R; Gladders, Michael D; Bayliss, Matthew B; Pessa, Ismael

    2018-02-22

    Every star-forming galaxy has a halo of metal-enriched gas that extends out to at least 100 kiloparsecs, as revealed by the absorption lines that this gas imprints on the spectra of background quasars. However, quasars are sparse and typically probe only one narrow beam of emission through the intervening galaxy. Close quasar pairs and gravitationally lensed quasars have been used to circumvent this inherently one-dimensional technique, but these objects are rare and the structure of the circumgalactic medium remains poorly constrained. As a result, our understanding of the physical processes that drive the recycling of baryons across the lifetime of a galaxy is limited. Here we report integral-field (tomographic) spectroscopy of an extended background source-a bright, giant gravitational arc. We can thus coherently map the spatial and kinematic distribution of Mg ɪɪ absorption-a standard tracer of enriched gas-in an intervening galaxy system at redshift 0.98 (around 8 billion years ago). Our gravitational-arc tomography unveils a clumpy medium in which the absorption strength decreases with increasing distance from the galaxy system, in good agreement with results for quasars. Furthermore, we find strong evidence that the gas is not distributed isotropically. Interestingly, we detect little kinematic variation over a projected area of approximately 600 square kiloparsecs, with all line-of-sight velocities confined to within a few tens of kilometres per second of each other. These results suggest that the detected absorption originates from entrained recycled material, rather than in a galactic outflow.

  7. Kinematic structures of the solar neighbourhood revealed by Gaia DR1/TGAS and RAVE

    NASA Astrophysics Data System (ADS)

    Kushniruk, I.; Schirmer, T.; Bensby, T.

    2017-12-01

    Context. The velocity distribution of stars in the solar neighbourhood is inhomogeneous and rich with stellar streams and kinematic structures. These may retain important clues regarding the formation and dynamical history of the Milky Way. However, the nature and origin of many of the streams and structures is unclear, hindering our understanding of how the Milky Way formed and evolved. Aims: We aim to study the velocity distribution of stars of the solar neighbourhood and investigate the properties of individual kinematic structures in order to improve our understanding of their origins. Methods: Using the astrometric data provided by Gaia DR1/TGAS and radial velocities from RAVE DR5 we perform a wavelet analysis with the à trous algorithm of 55 831 stars that have U and V velocity uncertainties less than 4 km s-1. An auto-convolution histogram method is used to filter the output data, and we then run Monte Carlo simulations to verify that the detected structures are real and are not caused by noise due to velocity uncertainties. Additionally we analysed our stellar sample by splitting all stars into a nearby sample (<300 pc) and a distant sample (>300 pc), and two chemically defined samples that to a first degree represent the thin and the thick disks. Results: We detect 19 kinematic structures in the solar neighbourhood in the range of scales 3-16 km s-1 at the 3σ confidence level. Among them we identified well-known groups (such as Hercules, Sirius, Coma Berenices, Pleiades, and Wolf 630), confirmed recently detected groups (such as Antoja12 and Bobylev16), and detected a new structure at (U,V) ≈ (37,8) km s-1. Another three new groups are tentatively detected, but require further confirmation. Some of the detected groups show clear dependence on distance in the sense that they are only present in the nearby sample (<300 pc), and others appear to be correlated with chemistry as they are only present in one of the chemically defined thin and thick disk samples. Conclusions: With the much enlarged stellar sample and much increased precision in distances and proper motions, provided by Gaia DR1/TGAS we have shown that the velocity distribution of stars in the solar neighbourhood contains more structures than previously known. A new feature is discovered and three recently detected groups are confirmed at high confidence level. Dividing the sample based on distance and/or metallicity shows that there are variety of structures which form large-scale and small-scale groups; some of them have clear trends on metallicities, others are a mixture of both disk stars. Based on these findings we discuss possible origins of each group.

  8. The spectroscopic orbits and the geometrical configuration of the symbiotic binary AR Pavonis

    NASA Astrophysics Data System (ADS)

    Quiroga, C.; Mikołajewska, J.; Brandi, E.; Ferrer, O.; García, L.

    2002-05-01

    We analyze optical and near infrared spectra of intermediate and high resolution of the eclipsing symbiotic system AR Pavonis. We have obtained the radial velocity curves for the red and the hot component from the M-giant absorption lines and from the wings of Hα , Hβ and He II lambda 4686 emission profiles, respectively. From the orbital elements we have derived the masses, Mg=2.5 Msun and Mh=1.0 Msun, for the red giant and the hot component, respectively. We also present and discuss radial velocity patterns in the blue cF absorption spectrum as well as various emission lines. In particular, we confirm that the blue absorption lines are associated with the hot component. The radial velocity curve of the blue absorption system, however, does not track the hot companion's orbital motion in a straightforward way, and its departures from an expected circular orbit are particularly strong when the hot component is active. We suggest that the cF-type absorption system is formed in material streaming from the giant presumably in a region where the stream encounters an accretion disk or an extended envelope around the hot component. The broad emission wings originate from the inner accretion disk or the envelope around the hot star. We also suggest that the central absorption in H profiles is formed in a neutral portion of the cool giant's wind which is strongly concentrated towards the orbital plane. The nebula in AR Pav seems to be bounded by significant amount of neutral material in the orbital plane. The forbidden emission lines are probably formed in low density ionized regions extended in polar directions and/or the wind-wind interaction zone. Based on observations taken at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación and the National Universities of La Plata, Córdoba and San Juan.

  9. Higher Signal-to-Noise Measurements of Alpha-element Abundances in the M31 System

    NASA Astrophysics Data System (ADS)

    Escala, Ivanna; Kirby, Evan N.

    2018-06-01

    The stellar halo and tidal streams of M31 provide an essential counterpoint to the same structures around the Milky Way (MW). While measurements of [Fe/H] and [$\\alpha$/Fe] have been made in the MW, little is known about the detailed chemical abundances of the M31 system. To make progress with existing telescopes, we expand upon the technique first presented by Kirby et al., applying spectral synthesis to medium-resolution spectroscopy at lower spectral resolution (R $\\sim$ 1800) across an optical range (4100~\\AA \\ $<$ $\\lambda$ $<$ 9100~\\AA) that extends down the blue. We have obtained deep spectra of red giants in the tidal streams, smooth halo, and disk of M31 using the DEIMOS 600ZD grating, resulting in higher signal-to-noise per spectral resolution element (S/N $\\sim$ 30 \\AA$^{-1}$). By applying our technique to red giant stars in MW globular clusters with higher-resolution ($R$ $\\sim$ 6000) spectra in the blue (4100 - 6300 \\AA), we demonstrate that our technique reproduces previous measurements derived from the red side of the optical (6300 - 9100 \\AA). For the first time, we present measurements of [Fe/H] and [$\\alpha$/Fe] of sufficient quality and sample size to construct quantitative models of galactic chemical evolution in the M31 system.

  10. A Comparative Analysis of Chemical Abundances in Andromeda's Stellar Halo and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Kirby, Evan N.; Escala, Ivanna; Wojno, Jennifer

    2018-06-01

    Stellar halos provide a record of the earliest stages of a galaxy’s formation as well as the mass growth of later epochs. All stages of accretion are represented in the halo: (1) fully phase-mixed stars accreted at early times, (2) stars in distinct tidal streams, and (3) stars in satellite galaxies that will eventually be tidally incorporated into the halo. Chemical abundances encode information about the environment in which a star formed: specifically, the relative abundances of [Fe/H] and [α/Fe] provide an indication of the amount and duration of star formation. While these abundances have been measured for statistically significant samples of halo and dwarf galaxy stars in the Milky Way, they remain largely unknown in Andromeda. We have undertaken a systematic survey to measure [Fe/H] and [α/Fe] in fields throughout the M31 system, including the halo, tidal streams, satellite galaxies, and the disk. I will provide an overview of the survey and its goals and present first results, including the abundance distributions for five M31 dSphs, measurements of [Fe/H] and [α/Fe] of stars in M31's halo, and comparisons to existing measurements of Milky Way dSph and halo stars.

  11. GREEN BANK TELESCOPE OBSERVATIONS OF THE NH{sub 3} (3, 3) AND (6, 6) TRANSITIONS TOWARD SAGITTARIUS A MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, Young Chol; Liu, Hauyu Baobab; Ho, Paul T. P.

    2013-08-10

    Ammonia (3, 3) and (6, 6) transitions have been observed using the Green Bank Telescope toward the Sgr A region. The gas is mainly concentrated in 50 km s{sup -1} and 20 km s{sup -1} clouds located in a plane inclined to the galactic plane. These 'main' clouds appear to be virialized and influenced by the expansion of the supernova remnant Sgr A East. The observed emission shows very complicated features in the morphology and velocity structure. Gaussian multi-component fittings of the observed spectra revealed that various 'streaming' gas components exist all over the observed region. These components include thosemore » previously known as 'streamers' and 'ridges', but most of these components appear not to be directly connected to the major gas condensations (the 50 km s{sup -1} and 20 km s{sup -1} clouds). They are apparently located out of the galactic plane, and they may have a different origin than the major gas condensations. Some of the streaming components are expected to be sources that feed the circumnuclear disk of our Galactic center directly and episodically. They may also evolve differently than major gas condensations under the influence of the activities of the Galactic center.« less

  12. A 3D View of a Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    The outlined regions mark the 57 knots in Tycho selected by the authors for velocity measurements. Magenta regions have redshifted line-of-sight velocities (moving away from us); cyan regions have blueshifted light-of-sight velocities (moving toward us). [Williams et al. 2017]The Tycho supernova remnant was first observed in the year 1572. Nearly 450 years later, astronomers have now used X-ray observations of Tycho to build the first-ever 3D map of a Type Ia supernova remnant.Signs of ExplosionsSupernova remnants are spectacular structures formed by the ejecta of stellar explosions as they expand outwards into the surrounding interstellar medium.One peculiarity of these remnants is that they often exhibit asymmetries in their appearance and motion. Is this because the ejecta are expanding into a nonuniform interstellar medium? Or was the explosion itself asymmetric? The best way we can explore this question is with detailed observations of the remnants.Histograms of the velocity in distribution of the knots in the X (green), Y (blue) and Z (red) directions (+Z is away from the observer). They show no evidence for asymmetric expansion of the knots. [Williams et al. 2017]Enter TychoTo this end, a team of scientists led by Brian Williams (Space Telescope Science Institute and NASA Goddard SFC) has worked to map out the 3D velocities of the ejecta in the Tycho supernova remnant. Tycho is a Type Ia supernova thought to be caused by the thermonuclear explosion of a white dwarf in a binary system that was destabilized by mass transfer from its companion.After 450 years of expansion, the remnant now has the morphological appearance of a roughly circular cloud of clumpy ejecta. The forward shock wave from the supernova, however, is known to have twice the velocity on one side of the shell as on the other.To better understand this asymmetry, Williams and collaborators selected a total of 57 knots in Tychos ejecta, spread out around the remnant. They then used 12 years of Chandra X-ray observations to measure both the knots proper motion in the plane of the sky and their line-of-sight velocity. These two measurements were then combined to build a full 3D map of the motion of the ejecta.3D hydrodynamical simulations of Tycho, stopped at the current epoch. These show that both initially smooth (top) and initially clumpy (bottom) ejecta models are consistent with the current observations of the morphology and dynamics of Tychos ejecta. [Adapted from Williams et al. 2017]Symmetry and ClumpsWilliams and collaborators found that the knots have total velocities that range from 2400 to 6600 km/s. Unlike the forward shock of the supernova, Tychos ejecta display no asymmetries in their motion which suggests that the explosion itself was symmetric. The more likely explanation is a density gradient in the interstellar medium, which could slow the shock wave on one side of the remnant without yet affecting the motion of the clumps of ejecta.As a final exploration, the authors attempt to address the origin of Tychos clumpiness. The fact that some of Tychos ejecta knots precede its outer edge has raised the question of whether the ejecta started out clumpy, or if they began smooth and only clumped during expansion. Williams and collaborators matched the morphological and dynamical data to simulations, demonstrating that neither scenario can be ruled out at this time.This first 3D map of a Type Ia supernova represents an important step in our ability to understand these stellar explosions. The authors suggest that well be able to expand on this map in the future with additional observations from Chandra, as well as with new data from future X-ray observatories that will be able to detect fainter emission.CitationBrian J. Williams et al 2017 ApJ 842 28. doi:10.3847/1538-4357/aa7384

  13. System and Method for High-Speed Data Recording

    NASA Technical Reports Server (NTRS)

    Taveniku, Mikael B. (Inventor)

    2017-01-01

    A system and method for high speed data recording includes a control computer and a disk pack unit. The disk pack is provided within a shell that provides handling and protection for the disk packs. The disk pack unit provides cooling of the disks and connection for power and disk signaling. A standard connection is provided between the control computer and the disk pack unit. The disk pack units are self sufficient and able to connect to any computer. Multiple disk packs are connected simultaneously to the system, so that one disk pack can be active while one or more disk packs are inactive. To control for power surges, the power to each disk pack is controlled programmatically for the group of disks in a disk pack.

  14. AmeriFlux CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977.

    DOE Data Explorer

    Amiro, Brian [University of Manitoba

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977.. Site Description - Regenerated jack pine (Pinus banksiana) following fire in 1977; canopy height 6 m and LAI = 2.8. Some black spruce understory developing. Trees tend to be clumpy, with some clear spaces that can be easily walked thorugh, and other areas are thick. Fire killed coarse woody debris on the ground, that is soft and decomposing. Very few perched trunks. Understory are short shrubs such as Vaccinium and Arctostaphylus uva-ursi.

  15. The Power Spectrum of the Milky Way: Velocity Fluctuations in the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Bird, Jonathan C.; García Pérez, Ana E.; Majewski, Steven R.; Nidever, David L.; Zasowski, Gail

    2015-02-01

    We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc)2 bins. The solar motion V ⊙ - c with respect to the circular velocity Vc is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V ⊙ - c = 24 ± 1 (ran.) ± 2 (syst. [Vc ]) ± 5 (syst.[large-scale]) km s-1, where the systematic uncertainty is due to (1) a conservative 20 km s-1 uncertainty in Vc and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc-1 <= k <= 40 kpc-1. Most of the power is contained in a broad peak between 0.2 kpc-1 < k < 0.9 kpc-1. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s-1 on >~ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.

  16. Grumblings from an Awakening Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In June of this year, after nearly three decades of sleep, the black hole V404 Cygni woke up and began grumbling. Scientists across the globe scrambled to observe the sudden flaring activity coming from this previously peaceful black hole. And now were getting the first descriptions of what weve learned from V404 Cygs awakening!Sudden OutburstV404 Cyg is a black hole of roughly nine solar masses, and its in a binary system with a low-mass star. The black hole pulls a stream of gas from the star, which then spirals in around the black hole, forming an accretion disk. Sometimes the material simply accumulates in the disk but every two or three decades, the build-up of gas suddenly rushes toward the black hole as if a dam were bursting.The sudden accretion in these events causes outbursts of activity from the black hole, its flaring easily visible to us. The last time V404 Cyg exhibited such activity was in 1989, and its been rather quiet since then. Our telescopes are of course much more powerful and sensitive now, nearly three decades later so when the black hole woke up and began flaring in June, scientists were delighted at the chance to observe it.The high variability of V404 Cyg is evident in this example set of spectra, where time increases from the bottom panel to the top. [King et al. 2015]Led by Ashley King (Einstein Fellow at Stanford University), a team of scientists observed V404 Cyg with the Chandra X-ray Observatory, obtaining spectra of the black hole during its outbursts. The black hole flared so brightly during its activity that the team had to take precautions to protect the CCDs in their detector from radiation damage! Now the group has released the first results from their analysis.Windy DiskThe primary surprise from V404 Cyg is its winds. Many stellar-mass black holes have outflows of mass, either in the form of directed jets emitted from their centers, or in the form of high-energy winds isotropically emitted from their accretion disks. But V404 Cygs winds which the authors measure to be moving at a whopping ~4,000 km/s appear to originate from much further out in the disk than whats typical. Furthermore, the presence of disk winds and jets is normally anti-correlated, yet in V404 Cyg, both are active at the same time.King and collaborators believe that the winds are likely associated with the disruption of the outer accretion disk due to pressure from the radiation in the central region as it becomes very luminous. V404 Cygs behavior is actually more similar to that of some supermassive black holes than to most stellar-mass black holes, which is extremely intriguing.The authors are currently working to complete a more detailed analysis of the spectra and build a model of the processes occurring in this awakening black hole, but these initial results demonstrate that V404 Cyg has some interesting things to teach us.CitationAshley L. King et al 2015 ApJ 813 L37. doi:10.1088/2041-8205/813/2/L37

  17. Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array

    NASA Astrophysics Data System (ADS)

    Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.

    1995-06-01

    The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.

  18. Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory, volume 2: Computer program users manual

    NASA Technical Reports Server (NTRS)

    Keith, T. G., Jr.; Afjeh, A. A.; Jeng, D. R.; White, J. A.

    1985-01-01

    A description of a computer program entitled VORTEX that may be used to determine the aerodynamic performance of horizontal axis wind turbines is given. The computer code implements a vortex method from finite span wind theory and determines the induced velocity at the rotor disk by integrating the Biot-Savart law. It is assumed that the trailing helical vortex filaments form a wake of constant diameter (the rigid wake assumption) and travel downstream at the free stream velocity. The program can handle rotors having any number of blades which may be arbitrarily shaped and twisted. Many numerical details associated with the program are presented. A complete listing of the program is provided and all program variables are defined. An example problem illustrating input and output characteristics is solved.

  19. Development of an Impinging-jet Fuel-injection Valve Nozzle

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hemmeter, G H

    1931-01-01

    During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.

  20. Galaxy evolution. Black hole feedback in the luminous quasar PDS 456.

    PubMed

    Nardini, E; Reeves, J N; Gofford, J; Harrison, F A; Risaliti, G; Braito, V; Costa, M T; Matzeu, G A; Walton, D J; Behar, E; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Matt, G; Miller, J M; O'Brien, P T; Stern, D; Turner, T J; Ward, M J

    2015-02-20

    The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution. Copyright © 2015, American Association for the Advancement of Science.

  1. Spectroscopy and Photometry of EUVE J1429-38.0:An Eclipsing Magnetic Cataclysmic Variable

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Craig, Nahide; Roberts, Bryce; McGee, Paddy; Sirk, Martin

    1997-06-01

    EUVE J1429-38.0 was originally discovered as a variable source by the Extreme Ultraviolet Explorer (EUVE) satellite. We present new optical observations which unambiguously confirm this star to be an eclipsing magnetic system with an orbital period of 4() h 46() m. The photometric data are strongly modulated by ellipsoidal variations during low states which allow a system inclination of near 80 degrees to be determined. Our time-resolved optical spectra, which cover only about one-third of the orbital cycle, indicate the clear presence of a gas stream. During high states, EUVE J1429-38.0 shows ~ 1 mag deep eclipses and the apparent formation of a partial accretion disk. EUVE J1429-38.0 presents the observer with properties of both the AM Herculis and the DQ Herculis types of magnetic cataclysmic variable.

  2. Tutorial: Performance and reliability in redundant disk arrays

    NASA Technical Reports Server (NTRS)

    Gibson, Garth A.

    1993-01-01

    A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.

  3. DEEP IMAGING OF M51: A NEW VIEW OF THE WHIRLPOOL’S EXTENDED TIDAL DEBRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    We present deep, wide-field imaging of the M51 system using CWRU’s Burrell Schmidt Telescope at KPNO to study the faint tidal features that constrain its interaction history. Our images trace M51's tidal morphology down to a limiting surface brightness of μ{sub B,lim} ∼ 30 mag arcsec{sup −2} and provide accurate colors (σ{sub B−V}<0.1) down to μ{sub B} ∼ 28. We identify two new tidal streams in the system (the south and northeast plumes) with surface brightnesses of μ{sub B} = 29 and luminosities of ∼10{sup 6}L{sub ⊙,B}. While the northeast plume may be a faint outer extension of the tidalmore » “crown” north of NGC 5195 (M51b), the south plume has no analog in any existing M51 simulation and may represent a distinct tidal stream or disrupted dwarf galaxy. We also trace the extremely diffuse northwest plume out to a total extent of 20′ (43 kpc) from NGC 5194 (M51a) and show it to be physically distinct from the overlapping bright tidal streams from M51b. The northwest plume’s morphology and red color (B−V=0.8) instead argue that it originated from tidal stripping of M51a’s extreme outer disk. Finally, we confirm the strong segregation of gas and stars in the southeast tail and do not detect any diffuse stellar component in the H i portion of the tail. Extant simulations of M51 have difficulty matching both the wealth of tidal structure in the system and the lack of stars in the H i tail, motivating new modeling campaigns to study the dynamical evolution of this classic interacting system.« less

  4. Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan

    2014-06-01

    The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.

  5. The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. I. The Role of Self-gravity

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Li, Rixin; Youdin, Andrew N.

    2016-05-01

    We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the Athena code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the Athena simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p≃ 1.6+/- 0.1, which equates to a differential size distribution of {dN}/{{dR}}p\\propto {R}p-q, with q≃ 2.8+/- 0.1. We find no significant trends with resolution from a convergence study of up to 5123 grid zones and {N}{{par}}≈ 1.5× {10}8 particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time τ =0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.

  6. Herschel evidence for disk flattening or gas depletion in transitional disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, J. T.; Pascucci, I.; Espaillat, C.

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions ofmore » the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.« less

  7. Geometric optimization of thermal systems

    NASA Astrophysics Data System (ADS)

    Alebrahim, Asad Mansour

    2000-10-01

    The work in chapter 1 extends to three dimensions and to convective heat transfer the constructal method of minimizing the thermal resistance between a volume and one point. In the first part, the heat flow mechanism is conduction, and the heat generating volume is occupied by low conductivity material (k 0) and high conductivity inserts (kp) that are shaped as constant-thickness disks mounted on a common stem of kp material. In the second part the interstitial spaces once occupied by k0 material are bathed by forced convection. The internal and external geometric aspect ratios of the elemental volume and the first assembly are optimized numerically subject to volume constraints. Chapter 2 presents the constrained thermodynamic optimization of a cross-flow heat exchanger with ram air on the cold side, which is used in the environmental control systems of aircraft. Optimized geometric features such as the ratio of channel spacings and flow lengths are reported. It is found that the optimized features are relatively insensitive to changes in other physical parameters of the installation and relatively insensitive to the additional irreversibility due to discharging the ram-air stream into the atmosphere, emphasizing the robustness of the thermodynamic optimum. In chapter 3 the problem of maximizing exergy extraction from a hot stream by distributing streams over a heat transfer surface is studied. In the first part, the cold stream is compressed in an isothermal compressor, expanded in an adiabatic turbine, and discharged into the ambient. In the second part, the cold stream is compressed in an adiabatic compressor. Both designs are optimized with respect to the capacity-rate imbalance of the counter-flow and the pressure ratio maintained by the compressor. This study shows the tradeoff between simplicity and increased performance, and outlines the path for further conceptual work on the extraction of exergy from a hot stream that is being cooled gradually. The aim of chapter 4 was to optimize the performance of a boot-strap air cycle of an environmental control system (ECS) for aircraft. New in the present study was that the optimization refers to the performance of the entire ECS system, not to the performance of an individual component. Also, there were two heat exchangers, not one, and their relative positions and sizes were not specified in advance. This study showed that geometric optimization can be identified when the optimization procedure refers to the performance of the entire ECS system, not to the performance of an individual component. This optimized features were robust relative to some physical parameters. This robustness may be used to simplify future optimization of similar systems.

  8. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds.

    PubMed

    Jensen, Vibeke F; Beck, Sarah; Christensen, Knud A; Arnbjerg, Jens

    2008-10-01

    To quantify the association between intervertebral disk calcification and disk herniation in Dachshunds. Longitudinal study. 61 Dachshunds that had been radiographically screened for calcification of intervertebral disks at 2 years of age in other studies. Thirty-seven of the dogs had survived to the time of the present study and were > or = 8 years of age; 24 others had not survived. Radiographic examination of 36 surviving dogs was performed, and information on occurrence of disk calcification at 2 years of age were obtained from records of all 61 Dachshunds. Information on occurrence of disk herniation between 2 and 8 years of age was obtained from owners via questionnaire. Associations between numbers of calcified disks and disk herniation were analyzed via maximum likelihood logistic regression. Disk calcification at 2 years of age was a significant predictor of clinical disk herniation (odds ratio per calcified disk, 1.42; 95% confidence interval, 1.19 to 1.81). Number of calcified disks in the full vertebral column was a better predictor than number of calcified disks between vertebrae T10 and L3. Numbers of calcified disks at > or = 8 years of age and at 2 years of age were significantly correlated. Number of calcified disks at 2 years of age was a good predictor of clinical disk herniation in Dachshunds. Because of the high heritability of disk calcification, it is possible that an effective reduction in occurrence of severe disk herniation in Dachshunds could be obtained by selective breeding against high numbers of calcified disks at 2 years of age.

  9. Aerodynamic and torque characteristics of enclosed Co/counter rotating disks

    NASA Astrophysics Data System (ADS)

    Daniels, W. A.; Johnson, B. V.; Graber, D. J.

    1989-06-01

    Experiments were conducted to determine the aerodynamic and torque characteristics of adjacent rotating disks enclosed in a shroud, in order to obtain an extended data base for advanced turbine designs such as the counterrotating turbine. Torque measurements were obtained on both disks in the rotating frame of reference for corotating, counterrotating and one-rotating/one-static disk conditions. The disk models used in the experiments included disks with typical smooth turbine geometry, disks with bolts, disks with bolts and partial bolt covers, and flat disks. A windage diaphragm was installed at mid-cavity for some experiments. The experiments were conducted with various amounts of coolant throughflow injected into the disk cavity from the disk hub or from the disk OD with swirl. The experiments were conducted at disk tangential Reynolds number up to 1.6 x 10 to the 7th with air as the working fluid. The results of this investigation indicated that the static shroud contributes a significant amount to the total friction within the disk system; the torque on counterrotating disks is essentially independent of coolant flow total rate, flow direction, and tangential Reynolds number over the range of conditions tested; and a static windage diaphragm reduces disk friction in counterrotating disk systems.

  10. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    PubMed

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at <26 years after implantation. Localized disk wear was found at the sites where the disk abutted the struts of the cage, in disk valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  11. Unveiling the nature of bright z ≃ 7 galaxies with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McLeod, D. J.

    2017-04-01

    We present new Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) imaging of 25 extremely luminous (-23.2 ≤ MUV ≲ -21.2) Lyman-break galaxies (LBGs) at z ≃ 7. The sample was initially selected from 1.65 deg2 of ground-based imaging in the UltraVISTA/COSMOS and UDS/SXDS fields, and includes the extreme Lyman α emitters, 'Himiko' and 'CR7'. A deconfusion analysis of the deep Spitzer photometry available suggests that these galaxies exhibit strong rest-frame optical nebular emission lines (EW0(Hβ + [O III]) > 600 Å). We find that irregular, multiple-component morphologies suggestive of clumpy or merging systems are common (fmulti > 0.4) in bright z ≃ 7 galaxies, and ubiquitous at the very bright end (MUV < -22.5). The galaxies have half-light radii in the range r1/2 ˜ 0.5-3 kpc. The size measurements provide the first determination of the size-luminosity relation at z ≃ 7 that extends to MUV ˜ -23. We find the relation to be steep with r1/2 ∝ L1/2. Excluding clumpy, multicomponent galaxies however, we find a shallower relation that implies an increased star formation rate surface density in bright LBGs. Using the new, independent, HST/WFC3 data we confirm that the rest-frame UV luminosity function at z ≃ 7 favours a power-law decline at the bright end, compared to an exponential Schechter function drop-off. Finally, these results have important implications for the Euclid mission, which we predict will detect >1000 similarly bright galaxies at z ≃ 7. Our new HST imaging suggests that the vast majority of these galaxies will be spatially resolved by Euclid, mitigating concerns over dwarf star contamination.

  12. Hubble Space Telescope Hx Imaging of Star-forming Galaxies at z approximately equal to 1-1.5: Evolution in the Size and Luminosity of Giant H II Regions

    NASA Technical Reports Server (NTRS)

    Livermore, R. C.; Jones, T.; Richard, J.; Bower, R. G.; Ellis, R. S.; Swinbank, A. M.; Rigby, J. R.; Smail, Ian; Arribas, S.; Rodriguez-Zaurin, J.; hide

    2013-01-01

    We present Hubble Space Telescope/Wide Field Camera 3 narrow-band imaging of the Ha emission in a sample of eight gravitationally lensed galaxies at z = 1-1.5. The magnification caused by the foreground clusters enables us to obtain a median source plane spatial resolution of 360 pc, as well as providing magnifications in flux ranging from approximately 10× to approximately 50×. This enables us to identify resolved star-forming HII regions at this epoch and therefore study their Ha luminosity distributions for comparisons with equivalent samples at z approximately 2 and in the local Universe. We find evolution in the both luminosity and surface brightness of HII regions with redshift. The distribution of clump properties can be quantified with an HII region luminosity function, which can be fit by a power law with an exponential break at some cut-off, and we find that the cut-off evolves with redshift. We therefore conclude that 'clumpy' galaxies are seen at high redshift because of the evolution of the cut-off mass; the galaxies themselves follow similar scaling relations to those at z = 0, but their HII regions are larger and brighter and thus appear as clumps which dominate the morphology of the galaxy. A simple theoretical argument based on gas collapsing on scales of the Jeans mass in a marginally unstable disc shows that the clumpy morphologies of high-z galaxies are driven by the competing effects of higher gas fractions causing perturbations on larger scales, partially compensated by higher epicyclic frequencies which stabilize the disc.

  13. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; hide

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  14. Long term variability of Cygnus X-1. VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Leutenegger, M. A.; Hell, N.; Pottschmidt, K.; Böck, M.; García, J. A.; Hanke, M.; Nowak, M. A.; Sundqvist, J. O.; Townsend, R. H. D.; Wilms, J.

    2015-04-01

    Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure. Appendix A is available in electronic form at http://www.aanda.org

  15. Three-dimensional structure of clumpy outflow from supercritical accretion flow onto black holes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Ohsuga, Ken; Takahashi, Hiroyuki R.; Kawashima, Tomohisa; Asahina, Yuta; Takeuchi, Shun; Mineshige, Shin

    2018-03-01

    We perform global three-dimensional (3D) radiation-hydrodynamic (RHD) simulations of outflow from supercritical accretion flow around a 10 M⊙ black hole. We only solve the outflow part, starting from the axisymmetric 2D simulation data in a nearly steady state but with small perturbations in a sinusoidal form being added in the azimuthal direction. The mass accretion rate onto the black hole is ˜102LE/c2 in the underlying 2D simulation data, and the outflow rate is ˜10 LE/c2 (with LE and c being the Eddington luminosity and speed of light, respectively). We first confirm the emergence of clumpy outflow, which was discovered by the 2D RHD simulations, above the photosphere located at a few hundreds of Schwarzschild radii (rS) from the central black hole. As prominent 3D features we find that the clumps have the shape of a torn sheet, rather than a cut string, and that they are rotating around the central black hole with a sub-Keplerian velocity at a distance of ˜103 rS from the center. The typical clump size is ˜30 rS or less in the radial direction, and is more elongated in the angular directions, ˜ hundreds of rS at most. The sheet separation ranges from 50 to 150 rS. We expect stochastic time variations when clumps pass across the line of the sight of a distant observer. Variation timescales are estimated to be several seconds for a black hole with mass of ten to several tens of M⊙, in rough agreement with the observations of some ultra-luminous X-ray sources.

  16. ALMA constraints on star-forming gas in a prototypical z = 1.5 clumpy galaxy: the dearth of CO(5-4) emission from UV-bright clumps

    NASA Astrophysics Data System (ADS)

    Cibinel, A.; Daddi, E.; Bournaud, F.; Sargent, M. T.; le Floc'h, E.; Magdis, G. E.; Pannella, M.; Rujopakarn, W.; Juneau, S.; Zanella, A.; Duc, P.-A.; Oesch, P. A.; Elbaz, D.; Jagannathan, P.; Nyland, K.; Wang, T.

    2017-08-01

    We present deep ALMA CO(5-4) observations of a main-sequence, clumpy galaxy at z = 1.5 in the HUDF. Thanks to the ˜0{^''.}5 resolution of the ALMA data, we can link stellar population properties to the CO(5-4) emission on scales of a few kiloparsec. We detect strong CO(5-4) emission from the nuclear region of the galaxy, consistent with the observed LIR-L^' }_CO(5-4) correlation and indicating ongoing nuclear star formation. The CO(5-4) gas component appears more concentrated than other star formation tracers or the dust distribution in this galaxy. We discuss possible implications of this difference in terms of star formation efficiency and mass build-up at the galaxy centre. Conversely, we do not detect any CO(5-4) emission from the UV-bright clumps. This might imply that clumps have a high star formation efficiency (although they do not display unusually high specific star formation rates) and are not entirely gas dominated, with gas fractions no larger than that of their host galaxy (˜50 per cent). Stellar feedback and disc instability torques funnelling gas towards the galaxy centre could contribute to the relatively low gas content. Alternatively, clumps could fall in a more standard star formation efficiency regime if their actual star formation rates are lower than generally assumed. We find that clump star formation rates derived with several different, plausible methods can vary by up to an order of magnitude. The lowest estimates would be compatible with a CO(5-4) non-detection even for main-sequence like values of star formation efficiency and gas content.

  17. A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Privon, G. C.; Stierwalt, S.; Johnson, K. E.

    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The H α emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M {sub ⊙} yr{sup −1}, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) formore » the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.« less

  18. Evidence for hot clumpy accretion flow in the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Dallilar, Y.; Garner, A.; Eikenberry, S.; Veledina, A.; Gandhi, P.

    2018-06-01

    We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r΄- and Ks-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switching (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anticorrelation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron star's magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flow material is channelled on to the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.

  19. Early dynamical evolution of substructured stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2015-08-01

    It is now widely accepted that stellar clusters form with a high level of substructure (Kuhn et al. 2014, Bate 2009), inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system (Kirk et al. 2007, Maschberger et al. 2010). The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth (Goodwin et al. 2004) and velocity inheritance. Such models are visually realistics and are very useful, they are however somewhat artificial in their velocity distribution. I introduce a new way to create clumpy initial conditions through a "Hubble expansion" which naturally produces self consistent clumps, velocity-wise. A velocity distribution analysis shows the new method produces realistic models, consistent with the dynamical state of the newly created cores in hydrodynamic simulation of cluster formation (Klessen & Burkert 2000). I use these initial conditions to investigate the dynamical evolution of young subvirial clusters, up to 80000 stars. I find an overall soft evolution, with hierarchical merging leading to a high level of mass segregation. I investigate the influence of the mass function on the fate of the cluster, specifically on the amount of mass loss induced by the early violent relaxation. Using a new binary detection algorithm, I also find a strong processing of the native binary population.

  20. Long term variability of Cygnus X-1: VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system

    DOE PAGES

    Grinberg, V.; Leutenegger, M. A.; Hell, N.; ...

    2015-04-16

    Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object’s X-rays to probe the wind structure. In this paper, we analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability ismore » most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. Finally, a qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure.« less

  1. Improved turbine disk design to increase reliability of aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Alver, A. S.; Wong, J. K.

    1975-01-01

    An analytical study was conducted on a bore entry cooled turbine disk for the first stage of the JT8D-17 high pressure turbine which had the potential to improve disk life over existing design. The disk analysis included the consideration of transient and steady state temperature, blade loading, creep, low cycle fatigue, fracture mechanics and manufacturing flaws. The improvement in life of the bore entry cooled turbine disk was determined by comparing it with the existing disk made of both conventional and advanced (Astroloy) disk materials. The improvement in crack initiation life of the Astroloy bore entry cooled disk is 87% and 67% over the existing disk made of Waspaloy and Astroloy, respectively. Improvement in crack propagation life is 124% over the Waspaloy and 465% over the Astroloy disks. The available kinetic energies of disk fragments calculated for the three disks indicate a lower fragment energy level for the bore entry cooled turbine disk.

  2. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1981-01-01

    The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).

  3. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  4. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk where only half of the disk is seen in scattered light at H. We will discuss our survey results in terms of spiral arm theory, dust trapping vortices, and systematic differences in the relative scale height of these disks compared to those around Solar-mass stars. For the disks with spiral arms we discuss the planet-hosting potential, and limits on where giant planets can be located. We also discuss the implications for imaging with extreme adaptive optics instruments. Grady is supported under NSF AST 1008440 and through the NASA Origins of Solar Systems program on NNG13PB64P. JPW is supported NSF AST 100314. 0) in marked contrast to protoplanetary disks, transitional disks exhibit wide range of structural features1) arm visibility correlated with relative scale height in disk2) asymmetric and possibly variable shadowing of outer portions some transitional disks3) confirm pre-transitional disk nature of Oph IRS 48, MWC 758, HD 169142, etc.

  5. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1980-01-01

    A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.

  6. THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G., E-mail: wf5@rice.edu

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binarymore » mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  7. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE PAGES

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  8. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  9. Functional effects of the bacterial insecticide Bacillus thuringiensis var. kurstaki on aquatic microbial communities.

    PubMed

    Kreutzweiser, D P; Gringorten, J L; Thomas, D R; Butcher, J T

    1996-04-01

    Epilithic microbial communities were colonized on leaf disks and exposed to commercial preparations of Bacillus thuringiensis var. kurstaki (Btk) in aquatic microcosms. Responses in terms of microbial respiration, bacterial cell density, protozoan density, and microbial decomposition activity were measured. Test concentrations for treatments with Dipel 64AF and Dipel 8AF in microcosms were the expected environmental concentration (EEC) of 20 IU/ml, 100x the EEC, and 1000x the EEC. Bacterial cell density in the biofilm of leaf disks was significantly increased at concentrations as low as the EEC. There were no concomitant alterations in protozoan density. Microbial respiration was significantly increased, and decomposition activity was significantly decreased, but only at the artificially high concentration of 1000x the EEC. This effect was attributed to the spore-crystal component rather than formulation ingredients. Microbial decomposition of leaf material was also determined in outdoor stream channels treated at concentrations ranging from the EEC to 100x the EEC. Although there tended to be reduced decomposition activity in treated channels, there were no significant differences in mass loss of leaf material between treated and control channels. Various regression, classification, and ordination procedures were applied to the experimental data, and none indicated significant treatment effects. These results from laboratory and controlled field experiments indicate that contamination of watercourses with Btk is unlikely to result in significant adverse effects on microbial community function in terms of detrital decomposition.

  10. GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, K.; Klahr, H.; Johansen, A., E-mail: dittrich@mpia.de

    2013-02-15

    Recent numerical simulations have shown long-lived axisymmetric sub- and super-Keplerian flows in protoplanetary disks. These zonal flows are found in local as well as global simulations of disks unstable to the magnetorotational instability. This paper covers our study of the strength and lifetime of zonal flows and the resulting long-lived gas over- and underdensities as functions of the azimuthal and radial size of the local shearing box. We further investigate dust particle concentrations without feedback on the gas and without self-gravity. The strength and lifetime of zonal flows increase with the radial extent of the simulation box, but decrease withmore » the azimuthal box size. Our simulations support earlier results that zonal flows have a natural radial length scale of 5-7 gas pressure scale heights. This is the first study that combines three-dimensional MHD simulations of zonal flows and dust particles feeling the gas pressure. The pressure bumps trap particles with St = 1 very efficiently. We show that St = 0.1 particles (of some centimeters in size if at 5 AU in a minimum mass solar nebula) reach a hundred-fold higher density than initially. This opens the path for particles of St = 0.1 and dust-to-gas ratio of 0.01 or for particles of St {>=} 0.5 and dust-to-gas ratio 10{sup -4} to still reach densities that potentially trigger the streaming instability and thus gravoturbulent formation of planetesimals.« less

  11. Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasham, Dheeraj R.; Sadowski, Aleksander; Cenko, S. Bradley

    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similarmore » objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.« less

  12. Connecting the shadows: probing inner disk geometries using shadows in transitional disks

    NASA Astrophysics Data System (ADS)

    Min, M.; Stolker, T.; Dominik, C.; Benisty, M.

    2017-08-01

    Aims: Shadows in transitional disks are generally interpreted as signs of a misaligned inner disk. This disk is usually beyond the reach of current day high contrast imaging facilities. However, the location and morphology of the shadow features allow us to reconstruct the inner disk geometry. Methods: We derive analytic equations of the locations of the shadow features as a function of the orientation of the inner and outer disk and the height of the outer disk wall. In contrast to previous claims in the literature, we show that the position angle of the line connecting the shadows cannot be directly related to the position angle of the inner disk. Results: We show how the analytic framework derived here can be applied to transitional disks with shadow features. We use estimates of the outer disk height to put constraints on the inner disk orientation. In contrast with the results from Long et al. (2017, ApJ, 838, 62), we derive that for the disk surrounding HD 100453 the analytic estimates and interferometric observations result in a consistent picture of the orientation of the inner disk. Conclusions: The elegant consistency in our analytic framework between observation and theory strongly support both the interpretation of the shadow features as coming from a misaligned inner disk as well as the diagnostic value of near infrared interferometry for inner disk geometry.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espaillat, C.; D'Alessio, P.; Hernandez, J.

    In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less

  14. Effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the formosan subterranean termite (Isoptera: Rhinotermitidae).

    PubMed

    Cornelius, Mary L; Lax, Alan R

    2005-04-01

    This study evaluated the effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the Formosan subterranean termite, Coptotermes formosanus Shiraki. Bioassays were conducted to determine whether Summon disks affected the aggregation and feeding behavior of termites and to determine whether the presence of Summon disks caused increased recruitment of termites to wood blocks. When termites encountered the disk, they immediately clustered on top of the disk. Termites were observed aggregating on top of the disk throughout the experiment. Consumption of Summon disks was significantly greater than consumption of cardboard disks in paired choice tests. The presence of a Summon disk on top of a wood block caused a significant increase in consumption of the wood block. Bioassays also were conducted to determine whether water extracts of Summon disks affected termite behavior. Consumption of filter paper disks treated with a water extract of Summon disks was significantly greater than consumption of control filter paper disks. Termites tunneled through sand treated with a water extract of Summon disks faster than they tunneled through untreated sand. In a field test, the rate of infestation of monitoring stations with a Summon disk was 3 times greater than the rate of infestations of stations without a disk.

  15. Coevolution of Binaries and Circumbinary Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  16. Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.

  17. Simulation-Based Approach for Site-Specific Optimization of Hydrokinetic Turbine Arrays

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Chawdhary, S.; Yang, X.; Khosronejad, A.; Angelidis, D.

    2014-12-01

    A simulation-based approach has been developed to enable site-specific optimization of tidal and current turbine arrays in real-life waterways. The computational code is based on the St. Anthony Falls Laboratory Virtual StreamLab (VSL3D), which is able to carry out high-fidelity simulations of turbulent flow and sediment transport processes in rivers and streams taking into account the arbitrary geometrical complexity characterizing natural waterways. The computational framework can be used either in turbine-resolving mode, to take into account all geometrical details of the turbine, or with the turbines parameterized as actuator disks or actuator lines. Locally refined grids are employed to dramatically increase the resolution of the simulation and enable efficient simulations of multi-turbine arrays. Turbine/sediment interactions are simulated using the coupled hydro-morphodynamic module of VSL3D. The predictive capabilities of the resulting computational framework will be demonstrated by applying it to simulate turbulent flow past a tri-frame configuration of hydrokinetic turbines in a rigid-bed turbulent open channel flow as well as turbines mounted on mobile bed open channels to investigate turbine/sediment interactions. The utility of the simulation-based approach for guiding the optimal development of turbine arrays in real-life waterways will also be discussed and demonstrated. This work was supported by NSF grant IIP-1318201. Simulations were carried out at the Minnesota Supercomputing Institute.

  18. Bridging Scales: A Model-Based Assessment of the Technical Tidal-Stream Energy Resource off Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Cowles, G. W.; Hakim, A.; Churchill, J. H.

    2016-02-01

    Tidal in-stream energy conversion (TISEC) facilities provide a highly predictable and dependable source of energy. Given the economic and social incentives to migrate towards renewable energy sources there has been tremendous interest in the technology. Key challenges to the design process stem from the wide range of problem scales extending from device to array. In the present approach we apply a multi-model approach to bridge the scales of interest and select optimal device geometries to estimate the technical resource for several realistic sites in the coastal waters of Massachusetts, USA. The approach links two computational models. To establish flow conditions at site scales ( 10m), a barotropic setup of the unstructured grid ocean model FVCOM is employed. The model is validated using shipboard and fixed ADCP as well as pressure data. For device scale, the structured multiblock flow solver SUmb is selected. A large ensemble of simulations of 2D cross-flow tidal turbines is used to construct a surrogate design model. The surrogate model is then queried using velocity profiles extracted from the tidal model to determine the optimal geometry for the conditions at each site. After device selection, the annual technical yield of the array is evaluated with FVCOM using a linear momentum actuator disk approach to model the turbines. Results for several key Massachusetts sites including comparison with theoretical approaches will be presented.

  19. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  20. The Molecular and Dust Envelope of HD 56126

    NASA Astrophysics Data System (ADS)

    Meixner, M.; Zalucha, A.; Ueta, T.; Fong, D.; Justtanont, K.

    2004-10-01

    We present millimeter interferometry images of the CO J=1-0 line emission arising in the circumstellar envelope of HD 56126 (=IRAS 07134+1005), which is one of the best-studied 21 μm proto-planetary nebulae (PPNs). The CO emission extends from 1.2" to 7" in radius from the central star and appears consistent with a simple expanding envelope, as expected for a post-AGB star. The CO envelope is very clumpy with no apparent fast wind to explain these microstructures that must have arisen during the AGB mass loss. We quantitatively model the molecular envelope using a radiative transfer code that we have modified for detached shells. Our best-fit model reveals that two sequential winds created the circumstellar envelope of HD 56126: an AGB wind that lasted 6500 yr with a mass-loss rate of 5.1×10-6 Msolar yr-1 and a more intense superwind that lasted 840 yr with a mass-loss rate of 3×10-5 Msolar yr-1 and that ended the star's life on the AGB 1240 yr ago. The total mass of this envelope is 0.059 Msolar, which indicates a lower limit progenitor mass for the system of 0.66 Msolar, quite reasonable for this low-metallicity star that probably resides in the thick disk of the Galaxy. Comparison with images of the dust emission reveals a structure similar to that of the gas in the inner regions. Using 2-D UST, we model the dust emission of this source so that the model is consistent with the CO emission model and find a total dust mass of 7.8×10-4 Msolar, a superwind-dust mass-loss rate of 1.9×10-7 Msolar yr-1 and an AGB-dust mass-loss rate of 9.6×10-8 Msolar yr-1. We derive an average gas-to-dust mass ratio of 75, which is consistent with ISM values but low for what most consider for carbon stars. Our results indicate that TiC nanocrystals are probably not the carrier of the 21 μm feature.

  1. The spectral energy distribution of the redshift 7.1 quasar ULAS J1120+0641

    NASA Astrophysics Data System (ADS)

    Barnett, R.; Warren, S. J.; Banerji, M.; McMahon, R. G.; Hewett, P. C.; Mortlock, D. J.; Simpson, C.; Venemans, B. P.; Ota, K.; Shibuya, T.

    2015-03-01

    We present new observations of the highest-redshift quasar known, ULAS J1120+0641, redshift z = 7.084, obtained in the optical, at near-, mid-, and far-infrared wavelengths, and in the sub-mm. We combine these results with published X-ray and radio observations to create the multiwavelength spectral energy distribution (SED), with the goals of measuring the bolometric luminosity Lbol, and quantifying the respective contributions from the AGN and star formation. We find three components are needed to fit the data over the wavelength range 0.12-1000 μm: the unobscured quasar accretion disk and broad-line region, a dusty clumpy AGN torus, and a cool 47K modified black body to characterise star formation. Despite the low signal-to-noise ratio of the new long-wavelength data, the normalisation of any dusty torus model is constrained within ±40%. We measure a bolometric luminosity Lbol = 2.6 ± 0.6 × 1047 erg s-1 = 6.7 ± 1.6 × 1013 L⊙, to which the three components contribute 31%,32%,3%, respectively, with the remainder provided by the extreme UV < 0.12 μm. We tabulate the best-fit model SED. We use local scaling relations to estimate a star formation rate (SFR) in the range 60-270 M⊙/yr from the [C ii] line luminosity and the 158 μm continuum luminosity. An analysis of the equivalent widths of the [C ii] line in a sample of z> 5.7 quasars suggests that these indicators are promising tools for estimating the SFR in high-redshift quasars in general. At the time observed the black hole was growing in mass more than 100 times faster than the stellar bulge, relative to the mass ratio measured in the local universe, i.e. compared to MBH/Mbulge ≃ 1.4 × 10-3, for ULAS J1120+0641 we measure ṀBH/Ṁbulge ≃ 0.2. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A31

  2. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    NASA Astrophysics Data System (ADS)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the wind (τ = 0.3). Conclusions: Together with other AGN observables, the polarization time lag places new, independent "seismological" constraints on the inner geometry of AGN. If we conduct time-dependent spectropolarimetric observing campaigns of AGN, this method has a high potential for a census of supermassive black holes.

  3. Phibss: Molecular Gas, Extinction, Star Formation, and Kinematics in the z = 1.5 Star-forming Galaxy EGS13011166

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Kurk, J.; Wuyts, S.; Combes, F.; Freundlich, J.; Bolatto, A.; Cooper, M. C.; Neri, R.; Nordon, R.; Bournaud, F.; Burkert, A.; Comerford, J.; Cox, P.; Davis, M.; Förster Schreiber, N. M.; García-Burillo, S.; Gracia-Carpio, J.; Lutz, D.; Naab, T.; Newman, S.; Saintonge, A.; Shapiro Griffin, K.; Shapley, A.; Sternberg, A.; Weiner, B.

    2013-08-01

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the Hα line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the "Plateau de Bure high-z, blue-sequence survey" (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a "mixed" extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlogΣstar form/dlogΣmol gas, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 ± 0.1. Based on observations with the Plateau de Bure millimetre interferometer, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain). Based also on data acquired with the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in Germany, Italy, and the United States. LBT Corporation partners are LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; Istituto Nazionale di Astrofisica, Italy; The University of Arizona on behalf of the Arizona University system; The Ohio State University, and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  4. The unusual ISM in Blue and Dusty Gas Rich Galaxies (BADGRS).

    NASA Astrophysics Data System (ADS)

    Dunne, L.; Zhang, Z.; De Vis, P.; Clark, C. J. R.; Oteo, I.; Maddox, S. J.; Cigan, P.; de Zotti, G.; Gomez, H. L.; Ivison, R. J.; Rowlands, K.; Smith, M. W. L.; van der Werf, P.; Vlahakis, C.; Millard, J. S.

    2018-06-01

    The Herschel-ATLAS unbiased survey of cold dust in the local Universe is dominated by a surprising population of very blue (FUV - K < 3.5), dust-rich galaxies with high gas fractions ({f_{HI}=M_{HI}/({ M_{\\ast }}+M_{HI})}>0.5). Dubbed `Blue and Dusty Gas Rich Sources' (BADGRS) they have cold diffuse dust temperatures, and the highest dust-to-stellar mass ratios of any galaxies in the local Universe. Here, we explore the molecular ISM in a representative sample of BADGRS, using very deep {CO(J_{up}=1,2,3)} observations across the central and outer disk regions. We find very low CO brightnesses (Tp = 5 - 30 mK), despite the bright far-infrared emission and metallicities in the range 0.5 < Z/Z⊙ < 1.0. The CO line ratios indicate a range of conditions with R_{21}={T_b^{21}/T_b^{10}=0.6-2.1} and R_{31}={T_b^{32}/T_b^{10}=0.2-1.2}. Using a metallicity dependent conversion from CO luminosity to molecular gas mass we find M_{H2}/{M_d}˜ 7-27 and Σ _{H2} = 0.5-6 M_{⊙} {pc^{-2}}, around an order of magnitude lower than expected. The BADGRS have lower molecular gas depletion timescales (τd ˜ 0.5 Gyr) than other local spirals, lying offset from the Kennicutt-Schmidt relation by a similar factor to Blue Compact Dwarf galaxies. The cold diffuse dust temperature in BADGRS (13-16 K) requires an interstellar radiation field 10-20 times lower than that inferred from their observed surface brightness. We speculate that the dust in these sources has either a very clumpy geometry or a very different opacity in order to explain the cold temperatures and lack of CO emission. BADGRS also have low UV attenuation for their UV colour suggestive of an SMC-type dust attenuation curve, different star formation histories or different dust/star geometry. They lie in a similar part of the IRX-β space as z ˜ 5 galaxies and may be useful as local analogues for high gas fraction galaxies in the early Universe.

  5. First image of the L1157 molecular jet by the CALYPSO IRAM-PdBI survey

    NASA Astrophysics Data System (ADS)

    Podio, L.; Codella, C.; Gueth, F.; Cabrit, S.; Maury, A.; Tabone, B.; Lefèvre, C.; Anderl, S.; André, P.; Belloche, A.; Bontemps, S.; Hennebelle, P.; Lefloch, B.; Maret, S.; Testi, L.

    2016-09-01

    Context. Fast jets are thought to be a crucial ingredient of star formation because they might extract angular momentum from the disk and thus allow mass accretion onto the star. However, it is unclear whether jets are ubiquitous, and likewise, their contribution to mass and angular momentum extraction during protostar formation remains an open question. Aims: Our aim is to investigate the ejection process in the low-mass Class 0 protostar L1157. This source is associated with a spectacular bipolar outflow, and the recent detection of high-velocity SiO suggests the occurrence of a jet. Methods: Observations of CO 2 -1 and SiO 5 - 4 at ~0.8 arcsec resolution were obtained with the IRAM Plateau de Bure Interferometer (PdBI) as part of the CALYPSO large program. The jet and outflow structure were fit with a precession model. We derived the column density of CO and SiO, as well as the jet mass-loss rate and mechanical luminosity. Results: High-velocity CO and SiO emission resolve for the first time the first 200 au of the outflow-driving molecular jet. The jet is strongly asymmetric, with the blue lobe ~0.65 times slower than the red lobe. This suggests that the large-scale asymmetry of the outflow is directly linked to the jet velocity and that the asymmetry in the launching mechanism has been at work for the past 1800 yr. Velocity asymmetries are common in T Tauri stars, which suggests that the jet formation mechanism from Class 0 to Class II stages might be similar. Our model simultaneously fits the properties of the inner jet and of the clumpy 0.2 pc scale outflow by assuming that the jet precesses counter-clockwise on a cone inclined by 73° to the line of sight with an opening angle of 8° on a period of ~1640 yr. The estimated jet mass flux and mechanical luminosity are Ṁjet ~ 7.7 × 10-7M⊙ yr-1 and Ljet ~ 0.9L⊙, indicating that the jet could extract at least 25% of the gravitational energy released by the forming star.

  6. The Dust and [C II] Morphologies of Redshift ∼4.5 Sub-millimeter Galaxies at ∼200 pc Resolution: The Absence of Large Clumps in the Interstellar Medium at High-redshift

    NASA Astrophysics Data System (ADS)

    Gullberg, B.; Swinbank, A. M.; Smail, I.; Biggs, A. D.; Bertoldi, F.; De Breuck, C.; Chapman, S. C.; Chen, C.-C.; Cooke, E. A.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Dunlop, J. S.; Edge, A. C.; Farrah, D.; Geach, J. E.; Greve, T. R.; Hodge, J.; Ibar, E.; Ivison, R. J.; Karim, A.; Schinnerer, E.; Scott, D.; Simpson, J. M.; Stach, S. M.; Thomson, A. P.; van der Werf, P.; Walter, F.; Wardlow, J. L.; Weiss, A.

    2018-05-01

    We present deep, high-resolution (0.″03, 200 pc) ALMA Band 7 observations covering the dust continuum and [C II] λ157.7 μm emission in four z ∼ 4.4–4.8 sub-millimeter galaxies (SMGs) selected from the ALESS and AS2UDS surveys. The data show that the rest-frame 160 μm (observed 345 GHz) dust emission is consistent with smooth morphologies on kpc scales for three of the sources. One source, UDS 47.0, displays apparent substructure, but this is also consistent with a smooth morphology—as indicated by simulations showing that smooth exponential disks can appear clumpy when observed at the high angular resolution (0.″03) and depth of these observations ({σ }345{GHz}∼ 27{--}47 μJy beam‑1). The four SMGs are bright [C II] emitters. We extract [C II] spectra from the high-resolution data, and recover ∼20%–100% of the [C II] flux and ∼40%–80% of the dust continuum emission, compared to the previous lower-resolution observations. When tapered to 0.″2 resolution, our maps recover ∼80%–100% of the continuum emission, indicating that ∼60% of the emission is resolved out on ∼200 pc scales. We find that the [C II] emission in high-redshift galaxies is more spatially extended than the rest-frame 160 μm dust continuum by a factor of 1.6 ± 0.4. By considering the {L}[{{C}{{II}}]}/{L}FIR} ratio as a function of the star formation rate surface density ({{{Σ }}}SFR}), we revisit the [C II] deficit and suggest that the decline in the {L}[{{C}{{II}}]}/{L}FIR} ratio as a function of {{{Σ }}}SFR} is consistent with local processes. We also explore the physical drivers that may be responsible for these trends and can give rise to the properties found in the densest regions of SMGs.

  7. The influence of disk's flexibility on coupling vibration of shaft disk blades systems

    NASA Astrophysics Data System (ADS)

    Yang, Chia-Hao; Huang, Shyh-Chin

    2007-03-01

    The coupling vibrations among shaft-torsion, disk-transverse and blade-bending in a shaft-disk-blades unit are investigated. The equations of motion for the shaft-disk-blades unit are first derived from the energy approach in conjunction with the assumed modes method. The effects of disk flexibility, blade's stagger angle and rotational speed upon the natural frequencies and mode shapes are particularly studied. Previous studies have shown that there were four types of coupling modes, the shaft-blade (SB), the shaft-disk-blades (SDBs), the disk-blades (DB) and the blade-blade (BB) in such a unit. The present research focuses on the influence of disk flexibility on the coupling behavior and discovers that disk's flexibility strongly affects the modes bifurcation and the transition of modes. At slightly flexible disk, the BB modes bifurcate into BB and DB modes. As disk goes further flexible, SB modes shift into SDB modes. If it goes furthermore, additional disk-predominating modes are generated and DB modes appear before the SDB mode. Examination of stagger angle β proves that at two extreme cases; at β=0° the shaft and blades coupled but not the disk, and at β=90° the disk and blades coupled but not the shaft. In between, coupling exists among three components. Increasing β may increase or decrease SB modes, depending on which, the disk or shaft's first mode, is more rigid. The natural frequencies of DB modes usually decrease with the increase of β. Rotation effects show that bifurcation, veering and merging phenomena occur due to disk flexibility. Disk flexibility is also observed to induce more critical speeds in the SDBs systems.

  8. Spacecraft Data Simulator for the test of level zero processing systems

    NASA Technical Reports Server (NTRS)

    Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem

    1994-01-01

    The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.

  9. Dose rate prediction methodology for remote handled transuranic waste workers at the waste isolation pilot plant.

    PubMed

    Hayes, Robert

    2002-10-01

    An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.

  10. Analysis of penetration and mixing of gas jets in supersonic cross flow

    NASA Technical Reports Server (NTRS)

    Billig, F. S.; Schetz, J. A.

    1992-01-01

    The JETPEN analysis for gas jets in a supersonic cross flow developed earlier at APL/JHU has been extended in several important ways. First, the treatment of cases with injection at angles other than 90 deg has been redone. Next, the second of the three regions formerly treated has been eliminated. Third, the region downstream of the Mach disk for underexpanded cases has been reformulated such that turbulent entrainment of main stream fluid into the plume is modeled, and the equations of motion are solved marching downstream. These changes now permit prediction of the variation in composition, mixing area growth and all other flow variables along the plume. The analysis has been verified by comparison of predictions and experiment over a wide range of conditions. The result is an analysis capable of reliable predictions of the major flowfield variables that can be run on a PC.

  11. Tomo3D 2.0--exploitation of advanced vector extensions (AVX) for 3D reconstruction.

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-02-01

    Tomo3D is a program for fast tomographic reconstruction on multicore computers. Its high speed stems from code optimization, vectorization with Streaming SIMD Extensions (SSE), multithreading and optimization of disk access. Recently, Advanced Vector eXtensions (AVX) have been introduced in the x86 processor architecture. Compared to SSE, AVX double the number of simultaneous operations, thus pointing to a potential twofold gain in speed. However, in practice, achieving this potential is extremely difficult. Here, we provide a technical description and an assessment of the optimizations included in Tomo3D to take advantage of AVX instructions. Tomo3D 2.0 allows huge reconstructions to be calculated in standard computers in a matter of minutes. Thus, it will be a valuable tool for electron tomography studies with increasing resolution needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Full-Sun observations for identifying the source of the slow solar wind

    PubMed Central

    Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.

    2015-01-01

    Fast (>700 km s−1) and slow (~400 km s−1) winds stream from the Sun, permeate the heliosphere and influence the near-Earth environment. While the fast wind is known to emanate primarily from polar coronal holes, the source of the slow wind remains unknown. Here we identify possible sites of origin using a slow solar wind source map of the entire Sun, which we construct from specially designed, full-disk observations from the Hinode satellite, and a magnetic field model. Our map provides a full-Sun observation that combines three key ingredients for identifying the sources: velocity, plasma composition and magnetic topology and shows them as solar wind composition plasma outflowing on open magnetic field lines. The area coverage of the identified sources is large enough that the sum of their mass contributions can explain a significant fraction of the mass loss rate of the solar wind. PMID:25562705

  13. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iman, R.L.; Anderson, D.J.; Burress, R.V.

    1995-06-01

    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The testmore » data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.« less

  14. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  15. OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements

    NASA Astrophysics Data System (ADS)

    Pascucci, I.

    2010-07-01

    Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.

  16. Gaps in Protoplanetary Disks as Signatures of Planets. III. Polarization

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah

    2017-01-01

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected by polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.

  17. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, Raymond E.; Little, David A.

    1998-01-01

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  18. Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gibson, Garth Alan

    1990-01-01

    During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.

  19. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  20. A new solid-phase extraction disk based on a sheet of single-walled carbon nanotubes.

    PubMed

    Niu, Hong Yun; Cai, Ya Qi; Shi, Ya Li; Wei, Fu Sheng; Liu, Jie Min; Jiang, Gui Bin

    2008-11-01

    A new kind of solid-phase extraction disk based on a sheet of single-walled carbon nanotubes (SWCNTs) is developed in this study. The properties of such disks are tested, and different disks showed satisfactory reproducibility. One liter of aqueous solution can pass through the disk within 10-100 min while still allowing good recoveries. Two disks (DD-disk) can be stacked to enrich phthalate esters, bisphenol A (BPA), 4-n-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and chlorophenols from various volumes of solution. The results show that SWCNT disks have high extraction ability for all analytes. The SWCNT disk can extract polar chlorophenols more efficiently than a C(18) disk from water solution. Unlike the activated carbon disk, analytes adsorbed by the new disks can be eluted completely with 8-15 mL of methanol or acetonitrile. Finally, the DD-disk system is used to pretreat 1000-mL real-world water samples spiked with BPA, 4-OP and 4-NP. Detection limits of 7, 25, and 38 ng L(-1) for BPA, 4-OP, and 4-NP, respectively, were achieved under optimized conditions. The advantages of this new disk include its strong adsorption ability, its high flow rate and its easy preparation.

Top